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Abstract

Pointing stability requirements have become more demanding for high-precision sci-
entific and observation missions. In the last decades, space agencies have been pushing
towards higher performing payloads and on-board instruments to perform more pre-
cise and detailed observations. Nevertheless, high-performance instruments are typically
more sensitive to micro-vibrations. These perturbations are in general amplified by the
satellite structure when being transmitted to sensitive payload units and might degrade
considerably the instrument pointing accuracy. There are different sources of micro-
vibrations on-board a spacecraft, including the solar array oscillations induced by the
Solar Array Drive Mechanism (SADM). Following the experience of flying satellites with
rotating solar arrays equipped with SADM, it has been shown that even a small input
due to geometry errors or alignment imperfections can excite much larger oscillations of
the solar array than predicted. In order to cope with stringent stability requirements, a
toolbox to assess the effect of on-board induced oscillations on the attitude performances
was developed in previous studies. In addition, it was demonstrated that a major cause
of disturbance amplifications is the coupling between the moving SADM and the solar
array flexible body modes of vibration. This thesis aims to design an estimator which
robustly evaluates the input disturbance generated by the solar array rotation mecha-
nism by means of the information produced by the developed toolbox. The estimation
of the frequency content and the amplitude spectrum of the micro-vibrations induced by
the SADM allows to prevent the magnification of the input disturbance promoted by the
spacecraft dynamics. In the present study, a survey on different estimation techniques
is carried out, ranging from nonlinear real-time estimation techniques which rely on the
Kalman filter formulation to a more robust approach based on the H∞ theory. The
present work develops a method which combines the different estimation techniques and
exploits their definition while trying to compensate for their limitations. The result is
an estimator made up of a first robust system-based segment in series with a second part
that depends only on the shape of the input disturbance.





Sommario

I requisiti di missione relativi alla stabilità di puntamento per missioni scientifiche e
di osservazione della Terra stanno diventando più stringenti rispetto al passato. Negli
ultimi decenni le agenzie spaziali si stanno spingendo verso una strumentazione scien-
tifica da operare a bordo di satelliti sempre più precisa al fine di permettere osservazioni
più dettagliate. Tuttavia, strumentazioni scientifiche ad alta precisione sono solitamente
più sensibili alle microvibrazioni. Questi disturbi sono in genere amplificati dalla strut-
tura del satellite e tendono a degradare considerevolmente l’accuratezza di puntamento.
A bordo di un satellite possono essere presenti diverse fonti di microvibrazioni, incluse
le oscillazioni dei pannelli solari indotte dal meccanismo che permette la loro rotazione
attorno al proprio asse. Dai dati di missioni spaziali in volo attorno al pianeta, è stato
dimostrato che piccoli errori o imperfezioni a livello di tale meccanismo possono generare
oscillazioni ben maggiori di quelle previste. Al fine di fronteggiare requisiti di missione
così stringenti, studi precedenti hanno sviluppato e validato un toolbox per la valutazione
degli effetti indotti dal meccanismo di rotazione sull’assetto del satellite e si è dimostrato
che questi effetti vengono maggiormente amplificati a causa dell’accoppiamento delle
componenti in frequenza del disturbo con i modi propri di vibrare del pannello solare.
L’obiettivo di questa tesi consiste nel creare uno stimatore che valuti in modo robusto il
disturbo generato dal meccanismo di rotazione del pannello solare attraverso i modelli
sviluppati negli studi precedenti. La stima del contenuto in frequenza delle microvi-
brazioni indotte da tale meccanismo permette infatti di prevenire l’amplificazione di
questi disturbi. Questa tesi descrive inoltre diverse tecniche di stima esistenti ed esam-
ina sia approcci che forniscono dati in tempo reale fondati sulla formulazione non lineare
del filtro di Kalman, sia metodi più robusti basati sulla teoria del controllo H∞. In
particolare, in questo elaborato viene sviluppato un approccio che combina diverse tec-
niche di stima ed utilizza i vantaggi dei diversi metodi cercando allo stesso tempo di
compensarne le relative limitazioni. Il risultato è uno stimatore formato da una prima
parte robusta che coinvolge il solo sistema dinamico, in serie con una seconda parte che
dipende unicamente dalla struttura del disturbo da valutare.
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Chapter 1

Introduction

During the last decades, there has been a constant trend by both the European Space
Agency (ESA) and the National Aeronautics and Space Administration (NASA) to

push towards higher performing payloads and on-board instruments [9]. This interest de-
rives from the growing need of more stringent pointing performance for future observation
and science missions. High-performance instruments are generally extremely sensitive to
micro-vibration that can degrade their pointing accuracy and become critical for very
demanding missions. Micro-vibrations or jitter, as defined in the European Cooperation
for Space Standardisation (ECSS) for mechanical loads [29], are low-level vibrations oc-
curring during on-orbit operations of mobile or vibratory parts. These perturbations are
in general amplified by the satellite structure when being transmitted to sensitive pay-
load units and as a result, micro-vibrations might cause severe disturbances and degrade
instrument pointing performances. In fact, the inherent lightweight nature of the major-
ity of spacecraft structures and the resulting multitude of closely spaced, lightly damped,
low-frequency flexible body modes of vibration impact severely the final pointing budget.
Micro-vibrations are generated by internal mechanisms placed on-board the spacecraft
and typically include rotating mechanisms such as reaction wheels or momentum wheels
as well as sensor-related mechanical devices like cryocoolers, cryopumps or scanning mir-
rors. Other micro-vibration sources encompass high gain antennas and solar array drive
mechanisms. An additional aspect that makes the spacecraft micro-vibration problem
organisationally challenging is its multi-disciplinary nature which involves multiple engi-
neering disciplines. Structure, control and system engineering teams need to collaborate
in order to limit the propagation of the internal disturbance and the amplification of the
natural modes of the spacecraft structure.

An exemplary demonstration of the problems related to the generation of micro-
vibration disturbance and pointing performance degradation was the Hubble Space Tele-
scope mission [11]. Not long after its on-orbit activation, issues impacting the telescope
capability to perform its mission were encountered. Examination of the real-time flight
telemetry data revealed that the spacecraft was experiencing unexpectedly large distur-
bances that were most pronounced as the spacecraft entered or left the Earth’s shadow.
Further studies [23] identified the cause of the anomalous perturbation in the solar array
flexible mode that was thermally excited by the transition from and to eclipse. The
attitude control was then redesigned in order to take into account this phenomenon.

This example illustrates the necessity of predicting, managing, and controlling on-
board micro-vibrations for spacecrafts accommodating sensitive sensor payloads with
stringent requirements.

The present work was developed within the framework of an internship in the AOCS
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(Attitude and Orbit Control Systems) & Pointing Systems Section (TEC-SAA) of the
European Space Research and Technology Centre (ESTEC) situated in Noordwijk, the
Netherlands. ESTEC is the European Space Agency’s main technology development and
test centre for spacecraft and space technology.

In this thesis, the evaluation of micro-vibration disturbance generated by the Solar
Array Drive Mechanism (SADM) is investigated. In particular, a new approach involving
two filters in series is introduced and applied to the specific case of ESA’s Sentinel-2
mission.

1.1 State of the art

This section provides an overview of the models used to describe the dynamics of a
generic spacecraft when the external forces and torques acting on the body are known.
In addition, it describes the most common estimation techniques and their evolution over
time.

The dynamics of a spacecraft when approximated as a rigid body is characterised by
six degrees of freedom, namely three translational and three rotational degrees of free-
dom. The translational and rotational dynamics can be evaluated using the Newton’s
second law of motion and the Euler’s equations respectively. However, it can be conve-
nient to treat all the six degrees of freedom all together and include couplings between
rotations and translations. Alazard et al. [3] developed a dynamic model for spacecraft
which accounts for the global dynamics of rigid body and incorporates the possibility to
connect multiple flexible appendages. In other words, the spacecraft is approximated as
a rigid body which accommodates the main subsystems, and several appendages such
as antennas, solar arrays or propellant tanks can be connected to the rigid base and the
flexible nature of their structure is preserved. The rotational dynamics is approximated
to be linear, by assuming that the angular velocity of the spacecraft are small. The linear
assumption is usually realistic for such systems, since external perturbations and thus
motions are typically small. Accordingly, this model allows to compute the linear inverse
dynamic model of a generic spacecraft, i.e. the translational and angular accelerations of
the body when the forces and torques acting on the spacecraft are known. Moreover, it
is able to account for the rotation of the single appendages and includes the possibility to
consider parametric variations of the system parameters due to modeling uncertainties.
In addition, the MATLAB® implementation of the model was carried out and described
in the user guide [2] which introduces a toolbox called Satellite Dynamics Toolbox (SDT).
The user guide describes the modeling principles used in the toolbox and includes sev-
eral examples. In the case one or more appendages are solar arrays, Alazard and Cumer
specialised the toolbox even further in [1] by encompassing the dynamics of the solar
array drive mechanism that allows the continuous rotation of the appendage in order to
collect maximum sun power onto the solar cells. The main mechanical components of
the SADM are the stepper motor which is responsible to generate the actual rotation
and the gearbox that transmits the motor torque to the solar array. A purely torsional
model along the axis of the solar array was developed and integrated in SDT model. In
particular, the report [1] is focused on the study of the overall dynamics of Sentinel-2A
satellite. In addition, a frequency analysis of the system is included and reveals that
the Sentinel-2 SADM generates some perturbation torques. The torsional disturbance
at gearbox level is dominant and is characterised as a sawtooth signal with harmonic
components that depend on the assembly physical and geometrical parameters.
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The evaluation of the gearbox disturbance can be performed by using different esti-
mation techniques. The most common approach makes use of the Kalman filter, which is
the optimal linear estimator for linear systems with additive white noise in both the dy-
namics and the measurement systems [28]. The filter is named after Rudolph E. Kálmán,
who in 1960 published the article [20] describing a recursive solution to the discrete-time
linear filtering problem. Since then, the Kalman filter has found application in virtually
every area of engineering, including guidance, navigation, and control of vehicles, sig-
nal processing, robotics and trajectory optimisation [33]. In addition, several extensions
and generalisations to the Kalman filter have been developed. In particular, since most
of the problems in engineering are not linear, different methods to apply the filter to
nonlinear system have been introduced. A common extension of the Kalman filter to
nonlinear systems is the Extended Kalman Filter (EKF), which relies on Taylor series
expansions to linearise the dynamics and the measurement equation about a working
point. The idea of the EKF was originally proposed by Stanley Schmidt so that the
Kalman filter could be applied to nonlinear spacecraft navigation problems [5]. The
EKF is the most widely applied state estimation algorithm for nonlinear systems [28].
However, when the system dynamics and the measurement equation are highly nonlinear,
the extended Kalman filter may produce unreliable results because of the fact that the
covariance of the state is propagated in time through linearisation of the nonlinear model.
The Unscented Kalman Filter (UKF) uses a deterministic sampling technique known as
the unscented transformation to generate a set of sample points around the mean [19].
These points are then propagated through the nonlinear dynamics of the system and a
new mean and covariance are computed. The resulting filter depends on how the trans-
formed statistics of the unscented transformation are calculated and which set of points
are used. For certain systems, the UKF gives more accurate estimates of of the true mean
and covariance with respect to the EKF [28]. This can be verified with a Taylor series
expansion of the posterior statistics. Moreover, the UKF removes the requirement to
explicitly calculate Jacobians, which might be a difficult task for complicated functions
(i.e, requiring complex derivatives if done analytically or computationally costly if done
numerically), or even impossible in case the functions are not differentiable. The UKF
was first published in 1995 and has been rapidly finding applications in several areas,
including aircraft model estimation, financial forecasting and neural network training [6].
In case the nonlinearities of the system are particularly severe, an alternative approach
can be used, which makes use of a large set of particles to represent the posterior dis-
tribution of the stochastic process. This method is called particle filter and was first
introduced in the 1940s by the work of Metropolis and Wiener [22]. But only since the
1980s has computational power been adequate for its implementation. Nonetheless, even
now it is the computational burden of the particle filter its main obstacle to a more
widespread use. Particle filters find applications in different fields, including signal and
image processing, robotics, artificial intelligence, economics, and mathematical finance.

Besides the different estimation techniques introduced above which are all based on
the Kalman filter formulation, more robust approaches have also been introduced during
the last decades to which rely on the H∞ theory. The primary objective of the linear
H∞ theory was addressed to the synthesis of a controller that stabilised the system while
minimising the input-output worst-case scenario in terms of magnitude amplification over
all the frequency spectrum. The estimation problem of specific quantities of the system
can be considered as a special case and is called H∞ filtering [34]. The phrase H∞
control comes from the name of the mathematical space over which the optimisation takes
place, namely the Hardy space. These methods were originally introduced into control
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theory in the late 1970s by Zames [32] and different techniques have been developed
for the synthesis of the controller, including Riccati-based approaches which require the
solution of two algebraic Riccati equations [15], and optimisation-based reformulations
of the Riccati equations which make use of linear matrix inequalities [13].

1.2 Scope of the thesis

The scope of the present thesis is the estimation of the amplitude and frequency spectra
of the disturbance generated by the solar array drive mechanism. In particular, the
estimation concerns the perturbation produced by the SADM gearbox of the Sentinel-2
mission and it is to be performed by means of the information provided by the on-board
gyroscopes along with the model of the spacecraft dynamics.

The direct evaluation of the amplitude and frequency of the harmonic components in
which the input disturbance can be decomposed cannot be performed. The estimation
using techniques which rely on the nonlinear Kalman filter formulation present some
observability problems, and this result will be demonstrated by considering a simple
one-dimensional system with a single degree of freedom. On the other hand, evaluation
through approaches that are based on the Fourier series are not possible either, since
direct information of the input signal would be needed and there is no sensor on-board
the spacecraft which provides such output.

This thesis introduces an alternative approach which makes use of an estimator made
up of two parts. A first segment deals with the robust estimation of the disturbance acting
on the gearbox so that the second part has access to direct information of the input
signal and the methods mentioned above could be employed. This technique produces
generates different advantages. First of all, it allows to fulfil the objective to produce an
estimation of both the frequency and the amplitude spectrum. In addition, the division of
the estimator into two separate parts permits to create two simpler components devoted
to a specific function, with no observability-related issues due to the reduced size of the
states to be considered. In particular, the first component can be designed as a system-
based estimator which evaluates the input disturbance independently of its structure or
variation in time. Furthermore, since the system describing the satellite dynamics can
be approximated as linear, robust approaches which rely on linear formulations can be
used. Moreover, the second part of the estimator is system-independent and is only based
on the input disturbance shape. The present work explores both the formulation based
on the Fourier series and the Kalman filter theory and compares the results that these
techniques produce when the input disturbance is a single harmonic with constant or
time-varying amplitude and frequency or is generated by the sum of multiple harmonics.

1.3 Thesis outline

This thesis provides a detailed presentation of the most common estimation techniques
and their derivation. In addition, it applies the different approaches to a simple system
with a single degree of freedom to compare and investigate their behaviour when the
input disturbance is modeled in several forms. In addition, the theory related to the
mathematical modeling of the satellite dynamics is introduced and later formulated in
a state-space representation. Eventually, the methods for the estimation of the gearbox
disturbance acting on the real system are presented.
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Chapter 2 describes the full mathematical model describing the dynamics of a generic
spacecraft equipped with a solar array drive mechanism. The theory is then specialised
to the Sentinel-2 case.

Chapter 3 shows the procedure to implement a robust controller using the H∞ formu-
lation. The H∞ filtering theory is later presented as a special formulation of the control
problem for the implementation of the robust system-based estimator.

Chapter 4 presents the most common nonlinear estimation techniques which rely on
the nonlinear formulation of the Kalman filter. An algorithm summarising the steps to
be performed to implement the different filters is also included.

Chapter 5 introduces a simple one-dimensional system with a single degree of freedom
subjected to a harmonic disturbance and presents the problems that arise if a direct esti-
mation method is implemented for the evaluation of the input amplitude and frequency.
An alternative approach is described and a comparison of the estimation results pro-
duced by the Fourier analysis and the Kalman filter formulation for different input cases
is explored.

Chapter 6 applies the developed theory to estimate the amplitude and frequency spec-
tra of the disturbance generated by Sentinel-2 gearbox and reports the results obtained
by the different approaches.

Chapter 7 concludes the thesis and describes the main achievements obtained in the
present work as well as the possible future developments.
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Chapter 2

Mathematical modeling of satellite
dynamics

2.1 Satellite dynamic toolbox

The Satellite Dynamic Toolbox (SDT) is a mathematical model designed for the com-
putation of the linear dynamics of a generic spacecraft made up of a main body,

which is assumed to be rigid, and one or several appendages [2]. The appendages can be
considered as flexible and/or rotating bodies and are connected to the base at specific
points Pi. By means of the SDT the inverse dynamic model of the spacecraft is typi-
cally computed, i.e. the translational and rotational accelerations of the spacecraft are
obtained from knowledge of the forces and torques acting on the main body.

The dynamic model makes use of the Newton-Euler equations for the description of
the body movement in the three-dimensional space, which are linearised by assuming
that the angular velocity ω of the spacecraft is small. The linear assumption is usually
realistic for such systems, since external perturbations and thus motions are typically
small. The 3 degrees of freedom associated to body translation and the 3 degrees of
freedom related to rotation are then treated together.

As an example, Figure 2.1 shows the structure of a spacecraft composed of a rigid
main body or hub with centre of mass in G, and a solar array as appendage with centre
of mass in C and connected to the base at point P . Two reference frames are introduced
to develop the dynamics of the overall spacecraft: RB is the frame with centre at point
G and rigidly attached to the hub, whereas RA is the same frame with centre at the
connection location P , with x-axis aligned with the solar array longitudinal axis. To
conclude, a third reference frame can be introduced in case the appendage can rotate
around the longitudinal axis. Such frame is denoted as RSA, is rigidly attached to the
solar array and will rotate around the x-axis if viewed from a frame fixed with respect to
the hub. The last two reference frames shall be introduced for each different appendage.

From an inertial frame Ri the position vector of any point of the spacecraft base, for
instance point P , can be written as the sum:

rP = rG + rGP (2.1)

where rP and rG are the inertial position of point P and of the hub’s centre of mass
respectively, while rGP is the vector position of P with respect to the centre of mass G.

Since the base of the spacecraft is assumed to be rigid, vector rGP has a constant
magnitude and its direction will generally change in time due to rotational movement if

24



Master Thesis 2.1. SATELLITE DYNAMIC TOOLBOX

Figure 2.1: Physical model of a spacecraft with one appendage

seen from an inertial frame, while it will remain constant from a body fixed frame such
as RB.

Accordingly, using the transport theorem the time derivative of vector rGP with
respect to the inertial frame Ri can be written as [3]:

drGP
dt

∣∣∣∣
Ri

=
drGP
dt

∣∣∣∣
RB

+ ω ∧ rGP = ω ∧ rGP (2.2)

since rGP is constant both in magnitude and direction in frame RB, and where ω
denotes the angular velocity of frame RB relative to Ri, which coincides with the angular
velocity of the body as frame RB is rigidly attached to the base.

By carrying out the time derivative of equation (2.1), the inertial velocity vP can be
computed as:

vP = vG + ω ∧ rGP (2.3)

which allows to obtain the velocity of any point of the rigid base from knowledge
of the centre of mass velocity vG, the position of point P with respect to G, and the
angular velocity of the body.

The components of vector rGP can be written with respect to any reference frame as:

rGP =


x
y
z

 (2.4)

where such quantities are strictly dependent on the selected reference frame.
By introducing the skew-symmetric matrix [rGP ]∧ associated with vector rPG, defined

as:

[rGP ]∧ =

 0 −z y
z 0 −x
−y x 0

 (2.5)

and with the property ([rGP ]∧)T = −[rGP ]∧, the cross product in equation (2.3) can
be written as the product of a matrix and a vector:

ω ∧ rGP = −rGP ∧ ω = −[rGP ]∧ω (2.6)
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The velocity of any point P of the rigid hub can then be alternatively computed as
[3]:

vP = vG − [rGP ]∧ω (2.7)

Therefore, if both translational and rotational velocity of the hub are considered and
embedded in a single vector, velocities of the centre of mass can be written in a compact
form as: {

vG
ω

}
= τGP

{
vP
ω

}
=

[
I3 [rGP ]∧

03 I3

]{
vP
ω

}
(2.8)

where matrix τGP is the kinematic model that allows to pass from velocities of point
P to velocities of point G.

Similarly, the relation between the acceleration of the centre of mass and any point
of the rigid base can be inferred by deriving in time equation (2.3) as:

aP = aG + ω̇ ∧ rGP + ω ∧ (ω ∧ rPG) (2.9)

Since ω is small, the nonlinear term can be neglected and the previous relation can
be written as:

aP = aG − [rGP ]∧ω̇ (2.10)

The same kinematic model between acceleration at P and atG can then be introduced
as: {

aG
ω̇

}
= τGP

{
aP
ω̇

}
=

[
I3 [rGP ]∧

03 I3

]{
aP
ω̇

}
(2.11)

The previous kinematic models are particularly useful to compute the velocities and
acceleration starting from knowledge of the same quantities with respect to a different
point of the structure. However, the dynamic model of the rigid body shall be introduced
to obtain information of the spacecraft motion. Inertial quantities of the structure, such
as the mass mB of the base and its inertia matrix JBG with respect to its centre of mass in
the frame RB are typically known. By combining Newton’s and linear Euler’s equations,
the dynamic model DB is computed as follows:{

Fext

Text,G

}
= DB

{
aG
ω̇

}
=

[
mBI3 03

03 JBG

]{
aG
ω̇

}
(2.12)

where Fext and Text,G are the external forces and torques acting on the hub’s centre
of mass G respectively.

The power generated by such external forces and torques along a virtual velocity field
is independent of the point of application and can be expressed as [3]:

Pext =

{
vG
ω

}T {
Fext

Text,G

}
=

{
vP
ω

}T {
Fext

Text,P

}
(2.13)

By means of the kinematic model derived in equation (2.8) the following relation can
be obtained:

{
vG
ω

}T {
Fext

Text,G

}
=

(
τGP

{
vP
ω

})T {
Fext

Text,G

}
=

{
vP
ω

}T
τ TGP

{
Fext

Text,G

}
(2.14)
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The expression of the external power can then be written as:

Pext =

{
vP
ω

}T
τ TGP

{
Fext

Text,G

}
=

{
vP
ω

}T {
Fext

Text,P

}
(2.15)

From the last equivalence the following expression is derived:{
Fext

Text,P

}
= τ TGP

{
Fext

Text,G

}
=

[
I3 03

−[rGP ]∧ I3

]{
Fext

Text,G

}
(2.16)

The previous equation allows to express the external forces and torques with respect
to any point of the structure from knowledge of such quantities acting on the centre of
mass of the body. In addition, it permits to derive the dynamic model of the spacecraft
base with respect to the generic point P .

By substituting equation (2.11) into (2.12) and finally into equation (2.16) the fol-
lowing expression is derived:{

Fext

Text,P

}
= τ TGPDBτGP

{
aP
ω̇

}
(2.17)

Thus the transport of the direct dynamic model from the centre of mass G to a
generic point of the structure P can be written as [3]:

DP
B = τ TGPDBτGP =

[
mBI3 mB[rGP ]∧

−mB[rGP ]∧ JBG −mB([rGP ]∧)2

]
(2.18)

If the base and the appendages are separated, on each appendage the reaction forces
FB/A and the reaction torques TB/A,P generated by the spacecraft’s hub will act in
correspondence of the connection point P .

By introducing the direct dynamic model of the single appendage DA which is gener-
ally computed at the appendage centre of mass C, such dynamic model can be expressed
at the connection point P using the transport model [3]:

DP
A = τ TCPDAτCP =

[
I3 [rCP ]∧

03 I3

]T [
mAI3 03

03 JAC

] [
I3 [rCP ]∧

03 I3

]
(2.19)

where rCP is the position vector of the appendage centre of mass C with respect to
the connection point P , mA is the mass of the appendage and JAC is its inertia matrix
with respect to C.

If no other forces nor torques act on the appendage, then the following relation can
be obtained: {

FB/A

TB/A,P

}
= DP

A

{
aP
ω̇

}
(2.20)

Likewise, the spacecraft hub will experience the reaction forces FA/B = −FB/A and
the reaction torques TA/B,P = −TB/A,P generated by each appendage, besides the ex-
ternal contributions acting on the structure. Therefore, the dynamic model of the base
with respect to its centre of mass G can be expressed as [3]:{

Fext − FB/A

Text,G −TB/A,G

}
= DB

{
aG
ω̇

}
(2.21)

and from the dynamic model DG
A = τ TPGDP

AτPG of the appendage transported in G
the following expression can be derived:
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{
Fext

Text,G

}
= (DB + DG

A)

{
aG
ω̇

}
(2.22)

However, in the general case each appendage can rotate around a specific axis, which
will be aligned to x-axis in bothRA andRSA from the definition of such reference frames.
The dynamic model DA of the appendage is typically written in the frame RSA, which
is rigidly attached to the appendage. Nevertheless, to obtain the dynamic model of the
overall spacecraft expressed in the hub’s centre of mass, the appendage dynamic model
shall be considered in the frame RA, which on the contrary is fixed with respect to the
hub. Since the two reference frames are coincident, with the only difference that RSA is
rotated around the x-axis by the rotation angle θ of the appendage with respect to RA,
the following rotation matrix from frame RSA to frame RA can be introduced:

Rx(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (2.23)

Therefore, the dynamic model of the appendage written with respect to the hub’s
centre of mass is expressed as:

DG
A = τ TPG

[
Rx(θ) 03

03 Rx(θ)

]
DP
A

[
Rx(θ) 03

03 Rx(θ)

]T
τPG (2.24)

Furthermore, the appendages are generally flexible bodies as opposed to the space-
craft base, which on the contrary is usually considered to be rigid. To take into ac-
count the flexibility of the structure, the cantilever hybrid model reported by Cumer and
Chrétien in [8] is used, since the rigid and flexible contributions of the appendage can
be considered separately. In particular, the dynamics of the single appendage can be
described by the following equations [3]:

{
FB/A

TB/A,P

}
= DP

A

{
aP
ω̇

}
+ LT

P η̈ (2.25)

η̈ + diag(2ξiωi)η̇ + diag(ω2
i )η = −LP

{
aP
ω̇

}
(2.26)

where η is a vector with n components representing the modal coordinates of the
flexible structure, ωi, ξi, and liP are the frequency, the damping ratio and the flexible
contribution row vector of the i-th flexible mode expressed at point P . Matrix LP ∈ Rn×6

is then defined as:

LP =


l1P
l2P
...
lni

 (2.27)
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2.2 Solar array drive mechanism

The Solar Array Drive Mechanism (SADM) is a rotating mechanism that allows the
solar array panels to be continuously tilted, in order to collect maximum sun power
onto the solar cells. This mechanism is particularly important for the spacecraft to be
provided with a steady energy supply. The main mechanical components of the SADM
are the stepper motor – the electrical drive unit that generates the actual rotation – and
the gearbox, which transmits the motor torque to the solar array. However, they also
represent sources of disturbance, that may be dangerously magnified when coupling with
the resonance frequencies of the solar array occurs.

The assembly of the two components is a purely torsional model and can thus be
reduced to a system with only one degree of freedom. The angular acceleration and
the torque around the SADM rotation axis is modified by the assembly model, whereas
the other components bypass the assembly, affecting directly the spacecraft hub and the
appendage.

2.2.1 Stepper motor model

The stepper motor is an electromechanical device converting electrical pulses to dis-
crete mechanical rotation. The main characteristic of the stepper motor is its ability to
translate switched excitation changes into precisely defined increments of rotor angular
position, defined as steps or micro-steps.

In case the spacecraft is not rotating and the only movement is generated by the
stepper motor, the rotation angle θr represents the solar array rotation around its axis.
However, the global rotation of the rotor is due to the spacecraft motion as well. There-
fore, the overall acceleration of the rotor, which is also the input shaft of the gearbox,
can be written as [1]:

θ̈i = θ̈r + ω̇x
∣∣
RA

(2.28)

where ω̇x
∣∣
RA

is the component of the spacecraft angular acceleration ω̇ projected
along the solar array rotational axis, which coincides with the x-axis in the reference
frame RA rigidly attached to the appendage.

The torque generated by the stepper motor is dependent on a set of parameters which
characterise such device and can be described by the following equation [1]:

Tm = KmIγi (2.29)

whereKm is the motor torque constant, I is the amplitude of the two-phase current of
the stepper motor, γ is defined as the electrical micro-step angle, and i is an integer value
that depends on the reference angle of the rotor which represents the desired configuration
and is thus the input of the system. In addition, by considering the stiffness and the
damping contributions of the stepper motor, the overall torque acting on the spacecraft
hub can be computed as [1]:

Tr/HUB = −Tm + C0θ̇r +K0θr (2.30)

where K0 = KmIz is defined as the electromagnetic stiffness, z is the rotor teeth
number, and C0 is the viscous damping coefficient of the motor.

The dynamics of the rotor can then be described by the following equation [1]:
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Jrθ̈i = Ti/r + THUB (2.31)

where Jr is the inertia of the rotor, Ti/r represents the torque produced by the gearbox
and acting of the motor, and THUB = −Tr/HUB is the torque generated by the spacecraft
hub on the rotor around the direction of the solar array rotational axis.

2.2.2 Gearbox model

Between the stepper motor and the solar array, a gearbox is present in order to provide
both angular velocity and torque conversion. The velocity of the rotor is usually reduced
to attain the desired angular rate of the solar panel, while the torque generated by the
motor is generally amplified. As in case of the stepper motor, the gearbox model will be
purely torsional with a single rotational degree of freedom around the longitudinal axis
of the input and output shafts, whose inertia is denoted Ji and Jo respectively.

The gearbox ratio, or transmission ratio Ng, is introduced and defined as the ratio of
the angular velocity of the input shaft θ̇i to the angular velocity of the output shaft θ̇o.
However, due to the stiffness of the gearbox, the output shaft experiences an additional
deflection with respect to the expected output angular position, that can be expressed
as [1]:

δθ = θo −
θi
Ng

(2.32)

In case the deflection could be neglected it is easy to verify that the previous definition
of the gearbox ratio is retrieved.

The torsional torques acting on the input shaft of the gearbox are generated by the
rotor of the stepper motor Tr/i = −Ti/r on one side and the torque produced by the main
body of the gearbox itself Tg/i on the other side. The dynamics of the input shaft can
then be expressed as [1]:

Jiθ̈i = −Ti/r − Tg/i (2.33)

The main structure of the gearbox is considered to be massless, and the its stiffness
and viscous damping are denoted Kg and Cg respectively. Its entire dynamics is not
completely negligible due to its stiffness that in turn generated the angular deflection on
the output shaft δθ and is described by the following relation [1]:

Cgδθ̇ +Kgδθ = TPERT + Tg/o (2.34)

where the torque TPERT is the harmonic disturbance produced by one or more contact
damage frequencies in the gear pairs inside the gearbox main body. Such disturbance
may be dangerously magnified if coupling with the natural frequencies of the solar array
and thus might lead to pointing accuracy degradation. The characterisation of the
disturbance and the techniques for accurate estimation of TPERT will be treated in the
next chapters.

In addition, the dynamics of the gearbox depends on the quantity Tg/o, which is the
torque produced by the gearbox and acting on the output shaft connected to the solar
array. The value of Tg/o can also be derived from the gearbox ratio as:

Tg/o = NgTg/i (2.35)
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To conclude, the dynamics of the output shaft can be described by the following
expression [1]:

Joθ̈o = Tg/o + TSA/o (2.36)

where TSA/o is the torsional torque generated by the solar array and acting on the
output shaft of the gearbox.

2.2.3 Augmented satellite dynamic toolbox

The satellite dynamics toolbox can be integrated with the model of the solar array drive
mechanism to obtain a more powerful tool named SDT+ with additional capability to
include the dynamics of the mechanisms that allow the rotation of the appendages.

Such tool can be used to model and simulate the overall dynamics of a spacecraft,
including the input command of the stepper motor and the perturbations generated by
the single subsystems, as well as the global frequency response of the body.

In addition, it can be specialised to any specific configuration and further generalised
to encompass any finite number of flexible and/or rotating appendages, connected to the
spacecraft main body at any point of the structure.

As an example, Figure 2.2 shows a block diagram representation of the SDT+ model
with a solar array as the only appendage. Each block includes the dynamic model of a
specific subsystem.

Figure 2.2: Example of SDT+ block diagram
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2.3 Sentinel-2 mathematical model

Sentinel-2 is an Earth observation mission within the Copernicus program of the Euro-
pean Space Agency and the European Commission for global land monitoring at high
resolution. The mission provides data on vegetation, soil, water and atmosphere by
delivering images in 13 spectral bands, including the visible and the near-infrared.

Sentinel-2 is able to distinguish between different crop types and generates informa-
tion about changes in land cover as well as pollution in lakes and coastal waters, floods,
volcanic eruptions and landslides monitoring. In addition, the mission has been designed
to have high temporal resolution, with a geometric revisit time of 5 days in order to
make meaningful information rapidly available to users.

The mission is a constellation of two equally spaced twin satellites on the same
orbit, Sentinel-2A and Sentinel-2B. The orbit is sun-synchronous to guarantee the same
illumination angle on the planet while performing the imaging acquisition, and allowing
seamless combination of provided information with historical data. Table 2.1 contains
some orbital information for the two spacecrafts.

Orbital parameter Value

a Semi-major axis [km] 7173
e Eccentricity [-] 0.0013
i Inclination [deg] 98.62
Ω RAAN [deg] 293.66
ω Perigee argument [deg] 109.86
T Orbital period [min] 100.6

Table 2.1: Sentinel-2 orbital parameters

The satellite structure is shown in Figure 2.3 and it is made up of two main compo-
nents, i.e. the hub and the solar array. The solar array is equipped with a SADM that
allows the panel to be tilted continuously during the orbit, in order to collect maximum
sun power onto the solar cells. Moreover, the solar array is designed to operate in two
different modes, namely the forward mode when the sun is visible with respect to the
spacecraft, and a more rapid rewind mode during eclipse to recover the initial configu-
ration. The solar array configuration over time is depicted in Figure 2.4 and depends on
the angle θ(t) which represents the rotation of the appendage – and thus of frame RSA

– with respect to the reference frame RA rigidly attached to the satellite rigid base (see
also Figure 2.1).

From knowledge of Sentinel-2A geometrical and inertial properties as well as infor-
mation about the solar array and the relative driving mechanism, the satellite dynamics
can be modelled using the SDT+ previously described. In particular, Figure 2.5 shows
the kinematic model of the Sentinel-2 gearbox with its main components, which will be
also used to characterise the perturbations generated during the operation.

The overall SDT+ model specialised to the Sentinel-2A structure is shown in Fig-
ure 2.7. The dynamics of each subsystem composing the satellite is included and the
equations of motions derived in the previous section are combined and connected to each
other to reconstruct the global motion of the spacecraft. This block representation is
particularly useful, since the relations of the single quantities are easily retrievable and
can be computed by means of simple sums and multiplications.
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Figure 2.3: Sentinel-2A model [31]

Figure 2.4: Sentinel-2 solar array configuration over one orbit

Furthermore, from the dynamic model of Sentinel-2A generated by the SDT+ it is
possible to carry out further analysis. For instance, Figure 2.6 shows the frequency
response of the spacecraft structure as described by the corresponding singular values.
The different peaks represent the natural frequency of the overall satellite as well as
the flexible frequencies of the solar array. In particular, the response is computed by
considering both the stepper motor and the perturbation generated by the gearbox as
the input to the angular accelerations ω̇. Since the satellite dynamics depends on the
rotation angle θ(t) of the solar array, the frequency response slightly differs over time
and more responses are depicted to show the behaviour of the structure in different
configurations. In addition, it is clearly visible that the frequency response from the
gearbox is more relevant at almost every frequency, and will dominate the spacecraft
dynamics with respect to the motor response. Therefore, the response of the stepper
motor will be neglected in the following, and the present study will only focus on the
estimation on the disturbance generated by the gearbox.
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Figure 2.5: Sentinel-2 gearbox kinematic model [1]

Figure 2.6: Sentinel-2 gearbox and stepper motor frequency response [1]
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Chapter 3

Linear H∞ control theory

3.1 Review of linear systems representation

Linear Time-Invariant (LTI) dynamical systems can be described using a state-space
representation in the time domain or equivalently in the frequency domain, by intro-

ducing a transfer function which depends on the complex variable s = σ + jω. Modern
control theory makes use of the former technique for the design of the controller. A state
vector x(t) ∈ Rn is defined according to the system variables and the overall dynamic
system is described by a set of n first-order differential equations [18]:

ẋ(t) = Ax(t) + Buu(t) + Bww(t) (3.1)
y(t) = Cyx(t) + Dyuu(t) + Dyww(t) (3.2)
z(t) = Czx(t) + Dzuu(t) + Dzww(t) (3.3)

where:

• u(t) ∈ Rnu is the input control vector formed by controllable variables used to
regulate in some way the dynamic response of the system such that it exhibits a
desired dynamic behaviour;

• w(t) ∈ Rnw is the input disturbance vector encompassing the exogenous or en-
vironmental variables acting on the system, that are responsible of exciting the
system in an undesired manner;

• y(t) ∈ Rny includes the measured output variables, which are physical quantities
measured by sensors and representing the system response as perceived by an
observer;

• z(t) ∈ Rnz encompasses performance variables, which are quantities related to
a performance measure of the system response and typically introduced as error
output to be minimised when a control system is to be designed;

• A ∈ Rn×n is the system state matrix;

• Bu ∈ Rn×nu is the input matrix, in which the i-th column refers to the influence
vector of the i-th control input;

• Bw ∈ Rn×nw is the disturbance matrix, in which the i-th refers to the influence
vector of the i-th disturbance input;
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• Cy ∈ Rny×n is the output matrix, in which the i-th row refers to the i-th output
variable;

• Cz ∈ Rnz×n is the performance matrix, in which the i-th row refers to i-th perfor-
mance variable;

• Dyu ∈ Rny×nu is the direct feedthrough matrix, in which the element (i, j) refers
to the direct feedthrough term of the j-th control input on the i-th output;

• Dyw ∈ Rny×nw is the disturbance feedthrough matrix, in which the element (i, j)
refers to the direct feedthrough term of the j-th exogenous input on the i-th output;

• Dzu ∈ Rnz×nu is the direct feedthrough matrix of the performance, in which the
element (i, j) refers to the direct feedthrough term of the j-th control input on the
i-th performance variable;

• Dzw ∈ Rnz×nw is the disturbance direct feedthrough matrix of the performance, in
which the element (i, j) refers to the j-th exogenous input on the i-th performance
variable.

Figure 3.1: General linear time-invariant system block diagram

In contrast to modern control theory, classical control theory relies on the Laplace
transform, which converts a function of time t to a function of the complex variable
s = σ + jω as follows [12]:

f(s) = L[f(t)] =

∫ +∞

−∞
f(t)e−st dt (3.4)

In case the complex variable s has only imaginary part (i.e., σ = 0), the Laplace
transform reduces to the Fourier transform [12]:

f(jω) = F [f(t)] =

∫ +∞

−∞
f(t)e−jωt dt (3.5)

The main difference between the two transforms lies in the fact that Laplace trans-
forms can be used to study the complete response characteristics of feedback systems,
including transient response. On the other hand, Fourier transforms mainly involve
steady-state response of the system.

The transfer function G(s) of a system is defined as the ratio between the Laplace
transform of the system output y(s) and the Laplace transform of the system input
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u(s) with zero initial conditions. In general, when inputs and outputs are multiple, the
transfer function is a ny × nu matrix:

y(s) = G(s)u(s) (3.6)

The transfer function can be inferred from the state-state representation of the sys-
tem, by applying the Laplace transform to the state equation and substituting it in the
output equation (a single input vector including controllable and exogenous variables is
here considered) [18]:

G(s) = C(sI−A)−1B + D (3.7)

In addition, the system equation and the output equation can be written in a more
compact form as: {

ẋ(t)
y(t)

}
=

[
A B
C D

]{
x(t)
u(t)

}
(3.8)

Furthermore, the following additional notation is introduced for the system transfer
function [34]:

G(s) =

[
A B
C D

]
= C(sI−A)−1B + D (3.9)

3.1.1 Controllability and observability

A system is said to be controllable if and only if it is possible, by means of the input
u(t), to transfer the system from any initial state x(t0) to any other state x(T ) in a finite
time interval T − t0 ≥ 0.

In other words, controllability explores the interaction between input and state, seek-
ing to characterise the extent to which state trajectories can be controlled by piecewise
continuous input signals over a finite interval of time.

For linear systems, controllability can be checked by evaluating the rank of the con-
trollability matrix C, which is defined as [18]:

C =
[
B AB A2B ... An−1B

]
(3.10)

In particular, the pair (A,B) is said to be controllable if and only if rank(C) = n. If
C is not full rank, the system is said to be uncontrollable and the subspace spanned by
its columns defines the controllable subsystem.

Alternatively, the degree of controllability of a linear system can be evaluated by
introducing the controllability grammian Wc and checking whether it is strictly positive
definite for any t [18]:

Wc =

∫ t

0

eAτBBT eA
T τdτ (3.11)

An unforced system is said to be observable if and only if it is possible to determine
any state x(t) by using only a finite record y(τ) for t ≤ τ ≤ T of the output.

The idea of observability relies on whether or not measurements of the output signals
over a finite time interval can be processed in order to uniquely determine the state of
the system.
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For linear systems, observability can be checked by evaluating the rank of the ob-
servability matrix O, which is defined as [18]:

O =


C

CA
CA2

...
CAn−1

 (3.12)

In particular, the pair (A,C) is said to be observable if and only if rank(O) = n. If
O is not full rank, the system is said to be unobservable and the subspace spanned by
its columns defines the observable subsystem.

Analogously to the controllability case, the degree of observability of a linear system
can be evaluated by introducing the observability grammian Wo and checking whether
it is strictly positive definite for any t [18]:

Wo =

∫ t

0

eA
T τCTCeAτdτ (3.13)

If a system contains an uncontrollable subsystem it is said to be uncontrollable.
Similarly, if a system contains an unobservable subsystem it is said to be unobservable.
A distinction is introduced between an uncontrollable (unobservable) system in which
the uncontrollable (unobservable) part is stable and a system in which the uncontrollable
(unobservable) part is unstable.

In particular, if the uncontrollable part is stable, the system is said to be stabilizable.
Likewise, if the unobservable subsystem is stable, the overall system is said to be

detectable.

3.2 Singular values and H∞ norm

Singular Value Decomposition (SVD) of a matrix is a factorisation that generalises the
decomposition of a square matrix by means of eigenvalues and eigenvectors to any rect-
angular matrix by introducing the singular values σi.

It can be demonstrated that any complex matrix A ∈ Rm×n can be decomposed
as the product of a rectangular diagonal matrix Σ and two unitary (U∗U = UU∗ = I)
square matrices U and V∗, where the superscript * denotes the conjugate transpose (i.e.,
transpose of the matrix and complex conjugate of each entry) in the following order [34]:

A = UΣV∗ (3.14)

In particular:

U =
[
u1 u2 ... um

]
∈ Rm×m (3.15)

V =
[
v1 v2 ... vn

]
∈ Rn×n (3.16)

Σ =

[
Σ1 0
0 0

]
∈ Rm×n (3.17)
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Σ1 =


σ1 0 ... 0
0 σ2 ... 0
...

... . . . ...
0 0 ... σp

 ∈ Rp×p (3.18)

Matrix A does not possess a unique SVD, however it is usually decomposed such that
the entries in matrix Σ are ordered in a decreasing fashion:

σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0, p = min (n,m) (3.19)

Following the singular value decomposition, p quantities σi are obtained, which are
called singular values of matrix A. The columns of U and the columns of V are respec-
tively the left singular vectors and the right singular vectors of A. By passing from the
matrix to a vector notation, it can be verified that:

Avi = σiui (3.20)
A∗ui = σivi (3.21)

By taking the inverse of A∗ to obtain ui in the second equation and substituting in
the first equation (the same approach can be performed in the reversed order) the above
equations can be written as:

A∗Avi = σ2
i vi (3.22)

AA∗ui = σ2
i ui (3.23)

The last expressions prove that the squared singular value σ2
i is both an eigenvalue

of A∗A with corresponding eigenvector vi, and an eigenvalue of AA∗ associated to the
eigenvector ui. Thus, the singular value σi of matrix A can also be defined as the square
root of the non-negative eigenvalues of matrices A∗A and AA∗.

To denote the largest and the smallest singular values, the following notations are
typically used:

σ(A) = σmax(A) = σ1 → largest singular value of A

σ(A) = σmin(A) = σp → smallest singular value of A

Geometrically, the singular value decomposition of a real matrix A can be seen as
the linear transformation of of the unit sphere in Rm into a hyperellipsoid in Rm which
is obtained by stretching the unit sphere by the factors σ1, σ2, ..., σm (possibly zero)
in the orthogonal directions defined by u1, u2, ..., um. Vectors σiui are the principal
semi-axes of the hyperellipsoid, with lengths σ1, σ2, ..., σm. If A has rank p, exactly p
of the lengths σi will turn out to be nonzero.

In the simple case A ∈ R2×2, the SVD factorises matrix A as:

A =

[
cos θ1 − sin θ1
sin θ1 cos θ1

] [
σ1 0
0 σ2

] [
cos θ2 − sin θ2
sin θ2 cos θ2

]
(3.24)

The geometrical representation of the SVD is represented in Figure 3.2.
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Figure 3.2: Singular value decomposition - geometrical representation [30]

From the control theory point of view, the unit vector v1 is the highest gain input
(or control) direction, while u1 is the highest gain output (or observing) direction. In
a similar fashion, vn represents the lowest gain input direction, while um is the lowest
gain output direction.

This result is particularly useful in case the LTI dynamical system under study has
multiple inputs and/or outputs in order to minimise the highest gain direction. This is
strictly connected to the idea of the H∞ norm of a system’s transfer function, which is
defined as [4]:

||G||∞ = sup
ω
σ(G(jω)) (3.25)

The H∞ norm scans the largest singular value of the transfer function G(jω) over
all the frequency domain and returns the peak value that σ(G(jω)) achieves, which
– in case the system inputs are exogenous variables whose effects shall be cancelled –
represents the worst-case scenario, i.e. the highest gain direction that the combinations
of the external disturbances can generate.

In other words, when the transfer function G(s) represents a single-input and single-
output linear system, the H∞ norm can be regarded as the largest possible amplifi-
cation factor of the system’s steady-state response to sinusoidal excitations. For in-
stance, the steady-state response of the system with respect to a sinusoidal input u(t) =
U sin (ω0t+ ϕ) is [34]:

y(t) = U |G(jω0)| sin (ω0t+ ϕ+ ∠G(jω0)) (3.26)

and thus the largest possible amplification factor is supω0
σ(G(jω)), which is precisely

the H∞ norm of the transfer function.
Similarly, in the multiple-input and multiple-output case, the H∞ norm of a matrix

transfer function G(s) can also be considered as the largest possible amplification factor
of the system’s steady-state response to sinusoidal excitations. The sinusoidal inputs can
be written as:

u(t) =


u1 sin (ω0t+ ϕ1)
u2 sin (ω0t+ ϕ2)

...
un sin (ω0t+ ϕn)

 û =


u1
u2
...
un

 (3.27)

Then the steady-state response of the system can be written as:
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y(t) =


y1 sin (ω0t+ θ1)
y2 sin (ω0t+ θ2)

...
ym sin (ω0t+ θm)

 ŷ =


y1
y2
...
ym

 (3.28)

for some yi and θi that depend on the transfer function. Furthermore, the H∞ norm
can be defined as [34]:

||G||∞ = sup
ω0,ϕi,û

||ŷ||
||û||

(3.29)

where || · || is the Euclidian norm.

3.3 Algebraic Riccati equations

Algebraic Riccati Equations (AREs) are a type of nonlinear matrix equation that is
particularly recurrent in system control synthesis. For instance, an approach for the
computation of the H∞ control requires the solution of two AREs are required. The
general algebraic Riccati equation can be written as follows [34]:

A∗X + XA + XRX + Q = 0 (3.30)

where A, R, and Q are n × n known matrices, with R and Q symmetric, while
the unknown to be determined is the symmetric matrix X. To solve such problem, the
2n×2n Hamiltonian matrix H associated with the general Riccati equation is introduced
[34]:

H =

[
A R
−Q −A∗

]
(3.31)

The Hamiltonian matrix H has the property to have its eigenvalues symmetric with
respect to the imaginary axis. This statement can be easily proved by introducing a
second 2n× 2n matrix J defined as [34]:

J =

[
0 −In
In 0

]
(3.32)

By making use of the structure of J, it can be obtained that J2 = J · J = −I2n.
Therefore:

J−1HJ = I2n · J−1HJ = JJ−1 · J−1HJ = −JHJ = −H∗ (3.33)

which means that H and −H∗ are similar, and then they must share the same eigen-
values. Thus, λ is an eigenvalue of H (and of −H∗) if and only if −λ is as well.

Assuming that H has no eigenvalues on the imaginary axis, the above consideration
entails that H has n eigenvalues with Re(s) > 0 and n eigenvalues with Re(s) < 0. The
eigenvectors x1, x2, ..., xn ∈ C2n associated to the eigenvalues of the latter type form a
basis for the stable invariant subspace, and can be used to find a solution for the algebraic
Riccati equation. In particular, a new matrix can be formed by gathering the above-
mentioned stable eigenvectors, that in turn can be partitioned into two submatrices X1

and X2 with dimensions n× n as follows:
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[
v1 v2 ... vn

]
=

[
X1

X2

]
(3.34)

If X1 is nonsingular, then the solution of the general ARE is obtained as [34]:

X = X2X
−1
1 (3.35)

The last relation proves that the stabilising solution of the algebraic Riccati equation
X is uniquely determined by the associated Hamiltonian matrix H. In other words, a
function X = Ric(H) can be introduced to express such result. In addition, the condition
H ∈ dom(Ric) will denote that matrix H has no eigenvalues on the imaginary axis.

To sum up, it can be demonstrated that if H ∈ dom(Ric) and X = Ric(H), then:

• X is real and symmetric;

• X satisfies the algebraic Riccati equation:

A∗X + XA + XRX + Q = 0;

• A + RX is stable.

3.4 Linear fractional transformation

A Linear Fractional Transformation (LFT) is a mapping in the complex domain of the
form [34]:

F (s) =
a+ bs

c+ ds
(3.36)

where a, b, c, and d ∈ C are complex scalars. In other words, a linear fractional
transformation is a transformation that is represented by a fraction whose numerator
and denominator are linear.

The linear fractional transformation defined above for scalars can be generalised to
the matrix case. To derive the LFT involving matrices, a complex matrix G is introduced
and partitioned as follows:

G =

[
G11 G12

G21 G22

]
∈ C(nz+ny)×(nw+nu) (3.37)

with G11 ∈ Cnz×nw , G12 ∈ Cnz×nu , G21 ∈ Cny×nw , and G22 ∈ Cny×nu .
Then a lower LFT with respect to matrix K ∈ Cnu×ny can be defined as [34]:

Fl(G,K) = G11 + G12K(Iny −G22K)−1G21 (3.38)

provided that matrix Iny −G22K is nonsingular. The motivation and derivation of
the lower LFT can be obtained starting from the block diagram shown in Figure 3.3,
where G represents the linear dynamical system and K represents the feedback control
to be designed.

The LFT mapping encompasses the two systems in a single one denoted as M in
Figure 3.4, that is:

M = Fl(G,K) (3.39)
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Figure 3.3: Lower LFT block diagram

Figure 3.4: Lower LFT closed-loop block diagram

with exogenous variable acting on the system as the only inputs and the performance
parameters as the output.

Starting from the block diagram depicted in Figure 3.3 the following relations can be
inferred:

{
z
y

}
= G

{
w
u

}
=

[
G11 G12

G21 G22

]{
w
u

}
(3.40)

u = Ky (3.41)

that can also be written as:

z = G11w + G12u (3.42)
y = G21w + G22u (3.43)
u = Ky (3.44)

By substituting the third relation into the first two equations and solving for y in
the second equation:

z = G11w + G12Ky (3.45)
y = (Iny −G22K)−1G21w (3.46)
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The expression for the lower LFT is then derived by writing y of the second expression
into the first equation as the closed-loop transfer function between the input w and the
output z:

z = [G11 + G12K(Iny −G22K)−1G21]w (3.47)
= Fl(G,K)w = Mw (3.48)

An analogous reasoning can be implemented to derive the upper LFT with respect
to matrix ∆ ∈ Rnu×ny , starting from the block diagram shown in Figure 3.5.

Figure 3.5: Upper LFT block diagram

Matrix G is partitioned differently, with G11 ∈ Cny×nu , G12 ∈ Cny×nw , G21 ∈ Cnz×nu ,
and G22 ∈ Cnz×nw .

The following expressions are derived:

{
y
z

}
=

[
G11 G12

G21 G22

]{
u
w

}
(3.49)

u = ∆y (3.50)

By carrying out a similar procedure, the expression for the upper LFT is derived
and represents the closed-loop transfer function between the input w and the output z
encompassing the dynamic systems G and ∆ as:

z = [G21 + ∆(Iny −G11∆)−1G12 + G22]w (3.51)
= Fu(G,∆)w = Mw (3.52)

The LFT is particularly useful in control theory for both controller analysis and
synthesis. It can be demonstrated that any dynamical system can be put in the general
LFT form as shown in Figure 3.6, where G is the block including the dynamics of the
nominal plant, K is the feedback controller, and ∆ represents the uncertainties related to
the system model [34]. The input, output and intermediate variables can be rearranged
into vector w, which includes external disturbances, noise, and reference signals, vector
z encompassing all controlled signals and tracking errors, vectors y and u that denote
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Figure 3.6: General LFT block diagram

the sensor outputs and the input control signal, and vectors v and η which represent the
input and output signals of the uncertainty block ∆.

Once the system is put into the general LFT block form, the upper and lower LFTs
can be employed to obtain the closed-loop transfer function. To show the procedure
that permits to achieve such result, the generic nominal block system diagram without
uncertainties is considered in Figure 3.7, and will be transformed into the LFT standard
form. P is the nominal plant, d the external uncontrollable disturbance, n the measure-
ment noise, while W1, W2, Wd, and Wn represent selected weighting functions that can
be tuned both in frequency and amplitude according to the knowledge about the input
(in the Wd and Wn case) or the relative importance that it wants to be given to each
output variable (in the case of uf and v).

To obtain the LFT standard form, the output variables are written as functions of
the input parameters as:

v = W2PWdd + W2Pu (3.53)
uf = W1u (3.54)
y = Wnn + PWdd + Pu (3.55)

The exogenous variables and the performance parameters of the dynamical system
are gathered into vector w and z respectively:

w =

{
d
n

}
z =

{
v
uf

}
(3.56)

The LFT form in equation 3.40 is recovered as:

{
z
y

}
=

[
G11 G12

G21 G22

]{
w
u

}
→


v
uf
y

 =

 W2PWd 0 W2P
0 0 W1

PWd Wn P


d
n
u

 (3.57)
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Figure 3.7: Block diagram representation of a generic system

A state-space realisation for the generalised dynamic system G from the generic block
diagram in Figure 3.7 can be obtained by directly realising the transfer matrix G using
multivariable realisation techniques. However, the direct realisation approach is usually
complicated. Another way to obtain the state-space realisation of G can be achieved by
means of known realisation of each component of the overall system, that can be written
as:

P(s) =

[
AP BP

CP DP

]
W1(s) =

[
Au Bu

Cu Du

]
W2(s) =

[
Av Bv

Cv Dv

]
(3.58)

Wd(s) =

[
Ad Bd

Cd Dd

]
Wn(s) =

[
An Bn

Cn Dn

]
That is:

ẋP = APxP + BP (df + u); yP = CPxP + DP (df + u) (3.59)
ẋu = Auxu + Buu; uf = Cuxu + Duu (3.60)

ẋv = Avxv + BvyP ; v = Cvxv + DvyP (3.61)
ẋd = Adxd + Bdd; df = Cdxd + Ddd (3.62)
ẋn = Anxn + Bnn; nf = Cnxn + Dnn (3.63)

An augmented state vector is then defined:

x(t) =


xP (t)
xu(t)
xv(t)
xd(t)
xn(t)

 (3.64)
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The intermediate variables are expressed as functions of the inputs and of the system
states as:

df = Cdxd + Ddd (3.65)
yP = CPxP + DP (df + u) = CPxP + DPu + DPCdxd + DPDdd (3.66)

nf = Cnxn + Dnn (3.67)

The dynamics of the augmented state components can be written as:

ẋP = APxP + BPu + BPCdxd + BPDdd (3.68)
ẋu = Auxu + Buu (3.69)
ẋv = Avxv + BvCPxP + BvDPu + BvDPCdxd + BvDPDdd (3.70)
ẋd = Adxd + Bdd (3.71)
ẋn = Anxn + Bnn (3.72)

with performance and output equations:

z =

{
v
uf

}
=

{
Cvxv + DvCPxP + DvDPu + DvDPCdxd + DvDPDdd

Cuxu + Duu

}
(3.73)

y = CPxP + DPu + DPCdxd + DPDdd + Cnxn + Dnn (3.74)

The state-space realisation of G is then:

ẋ(t) = Ax(t) + Bww(t) + Buu(t) (3.75)
z(t) = Czx(t) + Dzww(t) + Dzuu(t) (3.76)
y(t) = Cyx(t) + Dyww(t) + Dyuu(t) (3.77)

or, alternatively:

G(s) =

 A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

 =

[
Cz

Cy

]
(sIn −A)−1

[
Bw Bu

]
+

[
Dzw Dzu

Dyw Dyu

]

=

 W2PWd 0 W2P
0 0 W1

PWd Wn P

 =

[
G11 G12

G21 G22

] (3.78)

with:

A =


AP 0 0 BPCd 0
0 Au 0 0 0

BvCP 0 Av BvDPCd 0
0 0 0 Ad 0
0 0 0 0 An

 (3.79)
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Bu =


BPDd 0

0 0
BvDPDd 0

Bd 0
0 Bw

 Bu =


BP

Bu

BvDP

0
0

 (3.80)

Cz =

[
CP 0 Cv DvDPCd 0
0 Cu 0 0 0

]
Cy =

[
CP 0 0 DPCd 0

]
(3.81)

Dzw =

[
DvDPDd 0

0 0

]
Dzu =

[
DvDP

Du

]
Dyw =

[
DPDd Dn

]
Dyu = DP (3.82)

3.5 H∞ controller

The H∞ control theory is generally formulated by considering the dynamical system
represented in the LFT framework as shown in Figure 3.3, where the plant G and the
controller K are assumed to be real, rational, and proper. Furthermore, it is assumed that
the state-space model of G is available and its realisation is stabilisable and detectable.

The H∞ control synthesis is an optimisation process, that implements a set of con-
trollers that minimise the closed-loop gain between the uncontrolled exogenous inputs
w and the performance parameters z in the H∞ norm sense. In other words, a dy-
namic system K(s) is sought such that it stabilises the plant and robustly controls it, by
minimising the value [34]:

||M||∞ = ||Fl(G,K)||∞ = sup
ω
σ(Fl(G,K)(jω)) (3.83)

A controller that satisfies such requirements is said to be an optimal H∞ control. In
general, optimal H∞ controllers are not unique for multiple-input and multiple-output
systems. In addition, finding an optimal H∞ controller is generally both numerically
and theoretically complicated. In practice, it is often not necessary to design an optimal
controller and it is much cheaper to obtain controllers that are very close in the norm
sense to the optimal ones, which are called suboptimal controllers. Suboptimal con-
trollers might also have additional desirable properties over optimal ones, such as lower
bandwidth.

Given a real number γ > 0, a suboptimal controller K(s) is then defined as a dynam-
ical system that stabilises the nominal plant G(s) and such that [34]:

||M||∞ = ||Fl(G,K)||∞ < γ (3.84)

The general suboptimal H∞ solution is obtained by considering the generic form of
the plant G and its state-space realisation of the form:

G(s) =

 A B1 B2

C1 D11 D12

C2 D21 D22

 =

[
A B
C D

]
(3.85)

which is compatible with the dimensions of x(t) ∈ Rn, z(t) ∈ Rnz , y(t) ∈ Rny ,
w(t) ∈ Rnw , and u(t) ∈ Rnu .
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Moreover, the performance vector z(t) can be partitioned into a vector uf (t) ∈ Rnu ,
which includes performances connected to the control variable u(t) via some weighting
functions and with the same number of entries, along with a second vector v(t) ∈ Rnv

that considers other relevant performance parameters. Similarly, vector w(t) can be
divided into a part linked to external disturbances d(t) ∈ Rnd and a vector n(t) ∈ Rny

encompassing measurement noises of the same dimension of the output vector y(t).
For the purpose of this study the case D12 = I and D22 = 0 is considered to simplify

the solution procedure.
In addition, the following assumptions are made [34]:

(1) The pair (A, B2) is stabilisable and the pair (C2,A) is detectable;

(2) D21 =
[
0ny×nd

Iny

]
, in case this assumption is not satisfied and D21 has full row

rank a normalisation procedure can be implemented to obtain an equivalent system
satisfying the assumption;

(3)
[
A− jωIn B2

C1 D12

]
has full column rank for all ω;

(4)
[
A− jωIn B1

C2 D21

]
has full column rank for all ω.

The first assumption guarantees the existence of a stabilising controller. The second
assumption means that the exogenous signal w(t) includes both plant disturbance and
sensor noise, and that the sensor noise weighting function is normalised and nonsingular.
The last two assumptions are necessary so that G(s) has no eigenvalues on the imaginary
axis.

Due to the simplifications mentioned above, the state-space representation of the
open-loop plant G can be written as:

G(s) =

 A B1 B2

C1 D11 I
C2 D21 0

 (3.86)

To obtain the solution for the suboptimal H∞ controller,the real parameter γ shall
be selected. Furthermore, several matrices need to be introduced [34]:

D10 =
[
D11 D12

]
∈ Rnz×(nw+nu) (3.87)

D01 =

[
D12

D22

]
∈ R(nz+ny)×nw (3.88)

R = DT
10D10 −

[
γ2Inw 0nu

0nu 0nw

]
∈ R(nw+nu)×(nw+nu) (3.89)

R̃ = D01D
T
01 −

[
γ2Inz 0ny

0ny 0nz

]
∈ R(nz+ny)×(nz+ny) (3.90)

H∞ =

[
A 0n

−CT
1 C1 −AT

]
−
[

B
−CT

1 D10

]
R−1

[
DT

10C1 BT
]
∈ R2n×2n (3.91)
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X∞ = Ric(H∞) ∈ Rn×n (3.92)

J∞ =

[
AT 0n
−B1B

T
1 −A

]
−
[

CT

−B1D
T
01

]
R̃−1

[
D01B

T
1 C

]
∈ R2n×2n (3.93)

Y∞ = Ric(J∞) ∈ Rn×n (3.94)

F =

[
F1∞
F2∞

]
= −R−1(DT

10C1 + BTX∞) ∈ R(nw+nu)×n (3.95)

L =
[
L1∞ L2∞

]
= −(B1D

T
01 + Y∞CT )R̃−1 ∈ Rn×(nz+ny) (3.96)

In particular X∞ has been defined as the stabilising solution of the following algebraic
Riccati equation associated to the Hamiltonian matrix H∞:

(AT −CT
1 D10R

−1BT )X∞ + X∞(A−BR−1DT
10C1)−X∞BR−1BTX∞+

+ CT
1 C1 −CT

1 D10R
−1DT

10C1 = 0n
(3.97)

Likewise, Y∞ is the stabilising solution of the following ARE associated to the Hamil-
tonian matrix J∞:

(A−B1D
T
01R̃

−1C)Y∞ + Y∞(AT −CT R̃−1D01B
T
1 )−Y∞CT R̃−1CY∞+

+ B1B
T
1 −B1D

T
01R̃

−1D01B
T
1 = 0n

(3.98)

Matrices D ∈ R(nz+ny)×(nw+nu), F1∞ ∈ Rnw×n, and L1∞ ∈ Rn×nz can be further
partitioned as follows [34]:

D =

D1111 D1112 0nv×nu

D1121 D1122 0nu

0ny×nd
Iny 0ny×nu

 (3.99)

FT
1∞ =

[
FT

11∞ FT
12∞
]

(3.100)

LT
1∞ =

[
LT

11∞
LT

12∞

]
(3.101)

where D1111 ∈ Rnv×nd , D1112 ∈ Rnv×ny , D1121 ∈ Rnu×nd , D1122 ∈ Rnu×ny , FT
11∞ ∈

Rn×nd , FT
12∞ ∈ Rn×ny , LT

11∞ ∈ Rnv×n, and LT
12∞ ∈ Rnu×n.

Once the above matrices are introduced, the suboptimal H∞ control can be imple-
mented by means of the following theorem:

Theorem for suboptimal H∞ synthesis [15].
If G satisfies the assumptions (1) to (4), then:

(a) There exists a stabilising controller K(s) such that ||Fl(G,K)||∞ < γ if and only
if:

• γ > σ(D1121);
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• H∞ ∈ dom(Ric) with X∞ = Ric(H∞) ≥ 0;

• J∞ ∈ dom(Ric) with Y∞ = Ric(J∞) ≥ 0;

• ρ(X∞Y∞) < γ2.

(b) Given that the conditions of part (a) are satisfied, then all rational stabilising
controllers K(s) satisfying ||Fl(G,K)||∞ < γ are given by:

K = Fl(M∞,Q) for arbitrary Q such that ||Q||∞ (3.102)

where:

M∞ =

 Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 0

 (3.103)

D̂11 = −D1122 (3.104)

D̂12 ∈ Rnu×nu and D̂21 ∈ Rny×ny are any matrices (e.g. Cholesky factorisation)
satisfying:

D̂12D̂
T
12 = Inu −

1

γ2
D1121D

T
1121 (3.105)

D̂12D̂
T
12 = Iny (3.106)

and:

B̂2 = Z∞(B2 + L12∞)D̂12 (3.107)

Ĉ2 = −D̂21(C2 + F12∞) (3.108)

B̂1 = −Z∞L2∞ + B̂2D̂
−1
12 D̂11 (3.109)

Ĉ1 = F2∞ + D̂11D̂
−1
21 Ĉ2 (3.110)

Â = A + BF + B̂1D̂
−1
21 Ĉ2 (3.111)

where

Z∞ =

(
In −

1

γ2
Y∞X∞

)−1
(3.112)
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3.6 H∞ filtering

The filtering problem is a mathematical model which aims to find an estimate ẑ(t)
of a specific quantity of interest z(t) related to the system, by means of the output
measurement y(t) [34]. The filtering problem can be formulated and solved using the
H∞ theory, since it can be regarded as a particular case of the H∞ control problem, in
which there is no stability requirement, and the estimator F(s) does not generate any
input u(t), in contrast with the H∞ controller K(s). The block diagram of the generic
filtering problem is depicted is Figure 3.9.

Figure 3.8: Block diagram representation of a generic system for filtering problems

A state-space representation of the dynamic system P(s) for which the estimate of
the performance variable z(t) is sought can be written as:

ẋ(t) = Ax(t) + Bww(t) (3.113)
z(t) = Czx(t) + Dzww(t) (3.114)
y(t) = Cyx(t) + Dyww(t) (3.115)

The quantity to be minimised is the estimation error, which is defined as:

e(t) = z(t)− ẑ(t) = Czx(t) + Dzww(t)− ẑ(t) (3.116)

To obtain the solution of the H∞ filtering problem, the system is rearranged so that it
can be formulated in the LFT framework. The open-loop transfer function representing
the system is then transformed into G(s) with exogenous input w(t), output measure-
ment y(t), and performance vector to be minimised e(t). The input control variable is
here replaced by the estimate ẑ(t), which is also the output of the H∞ estimator F(s), as
shown in Figure 3.9. Such variable does not influence the plant dynamics nor the output
measured by the sensors. The only dependence of ẑ(t) can be seen in the definition of
the performance variable e(t).

Using the above mentioned considerations, the block diagram in Figure 3.8 and the
expression of e(t) in (3.116), the state-space formulation of the dynamics system G can
be written as:
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Figure 3.9: Lower LFT block diagram for estimation problems

ẋ(t) = Ax(t) + Bww(t) (3.117)
e(t) = z(t)− ẑ(t) = Czx(t) + Dzww(t) + Deẑẑ(t) (3.118)
y(t) = Cyx(t) + Dyww(t) (3.119)

where Deẑ = −Inz from the definition of the estimation error e(t).
Given a real number γ > 0, a suboptimal H∞ estimator F(s) can then be defined as

a dynamical system such that [34]:

||M||∞ = ||Fl(G,F)||∞ < γ (3.120)

where the gain of the closed-loop transfer function M from the exogenous variables
w(t) to the estimation error vector e(t) is minimised in the H∞ norm sense.

The general suboptimal H∞ solution is obtained by considering the generic form of
the plant F and its state-space realisation of the form:

F(s) =

 A B1 0n×nz

C1 D11 −Inz

C2 D21 0ny×nz

 =

[
A B
C D

]
(3.121)

which is compatible with the dimensions of x(t) ∈ Rn, z(t) ∈ Rnz , y(t) ∈ Rny ,
w(t) ∈ Rnw , and ẑ(t) ∈ Rnz .

Thus the solution to the above filtering problem can be obtained from the H∞ control
solution setting B2 = 0, D12 = −I, and dropping the internal stability requirement.

The following theorem can be used in order to implement the suboptimal H∞ esti-
mator:

Theorem for suboptimal H∞ estimator synthesis [34].
If the pair (C2, A) is detectable and the matrix[

A− jωIn B1

C2 D21

]
(3.122)

has full row rank for all ω, D21 is normalised and D11 is partitioned conformably as:[
D11

D21

]
=

[
D111 D112

0ny×nd
Iny

]
(3.123)
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where D11 ∈ Rnz×nw , D21 ∈ Rny×nw , D111 ∈ Rnz×nd , and D112 ∈ Rnz×ny , then there
exists a real rational transfer function F(s) such that ||Fl(G,F)||∞ < γ if and only if:

• σ(D111) < γ;

• J∞ ∈ dom(Ric) with Y∞ = Ric(J∞) ≥ 0

where:

R̃ =

[
D11

D21

] [
D11

D21

]T
−
[
γ2Inz 0nz×ny

0ny×nz 0ny

]
(3.124)

J∞ =

[
AT 0n
−B1B

T
1 −A

]
−
[

CT
1 CT

2

−B1D
T
11 −B1D

T
21

]
R̃−1

[
D11B

T
1 C1

D12B
T
1 C2

]
(3.125)

Y∞ = Ric(J∞) (3.126)

Moreover, if the above conditions are satisfied, than a rational filter F(s) satisfying
||Fl(G,F)||∞ < γ is given by:

ẑ(s) = F(s)y(s) =

[
A + L2∞C2 + L1∞D112C2 −L2∞ + L1∞D112

C1 −D112C2 D112

]
y(s) (3.127)

where [
L1∞ L2∞

]
= −

[
B1D

T
11 + Y∞CT

1 B1D
T
21 + Y∞CT

2

]
R̃−11 (3.128)
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Chapter 4

Nonlinear estimation techniques

4.1 The extended Kalman filter

The input disturbance to be evaluated can assume any shape and in the general case
it is nonlinear. Therefore, a nonlinear estimation approach shall be considered in

order to implement an estimator which is capable to provide evaluation of the quantities
of interest in the general nonlinear case.

The Extended Kalman Filter (EKF) is the most common estimation technique for
nonlinear systems [28]. It is the nonlinear version of the linear Kalman filter and operates
by linearising the system and measurement equation about an estimate of the current
mean and state covariance matrix.

The discrete-time extended Kalman filter can be derived for a general nonlinear
system model of the form:

xk = fk−1(xk−1,uk−1,wk−1) (4.1)
yk = hk(xk,vk) (4.2)
wk ∼ N (0,Qk) (4.3)
vk ∼ N (0,Rk) (4.4)

A first-order Taylor series expansion of the state equation around xk−1 = x̂+
k−1 and

wk−1 = 0 is performed to obtain the following relations [28]:

xk = fk−1(x̂
+
k−1,uk−1,0) +

∂fk−1
∂x

∣∣∣∣
x̂+
k−1

(xk−1 − x̂+
k−1) +

∂fk−1
∂w

∣∣∣∣
x̂+
k−1

wk−1 (4.5)

= fk−1(x̂
+
k−1,uk−1,0) + Fk−1(xk−1 − x̂+

k−1) + Lk−1wk−1 (4.6)

= Fk−1xk−1 +

(
fk−1(x̂

+
k−1,uk−1,0)− Fk−1x̂

+
k−1

)
+ Lk−1wk−1 (4.7)

= Fk−1xk−1 + ũk−1 + w̃k−1 (4.8)

Fk−1 and Lk−1 are defined by the above equation. The known signal ũk and the noise
signal w̃k are defined as [28]:

ũk = fk(x̂
+
k ,uk,0)− Fkx̂

+
k (4.9)

w̃k ∼ N (0,LkQkL
T
k ) (4.10)
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Likewise, the measurement equation is linearised around xk = x̂−k and vk = 0 to
obtain the relations:

yk = hk(x̂
−
k ,0) +

∂hk
∂x

∣∣∣∣
x̂−
k

(xk − x̂−k ) +
∂hk
∂v

∣∣∣∣
x̂−
k

vk (4.11)

= hk(x̂
−
k ,0) + Hk(xk − x̂−k ) + Mkvk (4.12)

= Hkxk +

(
hk(x̂

−
k ,0)−Hkx̂

−
k

)
+ Mkvk (4.13)

= Hkxk + zk + ṽk (4.14)

Hk and Mk are defined by the above equation. The known signal zk and the noise
signal ṽk are defined as:

zk = hk(x̂
−
k ,0)−Hkx̂

−
k (4.15)

ṽk ∼ N (0,MkRkM
T
k ) (4.16)

A linear state-space system equation and a linear measurement equation have thus
been derived. This means that the standard linear Kalman filter equations can be imple-
mented to estimate the state. This results in the following equations for the discrete-time
extended Kalman filter:

P−k = Fk−1P
+
k−1F

T
k−1 + Lk−1Qk−1L

T
k−1 (4.17)

Kk = P−k HT
k (HkP

−
k HT

k + MkRkM
T
k )−1 (4.18)

x̂−k = fk−1(x̂
+
k−1,uk−1,0) (4.19)

zk = hk(x̂
−
k−1,0)−Hkx̂

−
k (4.20)

x̂+
k = x̂−k + Kk(yk −Hkx̂

−
k − zk) (4.21)

= x̂−k + Kk

(
yk − hk(x̂

−
k ,0)

)
(4.22)

P+
k = (I−KkHk)P

−
k (I−KkHk)

T + KkRkK
T
k (4.23)

4.1.1 The discrete-time extended Kalman filter algorithm

The discrete-time EKF can be summarised as follows [28]:

(i) The system and measurement equations are given as:

xk = fk−1(xk−1,uk−1,wk−1) (4.24)
yk = hk(xk,vk) (4.25)
wk ∼ N (0,Qk) (4.26)
vk ∼ N (0,Rk) (4.27)

(ii) The filter is initialized as follows:
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x̂+
0 = E[x0] (4.28)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ] (4.29)

(iii) For k = 1, 2, ... the following is performed.

(a) The following partial derivative matrices are computed:

Fk−1 =
∂fk−1
∂xk−1

∣∣∣∣
x̂+
k−1

(4.30)

Lk−1 =
∂fk−1
∂wk−1

∣∣∣∣
x̂+
k−1

(4.31)

(b) The time update of the state estimate and estimation-error covariance are
performed as follows:

P−k = Fk−1P
+
k−1F

T
k−1 + Lk−1Qk−1L

T
k−1 (4.32)

x̂−k = fk−1(x̂
+
k−1,uk−1,0) (4.33)

(c) The following partial derivative matrices are computed:

Hk =
∂hk
∂xk

∣∣∣∣
x̂−
k

(4.34)

Mk =
∂hk
∂vk

∣∣∣∣
x̂−
k

(4.35)

(d) The measurement update of the state estimate and estimation-error covariance
are performed as follows:

Kk = P−k HT
k (HkP

−
k HT

k + MkRkM
T
k )−1 (4.36)

x̂+
k = x̂−k + Kk

(
yk − hk(x̂

−
k ,0)

)
(4.37)

P+
k = (I−KkHk)P

−
k (I−KkHk)

T + KkRkK
T
k (4.38)

It can be noted that other equivalent expressions can be used for Kk and P+
k .

4.2 The unscented Kalman filter

As stated previously, the extended Kalman filter is the most widely applied state esti-
mation algorithm for nonlinear systems. However, the EKF can be difficult to tune and
often gives unreliable estimates if the system nonlinearities are severe. This is because
the EKF relies on linearisation to propagate the mean and covariance of the state. A
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more accurate alternative is the Unscented Kalman Filter (UKF), which is an extension
of the Kalman filter that reduces the linearisation errors of the EKF. The use of the
UKF can provide significant improvements over the EKF [28].

The problem with nonlinear systems is that it is difficult to transform a probability
density function through a general nonlinear function. The extended Kalman filter works
on the principle that a linearised transformation of means and covariances is approxi-
mately equal to the true nonlinear transformation, but in some cases this approximation
may be unsatisfactory.

An unscented transformation is based on two fundamental principles. First, it is
easy to perform a nonlinear transformation on a single point (rather than an entire pdf).
Second, it is not too hard to find a set of individual points in the state space whose
sample pdf approximates the true pdf of a state vector.

Taking these two ideas together, if the mean x and covariance P of a vector x are
known, a set of deterministic vectors called sigma points can be selected, such that their
ensemble mean and covariance are equal to x and P. The known nonlinear function is
then applied to each deterministic vector to obtain transformed vectors. The ensemble
mean and covariance of the transformed vectors will give a good estimate of the true
mean and covariance of y.

Suppose that x is an n×1 vector that is transformed by a nonlinear function y = h(x).
2n sigma points x(i) are selected as follows [28]:

x(i) = x + x̃(i) i = 1, ..., 2n (4.39)

x̃(i) =
(√

nP
)T
i

i = 1, ..., n (4.40)

x̃(n+i) = −
(√

nP
)T
i

i = 1, ..., n (4.41)

where
√
nP is the matrix square root of nP such that (

√
nP)T (

√
nP) = nP, and

(
√
nP)i is the i-th row of

√
nP.

It can be demonstrated that by choosing the values of sigma points as defined above,
the approximated mean matches the true mean correctly up to the third order, whereas
linearisation only matches the true mean up to the first order. The greatest advantage
of the unscented transformation (relative to linearisation) is then the increased accuracy
of the transformation of the mean.

4.2.1 The unscented transformation

(i) An n-element vector x with known mean x and covariance P is considered [28].
Given a known nonlinear transformation y = h(x), the mean and covariance of y,
denoted as yu and Pu, shall be estimated.

(ii) 2n sigma point vectors x(i) are formed as follows:

x(i) = x + x̃(i) i = 1, ..., 2n (4.42)

x̃(i) =
(√

nP
)T
i

i = 1, ..., n (4.43)

x̃(n+i) = −
(√

nP
)T
i

i = 1, ..., n (4.44)

where
√
nP is the matrix square root of nP such that (

√
nP)T

√
nP = nP, and

(
√
nP)i is the i-th row of

√
nP.
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(iii) The sigma points are transformed as follows:

y(i) = h(x(i)) i = 1, ..., 2n (4.45)

(iv) The mean and covariance of y are approximated as follows:

yu =
1

2n

2n∑
i=1

y(i) (4.46)

Pu =
1

2n

2n∑
i=1

(
y(i) − yu

)(
y(i) − yu

)T
(4.47)

The unscented transformation can be generalised to give the unscented Kalman filter.
Indeed, the Kalman filter algorithm attempts to propagate the mean and covariance of
a system using a time update and a measurement update. If the system is linear, then
the mean and covariance can be exactly updated with the Kalman filter. If the filter
is nonlinear, then the mean and covariance can be approximately updated with the
extended Kalman filter. However, the EKF is based on linearisation, and previously
it was shown that unscented transformations are more accurate than linearisation for
propagating means and covariances. Therefore, the EKF equations are simply replaced
with unscented transformations to obtain the UKF algorithm.

4.2.2 The unscented Kalman filter algorithm

The UKF can be summarised as follows [28]:

(i) The n-state discrete-time nonlinear system with additive noise is given by:

xk = f(xk−1,uk−1, tk−1) + wk−1 (4.48)
yk = h(xk, tk) + vk (4.49)
wk ∼ N (0,Qk) (4.50)
vk ∼ N (0,Rk) (4.51)

(ii) The UKF is initalized as follows:

x̂+
0 = E[x0] (4.52)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ] (4.53)

(iii) The following time-update equations are used to propagate the state estimate and
covariance from one measurement to the next:

(a) To propagate from time step k−1 to k, the sigma points x
(i)
k−1 are first chosen;

the current best guess for the mean and covariance of xk are respectively x̂+
k−1

and P+
k−1:
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x̂
(i)
k−1 = x̂+

k−1 + x̃(i) i = 1, ..., 2n (4.54)

x̃(i) =

(√
nP+

k−1

)T
i

i = 1, ..., n (4.55)

x̃(n+i) = −
(√

nP+
k−1

)T
i

i = 1, ..., n (4.56)

(b) The known nonlinear system equation f(·) is used to transform the sigma
points into x̂

(i)
k vectors:

x̂
(i)
k = f(x̂

(i)
k−1,uk−1, tk−1) (4.57)

(c) The x̂
(i)
k vectors are combined to obtain the a priori state estimate at time k:

x̂−k =
1

2n

2n∑
i=1

x̂
(i)
k (4.58)

(d) The a priori error covariance is estimated as seen in the unscented transfor-
mation. However, Qk−1 should be added to the end of the equation to take
the process noise into account:

P−k =
1

2n

2n∑
i=1

(
x̂
(i)
k − x̂−k

)(
x̂
(i)
k − x̂−k

)T
+ Qk−1 (4.59)

(iv) After the time-update equations construction, the measurement-update equations
are implemented.

(a) The sigma points x
(i)
k are chosen; the current best guess for the mean and

covariance of xk are now respectively x̂−k and P−k :

x̂
(i)
k = x̂−k + x̃(i) i = 1, ..., 2n (4.60)

x̃(i) =

(√
nP−k

)T
i

i = 1, ..., n (4.61)

x̃(n+i) = −
(√

nP−k

)T
i

i = 1, ..., n (4.62)

This step can be omitted if desired. That is, instead of generating new sigma
points, the ones that were obtained from the time update can be reused. This
will save computational effort but will sacrifice performance.

(b) The known nonlinear measurement equation h(·) is used to transform the
sigma points into ŷ

(i)
k vectors (predicted measurements):

ŷ
(i)
k = h(x̂

(i)
k , tk) (4.63)
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(c) The ŷ
(i)
k vectors are combined to obtain the predicted measurement at time

k:

ŷk =
1

2n

2n∑
i=1

ŷ
(i)
k (4.64)

(d) The covariance of the predicted measurement is estimated as shown in the
unscented transformation. However, Rk should be added to the end of the
equation to take the measurement noise into account:

Py =
1

2n

2n∑
i=1

(
ŷ
(i)
k − ŷ−k

)(
ŷ
(i)
k − ŷ−k

)T
+ Rk (4.65)

(e) The cross covariance between x̂−k and ŷk is estimated:

Pxy =
1

2n

2n∑
i=1

(
x̂
(i)
k − x̂−k

)(
ŷ
(i)
k − ŷ−k

)T
(4.66)

(f) The measurement update of the state estimate can be performed using the
normal Kalman filter equations [28]:

Kk = PxyP−1y (4.67)
x̂+
k = x̂−k + Kk(yk − ŷk) (4.68)

P+
k = P−k −KkPyKT

k (4.69)

The algorithm above assumes that the process and measurement equations are linear
with respect to the noise. In general, the process and measurement equations may have
noise that enters the process and measurement equations nonlinearly. That is:

xk = f(xk−1,uk−1,wk−1, tk−1) (4.70)
yk = h(xk,vk, tk) (4.71)

In this case, the UKF algorithm presented above is not rigorous because it treats the
noise as additive. To handle this situation, the noise can be augmented onto the state
vector:

xaugk =

xk
wk

vk

 (4.72)

Then the UKF can be used to estimate the augmented state xaugk . The UKF is
initialized as:

x̂aug +
0 =

E[x0]
0
0

 (4.73)

Paug +
0 =

E[(x0 − x̂0)(x0 − x̂0)
T ] 0 0

0 Q0 0
0 0 R0

 (4.74)

62



Master Thesis 4.3. THE PARTICLE FILTER

Then the UKF algoritm presented above can be used, with the only exception that
Qk−1 and Rk shall be removed from the equations, since the augmented mean and
covariance are being estimated.

4.3 The particle filter

The particle filter is a statistical, brute-force approach to estimation that often works
well for problems that are difficult for the conventional Kalman filter, i.e. systems that
are highly nonlinear [28].

As discussed previously, the extended Kalman filter is the most widely applied state
estimation algorithm for nonlinear systems. However, the EKF can be difficult to tune
and often gives unreliable estimates if the system nonlinearities are severe. This is be-
cause the EKF relies on linearisation to propagate the mean and covariance of the state.
On the contrary, the unscented Kalman filter reduces linearisation errors. The UKF can
provide significant improvements in estimation accuracy over the EKF. However, the
UKF is still only an approximated nonlinear estimator. The EKF estimates the mean
of a nonlinear system with first-order accuracy, and the UKF improves this by provid-
ing an estimate with higher-order accuracy. However, this simply defers the inevitable
divergence that will occur when the system or measurement nonlinearities become too
severe.

The particle filter is a completely nonlinear state estimator. The price that must be
paid for the high performance of the particle filter is an increased level of computational
effort. There may be problems for which the improved performance of the particle filter
is worth the increased computational effort. There may be other applications for which
the improved performance is not worth the extra computational effort. These trade-offs
are problem-dependent and must be investigated on an individual basis [28].

The particle filter was invented to numerically implement the Bayesian estimator. At
the beginning of the estimation problem, a given number N of state vectors based on
the initial pdf p(x0) (which is assumed to be known) are randomly generated. These
state vectors are called particles and are denoted as x+

0,i (i = 1, ..., N). At each time step
k = 1, 2, ..., the particles are propagated to the next time step using the process equation
f(·):

x−k,i = fk−1(x
+
k−1,i,wk−1,i) i = 1, ..., N (4.75)

where each wk−1,i noise vector is randomly generated on the basis of the known pdf of
wk−1. After the measurement at time k is received, the conditional relative likelihood of
each particle x−k,i is computed. That is, the pdf p(yk|x−k,i) is evaluated. This can be done
if the nonlinear measurement equation and the pdf of the measurement noise are known.
For example, if an m-dimensional measurement equation is given as yk = h(xk)+vk and
vk ∼ N (0,R) then a relative likelihood qi that the measurement is equal to a specific
measurement y∗, given the premise that xk is equal to the particle x−k,i, can be computed
as follows [28]:
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qi = P [(yk = y∗)|(xk = x−k,i)] (4.76)

= P [vk = y∗ − h(x−k,i)] (4.77)

∼ 1

(2π)m/2|R|1/2
exp

(−(y∗ − h(x−k,i)
)T

R−1
(
y∗ − h(x−k,i)

)
2

)
(4.78)

The symbol ∼ in the above equation means that the probability is not really given
by the expression on the right side, but that the probability is directly proportional to
the right side. So if this equation is used for all the particle x−k,i (i = 1, ..., N), then the
relative likelihoods that the state is equal to each particle will be correct.

The relative likelihoods obtained before are then normalized as follows:

qi =
qi∑N
j=1 qj

(4.79)

This ensures that the sum of all the likelihoods is equal to one. Next, the particles are
resampled from the computed likelihoods. That is, a brand new set of particles x+

k,i that
are randomly generated on the basis of the relative likelihoods qi are computed. This
can be done several different ways. One straightforward (but not necessarily efficient)
way is the following [28]. For i = 1, ..., N , the following two steps are performed.

(i) A random number r that is uniformely distributed on [0, 1] is generated.

(ii) The likelihoods qi are accumulated into a sum, one at a time, until the accumulated
sum is greater than r. That is, if

∑j−1
m=1 qm < r but

∑j
m=1 qm ≥ r, the new particle

x+
k,i is then set equal to the old particle x−k,j.

It can be shown that using this resampling technique, the ensemble pdf of the new
particles x+

k,i tends to the pdf p(xk|Yk) as the number of samples N approaches∞. The
resampling step can be summarised as follows:

x+
k,i = x−k,j with probability qj (i, j = 1, ..., N) (4.80)

The computational effort of the particle filter is often a bottleneck to its implementa-
tion. More efficient resampling methods can be implemented. For example, the a priori
samples x−k,j(j = 1, ..., N) could be accepted as a posteriori samples with a probability
that is proportional to qj. However, in this case additional logic must be incorporated
to maintain a constant sample size N .

A set of particles x+
k,i that are distributed according to the pdf p(xk|yk) have then

been generated. Any desired statistical measure of this pdf can be computed. For
example, the expected value E[(xk|Yk)] can be approximated as the algebraic mean of
the particles:

E[(xk|Yk)] =
1

N

N∑
i=0

x+
k,i (4.81)

4.3.1 The particle filter algorithm

The particle filter can be summarised as follows [28]:
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(i) The system and measurement equations are given as follows:

xk = fk−1(xk−1,wk−1) (4.82)
yk = hk(xk,vk) (4.83)

where {wk} and {vk} are independent white noise processes with known pdfs.

(ii) Assuming that the pdf of the initial state p(x0) is known, N initial particles are
randomly generated on the basis of the pdf p(x0). These particles are denoted
x+
0,i (i = 1, ..., N). The parameter N is chosen by the user as a trade-off between

computational effort and estimation accuracy.

(iii) For k = 1, 2, ..., the following is performed.

(a) The time propagation step to obtain a priori particles x−k,i using the known
process equation and the known pdf of the process noise is carried out:

x−k,i = fk−1(x
+
k−1,i,wk−1,i) i = 1, ..., N (4.84)

where each wk−1,i noise vector is randomly generated on the basis of the known
pdf of wk−1.

(b) The relative likelihood qi of each particle x−k,i conditioned on the measurement
yk is computed. This is done by evaluating the pdf p(yk|x−k,i) on the basis of
the nonlinear measurement equation and the pdf of the measurement noise.

(c) The relative likelihoods obtained in the previous step are scaled as follows:

qi =
qi∑N
j=1 qj

(4.85)

The sum of all the likelihoods is now equal to one.
(d) A set of a posteriori particles x+

k,i are generated on the basis of the relative
likelihoods qi. This is called resampling step.

(e) The set of particles x+
k,i that are distributed according to the pdf p(xk|Yk) is

now available and any desired statistical measure of this pdf can be computed,
such as the mean and the covariance.

One of the main implementation issues that arises in the application of particle filters
is sample impoverishment [28]. It occurs when the region of state space in which the
pdf p(yk|xk) has significant values does not overlap with the pdf p(xk|Yk−1). This
means that if all of the a priori particles are distributed according to p(x|Yk−1), and
the computed pdf p(yk|xk) is then used to resample the particles, only a few particles
will be resampled to become a posteriori particles. This is because only a few of the a
priori particles will be in a region of the state space where the computed pdf p(yk|xk)
has a significant value. This means that the resampling process will select only a few
distinct a priori particles to become a posteriori particles. Eventually, all of the particles
will collapse to the same value. This problem will be exacerbated if the measurements
are not consistent with the process model (modeling errors). This can be overcome by
a brute-force method of simply increasing the number of particles N , but this can in
turn quickly lead to unreasonable computational demands, and often simply delays the
inevitable sample impoverishment.
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Chapter 5

Harmonic estimation of a linear system
with one degree of freedom

5.1 System description

Any structure can be very roughly approximated as a one-dimensional system with
only one degree of freedom. Such system is made up of a moving concentrated mass

with structure stiffness and damping characteristics modeled as a spring and a damper
respectively. Despite the extremely simplistic approach, this modeling choice can provide
some insightful information before dealing with more complex systems. Since the purpose
of the study is the estimation of disturbances acting on a system, a harmonic exogenous
variable is considered as the uncontrolled input, as shown in Figure 5.1.

Figure 5.1: Physical model of a one-dimensional system with one degree of freedom

In particular, the quantities of interest are the amplitude A, the frequency ω, and
the initial phase ϕ of the disturbance, which are assumed to be constant. The value
of such quantities, along with the ones related to the system properties and the initial
conditions of the system, are listed in table 5.1.

The motion of the system is described by the function x(t), which represents the mass
position over time and can be derived in time to obtain the mass velocity ẋ(t) and the
acceleration ẍ(t). The system equation of motion can then be described by the following
equation:

mẍ(t) + cẋ(t) + kx(t) = A sin (ωt+ ϕ) (5.1)

In addition, the system is equipped with a velocity sensor which provides data about
the variable ẋ(t) that in turn are used to estimate the disturbance amplitude and fre-
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System parameter Value

m Body mass [kg] 2
k Spring constant [N/m] 1
c Damping coefficient [Nm/s] 0.5
ω0 Natural frequency [rad/s] 0.7071
ξ Damping ratio [-] 0.1768
x0 Initial position [m] 0
ẋ0 Initial velocity [m/s] 1
A Disturbance amplitude [N] 10
ω Disturbance frequency [rad/s] 0.3
ϕ Disturbance initial phase [deg] 0

ωd ∈ [ω1 ω2] Assumed disturbance frequency range [rad/s] [0.1 1]
ωn Assumed noise frequency [rad/s] � 100
|n(t)| Assumed average noise amplitude [m/s] 10−2

Table 5.1: One dimensional system parameters

quency by means of specific estimation techniques. The choice of introducing this par-
ticular sensor is explained by the fact that in the real system, the disturbance acting on
the satellite and generated by the gearbox is required to be estimated from information
delivered by on-board gyroscopes. Any sensor is intrinsically corrupted by some noise
n(t), which in this example is assumed to be white.

The output equation of the one-dimensional system can then be written as:

y(t) = ẋ(t) + n(t) (5.2)

The motion of the mass can be computed analytically by solving the differential
equation (5.1), whose solution for ϕ = 0 is given by the following expression:

x(t) = e−ξω0t[a cos (ωdt) + b sin (ωdt)]+

+
A/m√

(2ξω0ω)2 + (ω2 − ω2
0)2

cos

[
ωt− arctan

(
mω2 − k

cω

)
+ π

]
(5.3)

where ωd = ω0

√
1− ξ2, while a and b depend on the initial conditions and can be

computed as:

a = x0 +
Acω

(cω)2 + (mω2 − k)2
(5.4)

b =
1

ωd

[
ẋ0 + aξω0 +

Aω(mω2 − k)

(cω)2 + (mω2 − k)2

]
(5.5)

A simulation of both position x(t) and velocity ẋ(t) of the mass over time is depicted
in Figure 5.2.

5.2 Direct estimation

The estimation of the harmonic disturbance acting on the system can be obtained by
evaluating the singular quantities that characterise such disturbance, i.e. the amplitude
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Figure 5.2: Mass position and velocity over time

A, the frequency ω, and the phase ϕ. A discrete-time estimation approach as defined in
chapter 4 can be carried out by introducing a state vector x(t) which includes the states
of the system involved in its dynamics as well as the quantities of interest mentioned
above as follows:

x(t) =


x(t)
v(t)
A
ω
ϕ

 (5.6)

where v(t) = ẋ(t) is the mass velocity, while A, ω and ϕ are assumed to be constant.
The estimator will then produce an estimate x̂(t) at each time step based on knowl-

edge of the system dynamic model and the information provided by the sensor. Despite
the system linearity, the estimation technique to be used must be nonlinear owing to the
presence of nonlinearities introduced by the exogenous input. In particular, this is due
to the fact that the state x(t) to be estimated encompasses some quantities which are
related to the nonlinear disturbance. The state dynamics as defined in equation (5.1)
can then be represented in the following form:

ẋ(t) = f(x, t) =


v(t)

− k
m
x(t)− c

m
v(t) + A

m
sin (ωt+ ϕ)

0
0
0

 (5.7)

Before proceeding with the actual estimation implementation, the observability of the
system with the available measurement shall be computed in order to make sure that
data delivered by sensors are sufficient to retrieve entire information of the quantities
of interest. As described in section 3.1.1, the observability check for linear systems can
be performed by computing the rank of the observability matrix O: if its rank is equal
to the number of the state variables n, then the system is observable, and thus the
current state can be estimated using only the information from outputs y(x). If the
global system is nonlinear, a similar approach can be used to check local observability,
where O is computed by means of Lie derivatives, which give a representation of all the
information that can be inferred from the outputs over time [17].
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To construct the observability matrix O, Lie derivatives up to the (n − 1)-th order
shall be computed. For this specific application, the Lie derivatives of order zero and of
higher order k are defined as:

L0
f = y(x) (5.8)

Lkf =
dk

dtk
y(x) =

∂Lk−1f

∂x
f(x) (5.9)

Accordingly, the Lie derivative of order zero associated to the one-dimensional system
at hand in case of perfect measurement with no additional noise is computed as:

L0
f = y(x) = v(t) (5.10)

while the first order Lie derivative is obtained as shown in the following expression:

L1
f = ẏ(x) =

dy(x)

dt
=
∂L0

f

∂x
f(x) =

[
∂v
∂x

∂v
∂v

∂v
∂A

∂v
∂ω

∂v
∂ϕ

]
f(x)

=
[
0 1 0 0 0

]
f(x) = − k

m
x(t)− c

m
v(t) +

A

m
sin (ωt+ ϕ)

(5.11)

Analogously, the Lie derivatives up to the 4-th order are computed and gathered into
a single vector φ as follows:

φ =


φ1

φ2

φ3

φ4

φ5

 =


L0

f

L1
f

L2
f

L3
f

L4
f

 =


y(x)

∂L0f
∂x

f(x)
∂L1f
∂x

f(x)
∂L2f
∂x

f(x)
∂L3f
∂x

f(x)



=


v(t)

− k
m
x(t)− c

m
v(t) + A

m
sin (ωt+ ϕ)

− k
m
v(t)− c

m

[
− k
m
x(t)− c

m
v(t) + A

m
sin (ωt+ ϕ)

]
ck
m2v(t) +

(
− k
m

+ c2

m2

)[
− k
m
x(t)− c

m
v(t) + A

m
sin (ωt+ ϕ)

]
− k
m

(
− k
m

+ c2

m2

)
v(t) +

[
ck
m2 − c

m

(
− k
m

+ c2

m2

)][
− k
m
x(t)− c

m
v(t) + A

m
sin (ωt+ ϕ)

]


(5.12)

The observability matrix in the nonlinear case is then obtained as the jacobian of φ
with respect to the state vector x(t):

O =
∂φ

∂x
=


∂φ1

∂x
∂φ1

∂v
∂φ1

∂A
∂φ1

∂ω
∂φ1

∂ϕ
∂φ2

∂x
∂φ2

∂v
∂φ2

∂A
∂φ2

∂ω
∂φ2

∂ϕ
∂φ3

∂x
∂φ3

∂v
∂φ3

∂A
∂φ3

∂ω
∂φ3

∂ϕ
∂φ4

∂x
∂φ4

∂v
∂φ4

∂A
∂φ4

∂ω
∂φ4

∂ϕ
∂φ5

∂x
∂φ5

∂v
∂φ5

∂A
∂φ5

∂ω
∂φ5

∂ϕ

 =

=


0 1 0 0 0
− k
m

− c
m

1
m

sin (ωt+ ϕ) At
m

cos (ωt+ ϕ) A
m

cos (ωt+ ϕ)
ck
m2 − k

m
+ c2

m2 − c
m2 sin (ωt+ ϕ) −Act

m2 cos (ωt+ ϕ) − Ac
m2 cos (ωt+ ϕ)

−α k
m

ck
m2 − α c

m
α
m

sin (ωt+ ϕ) Atα
m

cos (ωt+ ϕ) Aα
m

cos (ωt+ ϕ)

−β k
m
−α k

m
− β c

m
β
m

sin (ωt+ ϕ) Atβ
m

cos (ωt+ ϕ) Aβ
m

cos (ωt+ ϕ)


(5.13)
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where α = − k
m

+ c2

m2 and β = ck
m
− α c

m
.

It is easy to verify that the fourth column is equal to the last one multiplied by
t, which means that the two columns are linearly dependent and that the rank of the
matrix will never be full for any value of the variables. A more detailed computation
reveals that the observability matrix has rank(O) = 2 6= n = 5, for any value of m, c, k,
ω, A, ϕ, and t different from zero. This conclusion means that the system is not fully
observable and that the data provided by the velocity sensor are not sufficient to infer
complete information of the state variables over time. By integrating the system with
an additional sensor measuring the mass position x(t), this result changes only slightly
– the rank of O becomes 3 – but it still remains different from the total number of the
variables in the state. This outcome is particularly relevant, since it emphasises the
impossibility to produce an estimate of the exogenous disturbance over time by directly
evaluating the parameters that characterise the disturbance itself. Moreover, this result
has been derived for the most elementary system with only one degree of freedom, which
is excited by an input force modeled as a simple harmonic. It is natural to presume that
the same behaviour would then occur for more complex systems as well.

Therefore a different approach shall be introduced to overcome this issue. In the
following, an estimator made up of two different parts will be used, as shown in Figure
5.3. In particular, the first part of the overall estimator will be system-based, whereas
the second one will be input-based. Several benefits are obtained by using the structure
of this last approach. Since it is only based on the system, the first part of the estimator
will be constructed in order to be a linear filter. In fact, as already mentioned, the
nonlinearity of the system is contained only in the disturbance input. This brings a
great advantage, as all the mathematical formulations developed in a linear framework
(which are, in general, easier than the nonlinear case and more mature) can be exploited.
For instance, the linear H∞ theory to construct a robust estimator can now be used. The
purpose of this part of the estimator will then be the generation of an estimate d̂(t) of
the input disturbance d(t) over time, by considering only the system dynamics and from
the information deriving from the sensors.

Figure 5.3: Block representation of the estimator made up of two components in series

As regards the second part of the filter, it only relies on the structure of the input.
A simple Fast Fourier Transform (FFT) can be used to capture the spectral content of
the disturbance. Alternatively, a nonlinear estimation technique can be implemented by
introducing a new state with less variables, as the physical states of the system – i.e.
x(t) and v(t) – are now already embedded in the first part of the estimator and because
the filter is only input-dependent. Furthermore, no robustness requirements shall be
satisfied in this segment, whose objective is to produce estimates of the input amplitude
Â and frequency ω̂.
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5.3 Robust H∞ estimation

The objective of the first part of the estimator is to produce a robust estimate of the
input disturbance from knowledge of the system dynamics and the information provided
by sensors. Since the system at hand is linear, the linear H∞ theory described in chapter
3 can be applied. Figure 5.4 shows the block diagram representing the role of each
subsystem and the interaction of the variables involved in the estimation process. In
particular, the mass-spring-damper system dynamics is defined in the nominal plant
block with transfer function P (s) to be determined, and the disturbance input d(t)
acting on the structure contributes to generate the output variable yP (t) = v(t) which
is a measure of the mass velocity provided by the sensor. Such quantity is corrupted
by the sensor noise n(t) and is used as the input information of the H∞ filter with
transfer function F (s) to produce an estimate d̂(t) of the disturbance d(t). This estimate
is then compared to the real input variable to compute an estimation error e(t) which
corresponds to the performance variable to be minimised.

Figure 5.4: One-dimensional system block diagram

The main purpose of this section is then the synthesis of a robust estimator F (s)
using the H∞ theory, which minimises the worst-case gain of the closed-loop system
with the exogenous variables d(t) and n(t) as input and the performance parameter e(t)
as the output in the H∞ norm sense. In addition, the weighting functions Wd(s), Wn(s),
and W−1

e (s) are introduced to this purpose. They allow to perform the analysis with
normalised quantities d1(t), d2(t) and e1(t) while producing a modulation of the input
and output variables both in amplitude and in frequency. The weighting functions Wd

and Wn are designed from the available information of the input quantities, while the
weighting functionW−1

e (s) is usually computed by means of an iterative process to obtain
the optimal minimising solution.

Nominal plant
By defining a new state vector xP (t) with respect to the linear one-dimensional system

at hand as:
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xP (t) =

{
x(t)
v(t)

}
(5.14)

it is possible to describe the plant and the output dynamics described by equations
(5.1) and (5.2) in a state-space representation as follows:

ẋP (t) =

{
ẋ(t)
v̇(t)

}
=

[
0 1
− k
m
− c
m

]
xP (t) +

[
0
1
m

]
d(t)

yP (t) =
[
0 1

]
xP (t)

(5.15)

or, in a more compact form:

ẋP (t) = APxP (t) + BPd(t)

yP (t) = CPxP (t)
(5.16)

where temporarily no additional noise from the sensor has been taken into account.
The plant transfer function P (s) can be computed as follows:

P (s) =

[
AP BP

CP 0

]
= CP (sI−AP )−1BP =

s

ms2 + cs+ k
(5.17)

Weighting functions
The weighting functions referring to exogenous inputs are usually constructed from

the available information of such variables in terms of their frequency content, for instance
from data obtained by the related Power Spectral Density (PSD) or from aprioristic
knowledge or prediction of the process. On the other hand, the weighting functions
regarding the performance quantities can be designed in order to introduce a penalty
in a specific frequency range, which in turn produces more relevance in the disturbance
estimation during the H∞ filter design within the selected interval. Therefore, they
play a crucial role during the design process and the final form of the estimator F (s)
will be highly dependent on the adopted estimation strategy embedded in the weighting
functions.

The weighting functions are physically circuits or devices simulating a desired dy-
namic process that can be represented in a state-space form or as transfer functions. In
the latter case, a common design approach consists in modelling the dynamics as signal
processing filters which remove certain frequencies and allow other to pass according to
the input frequency content or the output desirable performance. A relevant example
is the Butterworth filter, which is a type of signal processing filter designed to have a
frequency response as flat as possible in the pass-band. As any other filter, in the case
of a low-pass filter it is characterised by a cut-off frequency ωc from which the input
of the filter begins to be attenuated, and a roll-off rate which represents the steepness
of attenuation of the higher frequencies. In particular, the low-pass Butterworth filter
transfer function is defined as follows:

H(s) =
G0

Bn(s̃)
(5.18)

where G0 is the DC gain or static gain, i.e. the value of the transfer function at low
frequency, while Bn(s̃) is the normalised Butterworth polynomial of order n evaluated
at frequency s̃ = s/ωc.

The Butterworth normalised polynomial of order n are defined as follows [33]:
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Bn(s̃) =

n/2∏
k=1

[
s̃2 − 2s̃ cos

(
2k + n− 1

2n
π

)
+ 1

]
for n = even (5.19)

Bn(s̃) = (s̃+ 1)

(n−1)/2∏
k=1

[
s̃2 − 2s̃ cos

(
2k + n− 1

2n
π

)
+ 1

]
for n = odd (5.20)

Table 5.2 lists the normalised Butterworth polyinomials up to order 6 approximated
to four decimal places.

Order n Bn(s̃)

1 s̃+ 1
2 s̃2 + 1.4142s̃+ 1
3 (s̃+ 1)(s̃2 + s̃+ 1)
4 (s̃2 + 0.7654s̃+ 1)(s̃2 + 1.8478s̃+ 1)
5 (s̃+ 1)(s̃2 + 0.6180s̃+ 1)(s̃2 + 1.6180s̃+ 1)
6 (s̃2 + 0.5176s̃+ 1)(s̃2 + 1.4142s̃+ 1)(s̃2 + 1.9319s̃+ 1)

Table 5.2: Butterworth polynomials up to order 6

The other types of Butterworth filters, such as the high-pass filter, the band-pass filter
and the stop-band filter can be obtained by modifying the basic low-pass Butterworth
filter.

Noise weighting function Wn

The characteristics of the sensor noise are shown in table 5.1, which contains the
predicted amplitude of the signal and its frequency range of action. Since no detailed
information is available, the weighting functionWn(s) can be modeled as a high-pass filter
with cut-off frequency ωc equal to the smallest accessible value of the noise frequency
and a constant pass-band with amplitude equal to the theoretical value of 10−2 m/s as
listed in table 5.1. The Butterworth filter is chosen to be of second order, with a roll-off
rate of 40 dB/decade. As no stringent requirements at low frequency are present because
of the confidence in the information ωc � 100 rad/s, the static gain G0 is selected so
that the frequencies lower than the cut-off frequency are attenuated of only 20 dB with
respect to the pass-band.

Furthermore, from the requirements listed above, the transfer function of weighting
function Wn(s) relative to the sensor noise needs to be constructed such that it contains
two poles at cut-off frequency ωc = 100 and two zeros at frequency 10

√
10. By using the

Butterworth polynomials of order n = 2, the transfer function can then be computed as:

Wn(s) = 10−3
s2

(10
√
10)2

+ 1.4142 s
10
√
10

+ 1

s2

1002
+ 1.4142 s

100
+ 1

=
10−5s2 + 0.0004472s+ 0.01

0.001s2 + 0.14142s+ 10
(5.21)

In addition, the Bode magnitude plot for the transfer function Wn is shown in Figure
5.5.
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Figure 5.5: Bode magnitude plot of the noise weighting function Wn

Disturbance weighting function Wd

The disturbance weighting function is modelled as a Butterworth band-pass filter,
whose bandwidth and amplitude are defined by the aprioristic knowledge of the dis-
turbance process as listed in table 5.1. If there is great confidence that the maximum
amplitude of the exogenous input is 10 N and the spectral components are included in the
frequency range 0.1-1 rad/s, a 5th order band-pass Butterworth filter can be constructed
so that the transfer function has a Bode magnitude plot as shown in Figure 5.6, with
5 zeros on the origin, 5 poles at frequency ω1 = 0.1 rad/s, 5 other poles at frequency
ω2 = 1 rad/s and a null DC gain to attenuate as much as possible all the frequencies out
of the bandwidth.

Figure 5.6: Bode magnitude plot of the disturbance weighting function Wd

Performance weighting function We

The performance weighting function can be designed by considering its inverse trans-
fer function W−1

e (s). The task of W−1
e (s) is to add a penalty term at specific frequency

ranges of interest. In this particular case, since the objective of the estimator is the eval-
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uation of the input disturbance d(t) whose frequency content is assumed to be known,
the transfer function W−1

e (s) is modeled as a band-pass filter with a bandwidth which
contains the presumed frequencies of d(t). Out of the pass-band, the input of W−1

e (s)
will neither be amplified nor attenuated as there is no interest in the estimation at such
frequencies, which means that the static gain and the gain at high frequency will be
0 dB. As regards the amplitude of the pass-band for a suboptimal H∞ estimator, it is
usually computed by means of an iterative process in order to obtain the maximum pos-
sible magnitude, while guaranteeing that the worst-case gain of the closed-loop function
will always be satisfied. In the case of normalised inputs and outputs this entails that
the parameter γ introduced in equation (3.120) is less than one. The weighting function
W−1
e (s) which produces a value γ = 0.9999 is depicted in Figure 5.7.

Figure 5.7: Bode magnitude plot of the inverse performance weighting function W−1
e

Global system
With reference to the block diagram in Figure 5.4, the only transfer function to be

determined is now the H∞ estimator. The approach described in section 3.6 for the
synthesis of F (s) can be carried out. The system shall then be represented in an LFT
form by introducing the vector w(t) encompassing the normalised exogenous variables
as follows:

w(t) =

{
d1(t)
d2(t)

}
(5.22)

In addition, the outputs of the plant G(s) described in an LFT framework are the
normalised performance variable e1(t) and the noisy measurement y(t) = yP (t) + n(t)
provided by the velocity sensor. A third input of the system G(s) is the estimation of
the disturbance d̂(t) generated by the estimator F (s). The two outputs shall now be
related to the three inputs to construct the system transfer function G(s). In particular,
as shown from the block diagram in Figure 5.4, the normalised estimation error e1(t) in
the Laplace domain can be related to the input parameters as follows:

e1(s) = W−1
e e = W−1

e (d− d̂) = W−1
e Wdd1 −W−1

e d̂ (5.23)
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Similarly, the noisy output generated by the velocity sensor can be written in the
Laplace domain as:

y(s) = yP + n = Pd+Wnd2 = PWdd1 +Wnd2 (5.24)

The system transfer function G(s) can finally be expressed in the LFT form as follows:

{
e1
y

}
= G(s)

{
w

d̂

}
=

=

[
G11 G12

G21 G22

]{
w

d̂

}
=

[
W−1
e Wd 0 −W−1

e

PWd Wn 0

]
d1
d2
d̂


(5.25)

The block diagram representation in the LFT form is shown in Figure 5.8.

Figure 5.8: One dimensional system LFT block diagram

The closed-loop transfer function M(s) from the exogenous input vector w(t) to the
normalised performance value e1(t) can now be obtained as described in section 3.4:

M(s) = Fl(G, F ) = G11 +G12F (1−G22F )−1G21

=
[
W−1
e Wd 0

]
−W−1

e F
[
PWd Wn

]
=
[
W−1
e Wd 0

]
−
[
W−1
e FPWd W−1

e FWn

]
=
[
W−1
e (1− FP )Wd −W−1

e FWn

] (5.26)

The normalised estimation error e1(t) can then be expressed in the Laplace domain
as:

e1(s) = M(s)

{
d1(s)
d2(s)

}
=
[
M1(s) M2(s)

]{d1(s)
d2(s)

}
=
[
W−1
e (1− FP )Wd −W−1

e FWn

]{d1(s)
d2(s)

} (5.27)

It is interesting to note that the estimator transfer function F (s) shall be designed
such that it minimises both M1(s) and M2(s) in terms of the H∞ norm at the same
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time. However, such requirements are in contrast with one another. In particular, to
obtain noise rejection and thus minimise M2(s), the estimator F (s) should have the
lowest possible value (zero as the limit value to accomplish complete noise filtering), but
on the other hand the estimation error e(t) would show the following behaviour:

e1(s) = W−1
e Wdd1(s) → e(s) = d(s) → d(s)− d̂(s) = d(s) (5.28)

which entails that the estimated value d̂(t) by the filter F (s) will always be null and
thus the estimator is not producing any estimate. Likewise, the minimisation of M1(s)
with no additional constraint would generate an estimator F (s) that amplifies the noise
n(t). The optimal solution must then take into consideration both d1(t) and d2(t) to
ensure minimisation of the H∞ norm of M(s) while accounting for the effect produced
by both the inputs on the performance variable e1(t).

In this context, the crucial role played by the weighting functions Wd(s), Wn(s)
and We(s) is clearly visible. As already mentioned, the design of the transfer function
F (s) is highly dependent on the selection of such weighting functions. In this example,
the input disturbance d(t) acts on the system only within a specific bandwidth whose
frequencies are lower with respect to the ones related to the sensor noise n(t). By
selecting the weighting function accordingly and consistently with this information, the
filter design is extremely simplified, since it will tend to minimise M1(s) within the
bandwidth specified by Wd(s) and simultaneously minimise M2(s) at higher frequencies
where the noisy components dominate as defined in Wn(s). By means of this distinction
over the different frequencies, the design of F (s) will no longer be in contrast with the
two minimisation requirements.

Figure 5.9 shows the estimator transfer function F (s) computed using the approach
described in section 3.6. It can be observed that at lower frequencies F (s) shows a
similar behaviour of the inverse transfer function of the plant P−1(s) to minimise the
contribution (1−FP ) which appears inM1(s). In particular, there is a major attenuation
at ω0 corresponding to the resonance frequency of the mass-spring-damper system to
limit the effects of such response. On the contrary, starting from the lower limit of ωn
and toward higher frequencies, the estimator F (s) assumes values which tend to zero to
attenuate the response produced by the sensor noise. The above observations are then
validated by the behaviour of the transfer function F (s) over frequency.

Figure 5.9: Bode magnitude plot of the H∞ estimator F
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Furthermore, the Bode magnitude plot of the closed-loop transfer function M(s)
depicted in Figure 5.10 shows that as expected the response of the closed-loop system
attenuates both the inputs d1(t) and d2(t) at any frequency. The highest peak of the
overall response is present in the transfer function M2(s) at low frequency. This is due
to the less stringent constraint that is placed in the system by means of the weighting
function Wn(s). However, this outcome does not invalidate the design. On the contrary,
the design results are validated as the closed-loop transfer function achieves the objective
to filter the sensor noise only at high frequency, where the noise components are supposed
to lie.

Figure 5.10: Bode magnitude plot of the closed-loop system M

To conclude, from the values of the magnitude of the transfer function M(s), it is
also possible to compute the steady-state estimation accuracy of the developed H∞ filter.
In particular, the Bode magnitude plot related to the transfer function M1(s) shows an
attenuation of about -25 dB ≈ 0.06 at steady-state within the predicted bandwidth of
the input disturbance. Similarly, the weighting function We has an attenuation value
of about -42 dB ≈ 0.008 within the frequency range 0.1-1 rad/s, while the inverse of
the disturbance weighting function W−1

d (s) has a value of -20 dB at steady-state. By
neglecting the effect generated by the sensor noise, the steady-state estimation error can
then be computed as follows:

e(jωd) = We(jωd)e1(jωd)

= We(jωd)M1(jωd)d1(jωd)

= We(jωd)M1(jωd)W
−1
d (jωd)d(jωd)

≈ 0.008 · 0.06 · 0.1d(jωd) ≈ 5 · 10−5d(jωd)

(5.29)

which means that:

e(jωd) = d(jωd)− d̂(jωd) ≈ 5 · 10−5d(jωd) → d̂(jωd) ≈ 0.99995d(jωd) (5.30)

The comparison between the disturbance estimation d̂(t) and the actual input d(t)
of the system is depicted in Figure 5.11.
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Figure 5.11: Estimated disturbance and actual input signal comparison

Moreover, Figure 5.12 shows a similar comparison where the input disturbance is now
the sum of two harmonics with different frequencies included in the bandwidth ωd. The
result validates the estimator F (s), which produces precise estimates of the exogenous
input d(t) as long as it is made of harmonic components within the predicted bandwidth.

Figure 5.12: Estimated disturbance with input signal generated as the sum of two
harmonics

5.4 Disturbance spectral estimation

Once the input disturbance is robustly estimated, two different approaches for the es-
timation of the amplitude and frequency of the harmonics generating such input signal
can be introduced and compared.

The Fast Fourier Transform (FFT) is a method that guarantees rapid evaluation of
the quantities of interest and relies on computation of the discrete Fourier transform.
It is computationally cheap and does not need any prior information of the input sig-
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nal. However, it may suffer from spectral leakage and presents some problems when
the frequency of the input is time-dependent. The second approach uses the nonlinear
estimation techniques described in chapter 4. In particular the extended Kalman filter
is considered, since in this case it achieves the results obtained with the other nonlinear
approaches with a similar accuracy and lower computational effort. The EKF requires in-
formation about the shape of the input signal. In addition, it shall be correctly initialised
to obtain reliable results. Nonetheless, it is able to reconstruct the input disturbance
even in the case of amplitude or frequency variations over time.

Due to the distinct features of the two techniques, several signals with different char-
acteristics are considered as input signals for both the FFT and EKF, in order to investi-
gate the behaviour of the two approaches in multiple situations. An accurate comparison
is then carried out and their strong and weak points are explored.

5.4.1 Disturbance as a single harmonic

In this section, the comparison between the EKF and the FFT for the estimation of
amplitude and frequency of a single harmonic is considered. The input signal is assumed
to have a constant amplitude A = 12 N and constant frequency f = 0.3 Hz (period
T = 10/3 s), as shown in Figure 5.13.

Figure 5.13: Input signal – single harmonic

For amplitude and frequency estimation of the input signal, a fast Fourier transform
is carried out with different time windows; the signal is simulated over a time period of
200 s. As shown in Figure 5.14, if the time window is shorter than 10 s, the estimation of
both the amplitude and frequency is poor. However, a time window of 10 s is sufficient
to get a precise estimate of the two quantities. In particular, the signal spectrum gets
narrower as the time window gets larger, and thus when more information is available.

Nonetheless, it can be noted that the signal spectrum that derives from a time window
of 12 s gives again poor results. Unlike the other time windows for which twindow ≥ 10
s, the one with value 12 s is the only case whose value is not a multiple of the harmonic
period (i.e, twindow/T 6= k, with k ∈ N). Therefore, the FFT does not correctly operate
over a complete sinusoidal period and a phenomenon called spectral leakage occurs,
with a resulting degradation of the spectrum, and thus of the frequency and amplitude
estimation.

In the current case, f = 0.3 ∈ Q; however, whenever this is not the case (e.g. when
f ∈ R but f 6∈ Q), the spectral leakage may become a more relevant issue, since it might
not be trivial to find a suitable time window to avoid this phenomenon. A solution to
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this problem is the use of specific window or tapering functions. However such functions
generate in turn a degradation in the amplitude estimation.

Figure 5.14: FFT estimation – one single harmonic

The main concern regarding the estimation through the EKF is its initialisation.
In this case, different values for the initial frequency estimate ω̂0 have been selected,
and they all give good results. By keeping the same value for P0, the more ω̂0 is close
to the real value, the shorter is the time required for the EKF to reach steady-state,
and thus the real frequency. The EKF frequency estimation in the case ω̂0 = 3 rad/s
(f̂0 = 3/2π ≈ 0.4775 Hz), along with the harmonic amplitude estimation, is shown
in Figure 5.15. It is clear that the EKF performs well for the estimation of the two
quantities; in addition, the correct value is rapidly retrieved.

Figure 5.15: EKF estimation – one single harmonic

A comparison of the error between the two filters’ estimates for both amplitude and
frequency are reported in Figure 5.16. It is visible that for the EKF the estimation is
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real-time, whereas the FFT is only considered for specific time intervals. This means
that for the FFT estimation, the x-axis represents the length of the time window and not
the time evolution of the estimation error as for the EKF. As already pointed out, the
estimation error for the FFT is zero for time windows where no spectral leakage arises
(e.g., twindow = 10 s is already a good choice); however, increasing the observation time
does not entail better evaluation. Therefore, in this case the EKF performs better, since
it reaches the correct values in less time and presents no problems regarding the time
window.

Figure 5.16: FFT and EKF estimation comparison – one single harmonic

5.4.2 Disturbance as the sum of two harmonics

In a general case, any signal can be decomposed as a series of harmonics with different
amplitudes and frequencies. Therefore, a relevant example for the investigation of the
estimation behaviour of the EKF and the FFT is the case of the sum of more sinu-
soidal signals. For instance, in this section an input signal generated by the sum of two
harmonics with different frequency and amplitude is considered (Figure 5.17). The two
frequencies and the two amplitudes of the harmonics are A1 = 12 N, f1 = 0.3 Hz and
A2 = 8 N, f2 = 0.7 Hz respectively.

The problem involves now the estimation of four different quantities. In particular,
the EKF requires knowledge of the shape of the input signal as well as the number of the
harmonics that generate it to perform a correct estimation. Furthermore, the number of
state variables becomes larger and the computational effort will increase as well.

As the regards the FFT estimation, the same considerations made in the case of the
single harmonic still hold in this situation. The spectral analysis generates two peaks,
one for each harmonic of the input signal, with different amplitudes. Similarly to the
previous case, for the values of twindow considered in Figure 5.18, when the time window
is equal or greater than 10 s (with the only exception of twindow = 12 s, due to spectral
leakage) the FFT estimation is able to reconstruct the four quantities of interest with
great precision.

Concerning the EKF implementation, when more harmonics are considered, the

82



Master Thesis 5.4. DISTURBANCE SPECTRAL ESTIMATION

Figure 5.17: Input signal – sum of two harmonics

Figure 5.18: FFT estimation – sum of two harmonics

choice of the initial frequency estimates ω̂0i are particularly crucial. If ω̂0i are selected
to be close to both frequencies (for instance by selecting both the initial estimates as the
average value of the real frequencies), the estimation over time may oscillate between the
values of the two harmonics, with a resulting degradation of the other states’ estimation
as well. In this simple case, where only two harmonics are considered, it is reasonable to
initialize ω̂01 and ω̂02 such that one has value greater than the highest harmonic, while
the second one has a value lower than the smallest one; however, this approach assumes
knowledge of the real values for both the frequencies. An alternative is to select a value
close to zero for ω̂01 and a large value for ω̂02 .

Figure 5.19 shows the EKF estimation over time for both amplitude and frequency
with ω̂01 = 1 rad/s (f̂01 ≈ 0.1592 Hz) and ω̂02 = 5 rad/s (f̂02 ≈ 0.7958 Hz). It is clear
that the choice of the initial state vector x0 results in correct and precise estimation for
all the quantities of interest. In addition, very short time to get steady-state values is
required.

A comparison of the estimation error generated by the two filters for both amplitude
and frequency are reported in Figure 5.20. Once again, both the approaches produce
small estimation errors, but present different results depending on the selected time
window or on the initialization of the state vector.
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Figure 5.19: EKF estimation – sum of two harmonics

Figure 5.20: FFT and EKF estimation comparison – sum of two harmonics

5.4.3 Disturbance as one harmonic with amplitude varying in
time

Another peculiar input condition to be examined is the case of a single harmonic with
a linear time-varying amplitude. It is assumed that the amplitude profile over time
increases linearly up to 3 times its initial value until it reaches time tc = 60 s, and
decreases to its original value at tf = 200 s, as depicted in Figure 5.21. The initial and
final value of the amplitude is A0 = 12 N, with a peak of Amax = 36 N at time tc: this
produces a modulated signal, whose evolution over time is reported in Figure 5.22.
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Figure 5.21: Amplitude time evolu-
tion

Figure 5.22: Time-varying amplitude
harmonic

Because of the form of the signal, the FFT shall be performed different times, since the
information contained in each time interval will be different. This leads to the definition
of an additional parameter ∆t, which represents the time between the beginning of two
different time intervals, and thus estimations. A small value of ∆t means that several
FFT are performed over the entire time in which the simulation is carried out. In
addition, it produces a greater computational effort; however, it may be required if the
signal has a significantly fast variation over small time intervals. To sum up, amplitude
(or frequency, as it will be discussed later) variations in time entail the introduction of
additional quantities that shall be carefully selected.

As regards the EKF, the only knowledge of a harmonic input with time-dependent
amplitude is not sufficient to compute the time-update equation for the dynamic system
which is needed in the algorithm, but the complete shape of the amplitude variation
A(t) is required. Nonetheless, in the following the EKF estimation is carried out by
assuming that the harmonic has constant amplitude and frequency, similarly to the first
case considered in this chapter. Interestingly, it will be shown that the EKF is able to
reconstruct the correct behaviour of A(t) as well as the other state variables, despite
no information about the time-varying amplitude is included in the algorithm. This
has an effect on the estimation error, which will present a degradation with respect to
the previous cases, however it makes the EKF a more robust approach that guarantees
accurate estimation even in the case in which the input signal behaviour is not perfectly
known beforehand.

As previously mentioned, since the amplitude changes in time, the FFT shall be car-
ried out different times in order to capture the harmonic variation. A time interval after
which the FFT is performed with respect to the previous estimation shall be selected.
In this case, a time interval ∆t = twindow is chosen. Different time windows of 10 s, 12 s,
20 s, and 50 s are considered and shown in Figures from 5.23 to 5.26 respectively.

85



Master Thesis 5.4. DISTURBANCE SPECTRAL ESTIMATION

Figure 5.23: FFT estimation with
twindow = ∆t = 10 s

Figure 5.24: FFT estimation with
twindow = ∆t = 12 s

Figure 5.25: FFT estimation with
twindow = ∆t = 20 s

Figure 5.26: FFT estimation with
twindow = ∆t = 50 s

It can be noted that the amplitude evolution is recovered, and the same problems
occurring in the simple case with constant amplitude for twindow = 12 s are still present,
with small contributions at low and high frequency in the amplitude spectrum. Figure
5.27 shows the behaviour of both amplitude and frequency for the different values of
twindow.

The EKF estimation for amplitude and frequency is shown in Figure 5.28. The filter
is initialized using the same values of the case with constant amplitude. From the figure
it can be noted that the EKF is able to recover the time variation of the amplitude,
even if the algorithm does not include information about its variation and it has been
implemented considering the case with constant amplitude.

Figure 5.29 shows the comparison between the estimation error for the FFT and
the EKF. The frequency is well estimated with both the approaches and for all the time
windows considered, with the only exception of twindow = 12 s. As regards the amplitude,
the EKF performs better than the FFT, for which narrower windows give better results.

5.4.4 Disturbance as one harmonic with frequency varying in
time

Similarly to the previous signal, the case of a single harmonic with frequency varying in
time is now considered. The initial frequency is f0 = 0.3 Hz, with a linearly decreasing
profile up to time tc = 60 s (fmin = 0.03 Hz), where the frequency increases until it
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Figure 5.27: FFT estimation – time-varying amplitude

Figure 5.28: EKF estimation – time-varying amplitude

reaches f0 at tf . The frequency time evolution is shown in Figure 5.30. The input signal
is depicted in Figure 5.31, where the frequency variation in time is clearly visible.

Analogously to the previous case, multiple FFTs shall be carried out after each time
interval ∆t, since the frequency content of the input signal changes over time. In par-
ticular, since the frequency f(t) is now a function of time, it is reasonable to select a
small value for ∆t. This is due to the mathematical definition of the FFT, that relies
on the Fourier transform. The information contained in the time window over which
the FFT is performed includes several different frequencies. As a consequence, it may
happen that the amplitude spectrum will not generate a unique peak, but more peaks or
a flat-like shape encompassing the different frequencies that are present within the same
time interval. A possible solution is then the choice of a narrow ∆t.
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Figure 5.29: FFT and EKF estimation comparison – time-varying amplitude

Figure 5.30: Frequency time evolution Figure 5.31: Time-varying frequency
harmonic

The FFT estimation is performed similarly to the amplitude time-varying case. How-
ever, in the following for each time window a time interval ∆t = 5 s is considered. The
results are reported in Figures from 5.32 to 5.35.

Figure 5.32: FFT estimation with
twindow = 10 s

Figure 5.33: FFT estimation with
twindow = 12 s
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Figure 5.34: FFT estimation with
twindow = 20 s

Figure 5.35: FFT estimation with
twindow = 50 s

As previously mentioned, since the frequency changes over time, in each time interval
∆t where the FFT is performed, more frequencies of the same harmonic are present.
This is reflected in the amplitude spectra, that often do not include a single peak, as
it occurred in the time-varying amplitude. This behaviour has here a more relevant
effect on amplitude and frequency evaluation with respect to the case of time-varying
amplitude and generates much greater estimation errors.

The EKF is again initialized using the same values of the case with constant frequency.
From Figure 5.36, it can be noted that the EKF is able to recover the time variation
of the frequency, even if it does not include information about its variation and it has
been implemented considering the case with constant frequency, exactly as the case with
amplitude changing in time.

Figure 5.36: EKF estimation – time-varying frequency

The estimation error for the FFT and the EKF in the time-varying frequency case
is depicted in Figure 5.37. It is clear that the FFT does not perform well and tends to
oscillate for both the amplitude and frequency estimation errors. On the contrary, the
EKF produces small errors for both the quantities to be estimated.
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Figure 5.37: FFT and EKF estimation comparison – time-varying frequency

5.4.5 Disturbance as one harmonic with amplitude and
frequency varying in time

This last case considers once again the input disturbance to be a single harmonic, but
unlike the previous examples the perturbation generated by the gearbox varies both in
amplitude and in frequency over time, as shown in Figure 5.38. This example can be
viewed as an integration of the two previous cases. In fact, the same considerations as
before still hold.

Figure 5.38: Time-varying amplitude and frequency harmonic

Short time windows for the implementation of the FFT approach are selected to gen-
erate better estimates of the disturbance frequency and amplitude due to their variation
over time. A shorter time window twindow improves the estimation accuracy, but increases
the computational effort. In addition, since the frequency changes over time, the ampli-
tude spectrum does not generate a unique peak for the same time window because of the
numerous frequency components within the time interval. The same effect is generated
by the amplitude variation, which degrades even further the estimation.

This example validates again the superiority of the estimation produced by the EKF
in the case of a single harmonic whose characteristic parameters change over time. The
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EKF frequency and amplitude estimation are depicted in Figure 5.39. The filter is once
again implemented by assuming that the input disturbance has constant parameters,
nonetheless the EKF is able to recover accurately their variation over time in real-time
by means of the information provided by the upstream robust H∞ estimator.

Figure 5.39: EKF and UKF estimation – time-varying amplitude and frequency

Furthermore, the UKF is implemented for the estimation of this last example. The
red line in Figure 5.39 reconstructs the amplitude and frequency variation over time by
using the UKF as nonlinear estimation technique. There is no relevant difference with
the EKF estimation and this conclusion can be observed in Figure 5.40 as well, which
represents the estimation error of all the implemented approaches, including the FFT
with time interval ∆t = 2 s. The similar behaviour of the UKF with respect to the EKF
demonstrates that the latter method is particularly suitable for the cases investigated so
far, as it reduces the computational burden of the UKF and produces analogous results.

To sum up, table 5.3 shows the main features of the two estimation methods treated
in this chapter. It can be noted that both of them have advantages and drawbacks
depending on the shape of the input signal. A careful analysis of the specific case at
hand shall then be performed before making the final choice of the optimal estimation
technique.
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Figure 5.40: FFT, EKF and UKF estimation comparison – time-varying amplitude
and frequency

EKF FFT

real-time estimation a posteriori estimation
information about the shape
of the input signal required

no prior information
about the signal required

number of harmonics gen-
erating the signal required

spectral leakage may oc-
cur, depending on twindow

must be reasonably initialized -
reasonable choice of x̂0, P0, Q

a time window must
be reasonably selected

able to capture input ampli-
tude and frequency variations

poor performance if input
frequency varies over time

Table 5.3: Comparison between EKF and FFT estimation techniques

92



Chapter 6

Solar array drive mechanism
disturbance estimation

6.1 Sentinel-2 state-space representation

The dynamic model of Sentinel-2A has been extensively described in chapter 2 by
means of the satellite dynamics toolbox embedded with the solar array drive mech-

anism (SDT+). The block diagram of such system is represented in Figure 2.7, which
shows the connection of the subsystems and the detailed relations of all variables involved
in the satellite dynamics.

Since the spacecraft is assumed to have small angular velocities ω̇ as external per-
turbations and thus motion are typically small during the operational phase, the overall
dynamics of Sentinel-2 can be considered to be linear. Accordingly, the global system
can be described in a state-space representation, which is particularly useful for the sub-
sequent development of the estimator. To obtain this result, equations derived in chapter
2 are reported here and rearranged in a state-space representation for each subsystem,
and then integrated together to generate the description of the overall system.

Satellite hub
The dynamics of the spacecraft hub is obtained by introducing the following state:

xHUB(t) =

{
vG
ω

}
RB

=



vx,G
vy,G
vz,G
ωx
ωy
ωz


RB

(6.1)

which encompasses the angular velocities ω and the translational velocities of the
hub’s centre of mass vG expressed in the frame RB rigidly attached to the satellite base.
The input vector can be expressed as:

uHUB(t) =




F

THUB
Ty,P
Tz,P


RA[

Fext

Text,G

]
RB


(6.2)
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where F and TP = [Tx,P Ty,P Tz,P ]T = [−THUB Ty,P Tz,P ]T are the forces and
torques generated by the appendage at the connection point P on the satellite rigid
base expressed in the reference frame RA, whereas Fext and Text,G are respectively the
external forces and torques acting on the hub’s centre of mass G written in the frame
RB. Furthermore, the output vector is defined as:

yHUB(t) =



[
vG
ω

]
RB[

aG
ω̇

]
RB[

aP
ω̇

]
RA


(6.3)

The state dynamics and the output equations can then be computed as:

ẋHUB(t) = 06×6xHUB(t) +
[
D−1B τ

T
PGRT

HUBITx D−1B
]
uHUB(t) (6.4)

yHUB(t) =

I6
06

06

xHUB(t) +

 06 06

D−1B τ
T
PGRT

HUBITx D−1B
RHUBτPGD−1B τ

T
PGRT

HUBITx RHUBτPGD−1B

uHUB(t)

(6.5)

where D−1B is the linear inverse dynamic model of the spacecraft base, τPG is the
kinematic model from pointG to the appendage connection point P and can be computed
as:

τPG =

[
I3 [rPG]∧

03 I3

]
(6.6)

and rPG = −rGP . In addition, RHUB is a 6× 6 block matrix defined as:

RHUB =

[
RB/A 03

03 RB/A

]
(6.7)

where RB/A is the rotation matrix from the hub’s frame RB to frame RA. To con-
clude, ITx = diag(1, 1, 1,−1, 1, 1) is a diagonal matrix which changes the sign of the
torque THUB applied at connection point P around the direction of the solar array rota-
tional axis.

More compactly, the dynamics of the satellite hub is then rewritten as:

ẋHUB(t) = AHUBxHUB(t) + BHUBuHUB(t)

yHUB(t) = CHUBxHUB(t) + DHUBuHUB(t)
(6.8)

where AHUB, BHUB, CHUB, and DHUB are defined by equations (6.4) and (6.5).

Stepper motor
The stepper motor dynamics expressed as state-state representation is described by

the following equations:
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ẋm(t) =

[
0 1
−K0

Jr
−C0

Jr

]{
θr
θ̇r

}
+

[
0 0 0
1
Jr
−1 KmIγ

Jr

]
Ti/r

[ω̇x]RA

i

 (6.9)

ym(t) =

{
θ̈i

THUB

}
=

[
−K0

Jr
−C0

Jr

−K0 −C0

]{
θr
θ̇r

}
+

[
1
Jr

0 KmIγ
Jr

0 0 KmIγ

]
Ti/r

[ω̇x]RA

i

 (6.10)

or, more compactly:

ẋm(t) = Amxm(t) + Bmum(t)

ym(t) = Cmxm(t) + Dmum(t)
(6.11)

Gearbox
The state-space representation of the gearbox dynamics in terms of state dynamics

and output equations can be written as follow:

ẋg(t) =

[
0 1

−Kg

Jo
−Cg

Jo

]{
δθ

δθ̇

}
+

[
0 0 0
1
Jo
− 1
Ng

1
Jo

]
TSA/o
θ̈i

TPERT

 (6.12)

yg(t) =

 θ̈o
Ti/r
δθ

 =

−
Kg

Jo
−Cg

Jo
Kg

Ng

Cg

Ng

1 0

{δθ
δθ̇

}
+

 1
Jo

0 1
Jo

0 −Ji − 1
Ng

0 0 0


TSA/o
θ̈i

TPERT

 (6.13)

or, alternatively:

ẋg(t) = Agxg(t) + Bgug(t)

yg(t) = Cgxg(t) + Dgug(t)
(6.14)

Solar array
The solar array dynamics can be described in a state-space representation using the

following relations:

ẋSA(t) =

[
0n In

− diag(ω2
i ) − diag(2ξiωi)

]{
η
η̇

}
+

[
0n×6
−LP

]{
aP
ω̇

}
RSA

(6.15)

ySA(t) =

{
F

TC

}
RSA

=
[
LT
P diag(ω2

i ) LT
P diag(2ξiωi)

]{η
η̇

}
+ (DP

A − LT
PLP )

{
aP
ω̇

}
RSA

(6.16)

or, more compactly:

ẋSA(t) = ASAxSA(t) + BSAuSA(t)

ySA(t) = CSAxSA(t) + DSAuSA(t)
(6.17)
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Rotation from RA to RSA

The translational and rotational accelerations of connection point P are obtained
from the transported dynamic model of the hub integrated with the dynamics of the
solar array driving mechanism along the direction of the appendage rotation axis. Such
quantities are conveniently expressed in the reference frame RA centred at point P and
rigidly attached to the satellite base. On the contrary, the dynamic model of the solar
array is computed at its centre of mass C and then transported at connection point P ,
both more suitably expressed in the frame RSA fixed with respect to the appendage.
Therefore, a rotation matrix is introduced to move from reference frame RA to RSA to
work with all the variable in the same frame. The rotation is dependent on the desired
configuration of the solar array, which is commanded during the orbital motion to collect
and generate maximum power from the sun. The dependence of rotational angle θ(t) on
time is depicted in Figure 2.4 and coincides with the rotation to be performed to move
from frame RSA to RA. Such rotation can be expressed in a state-space representation,
which – by the way it is defined – will involve only an input-output relation dependent
on angle θ(t) as follows:

yR1(t) =

{
aP
ω̇

}
RSA

=

[
RT
x (θ) 03

03 RT
x (θ)

]
aP
θ̈o
ω̇y
ω̇z


RA

(6.18)

that can be written more concisely as:

yR1(t) = DR1(θ)uR1(t) (6.19)

Rotation from RSA to RA

Analogously, forces and torques obtained by means of the linear dynamic model of the
solar array are expressed in the reference frame RSA rigidly attached to the appendage.
Such quantities are more conveniently used in the frame RA fixed with respect to the
satellite base and thus a rotation is usually performed. The rotation depends again on
the solar array configuration θ(t) and can be computed as the inverse rotation of the
previous one as follows:

yR2(t) =


F

TSA/o,P
Ty,P
Tz,P


RA

=

[
Rx(θ) 03

03 Rx(θ)

]{
F

TP

}
RSA

(6.20)

or, more compactly:

yR2(t) = DR2(θ)uR2(t) (6.21)

Global system
The state variables introduced for each subsystem can be gathered into an augmented

state x(t) defined as:
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x(t) =


xHUB
xm
xg

xSA

 =



vG
ω
θr
θ̇r
δθ

δθ̇
η
η̇


(6.22)

such that the entire satellite dynamics is represented by a single augmented system
which encompasses all the subsystems. Such augmented system can be expressed in a
state-space representation as follows:

ẋ(t) = A(θ)x(t) + B(θ)u(t)

y(t) = C(θ)x(t) + D(θ)u(t)
(6.23)

It is important to note that both the state dynamic equation and the output equation
depend on the variable θ which defines the configuration of the solar array. As already
mentioned, the evolution of angle θ(t) over time is well-known, since it is a design pa-
rameter that depends on the spacecraft position along the orbit with respect to the sun.
Nonetheless, the variation of θ influences the global dynamics of the system in terms of
time variation in the construction of all the matrices in the state-space representation of
the system itself. This entails that the global system is not a linear time-invariant sys-
tem, since the time-invariance assumption is no longer valid. However, it is still possible
to define a Linear Parameter Varying (LPV) model of the system valid for any value of
θ as described by Alazard and Cumer in [1], which preserves the time-invariance of the
system and allows to carry out the pertinent analysis by means of the existing tools for
time-invariant systems. This is a powerful approach to be used as it greatly simplifies
the treatment of the problem at hand.

Using the augmented system described in equation 6.23, the external input variables
of the system are then:

u(t) =


Fext

Text,G

i
TPERT

 (6.24)

whereas the relevant output quantities that can be inferred from the system dynamics
are:

y(t) =


vG
ω
aG
ω̇
δθ

 (6.25)

6.2 Gearbox perturbation characterisation

Any perturbation at SADM level is related to phenomena resulting in small variations
of the output shaft angular velocity θ̇o with respect to its theoretical and desired con-
figuration. In the gearbox case, the generated disturbances are ascribed to damages
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and imperfections of its components. In particular, sources of such perturbations are
produced by several causes, including gear teeth geometry errors (such as profile, spac-
ing, and runout errors from the manufacturing process), elastic deformation, imperfect
mounting or alignment, lubrication. Therefore, the accurate analysis and modeling of
the disturbances with respect to the theoretical configuration is complicated by the nu-
merous error sources that arise during operation and may be difficult to predict. Penaud
et al. developed a general model [24] for the kinematic analysis of geared mechanisms,
that can be used to compute and characterise such disturbances. Starting from the
kinematic model of the gearbox and from the parameters of its constituents, it is then
possible to compute the frequency fi of the i-th contact damage in any gear pairs of
any mechanism which is likely to be generated by the error sources. Each damage can
generate some harmonic disturbance torque involving the fundamental frequency of the
single damage ωdi = 2πfi and the related higher frequency harmonics with fik = kfi, for
k = 2, 3, ..., Nh, as described in [1]. The overall perturbation can be computed as:

TPERT =

nd∑
i=1

Nh∑
k=1

Aik sin (kωdit+ ϕik) (6.26)

where nd is the total number of damages in the gearbox, Nh is the number of har-
monics for each damage, while the magnitude Aik and the phase ϕik depend on the shape
of the damage.

By inserting the Sentinel-2 gearbox kinematic model into the toolbox mentioned
above (Figure 2.5), 6 main damages in the mechanism and the relative fundamental
frequencies are identified and reported in table 6.1. It is interesting to note that all of
them depend on the angular velocity θ̇o (ωSA in the table) of the shaft that makes the
solar array rotate and increase as θ̇o grows.

Damage i ω̃di = ωdi/ωSA Gear pair

1 13616 (2,3)
2 184 (2,3)
3 197.3 (2,3)
4 14800 (3,4)
5 197.3 (3,4)
6 185 (3,4)

Table 6.1: Contact damage frequencies in Sentinel-2 gearbox mechanism

To compare simulation results with real data, analyses on IMU rate measurements
from Sentinel-2 telemetry were performed. In particular, a detailed frequency domain
analysis was carried out to identify the spectral contributions to the rate error signal.
A remarkable outcome is the value of the lowest spectral contribution, which can be
approximated as ω0 = NgωSA = 184ωSA, where Ng is the transmission ratio of Sentinel-2
gearbox. The approximated value can thus be computed during the forward operational
mode of the solar array and the frequency value f0 = 0.0307 Hz is obtained, compared
to the slightly different actual value of 0.0327 Hz. Therefore, the transmission ratio Ng

plays a significant role for the disturbance generation, and can be physically viewed as
the number of times that the disturbance repeats over one SADM output revolution,
which equivalently means that it repeats about once for each full stepper motor shaft
revolution. A second disturbance is obtained from telemetry data in a similar manner
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with gain value 197 with respect to ωSA. Again, this value was computed from the
kinematic analysis of the gearbox and listed in table 6.1. In particular, this second
disturbance repeats 197 to 198 times over one SADM output shaft revolution, or once
for each full step motor shaft revolution.

In addition, almost all higher frequency spectral contributions can be associated with
a multiple of either one of the two previous fundamental frequencies, i.e. fik = kfi.

Amplitudes of higher harmonics tend to decrease as k gets larger. Therefore, the first
components may be strong enough to generate a non-negligible perturbation, while higher
harmonics create significant disturbance only if approaching a solar array resonance
frequency. These considerations are essential for the gearbox modeling and the estimation
of the associated disturbances.

Another important factor for the amplitude and phase computation of all the fre-
quency components is the disturbance shape. From telemetry data it can be shown that
the i-th disturbance associated to the i-th gearbox damage can be accurately approxi-
mated as a sawtooth signal of the form:

TPERTi(t) =

Nh∑
k=1

− 2a

kπ
(−1)k sin (kωdit) (6.27)

where Nh is the number of harmonics considered to generate the signal, a = 0.5, and
ωdi is the i-th harmonic fundamental frequency. In particular, for Nh = 60, the single
contributions of damages #2 and #3 are shown in Figure 6.1 and the overall gearbox
disturbance is depicted in Figure 6.2.

Such signals represent exactly the gearbox disturbance that the estimator to be syn-
thesised must be able to evaluate along with their amplitude and frequency, in order to
avoid any coupling with the solar array flexible modes which would degrade its pointing
performance.

Figure 6.1: Sentinel-2 gearbox dam-
ages # 2 and #3

Figure 6.2: Modeled Sentinel-2 gear-
box global disturbance

6.3 Robust disturbance estimation

The estimation of the spectral content generated by the gearbox disturbance acting on
the system is treated with the same approach described in chapter 5. Since the dynamics
of Sentinel-2 is linear, the input disturbance is estimated by means of two filters in series.
The first part is devoted to the robust estimation of the input disturbance d(t) using the
H∞ theory and the real-time data available from the on-board gyroscopes. In fact, this is
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possible because of the linearity of the system. The main difference with the simple mass-
spring-damper case is the variation of the satellite dynamics due to the rotation of the
solar array around its axis. However, the system can still be considered to be linear and
time-invariant by using the LPV approach already mentioned thanks to the knowledge
of the time evolution of such rotation θ(t). The robust estimate d̂(t) is then processed
by the second part of the filter as the input information for the implementation of a
nonlinear estimation technique or of a Fourier transform to evaluate the values of both
amplitude and frequency of the harmonics in which the input signal can be decomposed.

As described by the equations in (6.23) the global satellite dynamics can be ex-
pressed in a state-space representation and simplified by considering as input and output
variables only the quantities of interest. In particular, the gearbox disturbance torque
d(t) = TPERT (t) will represent the only input variable, while the angular velocities of the
spacecraft ω measured by the on-board sensors are the outputs that will be taken into
account, as shown in the block diagram depicted in Figure 6.3.

Figure 6.3: Sentinel-2 block diagram for gearbox disturbance estimation

The weighting functions Wd(s), Wn(s) and W−1
e (s) are designed with the same ap-

proach described in section 5.3. The disturbance weighting functionWd(s) is a band-pass
filter with bandwidth defined by the minimum and maximum frequency components of
the disturbance model. The lowest value of the modeled sawtooth signal for both dam-
ages occurs at the fundamental frequency of damage #2 when the solar array is in forward
mode, i.e. ωm = 184ωSA = 0.1927 rad/s. The largest frequency value is dependent upon
the number of harmonics Nh considered to generate the model of the signal. In the real
case, infinite components should be taken into account, however the amplitude of the
components at high frequency do not produce relevant contribution to the signal. For
Nh = 60 harmonics the maximum value of the frequency components is generated during
the solar array backward mode. Nonetheless, the only mode of interest is the forward
mode of the solar panel, since during the rewind mode the satellite is in eclipse and no
performance requirements with respect to the pointing accuracy are defined. The maxi-
mum value for the disturbance weighting function can then be considered the frequency
ωM = 60 ·197.3ωSA = 12.3967 rad/s. The noise weighting functionWn(s) depends on the
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characteristics of the sensors. Since small information about the on-board gyroscopes
is available, the same expected maximum value for the entire spectrum is considered.
In addition, it is assumed that the same type of sensor is used along the three axis of
the spacecraft with the same noise characteristics. To conclude, the weighting function
We(s) related to the normalised estimation error is designed with the same bandwidth
of Wd(s) and with amplitude computed by means of an iterative process to obtain the
maximum possible value of the parameter γ connected to the suboptimal H∞ filter (see
equation (3.120) for its definition), while guaranteeing the constraint γ < 1 to prevent
input amplification.

The system shall be then represented in an LFT form to use theH∞ theory developed
in chapter 3. Figure 6.4 shows the related block diagram, where the exogenous input
vector w(t) is defined as:

w(t) =


d1(t)
d2(t)
d3(t)
d4(t)

 (6.28)

where d1 represents the normalised input disturbance and the other three inputs are
the normalised noise of the sensors placed along the three spacecraft axes. Similarly, the
output vector y(t) encompasses the data measured by the three gyroscopes.

Figure 6.4: Sentinel-2 LFT block diagram representation for gearbox disturbance esti-
mation

The expression of the transfer function G(s) can then be expressed as follows:

{
e1
y

}
= G(s)

{
w

d̂

}
=

=

[
G11 G12

G21 G22

]{
w

d̂

}
=


W−1
e Wd 0 0 0 −W−1

e

PWd Wn 0 0 0
PWd 0 Wn 0 0
PWd Wn 0 Wn 0



d1
d2
d3
d4
d̂


(6.29)

where P(s) is the transfer function of the satellite with input d(t) = TPERT (t) and
output the spacecraft angular velocity vector ω.
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The H∞ filtering generates the estimation d̂(t) which is compared with the real input
disturbance d(t) in Figure 6.5 for both the solar array forward mode and backward
mode. In particular, the blue line in the figure represents the amplitude of the actual
disturbance generated by the SADM gearbox, whereas the red dashed line is the robust
estimation produced by the filter. It can be noted that the evaluation provided by the
estimator approximates well the time evolution of the real disturbance. A more detailed
analysis is obtained by considering the estimation error e(t) computed as the difference
between the actual value of the input signal and the value provided by the estimator.

Figure 6.5: Sentinel-2 gearbox disturbance robust estimation

The estimation error e(t) = d(t)−d̂(t) over time is shown in Figure 6.6. It can be noted
that after the initial time for both the two configurations, the error shows a repeated
pattern bounded to the maximum value 0.03 Nm for the forward mode. Considering the
disturbance magnitude, the filter generates an estimation with an average error of 3%.
The estimation might be further improved if more detailed information about the sensor
characteristics is available and by developing more refined models.

6.4 Disturbance spectral estimation

The disturbance spectral estimation concerns the frequency and amplitude evaluation of
the harmonic components that generate the input disturbance. In this case, the input
signal is generated by the first part of the filter, which produces a real-time estimate of
the gearbox disturbance by means of a robust H∞ filtering approach. The second part
of the estimator must then rely on the robust estimation of the input disturbance that
is treated as the signal generated by a fictitious sensor able to capture the disturbance
variation over time.

As already introduced in section 5.4, the two main methods that are used for the
spectral estimation of the disturbance are a real-time nonlinear approach that relies
on Kalman filter theory and requires information of the input shape and number of
harmonics, and a static a posteriori approach which is based on the Fourier transform.
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Figure 6.6: Sentinel-2 gearbox disturbance estimation error

6.4.1 Fast Fourier transform estimation

Once the input disturbance is reconstructed via the robust estimator, the fast Fourier
transform can be implemented to obtain the signal spectrum, which gives information
about the amplitude and the frequency of the harmonics generating the signal itself. This
method can be seen as an a posteriori approach, since the estimation is not real-time,
but requires knowledge of the signal over a time window. In this case, a time window
of 1000 s is considered, and after the first FFT computation, the same approach is used
every ∆t = 500 s, with the same time window defined above. The results of this approach
are reported in Figure 6.7. It is visible from the figure that this method produces several
peaks at different frequencies representing the amplitude of the harmonic components
that generate the input disturbance. As expected, it can be noted that the amplitude
of the single harmonics tends to decrease as the frequency increases. In addition, the
amplitude spectrum slightly changes over time following the time evolution of the input
signal. An abrupt variation of the spectrum can be identified at time t = 4500s, when
the FFT makes use of sensor data coming from both the solar array forward operational
mode and the rewind mode.

In this case, the FFT approximates well the signal spectrum, however the estimation
is not real-time, and requires some time before the first estimation can be carried out.
In addition, the time window shall not be too narrow, to avoid poor estimation of the
spectrum, nor too wide, to have information of amplitudes and frequencies in short
periods of time. Furthermore, since the time window is not a multiple of the period of all
the harmonics, the FFT does not approximate exactly the signal spectrum, and generates
small peaks at low and high frequency that must be discarded and not confused as further
harmonics composing the input disturbance. This behaviour is shown in Figures 6.8 and
6.9. Nonetheless, a first solution that might be implemented to avoid the above errors is
the signal tapering through certain window functions, but in turn such approach would
create a further degradation in the amplitude estimation of the peaks.

In the case shown in Figure 6.10, the low frequency peaks have been canceled, from
a priori knowledge of the disturbance fundamental frequency. This figure shows the
frequency and amplitude estimation of the first 10 harmonics, i.e. 5 harmonics for each
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Figure 6.7: Sentinel-2 gearbox disturbance amplitude spectrum over time

Figure 6.8: Sentinel-2 gearbox disturbance amplitude spectrum at t = 1000 s

gearbox damage. It can be noted that at 3000 s, a degradation of the estimation occurs
due to a third peak at low frequency, which creates a fictitious harmonic that is not
present in the real signal (see also Figure 6.9). At 4000 s and 4500 s, the estimation
is rather poor because of the change in the solar array angular velocity (from forward
mode to backward mode), which modifies the frequency of the disturbance harmonics.
Since for the two above-mentioned intervals the FFT gets information partly from the
harmonics in the forward mode and partly in the backward mode, the estimation is
wrong. Nonetheless, this situation can be avoided, since the time at which the solar array
changes mode is known, and the time windows can be modified accordingly. Moreover,
the estimation is in general of interest only during the forward mode, as during the
rewind mode the satellite is in eclipse and no solar array pointing requirement shall be
fulfilled. To conclude, the estimation is well recovered at 5000 s, where the FFT takes
information only from harmonics in the backward mode.

104



Master Thesis 6.4. DISTURBANCE SPECTRAL ESTIMATION

Figure 6.9: Sentinel-2 gearbox disturbance amplitude spectrum at t = 3000 s

Figure 6.10: Sentinel-2 gearbox disturbance estimation of the first 10 harmonics

Figures 6.11 and 6.12 show the errors of FFT estimation for both harmonics amplitude
and frequency respectively. The same considerations previously done still hold and are
clearly visible in these images as well. If the intervals where the estimation is poor due
to the generation of fictitious peaks are excluded (i.e., 3000 s, 4000 s, and 5000 s), the
amplitude estimation error remains under 0.08 Nm, while the frequency estimation error
stays beneath 1.5 mHz.
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Figure 6.11: FFT amplitude estima-
tion error for the first 10 harmonics

Figure 6.12: FFT frequency estima-
tion error for the first 10 harmonics

6.4.2 Extended Kalman filter estimation

The EKF gives a real-time estimation of the input, and requires no time windows nor
frequency spectra. However, knowledge of the signal is essential to construct the states
that will estimate the signal. In addition, the initial state estimate x̂0, as well as the
initial state error covariance P0 and the process noise covariance Q, shall be carefully
selected in order to obtain reasonably accurate results, and this step may be rather
difficult to perform if there is no information about the input disturbance. In the case
x̂0 perfectly matches the initial value of the real states, the estimation of the frequency
for all the 60 harmonics gives extremely precise results, as reported in Figure 6.13.

Figure 6.13: EKF frequency estimation of all the harmonic components in the case of
perfect knowledge of the initial state

In a more general situation, the initial state is not perfectly known, therefore a
10% error deviation in x̂0 from the real initial value of the states xreal0 is considered (i.e.,
x̂0 = 0.9xreal0 ). The EKF simulation is then carried out for the complete simulation time.
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The results of the simulation for a total number of harmonics Nh = 10 are reported in
Figure 6.14 and 6.15 for frequency and amplitude respectively.

Figure 6.14: EKF frequency estima-
tion for the first 10 harmonics

Figure 6.15: EKF amplitude estima-
tion for the first 10 harmonics

It is clearly visible that the amplitude estimation is rather poor and the main cause
of this might be due to the intrinsic degradation of the signal because of the presence of
the upstream robust filter, which slightly alters the real signal, mainly in its amplitude.
The EKF frequency estimation is well recovered for the components at low frequency,
whereas it is poor for the ones at higher frequencies, where the estimated value tends
to a wrong frequency. This occurs because the error in the initial state x̂0 = 0.9xreal0 as
selected above, gets bigger for larger values, and some frequencies happen to be initially
closer to the value of the next frequency rather than the real one and will tend to that
wrong value. The only solution to this issue is a better initial estimation of the state x̂0.
In addition, the same problem occurs when passing from the solar array forward mode
to the backward one. The lower frequencies are recovered by the estimate of higher
frequencies, which make the other estimates poor while the real high frequencies are not
recovered. A possible solution may be to create a new initial state at the time when the
solar array changes mode (which is known), but also the new estimate shall be as precise
as possible.

To conclude, Figures 6.16 and 6.17 show the EKF estimation error for both frequency
and amplitude estimation.

Figure 6.16: EKF frequency estima-
tion error for the first 10 harmonics

Figure 6.17: EKF amplitude estima-
tion error for the first 10 harmonics

By considering only the forward mode, the largest value of the amplitude error occurs
for the fundamental harmonics of the disturbance, with maximum error peaks of about
0.1 Nm at steady-state (the real value of the fundamental harmonic amplitude is 2a/π ≈
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0.3183 Nm). As regards frequency, the maximum value of the error remains under 25 mHz
(1.5 mHz for FFT estimation). Nonetheless, if only the low frequencies are considered
(i.e., the ones for which the value of x̂0 is relatively close to the real initial value), the
estimation error at steady-state remains beneath 0.15 mHz, as shown in Figure 6.18,
which validates the previous discussion and makes the EKF more attractive if correctly
initialized.

Figure 6.18: EKF frequency estimation error for x̂0 close to the real value (zoom of
Figure 6.16)
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Chapter 7

Conclusions

This thesis explored different methods for the estimation of the frequency and ampli-
tude spectra of an input signal acting on a linear system. In particular, the case of

the estimation of the gearbox disturbance generated by the solar array drive mechanism
on-board the Sentinel-2A spacecraft was investigated. The translational and rotational
dynamics of the satellite were modeled using the satellite dynamics toolbox developed by
Alazard and Cumer in [2], which was later integrated with the dynamics of the stepper
motor and the gearbox composing the solar array driving assembly (Alazard and Cumer
[1]) which allow the rotation of the appendage. The control of the solar array rotation
permits to collect the maximum sun power onto the solar cells in order to provide the
spacecraft with a steady energy supply. Nonetheless, both the motor and the gearbox
are also sources of disturbances that may be dangerously magnified if coupling with the
resonance frequencies of the solar array occurs. The frequency response of the two com-
ponents of the assembly on the satellite rotational dynamics was explored and discussed
in [1]. It was demonstrated that the major disturbance was ascribed to the gearbox
dynamics.

Accordingly, to achieve fine performance requirements with respect to the solar array
pointing accuracy, the coupling of the gearbox disturbance with the satellite and solar
array natural frequencies shall be avoided. The objective of this study is the estimation
of such frequencies that are the starting point for the future design of a controller able
to prevent further magnification of the disturbance amplitude.

Multiple approaches for the disturbance estimation were identified and compared
in this thesis. The most common nonlinear techniques such as the extended Kalman
filter [5], the unscented Kalman filter [19] and the particle filter [22] were investigated
and the main characteristics with respect to the case at hand were explored. These
methods require the definition of a state vector which includes the states dominating the
dynamics of the system and the quantities of interest to be estimated. In addition, the
dynamics of all the variables contained in the state vector shall be known to implement
the algorithm. Since the disturbance acting on the satellite is not known and the available
information is produced by the on-board sensor that do not detect directly the value of
the gearbox disturbance and its variation over time, a direct estimation of the amplitude
and frequency of such input signal cannot be carried out. This conclusion is obtained even
in the simple case of a linear one-dimensional system with a single harmonic component
as the input disturbance. The present study demonstrated that the amplitude and
frequency of the input signal cannot be evaluated by means of an estimation technique
based on the nonlinear Kalman filter theory because of the non-observability of the
system. In the case direct information of the disturbance was available, it is possible to
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implement a nonlinear Kalman filter with direct estimation of the quantities of interest,
but a sensor that produces such measurement does not exist.

This thesis proposes an alternative approach which relies on the design of an esti-
mator made up of two main components. A first filter based exclusively on the system
dynamics generates a robust estimate of the input disturbance, while the second part of
the filter decomposes such estimate in a series of harmonic components by evaluating the
relative frequency and the amplitude spectra. In other words, the first estimator can be
viewed as a sort of sensor whose output is the estimate of the input disturbance which
is then provided to the second segment of the filter, overcoming the issues presented
above. Furthermore, since the first filter is dependent only on the system, it is possible
to introduce a different approach to generate the input estimation which relies on the
linearity of the system. As a matter of fact, the nonlinearities are introduced exclusively
by the input disturbance, while the satellite dynamics can be approximated as linear.
In fact, the Euler equations which are used to model the dynamics of the spacecraft
are nonlinear but can be easily linearised by assuming that the angular velocity of the
satellite is small. The linearity assumption is typically realistic, since the external per-
turbations acting on the satellite and thus the motion are usually small. In addition,
it brings the great advantage, that the mathematical formulations developed in a linear
framework (which are, in general, easier than the nonlinear case and more mature) can
be exploited. Linear approaches are in general easier to treat with respect to the non-
linear case and are typically more mature. In particular, the linear H∞ theory was used
to obtain a robust estimator which minimises the worst-case scenario by guaranteeing
the attenuation of the input disturbance at any frequency. The H∞ theory is typically
devoted to the controller synthesis, but it was specialised for the filtering case, since it
can be demonstrate to be a special case of the H∞ control problem with no internal
stability requirements.

For the frequency and amplitude spectrum estimation, this study proposed two dif-
ferent techniques which show benefits but also drawbacks. Different case were explored
in which a simple one-dimensional system with one degree of freedom is subjected to dif-
ferent input disturbances. A first approach relies on the Fourier transform which showed
precise estimation when the input amplitude and frequency are constant over time, by
generated inaccurate results otherwise. In addition, it relies on the introduction of a time
window over which the procedure is carried out, which makes it an a posteriori approach
and can produce undesirable effects such as the spectral leakage when the time window
is not consistently defined. The second technique relies on the nonlinear Kalman filter
theory already mentioned. This latter option has the advantage to produce real-time
estimates but suffers of poor accuracy if not correctly initialised. The final approach for
the spectral estimation may then be the combination of the two methods. The estimation
generated by technique which relies on the Fourier transform could be used to initialise
the nonlinear Kalman filter approach in order to obtain real-time precise estimates.

This thesis can be considered as the starting point for different future developments.
The present study does not encompass the parameter uncertainties of the system and the
estimator is implemented for the nominal plant. However, manufacturing and measure-
ment errors or slight variations in the characteristics of the system properties due to the
exposure with a different environment may occur and are typically taken into account
by introducing uncertain quantities including a deviation from the nominal value. These
uncertainties might modify the system dynamics and the robust estimator developed in
the present study may not satisfy completely the H∞ requirements due to such variation.
A more robust approach could be implemented by considering the system uncertainties
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as well. One common approach relies on the µ-synthesis technique, which extends the
methods of the H∞ synthesis to design a more robust controller or estimator for an un-
certain plant. Nevertheless, it is necessary to quantify the such system uncertainties to
have information about the maximum extent to which the parameter values are supposed
to change.

In addition, the estimation of the input disturbance generated by the solar array
driving mechanism and the evaluation of the related frequency and amplitude spectra
make it possible to synthesise a controller which prevents magnification of the input
disturbance due to the coupling of the disturbance with the satellite and solar array
natural frequencies. Thus, the controller can be designed such that the performance
requirements are fulfilled and the related fine pointing accuracy of the solar is achieved.
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