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Abstract

The aim of this work is to develop both theoretically and practically an alternative
model for the simulation of thin �lm problems. In order to achieve a new set of
equations, shallow water techniques are implied, due to the physical similarities of
the two phenomena, which consist in the averaging across the thickness, divided
in N layers, and the elimination of some terms through asymptotic analysis. In
addition to the renowned primitive equation (PE) hypothesis, it is presented an
alternative assumption, which includes a dissipative viscous part, named primi-
tive equation with vertical viscosity (PEV2). Recent numerical schemes, such as
Kurganov central upwind, are then used for the �nite volume discretization of the
governing equations. The resulting system is implemented as an add-on to the
open-source C++ code for computational �uid dynamics simulations SU2. The
software is �nally validated against cases well known in literature, like Nusselt
solution or dam break problem.
Keywords: thin �lms, shallow waters, multilayer, Kurganov, SU2.
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1 | Introduction

The �ow of thin �lms is a subject which �nds applications in a huge vastity of scienti�c �elds,
spanning from biophysics, where it can model the liquid membrane manifested during the blink
of an eye [1], to geology, simulating the dynamic of large scale lava or continental ice sheet
[2]. Even more are the engineering and industrial processes in which thin �lms are used for
approximating the reality. For example, such model, used in the aerospace framework of the
de-icing of aircraft wings [3], allows to predict where the �lm may freeze, and thus prevent
serious consequences. Thin �lms are also found in diesel direct injection engines to account for
non-vaporized fuel deposited on the head of the piston in the combustion chamber, as studied
to a series of articles [4]-[5] published at the end of the nineties by Stanton and Rutland.
The dynamic of the liquid can be originated by various forces, such as gravity, capillarity or
the shear of another �uid, and the consequent motion may present interesting features, for
example regular or chaotic responses and, most importantly, shock and periodic waves. These
considerations illustrate the reason why thin �lms arouse a great interest from the physical and
mathematical point of view, but they also entail many complications from the modeling and
the numerical prospective. The principal issue is caused by the non-linearity of the advection
term in the mean evolution equation, which is the most commonly used treatment reserved to
situation where one dimension is much smaller than the others. Indeed, starting from classical
Navier-Stokes equations and following an approach similar to the one used in lubrication or in
shallow waters, the unknown quantities are averaged across the direction in which the liquid
result more subtle. Doing so, the mean of the product of the advected variables is obtained,
which clearly cannot be immediatly substituted with the multiplication of the two separete
mean unkowns. Most of the articles and research studies apply the same tecnique, which con-
sist in the expansion of the aforementioned non-linear terms to obtain a closed model.
As exempli�cation of such method, we summarize the work done by Lavalle in its Ph.D. thesis
[6]. In its discussion, each component of the velocity is approximated as the sum of functions
corresponding to long waves of arbitrary amplitude, as �rst introduced by Benney in [7]. It
is then chosen the desired accuracy order and the expression are substituted in the boundary
layer set of equations. Integrating along the depth the equations allows to solve complex wave
dynamics on falling liquid �lm, making possible to retrieve the streamwise velocity pro�le. It
is interesting to stress that this procedure is boundary condition dependant, which are substi-
tuted during the integration process. Once the pro�le is computed, the non-linear term can
be expanded obtaining, as one can imagine, an extensive sum of linear terms. In additon, the
problem must be closed inserting the previous result for the velocity in the expression of the
wall shear stress.
The procedure described, even if presented brie�y and only in its key points, highlights the two
main constraints of this approach. Firstly, the equations to be solved appear complex and often
need much longer expression to increase the order of accuracy. The second, and most important
issue, is the loss of generality due to the insertion of boundary conditions in the calculation of
the pro�les. The aim of this thesis is therefore to present an alternative strategy to remove
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the non-linearity complication in an arbitrary way. The idea is to borrow from the shallow
water theory, which shares similar hypothesis with thin �lm, the so-called multilayer method.
The entire �lm heigth is divided in a number of layers, which still are fewer than an actual
discretization in normal direction to save computational time, and on each of them the whole
set of equations is resolved. This technique allows to exchange mean and product operations
thanks to the smaller approximation error with respect to an integration along the complete
thickness.
However, before arguing on the mathematical peculiarities, a general overview on the possi-
ble cases and application is presented in Chapter 2, which includes the hypothesis assumed
throughout the whole discussion. To follow as much as possible a common thread between the
shallow water and thin �lm world, the forces acting on the �uid taken into consideration are
reduced to the shear of a gas interacting with the liquid and to the contribution of gravitational
e�ects. The introductory section covers also the geometrical settings and restrictions to the
problem faced by this work. Chapter 3 analizes the mathematical model developed accordingly
to the multilayer technique and explains the two di�erent assumption for the pressure typical
of shallow water and their adaptation to this context. The fourth and �fth Chapters are mainly
focused on the numerical method applied, which joins the recent work of Kurganov for the con-
vective part with ad hoc discretization for viscous and source terms, and on the implementation
of the extension of SU2, the CFD open source software born at Stanford University, which will
take care of the envoirment outside the �lm. Lastly, the resulting mechanism is validated and
analized on known test cases.
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2 | Problem Description

A thin �lm is a layer of �uid, typically liquid, which is deposed, sprayed or even created by
melting on a surface. As hinted in the introduction, thin �lm theory and the study of its
dynamics �nds applications in countless �elds, therefore it is an hard task to summarize all
possible cases and even more di�cult to propose a general model which takes into account
every possible scenery and external contribution. In fact, even nowadays, many aspects related
to thin �lm dynamics have not been clari�ed yet. On the other side, it is proper to present
some phenomenology related to liquid �lm and to argue which hypothesis has been taken in
consideration for this work as well as the reason behind the sempli�cations made.

2.1 Examples of Film Dynamics

There are many contributions to the dynamics of a liquid �lm and modeling them all would
raise dramatically the complexity of the mathematical description. Therefore, as observed in
Forte's PhD thesis [13], we state that the principal causes which allow the motion of a �lm can
be summarized in the following list:

• Transport under the action of volumetric forces or shear stresses coming from the inter-
action with the world outside the �lm with the its surface.

• Variations of the momentum due to impingement of liquid drops, which can result in very
di�erent phenomena.

• Heat transfer with the wall or the surrounding gas and possible phase transition of the
�lm itself or even of the solid bottom.

All those contributions can be visually represented and schematized in Fig. 2.1, which helps to
have a clearer picture of the situation. In the following subsections each element listed will be
documented, however we remind that the cases described are not an exhaustive list of all the
possible reasons behind the motion of a thin �lm.

2.1.1 Falling and Sheared Film

The �rst phenomenon which was studied and on which were conducted experiments, is the
falling �lm on an inclined plane and it immediately shows many important features. Already
such case, which may look basic, presents some peculiarities. For example, the evolution of a
thin liquid on a vertical �at plate without any forcing inlet is characterized by three di�erent
long-waves regimes, such as no perturbation in the higher part, 2D waves developing in the
middle part to arrive at irregular 3D ripples in the furthest part form the inlet, as one can see
in Fig. 2.2.
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Figure 2.1: Sources of motion for a generic liquid �lm.

This, alongside with other experiments such as Nosoko & Miyara [15], make us conclude that
the vertical case arises strongly non-linear waves on the surface of a liquid �lm. Indeed, in
literature it is well established that surpassing a certain computable threshold, de�ned by
the critical Reynolds number phenomena similar to the ones presented in the �gure manifest.
Reynolds number is a very important adimensional quantity in �uid dynamics theory, given by
the formula

Re =
ULρ

µ
, (2.1)

where U and L are respectively the characteristic velocity and length, which strongly depend
on the typology of application that we are working with, while ρ and µ are intrinsic property of
the substance such as density and dynamic viscosity, that can change only changing the �uid.
The physical explanation of this expression is the ratio between inertial and viscous forces,
indicating which aspect is privileged.
Continuing with the study of falling sheared �lm at small Reynolds number, it has been demon-
strated that the height of wave crests is always small compared to the wavelength of the waves,
which justify the introduction of a shallow water vertical parameter ε, that will be used in the
deduction of the model in the following chapter. This assumption of long waves drives to the
so-called long-wave theory, on which we will base, as well as the presented sources of motion,
throughout this work.
Other models, like the one proposed by Nusselt [16] where the gravity force is fully balanced by
the wall shear stress, introduced also the interaction with the surrounding world and found a
waveless solution of the Navier-Stokes equations assuming a steady constant thickness �lm. The
resulting pro�le is therefore assimilable to the parabolic solution of a channel �ow. However,
Nusselt's approach fails when unstable waves develop at the free surface of the liquid �lm.
The next two sparks which ignite the �uid dynamic will be presented apace with the reason
why they have been omitted.
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Figure 2.2: Development of waves on a vertical falling water �lm, experiment of Park & Nosoko
[14].

2.1.2 Spray Impingement

Another typical situation that can be modeled with thin �lm theory is the dynamic of a liquid
sprayed on a surface and again moved either by gravity or shear stress. The addition that this
new point of view takes into consideration, is the impingement of drops of the same substance
to the moving �uid, causing a signi�cant variation in the momentum. An ulterior complexity
is given by the fact that the impacting drop may have di�erent behaviours. Hereafter, we
give a brief explanation of each feasible phenomenon, using as discriminant parameter Weber's
number, given by the ratio of inertial forces and surface tension, as proves the formula

We =
ρU2L

γ
= Re Ca (2.2)

where γ is the surface tension, strictly connected with the capillarity Ca, if we want to highlight
the connection with Reynolds number.
The achievable e�ects are listed in Fig. 2.3 and are essentially of four types: stick, rebound,
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Figure 2.3: Typologies of drop impingement.

spread and splash.
Stick happens when Weber's number is less than 5 and the drop does not have the necessary
energy neither to enter the �lm nor to change its shape, therefore it continues traveling attached
to the surface.
If Weber is between 5 and 10, the impact has a su�cient energy which allows the rebound,
but not the penetration in the liquid. Contrarily to the stick, at higher Weber's number the
kinetic energy that characterizes the collision is enough to allow the shape to change and be
embodied in the �owing �lm, causing the so-called spread.
Finally, for an impact energy higher than all previous cases, the phenomenon of splash man-
ifests itself. It consists in the detachment of some droplet from a crown of liquid formed after
the clash of the incoming particle.
Unfortunately, due the typology of software used for this work, which separates the zones with
di�erent �uids and it is not adaptable to the integration of smaller portion of volume proper
of one area into the other, the decision made is to neglect this source of motion from the
construction of the model.

2.1.3 Heat transfer

The contribution of heat may arise from many aspects, but most notably, like discussed by
Oron [8] and Davis [17], from thermocapillary e�ect. Thermocapillary e�ect account for the
emergence of shear stress, due to the variation of surface tension with temperature. In order to
incorporate this reaction, one should add to the governing system an equation for the energy
and appropriate boundary condition related to heat transfer. It has been proved by Oron
[8] that, if gravity acts toward the base of the �lm, it has a stabilizing e�ect, while instead
thermocapillarity creates instabilities especially at the interface. Moreover, if the temperature
reaches the evaporation threshold, the repercussions heavily a�ect the dynamics of the �lm.
Therefore, the decision made was not to consider any passage of phase happening during the
�lm evolution and consequently this motion mechanism, as well as the inclusion of an equation
for the energy, has been completely avoided.

2.2 Geometrical Considerations

In many technological applications, e.g. direct injection engines, optical �ber coverage or paint-
ing textile �laments, one can encounter the situation of a thin liquid layer spread on a cylin-
drical surface, which introduces an extra component of curvature on the interface. To adapt
the equations to this particular and often studied domain, in literature the choice of cylindrical
coordinates is surely the most frequently used. Another avaible option, presented in [18] by
Trujillo, is the conversion into Dupin coordinate system, which handles more e�cently surface
and normal components. Nevertheless, since the derived model, featuring vertical average and

7



multilayer technique to close unkwon terms, is not common, the geometry used during this
work is rather simple, leaving space for complications on the equations and on the numerical
solver. In particular, the coordinate system we refer to is Cartesian and the normal component
for the �lm is always to be intended as the vertical direction of the classical referment, i.e. the
ordinate in two dimension and the z-axis in three.
Another necessary and useful precisation regarding the terminology, especially involving the
multilayer setting, has to be done. The most critical and in�uent condition are given at the
boundary and in the case of thin �lm those are the interface or free surface and the bottom,
i.e. the typically solid backdrop on which the liquid lays. Introducing the multilayer method,
the di�erent layers are distincted in 3 categories called bottom, top and k-th stratum. The �rst
typology is not the basis at the boundary between the wall and the �uid, but it is the nearest
to the physical bottom. On the other hand, the top layer represents exactly the free surface
interface between �lm and, for example, the shearing gas around it. The remaining are simply
the ones included between the previously de�ned strata.
To be more clear, we refer to the following image, Fig. 2.4, where it is introduced also the
notation used throughout the rest of the work. The cumulative height of each layer is indicated

0

y

x
Bottom

Free surface

δN(x,t)

δ1(x,t)

δ0(x)

ρN

ρ2

ρ1

δ01(x,t)

δk-1 k(x,t)

Figure 2.4: Multilayer technique domain.

with the greek letter delta either combined with a pedix δk denoting the stratum to which it
belongs or δ without any subscript to specify the whole thickness, in such way that δ = δN if
the �lm is divided into N layers. The backdrop, usually indicated with b(x), is called δ0 and
it is worth noticing that it does not depend on time, because we supposed that there is no
sedimentation or similar phenomena, which may change in time the shape of the bottom. It is
also important to de�ne the layer thickness δk−1k = δk− δk−1 for k = 1..., N , i.e. the di�erence
of adjacent layer height, as this variable will pop out in the derivation of the mathematical
model. One last remark can be done on the �uid density ρ, which may di�er for distinct depth.
This assumption is done more frequently in the shallow water framework, where it may indicate
for example that fresher water �ows over more saline, and consequently, heavier water.
Finally, also the distance intercurring among the layers plays an in�uent role on the e�cency
of the normal pro�le reconstruction, needed to close extra-diagonal components of the stress
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tensor. To visualize in a clear way this consideration, the reader can think to the polynomial
interpolation of a boundary layer velocity pro�le using equispaced nodes versus a distribution
of the points closer to the wall. Indeed, for a function very steep in a small region of its domain,
such as for y+ < 6 in the �at plate case, knots placed at the same distance are not suitable.
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3 | Mathematical Model

The modeling of thin �lm can bene�t a dimensional simpli�cation due to the particular geome-
try of the problem. Through some sempli�cations we wil obtain a model that, once discretized,
will help to reduce signi�cantly the computational cost and the execution time of numerical
simulations, which is an excellent advantage for real mathematical applications.
The path we chose to achieve the �nal model, that will avoid the use of the typical Taylor ex-
pansion to close the equations, is structured in two successive steps: averaging and asymptotic.
The average, done in order to remove the dependency from the normal direction, is performed
jointly with the application of the multilayer method, which is the substitutive plan to close
the system of equations. Subsequently, additional terms popping out from the integration by
part are analized and possibly simpli�ed, if assimilable to in�nitesimal order, by asymptotic
analysis.
Finally, the resulting system's nature is studied, prelude for the discretization techniques de-
scribed in the next chapter.

3.1 Multilayer Method

Multilayer method is a modelling approach frequently used in shallow water problems. Basically,
it consists in dividing the water depth in multiple surfaces on which the same set of equation
lives, plus some transfer term to connect each di�erent stratum. For example, as presented by
J. Macias et al. in [19], Saint-Venant equations are applied to a two layers problem aiming to
simulate water dynamics in the Alborean sea, situated near the Strait of Gibraltar, where the
Atlantic ocean and the Mediterranean sea meet. This approach is adopted to achieve two major
bene�ts: a simpler set of integrated equation and a computational e�ort reduction, because the
meshing is not performed along the whole depth, but only on the layer surface.
In the thin �lm setting, this method may be ulteriorly exploited to close the average terms that
pop out from the integration in the direction normal to the wall. This happens because, unlike
the classical �lm theory, where the mean terms are computed along the whole orthogonal
direction and therefore need to be expanded and approximated locally, averaging across the
smaller pieces of domain between the layers reduces the inaccuracy of this representation.
Hence, the domain below the �lm must be divided in N initially given surfaces represented by
implicit functions Fi, for i = 1,...,N, and the asymptotic equations need to be integrated along
each interval created by the layers, paying particular attention to the �rst, which will be the
nearest to the bottom of our domain, and the N-th, the one representing the free surface.
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3.1.1 Average model

To lighten numerical computation of the 3-D con�gurations of the problem, we decide to perform
an integration in normal direction and to consider average quantities for the vertical axis. In
order to do this, we make the hypothesis that δi = δi(x, y, t), i.e. each layer in the �lm is single
valued for every x and y and it can be recast in the implicit form Fi(x, y, z, t) = z−δi(x, y, t) = 0.
The normal to this free surface is therefore de�ned through the gradient of Fi as ni = ∇F =
−∂δi∂x i −

∂δi
∂y j + k, being i, j, k the unitary vector of our reference system. This is true only

if the norm of the gradient is approximately 1, fact that can be checked by the result (∂δi∂x )2,

(∂δi∂y )2 � 1, coherent with the subsequent asymptotic analysis.
The main idea is �rst to exchange integrals and derivatives, then to extract average quantities
in order to make appear also the unknown δij , representing the height between two generic
adjacent layers. We therefore recall Liebniz formula, that is

∂

∂t

∫ b(t)

a(t)

f(x, t)dx =

∫ b(t)

a(t)

∂f(x, t)

∂t
dx+ f(b(t), t)

db

dt
− f(a(t), t)

da

dt
. (3.1)

The �nal tool we need, since we are performing a mean analysis, is the mean value theorem for

the integral, i.e.
∫ b
a
f(x)dx = f(ζ)(b − a), supposing f continuous and ζ ∈ (a, b). To shorten

notation, mean quantities will be indicated with an overlaying bar, e.g. f̄ .
Another useful assumption we introduce is that the density is constant in normal direction,
which is reasonable if we consider the thin �lm setting.

3.1.2 Multilayer Continuity Equation

Using the tools introduced in the average model section, we show the procedure integrating
not along all the �lm height, but only between two generic neighbouring layers δi and δj , the
continuity equation ∫ δj

δi

∂ρ

∂t
dz +

∫ δj

δi

5 · (ρv)dz = 0, (3.2)

where ρ is the �uid density and 5· the divergence operator acting on the velocity vector v. Via
Liebniz formula, the result is the following:

∂

∂t

∫ δj

δi

ρ dz − ρδj
∂δj
∂t

+ ρδi
∂δi
∂t

+
∂

∂x

∫ δj

δi

ρu dz − ρδjuδj
∂δj
∂x

+ ρδiuδi
∂δi
∂x

+
∂

∂y

∫ δj

δi

ρv dz − ρδjvδj
∂δj
∂y

+ ρδivδi
∂δi
∂y

+

∫ δj

δi

∂ρw

∂z
dz = 0. (3.3)

Of course in z direction the integration follows easily and directly. Using the implicit form of
the surface, we see that

dFj
dt = dz

dt −
∂δj
∂t −

dx
dt
∂δj
∂x −

dy
dt
∂δj
∂y = wsj−

∂δj
∂t −usj

∂δj
∂x −vsj

∂δj
∂y , where the

pedix sj indicates the velocities of the �uid evaluated at the implicit surface. The expression

can be further simpli�ed recalling that the normal to Fj is nj = −∂δj∂x i−
∂δj
∂y j+ k, resulting in

∂δj
∂t = vsj · nj . Substituting this geometric consideration and applying the mean theorem, we
obtain:

∂(δijρ)

∂t
+
∂(δijρūj)

∂x
+
∂(δijρv̄j)

∂y
+ ρj(vδj − vsj ) · nj + ρi(vsi − vδi) · ni = 0, (3.4)

adopting the sempli�ed notation for the density ρδj = ρj here and for the rest of the work.
At contact with the free surface, the interaction term (vsi − vδi) · ni may survive since there
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can happen phase passage or the impact of liquid drops, which causes a very di�erent velocity
to the �uid shearing the �lm.
Writing δij we intend the time-variant thickness between layer j and i, i.e. δj − δi.
Then we adapt the described technique at the bottom, the generic k-th and the top layer be-
cause each of these cases have a peculiar behaviour and consequently di�erent terms surviving.
Without loss of genrality, we suppose that the wall is �at and still, which results in δ0 equal
to constant in space and time annihilating the contribution of its temporal derivative, which
correspondes to the term vs0 · n0.

• Bottom layer
∂(δ01ρ)

∂t
+
∂(δ01ρū1)

∂x
+
∂(δ01ρv̄1)

∂y
− ρ0w0 = 0.

• K-th layer
∂(δk−1kρ)

∂t
+
∂(δk−1kρūk)

∂x
+
∂(δk−1kρv̄k)

∂y
= 0.

For the strata in between, there is no exchange of velocity because the only source of motion for
a layer is the velocity of the �uid and therefore when in the temporal derivative of the surface
Fk arises the surface velocity vsk , it is equal to the velocity evaluated at the k-th thickness vδk ,
because we supposed that the surface is described by a streamline, therefore the instantaneous
value is identical.

• Top layer

∂(δN−1Nρ)

∂t
+
∂(δN−1NρūN )

∂x
+
∂(δN−1Nρv̄N )

∂y
+ ρN (vδN − vs) · nN = 0.

Our new unknown are δk−1k and (ūk, v̄k, w̄k) for k = 1, 2, ..., N , where the mean velocity refers
to the correspondent layer and it is indicated by the subscript k. In addition, to compute
the normal at the top layer, we need to compute the total �lm height given by the formula
δN = δ0 + δ01 + δ12 + ...+ δN−1N .

3.1.3 Multilayer Momentum Equation

Arguing as for the above continuity equation, we integrate the law for the conservation of
momentum, for exempli�cative purposes in x-direction and for the generic adjacent layers,
with subscripts i and j. After applying Liebniz theorem and, as stated in the introduction to
multilayer method, supposing that the mean cross term and the mean quadratic velocity can be
simpli�ed from average of product to product of average, introducing an hopefully neglectable
approximation error, the resulting law is

∂

∂t

∫ δj

δi

ρu dz − ρjuδi
∂δj
∂t

+ ρiuδi
∂δi
∂t

+
∂

∂x

∫ δj

δi

ρu2 dz +
∂

∂y

∫ δj

δi

ρuv dz

−ρjuδj (uδj
∂δj
∂x

+ vδj
∂δj
∂y
− wδj ) + ρiuδi(ui

∂δi
∂x

+ vδi
∂δi
∂y
− wδi)

+
∂

∂x

∫ δj

δi

pdz − pδj
∂δj
∂x

+ pδi
∂δi
∂x

=
∂

∂x

∫ δj

δi

τxxdz +
∂

∂y

∫ δj

δi

τxydz

− τxx|δj
∂δj
∂x

+ τxx|δi
∂δi
∂x
− τxy|δj

∂δj
∂y

+ τxy|δi
∂δi
∂y
− τxz|δj + τxz|δi +

∫ δj

δi

fxdz, (3.5)
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where we can again exploit the relation between the normal of the implicit surface and the
derivative of the thickness and the relation with the temporal derivative, obtaining

∂(ρūjδij)

∂t
−ρjuδjvsj · nj + ρiuδivsi · ni +

∂(ρū2
jδij)

∂x
+
∂(ρūj v̄jδij)

∂y

+ρjuδjvδj · nj − ρiuδivδi · ni +
∂(p̄jδij)

∂x
=
∂(τ̄ jxxδij)

∂x
+
∂(τ̄ jxyδij)

∂y
(3.6)

+[(−pδjI + τ
δj

) · nj ]x − [(−pδiI + τ
δi

) · ni]xδij + f̄x,j .

As in the previous section, we highlight the equality of vsj and vδj , which allow the sempli�-
cation of the velocity interaction terms.
It is worth noticing that also the stress tensor components are evaluated at the correspondent

layer. Moreover, they have an implicit formulation, since for example τ̄ jxxδij =
∫ δj
δi
µ∂u∂xdz 6=

µ
∂ūj
∂x δij , being µ the �uid dynamic viscosity. To solve this problem there exist two possible

solutions. The �rst should provide a second use of Liebniz theorem that will generate extra
boundary terms. Indeed, supposing the viscosity µ to be constant in the vertical axis, the

expanded formulation results in τ̄ jxxδij = µ
∫ δj
δi

∂u
∂xdz = µ

∂(ūjδij)
∂x − µuδj

∂δj
∂x + µuδi

∂δi
∂x and anal-

ogously for the other components. The second possibility is to use, once regained the mean
velocity, a suitable interpolant which can give an expression of the stress tensor entries.
The resulting equations, expanded for each speci�c layer, are grouped in the following systems:

• Bottom layer

∂(ρū1δ01)
∂t +

∂(ρū2
1δ01)
∂x +∂(ρū1v̄1δ01)

∂y + ∂(p̄1δ01)
∂x =

∂(τ̄1
xxδ01)
∂x +

∂(τ̄1
xyδ01)

∂y +

+δ01f̄x,1 + [(−pδ1I + τ
δ1

) · n1]x − τ0
xz + ρ0u0w0

∂(ρv̄1δ01)
∂t + ∂(ρū1v̄1δ01)

∂x +
∂(ρv̄21δ01)

∂y + ∂(p̄1δ01)
∂y =

∂(τ̄1
yxδ01)

∂x +
∂(τ̄1

yyδ01)

∂y +

+δ01f̄y,1 + [(−pδ1I + τ
δ1

) · n1]y − τ0
yz + ρ0v0w0

∂(ρw̄1δ01)
∂t + ∂(ρw̄1ū1δ01)

∂x +∂(ρw̄1v̄1δ01)
∂y =

∂(τ̄1
zxδ01)
∂x +

∂(τ̄1
zyδ01)

∂y +

+δ01f̄z,1 + [(−pδ1I + τ
δ1

) · n1]z + pδ0 − τ0
zz + ρ0w

2
0

• K-th layer

∂(ρūkδk−1k)
∂t +

∂(ρū2
kδk−1k)
∂x +∂(ρūkv̄kδk−1k)

∂y + ∂(p̄kδk−1k)
∂x =

∂(τ̄kxxδk−1k)
∂x +

∂(τ̄kxyδk−1k)

∂y +

+δk−1kf̄x,k + [(−pδkI + τ
δk

) · nk]x − [(−pδk−1
I + τ

δk−1
) · nk−1]x

∂(ρv̄kδk−1k)
∂t + ∂(ρūkv̄kδk−1k)

∂x +
∂(ρv̄2kδk−1k)

∂y + ∂(p̄kδk−1k)
∂y =

∂(τ̄kyxδk−1k)

∂x +
∂(τ̄kyyδk−1k)

∂y +

+δk−1kf̄y,k + [(−pδkI + τ
δk

) · nk]y − [(−pδk−1
I + τ

δk−1
) · nk−1]y

∂(ρw̄kδk−1k)
∂t + ∂(ρw̄kūkδk−1k)

∂x +∂(ρw̄kv̄kδk−1k)
∂y =

∂(τ̄kzxδk−1k)
∂x +

∂(τ̄kzyδk−1k)

∂y +

+δk−1kf̄z,k + [(−pδkI + τ
δk

) · nk]z − [(−pδk−1
I + τ

δk−1
) · nk−1]z
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• Top layer

∂(ρūNδN−1N )
∂t +

∂(ρū2
NδN−1N )
∂x + ∂(ρūN v̄NδN−1N )

∂y + ∂(p̄NδN−1N )
∂x + ρNuδN (vδN − vs) · nN =

∂(τ̄NxxδN−1N )
∂x +

∂(τ̄NxyδN−1N )

∂y + δN−1N f̄x,N + [(−pδN I + τ
δN

) · nN ]x − [(−pδN−1
I + τ

δN−1
) · nN−1]x

∂(ρv̄NδN−1N )
∂t +∂(ρūN v̄NδN−1N )

∂x +
∂(ρv̄2NδN−1N )

∂y + ∂(p̄NδN−1N )
∂y + ρNvδN (vδN − vs) · nN =

∂(τ̄NyxδN−1N )

∂x +
∂(τ̄NyyδN−1N )

∂y + δN−1N f̄y,N + [(−pδN I + τ
δN

) · nN ]y − [(−pδN−1
I + τ

δN−1
) · nN−1]y

∂(ρw̄NδN−1N )
∂t +∂(ρw̄N ūNδN−1N )

∂x + ∂(ρw̄N v̄NδN−1N )
∂y + ρNwδN (vδN − vs) · nN =

∂(τ̄NzxδN−1N )
∂x +

∂(τ̄NzyδN−1N )

∂y + δN−1N f̄z,N + [(−pδN I + τ
δN

) · nN ]z − [(−pδN−1
I + τ

δN−1
) · nN−1]z

(3.7)
Unfortunately even with the multilayer integrated technique, the system of equations compre-
hending continuity and momentum is not enough to match the 5 unknowns present in each
layer, which are the 3 mean component of the velocity, mean pressure and thickness between
layer. Therefore, we will exploit the dimensional considerations that can be carried out for
the thin �lm setting and perform an asymptotic analysis, aiming to retrieve a system in closed
form.

3.2 Asymptotic Analysis

In order to simplify the multilayer model governing the thin �lm, we perform an asymptotic
analysis. The key hypothesis for such physics is that the height of the liquid in the direction
normal to the wall is much smaller than the length in the other two directions. Therefore, in
assigning characteristic length, we will assert that in the z-axis the typical height is δ∞, whereas
in x and y, coherently with the phenomenon, it will have the dimension of the wavelength, called
λ∞, supposed equal for both directions. To satisfy the geometric condition of normality of the

vector nj we need ‖∇Fj‖ =
√

(
∂δj
∂x )2 + (

∂δj
∂y )2 + 1 ≈ 1, which dimensionally translates into

( δ∞λ∞ )2 ≈ ε2, where ε is de�ned as the ratio between the characteristic wavelength and the
typical thickness, which is a small quantity.
A �nal assumption regards the velocity vector v = (u, v, w), where the vertical component at
in�nity and the ones tangential to the wall will be considered of di�erent orders of magnitude,
respectively w∞ and u∞.

3.2.1 Asymptotic Continuity Equation

After setting a characteristical length for all the dimensional variables, we can start the analysis
from the mean continuity equation in di�erential form for the generic layer between δi and δj ,
thus we can write:

ρ∞δ∞
t∞

∂ρδij
∂t

+
ρ∞u∞δ∞

λ∞

∂(ρūjδij)

∂x
+
ρ∞u∞δ∞

λ∞

∂(ρv̄jδij)

∂y
+ ρ∞u∞

δ∞
λ∞

ρj(uδjnx − usjnx)+

+ρ∞u∞
δ∞
λ∞

ρj(vδjny − vsjny) + ρ∞w∞ρj(wδj − wsj ) + aiρi(vsi − vδi) · ni = 0,

(3.8)

where ai contains compressed in its value the dimensional constants of the scalar product
between the velocity and the layer surface normal vector. Note that the quantities under
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partial derivatives are adimensional, but, for readability reasons, the same symbols are used.
Simplifying the latter equation we get:

λ∞
u∞

1

t∞

∂ρδij
∂t

+
∂(ρūjδij)

∂x
+
∂(ρv̄jδij)

∂y
+ ρj(uδjnx − usjnx) + ρj(vδjny − vsjny)

+
λ∞w∞
δ∞u∞

ρj(wδj − wsj ) + a∗i ρi(vsi − vδi) · ni = 0. (3.9)

From this form of the equation we obtain some useful considerations, because, in order to re-
spect mass balance, all term must be of the same order of magnitude. First of all we notice
that the temporal derivative is multiplied by the inverse of the Strouhal number, de�ned as
St = fL

U , where f is the frequency of vortex shedding, while U and L have the same de�nition
introduced for Reynolds number. In order not to fall back in a stationary case, we consider
its value equal to 1, which implies that the characteristic time is governed by the tangential
variables t∞ ≈ λ∞

u∞
.

Moreover, and this information turns out to be essential, we can a�rm that λ∞w∞
δ∞u∞

≈ 1 and
subsequently recover the following relation between the components of the velocity w∞

u∞
≈ ε,

which can let us state the di�erent order of magnitude of the vertical and tangential speed, i.e.
w∞ � u∞. Finally, we may also notice that the previous relation can be rewritten to highlight
that the ratio w∞

δ∞
≈ u∞

λ∞
and obviously also w∞

u∞
≈ δ∞

λ∞
result constant and, more importantly,

of the same order.

3.2.2 Asymptotic Momentum Equation

Afterwards, we perform the same analysis for the conservation of the momentum. Our aim
is to simplify the complete equation with term of order δ∞

λ∞
or smaller. Since we identi�ed a

signi�cant di�erence in w, the component of the velocity orthogonal to the wall, the analysis
will focus only in the x and z direction, with a symmetric extension to y. Because the dynamic
viscosity µ is an intrinsic property of the �uid, the discriminant for our analysis will be Reynolds
number. We can distinguish two types of this adimensional quantity according to the referment
length considered and so we can explicit the following relationship:

Reλ =
u∞λ∞ρ∞

µ
=
u∞δ∞ρ∞

µ

λ∞
δ∞

=
Reδ
ε
, (3.10)

and the obvious inverse Reδ = Reλε.
A last assumption regards the source term f , which can be considered without loss of generality
as the gravity force ρg, as happens in the �lm falling down an inclined plane. Thus, we can
start analizing one of the component parallel to the wall and , after some computation similar
to the adimensionalization of Navier-Stokes, Reynolds constant pops out in front of viscous
terms.

∂(ρūjδij)

∂t
+
∂(ρū2

jδij)

∂x
+
∂(ρūj v̄jδij)

∂y
+

p∞
ρ∞u2

∞

∂(p̄jδij)

∂x
=

1

Reλ

∂(τ̄ jxxδij)

∂x
+

1

Reλ

∂(τ̄ jxyδij)

∂y

+ρgxδij −
p∞

ρ∞u2
∞
pδjnx +

1

Reλ
(τxx|δjnx + τxy|δjny) +

1

Reλε2
1

2
µ
∂u

∂z
|δj +

1

Reλ

1

2
µ
∂w

∂x
|δj

+
p∞

ρ∞u2
∞
pδinx −

1

Reλ
(τxx|δinx + τxy|δiny)− 1

Reλε2
1

2
µ
∂u

∂z
|δi −

1

Reλ

1

2
µ
∂w

∂x
|δi .

(3.11)

In the thin �lm setting, an assumption such as Reλ ≈ 1 is not feasible. The range of value
taken by Reynolds number is wide because we are dealing with a boundary layer like region,
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but we can summirize it in the interval between ε−1 and ε−2. If it is near the upper extreme,
almost any viscosity contribute disappear due to a minor in�uence, except the derivative of the
tangential velocity with respect to the height. Decreasing towards the lower bound, the terms
previously kept still have an higher order and, not to fall in an incorrect Euler model, we can
let them survive also in this case.
Another crucial discussion must be faced when talking about the pressure. Considering that
the e�ects of the pressure are more appreciable across the surface represented by the bottom
rather than its change along the thin �lm thickness, plus what suggested by the asymptotic
analysis, we a�rm that p∞ ≈ u2

∞ρ∞. Hence, the pressure gradient in x and y direction cannot
therefore be forgotten. Finally, we remark that all the dimensional quantities multiplying
the gravitational source are sempli�ed, making this contribution not neglectable. To end the
study of the momentum equation in tangential direction with the adoption of the asymptotic
technique, we present the result in the following formula, where all the terms multiplied by ε2

or smaller quantities have been annihilated:

∂(ρūjδij)

∂t
+
∂(ρū2

jδij)

∂x
+
∂(ρūj v̄jδij)

∂y
+
∂(p̄jδij)

∂x
= ρgxδij−pδjnj,x+pδini,x+

1

2
µ
∂u

∂z
|δj−

1

2
µ
∂u

∂z
|δi .

(3.12)

Let's now tackle the problem of the momentum conservation in normal direction, where the
analysis is completely analogous, but some facts need to be highlighted. As reference, we write
the law where we already applied the asymptotic technique:

∂(ρw̄jδij)

∂t
+
∂(ρūjw̄jδij)

∂x
+
∂(ρv̄j ūjδij)

∂y
= − 1

Fr2ε
ρgzδij +

1

Reλε2
∂(τ̄ jzxδij)

∂x

+
1

Reλε2
∂(τ̄ jzyδij)

∂y
− 1

ε2
(pδj − pδi) +

1

Reλε2
[τ
δj
· nj ]z −

1

Reλε2
[τ
δi
· ni]z. (3.13)

Concerning the pressure gradient, the situation is completely opposite, since this term is of
order λ∞

δ∞
u∞
w∞

= 1
ε2 which is much greater than one. This means that, with respect to the

vertical change of pressure, all other factors can be considered negligible, which result in the
hydrostatic hypothesis ∂p

∂z + ρgz = 0, the only factor surviving momentum equation in normal
direction. This assumption is known in literature, referincing for example [10], as primitive
equations, thus, from now on, we refer to this approximation as PE. In addition, to simplify
the notation, in the following paragraph, we suppose the case of pure vertical gravity, meaning
gz = g.
From the PE hypothesis, the explicit expression for the pressure can be retrieved simply by
integrating between the generic vertical point and the whole thickness δ obtaining∫ z

δ

∂p

∂z
dz =

∫ z

δ

−ρgdz, (3.14)

which, supposing that the density is constant across the depth, results in

p(x, y, z)− p(x, y, δ) = −ρg(z − δ).

Another useful consideration is that p(x, y, δ) is the pressure at the free surface and it is in-
dependent of z, but on the tangential components, hence, in normal direction, we can adopt
the sempli�cation to consider p(x, y, δ) as an arbitrary constant and therefore put it equal zero,
considering as �nal expression for the pressure

p(x, y, z) = −ρg(z − δ). (3.15)

However, during the asymptotic analysis, if Reynolds number is close to ε−1, some derivative
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of the viscous stress tensor have order much greater than one. They can be therefore included
in the new z-momentum equation, giving birth to what Lions, Temam and Wang in [10] call
the primitive equations with vertical viscosity (PEV 2), i.e.

∂p

∂z
+ ρg =

∂τzx
∂x

+
∂τzy
∂y

+
∂τzz
∂z

. (3.16)

If we go even more in the speci�cation of mean stress, we can see that the only surviving pieces,
beyond ∂τzz

∂z , would be ∂
∂x ( 1

2µ
∂uj
∂z ) and ∂

∂y ( 1
2µ

∂vj
∂z ), because the asymptotic analysis suggests

that the other cross entry is of order 1
Reλε2

, and therefore neglectable.
Since the intent of the model taken in consideration is to be fairly general, and the impact of the
hypothesis chosen does not provoke almost any change on the nature of the equation, we decide
to continue the analysis mainly with PE, studying them and implementing a numerical scheme,
while presenting only the most relevant theoretical aspects of PEV 2. Assuming hydrostatic
pressure, as we will observe in the following sections, the normal component of the velocity no
longer appears into the new set of equations.

3.3 PE Asymptotic Multilayer System

To compact the equations, in shallow water literature it is acclaimed to perform a substition of
PE hypothesis, integrating them in vertical direction. The integration is made in parallel with
the averaging of Navier-Stokes in order to retrieve mean pressure and to substitute it in the
system. It relys on the mean value theorem applied to the pressure

p̄kδk−1k =

∫ δk

δk−1

pdz, (3.17)

in which it is substituted the chosen hypothesis for the pressure, in this case PE to simplify the
calculation,

p̄kδk−1k =

∫ δk

δk−1

−ρg(z − δ)dz. (3.18)

Performing the integration, the formula, which will be substitued in our set of equations, is

p̄kδk−1k = −ρg
(δ2
k − δ2

k−1)

2
+ ρgδδk−1k, (3.19)

that can be condensed, via decomposition of di�erence of squares (δ2
k−δ2

k−1) = (δk−δk−1)(δk+
δk−1) = δk−1k(δk + δk−1), leading to the following equality

p̄k = −1

2
ρg(δk + δk−1 − 2δ). (3.20)

However, one must note that the quantities δ and δk hide the conserved variable δk−1k, which
is useful to explicit, in presvision of the analysis of the nature of the equations. Indeed

δk−1 =

k−1∑
i=1

δi−1i,

δk =

k∑
i=1

δi−1i, (3.21)

δ =

N∑
i=1

δi−1i.
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Expanding all those terms in the hydrostatic hypothesis, the result obtained is

p̄k = −1

2
ρg(2

k−1∑
i=1

δi−1i + δkk−1 − 2

N∑
i=1

δi−1i), (3.22)

which, solving the summation, can be rewritten in

p̄k = −1

2
ρg(−δk−1k − 2

N∑
i=k+1

δi−1i) =
1

2
ρg(δk−1k + 2

N∑
i=k+1

δi−1i), (3.23)

that is composed by a part present in the classic hydrostatic theory, i.e. 1
2ρgδkk−1, and an

interaction term coming from the multilayer method, i.e. ρg
∑N
i=k+1 δi−1i. A precisation, that

will become useful later, is that the summation
∑N
i=k+1 δi−1i is equal to the di�erence δN − δk,

which unfortunately hides implicitly the conserved variable.
Grouping the results obtained in the previous pages, we will have to solve the following systems
for each layer.

• Bottom layer 

∂(δ01ρ)
∂t +∂(δ01ρū1)

∂x + ∂(δ01ρv̄1)
∂y − ρ0w0 = 0

∂(ρū1δ01)
∂t +

∂(ρū2
1δ01+ 1

2ρgδ01(δ01+2
∑N
i=2 δi−1i))

∂x + ∂(ρū1v̄1δ01)
∂y =

[pδ1
∂δ1
∂x + 1

2µ
∂u
∂z |δ1 ]− τ0

xz + ρ0u0w0

∂(ρv̄1δ01)
∂t +∂(ρū1v̄1δ01)

∂x +
∂(ρv̄21δ01+ 1

2ρgδ01(δ01+2
∑N
i=2 δi−1i))

∂y =

[pδ1
∂δ1
∂y + 1

2µ
∂v
∂z |δ1 ]− τ0

yz + ρ0v0w0

p̄1δ01 = 1
2ρgδ01(δ01 + 2

∑N
i=2 δi−1i)

• K-th layer

∂(δk−1kρ)
∂t +∂(δk−1kρūk)

∂x + ∂(δk−1kρv̄k)
∂y = 0

∂(ρūkδk−1k)
∂t +

∂(ρū2
kδk−1k+ 1

2ρgδk−1k(δk−1k+2
∑N
i=k+1 δi−1i))

∂x + ∂(ρūkv̄kδk−1k)
∂y =

[pδk
∂δk
∂x + 1

2µ
∂u
∂z |δk ]− [pδk−1

∂δk−1

∂x + 1
2µ

∂u
∂z |δk−1

]
∂(ρv̄kδk−1k)

∂t +∂(ρūkv̄kδk−1k)
∂x +

∂(ρv̄2kδk−1k+ 1
2ρgδk−1k(δk−1k+2

∑N
i=k+1 δi−1i))

∂y =

[pδk
∂δk
∂y + 1

2µ
∂v
∂z |δk ]− [pδk−1

∂δk−1

∂y + 1
2µ

∂v
∂z |δk−1

]

p̄kδk−1k = 1
2ρgδk−1k(δk−1k + 2

∑N
i=k+1 δi−1i)

• Top layer

∂(δN−1Nρ)
∂t +∂(δN−1NρūN )

∂x + ∂(δN−1Nρv̄N )
∂y + ρN (vδN − vs) · nN = 0

∂(ρūNδN−1N )
∂t +

∂(ρū2
NδN−1N+ 1

2ρgδ
2
N−1N )

∂x + ∂(ρūN v̄NδN−1N )
∂y + ρNuδN (vδN − vs) · nN =

[pδN
∂δN
∂x + 1

2µ
∂u
∂z |δN ]− [pδN−1

∂δN−1

∂x + 1
2µ

∂u
∂z |δN−1

]
∂(ρv̄NδN−1N )

∂t +∂(ρūN v̄NδN−1N )
∂x +

∂(ρv̄2NδN−1N+ 1
2ρgδ

2
N−1N )

∂y + ρNvδN (vδN − vs) · nN =

[pδN
∂δN
∂y + 1

2µ
∂v
∂z |δN ]− [pδN−1

∂δN−1

∂y + 1
2µ

∂v
∂z |δN−1

]

p̄NδN−1N= 1
2ρgδ

2
N−1N

(3.24)
Notice that in top layer, because δ = δN , the average pressure contribution to the convection
is − 1

2ρg(δN + δN−1 − 2δN )δN−1N = − 1
2ρg(δN−1 − δN )δN−1N = 1

2ρgδ
2
N−1N , which is a term
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usually existing in shallow water theory, see for example Kurganov [26]. Moreover, since we
assumed that our model should contain no phase transition and no impacting drops, the di�er-
ence vδN − vs between the top layer velocity vector and the one of the world outside the �lm
can be set to zero.
We �nally obtained a closed system which counts 4 unknowns and 4 equations for each layer.
However, it still requires some minor treatments to retrieve the optimal shape for an e�cient
resolution.

3.3.1 Reformulation of the PEs

As anticipated before, now that the system is in closed form, the intent is to collocate it in a
well known theoretical framework, in order to decide which numerical method to implement.
However, previa doing that, a couple of remark and sempli�cation will result very handful. We
want to manipulate in the momentum conservation laws, part of system (3.24), the variables
under a spatial derivative at the left-hand side and compare them with the source contributions,
especially of the pressure, at the right-hand side of the equations.
First of all, starting from the left-hand side of the momentum equation, for simplicity illustrated
only in x-direction, the �ux term can be split, via linearity of the derivative, in

∂(ρū2
kδk−1k + 1

2ρgδ
2
k−1k)

∂x
+
∂
(
ρgδk−1k

∑N
i=k+1 δi−1i

)
∂x

, (3.25)

that with suitable assumptions on the density and on the volumetric force, which are constant
along the single layer, and reminding that

∑N
i=k+1 δi−1i = δN − δk, can be rewritten as

∂(ρū2
kδk−1k + 1

2ρgδ
2
k−1k)

∂x
+ ρg(δN − δk)

∂δk−1k

∂x
+ ρgδk−1k

∂(δN − δk)

∂x
. (3.26)

The sum retrieved can now be indenti�ed as the well known term in the shallow water literature
plus an interaction part. The goal is to transform this extra contribution into a source in�uence.
Focusing now the attention at the right-hand side, precisely on the pressure expression

pk
∂δk
∂x
− pk−1

∂δk−1

∂x
, (3.27)

we add and subtract the mixed term pk
∂δk−1

∂x obtaining

pk
∂(δk − δk−1)

∂x
+ (pk − pk−1)

∂δk−1

∂x
. (3.28)

Now the PE hypothesis (3.15) can be explicitly exploited in the following way

ρg(δN − δk)
∂(δk − δk−1)

∂x
+ ρg(δN − δk − δN + δk−1)

∂δk−1

∂x
, (3.29)

that can be �nally reformulated in

ρg(δN − δk)
∂δk−1k

∂x
− ρgδk−1k

∂δk−1

∂x
. (3.30)

At this point, one can note that the �rst term of (3.30) is equal and contrary, because at opposite

side, to the interaction part of (3.26), therefore they cancel out, leaving only−ρgδk−1k
∂(δN−δk)

∂x −
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ρgδk−1k
∂δk−1

∂x . One can note that the derived terms do not depend on any conserved quantities,
since the di�erence (δN − δk) cuts out the dependency from δk−1k, but it only includes an
interexchange between layers.
In addition, note that if one would use PEV 2 when speci�ng pk and pk−1, we will regain the
same exact expression and the same cancellation, but many other normal stress contribution
will pop out.
Hence, we can rewrite the system in this new simpli�ed form, for the bottom layer

∂(δ01ρ)
∂t +∂(δ01ρū1)

∂x + ∂(δ01ρv̄1)
∂y − ρ0w0 = 0

∂(ρū1δ01)
∂t +

∂(ρū2
1δ01+ 1

2ρgδ
2
01)

∂x + ∂(ρū1v̄1δ01)
∂y = −ρgδ01

∂(δN−δ1)
∂x + 1

2µ
∂u
∂z |δ1 − τ

0
xz + ρ0u0w0

∂(ρv̄1δ01)
∂t +∂(ρū1v̄1δ01)

∂x +
∂(ρv̄21δ01+ 1

2ρgδ
2
01)

∂y = −ρgδ01
∂(δN−δ1)

∂y + 1
2µ

∂v
∂z |δ1 − τ

0
yz + ρ0v0w0

p̄1δ01 = 1
2ρgδ01(δ01 + 2

∑N
i=2 δi−1i)

,

remarking that, since the bottom doesn't vary, ∂δ0∂x = ∂δ0
∂y = 0, then for the k-th layer

∂(δk−1kρ)
∂t +∂(δk−1kρūk)

∂x + ∂(δk−1kρv̄k)
∂y = 0

∂(ρūkδk−1k)
∂t +

∂(ρū2
kδk−1k+ 1

2ρgδ
2
k−1k)

∂x + ∂(ρūkv̄kδk−1k)
∂y =

−ρgδk−1k
∂(δN−δk)

∂x − ρgδk−1k
∂δk−1

∂x + [ 1
2µ

∂u
∂z |δk −

1
2µ

∂u
∂z |δk−1

]
∂(ρv̄kδk−1k)

∂t +∂(ρūkv̄kδk−1k)
∂x +

∂(ρv̄2kδk−1k+ 1
2ρgδ

2
k−1k)

∂y =

−ρgδk−1k
∂(δN−δk)

∂y − ρgδk−1k
∂δk−1

∂y + [ 1
2µ

∂v
∂z |δk −

1
2µ

∂v
∂z |δk−1

]

p̄kδk−1k = 1
2ρgδk−1k(δk−1k + 2

∑N
i=k+1 δi−1i)

and �nally for the top layer

∂(δN−1Nρ)
∂t +∂(δN−1NρūN )

∂x + ∂(δN−1Nρv̄N )
∂y + ρN (vδN − vs) · nN = 0

∂(ρūNδN−1N )
∂t +

∂(ρū2
NδN−1N+ 1

2ρgδ
2
N−1N )

∂x + ∂(ρūN v̄NδN−1N )
∂y + ρuδN (vδN − vs) · nN =

−ρgδN−1N
∂δN−1

∂x + [ 1
2µ

∂u
∂z |δN −

1
2µ

∂u
∂z |δN−1

]
∂(ρv̄NδN−1N )

∂t +∂(ρūN v̄NδN−1N )
∂x +

∂(ρv̄2NδN−1N+ 1
2ρgδ

2
N−1N )

∂y + ρvδN (vδN − vs) · nN =

−ρgδN−1N
∂δN−1

∂y + [ 1
2µ

∂v
∂z |δN −

1
2µ

∂v
∂z |δN−1

]

p̄NδN−1N= 1
2ρgδ

2
N−1N

(3.31)

Notice that for the surface layer, most of the terms, such as (δN − δk), simplify naturally when
k = N.
Now that we have a �nal expression of the set of equations, we can proceed to study the nature
of the system and choose an appropriate numerical resolution technique.

3.3.2 Hyperbolicity of the Equations

A useful step needed before choosing which numerical method to implement, is the study of
the nature of the equations, meaning in which framework they can be classi�ed. To begin,
the discussion focuses on the generic stratum k and its associated set of equations, then we
treat the boundary terms which may couple the layers. We do not focus on the complete set
of equations, because the advected variables belong exclusively to each k-th system, granting
a block diagonal structure of the Jacobians, which uncouple the di�erent layers. This analysis
can be carried out with both PE and PEV 2 hypothesis, since the second one does not add
convective terms, but it contributes only di�usively. The k-th system appears very similar to
a quasilinear system of conservation laws, therefore we will have to individuate the vector of
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conserved quantities U and to compute the Jacobian with respect to U of the �ux function.
Since, due to integration, the setting we are dealing with is bidimensional, there exist two �ux
functions, which will be called f(U) and g(U), and the investigation on the eigenvalues will
involve their Jacobians both separately and linearlly combined.
The physical evolution is led by the variables under temporal derivative, so that the conserved
vector results in U = (ρδk−1k, ρδk−1kūk, ρδk−1kv̄k)T . For readability reasons, we adopt the
notation introduced by Kurganov in [11], de�ning the thickness h = ρδk−1k and the discharge
in the tangential directions qx = ūkh, q

y = v̄kh, which result in U = (h, qx, qy). Regarding the
�ux functions, the one derived in the x direction is

F (U) =

 ρδk−1kūk
ρδk−1kū

2
k + 1

2ρgδ
2
k−1k

ρδk−1kūkv̄k

 , G(U) =

 ρδk−1kv̄k
ρδk−1kūkv̄k

ρδk−1kv̄
2
k + 1

2ρgδ
2
k−1k

 , (3.32)

or with the simpli�ed notation

F (U) =

 qx

(qx)2

h + 1
2
g
ρh

2

qxqy

h

 , G(U) =

 qy
qxqy

h
(qy)2

h + 1
2
g
ρh

2

 . (3.33)

Afterwards are showed the Jacobian matrices with respect to U , expliciting the original vari-
ables:

F ′(U) =

 0 1 0
−ū2

k + g
ρh 2ūk 0

−ūkv̄k v̄k ūk

 , G′(U) =

 0 0 1
−ūkv̄k v̄k ūk
−v̄2

k + g
ρh 0 2v̄k

 , (3.34)

and it is not di�cult to see that they have the same structure, hence the calculation of the
eigenvalue are presented completely in one case. The characteristic polynomial associated to
the �rst matrix is the following

(ūk − λ)

(
2ūkλ− λ2 − ū2

k +
g

ρ
h

)
, (3.35)

which can be easily solved as

λ1 = ūk, λ2,3 = ūk ±
√
g

ρ
h. (3.36)

The eigenvalues of the JacobianG′(U) are obtained in a perfectly analogous way and the result is
almost identical, but have v̄k instead of ūk. The problem to be faced now is to determine whether
those eigenvalues are real, which is quite obvious since the do thickness cannot physically be
negative, but it is always positive or at most null. Finally, one can observe that in the case

of one layer, the result λ2,3 = ūk ±
√

g
ρh = ū ±

√
gδ is identical to the one obtained in the

literature of shalow water.
The aforementioned check can be executed, with a series of long calculation that we will omit,
also for any linear combination of the Jacobian matrices. For the sake of completeness, we just
report the resulting eigenvalues obtained by Marques in [12], which are

λ1 = α̃ūk + β̃v̄k, λ2,3 = λ1 ±
√
g

ρ
h, (3.37)

being α̃ and β̃ the generic real coe�cients of the linear combination.
Having checked that the eigenvalues are real, we can a�rm in �rst instance that our system is
hyperbolic.
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3.3.3 Boundary Terms In�uence

Boundary conditions involve the interaction with other layers, hence their action may act as
a mechanism to couple two di�erent strata, modifying the block diagonal structure of the
Jacobians of the �ux functions. Fortunately, most of the boundary terms a�ected by derivation
are not conserved quantities. Indeed, for the generic layer k the result of (δN − δk) does not
depend on the unknown δk−1k, therefore they should not alter the outcome on the nature of the
system. Furthermore, derivation in normal component may not be accounted as a convective
derivative, since the problem is now bidimensional, and therefore some quantities may be left
out of the advection.
Nevertheless, we cannot say a priori that the source thickness terms, e.g. ρgδk−1k

∂(δN−δk)
∂x does

not a�ect the �ux functions, with possible modi�cation of their Jacobians and consequently
of theirs eigenvalues. The problem is widely treated by Audusse in [20], in which the author
reaches the conclusion that, for suitable water height data, the non conservative terms in the
right-hand side are neglectable, mantainig unaltered the hyperbolic nature of the equations.

3.3.4 System in Conservative Form

To conclude this chapter, we present a the �nal summarized set of equations for the generic
k-th layer with notation used when studing the hyperbolicity of the system, which is

Uk =

 ρδk−1k

ρδk−1kūk
ρδk−1kv̄k

 =

 hk
qxk
qyk

 =

 U1,k

U2,k

U3,k

 . (3.38)

The expression for the bottom or top layer are simply particular case of the following general
system and therefore omitted. To obtain the most simple and clean expression possible, we also
suppose the absence of viscous stresses depending on the vertical velocity.

∂U1,k

∂t +
∂U2,k

∂x +
∂U3,k

∂y = 0
∂U2,k

∂t +
∂[ūkU2,k+ 1

2
g
ρU

2
1,k]

∂x +
∂v̄kU2,k

∂y = −gU1,k
∂(δN−δk)

∂x − gU1,k
∂δk−1

∂x + [ 1
2µ

∂u
∂z |δk −

1
2µ

∂u
∂z |δk−1

]
∂U3,k

∂t +
∂ūkU3,k

∂x +
∂[v̄kU3,k+ 1

2
g
ρU

2
1,k]

∂y = −gU1,k
∂(δN−δk)

∂y − gU1,k
∂δk−1

∂y + [ 1
2µ

∂v
∂z |δk −

1
2µ

∂v
∂z |δk−1

]

p̄k = 1
2ρg(δk−1k + 2

∑N
i=k+1 δi−1i)

(3.39)
Presenting the system in this form, it can be clearly seen the parallelism of the left-hand side
with Saint-Venant shallow water equations. For a more accurate comparison, one can check
Castro and Macias [19] or Kurganov [26] papers, where, before de�ning a multilayer resolutive
numerical method, they regain the average equations. Therefore, at least for the convective
part, we are legitimated to exploit techniques implemented for this category of problems.
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4 | Numerical Method

In this chapter, after a brief recall to the �nite volume theory, will be presented Kurganov
method for the upwind discretization of the convective term of the thin �lm equation. Suc-
cessively, an ad hoc method for the source contribution is treated vastly when the problem is
solved assuming hydrostatic pressure (PE). The discussion on the additional endowment played
by vertical viscosity is introduced only theoretically, but it has not been tested or implemented.
Those techniques are applied identically to each separate layer, since their equations have the
same structure, except form the addition of bottom or interface boundary conditions, which,
however, are known retrievable values.

4.1 Finite Volume

Finite volume methods is well known and vastly used for the discretization of di�erential prob-
lems in conservative form, which can be summarized in the following expression

∂U

∂t
+5 · (F(U)) = s(U), x ∈ Ω, t > 0, (4.1)

where the conserved quantity is U : (x, t)→ R, x ∈ Ω ⊂ Rd for d = 2,3 and F is the so-called
�ux function, which can be either linear or not. The key idea is to partition the whole domain
into time independent control volumes Ωi for i=1,2,...,M such that

⋃M
i Ω̄i = Ω̄, or at least it

provides an acceptable approximation.
There are various possible choices for the control volumes, or cells if we are not in a threed-
imensional environment. The most frequently used are the cell-centered and vertex-centered
methods, which generally have as common starting point, the triangulation Th of the domain in
elements of the same shape, typically triangles or squares in 2D and tetrahedral or hexahedral
in 3D. The di�erence regards the storage of the conservative variable, which for cell-centered
approach is in fact in the center of the triangulation elements, as it can be seen in Fig. 4.1
a). Instead, in vertex-centered method, the control volumes are built using the middle point of
edges connecting the vertices of the grid elements and their baricenter, in such a way that the
variables will be more naturally stored in the triangulation nodes. The software used in this
work relies on the second technique described, building internally a dual grid.
Hence, acting on the integral form of a general conservative equation and taking separately the
contribution of each control volume, the integral form results in

∂

∂t

∫
Ωi

UdV +

∫
∂Ωi

F(U)nidσ =

∫
Ωi

s(U)dV, (4.2)

where we exchanged integral and time derivative due to the fact that the control volume does
not vary over time and the divergence theorem has been applied. Additionally, we can further
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Figure 4.1: Cell and Vertex centered control volumes.

simplify the boundary integral indicating the normal to each side of the element as nij , for i,j =
1,...,L, being L the total number of faces of the control volume. An ulterior step is to consider
the conserved quantities averaged in space, indicating it with an overlaying bar, in order to
write:

d

dt
Ūi +

1

Vi

L∑
j=1

∫
Aij

F(U)nijdσ =
1

Vi

∫
Ωi

s(U)dV, (4.3)

naming Vi =‖ Ωi ‖ the volume of Ωi and Aij its boundary faces.
The next step required is the discretization of the �ux function with the numerical �ux, which
consist in the substitution of the integral on the border with the sum of approximated con-
tributions of the �uid mass entering or exiting the control volume. The de�nition and the
speci�cation of the formula for the �ux determines the typology of method used. The speci�c
one, used for this work, is described by Kurganov in its paper for Acta Numerica [11], which is
the development of its previous work [23]. The symbol that will be utilized for the numerical
�ux on the face Aij of the control volume Ωi will be Fij =

∫
Aij

F(U)nijdσ.

Regarding the source term, it needs to have an ad hoc discretization, which in our problem, will
consist in classical techniques with the addition of a polynomial reconstruction of the pro�le
via Hermite polynomials. More precise details will be discussed in the dedicated section.
The �nal choice that needs to be applied is the time discretization strategy, which can either be
explicit or implicit. Before describing the possibilities, it may be useful to express the system
of equations in a more practical form, i.e. its residual counterpart:

d

dt
Ūi +

1

Vi
Ri(U) = 0 for i = 1, ...,M, (4.4)

where Ri(U) =
∑L
j=1 Fij −

∫
Ωi
s(U)dV is the convective contribution plus eventual shear

stresses, to which the integrated source is subtracted. Finally, we present the most common,
and therefore the ones that have been implemented, techniques for the time evolution tracking,
which for simplicity are only explicit.
Supposing to divide the time domain from t0 = 0 to tN = T in instants of constant di�erence
4t, the easiest method is the Euler Explicit time integration, which reads as

Ūn+1
i − Ūni
4t

+
1

Vi
Ri(U

n) = 0, for n = 0, ..., N − 1. (4.5)

In this case, as well as in the other explicit discretizations, the solution update follows imme-
diately because the values at the previous time step are all known and are substituted directly
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in the residual expression, obtaining

4 Uni = −4t
Vi
Ri(U

n), (4.6)

indicating the di�erence between conserved quantities as 4Uni = Ūn+1
i − Ūni .

Another algorithm implemented is the classical 4 steps Runge-Kutta, which starts exactly
as Explicit Euler, but it requires more than one iteration to retrieve a solution, reason why
it belongs to the category of Multi-Steps methods. In its most general form, a Runge-Kutta
procedure of order S can be written in the form

Un+1 = Un + hH(tn, Un, h;R) n ≥ 0, (4.7)

being R the residual of an arbitrary control volume and H the increment function, de�ned as

H(tn, Un, h;R) =

S∑
s=1

bsKs

Ks = −R(tn + csh, Un + h

S∑
q=1

asqKq) for s = 1, 2, ..., S, (4.8)

where the coe�cients asq, bs and cs are what really de�nes the typology of Runge-Kutta,
aside from h, which is the di�erence between the two consequent time instants. Indeed, if the
desired integration is explicit, all the asq with q ≥ s should be null, in order to use only the
Ks computed at previous steps. Moreover, to obtain consistency, it has been veri�ed that the
condition

∑S
s=1 bs = 1 must hold. Having done this preliminary considerations, we simply

report the classical and most di�used explicit Runge-Kutta, which implies the iteration of 4
steps, i.e.

Un+1 = Un +
h

6
(K1 + 2K2 + 2K3 +K4)

K1 = −R(tn, Un),

K2 = −R(tn +
h

2
, Un +

h

2
K1),

K3 = −R(tn +
h

2
, Un +

h

2
K2),

K4 = −R(tn+1, Un + hK3). (4.9)

A �nal remark which underlines the powerfullness of this method, is that it achieves the 4th

order of convergence in time when solving an Ordinary Di�erential Equation.
For the sake of completeness, we report also what would happen using an implicit technique,
in the speci�c case Euler Implicit time discretization. Unlike the explicit case, an implicit
approach requires the solution of the linear system derived from the expansion of the residual
Ri(U

n+1), namely

Ri(U
n+1) = Ri(U

n)+
∂Ri(U

n)

∂t
4 t+O(4t2) = Ri(U

n)+

Nf∑
j=1

∂Ri(U
n)

∂Unj
4Uni +O(4t2) (4.10)

calling Nf the total number of faces of the control volume taken in consideration.
The resulting expression for the implicit system linearized is(

Vi
4t

δij +
∂Ri(U

n)

∂Unj

)
4 Uni = −Ri(Un) for j = 1, ..., Nf , (4.11)

where δij is the Kronecker's delta.
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4.2 Kurganov Central Upwind Scheme

In order to complete the numeric scheme, we need to discretize the residual function for each
control volume i and at each time instant n. For the model provided in chapter 3, assuming
the PE hypothesis, we observe that Ri(U

n) is given by the sum of a convective and a source
contribution. For the advection part, we rely on the numerous recent work carried on by
Kurganov regarding shallow water, which, given the similarities with the equation already
explained, can be translated and adapted to the thin �lm world. For the source part, since
we want to avoid the addition of unknown terms to estimate normal stresses, a polynomial
interpolation strategy will be presented.

4.2.1 One- and Two-Dimensional Central-Upwind Scheme

Since the modeling equations are averaged, the approximating scheme needed for discretizing the
�ux can be presented only for the mono and bidimensional case. To present the 1-D approach,
which dates back to the original Godunov scheme, the control volume selected is the Cartesian
product of the two simpliest space-time intervals [xj− 1

2
, xj+ 1

2
] × [tn, tn+1], which reduces the

general complexity of the exposition. Furthermore, as a sempli�cation of the speci�c multilayer
technique, the method is described for a single layer, allowing the omission of the subscript k.
In order to evaluate the numerical �ux, i.e. the advetcion part of the subsequent equation, with
no source,

dŪ

dt
= − 1

4x
[Fj+ 1

2
(t)−Fj− 1

2
(t)], (4.12)

one has to approximately solve the following Riemann problem with the initial data prescribed
at time t = tn such that

dU

dt
+
dF (U)

dx
= 0 t ∈ (t, t+ τ ] with

U(x, t) =

{
U−
j+ 1

2

(t) if x < xj+ 1
2

U+
j+ 1

2

(t) if x > xj+ 1
2

, (4.13)

where τ is a small positive number and U+
j+ 1

2

(t) and U−
j+ 1

2

(t) are the right and left side values

of the piece-wise polynomial interpolant, namely

U−
j+ 1

2

(t) = Pj(xj+ 1
2
; t) and U+

j+ 1
2

(t) = Pj+1(xj+ 1
2
; t), (4.14)

where Pj and Pj+1 belong to the space of discontinuous interpolant polynomial. As a reference
for the polynomial reconstruction of �rst order, we present it in the form where the interface
quantities are deduced with the aid of the derivative, i.e.

U−
j+ 1

2

(t) = Ūj +
4x
2

(
dU

dx

)
j

and U+
j+ 1

2

(t) = Ūj+1 −
4x
2

(
dU

dx

)
j+1

, (4.15)

The reconstruction is performed at the interface of the control volume to achieve an higher
accuracy for the numerical method.
Once computed the conserved values at the interface xj+ 1

2
, in its works Kurganov proposes a

central-upwind scheme to solve the problem mentioned above, which takes advantage of the
direction of the �uxes. Indeed, the one-sided wave speed propagation is computed at the
cell interface and can be estimated by the upper and lower eigenvalues of the �ux function's
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Jacobian, which are respectively λn = ū+
√
gδk−1k and λ1 = ū−

√
gδk−1k computed in (3.36).

In most cases, reliable estimates are given by

a+
j+ 1

2

(t) = max

{
λn

(
∂F

∂U
(U−

j+ 1
2

(t))

)
, λn

(
∂F

∂U
(U+

j+ 1
2

(t))

)
, 0

}
, (4.16a)

a−
j+ 1

2

(t) = min

{
λ1

(
∂F

∂U
(U−

j+ 1
2

(t))

)
, λ1

(
∂F

∂U
(U+

j+ 1
2

(t))

)
, 0

}
. (4.16b)

Finally, we present the formula for numerical �ux at the interface

Fj+ 1
2

=
a+
j+ 1

2

F (U−
j+ 1

2

)− a−
j+ 1

2

F (U+
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[U+
j+ 1

2

− U−
j+ 1

2

− δUj+ 1
2
], (4.17)

where δUj+ 1
2
is the so-called built-in anti-di�usion term, whose purpose is to prevent the arise

of numerical di�usion, which adds up to the natural �uid viscosity slowing down the �ow. It
can be computed as

δUj+ 1
2

= minmod
(
U+
j+ 1

2

− U∗j+ 1
2
, U∗j+ 1

2
− U−

j+ 1
2

)
, (4.18)

using the minmod function

minmod(z1, z2, ...) =


min(z1, z2, ...) if zi > 0 for all i,

max(z1, z2, ...) if zi < 0 for all i,

0 otherwise.

(4.19)

The term speci�ed with a star represents an expression of the intermediate values, which takes
into account the estimate of the wave propagation speed and it can be found by

U∗j+ 1
2

=
a+
j+ 1

2

U+
j+ 1

2

− a−
j+ 1

2

U−
j+ 1

2

− [F (U+
j+ 1

2

)− F (U−
j+ 1

2

)]

a+
j+ 1

2

− a−
j+ 1

2

. (4.20)

Again, for the sake of simplicity of the 2-D setting, we describe the central-upwind scheme on
a bidimensional Cartesian grid Cj,i := [xj− 1

2 ,i
, xj+ 1

2 ,i
] × [yj,i− 1

2
, yj,i+ 1

2
], in order to have the

unknown coordinates centered in the grid vertex.
The discretization is applied to the two numerical �uxes, which are

F (U) =

 U2

ūU2 + 1
2

1
ρgU

2
1

ūU3

 G(U) =

 U3

v̄U2

v̄U3 + 1
2

1
ρgU

2
1

 , (4.21)

whose Jacobians have eigenvalues respectively λ1 = ū −
√
gδk−1k, λ2 = ū, λ3 = ū +

√
gδk−1k

and λ1 = v̄ −
√
gδk−1k, λ2 = v̄, λ3 = v̄ +

√
gδk−1k.

The mean vector of conserved quantities Ū is needed to evaluate the slopes at the boundaries
of the Cartesian control volume in the following way

UWj,i (t) = Ūj,i −
4x
2
∂xUj,i, UEj,i(t) = Ūj,i +

4x
2
∂xUj,i, (4.22)

USj,i(t) = Ūj,i −
4y
2
∂yUj,i, UNj,i(t) = Ūj,i +

4y
2
∂yUj,i. (4.23)

Due to the upwind nature of the scheme, the estimation of the propagation speed is retrieved
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by the maximum and minimum eigenvalues of the Jacobians, resulting in

a+
j+ 1

2 ,i
(t) = max

{
λn

(
∂F

∂U
(UEj,i(t))

)
, λn

(
∂F

∂U
(UWj+1,i(t))

)
, 0

}
(4.24a)

a−
j+ 1

2 ,i
(t) = min

{
λ1

(
∂F

∂U
(UEj,i(t))

)
, λ1

(
∂F

∂U
(UWj+1,i(t))

)
, 0

}
(4.24b)

b+
j,i+ 1

2

(t) = max

{
λn

(
∂G

∂U
(UNj,i(t))

)
, λn

(
∂G

∂U
(USj,i+1(t))

)
, 0

}
(4.24c)

b−
j,i+ 1

2

(t) = min

{
λ1

(
∂G

∂U
(UNj,i(t))

)
, λ1

(
∂G

∂U
(USj,i+1(t))

)
, 0

}
(4.24d)

where (4.24a) and (4.24b) are evaluated in x direction, while the remaining along y.
The central-upwind schemes may be signi�cantly simpli�ed if one passes to a semi-discrete limit
by taking maxn 4 tn → 0, leading to the complex expression for the numerical �uxes:

Fj+ 1
2 ,i

=
a+
j+ 1

2 ,i
F (UEj,i)− a

−
j+ 1

2 ,i
F (UWj+1,i)

a+
j+ 1

2 ,i
− a−

j+ 1
2 ,i

+
a+
j+ 1

2 ,i
a−
j+ 1

2 ,i

a+
j+ 1

2 ,i
− a−

j+ 1
2 ,i

[UWj+1,i − UEj,i − δUj+ 1
2 ,i

], (4.25)

Gj,i+ 1
2

=
b+
j,i+ 1

2

G(UNj,i)− b
−
j,i+ 1

2

G(USj,i+1)

b+
j,i+ 1

2

− b−
j,i+ 1

2

+
b+
j,i+ 1

2

b−
j,i+ 1

2

b+
j,i+ 1

2

− b−
j,i+ 1

2

[USj,i+1 − UNj,i − δUj,i+ 1
2
]. (4.26)

In the previous formula for the �ux F , the term δUj+ 1
2 ,i

is the anti-di�usion term, which reads
as

δUj+ 1
2 ,i

= minmod
(
UWj+1,i − U∗j+ 1

2 ,i
, U∗j+ 1

2 ,i
− UEj,i

)
, (4.27)

The estimation of the intermediate value of the conserved quantities is

U∗j+ 1
2 ,i

=
a+
j+ 1

2 ,i
UWj+1,i − a

−
j+ 1

2 ,i
UEj,i − [F (UWj+1,j)− F (UEj,i)]

a+
j+ 1

2 ,i
− a−

j+ 1
2 ,i

. (4.28)

For its counterpart G in the other direction, the analogous expressions are

δUj,i+ 1
2

= minmod
(
USj,i+1 − U∗j,i+ 1

2
, U∗j,i+ 1

2
− UNj,i

)
, (4.29)

U∗j,i+ 1
2

=
b+
j,i+ 1

2

USj,i+1 − b
−
j,i+ 1

2

UNj,i − [G(USj,i+1)−G(UNj,i)]

b+
j,i+ 1

2

− b−
j,i+ 1

2

. (4.30)

All this formula can be identically translated into the �uxes entering from the other side of the
control volume simply substituting the subscript j + 1

2 , i with j −
1
2 , i or j, i+ 1

2 with j, i− 1
2 .

Substituting the numerical �uxes, we obtain the following ODE

d

dt
Ūj,i = −

Fj+ 1
2 ,i
−Fj− 1

2 ,i

4x
−
Gj,i+ 1

2
− Gj,i− 1

2

4y
+ S(Uj,i), (4.31)

whose terms on the right-hand side are all known after the consideration made in the next
section.
As �nal considerations, two important properties of the scheme must be enounced. The �rst
is the so called 'lake at rest' condition, which states that, if the incoming �ux is null and the
thickness is constant, i.e. qx = qy = 0 in the whole �uid and δN = const., the convection is
annihilated by the source terms. Therefore, in this designed situation, the numerical �ux should
be equal the to real �ux. This fact can be easily veri�ed since if those circumstances are met,
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then the conserved variables are equal in all the control volume cells, implying that also their
value at the interface are identical, e.g. in one dimension U+

j+ 1
2

= U−
j+ 1

2

= Uj+ 1
2
. Hence, it

can be observed that, setting the horizontal velocity equal to zero, the propagation speed result
opposite in sing, resulting in a+

j+ 1
2 ,i

= −a−
j+ 1

2 ,i
. Moreover, with simple calculation, it can be

computed that the built-in anti-di�usion term δUj+ 1
2
is null, since the intermediate expression

U∗
j,i+ 1

2

has the same value of U+
j+ 1

2

and U−
j+ 1

2

. Finally, substituting all the aforementioned

consideration in the numerical �ux formula, we obtain that

Fj+ 1
2

=
a+
j+ 1

2

F (Uj+ 1
2
) + a+

j+ 1
2

F (Uj+ 1
2
)

2a+
j+ 1

2

= F (Uj+ 1
2
) =

∂
(

1
2

1
ρgU

2
1

)
∂x

, (4.32)

if we consider the momentum equation in x direction and remind that qx = 0. Computing
e�ectively this partial derivative we obtain

1

2

1

ρ
g
∂U2

1

∂x
= ρgδk−1k

∂δk−1k

∂x
. (4.33)

The last step to perform, is to manipulate the source term, consisting only of−ρgδk−1k
∂(δN−δk)

∂x −
ρgδk−1k

∂δk−1

∂x , because the velocity and consequently the stresses are null in the whole �uid, and
highlight the matching with (4.33). This can be done exploiting the linearity of the derivation,
showing that

− ρgδk−1k
∂(δN − δk + δk−1)

∂x
= −ρgδk−1k

∂δN
∂x

+ ρgδk−1k
∂δk−1k

∂x
= ρgδk−1k

∂δk−1k

∂x
(4.34)

since, for hypothesis, δN = const. The equality between (4.33) and (4.34) means that the 'lake
at rest' condition is satis�ed.
The second property of the Kurganov discretization is that his scheme is positivity-preserving,
which ensures that the reconstructed thickness is non-negative and that it does not surpass
the prescribed bottom surface. The conclusion is achieved by two elements that are added and
linked to the discretization, which are a linear piece-wise approximation of the layers, in order
for the slope not to cross the fundal, and a desingularization of the velocity, meaning that if
the thickness decreases to zero, the velocity takes the value of the inferior layer.

4.2.2 Source Contribution Discretization

Source contribution can be summarized, recalling for example (3.39), in three contributions: a
�rst part encloses the interaction between the layer heights, i.e. the sum of the thickness ρgδk−1k

multiplied by the derivative of the di�erence between the top and the k-th stratum ∂(δN−δk)
∂x

and by the derivative of the inferior layer cumulative height ∂δk−1

∂x , a second piece constituted by

the di�erence between vertical stress evalued exactly at the layer height 1
2µ
(
∂u
∂z |δk −

∂u
∂z |δk−1

)
and eventually a volumetric force, usually gravity ρgxδk−1k.
The most straight forward way to discretize the thickness interaction terms is to treat it ex-
plicitly, like usually done with the gravitational force, and considering the conserved quantity
constant inside the control volume, which is true if the area of Ωi tends to zero, or equiva-
lently when the mesh is very �ne. Moreover, we suppose the same happens with the derivative,
even if this assumption introduces an approximation error, because the control volumes are
time invariant, but can change spatially throughout the domain. Adopting such treatment, the
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expression obtained, for example presented in x direction, is

−
∫

Ωj

ρgδk−1k
∂(δN − δk)

∂x
dV = −ρgAj δ̄k−1k,j

∂(δN − δk)j
∂x

,

−
∫

Ωj

ρgδk−1k
∂δk−1

∂x
dV = −ρgAjδk−1k,j

∂(δk−1)j
∂x

(4.35)

where Aj =‖ Ωj ‖, i.e. Aj is the area of the control volume Ωj , and the pedix j represent the
constant value computed exactly in the primary grid node xj .
The second contribution is given by the di�erence between vertical stress, therefore the decision
adopted , unlike the classical literature in which the speed is expanded locally, is to reconstruct
the pro�le of the velocity, using the mean values that can be regained by the conserved variables.
To reconstruct the pro�le of a variable at a generic point knowing its mean value at the previous
iteration, the technique applied is the polynomial interpolation via Hermite polynomial in
integral form. Choosing Hermite is not random, indeed we can rely on the property H ′n(z) =
2nHn−1(z) to regain easily the normal stress from the velocity pro�le. The process used to
recover the interpolant polynomial is di�erent whether the analysis is carried for the exact
value or the integrated one.
If we decided to approximate the mean velocity at the mid point between two adjacent layers,
�rst of all, we approximate the real function with the sum of coe�cients multiplied by the base
polynomial up to the max degree M, i.e. u(z) =

∑M
i=0 αiHi(z) and then estimate the speed

in the middle of the strata, i.e. u( δ0+δ1
2 ), u( δk−1+δk

2 ), ..., u( δN−1+δN
2 ). Hence, we can set up the

following linear system

M∑
i=0

αiHi

(
δj−1 + δj

2

)
dz = u

(
δj−1 + δj

2

)
for j = 1, ..., N, (4.36)

solved for the unknown vector of coe�cients α.
In the other possibility, the one implemented in the code, the approximation is performed in an
integral form. The choice fell back to this alternative, because it is more consistent and does
not require the strong assumption that the mean conserved variable is exactly evaluated in the
middle point of two layers. Therefore, after writing u(z) as the sum of basis function Hi(z), the
polynomial expression of the speed is integrated along the whole thickness, calling its extrema δ0
and δN , where N is the total number of layers, resulting in

∫ δN
δ0

u(z)dz =
∑M
i=0

∫ δN
δ0

αiHi(z)dz.
We can successively split the integral for each layer interval and carry out the coe�cients, which
do not depend on the normal coordinate, obtaining

M∑
i=0

αi

N∑
k=1

∫ δk

δk−1

Hi(z)dz =

N∑
k=1

ūkδk−1k, (4.37)

that is a linear system having as unknowns the coe�cients of the polynomial αi for i = 0, 1, ...,M
and the integral of the basis Hermite polynomial stored in the matrix H. Contrary to the pre-
vious case, the value of the velocity is not the punctual evaluation at a speci�c coordinate,
but, accordingly to the mean value theorem, at a point called η ∈ [δk−1; δk]. Another useful
precisation, is that we are taking as correct the hypothesis that the derivative of function is
equal to the derivative of its polynomial reconstruction.
For consistency reasons, we also add to the system one equation for the value at the bottom,
known by boundary conditions, i.e. the velocity evaluated exactly at δ0, achieving a square
system when the max order is M = N + 1. The identical procedure can be repeated for v̄, the
velocity in y direction.
The full-�edged discretization of the expanded and rearranged interaction terms, i.e.

∫
Ωj

[ 1
2µ

∂u
∂z |δk−
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1
2µ

∂u
∂z |δk−1

]dV where j is now the index of the control volume associated with the j-th grid point,
can be summarized in the following declaration

Aj

[
1

2
µ
∂u

∂z
|δk −

1

2
µ
∂u

∂z
|δk−1

]
= Aj

[
1

2
µ

M∑
i=1

2iαiHi−1(δk)− 1

2
µ

M∑
i=1

2iαiHi−1(δk−1)

]
, (4.38)

reminding that α is the resulting vector of coe�cient associated to the Hermite polynomials for
the velocity, in this example in x direction.
For the sake of completeness, since the source contribution is being described, the explicit
expression of the discretization of a possible volumetric force is presented in the form of a
gravitational acceleration, for example in x direction, which is the most common bequest in
thin �lm theory and reads as ∫

Ωj

ρgxδk−1kdV = Ajρgxδk−1k,j . (4.39)

4.3 Primitive Equations with Vertical Viscosity

When considering the vertical viscosity contribution, the ulterior term which concours to oppose
or favor the �uid motion is the summation of normal stress, which can be seen in as the
expression of the expanded hypothesis (3.16). Therefore, in order to follow the guidelines of
this work, i.e. trying to model the variables using the informations provided by the solution on
the layers instead of expanding the unknowns and without adding extra constraints, we need a
way to treat the z-component of the stress tensor τ .
The simpliest solution is the application of Chezy formula for the bottom stress, as reported in
[27], which states:

τxz =
g

C2
u(u2 + v2)

1
2 , τyz =

g

C2
v(u2 + v2)

1
2 , (4.40)

giving an evaluation using only the known components of the velocity. For what concerns the

value of the so-called Chezy constant C, whose physical dimension is [m
1
2

s ], it can be retrieved

in two di�erent ways. The former estimate is given by the equality u∞ = C
√
Ri, where u∞ is

the mean reference velocity, used also in the calculation of Reynolds number, R is the hydraulic
radius, given by the cross-sectional area of �ow divided by the wetted perimeter, and i is the
hydraulic gradient, which for simple backdrop is equal to the bottom slope. The latter method
is the application of another formula, which requires the knowledge of the material composing

the bottom, because it requires Manning's roughness coe�cient 1
n , dimensionally equal to [m

1
3

s ],

and it can be formulated as C = 1
nR

1
6 , again being R the hydraulic radius. Exploiting one of

this relations, we can obtain the extra diagonal terms of the tensor and �nally having all the
information needed to move to the numerical discretization, which, for example, can use values
at the previous time step for an explicit treatment.
For the normal stress, the scenario to be faced is a little more complex because the quantity
to estimate at each layer interface is the second derivative of the normal velocity, which is
the unknown variable neglected by the average process. Reconstructing its pro�le is often
useful, and in this case necessary, although the procedure may be complicated if the desired
accuracy is high. For the sake of completeness, we present and summarize the key principles
of two methods described by Muccino et al. in [28]. Before starting, we recall that the vertical
velocity reconstruction should be performed after the resolution of the multilayer system (3.24)
at each time step.
Knowing that the traditional method consists in solving the full continuity equation neglecting
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one boundary condition, the �rst improvement covered by the paper requires the derivation
with respect to the z direction of the continuity equation, which results in

∂2w

∂z2
= − ∂

∂z
5 ·(v), (4.41)

where now v obviously is a 2 dimensional vector containing the tangential components of the
speed (u, v). Since the obtained equation is second-order, it can be closed with the imposition
of both boundary conditions.
A criticism of the approach just explained is that, having neglected the normal component, the
solving algorithm can only rely on the normal coordinate in which a layer is instantiated, which
can be an exiguous number, since the layers are few with respect to a complete discretization.
Hence, the second method we are going to introduce tries to exploit the strati�cation of the
domain imposed by the multilayer technique. The Least Square method starts from the original
continuity equation taken under integration between adjacent nodes in the vertical direction z,
obtaining the problem

wi+1 − wi = −
∫ zi+1

zi

5 · (v)dz for i=1,2,...,N-1, (4.42)

having, just like in the previous case, the possibility to include both boundary conditions for
i = 0 and i = N . Although the overdetermined system of equations cannot be solved uniquely,
the Eulerian norm of the residual may be minimized according to the theory of least squares.
Having calculated those extra source terms, one can �nally solve the multilayer thin �lm problem
with the addition of vertical viscosity. As a �nal remark, we want to point out that both the
application of Chezy formula and the Least Square reconstruction introduce approximation
errors, that should be ensured to be neglectable.

32



5 | SU2 Code

SU2 is an open-source software, written in C++, developed at Stanford University by Dr.
Francisco Palacios and Dr. Thomas D. Economon, downloadable from the o�cial website [a].
It can perform many tasks depending on the C++ executable chosen, which, for the purpose of
this work, is exclusively SU2_CFD. SU2_CFD primary applications are computational �uid
dynamics and aerodynamic shape optimization, but has been extended to treat more general
equations such as electrodynamics and chemically reacting �ows. It can be run e�cently in
parallel and it supports the resolution of multiphysics problems, which is the case of thin �lm.
The list of other components, such as SU2_DOT, which computes the partial derivative of
a functional, or SU2_DEF, which retrieve the geometrical deformation of an aerodynamic
surface and the surrounding volumetric grid, can be found in the site [a] under the voice
Installation/Software Components.

5.1 General Structure and Prerequisites

To run a CFD simulation, only two �les are needed: the �rst de�nes the mesh on the physical
domain, which can be in the native '.su2' or in '.cgns' format, while the second is called con�gu-
ration �le, which is essentially a collection of all the option speci�c to the problem. The possible
choices avaible in the '.cfg' �le include the set of equation solved, physical parameters, the type
of discretization applied to the convective and viscous part, informations on the linear system
solver and many other features. There exists also the possibility to de�ne a multiphysics prob-
lem, i.e. a scenario where two or more �uids are interacting, which is the case of thin �lm, or a
multizone domain, i.e. same �uid on a partitioned geometry, that must be provided either two
con�guration �les with their respective meshes or, enabling the option MULTIZONE_MESH,
a single document which includes the number of zones and both tasselation, preceded by the
indicator IZONE.
To introduce new features, one must update or create the enumeration corresponding to the
desired alternative in the �le option_structure.hpp, which will be introduced in a SU2-de�ned
map containing the string of the option and its possible values. The settings added to include
thin �lm problem are:

• FILM_SOLVER= (MULTI_LAYER_ASYMP, NAVIER_STOKES_FILM) select which
resolutive method to use.

• NLAYER sets the number of layer, one by default to prevent improper use in other
problems.

• FILM_HP= (PE, PEV2) switches the hypothesis for the pressure.

• BOTTOM_TOPOGRAPHY= (UNIFORM, STRAIGHT, PLANE, REAL_DATA) let
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the user choose between the shape of the bottom, from simple known topography to real
data which must be provided through an additional �le.

• BOTTOM_VALUE= (q, α, β) sets respectively the normal intercept and the angles,
measured in degrees, formed anti-clockwise with the positive portion of the axis.

Those choices are stored into newly created variables, contained in the class CCon�g, which is
passed as parameter to many of the functions invoked during the computations, granting the
adoption of the right methodology chosen by the user.
After reading the con�guration options, a driver, which is the leading object for the whole
simulation, is initialized. The class CDriver, or one its children, contains all the necessary
objects, clearly illustrated with the dotted lines in Fig. 5.1, to perform task such as run
each time iteration, integrate the equation in space and time or storage of the solution. The
continuous lines, instead, represent inheritance.

Figure 5.1: CDriver members.

Due to the vaste typology of physical dynamics the software can face, SU2 strongly relies on
the run-time polymorphism, activated during the instantiation of the driver. To enable the
resolution of a new type of problem, three speci�c class will be specialized, namely CSolver,
CVariable and CNumerics.
However, before describing the implementation for the thin �lm setting, we must take into
consideration a preliminary step concerning the geometry. Indeed, due to the average nature of
the method and since SU2 allows only bidimensional and threedimensional domains, we must
make sure that the integration of the �lm equation, which is devoid from the normal direction,
occurs correctly.
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5.1.1 CGeometry

Since SU2 does not support monodimensional problems, implementing an average method is
not straight forward. To bypass this limitation, the idea is to maintain in the mesh �le still
the higher dimension, but adding into the geometry class a �ctitious volumetric element for the
line and a new vertex boundary, di�erent from the current CVertexMPI used for parallelization.
Following this guideline, we added the possibility to read vertices as boundary units. Moreover,
when dealing with 3D domains, the reading mechanism of the bidimensional case is activated
by a boolean, checking whether we are solving the thin �lm multilayer equations, allowing the
initialization of linear control volume in the frontier.
Going slightly into the details, choosing a �nite volume approach, the CPhysicalGeometry class
stores both the primal grid, read directly from the input �le, and the dual grid, composed by
the points where the unknowns are calculated, edges of the control volumes and vertex, which
are boundary edges. This structure is clearly illustrated in Fig. 5.2. The new classes de�ned,

Figure 5.2: Original CGeometry structure.

children of CPrimalGrid, are CLineVol and CVeretxBound and their use is to be searched in the
function which parses the connectivity, called for all the possible typology of element shape, i.e.
DistributeVolumeConnectivity(con�g, geometry, LINE) and DistributeSurfaceConnectivity(con�g,
geometry, VERTEX).

5.1.2 Mesh Extractor

Since the creation of a proper geometry requires some care, due to the integration of a domain
deprived of one dimension, and, most importantly, the �lm domain comes from a boundary of
the volume occupied by the other �uid, the decison made is to extract, and write in a separate
su2 �le, the new geometry directly from the mesh of the surrounding zone. This process is
performed by a new program called mesh_extractor, whose compilation happens together with
the installation of SU2. Doing so, we ensure that the points where the unknowns are computed,
are exactly the same, allowing a faster communication without interpolation at the interface.
First of all we brie�y need to describe how a .su2 �le is organized. The �rst line simply asserts
the number of dimensions of the problem. Then, both the element and the points are archived
with the same organization, i.e. it is initially stated their numerosity, immediately followed
by their corresponding list. In the case of an element, the line starts with a vtk identi�er
(for example 3=line, 5=triangle, 13=prism), which de�nes its shape, followed by all the nodes
that compose its vertices, while for the point we only have the list of coordinates. Both of the
discussed components are accompanied by an number, indicating the global index, that ends
the line. The last piece of information regards the frontier, again preceded by the number of
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di�erent marker, then by the name of the boundary and an elencation of its elements, equipped
with the vtk identi�er but without any ordering index.
To setup the extraction, we need to write a small con�guration indicating the input and output
�le name, the tag of the marker which de�nes the free surface. The key idea is straightfor-
ward and consist in looping on the target boundary storing the elements and the points which
compose them, for a successive renumeration while using the old indices to choose the correct
corrispective point. An additional complexity has to be faced when writing the boundary of
the newly retrieved mesh, obviously not in the monodimensional case, where we simply take
the maximum and the minimum x-coordinate. When extracting a surface from a 3D domain,
the decision made is to keep as boundary the intersection of the interface with the other mark-
ers already present in the volume. For this reason, the CMesh_Extractor member function
set_bc_2D creates an entire threedimensional geometry and, looping on its frontier, chooses
and stores the point common to the interface and inherits the same name for the new boundary.
As a consequence of the CGeometry object instantiation, in the con�guration �le all the marker
type must be speci�ed either with their real condition or with a placeholder one, while for a
bidimensional input mesh we need to state only the interface tag. For more informations, ex-
amples and tests are stocked up in the subdirectory SU2/Mesh_Extractor/TestExtractor. Here
it is reported the �rst piece of the code executing the process just explained.

1 CConfig *config = new CConfig(config_file_name , SU2_MSH , false);

2 CGeometry *geometry;

3 CGeometry *geometry_aux = NULL;

4 /* --- Definition of the geometry class to store the primal grid in the

5 partitioning process. ---*/

6 geometry_aux = new CPhysicalGeometry(config , ZONE_0 , 1);

7 geometry = new CPhysicalGeometry(geometry_aux , config);

8 ...

9 unsigned long iPoint , jPoint , aux_Point , iElem;

10 size_t *VecSize;

11 unsigned short iMarker , nMarker , nCommonMarker , interface_Marker = -1;

12 unsigned short iNode , iNode_Conn;

13 bool *isCommonMarker;

14 std:: string vtk_line = "3";

15 std::vector <std::string > marker_names;

16 std::map <unsigned short ,std::vector <unsigned long >> Marker_common_points;

17 std::vector <std::pair <unsigned long , unsigned long >> *boundary_lines;

18

19 nMarker = config ->GetnMarker_All ();

20 nCommonMarker = 1; // surely FLUID_INTERFACE is common

21

22 ...

23

24 marker_names.resize(nMarker);

25 isCommonMarker = new bool[nMarker ];

26 VecSize = new size_t[nMarker ];

27 for(iMarker = 0; iMarker < nMarker; iMarker ++){

28 marker_names[iMarker] = config ->GetMarker_All_TagBound(iMarker);

29 isCommonMarker[iMarker] = false;

30 }

31

32 /* --- Loop on all the boundaries ---*/

33 for(iMarker = 0; iMarker < nMarker; iMarker ++) {

34 if( iMarker != interface_Marker ){

35 /* --- Loop on the marker 's elements ---*/

36 for(iElem = 0; iElem < geometry ->nElem_Bound[iMarker ]; iElem ++){

37 /* --- Loop on the nodes composing each boundary element ---*/

38 for(iNode = 0; iNode < geometry ->bound[iMarker ][iElem]->GetnNodes (); iNode

++){

39 iPoint = geometry ->bound[iMarker ][iElem]->GetNode(iNode);

40 /* --- Points reindexing through mapping ---*/

41 if(old_to_new_idx.find(iPoint) != old_to_new_idx.end() ){
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42 if(map_idx_point.find(old_to_new_idx.at(iPoint)) != map_idx_point.end())

43 Marker_common_points[iMarker ]. push_back(iPoint);

44 }

45 }

46 }

47 if(! Marker_common_points[iMarker ].empty()){

48 nCommonMarker ++;

49 isCommonMarker[iMarker] = true;

50 }

51 } // end iMarker != interface_Marker

52 } // end for iMarker

Afterwards, we need to write in the new mesh �le for the �lm the boundary of the surface, which
will unequivocally be lines. Hence, after we remove duplicate common points, the line elements
are inserted with the tag they had in the complete domain, but with the new enumeration of
the points. The conclusive part of the code is here detailed.

1 boundary_lines = new std::vector <std::pair <unsigned long , unsigned long >>[

nMarker ];

2

3 for(iMarker = 0; iMarker < nMarker; iMarker ++) {

4 if(iMarker != interface_Marker){

5 for(size_t ii_vec = 0; ii_vec < VecSize[iMarker ]; ii_vec ++){

6 iPoint = Marker_common_points[iMarker ][ ii_vec ];

7 for(size_t jj_vec = ii_vec; jj_vec < VecSize[iMarker ]; jj_vec ++) { //

forward check to avoid duplicate couples

8 jPoint = Marker_common_points[iMarker ][ jj_vec ];

9 if(iPoint != jPoint){

10 for(iElem = 0; iElem < geometry ->nElem_Bound[iMarker ]; iElem ++){

11 for(iNode = 0; iNode < geometry ->bound[iMarker ][iElem]->GetnNodes ();

iNode ++){

12 if(iPoint == geometry ->bound[iMarker ][iElem]->GetNode(iNode) ){

13 /* --- Loop on all the nodes connected to iNode ---*/

14 for(iNode_Conn = 0; iNode_Conn < geometry ->bound[iMarker ][iElem]->

GetnNeighbor_Nodes(iNode); iNode_Conn ++){

15 aux_Point = geometry ->bound[iMarker ][iElem]->GetNeighbor_Nodes(iNode ,

iNode_Conn);

16 if(jPoint == geometry ->bound[iMarker ][iElem]->GetNode(aux_Point) )

17 boundary_lines[iMarker ]. push_back(std::pair <unsigned long ,unsigned

long >(iPoint , jPoint));

18 }

19 }

20 }

21 } // end iElem

22 } // end iPoint != jPoint

23 } // end for jj_vec

24 } // end for ii_vec

25 } // end if iMarker != interface_marker

26 } // end for iMarker

27

28 /* --- Opening output mesh file ---*/

29 std:: ofstream surface_mesh;

30 surface_mesh.open(out_mesh_name , std:: ios_base ::out | std:: ios_base ::app);

31 surface_mesh << "NMARK= " << nCommonMarker << endl;

32 surface_mesh.close();

33 write_fluid_interface ();

34 surface_mesh.open(out_mesh_name , std:: ios_base ::out | std:: ios_base ::app);

35

36 /* --- Writing marker 's name and nr. of elements ---*/

37 for(iMarker = 0; iMarker < nMarker; iMarker ++) {

38 if(isCommonMarker[iMarker ]){

39 surface_mesh << "MARKER_TAG= " << marker_names[iMarker] << endl;
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40 surface_mesh << "MARKER_ELEMS= " << boundary_lines[iMarker ].size() << endl;

41 for(auto it = boundary_lines[iMarker ].begin (); it != boundary_lines[iMarker ].

end(); it++){

42 /* --- Writing all elements and their shape (vtk identifier) ---*/

43 surface_mesh << vtk_line << " " << old_to_new_idx.at(it->first)<< " "<<

old_to_new_idx.at(it ->second) <<endl;

44 }

45 } // end if isCommonMarker

46 } // end for iMarker

5.2 Problem-speci�c Classes

As mentioned before, in the driver are polymorphically initialized the classes needed to de�ne
a problem, such as

• CSolver: that builds and solves the residual system,

• CVariable: which is a simple container of the most relevant physical variables,

• CNumerics: where the speci�c numerics method is implemented.

Each variable of the listed class types is stored in an array, because the usage of this containers
allows to enlarge the case histories of resolutive methods, as will be described in the follow-
ing example. Taking as exempli�cation variable solver_container, it is declared as a quintuple
pointer to the base class CSolver and successively allocated throught the ripartion nZone, nInts,
Multigrid_Level, MAX_SOLS. The �rst 3 position are common to many of the aforementioned
objects because they concern generic extensions, which respectively are the number of zones in
which the domain is divided, each with his own mesh and which may represent di�erent �uids,
like in the thin �lm case, the number of instances of the problem and the level on which the
grid must be re�ned. The fourth array spot is proper of the solver and it indicates whether the
contribution is to the laminar or turbulent �ow solution or also its adjoint counterpart. The
last pointer is obviously necessary to activate polymorphism.
All the previously explained constitutents are activated during the various CDriver preprocessing
members, such as Geometrical_Preprocessing, Solver_Preprocessing and Numerics_Preprocessing,
in which we added the specialization for the �lm problem. Therefore, in the following subsec-
tions, the �nal blocks of this tree of pointers will be presented, highlighting their principal
changes speci�c to the thin �lm framework.

5.2.1 CFilmSolver

When the solver object is instantiated, the �rst instruction run by the constructor are the
initialization of variables regarding the geometry and the physics of the �lm and, most impor-
tantly for this work, the activation of the boolean variable multilayer, which states whether the
solver takes into consideration coherently the number of layers, by default set to 1, or adjust
the amount of layer to a default of 3. In conclusion, it de�nes the number of averaged dimen-
sion nADim and the number of primitive variables nPrimVar, which di�ers from nVar, which
considers only the conserved quantities.
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1 /* --- Define geometry constants in the solver structure ---*/

2 nDim = geometry ->GetnDim ();

3 nADim = nDim - 1;

4 nMarker = config ->GetnMarker_All ();

5 nPoint = geometry ->GetnPoint ();

6 nPointDomain = geometry ->GetnPointDomain ();

7 nEdge = geometry ->GetnEdge ();

8 nLayer = config ->GetnLayer ();

9

10 /*-- Unknowns (p, h, q_x , q_y) -- h=rho*delta -- q_x=u*h -- q_y=v*h --*/

11 nVar = nADim + 2;

12 /* --- Primitive variables (p, vx, vy , rho , delta) ---*/

13 nPrimVar = nADim +3;

14 nPrimVarGrad = nADim;

15

16 /* --- Enabling multilayer and fallback if wrong input ---*/

17 if(nLayer == 0)

18 SU2_MPI ::Error(string("Invalid value for NLAYER , it must be at least 1."),

CURRENT_FUNCTION);

19 if( (config ->GetKind_Film_Solver () == MULTI_LAYER_ASYMP) && (nLayer > 1) )

20 multilayer = true;

21 else if((config ->GetKind_Film_Solver () == MULTI_LAYER_ASYMP) && (nLayer == 1)){

22 multilayer = true;

23 nLayer = 3;

24 config ->SetnLayer(nLayer);

25 }

26

27 ...

28

29 /* --- Initialization of the system of residuals ---*/

30 unsigned long nlayernpoint = nLayer*nPoint;

31 unsigned long nlayernpointdom = nLayer*nPointDomain;

32 Layer_SysRes.Initialize(nlayernpoint , nlayernpointdom , nVar , 0.0);

33

34 ...

35

36 /* --- Get physical quantities ---*/

37 su2double *Density_Inf_Layer = NULL;

38 su2double ** Thickness_Inf_Layer = NULL;

39 if(multilayer) {

40 Density_Inf_Layer = new su2double [nLayer ];

41 Thickness_Inf_Layer = new su2double *[ nLayer ];

42 for(iLayer = 0; iLayer < nLayer; iLayer ++) {

43 Density_Inf_Layer[iLayer] = Density_Inf;

44 Thickness_Inf_Layer[iLayer] = new su2double[nPoint ];

45 for(iPoint = 0; iPoint < nPoint; iPoint ++)

46 Thickness_Inf_Layer[iLayer ][ iPoint] = total_thickness[iLayer ][ iPoint ]/

su2double(nLayer);

47 }

48 /* --- Initialization of CVariable inherited class ---*/

49 nodes = new CMultilayerFilmVariable(Density_Inf_Layer ,Thickness_Inf_Layer ,

Velocity_Inf ,layer_toll ,nPoint ,nDim ,nVar ,config);

50 } else {

51 nodes = new CFilmVariable(Density_Inf ,Thickness_Inf ,Velocity_Inf ,layer_toll ,

nPoint ,nDim ,nVar ,config ,1);

52 }

Finally, it is also initialized the variable nodes, which contains the physical informations for each
point, coinciding in this case with the mesh node because the dual grid technique is applied.
The other imperative subroutines are the ones which calculate the residual, divided speci�-
cally for the convective, viscous and source part. We report the typical loop present in Up-
wind_Residual function, where, for each control volume edge of the dual grid, we compute the
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�ux calling the members of CNumerics and the value is thereafter added and subtracted to
the two points connected by that edge, corresponding to the �ux entering and exiting the two
elements interface. It is worth noticing how all the obtained residual are stored in the same
container variable Layer_SysRes.

1 /* --- Loop on all the dual grid edges ---*/

2 for (iEdge = 0; iEdge < geometry ->GetnEdge (); iEdge ++) {

3 /* --- Loop on all layers ---*/

4 for(iLayer = 0; iLayer < (nLayer -1); iLayer ++){

5

6 iPoint = layer_edge[iLayer ][iEdge]->GetNode (0);

7 jPoint = layer_edge[iLayer ][iEdge]->GetNode (1);

8

9 /* --- Setting geometrical quantities to CNumerics variable ---*/

10 numerics ->SetCoord(layer_node[iLayer ][ iPoint]->GetCoord (), layer_node[iLayer ][

jPoint]->GetCoord ());

11 numerics ->SetNormal(layer_edge[iLayer ][ iEdge]->GetNormal ());

12

13 /* --- Grid movement ---*/

14 if (dynamic_grid)

15 numerics ->SetGridVel(layer_node[iLayer ][ iPoint]->GetGridVel (), layer_node[

iLayer ][ jPoint]->GetGridVel ());

16

17 /* --- Getting primitive variables from CVariable ---*/

18 V_i_Layer[iLayer] = nodes ->GetLayerPrimitive(iPoint ,iLayer);

19 V_j_Layer[iLayer] = nodes ->GetLayerPrimitive(jPoint ,iLayer);

20

21 numerics ->SetPrimitive(V_i_Layer[iLayer], V_j_Layer[iLayer ]);

22

23 /* --- Computing and storing convective residuals ---*/

24 numerics ->ComputeResidual(Res_Conv_Layer[iLayer],config);

25 Layer_SysRes.AddBlock(iPoint + iLayer*nPoint , Res_Conv_Layer[iLayer ]);

26 Layer_SysRes.SubtractBlock(jPoint + iLayer*nPoint , Res_Conv_Layer[iLayer ]);

27 }

28 }

The pro�le reconstruction executed by ComputePro�le, called in Source_Residual, is done through
an auxiliary class, named CBlasStructure, which solves general linear systems for the polyno-
mial coe�cients exploiting, if the option is activated at compile time, blas and lapack routines,
as shown in the following lines of code. The source uses two numerical objects, because the
second takes care exclusively of the viscosity interaction between layers, which is the one with
most available treatment, to which this work contributes de�ning a new possible recipe. The
�rst numeric deals with all the terms related to the thickness, as long as, if present, with the
volumetric force.

1 /* --- Loop on primal grid nodes ---*/

2 for(iPoint = 0; iPoint < nPointDomain; iPoint ++){

3

4 /* --- Setting Thickness derivative ---*/

5 ComputeDThickness(geometry , dThick_dx , iPoint);

6 /* --- Compute the coefficient of the profile reconstruction ---*/

7 for(iDim = 0; iDim < nADim; iDim ++)

8 ComputeProfile(config , V_Coeff[iDim], iPoint , iDim +1);

9

10 /* --- Loop on all layers ---*/

11 for(iLayer = 0; iLayer < nLayer; iLayer ++){

12

13 /* --- Setting primitive variables to CNumerics ---*/

14 numerics ->SetPrimitive(nodes ->GetLayerPrimitive(iPoint , iLayer),

15 nodes ->GetLayerPrimitive(iPoint , iLayer));
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16 second_numerics ->SetPrimitive(nodes ->GetLayerPrimitive(iPoint , iLayer),

17 nodes ->GetLayerPrimitive(iPoint , iLayer));

18

19 ...

20

21 /* --- Setting thickness derivatives ---*/

22 for(iDim = 0; iDim < nADim; iDim ++){

23 dThickNmK_dx = (dThick_dx[nLayer -1][ iDim]-dThick_dx[iLayer ][iDim]);

24 if(iLayer == 0) {

25 numerics ->SetdThick (0.0, dThickNmK_dx , iDim);

26 } else if(iLayer != 0 && iLayer < (nLayer -1)) {

27 numerics ->SetdThick(dThick_dx[iLayer -1][ iDim], dThickNmK_dx , iDim);

28 } else {

29 numerics ->SetdThick(dThick_dx[iLayer -1][ iDim], 0.0, iDim);

30 }

31 } // end iDim

32

33 /* --- Compute thickness source residual ---*/

34 numerics ->ComputeResidual(Res_Sour , config);

35 /* --- Add the source residual to the system ---*/

36 Layer_SysRes.AddBlock(iPoint + iLayer*nPoint , Res_Sour);

37

38 /* --- Set extradiagonal stress profiles ---*/

39 if(iLayer == 0){

40 second_numerics ->SetStressBC(V_Coeff , 0.0, total_thickness[iLayer ][ iPoint ]);

41 } else {

42 second_numerics ->SetStressBC(V_Coeff , total_thickness[iLayer -1][ iPoint],

total_thickness[iLayer ][ iPoint ]);

43 }

44

45 /* --- Reintialization of the residual to zero ---*/

46 for(iVar = 0; iVar < nVar; iVar ++) Res_Sour[iVar] = 0.0;

47

48 /* --- Compute viscous source residual ---*/

49 second_numerics ->ComputeResidual(Res_Sour , config);

50 /* --- Add the source residual to the system ---*/

51 Layer_SysRes.AddBlock(iPoint + iLayer*nPoint , Res_Sour);

A last consideration on the source contribution is that, unlike the convection, the loop is
performed directly on the primary mesh nodes, which are the points in which the solution
variable are stored and consequently added to the residual system. Therefore, any computation
which requires the calculus of a quantity only in one point are perfomed by other subroutines,
such as ComputeDThickness and ComputePro�le. The former member function computes the
derivative of the thickness exploiting a �nite di�erence method for a bidimensional geometry or
a more accurate central di�erence for the monodimensional case, applicable because the points
are connected consequently and it is not necessary a connection matrix. The latter routine starts
assembling the matrix of integrated Hermite coe�cients, utilizing Cavalieri-Simpson technique,
and retrieves the primitive mean values from the container CVariable, or one of its children.
Finally, for time integration, we just want to remark that only explicit methods are implemented
in the solver class, which means explicit Euler, classical 4-step Runge-Kutta and generic Runge-
Kutta, that must be accompanied by the option RK_ALPHA_COEFF in the con�guration �le
to indicate all multi-steps coe�cients.

5.2.2 CBlasStructure

Since pro�le reconstruction is performed for every point and for each single iteration, an e�cient
routine to solve the system which �nds the Hermite polynomial coe�cients. In SU2 it already
exists a class named CBlasStructure deputed to linear algebra operations, but unfortunately
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member functions for the solution of linear systems are not implemented. To be fair, SU2
provides a way of constructing matrices, which, howerver, is strongly connected to the whole
triangulation grid and consequently cannot be exploited for our purposes.
Therefore, the problem is �nding an e�cient strategy to solve every possible linear system, or
at least giving a reasonable approximation. The members added to CBlasStructure work in this
direction, indeed, after a preliminary call to dgetrs(), the matrix is �rst of all factorized through
LU with permutation technique, which does not require particular hypothesis. Thanks to this
step, we can verify that the system is not singular, performing a check on the diagonal values
of U, which coincides with the eigenvalues of A. If the singularity condition is not met, we can
take advantage of the already computed factorization and solve the lower and upper triangular
systems with respectively forward and backward substiution. In the opposite case, i.e. one or
more eigenvalues are equal to zero, we must rely on a di�erent and always feasible techniques,
such as Least Squares. The minimization of ‖Hx − b‖ is done, as before, through a �rst step
of factorization and the subsequent resolution of two linear systems. The QR factorization
is therefore implemented, relying on the Grant-Schmidt algorithm to compute the orthogonal
matrix.
The described techniques are achieved both leaning on the external open linear algebra library
openblas, which SU2 already includes in its compilation options, and manually, if the aforemen-
tioned alternative is not avaible. The code is able to switch between those options thanks to
the #if ... #endif conditional. The references to all the library functions can be found at the
o�cial site [c].

5.2.3 CFilmVariable

As previously said, the general CVariable is nothing more than a container for the physical infor-
mations of each node, therefore it contains mostly setter and getter methods for the primitive
variables and for the conserved quantities.
Since in the multilayer case the number of layers can vary and it is useful, due to the possible
in�uence of speci�c interaction term, to know which are the bottom or top stratum, the deci-
sion adopted is to create the child class storing the necessary members for a generic layer, then
derive from it in the class CMultilayerFilmVariable and add an array of CFilmVariable for all the
inferior layers, while the surface physical properties are saved in the main class members. The
diagram, presented in Fig. 5.3, shows this organization, as well as some important member
functions. In the constructor, we de�ne a container for the primitive physical quantities of
the �uid and one for the conserved quantities in the variable Solution, which are successively
returned by the function GetLayerPrimitive.
Because the nature of the equation becomes singular when the thickness of a layer degenerates
to zero, we must ensure that, while setting the primitive variable, it does not decrease too
much, which means that δk−1k doesn't go below the 1% of the initial value. This tolerance
threshold is chosen in the solver constructor and it is taken as the smallest value between all
mesh points. Whenever the singularity condition is veri�ed, the conserved velocity �ux is not
divided by the layer thickness, but the speed is imposed directly as the value of the underlying
layer or with the bottom boundary conditions, if the thickness that is becoming zero is the one
corresponding to the stratum most near to the backdrop of the domain.
Another possibility, may be the quadratic reconstruction, presented by Kurganov [11] at pag.
313, in the form for the horizontal velocity in a generic layer:

u =
2qh

h2 +max(h2, toll2)
, (5.1)

where toll is again the threshold set in CFilmSolver. If this technique is preferred, on should
change the implementation in the member function CFilmVariable::ReconstructVelocity.
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CFilmVariable CMultilayerFilmVariable

# nLayer

# Primitive

+ GetBottom_BC

+ SetPressure

+ GetDensity

+ GetLayerPrimitive

+ AddLayerSolution

+ SetLayerSolution_New

- KthLayer : CFilmVariable**

Figure 5.3: CFilmVariable inheritance diagram.

5.2.4 CFilmNumerics

The last piece needed to tie up the integration of a new solving method, is a class which e�ec-
tively computes the residuals between two arbitrary points connected by an edge, by a vertex,
in the case of boundary conditions, or in a single point, for source contribution. For every
problem, more than one child must be de�ned to implement ad hoc techniques for the spe-
ci�c contribution, which are again stored in the driver array numeric_container. The classes
inheriting from CNumerics work essentially in two steps: at the generic iteration in the loop
on the edges, geometrical and physical quantities of the two connected nodes are set through
the functions SetNormal, SetCoord and SetPrimVar, followed by ComputeResiduals, invoked to
perform the computation of the respective residual.
Therefore, we specialized the base class in order to develop each separate numerical techniques,
as presented in Fig. 5.4 and described afterwards.
The children class which handles the convective part is CCentUpw_SW, implementing the
central upwind scheme for shallow water problems introduced by Kurganov in [11] and dis-
cussed in Chapter 4. To ensure that an upwind approach is used, one should set the op-
tion CONV_NUM_METHOD_FLOW equal to ROE. Its most interesting member variables
are the functor SW_Flux, that contains the expression of the real �ux vector, e.g. (qx, q

2
x +

1
2

1
ρgh

2, qxqy/h)T for x component, deduced in the derivation of the model, and all the ones cor-
responding to the contributes to the numerical �ux, such as δU , U_card, i.e. UE , UW , US , UN ,
U∗ and the collection of advection coe�cients stored in adv_coe�. Hence, as previously ex-
plained, the key routine ComputeResidual executes the following instructions:
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CNumerics

CCentUpw_SW CFilmSource CFilmViscosity

Figure 5.4: CNumerics derived classes.

1 /* --- Primitive variables at point i ---*/

2 Pressure_i = V_i [0];

3 for (iDim = 0; iDim < nADim; iDim ++)

4 Velocity_i[iDim] = V_i[iDim +1];

5 Density_i = V_i[nADim +1];

6 DeltaThick_i = V_i[nADim +2];

7

8 /* --- Primitive variables at point j ---*/

9 Pressure_j = V_j [0];

10 for (iDim = 0; iDim < nADim; iDim ++)

11 Velocity_j[iDim] = V_j[iDim +1];

12 Density_j = V_j[nADim +1];

13 DeltaThick_j = V_j[nADim +2];

14

15 real_flux.SetDensity(Density_i);

16

17 /* --- Setting conservative variables ---*/

18 Conservatives_i [0] = Density_i*DeltaThick_i;

19 Conservatives_j [0] = Density_j*DeltaThick_j;

20

21 for (iDim = 0; iDim < nADim; iDim ++) {

22 Conservatives_i[iDim +1] = Density_i*DeltaThick_i*Velocity_i[iDim];

23 Conservatives_j[iDim +1] = Density_j*DeltaThick_j*Velocity_j[iDim];

24 }

25

26 /* --- Setting cardinals conservative variables , order important ---*/

27 SetCardinals ();

28 Compute_adv_coeff(U_card);

29 Compute_U_star ();

30 Compute_delta_U ();

31

32 /* --- Computing numerical flux ---*/

33 Compute_numerical_flux ();

34

35 for(iVar = 0; iVar < nVar; iVar ++)

36 val_residual[iVar] = 0.0;

37
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38 /* --- Continuity & Momentum eq. contribution ---*/

39 for(iVar = 1; iVar < nVar; iVar ++){

40 for(iDim = 0; iDim < nADim; iDim ++){

41 val_residual[iVar] += numerical_flux[iVar -1][ iDim]* UnitNormal[iDim];

42 }

43 }

For completeness, we report also the calculation of numerical_�ux

1 /* --- Compute numerical fluxes ---*/

2 for(iEqs = 0; iEqs < nEqs; iEqs ++){

3 for(iDim = 0; iDim < nADim; iDim ++){

4 adv_diff = adv_coeff[iDim] - adv_coeff[iDim + nADim ];

5 adv_prod = adv_coeff[iDim] * adv_coeff[iDim + nADim ];

6 numerical_flux[iEqs][iDim]= (adv_coeff[iDim]* real_flux(U_card[iDim],iEqs ,iDim)

- adv_coeff[iDim+nADim]* real_flux(U_card[iDim+nADim],iEqs ,iDim) );

7 /* --- Anti -diffusive term ---*/

8 numerical_flux[iEqs][iDim] += adv_prod *( U_card[iDim+nADim][iEqs]

9 - U_card[iDim][iEqs] - delta_U[iEqs][iDim] );

10 if(adv_diff != 0.0){

11 numerical_flux[iEqs][iDim] /= adv_diff;

12 } else {

13 numerical_flux[iEqs][iDim] = 0.0;

14 }

15 }

16 }

which retrace the formula (4.25)

Fj+ 1
2 ,i

=
a+
j+ 1

2 ,i
f(UEj,i)− a

−
j+ 1

2 ,i
f(UWj+1,i)

a+
j+ 1

2 ,i
− a−

j+ 1
2 ,i

+
a+
j+ 1

2 ,i
a−
j+ 1

2 ,i

a+
j+ 1

2 ,i
− a−

j+ 1
2 ,i

[UWj+1,i − UEj,i − δUj+ 1
2 ,i

].

We can note a couple of interesting details, such as the use of nEqs, which is equal to nVar - 1
because the �rst conserved variable is the pressure, retrieved directly from the PE or PEV 2

hypothesis, making unecessary a residual addition.
Regarding the contribution of interaction between layers, the classes CFilmSource and CFilmVis-
cosity deal respectively with pure source terms and with the reconstruction of the stress pro�le.
When called into the function Source_Residual, the numerics' variables retrieve the pro�le using
the function SetStressBC, which takes in input the coe�cients of the Hermite polynomial and
the heigth of the two layers which are interacting and then it simply sums the evaluation of
the polynomial weighted with the coe�cient, paying attention for to use the Hermite property
H ′n(x) = 2nHn−1(x). Finally, the residual is simply the di�erence between the quantities eval-
uated exactly at adjacent layers. In addition to the thickness source discretization, CFilmSource
verify if any volumetric force is acting and consequently computes its e�ect.
For demonstrative purpouses, we report the essential codelines of CFilmSource::ComputeResidual

1 /* --- Source contribution to the PE hypothesis ---*/

2 val_residual [0] = 0.0;

3

4 /* --- Source contribution to the continuity equation ---*/

5 val_residual [1] = 0.0;

6

7 /* --- Source contribution to the momentum equations ---*/

8 /* --- NB: opposite signes because source brought to the LHS ---*/

9 for(iDim = 0; iDim < nADim; iDim ++){

10 val_residual[iDim +2] = 0.0:

11 val_residual[iDim +2] += Volume*Density_i*g_const*Thickness_i*dThick_Nmk[iDim];

12 val_residual[iDim +2] += Volume*Density_i*g_const*Thickness_i*dThick_km1[iDim];

13 if(gravity_force){

14 val_residual[iDim +2] -= Volume*Density_i*Thickness_i*body_force_vector[iDim];
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15 }

16 }

and for its viscous counterpart CFilmViscosity::ComputeResidual

1 /* --- Source contribution to the PE hypothesis ---*/

2 val_residual [0] = 0.0;

3 /* --- Source contribution to the continuity equation ---*/

4 val_residual [1] = 0.0;

5

6 /* --- Source contribution to the momentum equations ---*/

7 for(iDim = 0; iDim < nADim; iDim ++){

8 val_residual[iDim +2] = -Volume *(0.5* Laminar_Viscosity_i*BC_Stress_k[iDim] -

0.5* Laminar_Viscosity_i*BC_Stress_km1[iDim]);

9 }

5.2.5 CFilmOutput

Normally, SU2 returns an output containing, beyond the physical variables required in the con-
�guration �le, the primary grid, complete with the typology of elements and their connectivity.
This ordering is not entirely feaseble with the geometry de�ned by the multilayer framework,
since we can say each layer owns a proper mesh, which is not connected with the adjacents.
Therefore, the decision taken is to write a new kind of output �le, which does not expect SU2
structure, but allows immediate readability and easy postprocess operations. Hence, the most
natural choice is to organize each output variable as list of their value for all point of a single
layer, then start a new line for the successive inferior layer.

5.3 SU2 Setup and Execution

The additional features for solving the thin �lm set of equation have been introduced in SU2
via the least invasive and most cooperanting way possible. Indeed, the installation procedure
is kept equal to the standard one introduced for version 7.0 of the software, which has become
faster with respect to the past thanks to the employment of the Meson build system. Meson is
an open source build system meant to support the compilation process for several programming
languages, including C++. To give a basic idea of its functioning, we report the most simple
commands which allow the compilation of a program, which are

1 // A variable containing all source files

2 src = files (['source1.cpp', 'source2.cpp'])

3 // A variable containing include directories

4 inc_dir = include_directories('../ path/to/inc')

5 // The instruction to create the executable main

6 exc = executable('main', src ,

7 install : true ,

8 include_directories : inc_dir ,

9 cpp_args: ['-Wall'] + [cpp_args ])

where cpp_args are the compiler arguments. The only requirement needed both for Meson
and SU2 is having installed at least version 3.0 of Python, which, if connected with super-user
privileges, will require the entry of the password.
Therefore the user should just type the following commands to achieve a full installation:

1 ./meson.py build -Denable -option=true

2 ./ninja -C build install
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where Ninja is another build system with a focus on speed. Both Meson and Ninja are down-
loaded automatically alongside the set-up of SU2. The complete list of options can be consulted
on the o�cial website of SU2, but for the optimization of this work, the only relevant utility to
activate is -Denable-openblas.
Once SU2 installation is completed, the paths SU2_HOME="/PersonalPath/SU2" and
SU2_RUN="/PersonalPath/SU2/bin"must be exported to the environmental variables and con-
sequently included SU2_RUN into the existing variable PATH.
Completed this step, the user can �nally run any �uid dynamics simulation, in particular the
ones regarding thin �lm, including the correct option in the con�guration �le. For what concerns
this typology of problem, the add on proposed by this project can work either as a stand-alone,
solving only the �lm dynamic, or as a multizone computation, able to connect for example a
liquid sheared by a gas.
However, in both of the aforementioned cases, the second document needed, i.e. the mesh �le,
may require a preliminary step. Indeed, the geometry based on this input must follow two pre-
cautions, which can be taken care manually by the user or through the program mesh_extractor,
created by the author of this work. The former provision is the addition of the boundary marker
representing the free surface, which is exactly equal to the primary grid, while the latter is the
congruence of that mesh with the bounday communicating with the world outside the �lm.
Those two issues are automatically resolved by the call to mesh_extractor, which is used to
extract form a pre existing su2 mesh, proper to the �uid paired with the �lm, the boundary
on which the free surface is located. In order to perform this operation, we need a brief input
�le, which can again be saved with the extension .cfg, containing the name of the su2 grid �le,
the tag with which the interfaced is referred to and the denomination of the output mesh. This
procedure grants a sure integration with the code extension for problem studied in this work.
Finally, one can launch the simulation with the command SU2_CFD accompanied by the con-
�guration �le with the desired options for the thin �lm, described at the start of the previous
section.
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6 | Test Cases

The �nal purpose of this work is to obtain a code capable to extend SU2 in order to simulate real
physical problem catalogable in the thin �lm setting. To validate both the mathematical model,
the numerical discretization and its implementation in SU2, we rely on the test cases most widely
used in the literature of thin �lms, but also in shallow water theory. We will treat situations
where the solution reaches a steady state, a parabolic speed front and a particualr shape of the
thickness. At last, it will be shown the behaviour of the free surface if a perturabtion a�ects the
inlet and it will be studied its propagation and repercussions. Each case will be analized in a
separate section, illustrating its principal speci�c characteristics and the essential instructions
to reproduce the result using SU2 software.

6.1 Lake at Rest

The starting point of every analysis, which is a common benchmark to many typologies of
problem, is to see if the numerical scheme reaches a steady state starting from a an initial
condition where the �uid is still. As stated in chapter 4, the discretization of the convective
�ux satis�es the 'lake at rest' condition, therefore we set up a con�guration �le for a motionless
thin stratum of liquid, resting on a bottom inclined by 30◦. Since we are taking only a part of
the �uid, we suppose that simmetry boundary condition at the side of the domain taken into
consideration. Since the example is rather manageable, the method is applied considering only
3 layers.
The result, aside from some numerical inaccuracy at most proportional to 10−9, matches the
theoretical prediction, as it is shown in the following contour plot of the velocity.
After performing this simple, but necessary, check, more interesting cases are studied in the
next sections.
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Figure 6.1: Velocity contour plot of the lake at rest solution.

6.2 Falling Film

Thin �lms �owing down inclined surface exhibits a rich phenomenology and o�er the best testing
ground for the study of this �eld. The geometry taken into consideration is mono-dimensional
and the �at bottom is inclined with respect to the abscissa by an angle α included between 0◦

and 90◦, while, in the con�guration �le the input angle is β, de�ned as the anti clock-wise angle
starting from the positive x axis, for which holds the relation α = π − β.
A trivial solution to the �ow equations is easily found in the form of a steady uniform parallel
�ow with parabolic velocity pro�le, often called Nusselt's solution, where the work done by
gravity is exactly consumed by viscous dissipation. The explicit expression of the Nusselt
pro�le is

u(y) =
1

2µ
ρg sin(α)(2δN − y)y, (6.1)

which is really useful to have for a direct comparison with our numerical result. Morever, also
the analytically computed can be illustrated as

p(y) = p0(x) + ρg cos(α)(δN − y), (6.2)

where p0(x) represents the imposed pressure at the free surface.
For this speci�c test, the �uid simulated is water, imagined at a temperature of 25◦C, having the
following physical properties: a constant density ρ = 998 kg

m3 and a dynamic viscosity equal to
µ = 8.9× 10−4Pa s. From expression (6.1), considering a maximum �lm thickness δN = 1mm,
we can compute the typical velocity of order u∞ ≈ 0.1ms , making therefore easy to retrieve
Reynolds number, whose value is Re = 112.
The simulation is initially carried out dividing uniformly the water in 5 layers, with a parabolic
inlet entering from the left side and a plane inclined by 30◦, until the computation reaches the
maximum number of iterations or the �nal time of half a second, chosen to have the possibility
to fully propagate the �uid and to arrive at a steady state solution. The choice of this �nal
instant tF can be justi�ed by the next formula, which is regained by the double integration of
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the di�erential equation ∂2x
∂t2 = g sin(α), and reads as

tF =
−u∞ +

√
u2
∞ − 2g sin(α)(L0 − LF )

g sin(α)
, (6.3)

where (L0 − LF ) is the total length of the channel.
If someone would like to change the number of layers through the SU2 option NLAYER, also
the inlet option should be substituted, because the last value of this option is the uniform
thickness between two adjacient layers, which obviously decreases as the �iud is divided more
densely. In addition, if the inlet pro�le is known, activating the option SPECIFIED_INLET=
YES, an additional �le should be given as input and must be organized in the following way:
the �rst lines indicate the number of marker in which the inlet boundary condition is acting,
their name tag and the number of point proper to that frontier, expressed in the option NROW.
The next line, NCOL, should be equal to the formula nDim + nLayer×(nADim+2), because
all the successive rows are organized in border coordinates, followed by the temperature, the
direction of the velocity and its magnitude, repeated for the number of layers.
First of all, it is interesting to see how the thickness of each layer deacreases or increases along
the domain and, as we can see in Fig 6.2, where the blue lines are the �uid strata, while the
black one represents the bottom, it seems that their height remains constant. However, the
total depth reduces very slightly form 1 mm to 0.965 mm, phenomenon due to the gravity
accelaration, which increases the velocity and consequently diminish the thickness to respect
the continuity equation.
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Figure 6.2: Falling �lm multilayer geometry.
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The analysis continues comparing the pro�le of the horizontal velocity and of the pressure,
respectively presented in Fig 6.3 and Fig 6.4, with the aforementioned solutions regained by
Nusselt. The �rst picture is the photography of the shape at di�erent distances from the inlet, to
ensure that the stationary state is reached. Regarding the pressure instead, only the comparison
with the exact solution is shown, since the result is not derived by the system resolution, but
it is directly imposed by the hypothesis adopted, the hydrostatic one in this example.
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Figure 6.3: Horizontal velocity pro�le at di�erent distances from the inlet.
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Figure 6.4: Pressure pro�le compared to Nusselt solution.
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As stated before, for completeness purposes, the following image (Fig 6.5) veri�es the mass
�ow conservation, displaying the product between the thickness and the velocity across the axis
tangent to the bottom. The inferior layers have obviously lower values, because the �uid is
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Figure 6.5: Velocity �ow rate across the channel.

slower, while, in general, the �ow rate slightly decreases, until a value equal to the 0.9174% of
its maximum, which is neglectable.
An interesting question is to see how the solution improves increasing the number of layers
and whether this addition, in the face of a computational load growth, achieves more accurate
results. The deduced considerations are not of general character, because of the typology of
problem and the solution doesn't have particualrities that necessite speci�c distribution of the
thickness.
The decision adopted to test the quality of the results is the juxtaposition of the obtained values
for the velocity with the known expression regained by Nusselt. The same confrontation done
with the pressure would be useless, since fruit of an imposed formula attained by the assump-
tion adopted. Therefore, the following graphic is the con�rm that adding layers increase the
accuracy of the result, but not eccesively, hence it may not always be worth demanding more
computational resources to obtain similar results.
Although more precision is retrieved increasing the number of layers, it may not always be
worth adopting this decision if the ultimate purpose is to obtain a fast result. Moreover, as
proved by Fig. 6.7, which for each time step pictures the logarithm of the root-mean square
error of the top layer velocity, the convergence to the exact solution may be faster in the initial
iterations, but the it is evident that after an higher number of layers solws down the attainment
of the steady state solution.
The phenomen of the slower convergence rate can have two possible explanations. It may be
a drawback of the polynomial reconstruction, because a wrong velocity pro�le implies impre-
cise stresses, which may in�uence negatively the viscous contrast to the convection. Another
plausible justi�cation, is that, since we are using an explicit time discretization, increasing the
number of layers, but mantainig the same temporal step 4t, we need more instants to reach
convergence.
After discussing of the most relevant characteristics of this test case, important for the recon-
struction of the velocity pro�le, we can pass to a new one, which instead focuses on the thickness
computation.
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Figure 6.6: Comparison of the velocity pro�le with Nusselt's solution with di�erent number of
layers.
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6.3 Dam Break

The analysis of dam break �ow is part of dam design and safety analysis: dam breaks can
release an enormous amount of water in a short time. This could be a threat to human life and
to the infrastructures. To quantify the associated risk, a detailed description of the dam break
�ood wave is required. Research on dam break started more than a century ago, therefore
plenty of studies have been discussed and are available as benchmarks. Usually, both analytical
solutions and experimental data are presented in the literature. Hence, to test our code, we
focused our attention on the wet bed dam break problem and relied on the exact expression
exposed in [31] by Delestre et al. and the results obtained in laboratory by Wang in [32], which
will be treated in the following sections.

6.3.1 Dam Break: Comparison with Inviscid Exact Solution

The analytical solution to the dam break problem was �rst introduced by Stroker [33] in 1957
and since then it has been object of numerous studies and papers. The hypothesis proposed is
to idealize the problem, considering an instantaneous break of the dam, which pours out on a
wet bed leaning on a �at bottom. Furthermore, friction e�ects are ignored. Although, there
isn't a direct option to omit the viscous e�ect, it can be achieved selecting MU_CONST= 0.0
in the con�guration �le. Doing so, stresses are still computed, but their contribution is not
added.
Therefore, before the start of the event, the height of the �uid follows the initial condition of
the Riemann problem, i.e.

δ(x) =

{
hl for 0 m < x < x0,

hr for x0 < x < L,
(6.4)

where L is the length of the domain, x0 is the position of the dam and hl ≥ hr.
Starting from a steady state of the �uid, at time t ≥ 0 we have a left-going rarefaction wave
(or a part of parabola between xA(t) and xB(t)) that reduces the initial depth hl into hm,
half of the beginning left height, and a right-going shock, located in xC(t), that increases the
initial height hr into hm. The evolution of the waves can be tracked because the points advance
at a know expression in time, accordingly to the following formulas: xA(t) = x0 − t

√
ghl,

xB(t) = x0 + t(2
√
ghl − 3cm), xC(t) = x0 + t

c2m(
√
ghl−cm)

c2m−ghr
, where cm is the propagation speed

de�ned as
√
ghm. Given those coordinate one can state also the exact piece-wise formulation

for the thickness, which is

δ(t, x) =


hl for 0 m < x < xA(t),
4
9g (
√
ghl − x−x0

2t )2 for xA(t) < x < xB(t),
c2m
g for xB(t) < x < xC(t),

hr for xC(t) < x < L.

(6.5)

In addition, the horizontal velocity can be regained explicitly in the form

u(t, x) =


0ms for 0 m < x < xA(t),
2
3 (x−x0

t +
√
ghl) for xA(t) < x < xB(t),

2(
√
ghl − cm) for xB(t) < x < xC(t),

0ms for xC(t) < x < L.

(6.6)
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Figure 6.8: Comparison between analytical Stroke thickness solution and numerical result.

The aforementioned analytical solutions are tested against the numerical result obtained in
SU2, �rst of all confronting the free surface pro�le evolution, as presented in Fig. 6.8.
An advantage of the multilayer technique adopted is that, beyond the surface communicating
with the outside world, also the behaviour of the inferior strata can be observed, which di�ers
from the shallow water integrated method, that focuses its attention on the water surface. In
the following image, we see that there is no substantial di�erence, due to the fact that the
viscous interaction between layers is neglected by hypothesis.
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Figure 6.9: Layer thickness near the dam break.

To end the analysis, we check the similarities among the exact velocity and the numerically
computed one, where unfortunately the values calculated by SU2 present some oscillatory in-
stabilities.
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Figure 6.10: Comparison between analytical Stroke velocity solution and numerical result.

6.3.2 Dam Break: Comparison with Experimental Data

In its work [32] Wang et al. reproduced experimentally the evolution of a dam break, investi-
gating primarly the similarities among di�erent initial condition, for example the ratio between
the water depth downstream hd and upstream hu with respect to the dam, which takes the
name α. The setup consists of a rectangular cross section channel , which is divided into two
parts, i.e. reservoir and downstream �ooded area, by a 15 mm thick �berglass, while the whole
structure lies on a �at bottom. After lifting the gate, �uid height data are measured by eight
CCD cameras arranged to capture the evolution of the �ow. To retrieve the values from the
paper, we used Engauge Digitizer, a tool which allows the user to obtain the coordinate of
graphics pictured in documents. For this reason the experimental solution used as comparison
are a bit rough, although their main purpose is the confront the shape and the evolution of the
wave front.
Since the authors' objective is to analyze similarities of the water surface behaviour, the relevant
quantities are adimensionalized taking as references the following values

T =
t√
hu
g

, H =
h

hu
, U =

u√
ghu

. (6.7)

The test case we executed, �xes the ratio of up and downstream height, called α, at 0.2. The
�rst confrontation performed is obviously the one with the free surface of the �uid, which is
pretty consistent, as one can observe in Fig. 6.11. In the downstream channel, the water levels
at the measurement sections rise sharply due to the arrivals of dam-break shock waves, while
upstream the fuild reduces its height with a simil parabolic shape.
Another correspondence may be found when looking at the velocity, which is null at the bound-
aries because the front wave has not reached them yet, and it increases in the middle, where
the break occurs.
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Figure 6.11: Comparison between experimental thickness and numerical result.
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Figure 6.12: Comparison between experimental velocity and numerical result.
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6.4 Laminar Roll-Waves on a Falling Film

In this last section, we examine the behaviour of the �lm if the inlet velocity is perturbed, which
arise roll wave instabilities in the transitional laminar �ow. This case models a more realistic
situation, where, due to external factors, the boundary conditions are not always uniform or
stable during time, therefore its importance is crucial.
Taking as a reference the work of Fiorot, Maciel et al. [34], we reproduced in a simulation their
experimental setup, which will be brie�y described afterwards. The domain is the classical
channel inclined by angle θ, which, in order to di�erentiate the resulting surface wave from the
gravitational one, is taken small, precisely in our simulation θ = 8◦.
In addition, a minimum length of the channel must be granted with the intent to reassure
that the available duct size is enough for roll waves development. The formula to compute the
minimal stabilizing distance presented in the work is the following

Lmin = −ln η
(

u2
0

g sin θ

)(
2(Fr + 1)

Fr cos θ(Fr − 2)

)
, (6.8)

where are combined the gravity g, the Froude number Fr = u0√
g sin θh0

, the typical velocity u0,

plus an additional constant η = 10−4. Regarding Froude number, a point that must be taken
care of, according to the shallow water theory, is that Fr should be greater than 0.5774, for the
purpose of maintaining a laminar �ow. Indeed, a last geometrical consideration is that, for the
data acquisition system employed, that will be discussed in a following paragraph, a systematic
error was found for values of the thickness smaller than 5mm, therefore the paper focuses its
attention on height larger than 9 mm and, consequently, the simulations are reproduced with
the initial thickness h0 = 9.83 mm and h0 = 10.73 mm, which moreover satisfy the condition
for Froude number.
The liquid used during the experiments is glycerin, whose physical property at 25◦C is a high
dynamic viscosity, µ ∼ 900 mPa s, and a density equal to 1273 kg

m3 , similar to the one of the
water. The reason behind this choice of this Newtonian �uid, is that it allows for the �ow
conditions to be maintained in the laminar regime with a smooth free surface, not surpassing
the critical Reynolds number, hence ensuring that the thickness changement is mainly caused
by the perturbation.
To introduce the aforementioned disturb at the inlet, even though maintaining a constant in-
coming discharge rate Q, the experimental setup consists in a bass-speaker coupled to a function
generator, able to control the frequency, which were located at the start of the channel. How-
ever, the measurement system control, was installed at a certain distance from the disturbance
apparatus, to remove external interferences. Going slightly into the details, the data acquisition
technique relys on the combination of a photodetector and a laser. The laser, which is installed
over the channel, emits a beam that is perpendicular to the bottom of the �ow, crosses the dyed
�uid in motion, and reaches the photodetector, which is installed directly beneath the channel
bed. Then, the height is regained from the di�erence of light intensity before and after pene-
trating the �uid, according to Beer�Lambert law. As done for the viscous dam break problem,
we extracted manually the data reported in the paper using the tool Engauge Digitizer.
However, before running a simulation to compare our numerical result with the experimental
one, SU2 boundary condition set must be expanded, with objective to include a disturbed inlet
input. As done for the con�guration option addition, we enlarged the possible typology of con-
strains imposed at the frontier, retracing the option for the normal inlet structure also for the
perturbed inlet. The name given to this alternative is MARKER_PERTURBED_INLET and the
associated parameters are (marker name, temperature, velocity magnitude, �ow_direction_x,
�ow_direction_y, thickness, amplitude, frequency), where we note that the �ow in normal di-
rection z can be omitted in favor of the total thickness. To end the list of inputs, we jointed the
quantities proper to the perturbations, i.e. the amplitude in m

s and the frequency in Hz of the
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sinusoidal disturb applied to the velocity. We successively implemented the CSolver function
BC_Perturbed_Inlet and added it to the integration class in the routine Space_Integration, in
particular in the switch that lists all the boundary conditions. For the moment, the code is only
able to handle a disturbance to the velocity, which is however su�cient for our work, where the
sinusoidal perturbation equal to the 5% of u0, repeated with a frequency of 3Hz.
Now that we have all the necessary components, the simulation can be run, starting from an
initial solution equal to the Nusselt pro�le, which solves the unperturbed problem, equivalent
to the falling �lm introduced in Section 6.2. Beginning from the steady solution, avoids vari-
ations in the thickness caused by the convergence from the numerical solution to the analytic
one. Another technique could be to let the computation reach the steady state and then add
the perturbation, but this would require more changement to the software that we consider
super�uous.
The solution is taken every 3 iteration. The result are presented in the following images Fig.6.13
and 6.14, where the thickness is scaled by its initial value h0 for a better visualization, and they
show that SU2 solution follow the same pattern, although the numerical result are smoother,
phenomenon that may be due to the lack of precision from the function generator employed at
low frequencies input.

Test 1: initial �lm thickness h0 = 9.83 mm
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Figure 6.13: Comparison between experimental perturbed thickness and numerical result with
mean height equal to 9.83 mm.

Moreover, we can see that the wave amplitude increases with Froude number, i.e. when the
initial velocity u0 is higher, because the other parameters are �xed, since the inclination θ and
the channel length are immutable.
Tackling this test case, emphasizes that the code is capable of solving also perturbed problems
which admit a limited solution.
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Test 2: initial �lm thickness h0 = 10.73 mm
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Figure 6.14: Comparison between experimental perturbed thickness and numerical result with
mean height equal to 10.73 mm.
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7 | Conclusions

Before concluding the work, all the main objective are recapped and then veri�ed their accom-
plishment. First of all, we state the profound motivation of this thesis, which is to �nd an
alternative and less mathematically complicated way to close the averaged equations modeling
the thin �lm, which is instead of using the Taylor expansion to adjust the non-linear terms, as
done by most author in literature, the reconstruction the velocity pro�le.
Therefore, the �rst step was to regain the governing equations through the integration along the
neglectable direction and then to elide smaller order terms, pointing out the similarities with
the shallow water theory. In virtue of this analogy, the multilayer technique, which divides the
geometry in an arbitrary number of stratum, on which it lives a similar set of equations, was
explained and implemented. This method facilitates the pro�le reconstruction, because it can
be regained using the mean value at each layer as interpolation knot. Furthermore, we speci�ed
the two possible hypothesis on the pressure that come from the asymptotic analysis, preferring
the more straight forward hydrostatic assumption, which leads to what is known as primitive
equations (PE). As a �nal step for the model construction, we veri�ed the hyperbolic nature of
the governing system, which restricts the fan of modus operandi numerically available.
Proceeding, the in�uence of shallow water philosophy extends also to the most recent numerical
technique, like the one described in Kurganov's works. Therefore, planning to develop the res-
olution as an extension of the software SU2, we performed a discretization following the �nite
volume approach, which is the one already used by the code. After a general recall to this
theory, we discussed the numerical approximation employed with the various terms that appear
in the governing equations. In this speci�c case, as mentioned before, we utilized Kurganov
central upwind approach for the convective part, while, for the source injection, the method are
fully customed by the creator of this project for the determined system of equations.
Now that all the pieces are ready, we passed to the C++ implementation as an add-on to the
SU2 free source software, which mainly consists in the speci�cation of the principal elements as
derived inheriting from the base classes in order to enable the run-time polymorphism, which
widely characterizes SU2. Going brie�y into the details, we wrote a simple program which
extracts the �lm tasselation from the native su2 format and enables the integration of averaged
geometries. Then, we designed a child for the solver class, which leads the residual system
construction, the variable, container for the conserved quantities proper to the problem, and
the numerical techniques between control volume nodes. Moreover, we added a lapack routine
to solve the pro�le reconstruction problem and a particular output structure, to ease the result
consultation for the �lm variables.
Finally, all the work is validated challenging the most common test case provided by the lit-
erature. In particular, the solutions produced by SU2 are confronted with both analytical
expressions and experimental data to investigate the accuracy of the principal conserved vari-
ables, i.e. the velocity and the thickness. The �lm falling down an inclined plane serves as a
benchmark for the parabolic pro�le of the velocity, while the dam break studies the evolution
of the �lm height across time. In addition, those simple tests make the user acquainted with
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the most frequently options necessary to set up a simulation with SU2.
A last test, more elaborate and realistic than the previous, replicates the �lm falling down an
inclined plane with a sinusoidal perturbation a�ecting the inlet velocity. This result in a peri-
odic variation of the �lm thickness, creating roll wave due exclusively to the disturb introduced
upstream and not related with gravitational e�ects.
In conclusion, starting from the similarities with the shallow water and taking advantage of the
tools already implemented for this typology of problems, we found a way to solve the thin �lm
equations, without having to expand the non-linear terms, hence diminishing the complexity of
the expression, but maintaining a certain accuracy also for the phenomenology under the water
surface.
Further development of this work may be the study of the primitive equations with vertical
viscosity (PEV2 hypothesis) and a suitable numerical discretization. Another addendum, one
could try to extend properly the resolution to the multizone case, which, although already possi-
ble, has not been tested and may require some smaller precautions. Finally, all the changement
brought to the code can be considered as a starting point to look for brand new formulations
and discretizations to solve the thin �lm problem with many other techniques.
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Sitography

[a] SU2 - https://su2code.github.io/docs_v7/home/

[b] Meson - https://mesonbuild.com/

[c] Lapack - http://www.netlib.org/lapack/explore-html/

[d] Engauge Digitizer - http://markummitchell.github.io/engauge-digitizer/
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