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1. Introduction
With the term deepfake (DF), we refer to a cat-
egory of synthetic multimedia content generated
through Deep Learning (DL) techniques that de-
pict individuals in actions and behaviors that do
not belong to them. In recent years, the fast
development in this technology has made it in-
creasingly realistic and accessible, enabling pro-
ducing manipulated media that are almost im-
possible to distinguish from original ones. These
improvements result in exciting and futuristic
scenarios but also represent a potential tool for
malicious purposes. When misused, these tech-
nologies generate non-consensual adult material
and fake political news, access the victim’s per-
sonal information, commit fraud, and provide
support for voice phishing attacks.
Given this threat, there is an urgent need to de-
velop systems able to discriminate between au-
thentic and fake media. Several state-of-the-art
methods have been proposed to face this prob-
lem for both videos and audio content [5]. These
can be divided into two main groups. The first
one includes methods that focus on low-level sig-
nal features, looking for artifacts introduced by
the generators at the pixel or sample level. The
second one relies on more semantically meaning-

ful aspects and exploits high-level inconsisten-
cies to discriminate DFs, assuming their weak-
ness in emulating the finest aspects of the de-
picted content.
In this work, we propose a DF speech detec-
tor based on a semantic approach. We partially
take inspiration from the system presented in [1],
where face-swap DFs are identified by looking at
the mismatch between facial recognition static
cues and behavioral bio-metrics based on ex-
pression and head movement. Our scenario con-
siders speaker identification aspects and speech
prosody, defined as all the information present
in a speech signal but not specified in the text
(e.g., temporal variations in rhythm, intonation,
stress, style, etc.). This constitutes a basis we
can leverage to identify DF speech generated
via different technologies that may be flawed in
one semantic aspect or the other. We believe
that combining two semantic representations as
speaker-identity and prosody can model both
the voice’s physiological and behavioral charac-
teristics.

2. Proposed System
In this work, we propose a method for synthetic
speech detection named ProsoSpeaker. This an-

1



Executive summary Luigi Attorresi

Binary
Classifier

<latexit sha1_base64="uLGoRWjIsakTkgUIJyIvV7gewQ4=">AAAB83icbVC7TsNAEDzzDOEVoKQ5ESFRRTZCQBlBQ5lI5CElVrS+bMIp54fu9pCiKF9ACxUdouWDKPgXbOMCEqYazexqZydIlDTkup/Oyura+sZmaau8vbO7t185OGyb2GqBLRGrWHcDMKhkhC2SpLCbaIQwUNgJJreZ33lEbWQc3dM0QT+EcSRHUgClUnM6qFTdmpuDLxOvIFVWoDGofPWHsbAhRiQUGNPz3IT8GWiSQuG83LcGExATGGMvpRGEaPxZHnTOT60BinmCmkvFcxF/b8wgNGYaBulkCPRgFr1M/M/rWRpd+zMZJZYwEtkhkgrzQ0ZomTaAfCg1EkGWHLmMuAANRKglByFS0aaVlNM+vMXvl0n7vOZd1rzmRbV+UzRTYsfshJ0xj12xOrtjDdZigiF7Ys/sxbHOq/PmvP+MrjjFzhH7A+fjG4oQkYg=</latexit>y

Prosody 
Embedding 
Extraction

Speaker 
Embedding 
Extraction

<latexit sha1_base64="bjl6eZhK1BXHKI/bWPPyPAR0eP4=">AAAB/HicbVA9TwJBEJ3DL8Qv1NJmIzGxIneGqCXRxhIT+YhAyN4y4Ia9vcvunJFc8FfYamVnbP0vFv4X75BCwVe9vDeTefP8SElLrvvp5JaWV1bX8uuFjc2t7Z3i7l7DhrERWBehCk3L5xaV1FgnSQpbkUEe+Aqb/ugy85v3aKwM9Q2NI+wGfKjlQApOqXTbCTjd+YPkYdIrltyyOwVbJN6MlGCGWq/41emHIg5Qk1Dc2rbnRtRNuCEpFE4KndhixMWID7GdUs0DtN1kmnjCjmLLKWQRGiYVm4r4eyPhgbXjwE8ns4R23svE/7x2TIPzbiJ1FBNqkR0iqXB6yAoj0yqQ9aVBIp4lRyY1E9xwIjSScSFSMU67KaR9ePPfL5LGSdk7LVeuK6XqxayZPBzAIRyDB2dQhSuoQR0EaHiCZ3hxHp1X5815/xnNObOdffgD5+MbylyVqg==</latexit>x

<latexit sha1_base64="UGR6SNvoC14gwfttOmgFj7Dllyw=">AAACB3icbVC7TsNAEDyHVwivQEqaExESVWSjCCgjaCiDRB5SYlnnyzqccj5bd2tEZOUD+ApaqOgQLZ9Bwb9gBxeQMNVoZlc7O34shUHb/rRKK6tr6xvlzcrW9s7uXnX/oGuiRHPo8EhGuu8zA1Io6KBACf1YAwt9CT1/cpX7vXvQRkTqFqcxuCEbKxEIzjCTvGptGDK884M0mHlDhAdM45lXrdsNew66TJyC1EmBtlf9Go4inoSgkEtmzMCxY3RTplFwCbPKMDEQMz5hYxhkVLEQjJvOw8/ocWIYRjQGTYWkcxF+b6QsNGYa+tlkHtUsern4nzdIMLhwU6HiBEHx/BAKCfNDhmuRtQJ0JDQgsjw5UKEoZ5ohghaUcZ6JSVZTJevDWfx+mXRPG85Zo3nTrLcui2bK5JAckRPikHPSItekTTqEkyl5Is/kxXq0Xq036/1ntGQVOzXyB9bHN8B+mgs=</latexit>

fp

<latexit sha1_base64="pmygCE73M4fsHCYIi8kcsDorzOI=">AAACB3icbVC7TsNAEDyHVwgvQ0qaExESVWSjCCgjaCiDRB5SbEXnyyaccn7obo2ILH8AX0ELFR2i5TMo+Bds4wISphrN7Gpnx4uk0GhZn0ZlZXVtfaO6Wdva3tndM/cPejqMFYcuD2WoBh7TIEUAXRQoYRApYL4noe/NrnK/fw9KizC4xXkErs+mgZgIzjCTRmbd8RneeZNkko4chAdMdDoyG1bTKkCXiV2SBinRGZlfzjjksQ8Bcsm0HtpWhG7CFAouIa05sYaI8RmbwjCjAfNBu0kRPqXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8ql70cvE/bxjj5MJNRBDFCAHPD6GQUBzSXImsFaBjoQCR5cmBioByphgiKEEZ55kYZzXVsj7sxe+XSe+0aZ81WzetRvuybKZKDskROSE2OSdtck06pEs4mZMn8kxejEfj1Xgz3n9GK0a5Uyd/YHx8A8Uumg4=</latexit>

fs

<latexit sha1_base64="K2tK87XGFcjrOeKw1iXXYQijtws=">AAAB/HicbVC7TsNAEDyHVwivACXNiQiJKrIRAsoIGsogkYdIomh92YRTzmfrbo0UWeEraKGiQ7T8CwX/gm1SQMJUo5ld7ez4kZKWXPfTKSwtr6yuFddLG5tb2zvl3b2mDWMjsCFCFZq2DxaV1NggSQrbkUEIfIUtf3yV+a0HNFaG+pYmEfYCGGk5lAIole66AdC9P0yG03654lbdHHyReDNSYTPU++Wv7iAUcYCahAJrO54bUS8BQ1IonJa6scUIxBhG2EmphgBtL8kTT/lRbIFCHqHhUvFcxN8bCQTWTgI/ncwS2nkvE//zOjENL3qJ1FFMqEV2iKTC/JAVRqZVIB9Ig0SQJUcuNRdggAiN5CBEKsZpN6W0D2/++0XSPKl6Z9XTm9NK7XLWTJEdsEN2zDx2zmrsmtVZgwmm2RN7Zi/Oo/PqvDnvP6MFZ7azz/7A+fgGrjyVmA==</latexit>

f

Figure 1: Pipeline of the proposed ProsoSpeaker
system.

alyzes a given speech signal and determines if it
is authentic or has been synthetically generated.
Formally, given a discrete-time input speech sig-
nal x sampled with sampling frequency Fs, the
goal is to predict the associated label y such that

y ∈ {REAL,DF}, (1)

where REAL identifies authentic speech sam-
ples, while DF corresponds to speech that has
been synthetically generated, either using Text-
to-Speech (TTS) or Voice Conversion (VC) tech-
niques. Figure 1 shows the pipeline of the pro-
posed system. Starting from the input signal,
we extract two different types of high-level fea-
tures, which we will refer to as speaker (fs) and
prosody (fp) embeddings. Then, we concatenate
them and give as input to a binary supervised
classifier, which predicts the label y for the sig-
nal x. In the following, we provide additional
details about each step of the pipeline depicted
in Figure 1.

2.1. Speaker Embedding Extraction
The principle of VC algorithms is to operate
on pristine speech signals and modify their fre-
quency content to match a target identity. We
believe that this kind of forgeries could leave
traces in the speaker timbre quality that we
can leverage to perform synthetic speech de-
tection. We propose to do so through a fea-
ture set that describes each voice’s unique fin-
gerprint in a compact fashion, extracting the
spectro-temporal characteristics of the analyzed
spokesperson, i.e., timbre specific properties or
pitch contour of the voice. This feature set,
that we indicate with fs, is extracted exploiting
a state-of-the-art network, called ECAPA-Time
Delay Neural Network (TDNN) [2], originally

proposed for a speaker recognition task. The
proposed speaker embeddings can spot voice
anomalies and allow us to discriminate between
real and synthetic tracks generated through VC
engines, as we will prove in the results section.

2.2. Prosody Embedding Extraction
Complementary to the aspects described above,
we believe that high-level prosodic aspects, like
speech signal variations in rhythm, intonation
and style, constitute another aspect we can
leverage to discriminate deepfake speech tracks.
In particular, prosody measures an intrinsic hu-
man voice characteristic that we assume TTS
synthesis algorithms struggle at recreating. In
fact, despite the recent advances, synthetic
prosody has different quality and intensity w.r.t.
to human speech, and this difference can be cap-
tured using a set of prosody embeddings. This
assumption is later proved by the presented re-
sults. The prosody embedding vector fp we pro-
pose corresponds to the result of the reference
encoder of the model presented in [3], which we
will refer to as prosody encoder. This was origi-
nally introduced to improve the naturalness of
the voices synthesized by Tacotron enhancing
their prosody controls.

2.3. Binary Classifier
The final part of the ProsoSpeaker pipeline is a
supervised binary classifier, as it is shown in Fig-
ure 1. Here, we concatenate the two embeddings
fs and fp obtaining a final feature vector

f = [fs, fp] ∈ RNs+Np , (2)

which is fed to the classification stage. The su-
pervised classifier is trained to predict the class
y of the input speech x. It is worth noting
that any supervised classifier algorithm can be
used at this stage, as our pipeline is classifier-
independent.

3. Experimental Setup
In this section we provide the reader with some
insights on the evaluation setup used to assess
the performances of the ProsoSpeaker detector.

3.1. Dataset Description
We considered multiple datasets containing
tracks of both REAL (i.e., authentic) and DF
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(i.e., synthetic) classes, aiming to test the pro-
posed method’s generalization properties for al-
most 800000 tracks. We set the sampling fre-
quency Fs to 16 kHz during all the experi-
ments, hence if necessary, down-sampling the
audio tracks.
ASVspoof 2019/2021 are speech audio
datasets containing both real and synthetic
tracks. They have been released for the
ASVspoof challenges for the 2019 and 2021 edi-
tions. Here the participants compete to im-
plement the best anti-spoofing system for Au-
tomatic Speaker Verification (ASV). Regarding
the ASVspoof 2019 dataset, we consider the Log-
ical Access (LA) partition, further divided in
train, dev and eval, which includes spoofing at-
tacks generated through TTS, VC and TTS/VC
hybrid techniques. We consider train and dev
partitions for training and fine-tuning the pro-
posed method, while eval partition is used in
test. About the ASVspoof 2021 dataset, we con-
sider the DF partition for testing our method. It
has been built by processing with different lossy
codecs the data from ASVspoof 2019 LA eval set
and additional sources.
LibriSpeech is a dataset containing about 1000
hours of authentic speech from different speak-
ers. From this corpus we considered the subset
train-clean-100. We include audio tracks from
this dataset in the training set.
LJSpeech (LJS) is a dataset containing short
audio tracks of REAL speech recorded from a
single speaker. It is part of the test set.
Cloud2019 is a collection of TTS audio sig-
nals, synthesized by different speech generators
available as cloud services: Amazon AWS Polly
(PO), Google Cloud Standard (GS), Google
Cloud WaveNet (GW), Microsoft Azure (AZ)
and IBM Watson (WA). We include this dataset
in the test set as DF signals.
Interactive Emotional Dyadic Motion
Capture (IEMOCAP)(IEM) is a dataset
originally designed for the Speech Emotion
Recognition (SER) task. The data were
recorded during scripted and improvised conver-
sations by 10 actors. We include this dataset in
the test set as authentic signals.

3.2. Training
Our system involves the training of three inde-
pendent blocks: the ECAPA-TDNN network,
the prosody encoder, the final binary classifier.
Regarding the speaker embedding extractor, we
use a version of ECAPA-TDNN trained with
an Additive Margin Softmax Loss on VoxCeleb
1 and VoxCeleb 2 datasets. The final embed-
ding vector fs has dimension Ns = 192. For
the prosody embedding extractor, we train the
prosody encoder on Blizzard 2013 dataset, fol-
lowing the training procedure detailed in [3]. For
computational issues, we modify only one pa-
rameter value, the mini-batch size, that in our
training process is equal to 8. The resulting
embedding vector fp has length and Np = 128.
The final concatenated feature set is f of length
N = Ns +Np = 320. We standardize it using z-
score, i.e., removing the mean and scaling to unit
variance, and consider it as input to the binary
classifier. As supervised classification algorithm
we adopt a Support Vector Machine (SVM) clas-
sifier, following the training-development parti-
tion detailed in Section 3.1.

3.3. Baseline
To test the validity of our method, we compare
its performances with those of RawNet2 [4], a
state-of-the-art end-to-end neural network that
operates on raw waveforms. It has been first pro-
posed for the ASVspoof 2019 challenge and in-
cluded as a baseline in the ASVspoof 2021 chal-
lenge both for LA and DF tasks. We trained
it on the same training set we adopted for the
proposed method.

4. Results
In this section we assess the performances of
ProsoSpeaker detector, measuring the perfor-
mances of the method in terms of Receiver Op-
erating Characteristic (ROC) curves, Area Un-
der the Curve (AUC), Equal Error Rate (EER),
balanced accuracy and confusion matrices. All
the models presented in the following have been
trained on the same dataset, obtained by the
union of ASVspoof 2019 LA and LibriSpeech, as
described in Section 3.1.

4.1. Baseline comparison
As a first experiment, we compare the results
obtained using the proposed method with those
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Figure 2: ROC curves for the proposed method
and the considered baseline, evaluated on
ASVspoof 2019 LA eval set.

of the considered baseline on the LA eval par-
tition of the ASVspoof 2019 dataset. Figure 2
shows the ROC curves of the two detectors
together with the corresponding AUC values.
ProsoSpeaker detector outperforms the base-
line in the considered metrics, improving by al-
most 2 over AUC. The EER and balanced accu-
racy improve too, going from 8.15% and 91.66%
with RawNet2, to 5.39% and 94.43% with our
method, respectively.

4.2. Embedding analysis and ablation
study

In this second experiment we analyze in detail
the characteristics and the importance of each
embedding subset, namely the prosody embed-
dings fp and the speaker embeddings fs, used in
ProsoSpeaker method.
The first question may be how much speaker
and prosody embeddings differ from each other
to avoid the computation of redundant informa-
tion. To do so, we measure the sample Pearson
correlation coefficient rfifj for each pair of ele-
ments (fi, fj) of the vector f = [f0, f1, ..., fN−1]
over the test dataset. The resulting matrix
Rff describes both cross-correlation between
prosody and speaker embeddings Rfsfp = RT

fpfs
both auto-correlations of each embedding vec-
tor Rfpfp and Rfsfs . Figure 3 shows the re-
sults of this analysis computed in the ASVspoof
2019 eval partition. The diagonal has been set
to 0 for visualization purposes. There, we can
identify two rectangular regions, one at the top
left, corresponding to Rfsfs , and one at the bot-
tom right, corresponding to Rfpfp . Although
the elements of fp have a higher degree of in-
ternal correlation than those of fs, with mean
value µ(Rfpfp) = 0.21 and standard deviation
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fs

Figure 3: Cross-correlation matrix Rff of feature
vectors f realizations of ASVspoof 2019 eval set.

σ(Rfpfp) = 0.08, respectively, the cross coeffi-
cients present low values, with an average value
of µ(Rfsfp) = 0.07. This means that the two em-
bedding vectors do not strongly correlate with
each other and do not share much information.
The spectro-temporal and prosodic characteris-
tics we are considering have turned out to be
orthogonal to each other, benefiting our detec-
tor.
Given these results, we test how the embedding
types perform individually in different scenar-
ios. In this analysis, we consider three distinct
models, all based on the proposed architecture,
differing only for the embeddings subset that the
final SVM classifier receives as input. The first
model, that we indicate with Prosody Emb., is
fully-prosodic and based on fp only. The second
only considers the speaker information of fs and
we indicate it as Speaker Emb. The third model
is the complete one, i.e., ProsoSpeaker, and it
performs classification using the concatenation
of fp and fs. All three models are trained on
the same dataset, i.e., ASVspoof 2019 + Lib-
riSpeech, with the same parameters. We then
considered three test scenarios, depending on
the synthesis techniques used to generate the
synthetic speech signals of the test set. In the
first scenario (a) we consider only speech tracks
created with TTS techniques; in the second sce-
nario (b) only speech tracks created with VC
techniques; in the third scenario (c) both synthe-
sis techniques are considered. All the tracks for
the three scenarios are selected from ASVspoof
2019 dataset. Figure 4 shows the binary clas-
sification performances of this analysis in terms
of ROC curves and associated AUC values ob-
tained for the three models in the three test sce-
narios.
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(a) TTS
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(b) VC
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(c) ALL

Figure 4: ROC curves obtained for the three models using different embeddings (ProsoSpeaker, Speaker
Emb., Prosody Emb.) and tested on the three scenarios (TTS, VC, ALL).

The predictions of the two partial models are or-
thogonal to each other and each performs better
on a distinct scenario. In particular, prosodic
embeddings fp can discriminate speech signals
generated with TTS algorithms well but are less
effective with VC methods, while speaker em-
beddings fs achieves better results in the VC case
than TTS. From these results we can confirm our
initial hypothesis, i.e., that each one of the two
speech generation techniques fails in reproduc-
ing one of the semantic features encoded by fs
or fp. Nonetheless, the fusion of the two embed-
dings improves the predictions in all the consid-
ered scenarios, reaching an AUC = 0.99 in the
case of the complete dataset. We can conclude
that the concatenation of the two embeddings
provides a more comprehensive and significant
representation of the input speech signal, lead-
ing to higher binary classification performances.

4.3. Generalization
In this third set of experiments, we aim to ana-
lyze the consistency and generalization ability of
the proposed method by augmenting the consid-
ered test set. First, we verify the performances
of the proposed detector singularly on each al-
gorithm present in ASVspoof 2019 eval to check
the classification performances consistency over
different synthesis strategies. Then, we want to
assess ProsoSpeaker ’s generalization capabilities
across multiple datasets, unseen during training
and external to the ASVspoof challenge corpora.
Figure 5 shows the percentage of correct attri-
bution values obtained for each synthesis algo-
rithm included in ASVspoof 2019 eval set (A07,
A08, ..., A13) and for LJSpeech, IEMOCAP and
Cloud2019 (divided in PO, AZ, GS, GW, WA).
The label AU corresponds to real speech samples
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Figure 5: Bar plot of the percentage of correct
attribution values of the proposed model on each
partition of each considered dataset.

distributed in ASVspoof 2019. The proposed
method is successful in almost all the considered
cases, with a percentage of correct attribution
value always higher than 0.80. This means that
ProsoSpeaker has good generalization capabili-
ties, and we can consider it a reliable method.
The only exception is represented by the TTS
generator IBM Watson, included in Cloud2019,
where the accuracy is equal to 0.50. We be-
lieve this issue is due to the fact that the IBM
TTS method is specifically trained considering
a “prosodic-phonolog” approach for generating
expressive speech, hence deceiving our detection
method.

4.4. Robustness analysis
Some additional tests are finally necessary to
verify the robustness of the proposed method
to common signal manipulation, i.e., compres-
sion. In fact, in a real-world scenario, many op-
erations can be performed to hide the artifacts
introduced by deepfake generation algorithms,
like, for instance, lossy compression. Some sig-
nal information is lost by compressing an au-
dio track, including traces that may help deep-
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Figure 6: ROC curves of the proposed method
and the considered baseline computed on
ASVspoof 2021 DF eval set.

fake detectors determine the signal’s authentic-
ity. Since our method does not rely on low-level
signal characteristics but analyzes semantic fea-
tures, we hypothesize that compression should
not affect its performance significantly. In prac-
tice, speaker and prosody embeddings should
be only partially impacted by this type of data
augmentation and keep their discriminative po-
tential. We test such aspect on the DF parti-
tion of ASVspoof 2021, which comprises more
than 600000 tracks from both REAL and DF
classes, compressed with different codecs to sim-
ulate VoIP transmission. In this case, compared
to the previous, we are not aware of which au-
dio manipulation technique or parameters have
been applied to the analyzed tracks. ProsoS-
peaker method results are reported in Figure 6,
together with those of the considered baseline.
Our method performs significantly better with
a difference of ≈ 7% on AUC compared to
RawNet2. Similarly the EER improves by about
7%, going from 24.15% with RawNet2 to 17.16%
with our method, while the balanced accuracy
improves less, from 76.64% to 80.16%. The
overall performance improvement on the base-
line is even more significant than that obtained
on ASVspoof 2019, proving great robustness of
our method in a realistic and challenging sce-
nario.

5. Conclusions
In this work we presented a novel method to
perform DF speech detection based on high-
level features. We have shown that the per-
formance of the proposed system outperforms
those of the state-of-the-art considered base-
line. In addition to that, it presents good
generalization properties and is robust to real-

world audio manipulation, such as lossy com-
pression. Moreover, through an ablation study,
we observed how speaker and prosody embed-
dings perform individually in different scenarios
and why their combination is the more effective
strategy, achieving higher classification perfor-
mances. The obtained results validate the idea
of exploiting semantic features to discriminate
deepfakes and highlight some of the aspects on
which speech generators still fail.
Further studies may focus on improving the ex-
traction of speaker and prosody embeddings to
obtain a more discriminative and robust repre-
sentation of the two semantic features or include
additional features in the analysis, being them
semantic or not.
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