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1. Introduction
A typical Pressurized Water Reactor (PWR)
core is composed of several fuel assemblies (heat
source) around which water flows (heat drain)
to moderate the neutron flux and cool down the
fuel assemblies. Disturbances to the nominal
fluid flow patterns, for example, due to natural
catastrophes such as earthquakes, could highly
affect the criticality of the reactor core and ac-
cordingly its safe operation. The typical spacing
between the reactor fuel rods in each assembly
is around 3 mm: during an earthquake, vibra-
tions may cause two fuel rods of coming into
contact and thus disturb the moderator axial
flow. Hence, the study of flow field patterns
and fluid-structure interactions (FSI) under seis-
mic conditions is of high importance to guaran-
tee the safe operation of the reactor even un-
der these extreme conditions. Typically, mod-
erator flow patterns and parameters are stud-
ied using vendor-specific design codes which are
usually either 1D models based on best estimate
system analysis or, in some cases, CFD analy-
sis integrated with 3D CAD models. While 1D
codes exhibit some limitations when studying

local effects and disturbances, CFD codes are
quite accurate but very expensive for modeling
and computational POV. Experimental measur-
ing techniques like Particle Image Velocimetry
(PIV) have been applied and shown great suc-
cess [1].
PIV has shown many advantages, among which
are its usability between fuel bundles in tide ge-
ometries, its capability of resolving the velocity
field into its components, and its relatively low
computational cost. The key working principle
is to make the fluid motion visible and that in-
volves three major steps: 1) feed the flow with
seed particles that are light reflecting; 2) illumi-
nate the flow with a light sheet (typically a laser
sheet); 3) record particle movements using cam-
eras. In this study, we treat data obtained from
the deployment of time-resolved PIV between
two PWR surrogate bundles [1]. Being a time-
resolved data measurement technique makes it
ideal for our study since our final goal is to use
the measured data to achieve field reconstruc-
tion and forecasting. Such measurements are
interpreted using a cross-correlation algorithm
and stored in high-dimensional arrays. Those
high-dimensional data arrays are not easy to an-
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alyze and the use of model reduction techniques
is highly important.
When modeling complex systems, is useful to re-
duce them to a tractable form i.e. achieve low
dimensionality. This is usually done through the
use of model-based algorithms that relies pri-
marily on the projection onto low-dimensional
subspaces of the system’s governing equations
to follow its dynamics. However, in situations
where the governing equations are not known
or not well formulated, the use of Data-Driven
Models (DDM) is preferred. In such models,
the knowledge of the system’s underlying equa-
tions is not a necessity. An example of such
an approach is Dynamic Mode Decomposition
(DMD). To model a system using DMD the only
requirement is to have a series of snapshots, ei-
ther coming from some high-fidelity model or
directly from experimental data, of the system’s
variables of interest, taken at points in time,
dense enough to resolve the transient dynam-
ics of interest [2]. The algorithm decomposes
the dataset into a group of low-dimensional dy-
namic modes, that can then be used to map the
entire system and for future data prediction.
The main challenge faced when treating high-
dimensional data is the need for model-reduction
techniques that can overcome the presence of
measurement noise and are capable of field re-
construction and forecasting. Unfortunately,
DMD is highly biased to noise, and in its stan-
dard form it can only treat clean or weakly
noised data: as the noise in the measurements
increases, the algorithm fails to capture the sys-
tem dynamics [4]. In our study, we used an en-
hancement to the exact DMD algorithm known
as Bagging-Optimized Dynamic Mode decompo-
sition (BOP-DMD) [4]. The study presented in
this paper includes applying the BOP-DMD al-
gorithm to velocity fields for the purposes of re-
construction and forecasting, comparing the ob-
tained results to those from exact DMD. Ad-
ditionally, the different fields were investigated
in the presence of noise and after de-noising to
study the effect of noise on reconstruction. The
study confirms the reliability of the BOP-DMD
technique in the reconstruction and future pre-
diction of high-dimensional field behavior.

2. Dynamic Mode Decomposi-
tion

One of the most recent data-driven model-
ing techniques is dynamic mode decomposition
(DMD), which can be considered as a combina-
tion in its formulation of the proper-orthogonal
decomposition (POD), and Fourier transforms
[2]. The former is a spatial reduction technique
while the latter is a transform in the time do-
main. In this subsection, we will try to briefly
explain the algorithm behind the DMD [2].
Any dynamical system can be represented by the
following non-linear relation:

dX/dt = F (x, t) (1)

x is measurable in time and belongs to the
high dimensional space Rn. The goal is to ap-
proximate this nonlinear system into an easier-
solvable linear one. Hence equation 1 can be
rewritten as

dX/dt = AX (2)

If we assume that X satisfies the Eigenvalue
problem X = γ expλt, and λγ = Aγ, then its
solution can be obtained with a simple knowl-
edge of the initial condition X0

X(t) =
n∑

k=1

ϕk exp(ωkt)bk = Φexp(Ωt)b (3)

where ϕk and ωk are the eigenvectors and eigen-
values of the matrix A, and bk is the loading of
the initial X0. Mathematically speaking, the ar-
chitecture of the DMD is based on finding the
operator that maps our data matrix X from a
current state in time to its future projection,
such that

Xk+1 = AXk (4)

A is the mapping matrix, it is a linear time-
independent operator having the same dimen-
sions of the data matrix X, and it has the capa-
bility of mapping matrix X from a current state
K to a future state K+1 Where

A = exp(A∆t) (5)

and the solution to the system can be expressed
in terms of the eigenvalues λk and the eigenvec-
tors ϕk of the mapping matrix A as

Xk =
r∑

j=1

ϕjλ
k
j bj = ΦΩkb (6)
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Such that the first mode can be expressed as
X1 = Φb. Hence, the DMD algorithm finds a
mapping matrix that maintains a least square
fit

||Xk+1 −AXK ||2 (7)

A full description of the DMD architecture can
be found in the book of Dynamic Mode Decom-
position by Kutz [2].
The DMD method is highly successful in data
reconstruction and forecasting, however, as men-
tioned above, it has some limitations; it allows
noise propagation, and hence if dealing with
highly noised data DMD fails to capture system
dynamics.

3. Bagging-Optimized Dynamic
Mode Decomposition

Since fluid field measurements could be highly
noisy, the use of regular DMD is not much reli-
able, as it has shown a biased behavior towards
noise which makes accurate data reconstruction
impossible. An enhancement has been made to
the exact DMD algorithm to make it capable of
the analysis of noisy fields, known as bagging-
optimized dynamic mode decomposition (BOP-
DMD). This data-driven modeling technique de-
pends on the statistical method of bagging which
improves the forecasting accuracy of DMD even
in the presence of noise and provides uncertainty
quantification for the reconstructed fields. As an
ensemble method, bagging is a variance reduc-
tion technique for a given process that may in-
volve variable selection or linear fitting. Follow-
ing [4] the algorithm was developed by Sashid-
har and Kutz as a modification to a previously
developed one (optimized DMD) featuring three
additional characteristics: 1) initialization pro-
cedure to stabilize the variables projection al-
gorithm; 2) statistical bagging scheme to reduce
variance and stabilize the models; 3) uncertainty
quantification for temporal and spatial profiles.
These three features make BOP-DMD a suc-
cessful DDM for highly noisy data and high-
dimensional fields.
The input for the BOP-DMD algorithm is the
original data matrix X, the number of trials k,
and the randomly selected indices p. First, the
Opt-DMD algorithm is run on the full data ma-
trix to get the eigenvalues λopt which will be
used as initial conditions for the BOP-DMD al-

gorithm. Using this initial condition, the algo-
rithm is run for k trials to obtain subsets of the
original data matrix X(k) which are generated
by choosing p randomly selected column indices
of the original data matrix X. At this point,
bagging is introduced and the obtained eigen-
values λk, DMD modes ϕk, and their loadings
bk are used as initial conditions [4]. Once the fi-
nal eigenvalues, DMD modes, and their loadings
are obtained, the algorithm proceeds similarly to
that of the exact DMD discussed in 2.

4. Experiment
The data used in this analysis is obtained from
the ICARE experimental facility, the experiment
involved the implementation of the PIV tech-
nique explained earlier to the fluid field under-
study to obtain field measurements. A detailed
description of the experimental facility is pre-
sented by Capanna and Longo in [1]. In the
experiment, the flow was loaded with the high
florescent seed particles, and the motion of those
particles is used to calculate field parameters
such as velocity and vorticity. The flow was illu-
minated using the thin laser sheets which were
carefully introduced in between bundles to al-
low visualization of field motion in the tide ge-
ometry. The motion is recorded using a sam-
pling time of 2 seconds per cycle: the optical
axis was kept in between bundles and the cam-
era was allowed to move axially. Multiple runs
were recorded to increase the number of forcing
cycles and achieve statistical convergence. The
bundles are excited using the hydraulic jack at a
5 Hz frequency with an excitation amplitude of
1.7 mm, resulting in fluctuations in the velocity
field due to bundle movement. The PIV cross-
correlation algorithm is DAVIS 10.3 from LaVi-
sion, Inc. with an interrogation window of 32 by
32 pixels allowing a spatial resolution of 0.4 mm.
It should be noted here that there is a level of
uncertainty in the obtained data from the lack
of use of a calibration target and hence, the re-
sults obtained from the experiment are treated
as qualitative [1].

5. Methodology and Results
5.1. Data acquisition and treatment
The analysis includes four different experiments
where the difference between each is in the ex-
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citation amplitude and frequency: the first ex-
periment is at an excitation of 0.5 mm at 3 Hz;
the second is at an excitation of 0.5 mm at 8.06
Hz; the third is at an excitation of 1.7 mm at
1 Hz; and the fourth is at an excitation of 1.7
mm at 14 Hz. The measurements are recorded
in a 3D matrix having the size x-coordinate by
y-coordinate by time steps (46-by-42-by-12812).
The measured parameters are; the instantaneous
transversal velocity, instantaneous axial veloc-
ity, transversal velocity unaveraged, axial veloc-
ity unaveraged, the vorticity of the velocity field,
and the Turbulent Kinetic Energy (TKE), each
recorded in each cell of the domain and for each
time step. In our analysis, we will only discuss
in detail the axial velocity field from the first
experiment (excitation of 0.5 mm at 3 Hz) for
the sake of brevity and we will display results
obtained from the analysis of the other fields for
comparison. The code used in this analysis is the
BOP-DMD code developed and run using MAT-
LAB. First, we start by applying singular value
decomposition (SVD) to the data matrix (Vy)
to obtain the number of modes to which we will
reduce our problem and obtain the best fit. To
decide the dimensionality of the low-dimensional
space, we use the eigenmodes of the matrix vs.
the inverse of their energy content as shown in
Figure 1: for our purposes, an acceptable num-
ber of modes is the one achieving around 90% en-
ergy content, and in our case, it was found to be
3 modes. The number of cycles (trials) and the
number of the randomly selected column indices
were decided to be 100 and 50 respectively: the
choice of both values was arbitrarily based on a
trial and error basis to achieve the best fit at the
lowest computational cost possible. It should
be noted here that non-linearities in the treated
data were ignored. Also, the use of the BOP-
DMD algorithm doesn’t require a monotonous
hyper-parameter search process, only the choice
of the rank using SVD was necessary, and the
rest of the parameters (ex; time step) were arbi-
trary due to the analysis of experimental data.
The optimized-DMD code was first to run to ob-
tain initial values of the DMD eigenvalues, DMD
modes, and their loadings which act as seeding
fed to the BOP-DMD algorithm. The algorithm
was then run for several cycles: at each cycle,
it updates the seeding parameters, and by the
final cycle improved DMD eigenvalues, modes,

and loadings are obtained. The algorithm pro-
ceeds similarly to the exact DMD where a distri-
bution for forecasting and reconstruction is ob-
tained. It should be noted here that since we
are dealing with highly noised fields, we use the
fast Fourier transform for de-noising to obtain
better results (as will be discussed in the follow-
ing). Validation is performed by comparing the
reconstructed field to the experimental one.

Figure 1: Eigenmodes of the instantaneous
transversal velocity Vy V.s. the inverse of their
energy content

5.2. Reconstruction and validation
The reconstructed field satisfies equation 6.
Here the DMD eigenvalues, DMD modes, and
their loadings are taken to be the mean values
over the single DMD eigenvalues, DMD modes,
and their loadings obtained from each cycle.
It should be noted here that the reconstructed
field can later be used as a training data matrix
for achieving accurate forecasting. Validation is
done by comparing the reconstructed field to the
original field of axial velocity. The comparison
was performed in a 2D plot as shown in Fig-
ure 2. The figure shows the axial velocity field
taken at a fixed time point (T=1). The blue
lines represent the original data field, while the
red lines represent the reconstructed one using
BOP-DMD. The plot shows a null axial velocity
field at the peripheral regions and then follows
a decreasing behavior and then a semi-constant
one at mid-regions. The semi-constant behavior
is quite reasonable since the plot was taken at an
initial time point where the flow field wouldn’t
have acquired enough momentum to show varia-
tions in its axial velocity. The figure also shows
that both the original and reconstructed fields
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follow the same trend however a variation is
present in the mid-regions.

Figure 2: 2D plot of the reconstructed axial ve-
locity and the experimental one at T=1, Y=1

Figure 3 shows the reconstructed field and the
original field after removing the noise com-
pared at different time steps and positions. De-
noising was performed using a fast-Fourier trans-
form and was confirmed using wavelet analysis.
By studying the plot shown in Figure 3, the
sharp decrease in the peripheral regions is now
smoother. Also, the reconstructed field is not
completely constant in the mid-regions but ex-
periences some level of small variations. Figure 3
also shows the axial velocity field (reconstructed
and original) fixed at Y=10 and T=10: the dis-
crepancies between both the reconstructed and
the original field at different time steps and posi-
tions have experienced serious reductions rang-
ing from 0.2% up to 6.5% which is almost half
of those in the presence of noise.

Figure 3: Line plot of the reconstructed axial ve-
locity field and the original field after de-noising
at T=1, Y=1, and T=10 Y=10

6. Efect of Noise
It is evident that the presence of noise can af-
fect the accuracy of the reconstructed field. For
the exact DMD, the algorithm fails to capture
system dynamics at final time points, while for

BOP-DMD the presence of noise increased vari-
ations between both reconstructed and origi-
nal fields to two times its value without noise.
Figure 4 shows both reconstructed and origi-
nal fields in the presence of noise and after de-
noising; clearly, the reconstructed field shows
better agreement with the original field after de-
noising was done, the advancement of FFT as
a noise filtering technique is that it smoothens
the signal and removes fluctuations (noise) while
barely causing any distortion to the original
field.

Figure 4: Reconstructed and original fields in
the presence of noise (right) and after de-noising
(left)

Figure 5: PSD vs. Frequencies for the axial ve-
locity field

For the treated data in this study, the noise is
either systematic from the measuring equipment
or arbitrary due to the lack of use of a calibra-
tion target during the experiment. In all cases,
de-noising of the reconstructed fields was per-
formed using FFT (fast-Fourier transform). Fig-
ure 5 shows the PSD (power spectral density)
plotted against the frequencies, we can see the
minor peaks following the central peak, those
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small peaks represented noise and were cut out.

7. Results from Other Fields
The analysis also included other fields, for exam-
ple, the transversal instantaneous velocity was
studied and is shown in Figure 6 where the re-
constructed field is plotted against the original
field after de-noising using FFT.

Figure 6: Reconstructed and real transversal ve-
locity field

Figure 7: Reconstructed vorticity

This analysis also included the reconstruction
of the vorticity field. The vorticity reconstruc-
tion process involved using the fabricated axial
and transversal velocity fields obtained from the
BOP-DMD reconstruction algorithm. Following
equation 8 the vorticity field Ω is given by the
curl of the velocity field U.

Ω = ∇× U (8)

The reconstructed vorticity was compared to the
original vorticity field obtained from direct mea-

surement both after de-noising and are shown in
Figure 7.

8. Conclusions
The BOP-DMD method when used for data
reconstruction of high-dimensional fields shows
a high level of accuracy. In this study, the
method was tested on high-dimensional and
highly noised fields and has proven its superi-
ority over the exact DMD method. Also, the
method is relevant for any high-dimensional field
and does not require tedious hyperparameter
tuning, it can be used for future data predic-
tion and can highly reduce the computational
cost when treating high-dimensional complex
fields, which we intend to use as part of future
work. The use of a noise filtering technique on
the reconstructed fields (FFT or wavelets anal-
ysis) can highly enhance reconstruction accu-
racy, especially when dealing with systematic
noise. Another helpful approach, that was not
presented here, is to apply FFT to the train-
ing data. Alternatively, noise can be studied
through another approach named “DMD with
control” as in the work of Proctor, Brunton, and
Kutz [3] which can be studied in future works.
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