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Sommario

La medicina moderna si sta sviluppando parallelamente alle nuove tecnologie e soluzioni
innovative basate sui dati stanno acquisendo interesse ed efficacia come mai prima
d’ora. Le immagini diagnostiche costituiscono una fonte di informazioni cruciale per
la pianificazione degli interventi, la diagnosi e il trattamento delle malattie. In questo
contesto, la segmentazione di immagini diagnostiche rappresenta un passo molto
frequente che può determinare il successo di queste procedure. Sfruttando strumenti
di intelligenza artificiale, nuovi efficaci metodi per eseguire segmentazione automatica
sono in fase di sviluppo. Questo lavoro di tesi sfrutta le architetture di apprendimento
profondo (Deep Learning) per ottenere una segmentazione 3D veloce, accurata e
automatica delle ossa dell’articolazione del ginocchio, in pazienti affetti da artrosi
avanzata che subiscono un intervento impianto di protesi totale di ginocchio. Questa
operazione chirurgica ha l’obiettivo di alleviare il dolore, migliorare le funzionalità e
ripristinare la corretta meccanica del ginocchio, compromessa dal forte grado di usura
delle ossa dell’articolazione. Con il crescente tasso di incidenza di tale intervento, sono
nate nuove soluzioni, che comprendono una pianificazione preoperatoria personalizzata
che richiede la ricostruzione digitale dell’anatomia del ginocchio del paziente. Sulla
base delle superfici ricostruite, vengono realizzate maschere di taglio ad hoc, utilizzate
per eseguire l’operazione con una minore invasività rispetto agli approcci tradizionali.
La segmentazione automatica è ottenuta attraverso modelli Deep Learning che im-
parano a mappare i dati di input a degli output desiderati, ovviando alla necessità
di estrarre manualmente le caratteristiche dei dati di addestramento. Questi modelli
utilizzano un ampio set di dati per apprendere la funzione di mappaggio, confrontando
ciclicamente l’ output temporaneo con gli output di riferimento presenti nel dataset,
attraverso una funzione di costo, e aggiornando progressivamente i loro parametri in
base all’errore calcolato. Il particolare tipo di architettura sfruttata in questo lavoro
sono le reti neurali convoluzionali (CNN). Le CNN permettono di elaborare grandi
volumi di dati mantenendo l’invarianza spaziale delle immagini e senza perdere la
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connettività locale tra i voxel, grazie all’operazione di convoluzione che viene eseguita
attraverso piccoli kernel i quali imparano ad estrarre le diverse caratteristiche rapp-
resentative. Questi approcci automatizzati risultano quasi sempre più accurati dei
metodi tradizionali di soglia o degli approcci semi-automatici, che non considerano
l’informazione spaziale e contestuale dei dati e spesso falliscono quando i bordi delle
strutture non sono ben definiti.
Nel 2015 è stata introdotta un’innovativa architettura convoluzionale per la segmen-
tazione di immagini biomediche, che si è rapidamente affermata come nuovo punto
di riferimento. La Unet è una rete convoluzionale che comprende un ramo di cod-
ifica e sottocampionamento che estrae progressivamente le caratteristiche dai dati
di input e un ramo di decodifica che, mediante strati deconvoluzionali, permette
di recuperare l’alta risoluzione spaziale iniziale. Il processo di sovracampionamento
sfrutta l’integrazione multi-scala per concatenare l’uscita dello strato di codifica al
corrispondente strato deconvolutivo, mediante l’uso di connessioni dirette.
Questo lavoro di tesi si concentra sulla segmentazione delle ossa femore, tibia, rotula e
perone. Un dataset di 259 volumi tomografici, forniti in forma anonima da MEDACTA
International SA (Castel San Pietro), è stato suddiviso in dataset di addestramento
(75%), di validazione (15%) e di test (10%). Alcune pre-elaborazioni sono state
eseguite al fine di ritagliare e ricampionare i dati alla dimensione di 192×192×192, per
creare volumi binari di riferimento per ciascuna delle anatomie di interesse. Il lavoro
si è poi sviluppato in due fasi. In primo luogo, la Unet è stata addestrata e utilizzata
per confrontare 5 funzioni di costo scelte, per capire quale fosse la più efficace. Le
funzioni di costo sono le seguenti: Dice Loss, Focal Loss, Exponential Logarithmic
Loss, Double Cross Entropy Loss e Distanced Cross Entropy Loss. L’ultima funzione
assegna grande importanza ai voxel di contorno delle ossa. Nella seconda fase di questo
lavoro, sfruttando i risultati ottenuti nel confronto, è stata sviluppata una nuova
architettura con l’obiettivo di migliorare le prestazioni di segmentazione: CEL-Unet.
Questo modello mantiene la stessa configurazione di codifica della Unet, e introduce
un’innovazione che riguarda la parte di decodifica. CEL-Unet comprende un ramo
di decodifica aggiuntivo, chiamato ramo Edge, che produce mappe di segmentazione
dei contorni ad alta risoluzione e che procede in parallelo al ramo originale Mask. Le
informazioni decodificate nel ramo Edge vengono rifinite dal modulo Pyramidal Edge
Extraction (PEE), utile per l’estrazione multi granulare delle caratteristiche dei bordi,
e vengono integrate attraverso connessioni verticali dirette al percorso Mask, che
genera le mappe di segmentazione finali. La funzione di costo corrispondente include
due funzioni, una per ogni output della rete (Mask e Edge), che insieme costituiscono
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la cosiddetta Combined Edge Loss (CEL).
L’accuratezza delle segmentazioni è stata valutata con gli indici di Jaccard, Precsion
e Recall che consentono di tenere conto degli errori di sovra e sotto-segmentazione.
Inoltre, la distanza di Hausdorff e la radice dell’errore quadratico medio (RMSE)
sulle distanze superficiali sono stati utilizzati per valutare ulteriormente il grado di
corrispondenza tra superfici ricostruite e i riferimenti. Le seguenti 4 regioni localizzate,
che rappresentano le aree più critiche, sono state estratte e analizzate singolarmente:
condilo destro, condilo sinistro, troclea femorale e piatto tibiale. La CEL-Unet ha
superato tutti gli altri modelli basati su Unet, raggiungendo i valori più alti di Jaccard
di 0,97 e 0,96 rispettivamente su femore e tibia e minimizzando la distanza di Hausdorff
e il RMSE nelle analisi sia globali che locali.
I tempi di addestramento molto elevati (fino a 65 ore) e gli alti requisiti di memoria
hanno rappresentato le principali complicanze tecniche, dal momento che l’intero
lavoro è stato sviluppato sulla piattaforma gratuita ma limitata di Google Colab.
Tuttavia, la segmentazione 3D basata sull’apprendimento profondo si è rivelata es-
tremamente efficace e la nuova, intuitiva architettura CEL-Unet ha fornito risultati
molto promettenti per il presente riconoscimento osseo, significativamente complicato
dalle gravi condizioni patologiche delle ossa. Secondo i risultati di questo lavoro, questi
algoritmi automatizzati potrebbero rivoluzionare la sanità moderna, costituendo la
base per strumenti di supporto veloci e intelligenti, atti a ridurre i costi e i tempi di
molte procedure e a promuovere un approccio personalizzato alla cura del paziente.
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Abstract

Modern medicine is developing in parallel with novel technologies, and new data-
driven solutions are gaining interest and effectiveness like never before. Among others,
diagnostic images represent a crucial source of information for planning interventions,
diagnosing and treating illnesses, with image segmentation being a very frequent
step towards success of this procedures. Leveraging artificial intelligence tools, new
cheaper and effective ways of performing automatic segmentation are being developed.
This work of thesis exploits deep learning architectures to achieve fast, accurate
and automatic 3D segmentation of bones in the knee joint, in patients affected
by severe osteoarthritis who undergo to PSI-based Total Knee Arthroplasty. This
surgical operation entails the implantation of a knee prothesis to relieve pain, improve
functionalities and restore knee mechanics of worn out bones. With the increasing
rate of incident of such intervention, new personalized solutions were born, with
customized pre-operative planning that requires the digital reconstruction of patient’s
knee anatomy. Based on the reconstructed surfaces, personalized cutting jigs are
manufactured and used to perform the surgical operation with a much less invasivness
than traditional approaches.
Automatic segmentation is obtained through trained deep learning models that learn
how to map input data to some desired output representations, obviating the need of
extracting hand-crafted features from the data. These models use large datasets to
acquire the ability to perform the task, by cyclically comparing their temporary output
with the corresponding reference through an objective function, and by progressively
updating their parameters based on the error computed. The particular type of
architecture exploited in this work are the Convolutional Neural Networks. CNNs
allow to process large volumes of data maintaining the spatial invariance and without
losing the local connectivity between voxels, thanks to the convolution operation that is
performed throughout small kernels that learn to extract different feautres. Automatic
image segmentation achieved with these approaches almost always outperforms the

ix



Abstract

traditional thresholding or semi-automatic methods, that do not consider spatial and
contextual information and frequently fail when structures’ boundaries are blurred.
In 2015, an innovative convolutional architecture for medical image segmentation was
successfully introduced, establishing a new benchmark for this task. The Unet is a
feed-foreward convolutional network that comprehends an encoding, down-sampling
branch that progressively extracts features from input data and a decoding branch
that, by means of deconvolutional layers, allows to recover the initial fine-grained
spatial resolution. The upsampling process exploits multi-scale feature fusion to
concatenate the output of the encoding layer to the corresponding deconvolutional
layer, by the use of skip connections.
This work of thesis focuses on segmentation of femur, tibia, patella and fibula anatomies.
A dataset of 259 CT volumes provided in anonymous form by MEDACTA International
SA (Castel San Pietro) was split in training (75%), validation (15%) and test (10%)
sets. Preprocessing was performed in order to crop and reshape the volumes to the
dimension of 192×192×192 and to create reference binary volumes for each of the
interested anatomies. After this, the work was developed in two phases. In the first
place, the Unet was trained and used to compare 5 chosen loss functions, to understand
from which the learning algorithm could benefit the most. The loss functions are
the following: Dice Loss, Focal Loss, Exponential Logarithmic Loss, Double Cross
Entropy Loss and Distanced Cross Entropy loss, with the last one assigning great
importance to boundary voxels. In the second phase of this work, leveraging results of
the comparison, a novel encoding-decoding architecture was developed with the aim
of enhancing segmentation performances: CEL-Unet. This model maintains the same
encoding configuration of the Unet, and introduces an innovation that regards the
decoding path. CEL-Unet includes an additional decoding branch, called Edge branch,
that produces high resolution boundary segmentation maps and runs in parallel to
the original Mask branch. Information decoded in the Edge branch is enhanced by
Pyramidal Edge Extraction (PEE) module, for mining multi-granularity edge features,
and is integrated through vertical skip connection in the Mask path, that generates
the final segmentation maps. The corresponding loss includes two functions, one for
each of the two outputs of the network, namely Mask and Edge, yielding the so-called
Combined Edge Loss (CEL) function.
The accuracy of the segmentations was assessed with Jaccard, Precsion and Recall
metrics that allow to account for over- and under-segmentation errors. Hausdorff
distance and Root Mean Squared Error were also used to further evaluate the matching
between reconstructed and target surfaces. 4 localized regions that represent the
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most critical areas were extracted and analyzed singularly, which are right condyle,
left condyle, femur trochlea and tibial plateau. CEL-Unet outperformed all other
Unet-based models, reaching the highest Jaccard values of about 0.97 and 0.96 on
femur and tibia respectively and minimizing the Hausdorff distance and the RMSE in
both global and local analyses.
Very high training timings (up to 65 hours) and memory requirements represented the
main technical challenges, since the whole work was developed on the free but limited
Google Colab platform. However, deep learning-based 3D segmentation was found
to be extremely effective and the novel, intuitive CEL-Unet provided very promising
results for this task, significantly complicated by the severe pathological condition of
the bones. According to the outcomes of the present work, these automated algorithms
could really revolutionize modern healthcare, building fast and intelligent support
tools in order to decrease costs and timings and foster a personalized approach to
patient care.
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Chapter 1

Introduction

Clinical evaluation of medical data is gaining huge interest and importance day after
day, starting to be one of the most fundamental driving concepts in modern healthcare
systems. The great amount of data that is constantly recorded and stored by hospitals
and clinical structures constitutes a continuous source of information that could hide
many desired solutions and responses. At the same time, it requires a lot of work to
be performed in order to discover such innovative solutions and prevent the waste of
all resources used for the organization and the storage of this flow of data.
Medical images constitute a big part of this ensemble. Technologies used to acquire,
process and visualize internal structures and anatomies have progressively decreased
their costs and timings, allowing the collection of structured high-resolution infor-
mation that every day helps physicians in the most varied tasks. Making diagnoses,
tracking the process of an ongoing illness, planning of surgical interventions and
treatments of diseases are some of the clinical procedures for which the support of
medical images becomes primary. For this reason, in the last decades, the analysis of
biomedical images has developed widely and rapidly, with the focus on some particular
tasks, including medical image segmentation, central topic of this work of thesis.
Medical image segmentation is a procedure that has the aim of subdividing the image
into its main constituent regions, usually done to highlight the desired anatomies and
to discard irrelevant contextual information. It can be applied in a wide range of
medical domains ranging from orthopaedics, oncology, neurology even up to histol-
ogy. Many methods are present to perform such a task, but in the last years, the
development of artificial intelligence models proved how new automatic frameworks
that leverage this technology can overcome traditional approaches, which are often
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more expensive, time consuming and less robust. Relying on many recent studies
and researches going on on the topic, this work of thesis presents a new innovative
Convolutional Neural Networks (CNN) architecture for segmentation of the knee bone
anatomy, after the investigation of a well-known model, the Unet [1]. This network
can be considered as a new state of the art in automatic segmentation frameworks.
However, in a remarkable recent study [2], authors argued that no deep learning model
is ready-to-use for every application, stating that very similar architectures may lead
to very varying results across datasets. The need of tackling each problem through
the careful tuning of network’s hyper-parameters remains strong, achievable with a
customization of the training setup and the choice of correct loss functions. These
consideration led to the idea of developing a new architecture, tailored for the desired
task and with the aim of improving segmentation accuracy provided by traditional
methods, semi-automatic methods and also by the classical Unet.

Men have always used machines as “stupid” tools, created to achieve tasks in order
to help or go beyond physical human possibilities. The idea of such machines has
recently completely changed, which is the main consequence of the origin of the field
of artificial intelligence, or machine learning. Today computers can help humans in
the process of thinking, assisting experts in difficult decision making problems [3]
and providing different points of views of given issues. The main goal of artificial
intelligence algorithms, also called machine learning algorithms, is to make predictions,
mapping input data to some outputs through a learnt representation, exploiting great
computational efficiency of computers and new hardware. Algorithms learn to make
predictions because they are trained to do so, by processing the huge amount of data
that our era provides. Mostly every kind of structured data features can be learnt by
an algorithm, that is why machine learning has lately been applied to a vast number
of fields: from economy to logistic, from sports to speech and face recognition, from
automotive to medicine.
As in all other contexts, medical issues turn out to be very delicate and hence more
difficult to treat compared to some others. With machine learning coming to play,
this fact gets even more enhanced by the generation of a direct interaction between
intelligent computers and people’s health. However, this is also the reason that makes
it one of the most fascinating and challenging discipline, not just for physicians, but
also for engineers. Algorithms applied to medicine can really help doctors in decision-
making, in reducing protocols time and costs and developing new directions of research.
The next main issue is to implement those methods in a clinical environment, with
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a simple, easy-to-use interface for the physician. If achieved, this could completely
revolutionize healthcare. In this work, it is explored the possibility of applying deep
learning algorithms with the aim of automatically segmenting the knee bones in
CT scans. This is a challenging task that can be applied to facilitate preoperative
planning of interventions like Total Knee Arthroplasty, where important preliminary
observations and decisions can drive the surgical intervention towards success. Global
context and motivations for this work of thesis are explored in the second chapter.

There is currently a huge number of active research topics regarding AI, all with the
common aim of automating some type of function. Some examples are understanding
and recognizing speech and images, competing in strategic game systems, self-driving
cars, interpreting complex data and making diagnoses in medicine. However, until
now the expansion of this discipline is mostly due to the success of CNN. The term
neural networks refers to the structure of these algorithms that are built to mimic the
physiology of the billions of neurons inside the human brain. Among these, different
kinds of Artificial Neural Networks (ANN) are found in literature, depending on the
type of data that must be treated, the application and the desired output. This
thesis work will focus on one particular type, the afore-mentioned CNNs. The term
convolutional refers to the convolution operation, that in this application made it
possible to treat and process big amounts of data, such as images and video, which
would be infeasible to process with the classical Multi Layer Perceptron (MLP) models,
that rely on simple affine combinations. Models like CNNs can already outperform
humans in different tasks, like object and face recognition and image classification
[4] [5]. That is because, in the era of the smartphones, tons of digital images of
any kind are generated every moment and are easily accessible. Therefore very big
and significant datasets have been created and used to train dependable models that
can almost always tell us which animal is inside a picture or where a traffic light
is located inside a shot. Indeed, together with the architecture, datasets are what
make the difference in the way a model learns to make reliable predictions. Rich,
structured, well-labeled and truly representative datasets are the essential starting
point for building algorithms able to learn features from seen data and to recognize
those attributes in new, unseen and consistent data that need to be classified or
somehow predicted. The third chapter of this work is dedicated to deep learning, with
a general overview of it, and to the convolutional neural networks, central topic of
this study.

There are many possible applications of the convolutional neural networks, one
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of which is the so-called semantic image segmentation, which is what this work of
thesis is mainly about. Image segmentation is the task subdividing an image into its
constituent region objects, to obtain a representation easier to analyze. It consists in
creating a mask that can highlight the region of interest on top of the background of
the image. It is not just about understanding what is inside a picture, but also about
where it is and how it is shaped. It is a classification task, where each pixel in an
image is assigned to a certain predefined class, and all pixels grouped together share
some important characteristics in terms of intensity, texture or color. Segmentation
applied to medical images is being studied deeply in order to obtain algorithms that
can automatically recognize anatomical structures of all kinds and for many different
purposes with always higher accuracy. Regarding medical images, there is not a
universal algorithm used for automatic segmentation. The choice of the method
applied depends on the imaging modality, part of the body analyzed and goal of the
study. In certain cases, a manual segmentation still represents the gold standard, even
if this process is tedious, time-consuming and prone to errors. Fourth chapter will
focus on image segmentation, providing a brief overview of the traditional methods to
perform segmentation and a detailed description of a famous deep learning model,
the Unet. This is followed by the presentation of main developments of that model,
with a particular focus on recently developed medical image segmentation algorithms.

As mentioned, this work is about segmentation of bones of the knee joint anatomy.
The proposed method aims to study an effective approach to segmentation, where the
model, during the optimization, is biased and forced to focus on the most representative
features of data, through targeted loss functions and a new architecture. Segmentation
frameworks presented here aim at the digital reconstruction of all 4 bones anatomies in
the knee joint, that are distal femur, proximal tibia, patella and fibula. An additional
class is considered for background and soft tissue together, which are irrelevant for
our purposes. The work is divided into two main parts: the first one constitutes a
comparison of 5 known loss functions that have been used to train 5 models leveraging
the Unet architecture. In this way the most suitable and effective function is found
among the ones considered. The second part of the study was dedicated to the
development of a new architecture that exploits the same encoding-decoding structure
introduced by the Unet, with the aim of improving segmentation accuracy, so to have
a more faithful reconstruction of the interested anatomies. In the fifth chapter, all
methodologies and approaches, together with frameworks used, are presented in detail.

Lastly, chapter six, seven and eight are dedicated to the presentation and discussion
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of the results and to the conclusions and future developments of the present study.

The work of thesis was completely developed in Politecnico di Milano, under the
department of Electronic, Information and Bioengineering (DEIB). The collaboration
between Politecnico di Milano and Medacta International SA was crucial for the
possibility to access a dataset of CT scans of the knee joint, provided in anonymous
form and composed by almost four hundred volumes.
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Chapter 2

Total Knee Arthroplasty

The focus of this work of thesis is on the knee joint anatomy, for patients that
undergo to a surgical operation that requires the implant of a prosthesis to restore
correct knee joint motion and mechanics. Such an operation is called Total Knee
Arthroplasty (TKA) or Total Knee Replacement (TKR), and both femur and tibia
bones are interested. Total knee arthroplasty is one of the most cost-effective and
consistently successful surgeries performed in orthopedics. Patient-reported outcomes
are shown to improve dramatically with respect to pain relief, functional restoration,
and improved quality of life [6]. TKA provides reliable outcomes for patients’ suffering
from end-stage, tri-compartmental, degenerative Osteoarthritis (OA). The knee is
the most commonly affected joint plagued by this progressive condition which is
hallmarked by a gradual degeneration and loss of articular cartilage. The most
common clinical diagnosis associated with TKA is primary OA, but other potential
underlying diagnoses include inflammatory arthritis, fracture (post-traumatic OA
and/or deformity), dysplasia, and malignancy. The primary goals of TKA are improved
stability, range of motion (ROM), function, and pain relief. Appropriate implant
alignment and soft-tissue balancing are important factors in achieving these goals.
However, the best method by which to achieve proper implant alignment and soft-
tissue balance is controversial [7]. Measured resection and gap balancing are two
different surgical techniques that are performed to achieve implant alignment and
soft-tissue balance. They differ by the method used in the technique to set femoral
component rotation. Both methods include to resect proximal tibia and distal femur
in order to substitute the worn original bone tissue of the knee joint with metallic and
plastic components of the knee prosthesis. Depending on the chosen approach, bones
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are cut in different ways, with the aim of restoring knee mechanics and achieve a
successful final implant and limb alignment. Significant values of misalignment indeed
can lead to postoperative complications with the consequent need of early revision.

2.1 Personalized Surgical Instrumentation and Pre-

operative Planning

Personalized Surgical Instrumentation (PSI) is a modern technique in total knee
arthroplasty, aiming to facilitate the implant of the prosthesis. The idea behind
this technology is to customize the intervention and the preoperative plan for each
patient, after a detailed and precise acquisition of the anatomical structure of the joint,
through preoperative imaging (2D radiographs, Computed Tomography and magnetic
resonance). The customization is achieved through the design and the manufacture of
patient-specific cutting guides, that allow the surgeon to resect the bones with higher
precision and without the violation of intramedullary canal. The improvement of the
mechanical alignment and the optimization of operating room time and logistics are
among the main advantages given by good clinical results of the Patient Matched
Technology (PMT). The goodness of the outcomes has been investigated in [8], 2
years after the intervention, in comparison with results of conventional instrumented
total knee arthroplasty: no significant difference between clinical conditions was found.
Moreover, a lower rate of post-TKA mechanical alignment over 3 degrees, among
patients operated with PMT, was found in [9], in comparison to patients operated
with conventional methods. In this clinical scenario, image/volume segmentation
plays a fundamental role as it allows the digital reconstruction knee bone surfaces,
which will drive the whole procedure of planning and surgery.

An appropriate musculo-skeletal radiological study is essential for planning the pro-
cedure to obtain desired clinical outcome. Medical images like CT scans, radiographs
and MR images constitute the starting point for surgical planning in knee arhtroplasty
performed through PSI and customized implants [10]. Preoperative planning is part
of the procedure to simplify the surgery and the positioning of the components, which
is very important for achieving the accurate alignment. Most of the knee replacement
systems provide a large number of options for treating conditions that are encountered
during surgery. The different systems also serve the surgeons variable sizes of implants
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in a wide range, and the correct must be chosen according to patient’s anatomy and
clinical conditions. The main crucial steps in preoperative planning for TKR can be
summarized as follows:

• Assessment of knee joint anatomy through image segmentation

• Identification of clinical landmarks on bone surfaces

• Establishing of tibial and femoral resections

• Implant size selection

• Definition of the implant location to restore knee mechanics

• Manufacturing of patient-specific cutting jigs

Segmentation of bones influences the reconstruction accuracy and in turns strongly
affects the results of the whole pipeline. It is important to consider that bone surface
reconstruction is just the first step of a long and complicated process that includes
the rest of the planning, manufacturing and the surgical intervention itself. Whatever
error is made at the beginning of the chain is going to be kept along the whole
process, influencing any future step. This can cause errors and uncertainties to be
accumulated which can degrade the quality of the results sensibly and affect success of
the whole work. For this reason, all precautions should be taken and all new promising
methodologies should be considered as an attempt to improve results. Accurate,
sub-millimetric matching between digital obtained surface and real bone geometry is
required to ensure successful outcomes, and the ideal should be to achieve it in an
automated fashion.

2.1.1 MyKnee - MEDACTA International

MyKnee is a personalized surgical instrumentation solution patented by Medacta In-
ternational SA that facilitates and improves the effectiveness of surgeons’ preoperative
planning for knee arthroplasty. The cutting blocks are designed to fit patients’ anatomy
and restore mechanical axis at best and are positioned on the bone referring to some
distinct references, extrapolated by the geometry reconstruction. The success of the
surgery depends on the quality of the matching between the patient-specific resection
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jigs, manufactured exploiting the patient bony surfaces attained by segmentation, and
true patient surfaces.

Figure 2.1. MyKnee solution by MEDACTA International. The two cutting jigs hook at the

femur and the tibia, facilitating the cutting process.

No intramedullary canal violation is ensured with the use of this technology. This
is demonstrated to reduce more than 20% the blood loss during the intervention, with
respect to normal jigs [11]. Also, reduction of surgical steps, time and cost are among
the great advantages of this technology. As a consequence, an optimization of the
O.R. use is found, thanks to the reduction of the surgical time, which can potentially
add one extra case per surgery session. [12]

2.2 Work motivation

Millions of TKR surgeries are performed on earth per year and this number is
increasing day by day, with the novel designed technologies [13]. TKR surgery is
the gold standard method in the treatment of end stage knee arthritis with a high
success. The increasing trend of global median age brings to a greater diffusion of
this kind of illnesses, strictly related to patients’ age. In [14] and [15], authors show
the increasing incident rate of TKA in the U.S. year after year and projections for
the future have been made and presented. Figure 2.2 shows an example of recorded
data and projections for both TKR and Total Hip Arthroplasty. With such a great
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increment on the horizon, fast renovation of present technologies is necessary to face
and win new upcoming challenges. In this scenario, the process of digitalization of

Figure 2.2. Graph from [14]. The projected annual use of primary total hip arthroplasty

(THA) and primary total knee arthroplasty (TKA) procedures in the United

States from 2015 to 2040. The X-axis shows years and the Y-axis shows the

number of annual procedures for primary THA (blue) or primary TKA (orange).

medical images started with the new century resulted in the collection of a huge
amount of data that has to be stored and needs to be analyzed. As a consequence,
engineers, researchers and physicians can leverage this data to create innovative tools
with the aim of reducing costs of healthcare, facilitate care access and reducing risks
at the most.

2.2.1 New Solutions

Bone segmentation can be achieved in many ways: automatic software are present on
the market, together with some semi-automatic tools. Also, manual work of expert
orthopaedic radiologists sometimes remains the gold standard for some applications.
However, these workflows usually require a great effort in terms of cost and/or time:
this renders very impractical to analyze large cohorts of data following this procedures,
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that can be error-prone and suffer from intra-operator variability [16]. The manual
delineation work also depends on the experience of the operator. Segmentation is then
complicated by non-physiological conditions of patients that undergo such surgery.
Pathological disorders affect bone structures and alter the morphology of cartilage
and bony surfaces, usually narrowing the intra articular space. Moreover, the frequent
formation of osteophytes generates uneven and ragged geometries at the edges, which
are difficult to distinguish and to delineate. This makes the segmentation even more
difficult, requiring additional checks and validations by other experts.

Given those considerations, the context suggests exploring alternative and cheaper
ways to solve the task, leveraging new rising technologies. Some years ago, deep
learning was found to be very effective in performing automatic segmentation on
digital images, with the ability of discerning different structures and classify them
automatically by extracting features like texture, color, intensity, shape and others.
Deep neural networks present a large number of layers that learn the representation
from the input to output. This achievement is possible thanks to the great development
of computational power in the last decade, given by hardware re-discovered very
effective for this type of application. In many cases, the performances of CNNs on a
wide range of tasks are comparable or even greater than older and classical approaches.
In this sense, deep learning is shaping the future also in the medical field because it
can help many procedures to become automatized. This is the case of medical image
segmentation that is being extensively researched and studied by groups all over the
world thanks to its great potential in helping with planning interventions, diagnosing
illnesses and also treating patients.
The challenge is to explore all the possible architectures, combining many different
elements, and to find the configuration that performs the best on a particular type of
data. The goal is to find a model that can really learn features that are relevant for the
desired task, and then generalize the behavior acquired on the training dataset onto a
set of new data. Intelligent models, able to generalize. So, the structure of the model
must be really targeted to the kind of data under inspection. Many complications are
on the way and many problems are yet to solve, including the challenge to reach very
high levels of accuracy, always strictly required in treating delicate medical scenarios.
However, results are already very promising and give a glimpse of the positive impact
that these technologies can have on the world of the future, with the intelligent and
constant support that deep learning-based applications can provide to humanity.
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Convolutional Neural Networks

3.1 Deep Learning

In image analysis, all methods share the common idea of extracting features from
the inputs and use them to produce a classification output. The next step in this
procedure, is to achieve this result in an automatic fashion. Great, innovative and
promising solutions to the problem are provided by the recent and broad expansion
of artificial intelligent applications. These algorithms are revolutionary because they
learn from experience, tackling problems based on what they have already seen before.
They acquire knowledge of the world building up a hierarchy of concepts, where each
single concept is interpreted as an ensemble of simpler ones. Therefore abstract and
complex representations are learned from easier factors. In this way, the machines
automatically build hierarchical statistical models, without anyone programming
exactly what they need to learn. The visualization of these hierarchical set of concepts
can be thought as a structure with many layers, that is why this approaches are
referred to as deep learning. Deep learning differs from the broader filed of machine
learning basically in the representation of data that can be learnt by the models. With
machine learning, the data needs to be represented with some hand-crafted features
so that models can learn the mapping from these representations to the output. Deep
learning models instead are built to directly learn not just the mapping, but also
the representation itself, obviating the need of hand-crafted features and often giving
better results, generalizing also to new tasks with very little human effort needed.

In general, deep learning algorithms can be divided into supervised and unsuper-
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vised: the former regard learning features from labeled data, whereas the latter aim
at a pattern analysis. From now on, this work will focus on supervised learning.

3.1.1 Supervised Learning

In a supervised learning task, the dataset consists of a set of training examples, each
one containing the input object and the desired output, usually referred to as label or
ground-truth. A learning algorithm is chosen to let the model recognise and extract
the representative features of the input objects during training. Learning is usually
performed by comparing the current output produced by the model with the ground
truth provided in the dataset and trying then to minimize the error computed between
the two. By performing this procedure repeatedly, the model can progressively update
its parameters to enhance each time its ability to perform the desired task. A few
guidelines must be considered when approaching a problem with supervised learning.
First of all, all training examples contained in the dataset should be representative of
the real-world distribution of the samples and should be meaningful for the learning
task. Since a finite dataset cannot include all possible data, it should be at least able
to provide a realistic representation of the samples distribution, to ensure a correct
learning process.
In the second place, the chosen model should be tuned and well calibrated for the
given task. Too big models tend to overfit the data they see, meaning they don’t learn
representative concepts and features to classify the data, but they learn the actual
training data. This decreases the ability to translate the performance on new, unseen
data. On the contrary, too small models can’t provide enough capacity to learn and
store all the necessary information, which brings to unsatisfactory results.
Lastly, a few examples should be kept out of the training data and used as a test set,
to evaluate how the trained model can perform the task on new data.
Supervised learning methods deal mainly with two categories of problems: regression
and classification. Regression is the process of predicting a variable with continuous
values, whereas a classification task predicts only discrete values or categories into
which the data is separated. Many different algorithms have been developed for both
kinds of problems, from support vector machines, to classification trees, to neural
networks. As mentioned, this work will focus on a special type of neural networks, the
convolutional neural networks, which will be presented in the following paragraphs.
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3.2 Basics of Convolutional Networks

In the last few decades, neural networks have been discovered extremely useful and
powerful in perform classification and segmentation tasks. The neural networks
are models that stack layers one after another to form a sequence going from the
input layer to the output one, through a set of so-called hidden-layers. Each layer
is made of single entities called neurons. These neurons perform linear or non-linear
transformations on input data and pass the information to subsequent layers, until
the last one is reached, where the output of the network is produced.
In the case of image and video analysis, particular kinds of neural networks are used,
called Convolutional Neural Networks. In fact, whereas Fully Connected Networks
perform well in raw numerical data analysis, they completely fail when dealing with
images. Some fundamental differences must be considered between numerical datasets
and image datasets. First, images and volumes are represented by 2D and 3D vectors,
composed by single pixels or voxels, each of which can take up to 3 values in the
case of colored images. This fact enormously increases the size of input data, making
infeasible the idea of storing a set of parameters dedicated to each single unity. Too
many connections would be required and the computation would be too expensive.
Secondly, spatial information is crucial in this case and has to be considered somehow.
Treating each pixel (or voxel) as a single isolated input entity would destroy any global
contextual information. Moreover, each element is strictly linked with its surroundings,
and a good analysis must account for that.
Convolutional neural networks have the same global structure of MLP models, with
sequences of layers passing and transforming information from the input to the output,
learning the parameters that define the model through backpropagation algorithm.
The difference stays in the operation that is performed inside each layer of the network,
which is, in this case, the convolution. This mathematical tool allows to sensibly reduce
the amount of parameters inside the network and fatally increase the efficiency of
computations. Together with that, it allows to process the images as a whole, learning
the spatial relationships between single elements in the input image. This operation
is widely applied in many fields of engineering and it is the basics of computer vision
algorithms.
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3.2.1 Discrete Convolution

Discrete convolution is an operation performed between two discrete entities, an
input and a filter, usually called kernel. The kernel must have the same number of
dimensions of the input. For simplicity, we will refer to 2 dimensional objects, but
this concept is easily extended to any dimension. The idea is to use a filter K and
slide it over input image I, so that it covers all the possible positions. In each location,
a multiplication is done between all the elements of the kernel and all the overlapping
values of the input image, and everything is summed up. This sum of products will
be the value of the output image, in the central position of the current kernel location.
The mathematical expression can be written in this way:

(I ∗K)u,v =

h1∑
i=−h1

h2∑
j=−h2

I(u+ i, v + j) ∗K(i, j) (3.1)

where kernel K has size [2h1 + 1; 2h2 + 1] and the following configuration:

K =


k−h1,−h2 · · · k−h1,h2

... . . . ...
kh1,−h2 · · · kh1,h2

 (3.2)

Instead of learning weights of the affine linear transformation as it happens in
FCNs, here, the values of the filters are learnt and optimized in order to extract the
most significant features from input data. Many filters are learnt in each convolutional
layer, each of which produces one output. It is important to notice that the convolution
operation characterizes the network with some very important aspects:

• Weights sharing: much fewer parameters have to be defined with respect
to FCN. By sliding the kernels on the image, all the pixels share the same
weights, defined by the values of the filters. Hence, the amount of parameters
just depends on the number and the size of the filters. This sensibly decreases
the computational complexity and makes the operation cheaper and faster.

• Spatial invariance: spatial consistency is maintained inside the network and
the structures are processed independently of the location they have in the
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3.2. Basics of Convolutional Networks

image. Any target object is recognized as such regardless its location in the
image.

• Local connectivity: CNNs take advantage of local spatial coherent properties
of images, and enforce spatial connectivity patterns between neurons in adjacent
layers. The value of each neuron in one layer only depends on few neurons in
the preceding layer. The network is indeed not fully connected, but, conversely,
neurons are only connected to those neurons in the next layer that are spatially
close.

The convolutional layers perform convolution of inputs with certain number of
filters, producing number of outputs equal to the amount of convolved filters. The
outputs are referred to as feature maps. In figure 3.1 an example is presented, showing
the original input slice and the 8 feature maps of the first (above) and the last (below)
convolutional layers of a Unet segmentation model. Parameters of each filter are learnt
to extract different pieces of the information encoded in the input image. First layers
focus more in the extraction of low-level features, like edges and blobs, while deeper
layers are able to learn abstract and higher-level features, like colors and shapes and
representative patterns, bringing to the definition of the output segmentation masks.

Figure 3.1. Example of 8 feature maps from the first and the last convolutional layers inside

a Unet architecture.
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3.2.2 Pooling Layers

The configuration of CNNs is defined with the alternation of convolutional layers
and pooling layers, to progressively reduce the size of the input. Pooling layers act
like down samplers, producing representations at a lower resolution than the input
image or volume, maintaining meaningful features and discarding what is less relevant.
Pooling operation is performed level after level on the output feature maps of the
convolutional layers. These feature maps present the limitation to record the precise
location of features in the input. Small changes in the position of such features
result in different feature maps in output, which harms the ability of the network to
recognize targets regardless their location. With down sampling instead, these small
changes result in the same pooled feature maps, due to the coarser representation of
low resolution tensors. Stacking pooling layers after convolutional layers allows to
obtain a system where the progressive loss in spatial resolution enforces the model
in the ability of being invariant to local translations. Also, computational costs are
decreased due to the reduced dimension of data. Moreover, the gradual reduction of
image size helps filters in deeper layers to focus on larger receptive fields and capture
the global context. The information contained in the input image is maintained and
passed along the network but, step after step, it is encoded in a gradually reduced
space. For instance, if the input size of the network is 200×200, the same information
gets encoded in deep layers in a down-sampled size that could be 20×20. In deeper
layers then, the same filter size acts on patches of the feature maps that represent
much larger space of the real input data. Pooling can be performed with two different
operations: Max-Pooling and Average-Pooling. Kernels of specific dimension, typically
2×2 kernels with strides of 2 are used. Examples of Max and Average Pooling are
show in figure 3.2.

There is another important aspect to be taken into consideration. Simple, low-
level features are extracted by kernels in the first convolutional layers. When the
network goes deeper, the representation of such features becomes richer and richer, as
the simple attributes are combined into more complex information that need to be
captured by the network and in turned encoded and passed to next layers. For this
reason, the number of filters inside the network is increased for each time the net goes
one step deeper. Usually, each time the data is halved in size with a pooling operation,
the number of filters is doubled, which brings to the production of double the number
of feature maps with respect to the previous layer. Following this approach, not just
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Figure 3.2. Example of 2×2 Max pooling and Average pooling operations on 4×4 input

matrix.

simple features are encoded and learnt by the model, but also abstract high-level
features in deeper layers. This fact helps the network to increase its generalization
power.

3.2.3 Activation Functions

Another important component of CNN architectures are activation functions. They
are applied to the outputs of convolutional layers, mapping values depending on the
morphology of the function and basically deciding whether a neuron will fire or not.
These functions serve for introducing non-linearities to neurons, in order to better
encode the complex representation from the input to the output of the model and
recognize and learn patterns in data. Also, the generalization ability of the networks
benefits from this. Some different types of activations can be used, depending on the
task and the architecture choice. Bounded activations squeeze input values into an
output range: [0; 1) for Sigmoid, (−1; 1) for hyperbolic tangent, for example. On the
other hand, unbounded functions can map inputs up to infinite.
Although some smooth non linear functions were mathematically inspired by the
biological neuron behavior, most of current methods are using the ReLU function.
Authors in [17] and [18] argue that it achieves better results in deep networks as it
makes the activation sparse and more efficient. This activation maps negative inputs
to zero and positive inputs with an identity transformation, bringing to the following
mathematical formulation, and graphic representation:
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y =

x if x ≥ 0

0 if x < 0

Figure 3.3. Graphical representation of ReLU activation function.

In [19], authors claim that ReLU activation function can improve the learning
speed of deep neural networks. Since gradient of ReLU function is constant at positive
values, this fact solves the problem of vanishing gradients that can occur when number
of layers starts to be high.

3.2.4 Softmax Layer

Softmax layer is used in classification problems to produce class scores at the output of
the network. Since segmentation problem is nothing else than a pixel-level classification
task, softmax usually represents the last layer of segmentation CNNs. It produces
probability mask where values specify the likelihood of each pixel to belong to a single
class:

Pr(Y = c) =
eXc∑C
c=1 e

Xc

(3.3)

where Xc is the value of a pixel in the input image, C is the number of classes
and Y represents the pixel in the output image.
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3.2.5 Loss Functions

The loss function in neural networks computes the prediction error, comparing the
output of the model and the ground truth labels of the train or validation dataset. At
each step, e.g. at the end of each minibatch, the loss is computed together with its
gradient with respect to the network hyperparameters. This serves to the optimizer
which updates filters and biases of the model, with the aim to minimize the loss
function and improve the prediction. Suitable loss functions should be differentiable,
to allow computation of the gradients, and must reach global minimum when the
prediction matches the ground truth. Different loss functions can be used, also
depending on the nature of the output of the network.

• CROSS ENTROPY LOSS
With probability outputs, e.g. softmax layer as the last one, an appropriate
function is the cross entropy loss, which computes the cross entropy between
ground truth segmentation masks in {0, 1} and probability scores in [0,1]. Cross
Entropy (CE) is computed for all pixels and all classes and every value is summed
up to obtain a scalar that indicates how far model is from making the right
prediction. Formulation of such a loss between ŷ probability mask and y ground
truth mask is as follows:

CE(ŷ, y) = − 1

N

N∑
(
C∑
c=1

yc · log ŷc) (3.4)

where N is the number of pixels in the image, C is the number of classes, yc is
a value in {0, 1} to indicate whether the pixel belongs to class c or not and ŷc is
the probability value assigned to the same pixel to belong to class c.

• DICE SIMILARITY COEFFICIENT
Another frequently used loss function for segmentation tasks is the Dice Sim-
ilarity Coefficient (DSC), which evaluates the degree of overlapping between
ground truth mask and predicted mask. Considering figure 3.4, that shows the
superimposition between the two masks, we can consider True Positives (TP)
and True Negatives (TN) as the correctly classified pixels, while False Nega-
tives (FN) and False Positives (FP) as misclassified units. The DSC is then
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computed as follows:

DSC(ŷ, y) =
2 ∗ TP

2 ∗ TP + FN + FP
(3.5)

TP FNFP

TN
Prediction Reference

Figure 3.4. Graphical meaning of dice similarity coefficient.
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Segmentation of medical images

Image segmentation is the task of recognizing different structures inside an image and
delineate their boundaries, in order to differentiate them from one another and from
the background. Such regions can be whatever object, animal, landscape depending
on the target of the work. In this thesis, the focus is on medical images, and in
particular, on the knee joint anatomy. Segmentation is a classification task where
instead of classifying whole pictures or instances, models focus on classifying pixels
in an image, or voxels in a volume. A label is assigned to every single voxel in what
is commonly referred to as semantic segmentation, and the result is an image where
voxels with the same label share certain characteristics. Therefore, image segmentation
provides a more meaningful representation of the data and it is a crucial step for
fully understanding the content of medical images and for doing diagnosis. After
segmentation, all the disjoint regions should be homogeneous with respect to some
characteristics and show spatial compactness. Good image segmentation should meet
some fundamental requirements:

• Every pixel in an image must belong to a class

• Each region is homogeneous with respect to some characteristics

• No region overlaps are present

Segmentation still remains one of the most studied topic in the literature researches
applied to medical images. Different segmentation methods are applicable to face
various problems and the most suitable one must be chosen for the specific purpose.
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Some of the traditional successful approaches are presented in the next paragraphs.
Then the Unet is introduced, together with some innovations applied to it, specifically
tailored towards medical image segmentation.

4.1 Traditional approaches

4.1.1 Thresholding

The most straightforward method to perform segmentation is by setting a threshold
on the pixel intensity value and classify pixels according to that threshold. It is usually
done on grey scale images, where each pixel is encoded in just one value. That makes
this approach very easy and fast. The simple operation is shown in the following:

S(x) =

1 if I(x) > thr

0 if I(x) < thr

where S(x) represents the output segmentation mask and I the input image, with
each of its pixels x. This method completely ignores the spatial information given by
the location and distribution of the pixels, resulting uneffective on images that present
blurred boundaries. The threshold can be assessed by looking at the histogram of the
image, inspecting peaks and valleys of the distribution and selecting a threshold value
that best clusters pixels into the two desired classes.
However, histograms very often present noisy profiles, which makes it more difficult
to create well defined classes to which assign pixels. This usually results in rough
segmentation outputs which do not correspond to faithful instance delineation.

4.1.2 Otsu’s Thresholding

Otsu’s method [20] is the most common one that automatically computes a threshold
for image segmentation. The value is assessed by minimization of the variance of the
classes and it is applicable only for binary segmentation, meaning when the problem has
only two classes. In [21], [22] and [23], authors present some segmentation frameworks
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based on Otsu’s method applied to medical images and volumes. Being this approach
very simple, fast and computationally inexpensive, it can be very practical and useful
for binary image segmentation, but also for image inspection and quick, rough target
structure delineation. However, simple thresholding for segmentation does not usually
provide values of robustness and accuracy required by medical protocols. In addition,
its ’blindness’, meaning the inability to recognize spatial and contextual information,
can make it inappropriate and obsolete with respect to newer, advanced segmentation
frameworks. Figure 4.1 shows an example of how Otsu’s thresholding method segments
a CT slice of the femur.

Figure 4.1. The histogram of the original CT slice is used by Otsu’s method in order to

compute the threshold for the segmentation. The output binary image is shown

on the right.

4.1.3 Edge detection

Edge detection is the process that exploits automatic algorithms to locate edges in
an image, which can roughly differentiate the structures on the foreground and give
a snapshot of the separation between them. Boundaries represent very meaningful
features and contain significant information, represented by abrupt changes in intensity
values. First and second order derivatives like gradient or Laplacian are used to extract
edges in an image. These operations are implemented with discrete kernels that are
convoluted with the input image and are able to extract various information about
boundaries (horizontal-vertical edges, thin-wide edges).
An advantage of edge detection consists in the reduction of the image size, which
makes subsequent processing easier and faster. In the context of image segmentation,
it can really discard the meaningless information from the image, maintaining the focus
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(a) Sobel operator along x (b) Sobel operator along y

Figure 4.2

on the most relevant part of it. Boundaries are detected from some discontinuities
in grey levels, colors, textures, brightness, saturation and other visual features. It is
very often part of the processing needed to achieve final segmentation, but it cannot
really be considered as a standalone segmentation method: supplementary processing
must follow to concatenate the edges into edge chains that better correspond to object
boundaries. Edge chains must be then filled in order to create the masks for ultimate
segmentation.

4.1.4 Semi-Automatic Segmentation

Semi-automatic segmentation is also known as interactive segmentation, due to the fact
that interaction of the user is required in order to generate complete and satisfactory
segmentation mask. It is typically composed by three steps:

• User input: a user provides an information, which helps the computer with the
computation of segmentation

• Computation: a computer tries to delimit the objects based on the information
provided in step 1

• Display output: a computer displays an intermediate segmentation that was
computed in step 2

These steps are iteratively repeated and the input can be edited until the user is satisfied
with the segmentation result. Depending on user inputs and type of computation,
some different methods can be listed, such as Graph-cut [24], Edge-based [25], [26],
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Random-walks [27] and Region-based [28] methods, with the last ones comprehending
the so called Region Growing methods.
In this case, the initialization is provided with some initial seeds that define the
starting point of the segmentation, each one associated with one of the final regions
to segment. These may be single pixels or a group of pixels (clusters). Once the seeds
are defined, the subdivision is done in steps. For every initial cluster, a comparison is
made with adjacent pixels, which can join that specific cluster if they present similar
characteristics, in terms of brightness, color, texture, intensity. The computation
progresses following various algorithms. In this way, each region accumulates pixels
and grows towards its final shape. Some issues accompany this semi-automatic

Figure 4.3. The image shows how region growing method segments a frontal CT slice showing

femur and tibia bones. Segmentation of the femur is shown in red, while the

tibia and the soft tissue are marked respectively in yellow and purple. Seeds

defined in the initialization are visible for each class.

segmentation, as the final result strongly depends on the initialization that is given.
The more the initial seeds are significant for the specified classes, the more the
algorithm will succeed in finding the correct separation. To help the process in
growing the regions correctly, many sparse and disjoint seed points may be drawn for
a single class, in locations where the algorithm could be more likely to fail. However,
this also increases the effort for the initialization, bringing this method further from
being automatic and yielding a more manual processing instead.
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4.2 UNET

In this section a powerful architecture for image segmentation is presented. Since its
publication in 2015, it has become the most popular, used and cited deep learning
model for such a task.
Intuitively, we can say that subsampling operation is a good way to provide a model
with awareness of what is present in an image. But at the same time, the model
progressively loses the information of where it is present, due to the loss of the original
spatial representation. This faces the image recognition task, that is why CNNs have
been used for some years mainly for image classification, alternating convolutional
and pooling layers one after another. This procedure reduces the size of the inputs
and eventually produces a vector of probabilities to assign the most likely class to
each image, e.g. recognize what it is present in an image, regardless where it is. Image
segmentation instead is the process of understanding not just what is in an image,
but also where it is. For this reason, the network needs to produce a fine grained
segmentation map, where each pixel is assigned to one of the possible classes. In
fewer words, the spatial dimension and resolution of the output must be the same as
the input. As a consequence, the architecture of the model must adapt in order to
recover the original size of the image after the feature extraction, well performed by
the alternation of convolutional and pooling layers.
In 2015 Ronneberger et al. [1] developed a model called UNet, with the aim of
performing automatic segmentation of medical images using a CNN, which produces
a high resolution segmentation mask as output. It is composed by two distinct paths,
descending and ascending, also called encoding and decoding paths respectively. The
graph of the network presented in the original paper is shown in figure 4.4, where
it is clearly visible why the model was named after the letter “U”. This model is an
end-to-end Fully Convolutional Network (FCN), where just convolutional and pooling
layers are present, without any dense layer. The encoding path follows the typical
architecture of CNNs. In this case, at each step, two 3×3 convolutions are performed
one after the other, each followed by ReLU activation function. Then, a 2×2 max
pooling operation with strides of 2 is added to halve the size of the images. At each
down-sampling step, the number of filters used to perform the convolutions is doubled,
to enlarge the space of features to be extracted from the data. The up-sampling path
performs the opposite operations: transposed convolutions are applied to enlarge the
spatial representation of data and gradually increase image size, in order to recover
the original dimension of the input. Feature maps coming from deep layers represent
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abstract attributes and high level information. These are up sampled step after
step, and concatenated with feature maps generated at the same level in the down
sampling branch. After concatenation, two 3×3 convolutions are performed to unify
the information. The residual connections from encoding to decoding path allow to
merge global contextual information, coming from deeper layers, with the spatial high
resolution information, present in the decoding path at each level. This enables the
network to produce fine grained segmentation maps at the output.

Figure 4.4. Diagram of Unet architecture as presented in the original paper. Blue horizontal

arrows stand for 3×3 convolutions + ReLU activations. Downward and upward

arrows represent respectively 2×2 max pooling and 2×2 transposed convolutions.

Grey long horizontal arrows represent skip connections to integrate feature maps

from the encoding branch to the decoding branch.
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4.3 Medical Image Segmentation

UNet architecture is the most popular deep learning model used to produce segmenta-
tion maps from medical images data. Many studies, in the last few years, investigated
its effectiveness in various applications regarding different anatomical compartments,
validating its ability to provide accurate results and to sensibly overcome both tradi-
tional and semi-automatic methods. For example, both 2D and 3D UNet models have
been investigated for segmentation of hand bones in X-ray images [29], mandibular
bones in cranio-facial CT [30], femur in CT scans [31] and major skeletal bones in
whole-body CT scans [32]. All such papers focused mainly on binary segmentation
of bones against the image background, used low resolution data, disregarded the
effects of large bone deformations and osteophytes on the segmentation quality. Some
modified versions of the UNet are also found in the literature, each one trying to
facilitate the process of learning the mapping relationship between pixels in the feature
maps and to improve recognition capabilities of target structures.

4.3.1 Attention Modules

Attention mechanism was initially designed in the context of Neural Machine Transla-
tion and it is now used in various problems like image captioning, classification and
segmentation. It is a method that facilitates the flow of useful information inside
the network and discards the less relevant part of it, bringing to a more targeted
representation.
In [33], for example, authors propose an end-to-end convolutional neural network
called Channel-UNet, which takes UNet as the main structure of the network and adds
spatial channel-wise convolution in each up-sampling and down- sampling module,
to more clearly distinguishing the tumors from the liver tissue. Spatial channel-
wise convolution can be thought as a sort of attention method, where the spatial
channel-wise kernel slides across the direction of the feature maps, to better learn
the representation of each feature map inside each layer and to focus on the most
significant ones. Another interesting attention approach is found in [34], where both
spatial and channel attention modules are added to the model in order to emphasize
meaningful features along those two principal dimensions. In this way, each one of
the branches can learn ‘what’ and ‘where’ to attend in the channel and spatial axes
respectively. As a result, this modules efficiently helps the information flow within
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the network, by learning what to emphasize and what to suppress. In [35], authors
leverage this attention module to perform pancreatic segmentation with great results.

Figure 4.5. Overview of CBAM (Convolutional Block Attention Module). The module has

two sequential sub-modules: channel and spatial.

4.3.2 Residual Connections

Training deep neural network is more difficult and challenging than training simpler
and shallower models. With the great increase of the number of layers, the gradients
inside the network more easily decrease their values during back-propagation, and
sometimes they completely vanish, due to the repeated multiplications that may make
the gradient infinitively small. Hence, as the network goes deeper, its performance
gets saturated or even starts degrading rapidly. This problem was faced in 2015 by
He et al. in [36], that introduced the ResNet architecture. The core idea of ResNet is
to introduce a so-called “identity shortcut connection” that skips one or more layers,
as shown in figure 4.6. This structure helps the network to maintain the gradients
during propagation of information and to learn residuals and identity mapping, which
turns out to be easier than to learn the actual representations.
This idea can be also transposed to segmentation networks, by introducing skip

connections between convolutional layers to build the so-called residual blocks. This
is usually done in the segmentation networks to facilitate propagation of useful
information and very often contributes to enhance the segmentation performances
[2]. Different interpretations and implementations can be found, one of which is the
DenseNet [37]. Here, the ResNet idea is taken to the extreme to build the so-called
Dense Blocks, where each layer is connected to every other layer in a feed-forward
fashion. For each layer, the feature-maps of all preceding layers are used as inputs,
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Figure 4.6. A residual block, the building block of ResNet architecture. Taken from [36].

and its own feature-maps are used as inputs for all subsequent layers. This helps
to alleviate the vanishing-gradient problem, strengthens feature propagation and
encourages feature reuse.

4.3.3 Mixed architectures

Residual blocks, dense blocks and attention modules represent the most important
and popular improvements and developments applied to the models, and also to the
UNet, in order to build more complex and articulated networks that can improve clas-
sification or segmentation accuracy. From the use and combination of these modules,
some recent works for medical and non-medical image segmentation were published in
the last year. In [38], authors propose a network that includes two modules arranged
in a complex fashion in order to better model the inter-dependencies of features in
channel and spatial dimensions respectively. The so-called ’channel contextual module’
and ’spatial contextual module’ are included in the upsampling path and inserted in
some dense and compression units, arranged to produce outputs at each depth level,
that allow deep supervision of the net. The encoder part of the network is chosen to
be the DenseNet-161 [37]. Another interesting work was published in 2020 for polyp
segmentation [39], where authors introduce an encoder-decoder architecture with the
inclusion of a reverse attention module (RA) and a parallel partial decoder (PPD).
The former is an attention mechanism built to recognize discriminative polyp regions
through an erasing foreground object manner. The erasing strategy driven by reverse
attention can eventually refine the imprecise and coarse estimation into an accurate
and complete prediction map. The parallel partial decoder then aggregates high level
features with a parallel connection to produce the global segmentation map.
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The performance of medical image segmentation has significantly advanced with the
convolutional neural networks. However, most existing CNNs-based methods some-
times produce unsatisfactory segmentation mask without accurate object boundaries.
To address this problem, authors in [40] formulate a boundary-aware context neural
network (BA-Net) for medical image segmentation, to capture richer context and
preserve fine spatial information. In each stage of encoder network, pyramid edge
extraction (PEE) module is proposed for obtaining edge information with multiple
granularities firstly. Then a mini multi-task learning (MTL) module is designed for
jointly learning to segment object masks and detect object boundaries. At last, a
cross feature fusion (CFF) module aims to selectively aggregate multi-level features
from the whole encoder network. By cascaded three modules, richer context and
fine-grain features of each stage are encoded.
This study was taken under particular consideration for this work of thesis thanks
to its focus on structures boundaries. The contours of knee bones constitute the
most critical area indeed, where segmentation errors are most likely to happen. Fur-
thermore, they determine the match between the segmented anatomy and the true
bone geometry that is wanted to be as accurate as possible. In this sense, this paper
has provided a good starting point for the development of our simpler but yet very
effective CEL-UNet.

4.3.4 Knee Joint Bone Segmentation

A recent study performed at Politecnico di Milano and published in 2020 is used as
reference for the present thesis work. The study performed by Marzorati et al. [41] is
analogue to the present, as it investigates the effectiveness of Unet for tibia and femur
segmentation, in patients with severe osteoarthritis for PSI based surgical planning.
The dataset was composed by CT scans provided by MEDACTA International SA,
even though in a reduced number of case-patients in comparison to the one used in
the present study. Results of the former work were very satisfactory and promising,
so it was decided to bring the analysis forward by focusing the efforts in exploring the
best configurations and enhancing the segmentation quality.
In that previous study, the original dataset was sub-sampled to 4 different resolutions,
in order to establish a comparison of segmentation results at different voxel dimensions.
Evaluation was done in terms of the surface distance calculation between the predicted
segmentation and the ground truths. Results are extremely eloquent, showing a better
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segmentation accuracy and a significant lower surface distance for the dataset at
higher resolution, as can be seen in figures 4.8. This fact has driven the choice to
operate on a new dataset by resampling all the scans at 192×192×192, value that
provides a good resolution for training the network.

Figure 4.7. Input volume dimensions and relative pixel spacings used in [41].
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in figure 4.7.
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Methodology

5.1 MEDACTA Dataset

This work of thesis arises from the collaboration between Politecnico di Milano and
MEDACTA International, with the aim to perform a detailed analysis and research
about innovative frameworks for automatic segmentation of the knee bone anatomy,
leaveraging deep learning algorithms. A collection of CT images of around 400 patients
was provided by MEDACTA international in DICOM standard format, acquired in
the context of preoperative planning for total knee arthroplasty intervention. For
each patient, some hundreds of axial scans covering the whole knee structure generate
the single volumetric data used during training and testing of the algorithms. For
effectiveness purposes, the choice was to train 3D models instead of 2D, at the cost
of increased computational complexity, training time and memory requirements. A
preliminary study about the problem was made, showing that improved results are
provided by 3D models with respect to 2D ones. This is also confirmed by the literature
in [42] [41], where authors show the great performances of volumetric segmentation,
specifically in the case of tube-shaped structures. Every scan that composes each
patient’s set has a size of 512×512 pixels along x and y directions, with x and y being
the components laying in the axial plane. This provides a x-y spatial resolution of
0.39 millimeters for each slice, which allows to precisely discern very thin structures
in the two-dimensional slices. Instead, the number of slices for each patient along the
z direction, e.g. the longitudinal axis, varies significantly due to different conditions
and machines with which scans were acquired and probably also due to different

35



Chapter 5. Methodology

clinical decisions. It follows that the resolution along z axis is not uniform across all
patients and it varies approximately from 0.3 mm to 1 mm. The data is encoded in
either 12 or 16 bits, providing grey intensity levels that can span over a wide range of
values. Additional important information is stored as metadata in DICOM files, such
as the value of the offset location with respect to the origin and parameters defining
the relationship between stored values and output units. These numerical values are
necessary to perform a few preprocessing steps, which will be explained in detail in
the next sections, but they are completely ignored during training and testing of the
deep learning models. In figure 5.1, examples of axial, sagittal and frontal slices from
the dataset are shown.

Figure 5.1. axial, sagittal and frontal slices extracted from an example CT volume.

During the preliminary analysis of the work, some choices were made to generate
a precise definition of the problem and to design the boundaries of this research. Such
decisions are summarized below:

• 3D volumetric data was preferred to 2D for effectiveness reasons

• Axial slices were used instead of sagittal or frontal ones

• All osseous structures in the knee were considered for segmentation

Given those consideration, the target structures to be segmented in this work are
5: background, femur, tibia, patella and fibula. This brought to a reduction of the
available data for training and testing, since not all the 400 patient folders carried
the necessary files to produce the labels for all 4 bone anatomies. In addition, very
few data were corrupted and could not be read. In the end, 259 cases were used
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and divided into train dataset, validation dataset and test dataset with the following
criterion:

Total number of cases: 259

- Training Validation Test

Percentage 75% 15% 10%

Number 195 39 25

To feed the data into the neural network for training, the 3D input size had to
be fixed before the model definition. Also, given that the number of scans along
longitudinal axis was not the same for all patients, it was made uniform. In order to
fit memory, GPU and training time requirements, all volumes were transformed to a
size of 192×192×192. This required some preprocessing, which is going to be fully
illustrated in the next sections. The volumes were saved and stored in Nifti format,
which includes a .hdr file to store meta-information and a .img file to store the actual
image data.

5.2 Preprocessing

Various are the reasons that rendered preprocessing necessary in this work, to take
raw dicom data and build a standardized dataset of 3D CT volumes to be used for
neural networks training. Dicom files data of CT scans were accompanied by accurate
hand-delineated mesh surfaces of knee bone structures stored in .stl files. A scheme of
all available data is presented in figure 5.2. Combining knee image data with patients
meta information and meshes of target structures, preprocessing was carried out in 4
main steps:

Cropping slices and creating Nifti volumes: to discard useless information

Reshaping volumes: to standardize size of volumes

Creating ground-truth Labels: to generate single-anatomy references

Merging ground-truth Labels: to merge all single-anatomy references in one file
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Figure 5.2. Organization of original dataset: a folder for each patient contains dicom files

of all axial slices of the knee bones, and a mesh file for each one of the labeled

anatomies.

5.2.1 Cropping

Original volumes contain a lot of extra information that is not useful for our purposes
and just contributes to increase volume size and therefore computational complexity
and training time, causing a significant efficiency loss. Looking at the axial slice in
figure 5.1, it is evident how information about target bone anatomies is condensed in
the center of the image. The great amount of black and gray pixels, corresponding
respectively to the background space and soft tissues, is completely neglectable and
therefore it can be discarded by cropping the image at some x and y coordinate values.
The same is done along the z direction with slices that are located further from the
intra-articular space and just show proximal sections of the femur or distal sections of
the tibia. To define the cropping locations, the minimum and maximum coordinates
in each of the three axes are extracted from the surface meshes. Using these values,
crop is performed, leaving a certain margin between the extreme locations of the
anatomies and the final image edges. The volume is then saved as Nifti file. Figure
5.3 shows the results of the described procedure.
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Figure 5.3. Examples of cropping procedure to delete all useless information.

5.2.2 Reshaping

Cropping operation automatically finds the best configuration for each patient, setting
the new edges the closest possible to the bones, in order to discard the great amount
of useless information about background and soft tissues. It follows that volumes turn
out to have different sizes also in x-y coordinates. Reshaping is therefore performed
to standardize volume size at 192×192×192 and create a consistent dataset, that can
be fed as input of the neural network. After reshaping, a normalization operation is
performed to standardize gray values between 0 and 1.

Vnorm =
V R−mini,j,k V R

maxi,j,k V R
(5.1)

where V R is the volume after reshaping operation and i, j, k represent the three
spatial directions.

5.2.3 Labeling

Ground truth of target structures were given as 3-dimensional surface meshes, created
from manual segmentations of the CT scans. Starting from this representation, it was
created a hard mask that assigns the same numerical value to pixels belonging to the
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Figure 5.4. Examples of reshaped axial, sagittal and frontal slices.

same bone structure and to the background. For each of the bones, the correspondent
surface mesh is sliced at z coordinates extracted from the reshaped volumes. When an
intersection is found, contour pixels are registered and set to 1 in an empty volume.
These contours are eventually filled to generate the axial binary masks that compose
the whole binary volume of the correspondent bone. The same operation is computed
for each of the bones. To merge all labels in one, these volumes are summed up, after
assigning different integer values for background (0), femur (1), tibia (2), patella (3)
and fibula (4). The whole preprocessing was performed with MATLAB but the code

Figure 5.5. Axial slices extracted from a labeled ground truth volume. 0: background, 1:

femur, 2: tibia, 3: patella, 4: fibula.

was also converted in Python in order to add it to the segmentation package that is
being developed in GitHub. Moreover, it was noted that preprocessing performed
with Python code, that leans on popular opensource libraries, is almost 5 times faster
that MATLAB computation.
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5.3 Workflow

After the deep revision of the literature and the preprocessing of the dataset, the
segmentation workflow of this thesis was organized in two main parts. In the first
part, the Unet was used as main architecture and efforts were put in finding the most
relevant aspects the model should focus on. Since in [41] authors used the dice score
as unique loss function for the trained models, it was chosen to address the task by
introducing 4 additional loss functions for segmentation, taken from the literature. A
comparison was set up to find the most suitable one for the proposed problem, and to
understand how different functions influence the network training.
The second part of the work took advantage from results observed in the first one.
An innovative encoding-decoding architecture that takes its roots from the Unet was
designed and developed with the aim of enhancing the performances of the automatic
segmentation. The network was called CEL-Unet, from the name of the targeted loss
function chosen for it: Combined Edge Loss (CEL) function.

5.4 Proposed Loss Functions

5 different loss functions were used to train 5 models that share the same architecture,
the Unet. Each one of these functions is going to be explained in detail in the next
paragraphs.

5.4.1 Weighted Dice Loss

The dice loss is one of the most used objective functions for segmentation tasks. In
this work, this can be referred to as a soft dice index, as it is computed using the soft
probability mask produced by the output layer of the network. Given that classes
are not equally represented in the dataset, in particular for patella and fibula, the
computed dice index evaluates differently the contributions of each class, thanks to
some pre-computed weights:

wc =

√
1
Nc∑C

i=1

√
1
Ni

(5.2)

wc is the weight factor for class c, Nc is the number of voxels belonging to class c and
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the sum at the denominator runs through all the C classes. This helps not to bias
the discriminator during training, which otherwise would tend to predict the most
frequent class for all voxels. Weighted Dice formula can be written as:

D(y, ŷ) =
C∑
c=1

wc(
2 ·∑N yc · ŷc∑N yc · yc +

∑N ŷc · ŷc
) (5.3)

where yc and ŷc are respectively the true and predicted probability of segmented
volumes for the label c whose scalar product is computed over N voxels. The
corresponding loss function is simply written as:

Ldice = 1−D(y, ŷ) (5.4)

5.4.2 Focal Loss

Focal loss is introduced in 2018 by [43] as a loss function to address the problem
of foreground-background class imbalance. The standard cross entropy loss is here
reshaped such that it down-weights the well-classified examples, increasing instead the
penalty assigned to more difficult ones. This loss function focuses training on a set of
hard examples and prevents the vast number of easy negatives from overwhelming
the detector during training.

Lfocal = −
1

N

C∑
c=1

(
N∑

(1− ŷc)γ · yc · log ŷc) (5.5)

The term (1− ŷc)γ is the focal factor that assigns a weight to each voxel. The higher
the classification confidence of a voxel, the lower will be its weight in the function. γ
is a hyperparameter experimentally set to the value of 2. Since the extent of the class
imbalance is not extreme in our application, it has been chosen to use this function
in combination with the dice index, so to help and fasten the convergence of the
optimization algorithm, as reported in [44]. A parameter α was used to weight the
contributions of the two components in the final loss, and a scheduling strategy was
set up to dynamically change the weights of both during training.

Lout = α · Ldice + (1− α) · Lfocal (5.6)
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The parameter α was set to 1 at the beginning and its value was decreased of 0.005
for each epoch of training, until the value of 0.3. In this way, dice coefficient helps
the convergence at the beginning of the training and focal loss enters progressively to
refine the segmentation for hard examples.

5.4.3 Exponential Logarithmic Loss

This loss function is proposed by [45] and it is specifically introduced to enhance
segmentation of small objects. Even if nor tibia neither femur can be considered as
small structures, this loss function was included because of the non-linearity introduced
by the logarithmic transformation, which can indeed act as a focal factor, increasing
attention given to misclassified structures. Two contributions are computed:

LD =
C∑
c=1

wc(− logDc(y, ŷ))γD (5.7)

LCE =
C∑
c=1

wc(−
1

N

N∑
(yc · log ŷc)γCE) (5.8)

As it can be noted in the formulas, the two contributions come from a logarithmic
and exponential transformations of dice coefficient (Dc(y, ŷ)) and an exponential
transformation of the cross entropy function. The two gamma values, γD and γCE,
are parameters introduced to further adjust the non-linearity given by the logarithms.
Experimental values of both are set to 1. C indicates the number of classes and wc is
the weight assigned to each class in the cross entropy function, useful to face class
imbalance problem and it is computed in the same manner as it was for the Weighted
Dice Loss function. The two quantities are merged together in the final loss with a
parameter β, which is experimentally set to 0.8.

Lout = β · LD + (1− β) · LCE (5.9)
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5.4.4 Double Cross Entropy Loss

This loss is a development of the simple cross entropy loss that it is usually found for
segmentation tasks. It has been called double cross entropy, because the contribution
to the final loss is given by two cross entropy terms, the first defined on the soft
probability mask and the second defined on the inverse of it. This can help the
segmentation of structures with sparser representation.

L(c)
CE1 = −

1

N

N∑
(yc · log ŷc) (5.10)

L(c)
CE2 = −

1

N

N∑
((1− yc) · log (1− ŷc)) (5.11)

The two contributions are equally balanced and summed together, after each class
term is multiplied for its weight that accounts for class imbalance. Final formulation
of the output loss is the following:

Lout =
C∑
c=1

wc ∗ (0.5 · L(c)
CE1 + 0.5 · L(c)

CE2) (5.12)

5.4.5 Distanced Cross Entropy loss

The last objective function introduced in this comparison is still cross entropy-based.
The idea behind the Distanced Cross Entropy comes from the observation that most
of the segmentation errors made by the network are found to be along the boundaries
of the anatomies. Here, the bones show deformations and irregularities, in particular
in proximity of the intra-articular space. Also, the presence of evident osteophytes
around the anatomies usually fools the model that tends to include them in the bone
segmentation, even if they should be sometimes ignored during preoperative planning
and manufacturing of the cutting guides.
These considerations led to the introduction of a loss function that specifically focuses
on boundary voxels, with the aim of increasing the accuracy of segmentation and
decrease the mean surface distance error. The approach followed was the one presented
in [46], where a distance map is created to weight more the voxels closer to boundaries
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and assign lower importance to further ones, that are quite always correctly classified.
The distance map is created starting from the Euclidean Distance Transform (EDT),
which assigns to each voxel the value of its distance from the closest voxel belonging
to the boundary of the target structure. Figure 5.6 shows an example object on the

(a) Example object (b) Euclidean Distance Transform

Figure 5.6. Image showing an example binary structure on the left, and its Euclidean Distance

Transform on the right. Pixel values are printed on top of the image and indicate

rounded distances from structure boundaries.

left and its Euclidean Distance Transform on the right, on which pixel values of the
EDT are printed. The EDT allows to recognize boundary voxels, which are given the
value of 0. Now, the so-called Distance Weight Map (DWM), that increases the values
of boundary voxels, can be computed, by using a negative exponential transformation
applied to the EDT. Figure 5.7 shows, from left to right, the ground truth mask
for a random axial slice inside the volumetric data of a patient, its EDT and the
corresponding Distance Weight Map. Brighter pixels towards yellow are representative
of higher values, while darker and blueish ones represents lower values. The DWM
is then multiplicated to the classic cross entropy function, balancing in this way the
importance of edge voxels against all the others. Mathematical expression of the loss
function is shown below.

LDce = −
1

N

N∑
(
C∑
c=1

DWMc · yc · log ŷc) (5.13)

DWMc = 1 + γ ∗ exp(−EDTc
σ

) (5.14)
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(a) Ground Truth Mask (b) EDT (c) DWM

Figure 5.7. Image shows an axial slice with femur and patella anatomies (a), its EDT (b)

and the exponential transformation of the EDT (DWM) that assigns higher

weights to voxels closer to the boundaries (c).

The DWM is computed with the negative exponential transformation, with the
values of γ and σ set to 8 and 10 respectively, following the approach presented
in [46]. Distanced Cross Entropy alone would not guarantee an easy convergence
of the optimization algorithm, because of the bias given to the loss by the much
greater importance of boundary pixels. This would often lead to the generation of
segmentation masks with some holes inside, due to the fact that pixels in the core
of the bones are further away from the edges, so they are given less importance and
hence can be more easily misclassified. For this reason, as it was done for the Focal
Loss, the weighted Dice coefficient was maintained as strong contribution inside the
final loss, and weighted by a factor α, which takes a value in [0,1]. In particular, the
initial value of α was set to 1 and it was decremented of 0.05 every 40 epochs, over a
total of 150. In this way, inside every interval of epochs, the optimizer was forced to
look for the minimum of a slightly different function, progressively more focused on
critical border areas. Final loss can be written as follows.

Lout = α · Ldice + (1− α) · LDce (5.15)

5.5 Proposed Architecture: CEL-Unet

The second part of this work of thesis was dedicated to the search and the development
of a new, innovative and targeted model that could overcome Unet performances and
constitute an interesting alternative approach for other studies and researches. The
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idea was to maintain the backbone structure of the encoding-decoding architecture,
which, for our knowledge, still remains the most effective CNN for segmentation, and
improve it with the addition of simple but effective modifications. The good and
promising results provided by the Unet trained with the Distance Cross Entropy Loss
proved the potential improvement that could be gained by focusing also on the edges,
instead of just on the whole anatomies. This has been the core idea for the conception
of the CEL-Unet, that took the name from the loss function introduced and utilized
for the model, the Combined Edge Loss (CEL) function.
The CEL-Unet is a network with the same encoder-decoder structure introduced by
the Unet. While the down-sampling encoding path remains analogue to the former,
the up-sampling path represents the main innovation in this new model. Based on
the greater consideration that was given to bone boundaries in the analysis and
preliminary observations, this approach introduces a dedicated path for the specific
learning of interested bone contours. Starting from the deepest level in the network
(bottleneck), an additional decoding path, parallel to the original one, is added with
the aim of segmenting regions’ boundaries. Therefore, two parallel decoders (Mask
and Edge) inside the network produce two outputs for each input, one representing the
classical semantic segmentation mask and the second representing a semantic boundary
detection map. Skip connections from the encoding branch are maintained and now
directed to both decoding branches, Edge and Mask. Since the final segmentation
is required to be a map representing the filled structures, the output of the region-
aware branch is taken as the ultimate output of the network. To incorporate the
new accurate boundary information encoded in the boundary-aware branch though,
some unidirectional connections are included in the architecture, to link the two
parallel branches. At two depth levels, feature maps produced in the Edge branch are
aggregated with feature maps inside the Mask branch. The result of the convolution
is forwarded inside the Mask branch to further processing until it reaches the output.
CEL-Unet structure is shown in figure 5.8.

5.5.1 PEE Module

Inside the upsampling Edge branch, the network learns to produce thin boundary
predictions. However, the boundary of the bones is usually complex and diverse.
Hence, in order to obtain a robust boundary information supplement, the model was
strengthen by employing a simple and effective pyramid feature extraction scheme for
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Figure 5.8. CEL-Unet architecture. The double decoding path allows to extract robust and

explicit boundary information, that is integrated into the main mask branch

through the red vertical connections. Classic horizontal skip connections from

down-sampling towards both up-sampling branches are maintained.

mining multi-granularity edge features, inserted in two stages of the decoder Edge
branch. This is called Pyramid Edge Extraction (PEE) module and is taken from
[40]. Multiple granularities edge features are obtained by subtracting the value of
average pooling, performed with different kernel sizes, from its local convolutional
feature maps. The core operations of this module are presented in the following
formulas. With i denoting the current up-sampling stage, a first 1×1×1 convolution
is performed to squeeze the Pi feature maps of current tensor Fi in half, producing
F ′i , which enters the PEE module.

F
(s)
i = F ′i − avgsF ′i , s ∈ {1, 2} (5.16)

F
(s)
i denotes the edge features of current ith stage with the sth pooling operation,

and avgs is the corresponding average pooling operation. In order to integrate the
obtained pyramid edge features, we aggregate them with the features of current stage
with a concatenation, and merge them using a 1×1×1 depth convolution operation
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denoted by F , that recovers the initial number of feature maps Pi:

F P
i = F (C(F (1)

i , F
(2)
i , F ′i ), Pi) (5.17)

In equation 5.17, C refers to the concatenation process. F P
i is the output feature

maps of PEE module at current stage of decoding Edge branch. By extracting and
integrating boundary information with different granularities, the edge features are
effectively improved and noise is suppressed. PEE module is graphically represented
in figure 5.9.

I/
4

−

−
Concatenation 32 I/

4

Figure 5.9. PEE module. The yellow box on the left represents F ′i . Two different average

pooled tensors are subtracted to F ′i , to produce F
(1)
i and F

(2)
i . All tensors are

concatenated and subjected to a final convolution.

5.5.2 CEL: Combined Edge Loss

Since the network produces two outputs, the loss function that was chosen for it
comprehends two different contributions, one for Edge output and one for Mask
output. For the Mask output, the choice was to use the function that best performed
on the Unet in the comparison study made in the first part of this work. Therefore,
the Mask Loss is defined as the Distanced Cross Entropy Loss, which intrinsically
already includes strong focus on regions’ boundaries, thanks to the Distance Weight
Map used to weight each voxel’s contribution.

Lmask = α · Ldice + (1− α) · LDce (5.18)
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Also in this case, a parameter α is used to weight the contributions of the distanced
cross entropy and the dice coefficient, but it was assigned a slightly different scheduling
policy. Its initial value was set to 0.9 and was decreased of 0.005 each epoch of
training, until the minimum value of 0.4. Regarding the Edge output instead, we had
to consider the huge imbalance between the number of target contour voxels and all
other background voxels. For a random example volume inside the dataset, it is found
that femur and tibia boundary voxels are respectively in a ratio of around 0.0072 and
0.0047 with respect of all other background voxels. This difference gets even more
enhanced when patella and fibula are considered, since they are smaller bones and
include much fewer voxels. For this reason, for the Edge Loss we chose the class-
balanced cross entropy function, presented before as the Double Cross Entropy, that
allows to alleviate the impact of the higher missing rate that characterizes semantic
boundary detection. This loss was modified for the present task, with the inclusion of
a multiplication to the Distance Weight Map, in order to further force the model to
focus on boundary voxels. Formula of the Edge Loss is reported below:

L(c)
1 =

1

N

N∑
(−DWM · yc · log ŷc) (5.19)

L(c)
2 =

1

N

N∑
(−DWM · (1− yc) · log (1− ŷc)) (5.20)

Ledge =
C∑
c=1

wc ∗ [β · L(c)
1 + (1− β) ∗ L(c)

2 ] (5.21)

The DWM used here is the same as the one used in the Mask loss, with γ and σ
parameters taking the values of 8 and 10 respectively. β parameter in equation 5.21,
instead, is a weight factor that helps the balancing between the few positive boundary
voxels and the great number of negative background ones. Its value is computed as
the ratio between the number of boundary voxels and the total number of voxels in
the volume:

β =
Nedge

Ntotal

(5.22)
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5.6 Implementation Details

All models trained on Unet architecture have a depth of 5 levels. Each time the
network goes one step deeper, the number of filters in the convolutions is doubled
and the dimension is halved. Every model starts with a first double convolution
computed using 8 filters, and reaches the number of 16, 32, 64, 128 and 256 filters for
the convolutions computed in each of the subsequent levels, included the bottleneck.
Regarding the down-sampling branch, filters used in the convolutions are 3 dimen-
sional, as the input volumes, and their size is (3,3,3). They are applied with a stride
of 1 and a padding operation that allows output feature maps to be of the same size
as the input. Pooling operation instead uses kernel of size (2,2,2) with a stride of 2 in
every dimension, ensuring the down-sampling of input volumes of a factor 2. Batch
normalization and L2 regularization is then used.
For what concerns up-sampling branch, similar choices were made: transposed convo-
lutions are performed in each level, with kernels of size (2,2,2) that span over the input
with stride of 2 in every dimension, followed by two consecutive convolutions. This
enables to increase volume size of a factor 2 along rows, columns and slices, again,
so that at the end of up-sampling branch, the output of the model will be produced
with the same size of the input.
Down-sampling branch of the CEL-Unet is set in the same way, except for the depth,
which reaches a maximum of 3 levels. Initial number of filters for the convolution is 8,
which is then increased to 16, 32 and 64 lastly, in the deepest level. Decoding branch is
different, with the division into the two parallel branches and the introduction of PEE-
modules in the Edge branch. PEE modules include a first initial (1,1,1) convolution,
performed to half the number of feature maps. Kernel sizes of the two average pooling
operations are set to (3,3,3) and (5,5,5) for the second depth level, where tensors are
smaller, and to (5,5,5) and (7,7,7) in the zero level, where feature maps have recovered
the original input size. After the two subtractions and the concatenation presented
in equations 5.16 and 5.17, an additional (1,1,1) convolution is performed to recover
initial number of feature maps. As output layer, for all architectures a softmask layer
is used, to compute class scores for final segmentation maps.
For each trained model the Adam optimizer [47] was used with a learning rate set to
3e-5. Number of epochs was set to a maximum of 200 for each model, but training
was manually stopped if no improvement was observed for some consecutive itera-
tions. All models were trained using mini-batch approach, each one with a size of 2.
Bigger batches could not be set because of the limited memory available. Table 5.1
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summarizes all training details.

Training Details

LR=3e-5 BS=2 Opt.=Adam Epochsmax=200

Unet CEL-Unet

Conv. size [stride] (3,3,3) [1] (3,3,3) [1]

Deconv. size [stride] (2,2,2) [2] (2,2,2) [2]

Pooling size [stride] (2,2,2) [2] (2,2,2) [2]

Depth 5 3

N. of filters 8-16-32-64-128-256 8-16-32-64

Table 5.1. Summary of the training details.

5.7 Frameworks and Data handling

All models were developed using Keras API running on top of Tensorflow libraries.
Keras is a Python package for building, training and evaluating neural networks, which
enables to speed up the development by providing a high-level API that allows to focus
more on the network architecture and parameters rather than on implementation. The
whole work was done on Google Colab, a free environment to write and run Python
scripts leveraging high performance Google hardware, including GPUs and TPUs.
Codes run on Google servers, nothing is required except for a laptop, an internet
connection and a browser. However, resources are limited in terms of computational
power, available memory and usage time. Limited available memory constitutes a
serious problem when training three dimensional models, therefore a mixed policy for
storing tensors of the model during training was chosen.
Today, most models use the float32 dtype, but modern accelerators can sometimes run
operations faster in the 16-bit dtypes. They have specialized hardware to run 16-bit
computations and 16-bit dtypes can be read from memory faster. There is no clue
about the hardware Google Colab will provide when initializing the Notebook and this
means that not always the use of float16 dtype will result in faster training. However,
this approach is very useful to reduce the memory requirements of the tensors during
training, also because it ensures that training quality will not be affected. Tensorflow
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library recently developed an implementation of a mixed type policy for training deep
learning models. This was found very practical and was used in this work to train
CEL-Unet model, which otherwise would have caused memory overflow with the free
resources available.
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Results

This chapter illustrates results of this work of thesis. All metrics used to evaluate
segmentation results are reported in the first place. All different loss functions
are compared based on the presented metrics, and the same is done for the newly
introduced CEL-Unet. Since the training of 3D segmentation models is expensive in
terms of time and resources, a brief comparison between training timings obtained
with the different loss functions and different models is provided. A statistical test is
performed on the results, to assess significant differences between the experiments.
In the second place, a back analysis on the test set is done, with the aim of visually
inspecting and comparing results obtained by each test. Furthermore, this analysis
helps to understand where the models could be strengthened and made more robust.

6.1 Metrics: over- and under-segmentation

6.1.1 Volumetric assessment

Segmentation results were evaluated on the test set with targeted metrics, in order to
access accuracy and reliability of the trained models. No unique metric can be enough
to provide the complete scene of the segmentation results, hence a combination of
3 main metrics was used to access global volumetric accuracy of models. Mainly, 2
are the cases when the network fails: over-segmentation and under-segmentation, as
figure 6.1 shows.
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(a) (b)

Figure 6.1. Over-segmentation (a) and under-segmentation (b) errors shown on a 2D axial

slice.

In the former case, the network includes in the bone prediction voxels that belong
to the soft tissues (considered as background in our context), adding False Positives.
In the latter case, the opposite happens, with the addition of more False Negatives.
As a global indicator of the label and prediction level of overlapping, the Jaccard
Coefficient is used, with the formulation given in equation 6.1. It computes the
intersection over union between two segmentation masks. It is directly related to the
Dice coefficient, so monitoring both Dice and Jaccard does not provide any additional
information.

Jaccard =
TP

TP + FP + FN
(6.1)

This metric gives a snapshot of the accuracy provided by the model, as it accounts
for all misclassified voxels, positives and negatives. However, information about which
error happens the most is lost. For this reason, two additional metrics are considered,
the first sensitive to over-segmentation, while the second to under-segmentation:

Precision =
TP

TP + FP
(6.2)

Recall =
TP

TP + FN
(6.3)

All metrics take values in [0,1] and were computed counting TP, TN, FP and FN
for each class. Considering that the background includes the higher number of voxels
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among all classes, it is intuitive that this class will more easily reach values close to 1
in all metrics. In a similar way, given that femur and tibia are bigger than patella
and fibula, they will reach higher scores, when the same number of falsely classified
voxels is counted.

6.1.2 Surface assessment

Together with the volumetric analysis of the segmentation, a surface similarity as-
sessment was carried out, to evaluate the distance between the reference and the
reconstructed anatomies. Two distance measures were considered: the Hausdorff dis-
tance and the root mean square error. To compute these quantities, three dimensional
meshes for each bone were extracted from the output volumes, using marching cubes
algorithm. In this way, the coordinates of the vertices belonging to the reconstructed
surfaces were compared to the ones of the meshes provided in the original dataset, to
allow surface distance assessment.
Hausdorff distance is defined as the greatest of all the distances from a point in one
set to the closest point in the other set. Hence, it represents the maximum error made
for each surface. Root mean squared error instead, as the name suggests, computes an
average of all the distance values from vertices of the first surface to closest vertices of
the second one. In this work, all distance values are computed starting from the points
belonging to the reference surface and going towards points of the reconstructed one,
bringing to the following formulations:

H(X, Y ) = max
x∈X
{min
y∈Y
{d(x, y)}} (6.4)

RMSE(X, Y ) =

√√√√ 1

N

N∑
i=1

min
y∈Y
{d(xi, y)2} (6.5)

where X is the set of the N reference vertices and Y the set of reconstructed
vertices.
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6.1.3 Statistical Analysis

A statistical analysis was performed for the Jaccard index obtained in the volumetric
evaluation, in order to asses significant statistical differences between results distribu-
tions for each test. The analysis was performed for both global and local evaluations,
hence including femur, tibia, left condyle, right condyle, femur trochlea and tibial
plateau. For each of these anatomies or regions, a Kruskal-Wallis test was carried
out to understand if distributions of the Jaccard results were statistically different,
using a confidence level of 95%. Given that all statistic tests gave significant results,
a post-hoc comparison was also performed, with the aim of understanding where the
statistical differences truly came from, and so to compare the different tests with each
other.

6.2 Test Set

All trained models were evaluated on a test set of 25 cases, randomly extracted from
the initial available dataset and never seen by the models. All volumes were labeled by
experts, hence the ground truth segmentations of femur and tibia can be considered
very accurate. Nevertheless, near the end of the work we were informed that, during
labeling, less attention was paid to patella and fibula anatomies. This happened
because these two bones are not clinically considered during PSI-based TKR. They
were included in the knee labels just for visual reasons, basically to provide a more
realistic representation of the whole anatomy. Anyway, this fact did not impact on
the training process, which was successful for all 4 anatomies. However, it tended to
bias the results on the test, since some well-reconstructed shapes of patella and fibula
were compared and overlapped to some less faithful reference labels, which brought to
a degradation of the metric scores. Segmentation results about patella and fibula will
be reported in the next sections as well, but they have not to be considered of clinical
relevance, for the mentioned reasons.
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6.3 Experimental Results

Analysis of segmentation results was performed in two separate steps. Firstly, a global
segmentation assessment has been performed, in which full segmented anatomies
were compared to ground truth volumes. This evaluation estimates the goodness
of segmentation models. However, large areas of both femur and tibia anatomies
are tube-shaped, which make them easy to segment. Furthermore, these areas are
not crucial for jigs manufacturing, since they are far from the knee joint. As shown
in figure 2.1 in chapter 2 indeed, the most relevant osseous surfaces considered in
preoperative planning are the ones facing the knee joint: tibial plateau, femur condyle
and femur trochlea. Here, the cutting guides need to be safely hooked to allow precise
bone resections. Hence, a localized segmentation assessment in these areas was also
carried out, in order to understand how well the reconstructed surfaces match the
real ones.

6.3.1 Global Results

Results of the loss functions comparison are here shown and discussed, together
with results obtained with the CEL-Unet. As previously exposed, 5 loss functions
were chosen to train 5 models that leverage the Unet architecture: Dice Loss, Focal
Loss, Exponential-Logarithmic loss, Double Cross Entropy Loss and Distanced Cross
Entropy loss. While the dice is surely the most used for overlapping assessment, and
can be considered as a baseline, the other 4 losses were found in the literature, and
each one stresses a peculiar aspect during training. The comparison was established
in order to understand from which of the losses the training process could benefit the
most. CEL-Unet model was trained using the Combined Edge Loss function instead,
accounting for the two outputs of the model. Tables 6.1, 6.2, 6.3, 6.4 show the scores
obtained by the different models across all 4 anatomies. Given the considerations
previously made in section 6.2 regarding patella and fibula, the analysis will focus
just on results achieved on femur and tibia, that are clinically relevant. All results are
shown anyway, for completeness reasons.

The values in the tables indicate the mean across data in the test set for each
metric. Bold numbers highlight the best score recorded for each metric, considering
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FEMUR

Jaccard Recall Precision

Dice 0.9412 0.9628 0.9767
Focal 0.9432 0.9511 0.9912

Exp Log 0.9317 0.9823 0.9475
Double CE 0.9134 0.9751 0.9349
Distanced CE 0.9592 0.9812 0.9770

CEL-Unet 0.9666 0.9871 0.9790

Table 6.1. Femur results.

TIBIA

Jaccard Recall Precision

Dice 0.9433 0.9757 0.9659
Focal 0.9475 0.9668 0.9792
Exp Log 0.9405 0.9773 0.9615
Double CE 0.9007 0.9793 0.9182
Distanced CE 0.9493 0.9679 0.9800

CEL-Unet 0.9576 0.9814 0.9753

Table 6.2. Tibia results.

PATELLA

Jaccard Recall Precision

Dice 0.8863 0.9467 0.9337
Focal 0.8796 0.9281 0.9449
Exp Log 0.8719 0.9516 0.9132
Double CE 0.8667 0.9356 0.9239
Distanced CE 0.8892 0.9371 0.9469

CEL-Unet 0.8953 0.9539 0.9369

Table 6.3. Patella results.

just models leveraging Unet, with the 5 loss functions. Instead, CEL-Unet results
are written in bold if they overcome the best value obtained with the simple Unet.
Since a single metric value does not suffice for a complete explanation of model’s
performances, all values must be analyzed at the same time.
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FIBULA

Jaccard Recall Precision

Dice 0.8066 0.8996 0.9337

Focal 0.7728 0.8336 0.9267
Exp Log 0.7995 0.8871 0.8979
Double CE 0.6923 0.8457 0.8011
Distanced CE 0.8059 0.8991 0.8917

CEL-Unet 0.7655 0.8118 0.9414

Table 6.4. Fibula results.

An initial comparison of the 5 losses with the Unet architecture is done. The higher
score obtained for tibia and femur with the Distanced Cross Entropy in the Jaccard
index suggests that this loss function globally achieves the most accurate segmentation.
This value also accounts for the ability of each model to maintain an unbiased behavior
towards over- and under-segmentation, since it consider at once both false positives
and false negatives. Actually, there are cases in which the model achieves a very high
score on precision and a significantly lower one on recall, and viceversa, denoting
an unbalanced segmentation. This happens for the Focal loss and Exp Log loss for
femur, or the Double Cross Entropy Loss for Tibia. As a matter of fact, despite the
Focal loss achieves the second best score in the Jaccard index for femur and tibia, it
generally tends to under-segment structures. In a similar way, Double Cross Entropy
and Exponential Logarithmic losses seem to be more biased towards the addition of
False Positives, meaning over-segmentation. On the contrary Dice and Distanced
Cross Entropy losses achieved more balanced results on these metrics.
CEL-Unet model was able to outperform the former ones in almost all aspects. Jaccard
coefficient increases of almost 1 percentage point in both femur and tibia, and both
precision and recall record high values for the two principal anatomies. Boxplots are
also reported in figures 6.2, 6.3, 6.4, 6.5 to provide a more general overview of results,
where it is easy to see how models behave towards over- or under-segmentation.
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Figure 6.2. Boxplot of Jaccard, Recall and Precision score distributions for segmented femur.
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Figure 6.3. Boxplot of Jaccard, Recall and Precision score distributions for segmented tibia.
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Figure 6.4. Boxplot of Jaccard, Recall and Precision score distributions for segmented patella.
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Figure 6.5. Boxplot of Jaccard, Recall and Precision score distributions for segmented fibula.
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The statistical test was performed on Jaccard results of all 6 segmentation models
considered, for both femur and tibia. The p-values produced by the Kruskal-Wallis
tests are respectively of 9.9e-10 and 3.4e-9, denoting that the differences between
some medians are statistically significant. The multiple comparison, performed
afterwards with the tukey-kramer critical value, output a p-value for each possible
1 vs 1 comparison. For the femur, the most significant differences are found with
CEL-Unet group against each one of Dice, Focal, ExpLog and DoubCE groups
while no differences are found with respect to DistCE model. For the Tibia instead,
the statistical difference provided by CEL-Unet results is weaker, since it is valid
just against ExpLog and DoubCE. Tables 6.5 and 6.6 show results of the multiple
comparison for femur and tibia, where bold numbers evidences results with statistical
significance.

FEMUR: p-values

Dice Focal ExpLog DoubCE DistCE CEL-Unet

Dice - 1.000 1.000 0.368 0.043 3.9e-04

Focal - - 1.000 0.356 0.045 4.3e-04

ExpLog - - - 0.352 0.046 4.4e-04

DoubCE - - - - 1.7e-05 3.2e-08

DistCE - - - - - 0.792

CEL-Unet - - - - - -

Table 6.5. Table reporting p-values for each possible comparison between femur results

distributions.

TIBIA: p-values

Dice Focal ExpLog DoubCE DistCE CEL-Unet

Dice - 0.997 0.991 9.8e-04 0.788 0.139

Focal - - 0.897 1.3e-04 0.962 0.351

ExpLog - - - 0.009 0.408 0.028

DoubCE - - - - 2.0e-06 2.25e-08

DistCE - - - - - 0.858

CEL-Unet - - - - - -

Table 6.6. Table reporting p-values for each possible comparison between tibia results distri-

butions.
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6.3.2 Local Results

An initial inspection of the first segmentation results extracted by the loss functions
comparison was made and it evidenced that volume matching between reconstructed
and ground truth anatomies was very different depending on the location. As men-
tioned previously, the most critical areas are the ones closer to the knee joint, where
the bones have been deformed and worn out by the long time rubbing. Moreover, these
are the regions directly interested by Total Knee Artroplasty intervention. Hence, a
local analysis was carried out in order to obtain segmentation results in 4 different
delimited areas: right femur condyle, left femur condyle, femur trochlea and tibial
plateau. These regions are shown in a posterior, lateral and frontal view in figure 6.6,
each one marked in a different color. The goal was to see if the local analysis could
provide any different result on the same reference metrics used for global segmentation
assessment. For each one of these sub-regions, a table and a boxplot is reported,
showing the mean of each metric across the test set and the approximate distribution.

(a) (b) (c)

Figure 6.6. Posterior (a), lateral (b) and frontal (c) views of the four regions defined for

localized segmentation assessment.

Observing the results, it is possible to notice how the best scores of a local analysis
match the best scores of the global one that corresponds to the same bone. This fact
mainly evidences two aspects. Firstly, it tells that the segmentation errors found on the
full anatomies are actually made almost only in these considered areas, which are very
likely to be the main sources of mistake. Secondly, it proves that the best loss function
and the CEL-Unet architecture, that achieve the best results, are able to improve
segmentation performances precisely in these critical regions. This information is
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RIGHT CONDYLE

Jaccard Recall Precision

Dice 0.9364 0.9571 0.9777
Focal 0.9258 0.9330 0.9919

Exp Log 0.9403 0.9743 0.9644
Double CE 0.9078 0.9843 0.9214
Distanced CE 0.9535 0.9740 0.9785

CEL-Unet 0.9601 0.9820 0.9775

Table 6.7. Right condyle results.

LEFT CONDYLE

Jaccard Recall Precision

Dice 0.9441 0.9663 0.9765
Focal 0.9432 0.9519 0.9905

Exp Log 0.9420 0.9780 0.9625
Double CE 0.9139 0.9813 0.9305
Distanced CE 0.9573 0.9792 0.9773

CEL-Unet 0.9644 0.9857 0.9783

Table 6.8. Left condyle results.

FEMUR TROCHLEA

Jaccard Recall Precision

Dice 0.9383 0.9502 0.9869
Focal 0.9467 0.9556 0.9901

Exp Log 0.9446 0.9832 0.9599
Double CE 0.9305 0.9768 0.9514
Distanced CE 0.9639 0.9805 0.9829

CEL-Unet 0.9713 0.9882 0.9827

Table 6.9. Femur trochlea results.

crucially relevant as it differentiates the present condition from the case in which
metric scores are enhanced thanks to a more accurate representation of less important
areas or thanks to a sparse voxel adjustment, that would not provide any practical
advantage in the end.
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TIBIAL PLATEAU

Jaccard Recall Precision

Dice 0.9330 0.9706 0.9603
Focal 0.9367 0.9556 0.9793
Exp Log 0.9334 0.9675 0.9637
Double CE 0.9108 0.9742 0.9334
Distanced CE 0.9377 0.9544 0.9817

CEL-Unet 0.9554 0.9783 0.9762

Table 6.10. Tibial plateau results.
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Figure 6.7. Boxplot of Jaccard, Recall and Precision score distributions for segmented right

condyle.

The same statistical test mentioned at the end of section 6.3.1 was performed for
each of the 4 separate regions, always on the Jaccard metric. Results were similar to
the ones found in the global analysis regarding the same bone. As exposed before,
the CEL-Unet test turns out to be the one that most frequently provides significant
differences against median values of all other groups. This, again, is true for all femoral
regions, but not for tibial plateau. Results of the test performed with CEL-Unet, as
before, never find significant difference with Unet+DistCE results distribution.
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Figure 6.8. Boxplot of Jaccard, Recall and Precision score distributions for segmented left

condyle.
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Figure 6.9. Boxplot of Jaccard, Recall and Precision score distributions for segmented femur

trochlea.
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Figure 6.10. Boxplot of Jaccard, Recall and Precision score distributions for segmented tibial

plateau.

6.3.3 Surface Analysis

In this section results of the distances between reconstructed and reference surfaces
are reported. This is a key-analysis for the purposes of this work, as it provides further
and more accurate information about the degree of similarity between the interested
structures under comparison. Since the cutting jigs manufacturing process relies on
the reconstructed surfaces of the bones, significant errors could bring to a mismatch
between the guide and the real anatomy of the patient, which could then lead to
a failure of the intervention. Maximum deviations from reference to reconstructed
surfaces are computed with Hausdorff distance, while an average value is provided by
the Root Mean Squared Error, for both global and local bone analyses. Results on
femur and tibia are reported in the boxplots in figures 6.11 and 6.12, while results of
localized surface analysis are presented in figures 6.13 and 6.14.

Outcomes of the surface evaluation of entire anatomies evidence how the CEL-Unet
tends to minimize both Hausdorff and RMSE with respect to all other tests. This
is achieved thanks to the strong focus on structures’ boundaries that is given to
such network during training with its double decoding path and the loss functions
used. The performances of each of the 6 tests are similar on femur and tibia for
both global and local analyses. There are slightly higher errors when tibial plateau
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Figure 6.11. Boxplot of Hausdorff distance for tibia and femur.
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Figure 6.12. Boxplot of root mean square error of surface distance for tibia and femur.

is evaluated alone, which demonstrates the criticity of this area. However, again,
CEL-Unet succeeds in decreasing these deviations with respect to other models.
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Figure 6.13. Boxplot of Hausdorff distance for left and right femur condyle, trochlea and

tibial plateau.
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Figure 6.14. Boxplot of root mean square error of surface distance for left and right femur

condyle, trochlea and tibial plateau.
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6.4 Training timings

This section is dedicated to the exposition and comparison of training timings for
the different models and loss functions. As a first consideration, it is worth to say
that the choice of training 3D models strongly affected the timings, since it is much
more expensive with respect to 2D model training. Anyway, 3D training boosted the
performances significantly, hence the choice was mandatory, if satisfactory results
were to be achieved. For what concerns Unet-based models, different loss functions
provide different training times, depending on the expensiveness of the computations
performed. Dice loss function was the fastest one, since it easily comprehends a first
multiplication of the soft mask output for the ground truth volume and a summation
of all voxel values then. Training with Focal, ExpLog and Double Cross Entropy losses
took a few more hours, because they required some further computations to be done
or some weight to be computed. Eventually, the Distanced Cross Entropy was surely
the most slow and complicated to train. Indeed, to obtain the DWM, it is necessary
to compute the Euclidean distance transform for each axial slice in the volume, which
is quite onerous. Also, since the final loss balances the contributions of the Distanced
Cross Entropy with the Dice loss, this last term still has to be computed and this fact
further increases the time needed.
Regarding the training process of the CEL-Unet architecture, it surely was the most
expensive and challenging one. As already mentioned in section 5.7, a workaround
was used to fit all stored data in memory during training thanks to TensorFlow’s
mixed precision policy, which in some cases also helps to speed up computations, if
specialized hardware for 16bits calculus are used. Anyway, the double decoding path
of CEL-Unet contributed to increase the number of computations and hence also the
training time. Furthermore, the two outputs produced by the network required a
double supervision, and the use of two losses again affected the timings. Eventually,
a great impact on the training time of the CEL-Unet was also given by the on-line
generation of contour-ground truth labels for the output of the Edge decoding branch.
This choice was forced by the impossibility of uploading the yet stored and previously
computed contour labels during training, because of memory constraints. Expensive
computation of the two losses for Mask and Edge output was also needed. Figure 6.15
shows the timings for each of the models, in terms of number of seconds needed to
complete an epoch of training.
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Figure 6.15. Comparison of training times for each model.

6.5 Back Analysis

After all models were trained and tested and all results were extracted to assess
segmentation accuracy, a back analysis was carried out, with the aim of better
understanding differences in models’ performances. Since the test dataset contains a
relatively small number of patient cases, it was possible to inspect volumes one by one
and to extract some cases of analysis that can be of particular interest for our purposes
and for future developments of either the present or similar work projects. Following
this approach, the idea was to visually reconstruct the segmented surfaces obtained
with each model, in order to compare them with each other and with the ground
truth surface. The tool developed highlights over- and under-segmented regions by
coloring each voxel according to its distance from the ground truth surface. This
allows to understand how different models are able to segment the anatomies in critical
locations that frequently correspond to the narrow intra-articular space, the area
around the tibial plateau or the area around the femur condyle. Fibula and patella
bones were excluded in this visual analysis in order to enhance the focus on femur
and tibia anatomies. Also, for visual reasons, one of the models was excluded. It was
chosen to exclude the one that provides the worst performance, which is the Unet
model trained with the Double Cross Entropy Loss.
In particular, two cases among the ones in the test set were carefully chosen and
are reported in this section: case patient 387 and case patient 391. Since it was
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infeasible to show all of them in this document, the criterion of the choice was to
show the examples that can provide evidences about how different models produce
different segmentation results. The case 387 represents one of the most challenging:
in figures 6.16 and 6.17, it is possible to notice how the shapes of tibia and femur are
strongly irregular and far from the physiological ones. Also, the intra-articular space
is almost absent, and this causes femur and tibia bones to come into contact, which
renders the segmentation even more complicated. Case patient 391, instead, shows a
more regular global anatomy of the two bones, but it presents a visible round-shaped
osteophyte, localized in the area between the medial and the lateral condyle. Hence,
it is interesting to see how the models consider this structure differently and to see
which one can provide the most realistic reconstruction. Again, posterior and frontal
views of ground truth and reconstructed surfaces of patient 391 are shown in figure
6.18 and figure 6.19.
Every voxel of the surfaces represented in the mentioned figures is colored according
to its distance from the target ground truth surface. A voxel is assigned a negative
distance value when under segmentation occurs. In this case, it takes a color in the
blue scale, where brighter blues correspond to a shorter distance, and darker blues
correspond to a longer one. On the contrary, the distance value is positive when the
anatomy is over-segmented, and voxel colors are picked, in this case, in the red scale,
with the same policy. The darkest red and blue colors correspond respectively to
positive and negative errors of 4 millimeters. Even if greater errors than 4 millimeters
are found in the segmentations, this value was chosen because it provides the most
comprehensive representation, allowing also the visualization of slightly over and
under-segmented voxels.
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Figure 6.16. Case Patient 387, posterior view. Top Left: reference surface. Top right: Unet

trained with Focal Loss. Middle Left: Unet trained with Dice Loss. Middle

Right: Unet trained with ExpLog loss. Bottom Left: Unet trained with DistCE

loss. Bottom Right: CEL-Unet trained with Combined Edge Loss.
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Figure 6.17. Case Patient 387, frontal view. Top Left: reference surface. Top right: Unet

trained with Focal Loss. Middle Left: Unet trained with Dice Loss. Middle

Right: Unet trained with ExpLog loss. Bottom Left: Unet trained with DistCE

loss. Bottom Right: CEL-Unet trained with Combined Edge Loss.
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Figure 6.18. Case Patient 391, posterior view. Top Left: reference surface. Top right: Unet

trained with Focal Loss. Middle Left: Unet trained with Dice Loss. Middle

Right: Unet trained with ExpLog loss. Bottom Left: Unet trained with DistCE

loss. Bottom Right: CEL-Unet trained with Combined Edge Loss.
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Figure 6.19. Case Patient 391, frontal view. Top Left: reference surface. Top right: Unet

trained with Focal Loss. Middle Left: Unet trained with Dice Loss. Middle

Right: Unet trained with ExpLog loss. Bottom Left: Unet trained with DistCE

loss. Bottom Right: CEL-Unet trained with Combined Edge Loss.
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To summarize these results in one sentence: the less the color, the better. With
a general overview, this tool can confirm and enforce results reported in the tables
with the target metrics. For both patient cases, the blueish color obtained in the
surface reconstructed with the Focal loss, evidences the tendency of this cost function
to under-segment anatomies. In the same way, the reddish color of the surface corre-
sponding to ExpLog loss suggests over-segmentation is generally present.
Focusing on case 387, this visualization allows to see that the segmentation in cor-
respondence of the tibio-fibular joint is often a bit rough and inaccurate. This is
caused by the fact that the space between the two bones has almost disappeared, as it
happens for the intra-articular space. For this reason, segmentation models sometimes
fail in finding the correct separation between the two anatomies. The same error
happens in correspondence of the patello-femoral groove, where part of the patella is
considered as femur and this fact produces over-segmentation voxels marked in red, as
it is visible in figure 6.17. On the other hand, in this case the Dice loss happens to be
way more conservative, by correctly excluding the patella from femur segmentation.
Nevertheless, it strongly under-segment femur trochlea, as represented by the visible
presence of blue voxels in that area. Additional misclassified voxels then are found
around femur condyle area.
For case patient 391, the main focus is given to the ostophyte located in the internal
area of the lateral femur condyle. This structure is not a part of any of the knee
bones, as it can be noted in the reference surface, but most of the models are fooled
by its appearance and tend to include it as part of the femur. On the other hand, it
is relevant to notice that the CEL-Unet model is able to recognize it as extraneous
and thus to achieve a more accurate result. In the frontal view instead, there are no
relevant errors to consider, as all models manage to produce a realistic reconstruction
of the bones.
A two dimensional comparison is also reported, which regards two significant axial
sections of the CT volume of case patient 391, one in correspondence of the femur and
one of the tibia. It is represented in figure 6.20 and figure 6.21 and it has the aim to
visualize how CEL-Unet outperforms the other trained models in correspondence of
these critical axial coordinates. In both figures, the yellow circles evidence the spots
where CEL-Unet model manage to improve segmentation accuracy, by identifying
small and tricky details that are missed by other analyses. In figure 6.20, these spots
regard the previously mentioned osteophyte and a corner of the patella. In figure 6.21
instead, the axial slices represent the terminal part on the top of the tibial plateau,
where the anatomy becomes strongly uneven.
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Figure 6.20. Case Patient 391, 2D slice showing femur and patella. Top Left: reference

segmentation. Top right: Unet trained with Focal Loss. Middle Left: Unet

trained with Dice Loss. Middle Right: Unet trained with ExpLog loss. Bottom

Left: Unet trained with DistCE loss. Bottom Right: CEL-Unet trained with

Combined Edge Loss.
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Figure 6.21. Case Patient 391, 2D slice showing tibial plateau. Top Left: reference segmenta-

tion. Top right: Unet trained with Focal Loss. Middle Left: Unet trained with

Dice Loss. Middle Right: Unet trained with ExpLog loss. Bottom Left: Unet

trained with DistCE loss. Bottom Right: CEL-Unet trained with Combined

Edge Loss.
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Chapter 7

Discussion

7.1 Main Findings

The present work was developed with the aim of inspecting the possibility of enhancing
segmentation results provided by classical state of the art deep learning model such as
the Unet. The approach chosen was to firstly find the most suitable loss function for
model training, and then to transfer this objective onto a new tailored architecture
to further boost accuracy of the results. Among all possible directions of research in
deep learning field, considered the clinical context of this work, the strong boundary
attention was taken as guideline and it brought to satisfactory results. For all bones
included in the analysis, the new method outperformed all other approaches and
succeeded in refining segmentation in the most critical areas. Localized evaluation
also clearly shows the improvements achieved with CEL-Unet architecture. This fact
can be taken as a proof that the development of current deep learning models has not
yet reached the bottleneck and that every punctual application can be tackled with
the most suitable solution to take results to the best.

CEL-Unet architecture arises from a very simple idea, and it is realized in a
straightforward way, which does not add any conceptual complexity to the model, as it
sometimes happens in the recent literature. This consideration gains importance in the
biomedical field, where the development of a deep learning-based marketable solution
needs to be evaluated and deeply discussed with physicians, who usually have no
expertise or technical competences on the topic. Simple, effective and understandable
solutions are in this case well-seen and usually preferred with respect to the more
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articulated ones. In our case also, interpretability of the model is gained, since it
produces a double output, that can be inspected and can provide additional clues
about hidden computations that lead to the final segmentation.
CEL-Unet was the only model trained with 3 depth levels, while all others Unet
models trained with the different loss functions were built with 5 levels of depth.
Despite this, CEL-Unet was able to outperform all others. This fact leaves a margin
for further boost the performances by trying to increase the depth, in the case greater
computational resources are available.

Patella and fibula were included in the segmentation of the knee joint anatomy,
more for scientific reasons than for clinical ones. As already mentioned actually,
patella and fibula do not take part in preoperative planning of TKR intervention, so
their reconstruction is less than needed. However, the choice was made to exploit at
best the available dataset, that also included label files for these anatomies, and to
test CEL-Unet on a more challenging task, with respect to the segmentation of just
the tibia and the femur. A qualitative analysis was performed and a few quick trials
(not presented here) were carried out which demonstrated that accuracy achieved on
tibia and femur is slightly increased, with the same architecture, when the patella
and the fibula are excluded from the segmentation. This can probably be explained
by the fact that the inferior number of classes reduces the amount of information to
analyze. Hence, given the fact that our network is neither very wide nor very deep,
this allows the hyperparameters to build a better representation of input data and to
achieve better results.

7.2 Comparison with the Literature

Many researches already demonstrated the feasibility of automated bone segmenta-
tion using deep learning and neural networks. In [48] authors present a CNN for
segmentation of the spine in CT scans, with a provided sensitivity of 97% and 3D
surface distance error of 7.4mm. The study was performed on a small dataset of 32
patients that strongly reduced the extent of the results. A Dice similarity coefficient
of about 97% regarding femur segmentation was recently reported in [31], with a
dataset of 150 patients. Differently from the present one, the work performed a binary
segmentation that just considers one single bone and used a dataset with a reduced
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inter-slice resolution of about 3mm. This can raise some doubts about the quality
of the 3D reconstruction attainable on the basis of such a segmentation. The Unet
architecture was also used in [32] for bone segmentation of 53 low-quality, whole-body
CT scans, and provided a dice score of 95%. However, the dataset was acquired with
a unique scanner, so the generalization of these results can be considered reduced. In
our work, we conversely used volumes acquired with four different scanners, namely
Philips, Canon Medical Systems, GE Medical Systems and Toshiba. Another specific
study used a lightweight Unet architecture for segmentation of pediatric hands in
X-ray images, reporting 94% of sensitivity.
Overall, it is possible to say that results of this thesis project are in line with the
presented literature. Besides, the mentioned researches in many cases apply for a
wider clinical context and usually do not show the same degree of pathological severity
found in the present work, which strongly contributes to make the task even more
challenging.

7.3 Technical Challenges

3D volume segmentation requires a huge amount of computational power and takes a
very long time to be accomplished. The shortest training process took six hours and
fifteen minutes, while the longest, which regards the CEL-Unet, took up to 65 hours.
Our resources relied on Google Colab platform, which is a great solution that provides
free GPU usage, but in a limited amount. For this reason, the mentioned training
times are actually lower than the real ones, which also comprehend all the forced
interruptions of the process, that had to be manually recovered. On Google Colab
indeed, continuous training can proceed for a maximum of 12 hours, after which the
user is disconnected and all stored data and allocated memory are lost. Progress of
all models was continuously saved during training and the latest was recovered after
an interruption occurred, in order to complete the procedure. However, this strongly
contributed to increase the time needed to reach the final number of epochs. Hence,
it was possible to evaluate the models only after some hours or some days of training,
which led to the difficulty of performing fast hyperparameter tuning and limited the
possibility of trying different configurations for each model.

Memory constraints were also very strict, mainly in the second part of this work,
where the CEL-Unet was developed and ready to be trained. The double decoding
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path increased memory requirements and made it necessary to use the mixed precision
TensorFlow policy, to store tensors in 16bits, when possible. The depth of the network
was decreased to 3 and the number of initial filters was maintained equal to 8, value
that influences the subsequent number of feature maps produced at each stage in
the network. This number is significantly lower than what is usually found in the
literature, but it also depends on the number of classes of the segmentation case. In
this work, it was decided to stick to this value without trying to decrease it, in order
to maintain a value which was higher than the number of classes (5) by a few units.
However, given that patella and fibula were found irrelevant for the present clinical
purposes, a segmentation including just 3 classes could be set, with a deeper network
and a lower number of initial filters. These configurations were not considered in this
work, due to time constraints caused by the extremely long training of CEL-Unet.
Maximum batch size was equal to 2, no bigger batches could be set without running
into memory overflow.
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Conclusions

In this thesis, a successful novel deep learning architecture is presented for segmentation
of the distal femur and the proximal tibia in patients with severe osteoarthritis, from
CT volumes acquired throughout different scanners. The task is challenging due to
the pathological conditions of the bones and to the high level of accuracy needed
to bring such automated solutions closer to the market. Together with the great
amount of research that is going on in this field, this work wants to underline the
strength and the effectiveness that deep learning-based systems can have as support
tools for clinical decision making, pre-operative planning and diagnosing. Results
obtained were shown valuable in terms of segmentation and surface reconstruction,
being comparable to results achievable by means of expert segmentation. The effort
to train dependable models can be great, but the advantages are surely huge.
Therefore, it is possible to argue that leveraging deep learning architectures in clinical
tools can help in reducing sensibly time and efforts for medical image segmentation,
still providing high accuracy and great reliability for performing pre-operative planning
of interventions such as PSI-based Total knee Arthroscopy.

8.1 Future Developments

The limitations of this work of thesis, mainly encountered due to time constraints,
leave much space for further developments of the present research. As mentioned,
the impossibility to perform a high number of trials on the proposed architecture
would suggest that a finer hyperparameter tuning could potentially push forward the
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segmentation performances even more. Besides, by increasing the numerosity of the
training and testing data more robust models and more reliable evaluations could be
reached.
Moreover, it would be interesting to test the proposed architecture on different
anatomies to see if satisfactory results can still be achieved. At the same time, the
CEL-Unet could be extended to the segmentation of MR images, that provide much
greater details on soft tissues with respect to CT scans.
In a broader perspective also, this segmentation model could be exploited to build a
tool for automatic segmentation, in order to support radiologists and to substitute the
tedious manual delineation or the use of expensive softwares. The rapidity with which
a deep learning model can produce segmentation outputs would speed up the process
and would just require a final editing of the segmentation, by the hand of an expert
operator. In a scenario in which the segmentation model could be deployed into a
marketable product, it would be of great interest and utility to direct the research
towards the so-called Interpretable Artificial Intelligence. Such solutions can provide
explanations, at a certain level, regarding how the model’s output is computed and
can therefore facilitate humans to trust information provided by these intelligent
algorithms.
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Acronyms

ANN Artificial Neural Networks

CNN Convolutional Neural Networks

OA Osteoarthritis

TKA Total Knee Arthroplasty

PSI Personalized Surgical Instrumentation

TKR Total Knee Replacement

PMT Patient Matched Technology

MLP Multi Layer Perceptron

CE Cross Entropy

DSC Dice Similarity Coefficient

TP True Positives

TN True Negatives

FP False Positives

FN False Negatives

FCN Fully Convolutional Network

EDT Euclidean Distance Transform

DWM Distance Weight Map

CEL Combined Edge Loss
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