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ABSTRACT

La permeabilita relativa ¢ una proprieta chiave dell’interazione tra roccia e fluido, necessaria per la
modellazione alla scala del continuo della dinamica dei flussi multifase in mezzi porosi e fratturati.
La quantificazione dei processi di flusso multifase che avvengono in rocce porose e fratturate ha
una notevole rilevanza per la gestione e lo sfruttamento economicamente sostenibile di formazioni
geologiche contenenti petrolio e gas naturale. Attualmente, sono disponibili diverse formulazioni
empiriche per la caratterizzazione delle curve di permeabilita relativa di acqua e petrolio. La
struttura di questi modelli ¢ tipicamente guidata da osservazioni sperimentali, argomentazioni
teoriche e/o concezioni euristiche (procedimenti non rigorosi che consentono di prevedere un
risultato, ma che dovranno poi essere convalidati). A ciascun modello ¢ associata una serie di
parametri che sono normalmente stimati attraverso fitting di dati sperimentali, ovvero rispetto alle
curve di permeabilita relativa disponibili. Una -caratterizzazione affidabile delle curve di
permeabilita relativa, inclusa la corretta quantificazione dell’incertezza, ci consente di valutare le
prestazioni di un giacimento, prevedere il recupero finale di idrocarburi e studiare I’efficienza delle
tecniche avanzate di recupero del petrolio.

In questo saggio, diverse tecniche di analisi di sensitivita globale sono applicate in modo rigoroso
ai modelli di permeabilita relativa di acqua e petrolio piu comunemente adottati nell’industria, sia
per singoli modelli, sia in un contesto multi-modello. L’obiettivo finale del lavoro ¢ indagare come
la variazione nell’output dei modelli di permeabilita relativa possa essere attribuita alle variazioni
dei loro fattori di input e alla mancanza di conoscenza sulla struttura/formato dei modelli in scenari
non informati (in cui nessuna informazione ¢ disponibile a priori) nonché in scenari informati. I
risultati ottenuti dai diversi metodi di analisi di sensitivita vengono analizzati e discussi
concentrandosi sulle loro eventuali concordanze e discordanze.

La tecnica dell’analisi di sensitivita viene utilizzata sempre piu frequentemente nell’ambito della
modellazione ambientale per diversi scopi, tra cui la valutazione dell’incertezza, la calibrazione di
modelli, la diagnostica dei modelli, I’analisi del controllo dominante e la sua funzione di supporto
a un solido processo decisionale. Da un punto di vista pratico i risultati ottenuti in questo saggio
puntano a guidare ulteriori azioni quali: ridurre I’incertezza dei parametri selezionati come 1 piu
rilevanti, programmare 1’investimento di risorse dedicate all’acquisizione di dati piu affidabili e
guidare le attivita di calibrazione dei modelli. Inoltre, I’analisi di sensitivita offre anche spunti utili
per la semplificazione dei modelli, per esempio, permettendo di identificare i parametri di input che
hanno effetto trascurabile sull’output in esame. L applicazione di numerose tecniche di analisi di
sensitivita mostra infine la necessita di non fare affidamento indiscriminatamente su un solo metodo
di analisi.



ABSTRACT

Relative permeabilities are key rock-fluid properties, required for continuum-scale modelling of
multiphase flow dynamics in porous and fractured media. Quantification of multi-phase flow
processes taking place in natural porous and fractured rocks has a remarkable relevance to
economically sustainable management and viable development of oil and gas-bearing geologic
formations. Several empirical formulations are available to characterize observed water-oil relative
permeability curves. The structure of these models is typically driven by experimental observations,
theoretical arguments and/or heuristic concepts. Each model is associated with a set of parameters
which are usually estimated through fits against experiments, id est, against available relative
permeability curves. A reliable characterization of relative permeabilities, including proper
quantification of uncertainty, enables us to assess reservoir performance, forecast ultimate oil
recovery, and investigate the efficiency of enhanced oil recovery techniques.

In this essay, several global sensitivity analysis techniques are rigorously performed on the most
widely adopted water-oil relative permeability models in the industry, both in a single-model and
in a multi-model context. The ultimate goal of the work is investigating how the variation in the
output of the relative permeability models can be attributed to the variations of their input factors
and to the lack of knowledge about the models’ structure/format in uninformed scenarios (no
previous knowledge is available) as well as in informed scenarios. The outcomes of the different
sensitivity analysis methods are analysed and discussed, focusing on eventual concordances and
discordances.

Sensitivity analysis is increasingly being used in environmental modelling for a variety of purposes,
including uncertainty assessment, model calibration and diagnostic evaluation, dominant control
analysis and robust decision-making. From a practical point of view, the results obtained in this
essay aim to guide further actions such as: reducing the uncertainty of parameters selected as more
relevant, guiding investment of resources dedicated to acquiring more reliable data and guiding
model calibration activities. Furthermore, sensitivity analysis also offers insights to guide model
simplification, for example, by identifying model input parameters that have negligible effects on
a target output. The application of many different sensitivity analysis techniques finally shows the
need not to rely indiscriminately on just one sensitivity analysis method.
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1. INTRODUCTION

1.1. THE SENSITIVITY ANALYSIS OF A MODEL OR OF A
GROUP OF MODELS

1.1.1. WHAT IS SENSITIVITY ANALYSIS

Generally speaking, sensitivity analysis is a broad and multifaced collection of methods whose
purpose is assisting the qualitative and quantitative characterization of the relevance of diverse
model inputs affected by uncertainty with respect to a target output.

The main subject of sensitivity analysis is the study of how the uncertainty in the output of a
mathematical model or system of models can be divided and allocated to the different sources of
uncertainty belonging to its inputs. The first and more common source of uncertainty in the inputs
consists of the non-deterministic knowledge of the model parameters value, so sensitivity analysis
investigates how the variability of the output of a model can be attributed to variations of its input
factors (Pianosi, et al., 2016). Furthermore, the quality and amount of data available in many
practical situations justify the interpretation of the system under investigation through a collection
of many interpretative models, leading to the second source of uncertainty: the uncertainty about
the model structure/format. These two sources of uncertainty are combined when the parameters
associated with each one of the different considered models are affected by uncertainty (Dell'Oca,
Riva, & Guadagnini, 2020).

Accordingly, sensitivity analysis can be performed on any model or group of models describing the
same phenomenon, when one or more of their input parameters are affected by uncertainty.

X;

river inflow
observations

X2
parameters l,
(friction)
FLOOD SCALAR
INUNDATION > OUTPUT Fit-to-data |
_<"7| SIMULATION | Simulation | FUNCTION
SEEIE] results
resolution or
. T (temporal T
grid ;
X3 sequence Maximum
terrain’s of inundation . flood
surface from maps) water height extent
DEM observations or
input factor x; input factor
subject to SA not subject to SA output y

Figure 1: example of sensitivity analysis of a flood inundation model
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1.1.2. CONCEPTUALIZATION: DEFINITION OF MODEL, INPUT FACTORS
AND OUTPUTS

In this essay the term model will be used to refer to the diverse formulations available for the
quantification of water-oil relative permeabilities (see chapter 3 for details). An input factor is any
element that can be changed before the model execution, the output is what is obtained after the
model execution. Examples of input factors are the parameters appearing in the model equation.

Given the above definitions, one can always resort to the general formula:

y=9() = g(xq, %z, ..., Xm) (1.1)

Where y is the output, g is the model response function and x = [xq, X3, ..., X;, | is the vector of the
input factors, which belongs to the input variability space X = [X;, X, ..., X;,,], where the terms
Xi = [Ximin » Ximax] define the totality of the values which can be assumed by the input factors.

For simplicity, the output of a model obtained adopting a certain input factors vector x will be
denoted as y(x).

1.1.3. PURPOSE OF THE SENSITIVITY ANALYSIS OF A MODEL

Performing the sensitivity analysis of a model (or set of models) can be useful for a range of
purposes (Pianosi, et al., 2016), (Saltelli, 2002):

o Testing the robustness of the model results in presence of uncertainty.

e Improving the understanding of the relationships between the input and output variables.

e Reducing the uncertainty through the identification of the model inputs that cause significant
uncertainty in the output. These inputs should be made the focus of the attention in order to
improve the model robustness.

e Looking for errors in the model, by encountering unexpected relationships between inputs and
outputs.

e Simplifying the model, by fixing the model inputs which have negligible effect on the output.

e Identifying important relationships between observations, model inputs, and predictions,
leading to the development of better models.

This broad variety of uses of the sensitivity analysis can be summarized in three ultimate goals:

1) Ranking (or factor prioritization): sorting of the input factors (x1, X3, ..., X;;,) according to their
relative contribution to the output variability.

2) Screening (or factor fixing): identification of the input factors, if any, which have negligible
influence on the output variability and which can therefore be fixed.

3) Mapping: determination of the regions of the input variability space that produce significant
(extreme) output values.

Sensitivity analysis is key to assist understanding and improvement of models, aiming at rendering
the dynamics of any phenomenon or system. The need for a proper sensitivity analysis is
exacerbated by the increasing complexity of conceptual models, in terms of model formulation and
associated parametrization. The increasing complexity of the models is in turn sustained by the
increased knowledge of the described phenomena and by the exponentially increasing
computational power, available for numerical model simulations (Dell'Oca, Riva, & Guadagnini,
2020), (Ye & Dai, 2015).
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1.1.4. TYPES OF SENSITIVITY ANALYSIS

In the previous paragraph, the typical questions addressed by sensitivity analysis have been
presented. Different types of sensitivity analysis can be distinguished according on how these
questions are formulated and answered. The different sensitivity analysis methods can be classified
as follows (Pianosi, et al., 2016), (Saltelli, 2002):

e Local and global sensitivity analysis: local sensitivity analysis considers the output variability
against variations of the input factors around a specific nominal value X = [X7, X3, ..., X |,
while global sensitivity analysis considers variations of the input factors within their entire
input variability space. Local sensitivity analysis is always used in combination with parameters
estimation techniques, which provide the vector X.

e Quantitative and qualitative sensitivity analysis: quantitative sensitivity analysis refers to
methods where each input factor is associated with a quantitative and reproducible evaluation
of its relative influence, normally thorough a set of sensitivity indices. In qualitative sensitivity
analysis, instead, sensitivity is assessed by visual inspection of model output’s predictions.
Often such visual tools are used complementary to more quantitative measurements.

e One-factor-at-a-time and all-factors-at-a-time sensitivity analysis: this distinction refers to the
sampling strategy adopted to estimate the sensitivity indices. In fact, in general, sensitivity
indices cannot be computed analytically due to the complexity of the input-output relationship,
and thus they are numerically approximated from a sample of input factors and associated
output evaluations. In one-factor-at-a-time methods, output variations are induced by varying
one input factor at a time, while keeping the other fixed; in all-factors-at-a-time methods,
output variations are induced by varying all the input factors simultaneously, and therefore the
sensitivity to each input factor considers the direct influence of that factor as well as the joint
influence due to interactions with other input factors.

The particular sensitivity analysis methodologies that are implemented and run for the purposes of
the essay will be discussed later. All the sensitivity analysis methods implemented in the course of
this work are so-called sampling-based methods, which proceed through these three logical steps
(Pianosi, et al., 2016):

1) Sampling of the input factors.

2) Numerical evaluation of the model.

3) Processing of the results.
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1.2. RELATIVE PERMEABILITY: AN OVERVIEW

1.2.1. THE PERMEABILITY OF A POROUS MEDIUM

Permeability is the property of the porous medium that measures the capacity and the ability of the
formation to transmit fluids. The rock permeability, k, is a subject of great interest because it
controls the flow rate of the reservoir fluids in the formation.

In 1855 Henri Darcy, a French hydraulic engineer, oversaw a series of experiments aimed to
understand the rates of water flow through sand filters and their relationship to pressure loss along
the flow paths for the water purification purpose. Darcy’s experiments consisted in a vertical steel
column, with a water inlet at one end and an outlet at the other. The water pressure was controlled
at the inlet and outlet ends of the column, using two reservoirs with constant water levels h; and
h, (see Figure 3). The experiments included a series of tests with different packings of river sand,
and a suite of tests using the same sand pack and column, but for which the inlet and outlet pressures
were varied.

Figure 3: schematic of Darcy’s experiment of water flow through sand

During his experiments Darcy developed a fluid flow equation that has since become one of the
standard tools of petroleum engineering: Darcy’s law (Darcy, 1856), (Whitaker, 1986).

Q= KA™=2 (1.2)
With:

Q: volumetric flow rate [m*/s].

K: hydraulic conductivity [m/s].
e A: cross section area [m?].

(hqy — hy): height difference [m].
L: length of the column [m].
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Darcy’s law can be extended to the multidimensional case in which the driving force of fluid motion
is not only gravity, but also pressure, obtaining the equation (Muskat & Meres, 1936):

k
q=- (VP —pg) (1.3)
With:

e q: vector of the fluid volumetric flux [m*/m’s].

k=K ﬁ: permeability tensor (3x3 tensor) [m?].

w: fluid’s dynamic viscosity [Pa-s].

p: fluid’s density [kg/m’].
e g: acceleration due to gravity [m/s?].
e VP: pressure gradient [Pa/m].

In this essay only 1-dimensional flow in isotropic porous media will be discussed, hence the terms
k, q and g will be referred to as scalars.

1.2.2. MULTIPHASE EXTENSION OF DARCY’S LAW: THE RELATIVE
PERMEABILITY

In 1936 Morris Muskat et al. developed the governing equation for multiphase flow in porous media
as an extension of Darcy’s law. For each liquid (or gas) phase a the extended form of Darcy’s law
assumes the following form (Muskat, Wyckoft, Botset, & Meres, 1937):

kya'k
Ga = _u_a(VPa ~ Pa 'gll) (1.4)
With:

e q,: volumetric flux of the phase a [m*/m?s].

o k., ,: relative permeability of the phase «a [-].

e  k: absolute permeability of the porous medium [m?].

® U,: dynamic viscosity of the phase a [Pa-s].

e p,: density of the phase a [kg/m’].

e VP,: pressure gradient in the phase a [Pa/m].

e gy: gravity acceleration component which is parallel to the flow direction [m/s*].

The relative permeability k., of a certain fluid/phase a is defined as the ratio of the effective
permeability of the phase a to some base permeability k, which in this case is the absolute
permeability of the porous medium (id est, the permeability evaluated considering single-phase
flow). It follows:

0<kqg<1 (15)

In this essay only the two-phase mixture of water and oil will be considered, and the corresponding
relative permeabilities of the two fluids will be referred to as k., (for water) and k., (for oil).
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Figure 4: example of experimental measurements of water-oil relative permeabilities

2. SENSITIVITY ANALYSIS: METHODOLOGIES AND
WORKFLOW

In this chapter the different sensitivity analysis methods which are adopted and implemented for
the purpose of this essay are presented. Each method is discussed, focusing on the underlying
concept, the assumptions, the specific purpose that the method can address, the mathematical
workflow when applied to a model (or group of models) and the computational complexity.

2.1. SINGLE-MODEL, UNINFORMED GLOBAL SENSITIVITY
ANALYSIS: METHODOLOGIES AND WORKFLOW

Single-model uninformed global sensitivity analysis investigates how the uncertainty in a defined
model output y can be attributed to variations of its input variable factors x; within their entire
variability space. For this reason, the global uninformed approach is particularly useful and
meaningful for the preliminary study of models, when no previous knowledge of the input factors
(coming from experimental measurements or inverse modelling techniques) is available.

The single-model uninformed global sensitivity analysis techniques which are considered and used
in this essay are:

e  Multiple start perturbation method sensitivity analysis.

e Statistical moments-based (AMA and Sobol) sensitivity analysis.

e Cumulative probability density function-based (PAWN) sensitivity analysis.
e Variogram-based (VARS) sensitivity analysis.

2.1.1. MULTIPLE START PERTURBATION METHOD SENSITIVITY
ANALYSIS

The simplest type of sensitivity analysis is the “perturbation and derivatives” method, which is
based on the use of the partial derivatives evaluated at nominal values of the input variable factors
as measurements of the output sensitivity (Devenish, Francis, Johnson, Sparks, & Thomson, 2012),
(Paton, Maier, & Dandy, 2013), (Pianosi, et al., 2016):

Si — y(xq i m) (21)
69{,: x; .
inominal
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Where S; is the sensitivity index with respect to the variable input factor x; and y = y(x) is the
model output. In the presented sensitivity analysis implementation partial derivatives are
approximated by finite differences:

9y
6x,:

- |J/(x1,---, XitAj o X)) =Y (X 1,00 Xipoos Xm) (2 2)

Xi Ai

Where 4; is a small and constant fraction of the variability range of x;:

Xi
A= T000 (2.3)

This method only considers the local response of the model in the surroundings of the adopted input
factors values and is therefore not suitable for a global sensitivity analysis.

A global extension of the perturbation approach is the “multiple start perturbation method”, also
called “Morris method” or “elementary effects test”. According to this method, each sensitivity
index S; is evaluated not by a single partial derivative with respect to x;, but by averaging a (large)
number r of partial derivatives which are evaluated for different variable input factors combinations
(Morris, 1991), (Saltelli, et al., 2008), (Pianosi, et al., 2016):

J j Jj j j j
Yl X700 X5+, X0 )=V X5, X7y X :
(et tin) 9 ) = Y1 EE] (24)

1
S =iyr_
e 4

Each partial derivative evaluation is called “elementary effect”, EE. Besides the above sensitivity
measure, also the standard deviation of the elementary effects is computed:

SD; = stdv(EE}, EE?, ..., EET) @

The standard deviation SD; provides information on the degree of interaction of the i*" input factor
with the others. An input factor interacts with a second input factor when its associated sensitivity
depends also on the value assumed by the second input factor. A high standard deviation of the
elementary effects indicates that a factor is interacting with others because its sensitivity changes
across the variability space.

According to this method, one sensitivity index S; and one standard deviation SD; are computed for
each variable input factor x;.

In the presented implementation of the method, the sampling strategy to select the evaluation points
(x{, s xi] ) e x,’n), j =(1,...,7) simply consists, for each value of j, in picking random values of
the input factors in their variability space according to a uniform probability density function:

probability density

1/(xi,max-xi,min)

xi
Xi,min Xi,max

Figure 5: uniform probability density function
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For a number r high enough the values of S; and SD; reach convergence and stay constant. The
computation of the mean (and standard deviation) of the elementary effects of m input factors
require r(m + 1) model evaluations, a requisite that is far lower than the other considered global
sensitivity analysis methods. Because of that, also extremely high values of r can be used without
causing unacceptable computation times.

The multiple start perturbation method is particularly suitable for screening and for ranking the
variable input factors.

2.1.2. STATISTICAL MOMENTS-BASED (AMA and Sobol) SENSITIVITY
ANALYSIS

The statistical moments-based sensitivity analysis (Dell'Oca, Riva, & Guadagnini, 2017) studies
the impact of the variable input factors on the main features of the probability density function of
the model output, y. These features are the first four statistical moments:

e The mean value, E(y).

e The variance, V (y), measuring the spread around the mean of the output probability distribution
function.

e The skewness, Sk(y), measuring the asymmetry of the output probability distribution function.

e The kurtosis, K (y), measuring the “tailedness” of the output probability distribution function.

This method can be seen as an extension of Sobol’s analysis (typically referred as variance-based
sensitivity analysis), where the output variance is taken as the only metric upon which sensitivity
is quantified (Sobol, 1993). Relying solely on this criterion can provide an incomplete picture of a
system response to model parameters, also considering that the relative permeability models output
can be characterized by highly skewed and tailed distributions. The key idea at the basis of the
statistical moments-based sensitivity analysis is that the joint use of sensitivity indices based on
four different statistical moments of the model output leads to an improved understanding of the
way a given uncertain model input can govern main features of the output probability density
function. In the presented implementation of the method the calculation of the indices relies on
Monte Carlo simulations of the models (in principle the indices could be calculated analytically).

Monte Carlo simulation is the key process underlying not only the statistical moments-based
sensitivity analysis, but also any other sensitivity analysis method which is discussed in this essay,
except for the multiple start perturbation method. It is therefore appropriate to define inputs, outputs
and methodology of this procedure as it is applied to the relative permeability models in the
following chapters.

The Monte Carlo simulation is a computational algorithm that relies on repeated random sampling
of a model to obtain the results. For each considered model, the inputs of the Monte Carlo
simulation consist of m (number of variable input factors) input variability spaces X; in the form
[Xi min » Ximax), i = (1, ...,m) and a number n of required model evaluations.

The outputs of the Monte Carlo simulation as implemented for the purpose of this essay are two
matrices:

e The unconditional output matrix.
e The conditional output matrix.

The unconditional output matrix is a (1xn) matrix containing n model evaluations obtained by
considering random values of each variable input factor of the model, picking them from their
variability space according to a uniform probability density function. In other words, the model
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outputs contained in the unconditional output matrix are obtained by considering each variable
input factor of the model as a random variable uniformly distributed in its variability space.

Unconditional realizations | y,1 | y,2 y,n

n

Figure 6: unconditional output matrix

The conditional output matrix is a (imxnxp) 3-dimensional matrix, and it is structured according to
the following criteria:

e The it" row, i = (1,...,m), contains model outputs obtained by conditioning the i* variable
input factor (x;) of the model to a single and fixed value, while considering all the other input
factors as random uniformly distributed variables. This model evaluation is repeated n times
building a complete row.

e The 3" dimension of the matrix controls the specific value of the conditioned factors: each
conditioned variable input factor x; assumes values which range from x; ;,,;, in the cell (i, j, 1)
to X; max 10 the cell (i, j, p). The difference between the value of the conditioned factor x; in
the cell (i, j, k+1) and its value in the cell (i, j, k) results to be:

@Ljk+1) _ (0,j,k) _ Ximax—Ximin
AHHD) _ (340 _ St (26)
n
xi,max
p
Xi,min

x1 conditioned | y

x2 conditioned

ANERANEANEAN
AN

ANERANEANEAN

xm conditioned

Figure 7. conditional output matrix

Now that the unconditional and conditional output matrices have been defined, the methodology of
the statistical moments-based sensitivity analysis can be described in detail.

The conditional output matrix must be further elaborated in order to obtain the matrices of the
conditional output statistical moments: E, V, Sk, K. These are (pxm) 2-dimensional matrices
obtained by computing the statistical moments of the conditional output matrix row-by-row, as
shown in the figure below (where the computation of the matrix E is taken as an example):
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Figure 8: calculation of the mean matrix E of the conditional output

It should be remembered that the row i of any statistical moment matrix (E, V, Sk, K) is obtained
conditioning the variable input factor x;.

In the following, the complete i*" row of the statistical moment matrix (obtained conditioning x;)
will be referred to as “conditional mean/variance/(...) with respect to x;” and as E(i,: )/ V(i,:)/...

Once E, V, Sk and K are calculated, six sensitivity indices are computed for each variable input
factor x; (Dell'Oca, Riva, & Guadagnini, 2017), (Sobol, 1993):

o AMAE sensitivity index:

|E(unconditional output)—E(i,:)I)

AMAE; = E( 2.7)

|E(unconditional output|
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The index AMAE; quantifies the expected relative change of the output mean value due to the
variation/conditioning of the input factor x;.

AMAV sensitivity index:

|V (unconditional output)—-V(i,:) I)

AMAV; = E(

(2.8)

|V (unconditional output|

The index AMAV; quantifies the expected relative change of the output variance due to the
variation/conditioning of the input factor x;.

Sobol first order sensitivity index:

Sobol/ = V(EGL) (2.9)

- V(unconditional output)

The index S obolgc measures the expected reduction in the output variance that can be obtained
conditioning the variable input factor x;. It measures the contribution to the output variance
from the individual input factors without considering their interactions. The sensitivity index
S obolfc is equivalent to the index AMAV; only if the conditional variance V(i,:) is always (id
est, for each value of x;) smaller than or equal to its unconditional counterpart.

Sobol total order sensitivity index:

E(V~xi)

V(unconditional output)

Sobolf = (2.10)

The matrix V .y, is a (m-1)-dimensional matrix where each cell contains the variance of n;
model realizations obtained conditioning all the input variable factors except x;, which is
considered a random variable uniformly distributed in its variability space X;. Each dimension
of the matrix is made of p, cells, so as to include any possible combination of conditioned input
factors given the discretization parameter p; (p; plays the exact same role of the discretization
parameter p in the Monte Carlo simulations). The index Sobolf describes the relative
contribution to the variance of the output due to the variability of the input factor x; considering
both its direct effect and its interactions with all the other input factors (which might amplify
or mitigate the individual effects).

AMASk sensitivity index:

|Sk(unconditional output)—Sk(i,:)|
|Sk(unconditional output|

AMASk; = E( ) (2.11)

The index AMASk; quantifies the expected relative change of the output skewness due to the
variation/conditioning of the input factor x;.

AMAK sensitivity index:
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AMAKi _ E(IK(unconditional output)—K(i,:)I) (2.12)

|K (unconditional output|

The index AMAK; quantifies the expected relative change of the output kurtosis due to the
variation/conditioning of the input factor x;.

These sensitivity indices are particularly suitable for the ranking of the input factors. The Sobol
total order index is particularly suitable for screening because a value of 0 of the corresponding
total order index is a necessary and sufficient condition for a factor to be non-influential.

The Monte Carlo simulation is an extremely demanding process from the computational point of
view: each simulation requires (m X n X p) model evaluations and the simulation must be repeated
many times. It should be noticed that the value of n must be extremely high to obtain the necessary
stability (and accuracy). Because of that, any sensitivity analysis method which relies on Monte
Carlo simulations requires rather long computation times, and a trade-off between stability of the
results and code run-time is often necessary. The computation of the matrix V., is extremely

demanding as well: it requires (nt X pt(m_l)) model evaluations, making the calculation
exponentially slower when models with many input variable factors are considered.
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Figure 9: LET relative permeability model unconditional statistical moments for n=500 realizations (left) and
n=100,000 realizations (right)

2.1.3. CUMULATIVE PROBABILITY DENSITY FUNCTION-BASED (PAWN)
SENSITIVITY ANALYSIS

This sensitivity analysis technique is statistical moments-independent. It belongs to the family of
the “density-based” sensitivity analysis: the entire probability distribution of the model output is
considered rather than its statistical moments only (Pianosi & Wagener, 2015). The methods of this
family measure sensitivity by estimating the variations that are induced in the output distribution
when removing the uncertainty about one variable input factor (conditioning the factor). More
specifically, the sensitivity to the variable input factor x; is measured by quantifying the distance
between the unconditional probability distribution of y, that is obtained when all inputs vary
simultaneously, and the conditional distribution, that is obtained varying all inputs but x; (id est,
when x; is conditioned). The cumulative probability density function-based approach, in particular,
characterizes the conditional and unconditional distributions by their cumulative density functions.
The main advantage of this approach is that the cumulative distribution functions vary between 0
and 1, regardless of the variation of the model output y, making the sensitivity indices absolute
(Pianosi & Wagener, 2015).

The unconditional and conditional cumulative distribution functions are computed starting from the
outputs of a Monte-Carlo simulation (unconditional output matrix and conditional output matrix).
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In the following, the unconditional cumulative distribution function of the model output y will be
denoted by F(y), and the conditional cumulative distribution function with respect to x; (when x;
is conditioned) will be denoted as F;(y). Since F; (y) accounts for what happens when the variability
due to x; is removed, its distance from F (y) provides a measure of the effect of x; on y. The limiting
case occurs when F;(y) coincides with F(y): in this case removing the uncertainty about x; does
not affect the output distribution and it can be concluded that x; has no influence on y. Otherwise,
if the distance between F;(y) and F (y) increases, it means that the influence of x; increases as well.
As a measure of the distance between unconditional and conditional cumulative distribution
functions, the Kolmogorov-Smirnov statistic is used:

KS; = m)t/szF(y) - FE) (2.13)

As KS; depends on the value assumed by x;, the PAWN sensitivity index T; considers a statistic
over all possible values of x;.

According to this method, for each variable input factor (x;) of the considered model, two
sensitivity indices (PAWN sensitivity indices) are computed:

Tmaxi = TYECQX(KSL') (2.14)

Tmedian,; = median(KS;) (2.15)
Xi

Tinax,; qQuantifies the maximum possible sensitivity of the output to x;, which happens only for a
precise combination of input factors, while Tyegiqn; 1S the quantification of the most likely
sensitivity of the output to the variable input factor x;.

These PAWN sensitivity indices are suitable for screening and for ranking the variable input

factors. The main associated drawback of the method is that it relies on Monte Carlo simulations,
making it rather time consuming.

-
——uncond CDF, Corey water

cumulative probability density

Figure 10: unconditional cumulative distribution function of the Corey relative permeability model for water, S,,=0.5
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2.1.4. VARIOGRAM-BASED (VARS) SENSITIVITY ANALYSIS

In the VARS framework, the variograms of the model output are interpreted as a comprehensive
manifestation of sensitivity (Razavi & Gupta, 2016).

In the field of spatial statistics, a variogram is a function that characterizes the spatial covariance
structure of a stochastic process. The variogram of a mathematical model is defined as the variance
of the differences between model output values computed at (a large number of) pairs of points at
different locations across the input factors space, when these pairs of points are separated by the
same difference.

Let x = [xq,X3,...,X;] be a generic vector of variable input factors and the increment
h = [hq, hy, ..., hyy] = (x4 — xp) be the difference between two specific variable input factors
vectors. The multi-dimensional variogram () of the model output y(x) is defined as:

y(h) =-V(y(x + ) - y(x)) (2.16)

The variogram is only function of the increment A. The relative permeability models respect the
constant mean assumption, so the variogram can also be defined as:

y(h) = 3E |(yx + ) - y()] (2.17)

In order to compute the variogram-based sensitivity indices, in this essay, only mono-dimensional
variograms are considered, where the increment affects only one variable input factor at a time and
is of the form:

h! = (h1,0,...,0) .. h™=(00,.., k™) (2.18)

The j* mono-dimensional increment relative to the i*" variable input factor (x;) is referred to with
the term h]l: (scalar). The VARS sensitivity analysis of the relative permeability models is, again,
based on Monte Carlo simulations: the matrices of the unconditional and conditional output of the
model are needed for the computation of the variograms. This method requires a further input to
evaluate the increments h}l:: the conditioned input factors matrix. This matrix (represented in the
figure below) contains the values at which each parameter is conditioned when computing the
conditional output matrix, and it is simply built by knowing the input variability space of the model
and the size (p) of the conditional output matrix. Once all those inputs are defined, for each variable
input factor the variogram can be calculated.
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In the figure below it is also shown how the increments are defined from the conditioned input
factors matrix:

—— | x1,min x1,max
m Conditioned i'nput
factors matrix
Xm,min Xm,max
p
1 1 1
h, h, h
] Computation of the
> | x1,min x1,max first two increments
h, |
5 1
h 2

Figure 11: computation of the increments from the conditioned inputs matrix
By definition, hb is two times hi, hY is three times hi and so on. The maximum considered
increment for the calculation of the variograms corresponds to 50% of the variability range of the

factors, since it is the maximum meaningful increment for the variogram evaluation.

The variogram of the output with respect to each input factor is computed according to the formula:
. 1 .
vi(h) = EE[(yi(xl, e X B, X)) = Vi, e, Xy e, X)) (2.19)

Where y; denotes the conditional output with respect to x; (the variable input factor x; is
conditioned while the others are random variables) and y; denotes its variogram.
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The figure below shows how the conditional output matrix is used to extract the pairs of points
[(yi(xl, T ...,xm) , Vi(xg, e, xi, ,xm))] which are used to compute the variograms.

n

pair of points

y(x+h) L p
y(x)

x1 conditioned | kri

x2 conditioned

xm conditioned

Figure 12: computation of the variogram from the conditional output matrix

The computed variograms are then normalized with respect to the increment h'; in this way, even
if the different input factors have different variability ranges, the value of h,iwrmalized always goes
from 0 to 1, making the different variograms comparable and avoiding penalizing the quantification
of the effect of factors with smaller variability ranges while computing the (integral) sensitivity
indices.
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Figure 13: non-normalized (left) VS normalized (right) variograms of Corey relative permeability model for water
relative permeability, S,=0.5

According to the VARS sensitivity analysis method, for each variable input factor x; two sensitivity
indices are computed:

Rhorm=0.2

IVARSo; = fhhurmZO (yi(h;ormalized)) dh;.wrm (2.20)
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L — . .
IVARSSO,L’ = f:;':::::_(,l (yi(h;wrmalized)) dh;wrm (2-21)
The sensitivity index IVARS, is so called because the normalized increment hl ), arizeq = 0.2

corresponds to 10% of the input variability space X;; The sensitivity index IVARS; is so called

because the normalized increment h',,,maizeq = 1 corresponds to 50% of the input variability

space X;. The sensitivity index IVARS,  is representative of the output sensitivity to small variations

of the input variable factors (within 10% of the input variability space), while the index IVARS;, is
representative of the output sensitivity to large variations of the input factors (within 50% of the
input variability space). The variogram-based analysis can also study the sensitivity of the output
against extremely small variations of the input factors, for instance by defining the index IVARS, ;:
in this hypothetical case the variogram-based sensitivity index would tend to be equal to the
multiple start perturbation method index. In practice it is much more convenient to directly use the
multiple start perturbation method to study the sensitivity of the output against small variations of
the input factors.

Defining:

Fi(Hi) = foHi (Vi(hiwrmalized)) dh;wrm (2-22)

We can represent the IVARS (Integrated Variogram Across a Range of Scale) sensitivity indices
as in the figure below:
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Figure 14: IVARS sensitivity indices

The IVARS sensitivity indices can provide a meaningful measure of the sensitivity of a model
response to its input factors at different scales. In particular, [IVARS-based sensitivity measures are
normally used to rank the variable input factors according to their relative influence.

The main drawback of this sensitivity analysis method is its complicated workflow and the fact that
it is extremely computationally intensive: both the Monte Carlo simulation and the computation of

the variogram are highly time-consuming processes.
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2.2. UNINFORMED GLOBAL SENSITIVITY ANALYSIS FOR
MULTIPLE INTERPRETATIVE MODELS: METHODOLOGIES
AND WORKFLOW

The quality and amount of data available in many practical situations justify the interpretation of
the system under investigation through a collection of alternative interpretative models. This
follows the observation that there is uncertainty about model structure/format when only empirical
or semi-empirical interpretative models are available (as happens for the study of relative
permeability). So, when studying a phenomenon through the simultaneous application of multiple
models, two distinct sources of uncertainty can be identified (Dell'Oca, Riva, & Guadagnini, 2020),
(Ye & Dai, 2015):

e Uncertainty affecting the model structure.
e Uncertainty affecting the input variable factors of each model.

In this context, quantification of the influence of these multiple sources of uncertainties on the
output of interest is key to increase the understanding and confidence on model(s) functioning and
guide further actions (including, for example, model calibration or collection of new data). The
multi-model extension of global sensitivity analysis is not only preferable, but necessary when
model uncertainty exists: identifying important parameters for a single model may be biased in that
the important parameters identified for a single model may not be important to the processes that
the models intend to simulate (Dell'Oca, Riva, & Guadagnini, 2020). The goal of this chapter is to
provide the tools to quantify and allocate the uncertainty of the output obtained by the simultaneous
application of many models in a completely uninformed scenario. It is appropriate to remind that a
global uninformed sensitivity analysis is meaningful only if it is carried out when no previous
knowledge (from experiments or model calibration) is available.

The multi-model sensitivity analysis techniques which are considered and used in this chapter are:

e  Multi-model statistical moments-based global sensitivity analysis.
e  Multi-model variance-based global sensitivity analysis.

2.2.1. MULTI-MODEL STATISTICAL MOMENTS-BASED GLOBAL
SENSITIVITY ANALYSIS

This multi-model global sensitivity analysis allows investigating the sensitivity of the models
output through diverse aspects of uncertainty, focusing on various statistical moments of the
probability density function of the target output (Dell'Oca, Riva, & Guadagnini, 2020).
Furthermore, it allows discriminating between the contribution to sensitivity due to the lack of
knowledge in model format and the contribution due to the lack of knowledge of the input factors
values. The single-model statistical moments-based sensitivity analysis method (see chapter 2.1.2.)
defines sensitivity in terms of the average variation of the output’s probability density function
main statistical moments due to the model input factors uncertainty and proposes summary
sensitivity indices (AMA indices) to quantify the concept. Here the AMA indices are extended to
embed the effect of uncertainties both in the system model conceptualization and in the models
input factors.

In the following, the g different models which are considered in a multi-model context are denoted
as M/, j = (1, ...,q). This analysis examines an unconstrained case, id est, when no data are
available to constrain input factors uncertainty and to evaluate the relative plausibility of each
considered model. When prior information is unavailable, equal prior probability (or a-priori model
weight) w/ is assigned to each model M/:
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wl=w?2=.=wi= 1/q (2.23)

This sensitivity analysis method is based on Monte Carlo simulations of the relative permeability
models: for each considered model M/ a Monte Carlo simulation is performed so as to obtain the
corresponding unconditional output matrix (uncond_output’) and conditional output matrix. The
conditional output matrices are then elaborated aiming to obtain the conditional statistical moments
matrices E/, V/, Sk/ and K/, j = 1, ..., q (see chapter 2.1.2. for any additional information).

The unconditional output matrices are used to compute the multi-model unconditional output
statistics:

o Eqianactet = X1, w/{E (uncond_output/)} (2.24)
o Viushgotet = X1 wi{V (uncond_output/)} + X1_, w/{[E0TE%! — E(uncond_output’))?}
(2.25)
3
multimodel _ |4 j iy [V (uncond_output/)|2
*  Skimcona = Lj W {Sk (uncond_output”) [W +
uncond
multimodel _ j 3
_Zq Jj Euncond E(uncond_output )] _ 32‘1 w/ [Emultimodel +
j=1 w 3 j=1 uncond
(VunCOjrld )2
multimodel
in1 V(uncond_out; ut)
—E (uncond_output’ )] (—173) (2.26)
(Vmultimodel)f
uncond
V(uncond outputj) z
multimodel —_ |4 j j =
*  Kincond = 2ij=y W )K(uncond output’) [W] +
uncond
multimodel i
q Wj [Eunconditianal_E(uncondfoutputj)]
j=1 (Vmultimadel)2
uncond
multimodel j 2
q i V| Euncond —E(uncond_output’) 3 i
4 Zj:l w’ {[ multimodel E V(uncond_outputf) +
uncond
3
Sk uncondfoutputj |4 uncondfoutputj 2
- (2.27)
multimodel _ j .
Eyncond E(uncond_output/)

Once these multi-model unconditional statistics have been calculated, it is possible to compute the
sensitivity indices. The multi-model moments-based sensitivity indices quantify sensitivity by the
average variation of the first four statistical moments of the output due to conditioning of the
adopted model and of the variable input factors. These sensitivity indices are structured according
to two key components:

e A model-choice contribution related to the conditioning of the adopted model.
e An input factor-choice contribution related to the conditioning of the input factors.

The sensitivity index corresponding to the variable input factor xij (i*" input factor belonging to

the model M/ ) is referred to as AMA{ . It should be noticed that different models may have a
different number of variable input factors.

According to this method, for each variable input factor belonging to each model, four sensitivity
indices are defined and calculated:
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o AMAE] = :—;{|E;’,’£ff{£"d€’ — E(uncond_output’)| + E(|E/(i,:) — E (uncond_output’)|}

(2.28)
With
d, = { Elneana®® |, Edntang @ # 0 (2.29)
1 , otherwise

The first term in the curly brackets is the model-choice contribution, the second is the input
factor-choice contribution (this statement stays true to all the sensitivity indices below). The
terms dy,ds; and dg are calculated analogously to dp for the sensitivity indices below,
considering the corresponding statistical moment.

o AMAV/] = :—]{|V$’;‘éﬁ’&wdel — V(uncond_output’)| + E(|V/(i,:) — V (uncond_output’) |}
\4
(2.30)

o AMASK! = dw—]k{|5kfﬁlucl§,i1’§"del — Sk(uncond_output’)| + E(|Sk/(i,:) +
S
—Sk(uncond_output’)|} (2.31)

o AMAK/ = :lv—j {|kmultimodel _ g (yncond_output’)| + E(|K/(i,:) — K (uncond_output’)|}
K
(2.32)

These sensitivity indices are particularly suitable for ranking and for screening.

It is important to observe that, in this multi-model approach, each considered model retains its own
identity and that different models do not share input factors: even if an input factor appears in more
than one model its contribution to the output variability changes according to the model to which it
is considered belonging (the same input factor appearing in two models behaves like two distinct
input factors).

2.2.2. MULTI-MODEL VARIANCE-BASED GLOBAL SENSITIVITY
ANALYSIS

The variance-based sensitivity analysis methods consider the output variance as the only metric
upon which sensitivity is quantified. The multi-model variance-based method is an extension of
Sobol’s sensitivity analysis (in-depth presentation in chapter 2.1.2.): Sobol sensitivity indices are
defined with consideration of only input factors uncertainty, while multi-model variance-based
sensitivity analysis is centred on a hierarchical structure of input factors and model uncertainty,
deriving new global sensitivity indices for multiple models (Ye & Dai, 2015). The multi-model
variance-based sensitivity indices rely on the concept of model averaging. This (global) analysis
considers an unconstrained case, id est, when no data are available to constrain input factors
uncertainty and to evaluate the relative plausibility of each considered model, so equal prior
probability w/ (or a-priori model weight) is assigned to each model M/:

wl=w2=..=pl= 1/q (2.33)

This sensitivity analysis method is based on Monte Carlo simulations of the models: for each
considered model M/ a Monte Carlo simulation is performed intending to obtain the corresponding
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unconditional output matrix (uncond_output’) and conditional output matrix. The conditional
output matrices are then elaborated in order to obtain the statistical moments matrices E J
j =1,...,q. Furthermore, with a focus on the total order effect of the input factors, for each model
and for each input factor the matrix ¥’ ; must be evaluated (see chapter 2.1.2. for further details).
Before defining the sensitivity indices, it is important to understand that in this multi-model
approach the models lose their identity as singular entities: the different models are considered
acting as a single more complex model. It follows that if a certain input factor appears in more than
one model, it is anyway considered as one single input variable factor (as opposed to what happens
for the multi-model statistical moments-based approach). For this reason, the variable input factors
belonging to this new more complex “hybrid model” must be redefined with respect to their single-
model definition. Because of this behaviour of the variable input factors, each multi-model
sensitivity index is only associated to the corresponding input factor x;, not to a specific model.

The multi-model variance-based sensitivity indices are:

e  Multi-model first order Sobol sensitivity index:

j i wiv[E (i)
multimodel _ j=1
S B Z?lefV(uncond_outputl') (2.34)

This sensitivity index takes into account the influence of the variable input factor x; under the
individual models and provides a quantitative assessment of global sensitivity analysis with
combined effects of uncertain input factors and models.

e  Multi-model total order Sobol sensitivity index:

3 wigly!
Stmultimodel — 2:1=1W E[V~i]
t Z?zlwfV(uncond_outputj)

(2.35)

This total order index considers also the effect of possible interactions between x; and the other
input variable factors. It should be remembered that a variable input factor x; interacts with the
others when its associated sensitivity depends on the value assumed by the other input factors.

It should be noticed that, if an input factor x; does not belong to the model M/, it follows:
VIEIG,)] =E[V],] =0 (2.36)

So, the single-model Sobol (variance-based) sensitivity indices of the model M/, corresponding to
an input variable factor from which M/ does not depend, are equal to zero.

These multi-model sensitivity indices are particularly indicated for ranking and the total order index

can be used for screening: a value of 0 of the corresponding total order index is a necessary and
sufficient condition for a factor to be non-influential.
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2.3. MULTI-MODEL, INFORMED GLOBAL SENSITIVITY
ANALYSIS: METHODOLOGIES AND WORKFLOW

The aim of the informed global sensitivity analysis techniques is exactly the same of the standard
(uninformed) global sensitivity analysis: investigating how the variability in the output y can be
attributed to the uncertainty in the different input variable factors x; and to the uncertainty in the
interpretative model structure M/ (in a multi-model context). The only difference between the two
approaches is that, while uninformed global sensitivity analysis considers variations within the
entire space of variability of the input factors according to a uniform probability density function,
the informed global sensitivity analysis considers the output variability against variations of the
input factors around a specific reference input factors vector X = [x7, X3, ..., X, |, Which is obtained
from model calibration or parameters estimation techniques. The informed global approach should
not be confused with the local sensitivity analysis approach: while in the local techniques the input
variability space is limited between specific values around the reference input vector X, in the
informed global approach the input factors can vary within their entire variability space, but
according to a probability density function which properly accounts for the higher probability of
the input factors to lay close to their nominal (reference) values, rather than far from them. The use
of an informed approach when performing a sensitivity analysis is not only preferable, but
necessary, when previous knowledge of the model(s) input variable factors is provided by
experimental measurements or by any inverse modelling technique: the indiscriminate use of a
global approach when input factors have been correctly calibrated is not useful and can lead to
deceiving conclusions. The application of informed global sensitivity analysis requires as extra
inputs with respect to its unconditional counterpart the user-defined vector of the nominal input
factors X and the posterior probabilities w’ of the different models M/ (if a multi-model approach
is adopted). The single-model and multi-model sensitivity analysis techniques described in sections
2.1. and 2.2. can be applied according to the exact same methodologies for informed global
sensitivity analysis.

In this essay only multi-model techniques will be applied for informed sensitivity analysis purposes,
because of how the models of interest are calibrated in the studied scenarios. The adopted sensitivity
analysis methodologies are the ones described in chapter 2.2. In the studied cases a posterior
probability w’ (or a-posteriori model weight) is assigned to each of the considered models M/
according to their relative skill to interpret the experimental observations (which is quantified by
the models’ posterior probabilities conditional to the observations in a maximum-likelihood
estimation framework). The reference input factors are expressed by intervals (X;min, Ximax)
associated with their lower and upper limits identifying the Gaussian 95% confidence intervals
around their estimated value. For each variable input factor x;, its Gaussian distribution parameters
(mean y; and standard deviation o;) can be derived from the provided confidence interval:

( _i,min"’ _i,max)
py = e (2:37)

0, = W;%M (2.38)
According to these hypotheses each variable-input factor, when not conditioned (according to the

sensitivity analysis workflow described in chapter 2.2.), is considered a random variable with
Gaussian probability density function.
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3. WATER-OIL RELATIVE PERMEABILITY MODELS

The relative permeability k,., of a certain phase « is always a function of the phase saturation, id
est, of the fraction of the fluid volume which is occupied by the phase a:

Kre = kra(Sa) 3.1)
Because of the definition of the saturation of a phase, for a water-oil binary mixture it follows that:
Sw+So=1 (3.2)
Where S,, is the water saturation and S, is the oil saturation.

In this essay the two-phase relative permeability models which are mainly employed in oil industry
and for any industrial applications requiring water-oil relative permeability quantifications will be
considered: the Corey model, the Chierici model, and the LET (Lomeland-Ebeltoft-Thomas) model.

In order to perform a global sensitivity analysis, for each of the considered models the vector of the
variable input factors x and the input variability space X must be defined. While the definition of
the variable input factors is trivial, the definition of the variability space is not. In fact, some of the
relative permeability models’ parameters are meant to be evaluated by model calibration starting
from a set of experimental measurements of water-oil relative permeability. For this reason, their
value lays in a range which is not limited by any mathematical definition or mathematical constraint
and could therefore be infinitely wide. Hence, for each of the models, the variability space of each
input factor is determined by two main criteria:

e Studying how the value of the considered input factor affects the relative permeability curve
k. = f(x,S,) and, accordingly, limiting the variability range of the parameter to the values
which produce curves that can be considered representative of all the real-case scenarios.

e Trading-off the variability space of the input factors which can be in conflict (for example, the
irreducible water saturation S,,,; and the residual oil saturation S,;.).

While studying the effect of a certain model input, all the other variable input factors are kept
constant at the average value defined by their variability space.

3.1. THE COREY RELATIVE PERMEABILITY MODEL

The Corey model (Corey, 1954) is usually employed due to its simplicity, the limited amount of
input data requirements, and the small number of parameters to be estimated. The mathematical
structure of the model rests on capillary pressure concepts and is widely accepted to be fairly
accurate for consolidated porous media. The model has also been proposed for unconsolidated
sands through proper tuning of its parameters. Corey’s equations for wetting (water) and non-
wetting (oil) relative permeability read:

Sw—Swi
Krw = Ky m)’vw (3.3)
So—Sor
Kro = ko (m)m’ (34)
With:
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o Kk, = kMa* k0 = kMa¥: end points of water and oil relative permeability curves.
e S, water saturation.

e S, =(1-S,): oil saturation.

o S, irreducible water saturation, id est the water saturation for which k., = 0.

e S, residual oil saturation, id est the oil saturation for which k,., = 0.

e N, N,: parameters of the Corey model to be estimated through model calibration.

3.1.1. INPUT FACTORS AND VARIABILITY SPACE
Corey model for water relative permeability is now considered:

Sw—Swi
krw = krw(Sw) = kgw 1_:Wi_M;:T)NW

Observing the analytical expression of the model it is possible to identify four independent model
parameters, which are the variable input factors x; of the model.

The goal is now to determine the minimum and maximum value of each parameter, which define
the Corey model input variability space. The minimum and maximum values of a certain input
variable x; are referred as X;;, and X;p,. Before performing any calculations, some
considerations can already be made:

o x;: kS,; it must be greater than 0 (otherwise, the curve represents a case of complete
imperviousness to water) and it can be as high as 1 (because of the definition of relative
permeability).

o x5 S, it can assume any value between 0 (no irreducible/initial water saturation) and 1 (the
porous rock is completely full of water which can not be displaced).

e x3: N,; it can assume any value greater than 0 without producing non-sensical relative
permeability results.

o x4:S,,; 1t can assume any value between 0 (no residual oil) and 1 (the porous rock is completely
full of oil which can not be displaced).

o Because of the definition of water and oil saturations there are constraining relationships
between water saturation S,,, irreducible water saturation S,,; and residual oil saturation S,

(@] Sw Swi
o Sw (1 - Sor)
o (Swi + Sor) <1

=
<

These three conditions must always be satisfied, otherwise, non-sensical relative permeability
curves will be obtained. It follows that the values of Sy; max, Sor max and the values of water
saturation S,, in which the model can be evaluated must be chosen according to a trade-off:
having a wider variability range for S,,; and S,,- leads to a narrower range of acceptable S,
values.

Now the input variability space of each factor can be fixed by trial and error, and the resulting
output curves can be analysed. If the range of variability of a parameter produces a sufficiently wide
change in the output (relative permeability curve), the variability space is considered satisfactory
(id est, representative of the most of real case scenarios) and can be adopted; if not, the range of
variability is made wider.
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The adopted input variability space for Corey water relative permeability model is:

o kKymin =01 klymax=1
* Syimin=20 Swimax = 0.35
e Nymin=0.1 Ny max = 6
hd Sor,min =0 Sor,max =0.35

According to these assumptions, the model can be evaluated in (0.35 < S, < 0.65).

It should be remembered that while studying the effect of a certain model input, all the other
variable input factors are kept constant at the average value defined by their variability space.

0 effect of krw0, Corey water s effect of Swi, Corey water

——krw0 min ——Swi min
035} |— krw0 max —Swi max |

0.7
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—Nw min ——Sor min

//.,_ Nw max | |— Sor max |
0.5
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035 04 045 05 055 0.6 0.65 0.7

Figure 15: effect of the variable input factors on Corey model for water relative permeability

A qualitative observation of the resulting water relative permeability curves shows that the input
factor N,, has by far the most dramatic effect on the output. It should be noted that, according to
the assumptions, in the global sensitivity analysis approach the resulting relative permeability curve
can be consequence of any allowed combination of input variable factors, id est of any input
variable factors combination laying in the input variability space.
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The exact same procedure must be repeated in order to study the input variability space of Corey
model for oil relative permeability. The three considered water-oil relative permeability models
have a structure for which the relative permeability curves obtained for oil are perfectly symmetrical
to the ones obtained for water (symmetrical with respect to water saturation S,,,), when the same
input factors values are adopted. For all the considered models the input factors S,,,; and S,,- have
inverted effects on water and oil relative permeability curves, due to the models’ format. For these
reasons, the results obtained when studying the input variability space of the models for oil relative
permeability are simply symmetrical to the ones obtained for water, and the effects of the input
factors S,,; and S,,- are inverted with respect to the ones observed for water relative permeability.

The detailed study of the input variability space of Corey model for oil relative permeability is
reported in appendix A, section Al.
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3.2. THE CHIERICI RELATIVE PERMEABILITY MODEL

The Chierici model (Chierici, 1984) provides a reasonably good match against experimental
relative permeability curves. It is considered to provide improved approximations at and near the
initial and end points of these curves when compared against the Corey model and other polynomial
approximations. The flexibility of the model is mainly due to the possibility of representing concave
and/or convex relative permeability curves as a function of parameters values.

_MW
Koy kowexp[ —B,, (=) ] (3.5)
Sw Swi Mo
kro = kmexp[ B m) ] (36)
With:

e B, B, M,, M,: parameters of the Chierici model to be estimated through model calibration.

3.2.1. INPUT FACTORS AND VARIABILITY SPACE

SW_SWI. ~Mw
krw - krw(sw) - rwexp[ B —) ]

1-Sor—Sw

Observing the analytical expression of the model it is possible to identify five independent model
parameters, which are the variable input factors x; of the model:

o x;:k%,.

o Xy Sy

e x3: B,; it can assume any value greater than 0 without producing non-sensical relative
permeability results.

e x4 M,; it can assume any value greater than 0 without producing non-sensical relative
permeability results.

® X5 Sor

The adopted input variability space for Chierici model for water relative permeability is:

o klymin =01 K2y max = 1
* Suyimin=0 Swimax = 0.35
e By min =0. By max = 8
o My in =01 My max = 8
*  Sormin = Sormax = 0.35

According to these assumptions, the model can be evaluated in (0.35 < S, < 0.65).
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Figure 16: effect of the variable input factors on Chierici model for water relative permeability

The plots above show that all the input variable factors have a really strong effect on the output of
Chierici model for water relative permeability. For this reason, it is appropriate to avoid any
statement until a proper quantitative analysis is performed.

The detailed study of the input variability space of Corey model for oil relative permeability is

reported in appendix A, section A2.
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3.3. THE LET RELATIVE PERMEABILITY MODEL

The LET model (Lomeland, Ebeltoft, & Thomas, 2005) was proposed as a new versatile model. It
is expressed in the form:

s, tw

— 1,0
b = by e (37)
kep = Iy — O 38
OO (1=sp)to+Eo(Sy)To (38)
With:
Sw = (SW_—SW"): normalized water saturation.
(1-Swi—Sor)

o Ly, Lo Ew Ey, Ty, Ty: parameters of the LET model to be estimated through model calibration.

The values of T, and L, respectively drive the shape of the lower and upper part of the relative
permeability curve, while E, describes the slope and the elevation of the central portion of the
curve. As such, the model is designed to include diverse parts of the relative permeability curve to
capture variable behaviours across the entire water saturation range. The model has been shown to
provide good interpretation of experimental data over a considerable range of saturations.

3.3.1. INPUT FACTORS AND VARIABILITY SPACE

0 s
k., =k, (S,) =k
™wW TW( W) T™W S‘,;/LW+EW(1_S‘:,)TW

Svy—Si
g* wowi
w

1-Swi—Sor

Observing the analytical expression of the model it is possible to identify six independent model
parameters, which are the variable input factors x; of the model:

o x;: k%,

o Xy Sy

e x3: L,; the inventors of the LET model suggest considering only values of L,, = 0.1. Despite
of that, any value above 0 is mathematically acceptable (it does not produce non-sensical
relative permeability curves).

o x4 E,; the inventors of the LET model suggest considering only values of E,, = 0.

e xs5:T,; the inventors of the LET model suggest considering only values of T, = 0.1. Despite
of that, any value above 0 is mathematically acceptable.

*  Xx¢:Sor.

The adopted input variability space for LET model for water relative permeability is:

b kgw,min =0.1 k?w,max =1
® Swi,min =0 Swi,max = 0.35

e Lymin = 0.05 Ly max = 10
o Eymin=0.005 Ey g =10

44



hd Tw,min = 0.05 Tw,max =8

b Sor,min =0 Sor,max =0.35

According to these assumptions, the model can be evaluated in (0.35 < S, < 0.65).
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Figure 17: effect of the variable input factors on LET model for water relative permeability
The plots above show that all the input variable factors have an extremely strong effect on the
output of LET model for water relative permeability. For this reason, it is appropriate to avoid any

consideration until a proper quantitative analysis is performed.

The detailed study of the input variability space of Corey model for oil relative permeability is
reported in appendix A, section A3.
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4. RESULTS FOR WATER RELATIVE PERMEABILITY

4.1. SINGLE-MODEL UNINFORMED SCENARIO

In this section the four single-model global sensitivity analysis techniques presented in chapter 2.1.
are applied to the three relative permeability models according to the stated assumptions and
methodologies. The sensitivity indices are computed for 100 different values of water saturation S,
between Sy, min and Sy, ;max and they are plotted as functions of S,,,. The results are presented, and
their most significant aspects are discussed. The focus is mainly set on the quantitative ranking of
the variable input factors of each model on the base of their relative importance with respect to the
output variability. The rankings derived from different sensitivity analysis methods are studied to
observe possible analogies and/or discordances. Eventually, for each relative permeability model
the results obtained from the different sensitivity analysis techniques are summarized in a table for
the sake of an easy visual inspection.

4.1.1. COREY MODEL

4.1.1.1. MULTIPLE START PERTURBATION METHOD SENSITIVITY ANALYSIS

r = 500,000 (number of elementary effects evaluations)

In the figure below the multiple start perturbation method sensitivity indices and the corresponding
standard deviations of the elementary effects are reported as function of water saturation S,, for
each of the Corey model input factors:
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Figure 18: multiple start perturbation method global sensitivity analysis of Corey model for water relative permeability

An interesting aspect that can be observed from the sensitivity indices (S;) plots is that the
sensitivity associated to the input factors x, and x5 is fairly constant on the whole water saturation
domain, while the sensitivity associated to x; and x, strongly increases for increasing S,,, .

The standard deviation of the elementary effects SD; is an indicator of the interaction of the i*"
variable input factor with the others: a high value of SD; indicates that the sensitivity of the output
with respect to x; strongly depends on the values assumed by other variable input factors, while a
value of SD; equal to 0 indicates that the sensitivity to x; is independent from the values assumed
by the other variable input factors. From the plots above it can be observed that for high values of
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water saturation the sensitivity index S, (relative to the input factor x,) strongly depends on the
values assumed by the other factors.

For the multiple start perturbation method global sensitivity analysis applied to the relative
permeability models the ranking of the variable input factors is determined by calculating and
sorting from the highest to the lowest the values of the ranking indices Rg ;-

SW,TI‘LG.X
Rsi =25, " Si (4.1)
In the table below the ranking of the variable input factors of Corey model for water relative
permeability is reported as obtained from the multiple start perturbation method sensitivity analysis.
In the brackets, the corresponding ranking indices values are reported in order to quantify the
difference between the relative importance of the input factors.

Ranking
according to Ry ;

X4: Sor (42.86)

X2: Swi (28.1 1)

xi: K (26.22)

x3: Ny (8.14)

In chapter (3.1.) it was qualitatively observed that the variable input factor x3 seems to have the
greatest effect on the model output. It is interesting to observe that, in clear opposition to the
previous statement, according to the multiple start perturbation method sensitivity analysis x3 has
the smallest effect on the output variability. This result can be explained by looking at the
methodology of this sensitivity analysis technique (see chapter 2.1.1.): the sensitivity indices S; are
numerical approximations of the output partial derivatives with respect to the input factors. This
means that the sensitivity indices quantify the effect on the output variability only against extremely
small variations of the variable input factors. This method is completely blind to the effect
associated to the whole variability space of the input factors. From this analysis it results that small
variations of the input factor x; produce minor variations on the model output, despite the huge
potential effect of x3 when considering its entire variability space. On the other hand, small
variations of x4, can have a strong effect on the output. This sensitivity analysis method is then
particularly meaningful for the cases in which the variable input factors of a model are meant to be
experimentally measured, and these measurements are affected by a reasonably small uncertainty:
in these cases, the analysis successfully quantifies the effect of the uncertainty associated with the
measurement errors, while considering other sensitivity analysis techniques would probably
produce deceiving conclusions. It is important to be aware that any uninformed global sensitivity
analysis technique is a tool for the a-priori study of a model, hence it is applied before any
experimental measurement is available. If the input factors of the Corey model were hypothetically
measured/calibrated with a small associated error, it could be stated that the uncertainty associated
to x3 is less significant and troublesome than the uncertainty associated to x,.
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The exact same procedure is repeated in order to study the sensitivity of Corey model for oil relative
permeability. As mentioned in the previous section, the results obtained when studying the models
for oil relative permeability are simply symmetrical to the ones obtained for water, and the effects
of the input factors S,,; and S,,- are inverted with respect to the ones observed for water relative
permeability.

The detailed multiple start perturbation method global sensitivity analysis of Corey model for oil
relative permeability is reported in appendix B, section B1.1.

4.1.1.2. STATISTICAL MOMENTS-BASED SENSITIVITY ANALYSIS

n = 30,000 (number of model evaluations for the AMA indices)

p =50 (number of parameters’ bins for the AMA indices)

n; = 2,000 (number of model evaluations for the Sobol total-order index)
p: =10 (number of parameters’ bins for the Sobol total-order index))

In the figure below the first four statistical moments of the unconditional output (k,.,) of Corey
model are reported, id est the statistical moments of the model output when all its input factors are
random variables uniformly distributed in their input variability space. A residual instability is
present in the curves due to the limited number of Monte Carlo realizations: increasing n the
amplitude of the oscillations decreases. Despite of that, n = 30,000 is an acceptable trade-off
between accuracy and computation time for the purposes of the sensitivity analysis (adopting the
described assumptions the computation time is 1255s).
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Figure 19: statistical moments of the unconditional output of Corey model for water relative permeability

The expected value of the unconditional output (water relative permeability k), in agreement
with the model structure, increases for increasing S,,,. The unconditional variance of k,.,, increases
for increasing S,,,, meaning that the spread around the mean, and hence the associated uncertainty,
is higher for higher values of S,,. The unconditional skewness of k,.,, decreases for increasing S,,,,
indicating that for higher values of S, the unconditional probability distribution of k,,, becomes
less asymmetrical. The unconditional kurtosis of k,.,, decreases for increasing S,,,, indicating that
for higher values of S,,, the unconditional probability distribution of k,,, becomes less tailed.

In the following figure the six statistical moments-based sensitivity indices are plotted as functions
of water saturation S,,:
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Figure 20: statistical moments-based sensitivity analysis of Corey model for water relative permeability

It can be observed that, generally speaking, the instability of the sensitivity indices curves increases
when considering higher-order statistical moments. The plots above show that in general terms, as
expected, the effect of a same input factor changes when considering different statistical moments
of the output. As previously observed, the effect of some input factors is almost constant across all
the values of S, (the curve of AMAE] is, actually, perfectly horizontal), while the effect of some
input factors depends strongly on S,,,. Comparing the plots of Sobol” and Sobol it can be observed
that the interactions between the variable input factors can have a profound impact on the sensitivity

of the output to the input factor x;.

For the statistical moments-based global sensitivity analysis of the relative permeability models the
ranking of the variable input factors is based on the four ranking indices:

Sw,max
RAMAE,i = stlmin AMAE; (4.2)
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Sw,max
Ramavi = stlmin AMAV; (4.3)
Sw,max f
RSobolfirst,i = st,min SObOli (4.4)
SW,mCLX
RSobol total,i — st,min SObOZEr (45)

The ranking index Rapm 4k ; quantifies the effect of the variable input factor x; on the expected value
of the output. The ranking index Rap4y; quantifies the effect on the variance of the output. The
ranking index Rgopo; rirst,i quantifies the effect on the dispersion of the conditional output mean.
The ranking index Rsopor torar; quantifies both the direct contribution of the variability of x; and
the contribution coming from the interactions between x; and the other input factors. The higher
order statistical moments are not used for ranking purposes, because in general the mean and the
variance of the output are the main subjects of interest and the most evident manifestations of
uncertainty.

From the statistical moments-based sensitivity analysis applied to Corey model for water relative
permeability the resulting rankings are:

Ranking according to
Ramak,i

Ranking according to
Ramav,i

Ranking according to
RSobol first,i

Ranking according
to RSobol total,i

x3: Ny (79.29)

x3: Ny (69.74)

x3: Ny (63.78)

x3: Ny (63.61)

x1: kKo (41.32)

x1: K% (60.67)

x1: kK% (17.39)

x1: k% (45.00)

x4: Sor (20.96)

X4: Sor (14.18)

X4: Sor (6.46)

X4: Sor (792)

X2: Swi (19.77)

X2: Swi (13.33)

X2! Swi (3.12)

X2: Swi (4.32)

The rankings based on these four different indices return the exact same result: in this case these
four sensitivity indices are equivalent for the ranking purpose. The rankings also show that the
interactions do not change the relative importance of the input factors. The statistical moments-
based sensitivity analysis technique confirms the qualitative observation made in chapter 3.1: the
input variable factor x3 is the most influential on the model output. These rankings are not in
agreement at all with the ranking obtained from the multiple start perturbation method sensitivity
analysis. This difference can be explained observing that the statistical moments based-sensitivity
indices are defined in order to study the variability induced by the input factors, regardless of their
variation amplitude. This approach is in complete opposition to the multiple start perturbation
method, and it follows that in general the results coming from the two methods are discordant.

The detailed statistical moments-based global sensitivity analysis of Corey model for oil relative
permeability is reported in appendix B, section B1.2.
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4.1.1.3. CUMULATIVE PROBABILITY DENSITY FUNCTION-BASED SENSITIVITY
ANALYSIS

n = 30,000 (number of model evaluations)
p =150 (number of parameters’ bins)

In the figure below the unconditional cumulative density function of Corey model output is reported
for water relative permeability, S,, = 0.5.
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Figure 21: cumulative distribution of Corey model unconditional output for water relative permeability, S,=0.5

In the figure below the two PAWN sensitivity indices are reported as function of §,, for each of
Corey model variable input factors.
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Figure 22: cumulative probability density function-based sensitivity analysis of Corey model for water relative
permeability

From the sensitivity indices plots it can be observed that the numerical values assumed by the
sensitivity indices Ty, gy ; are in general significantly larger than the values assumed by the indices
Tmedian,i- This is in accordance with the definition of the two sensitivity indices, which are slightly
different in their meaning: Tyeqian ; 15 the quantification of the most likely sensitivity of the output
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to the variable input factor x;, while T4, ; quantifies the maximum possible sensitivity of the
output to x;, which happens only for a precise combination of input factors. For this reason,
normally, the index Ty, ; 1S @ more conservative measure of sensitivity. Both the sensitivity indices
related to any of the input factors appear to be strongly dependant on S,,,. It is interesting to observe
that according to the sensitivity index Ty, 3 the sensitivity to the factor x3 always decreases for
increasing S,, while according to the index Tpeqian3 the sensitivity to x3 reaches a global
maximum,

For the cumulative distribution function-based sensitivity analysis of the relative permeability
models the ranking of the variable input factors is determined by two indices:

S
Rrmaxi = 25‘:/:1;5 Tnax,i (4.6)
S
RTmedian,i = st:f: Tmedian,i 4.7)

From the cumulative probability density function-based sensitivity analysis applied to Corey model
for water relative permeability, the resulting rankings are:

Ranking according to

R Tmax,i

Ranking according to

R Tmedian,i

x3: Ny (63.97)

x3: Ny (33.74)

x1: Kooy (43.97)

x1: Ko (14.27)

x4: Sor (26.76)

X4: Sor (12.08)

X2: Sui (24.68)

X2: Swi (1 1.27)

In this case, the rankings resulting from the two indices are equivalent. The rankings obtained from
the cumulative distribution-based sensitivity analysis are equivalent to the ones obtained from the
statistical moments-based sensitivity analysis. This is due to the characteristic that these two
sensitivity analysis methods share: they both study the sensitivity of the model output regardless of
the input factors variation amplitude. For this exact same reason, these rankings are completely
different to the one obtained from the multiple start perturbation method sensitivity analysis.

The detailed cumulative probability density function-based global sensitivity analysis of Corey
model for oil relative permeability is reported in appendix B, section B1.3.
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4.1.1.4. VARIOGRAM-BASED SENSITIVITY ANALYSIS
n = 30,000 (number of model evaluations)

p =50 (number of parameters’ bins)

In the figure below the normalized variograms of Corey model output conditional to each of the
model input factors are reported for S, = 0.5.
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Figure 23: normalized variograms of Corey model conditional output for water relative permeability, S,,.=0.5

In the figures below the IVARS sensitivity indices of Corey model for water relative permeability
are reported as functions of S,,.
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Figure 24: variogram-based sensitivity analysis of Corey model for water relative permeability

This sensitivity analysis method shows remarkable stability in the calculation of the sensitivity
indices (even for lower numbers of Monte Carlo realizations), due to the fact that the IVARS
sensitivity indices are integral quantities. From the sensitivity indices plots it can be observed that
the change of scale of the input factors variations has noticeable effects on their relative importance:
according to the index IVARSs, the sensitivity of the output to x; is always greater than the
sensitivity to x,, while according to the index IVARS;, there are values of S, for which the
uncertainty associated to x, is more relevant than the uncertainty associated to x;. It should be
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remembered that the index IVARS;, quantifies the sensitivity of the model output to small
variations of the variable input factors (up to 10% of the input variability space), while the index
IVARSs, quantifies the sensitivity to large variations of the variable input factors (up to 50% of the
input variability space). Another interesting observation is that according to the index IVARS the
sensitivity to x; always decreases for increasing S,,, while according to the index IVARSs, the
sensitivity to x3 reaches a global maximum.

For the variogram-based sensitivity analysis applied to the relative permeability models, the ranking
of the variable input factors is determined calculating the two indices:

Sw,max
Rivars 10,i = st'mm IVARSm,i (4.8)

Sw,max
Rivars 50,0 — st'mm IVARSSO,i (49)

From the variogram-based global sensitivity analysis applied to Corey model for water relative
permeability the resulting rankings are as follows:

Ranking according to

Ranking according to

RIVARS 10,i RIVARS 50,0
x3: Ny (0.011) x3: N (1.13)
x1: Koy (0.0020) x1: Koy (0.47)

X4: Sor (00010)

X4: Sor (016)

X2: Swi (0.00030)

x2: Swi (0.064)

In this case, the rankings obtained by these two indices are equivalent. This follows the fact that
even the sensitivity index IVARS;, studies the output variability against rather large variations of
the variable input factors (10% of their variability space). The rankings obtained from the
variogram-based sensitivity analysis agree with the rankings obtained from the other methods
except for the multiple start perturbation method.

The detailed variogram-based global sensitivity analysis of Corey model for oil relative
permeability is reported in appendix B, section B1.4.
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4.1.2. CHIERICI MODEL
4.1.2.1. MULTIPLE START PERTURBATION METHOD SENSITIVITY ANALYSIS

r = 600,000 (number of elementary effects evaluations)

The number of evaluations r is increased with respect to the number used for the Corey model
sensitivity analysis, because the more complex a model is, the more unstable the calculated
sensitivity indices will be (the complexity of a model is related to the number of its input factors).
The only way to reduce the instability of the sensitivity indices curves is increasing the number of
model evaluations. Even if this number is significantly high, this sensitivity analysis method is very
computationally inexpensive, and its execution is remarkably quick (65s).
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Figure 25: multiple start perturbation method global sensitivity analysis of Chierici model for water relative
permeability

In this case the sensitivity to the input factors x;, x, and x5 varies widely across the considered
values of water saturation, while the sensitivity to the input factors x3 and x, is almost constant and
much lower in value. From the standard deviation of the elementary effect (SD;) plots it can be
observed that the sensitivity to the input factors x5 and x, strongly depends on the values assumed
by all the other input factors (especially for medium values of S,,,), while the sensitivity to the input
factors x5 and x, weakly depends on the other factors.
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From the multiple start perturbation method global sensitivity analysis applied to the Chierici model
for water relative permeability, the resulting ranking is:

Ranking according
to RS,i

X5: Sor (7591)

X2: Sui (54.35)

x1: k% (29.28)

x3: By (3.69)

X4: My (2.62)

This ranking shows that the variable input factors x5 (B,,) and x4 (M,,) have only a minor effect on
the output variability: their ranking indices are one order of magnitude smaller than the ranking
indices of the other input factors. It should be remembered that the multiple start perturbation
method, unlike all the other considered sensitivity analysis methods, quantifies the effect on the
model output variability only against extremely small variations of the variable input factors. For
this reason, this method is only meaningful for situations in which the variability of the input factors
is likely to be extremely small, and the ranking resulting from the multiple start perturbation method
is, in general, not in agreement with the rankings obtained by other techniques.

The detailed multiple start perturbation method global sensitivity analysis of Chierici model for oil
relative permeability is reported in appendix B, section B2.1.

4.1.2.2. STATISTICAL MOMENTS-BASED SENSITIVITY ANALYSIS

n = 50,000 (number of model evaluations for the AMA indices)

p =150 (number of parameters’ bins for the AMA indices)

n; = 1,000 (number of model evaluations for the Sobol total-order index)
pe =10 (number of parameters’ bins for the Sobol total-order index)

The number of Monte Carlo realizations n has been increased for Chierici model with respect to
the number used for Corey model, because the former is a more complex model and hence its output
is subject to stronger instability when its input factors are random variables. The instability of the
unconditional and conditional outputs gets further amplificated when computing the statistical
moments-based sensitivity indices, especially the ones based on higher order statistical moments.
A residual instability is still noticeable in the curves, but for the purpose of the essay n = 50,000
is a perfectly acceptable compromise between accuracy and required computation time. The
number of Monte Carlo realizations n, used for the computation of the Sobol total order indices
has instead been reduced with respect to the number used for Corey model to avoid an unacceptable
associated computation time (which increases exponentially with the number of the model input

56



factors). Despite of the reduction of n;, the plots of the Sobol! sensitivity indices keep showing
remarkable stability.

In the figure below the first four unconditional statistical moments of Chierici model output are
reported.

o Chierici water unconditional output statistics © Chierici water unconditional output statistics
——expected value ' — skewness|
035 ——variance 80 —— kurtosis

0.3
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Figure 26: statistical moments of the unconditional output of Chierici model for water relative permeability

0.7

The unconditional variance of the output k,,, increases for increasing S,, with asymptotical
behaviour, meaning that the spread around the mean, and hence the uncertainty, increases for
increasing S,, until S,,~0.6, and stays constant for higher values of water saturation. The
unconditional skewness of k,,, decreases for increasing S,,, indicating that for higher values of S,
the unconditional probability distribution of k,.,, becomes less asymmetrical (for high values of
water saturation Sk(k,,,)~0, meaning that it is almost perfectly symmetrical). The unconditional
kurtosis of k,,, decreases for increasing S, indicating that for higher values of S§,, the
unconditional probability distribution of k., becomes less tailed.
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Figure 27: statistical moments-based sensitivity analysis of Chierici model for water relative permeability

It is interesting to observe that the sensitivity index AMAE] is perfectly constant across the entire
range of water saturation values, while all the other sensitivity indices are affected by the considered

value of S,,.
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From the statistical moments-based global sensitivity analysis applied to Chierici model for water
relative permeability the resulting rankings are:

Ranking according to | Ranking accordingto | Ranking accordingto | Ranking according

RAMAE,i

RAMAV,i

RSobol first,i

to RSobol total,i

x3: By, (59.67)

x1: kK (62.56)

x3: Bw (16.90)

x1: Koy (40.77)

Xs: Sor (54.54)

x3: By (47.84)

xs: Sor (15.72)

Xs: Sor (3564)

X2: Swi (52.01)

Xs: Sor (46.50)

x1: kKo (14.15)

x3: By (33.53)

x1: kKo (41.37)

X2: Swi (43.05)

X2: SWi (978)

X2: Swi (30.71)

Xs: My, (30.08)

x4: My (31.48)

x4t My (7.23)

X4: My (29.50)

The rankings based on these four different indices are not in agreement with each other. In the case
of the sensitivity to the input factor x; they are even in direct opposition: x; is the most influential
factor according to Rypay and to Rsopor total> DUt it is nearly the least influential according to
Ramag- This result shows how, even within the application of a same sensitivity analysis theory,
the definition of the considered sensitivity index can affect the conclusions of the analysis. The
rankings obtained from the indices Rgopoi first a0d Rsopoi totar are not equivalent, meaning that in
this case the interactions between the variable input factors can affect their relative importance. In
particular, it can be observed that the relative importance of the input factor x; strongly increases
due to its interactions with the others, while the relative importance of the input factor x3 decreases
due to the interactions.

The lack of agreement between the four rankings makes the situation rather complex: the only
univocal statement which can be made is that the variable input factor x, (M,,) is the least
influential.

These rankings are not in agreement with the ranking obtained from the multiple start perturbation
method sensitivity analysis, due to the fact that the statistical moments based-sensitivity indices are
defined in order to study the variability induced by the input factors regardless of their variation
amplitude (unlike what happens for the multiple start perturbation method sensitivity index).

The detailed statistical moments-based global sensitivity analysis of Chierici model for oil relative
permeability is reported in appendix B, section B2.2.
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4.1.2.3. CUMULATIVE PROBABILITY DENSITY FUNCTION-BASED SENSITIVITY
ANALYSIS

n = 50,000 (number of model evaluations)

p =150 (number of parameters’ bins)
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Figure 28: cumulative distribution of Chierici model unconditional output for water relative permeability, S,,=0.5
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Figure 29: cumulative distribution-based sensitivity analysis of Chierici model for water relative permeability

In this case all the sensitivity indices are strongly dependant from S,,. There are significant
differences between the plots of the sensitivity indices Tpqy; and Tmegiani» meaning that the
interactions between the variable input factors can have a noticeable effect on their relative
importance (Tmeqiqn,; quantifies the most likely sensitivity of the output to the variable input factor
x;, while T4, ; quantifies the maximum possible sensitivity to x;, which verifies only for a precise
combination of input factors). It is interesting to note that the sensitivity indices’ curves relative to
the input factor x; are the only monotonic ones (the sensitivity to the input factor x; always
increases for increasing S,,,).

From the cumulative probability density function-based sensitivity analysis applied to the Chierici
relative permeability model for water relative permeability the resulting rankings are:
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Ranking according to Ranking according to
Rrmaxi Rrmedian,i
x3: Bw (46.69) Xs: Sor (16.48)
x1: K’ (37.60) xi: K (15.47)
Xs: Sor (35.09) X2: Swi (14.84)
x2: Swi (32.59) x3: Bw (13.19)
X4: Mw (31.81) x4: My (8.23)

The rankings resulting from the two indices are not in agreement with each other. Specifically, it
should be noticed that according to the ranking index R, 4, the input variable factor x5 is the most
relevant, while according to the ranking index Rryeqian the input factor x5 is the among the least
relevant factors. For a more conservative sensitivity analysis the ranking based on Rry,4y; should
be considered, even though the ranking based on Rrpeqian i 1s more likely to be close to reality due
to its definition.

The two rankings agree with each other and with the rankings obtained from the statistical
moments-based sensitivity analysis only on the fact that the variable input factor x, is the least

influential.

The detailed cumulative probability density function-based global sensitivity analysis of Chierici
model for oil relative permeability is reported in appendix B, section B2.3.
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4.1.2.4. VARIOGRAM-BASED SENSITIVITY ANALYSIS
n = 50,000 (number of model evaluations)
p =50 (number of parameters’ bins)
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Figure 30: normalized variograms of Chierci model conditional output for water relative permeability, S,,=0,5
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Figure 31: variogram-based sensitivity analysis of Chierici model for water relative permeability

By a qualitative observation of the sensitivity indices curves it can be clearly seen that the change
of scale of the input factors variations has a strong effect on the relative importance of the different
variable input factors. It should be remembered that the index IVARS;, quantifies the sensitivity of
the model output to small variations of the input variable factors, while the index IVARSs,
quantifies the sensitivity to large variations of the input factors. It is interesting to note that the
sensitivity curves relative to the input factors x; and x4 are the only monotonic ones.
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For the variogram-based global sensitivity analysis applied to the Chierici model for water relative
permeability the resulting rankings are:

Ranking according to Ranking according to
Rivarsio,i Rivarssoi
x3: By (0.0086) xs: Sor (0.99)
Xs: Sor (0.0051) x1: k% (0.78)
x4: My (0.0040) x4: My (0.63)
x1: k% (0.0033) X2: Swi (0.59)
x2: Swi (0.0030) x3: Bw (0.53)

In this case, the rankings obtained by the two indices give deeply different conclusions about the
relative importance of the model variable input factors. The most noticeable difference is that
according to the ranking index R,y 4rs10 the input factor x5 is the most influential, while according
to the ranking index Ry 4rss50 the same input factor x5 is the least influential. This shows again how
the importance of a same input factor is tightly connected to the considered scale of the input factor
variations. For this reason, the ranking based on the indices R;y4rs10,; 1S the most trustworthy in
situations in which the variations of the variable input factors are likely to be small (maximum 10%
of the input variability space), while the ranking based on the indices Rjy4gss0; 1S more suitable
for situations in which a wide variability of the input factors is expected.

The detailed variogram-based global sensitivity analysis of Chierici model for oil relative
permeability is reported in appendix B, section B2.4.
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4.1.3. LET MODEL

4.1.3.1. MULTIPLE START PERTURBATION METHOD SENSITIVITY ANALYSIS
r = 1,000,000 (number of elementary effects evaluations)

The number of model evaluations r has been increased with respect to the number used for Corey
and Chierici models, due to the higher complexity of the LET relative permeability model which
makes the sensitivity indices evaluations more unstable. The higher complexity of the model
follows its higher number of its input variable factors.
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Figure 32: multiple start perturbation method global sensitivity analysis of LET model for water relative permeability

From the sensitivity indices plots it results that across all the possible values of water saturation S,
the variable input factors x3 (Ly,), x4 (E,,) and x5 (T,,) have only a minor effect on the output
variability. It should be noted that the multiple start perturbation method, unlike all the other
considered sensitivity analysis methods, quantifies the effect on the output variability only against
extremely small variations of the variable input factors. From the plots of the standard deviation of
the elementary effects it can be observed that, especially for the input factors x, and x¢, the
interactions with the other input variable factors have an important role in the corresponding
sensitivity indices.
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From the multiple start perturbation method global sensitivity analysis applied to the LET model
for water relative permeability, the resulting ranking is:

Ranking according
to RS,i

Xe: Sor (63.78)

x2: Swi (50.30)

x1: k% (34.32)

xs: Ty (3.67)

x4: Ew (3.12)

x3: Lw (2.84)

The ranking confirms that, according to this sensitivity analysis method, the variable input factors
X3, x4 and x5 have only a marginal effect on the output variability.

The detailed multiple start perturbation method global sensitivity analysis of LET model for oil
relative permeability is reported in appendix B, section B3.1.

4.1.3.2. STATISTICAL MOMENTS-BASED SENSITIVITY ANALYSIS

n = 70,000 (number of model evaluations for the AMA indices)

p =150 (number of parameters’ bins for the AMA indices)

n; = 1,000 (number of model evaluations for the Sobol total-order index)

pe =6 (number of parameters’ bins for the Sobol total-order index)

The number of Monte Carlo realizations n has been increased with respect to the number used for
Corey and Chierici relative permeability models, due to the higher complexity of the LET model,
which makes the sensitivity indices evaluations more unstable. The value of the discretization
parameter p; used for the evaluation of the Sobol total order indices has instead been reduced with
respect to the value used for the simpler models, due to its strong impact on the required

computation time (further reducing the value of n; would affect the stability of the Sobol! indices
plots).
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Figure 33: statistical moment of the unconditional output of LET model for water relative permeability

The unconditional variance of the output k., increases for increasing S,,, meaning that the spread
around the mean, and hence the uncertainty, increases for increasing S,,. The unconditional
skewness of k,, decreases for increasing S,,, indicating that for higher values of S,, the
unconditional probability distribution of k,., becomes less asymmetrical. The unconditional
kurtosis of k,,, decreases for increasing S, indicating that for higher values of S§,, the
unconditional probability distribution of k., becomes less tailed.
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Figure 34: statistical moments-based global sensitivity analysis of LET model for water relative permeability

Observing the plots of the sensitivity indices AMAE; it is interesting to observe that the curves
relative to the input factors x5, x3 and x, strongly decrease for increasing water saturation S,,,, while
the curve relative to the input factors x4 is perfectly horizontal. Except for the index AMAE,, all
the represented sensitivity indices result to be dependant from S,,,.
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From the statistical moments-based global sensitivity analysis applied to LET model for water
relative permeability the resulting rankings are:

Ranking according to | Ranking according to | Ranking according to | Ranking according

Ramak,i Ramav,i Rsobot first,i to Rsobol totali
x3: Ly (53.22) x1: kK% (61.38) x3: Ly (18.13) x1: k' (46.45)
xs: Ty (44.72) xs: Ty (42.49) xs: Tw (16.39) x3: Ly (29.21)
x1: Ko (41.33) x3: Ly (34.13) x1: kKo (16.17) xs: Ty (24.72)
X2 Swi (33.44) X2: Swi (28.42) Xs: Sor (8.35) X2: Swi (13.69)
X6: Sor (31.32) X6: Sor (25.82) x4: Ew (7.93) X6 Sor (12.31)
x4: Ew (26.44) x4: Ew (22.59) X2: Swi (6.55) x4: Ew (10.52)

The rankings based on these four different indices are not in agreement with each other. This result
shows again how, even within the application of a same sensitivity analysis theory, the definition
of the considered sensitivity index can affect the conclusions of the analysis (in particular, when
considering complex models, like the LET). The differences between the ranking based on the index
Rsobot rirst,i and the ranking based on the index Rgopo; totar,i Show that in this case the interactions
between the variable input factors can affect their relative importance. The lack of agreement
between the four rankings makes the situation rather complex: the only univocal statement which
can be made is that the variable input factor x, (E,,) is the least influential.

These rankings are not in agreement with the ranking obtained by the multiple start perturbation
method sensitivity analysis, due to the fact that the statistical moments based-sensitivity indices are
defined in order to study the variability induced by the input factors, regardless of their variation
amplitude (unlike what happens for the multiple start perturbation method sensitivity index).

The detailed statistical moments-based global sensitivity analysis of LET model for oil relative
permeability is reported in appendix B, section B3.2.
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4.1.3.3. CUMULATIVE PROBABILITY DENSITY FUNCTION-BASED SENSITIVITY
ANALYSIS

n =70,000 (number of model evaluations)

p =150 (number of parameters’ bins)
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Figure 35: cumulative distribution of LET model unconditional output for water relative permeability, S,,=0.5
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Figure 36: cumulative distribution function-based global sensitivity analysis of LET model for water relative
permeability

There are noticeable differences between the plots of the sensitivity indices Ty,qx; and Tregian,is
indicating that the interactions between the variable input factors can give a significant contribution
to their relative importance. It is interesting to observe that the T,,, plots relative to the input
factors x3 and x5 are monotonic, while the Ty, cqiqn plots relative to the same input factors reach a
global maximum. Both the sensitivity indices relative to the input factor x; increase for increasing
value of S,,.

From the cumulative distribution function-based sensitivity analysis applied to the LET model for
water relative permeability the resulting rankings are:
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Ranking according to

R Tmax,i

Ranking according to

R Tmedian,i

x3: Ly (46.75)

x3: Ly (22.65)

x4: Ew (46.22)

x1: Koy (17.65)

xi: K (44.11)

xs: Tw (15.56)

xs: Ty (37.70)

X2: Swi (12.32)

X2: Sui (26.10)

Xe: Sor (12.03)

Xe: Sor (24.99)

x4: Ey (6.44)

In this case, the rankings resulting from the two indices are not in agreement with each other.
Specifically, it should be noticed that according to the ranking index Ry, 4, the input variable factor
x4 is the second most relevant, while according to the ranking index Rrpeqiqn the input factor x4
is the least relevant. The two rankings agree on the fact that the input factor x5 is the most relevant.

For a more conservative sensitivity analysis the ranking based on Rrp,q,; should be considered,
even though the ranking based on Rrmeqian ; 1s more likely to be close to reality due to its definition.

The detailed cumulative probability density function-based global sensitivity analysis of LET

model for oil relative permeability is reported in appendix B, section B3.3.
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4.1.3.4. VARIOGRAM-BASED SENSITIVITY ANALYSIS
n =70,000 (number of model evaluations)
p =50 (number of parameters’ bins)
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Figure 37: normalized variograms of LET model conditional output for water relative permeability, S,=0.5
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Figure 38: variogram-based global sensitivity analysis of LET model for water relative permeability

From the sensitivity indices plots it can be observed that the change of scale of the input factors
variations has a clear effect on the relative importance of the different variable input factors. It
should be remembered that the index IVARS,, quantifies the sensitivity of the model output to
small variations of the variable input factors, while the index IVARSs5, quantifies the sensitivity to
large variations of the variable input factors.
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From the variogram-based global sensitivity analysis applied to the LET model for water relative
permeability the resulting rankings are:

Ranking according to Ranking according to
Rivarsio,i Rivarssoi
x4: Ey (0.0126) xs: Tw (1.04)
xs: Ty (0.0050) x1: kK% (0.89)
x3: Ly (0.0043) x3: Ly (0.75)
x1: k% (0.0038) X6: Sor (0.62)
X6 Sor (0.0031) x2: Swi (0.40)
x2: Swi (0.0018) x4: Ew (0.38)

In this case the rankings obtained by the two indices give highly different conclusions about the
relative importance of the model variable input factors. The most noticeable difference is that
according to the ranking index R,y 4rs10 the input factor x, is the most influential, while according
to the ranking index Ry 4rss50 the same input factor x4 is the least influential. This shows again how
the importance of an input factor is tightly connected to the considered scale of the input factor
variations. For this reason, the ranking based on the indices Rjy 4gs10; 1S the most trustworthy for
situations in which the variations of the input factors are likely to be small (up to 10% of the input
variability space), while the ranking based on the indices Rjyagsso; 1S more suitable for situations
in which a wide variability of the input factors is expected.

The detailed variogram-based global sensitivity analysis of LET model for oil relative permeability
is reported in appendix B, section B3.4.
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4.1.4. DISCUSSION
4.1.4.1. COREY MODEL

In the table below the rankings obtained from the different global sensitivity analysis techniques
when applied to Corey relative permeability model are summarized. A colour has been assigned to
each variable input factor in order to help visualizing eventual concordances and discordances
between the rankings obtained from different sensitivity analysis methods.

Rankings of the input factors of Corey model for water relative permeability
multiple start stat.moments-based cumul.distrib.-based variogram-based

Ranking Ranking Ranking Ranking Ranking Ranking Ranking Ranking Ranking
according to | according to | according to | according to | according to | accordingto | accordingto | accordingto [according to

Rs,; R umar; R ana,i R soot firsti R sopot toral R tnax,i R Tinedian,i R ivars 10 R vars 50

Sor (42.86) | Nw (79.29) | Nw (69.74) | Nw (63.78) | Nw (63.61) | Nw (63.97) | Nw (33.74) | Nw (0.011) | Nw(1.13)
Swi (28.11) | kOrw (41.32) | kOrw (60.67) | kOrw (17.39) | kOrw (45.00) | kOrw (43.97) | kOrw (14.27) | kOrw (0.0020) | kOrw (0.47)

kOrw (26.22) | Sor (20.96) | Sor (14.18) Sor (6.46) | Sor (7.92) | Sor (26.76) | Sor (12.08) | Sor (0.0010) | Sor (0.16)
Nw (8.14) | Swi(19.77) | Swi(13.33) | Swi(3.12) Swi (4.32) | Swi (24.68) | Swi (11.27) |Swi (0.00030) |Swi (0.064)

In this case, the different sensitivity analysis techniques show remarkable concordance, thanks to
the numerical simplicity of Corey model. The only sensitivity analysis method which produces an
outlier result is the multiple start perturbation method. This difference follows the fact that the
multiple start perturbation method is the only “short range” sensitivity analysis technique: it studies
the sensitivity of the model output only against extremely small variations of the variable input
factors. All the other sensitivity analysis methods study the sensitivity of the output to the variable
input factors regardless of their variations’ amplitude (except for the variogram-based analysis,
which anyway considers also relatively wide variations of the input factors).

The above-presented results indicate that the main criteria for choosing the most appropriate
sensitivity analysis for the Corey relative permeability model is the likely amplitude of the input
factors variations. In cases where the input factors variations are expected to be extremely narrow,
the most suitable sensitivity analysis method is the multiple start perturbation method; for, in all
the other cases, any different sensitivity analysis technique produces the same results.

It should be remembered that the global sensitivity analysis is a tool meant for the a priori study of
a model, hence it must be applied before any model calibration or experimental measurement of the
input factors is available. If the input factors have already been calibrated or measured, the
indiscriminate application of a global sensitivity analysis technique could lead to deceiving
conclusions.
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4.1.4.2. CHIERICI MODEL

In the tables below the rankings obtained from the different sensitivity analysis techniques when
applied to the Chierici relative permeability model are summarized.

Rankings of the input factors of Chierici model for water relative permeability
multiple start stat. moments-based cumul.distrib.-based variogram-based

Ranking Ranking Ranking Ranking Ranking Ranking Ranking Ranking Ranking
according to | according to | according to | accordingto | according to | accordingto | accordingto | accordingto |according to
Rg; R umakgi R gmavi R obot firsti R Sobol total,i R fmax.i R Tnedian,i Rivars 10 R iyarssoi

Sor (75.91) | Bw (59.67) | kOrw (62.56) | Bw (16.90) | kOrw (40.77) | Bw (46.69) | Sor (16.48) | Bw (0.0086) | Sor (0.99)
Swi (54.35) | Sor (54.54) | Bw (47.84) | Sor (15.72) | Sor (35.64) |kOrw (37.60) | kOrw (15.47) | Sor (0.0051) |kOrw (0.78)
kOrw (29.28) | Swi (52.01) | Sor (46.50) | kOrw (14.15) | Bw (33.53) | Sor (35.09) | Swi (14.84) | Mw (0.0040) | Mw (0.63)

Bw (3.69) | kOrw (41.37) | Swi (43.05) | Swi(9.78) | Swi(30.71) | Swi(32.59) | Bw (13.19) | kOrw (0.0033) | Swi (0.59)

Mw (2.62) | Mw (30.08) | Mw (31.48) | Mw (7.23) | Mw (29.50) | Mw (31.81) | Mw (8.23) Swi (0.0030) | Bw (0.53)

In this case the discordances between the results from different sensitivity analysis techniques are
dramatic. Even within the application of a same sensitivity analysis theory, different sensitivity
indices return different rankings of the input factors.

The above-presented results show that when performing a global sensitivity analysis to the Chierici
relative permeability model, the specific method and ranking index should be carefully selected

case-by-case according to the ultimate goal of the analysis.

4.1.4.3. LET MODEL

In the tables below the rankings obtained from the different sensitivity analysis techniques when
applied to the LET relative permeability model are summarized.

Rankings of the input factors of LET model for water relative permeability
multiple start stat.moments-based cumul.distrib.-based variogram-based

Ranking Ranking Ranking Ranking Ranking Ranking Ranking Ranking Ranking
according to | according to | according to | according to | according to | according to | accordingto | accordingto [according to

Rs,i R amak,i R amav,i R sobo firss i R sobot total i R tnax,i R finedian,i Rvars 10 R vars so.

Sor (63.78) | Lw (53.22) |kOrw (61.38) | Lw (18.13) |kOrw (46.45) | Lw (46.75) | Lw (22.65) | Ew (0.0126) | Tw (1.04)
Swi (50.30) | Tw (44.72) | Tw (42.49) | Tw (16.39) | Lw (29.21) | Ew (46.22) |kOrw (17.65) | Tw (0.0050) | kOrw (0.89)

kOrw (34.32) | kOrw (41.33) | Lw (34.13) | kOrw (16.17) | Tw (24.72) | kOrw (44.11) | Tw (15.56) | Lw (0.0043) | Lw (0.75)

Tw (3.67) | Swi(33.44) | Swi(28.42) | Sor (8.35) | Swi(13.69) | Tw (37.70) | Swi(12.32) | kOrw (0.0038) | Sor (0.62)

Ew (3.12) | Sor (31.32) | Sor (25.82) | Ew (7.93) | Sor (12.31) | Swi(26.10) | Sor (12.03) | Sor (0.0031) | Swi (0.40)

Lw (2.84) Ew (26.44) | Ew (22.59) Swi (6.55) | Ew (10.52) | Sor (24.99) | Ew (6.44) Swi (0.0018) | Ew (0.38)

In this case, the discordances between the results from different sensitivity analysis techniques are
dramatic. Even within the application of a same sensitivity analysis theory, different sensitivity
indices return different rankings of the input factors.

The above-presented results show that when performing a global sensitivity analysis to the LET

relative permeability model, the specific method and ranking index should be carefully selected
case-by-case according to the ultimate goal of the analysis.
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4.2. MULTI-MODEL UNINFORMED SCENARIO

In this section the different uninformed multi-model global sensitivity analysis techniques
presented in chapter 2.2. are applied to the three relative permeability models, according to the
stated assumptions and methodologies. The multi-model sensitivity indices are computed for 100
different values of water saturation between S, ;in and Sy, max. The focus is set mainly on the
ranking of the variable input factors on the base of their relative contribution to the output variability
in an unconstrained multi-model context.

In the following, the different considered relative permeability models are denoted as M/, with:

e M?!: Corey relative permeability model.
e M?2: Chierici relative permeability model.
e  M3: LET relative permeability model.

4.2.1. MULTI-MODEL, STATISTICAL MOMENTS-BASED SENSITIVITY
ANALYSIS

It should be remembered that different relative permeability models have a different number of
variable input factors, so:

j=1—1i=1,234
j=2—1i=1,2345

j=3—1=12345,6

n = 200,000 (number of model evaluations)
p =150 (number of parameters’ bins)

The number of Monte Carlo realization n has been set to a very high value because the sensitivity
indices’ values result to be quite unstable in this multi-model context.

In the figure below the first four single-model and multi-model unconditional statistical moments
are reported for each of the three relative permeability models for water relative permeability.
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Figure 39: single-model and multi-model unconditional statistical moments of the three models for water relative
permeability

The single-model unconditional statistics plots show the differences between the unconditional
realizations of the three relative permeability models. From the plots of the unconditional variance,
it can be observed that, for an unconditional scenario, the model with the lowest mean associated
variance, and hence the lowest mean output uncertainty, is the Corey model followed by the Chierici
model and then by the LET model. Apparently, the more complex a model (the higher the number
of the model input factors), the greater the associated uncertainty. It should be remembered that the
multi-model statistical moments are not the simple arithmetic mean of the single-model statistical
moments (see chapter 2.2.1. for details).

In the figures below the four multi-model statistical moments-based sensitivity indices are reported
for each variable input factor of each relative permeability model. The model-choice contributions
to the sensitivity indices are plotted separately (dashed line) in order to allocate the contributions
to sensitivity to the different sources of uncertainty (input factors uncertainty and model
uncertainty).
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The single-model statistical moments-based sensitivity indices are plotted too, with the purpose of

visualizing the effect of the multi-model approach on the relative importance of the variable input
factors:
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Figure 40: multi-model and single-model AMAE sensitivity indices for water relative permeability
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Figure 41: multi-model and single-model AMAYV sensitivity indices for water relative permeability

78



multi-m. AMASk of Corey input factors for water

~---model contribution

multi-model AMASK i

multi-m. AMASKk of Chierici input factors for water

—AMASK 1
——AMASK 2

AMASK 3
—AMASK 4
——AMASK 5
~~~~model contribution

° -
o - N h B @

multi-model AMASK i

07

multi-m. AMASKk of LET input factors for water

——AMASKk 1
oz ——AMASk 2
AMASk 3
ae —AMASk 4
——AMASk 5
——AMASk 6
~-=-model contribution |

multi-model AMASK i

single-m. AMASk of Corey input factors for water

|—AMASK 1
——AMASk 2
|——AMASK 3
—AMASKk 4

3 ° °
3 S >

single-model AMASK i

4s;ingle-m. AMASK of Chierici model input factors for water

|—AMASK 1

asf |——AMASkK 2
AMASK 3
|—AMASk 4
|—AMASK 5

w

o

single-model AMASK i

single-m. AMASk of LET input factors for water

|—AMASK 1
|—AMASK 2
|——AMASK 3
|— AMASK 4
|—AMASK 5
|——AMASK 6

- »
£ o ~ o

single-model AMASK i

°
o

Figure 42: multi-model and single-model AMASk sensitivity indices for water relative permeability
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Figure 43: multi-model and single-model AMAK sensitivity indices for water relative permeability

From the sensitivity indices plots it can be observed that for some values of S, the model-choice
contribution to sensitivity is equal to 0: these values of S, correspond to the points for which the
single-model unconditional statistical moment of the model taken into account is equal to the multi-
model unconditional statistical moment (as it can be observed in figure 39).

The ranking of the 15 variable input factors xij (4 belonging to Corey model, 5 to Chierici model
and 6 to LET model) is determined calculating and sorting the two ranking indices:

Sw,max j
Ryna! = Zsumin AMAE] (4.10)

Sw,max j
Rymav = Zsumen AMAV] (4.11)
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From the multi-model statistical moments-based sensitivity analysis of the three water relative
permeability models the resulting rankings are shown in the table below. Each variable input factor
is associated with a shade of the colour indicating the belonging model of the factor itself, for the
sake of an easy visual inspection.

Input factors belonging to Corey model

Input factors belonging to Chierici model

Input factors belonging to LET model

Ranking according to
R

AMAE]

Ranking according to
R

AMAv/

x1: N1 (37.13)

x3: 13, (26.26)

x1: N1 (30.06)

x3: 13, (23.18)

x3: 52, (20.68)

x2: B2 (20.51) x3: 53, (20.76)

x3:53, (18.68) x3: 52, (18.67)

x2: M2 (16.71)

x3: E3 (17.93)

x2: B2 (17.58)

xi: Sk (15.68) x3: M2 (17.55)

x3: E3 (15.38) xi: Sk (14.96)

x3: Sk, (14.99) x3: S, (14.36)

The rankings obtained from these two multi-model indices are not in agreement with each other.
This shows that in the multi-model context the effect of the variable input factors changes when
considering different statistical moments of the output. Hence, the most appropriate ranking index
must be chosen case-by-case according to the output’s statistical moment of interest. The only
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aspect on which the two rankings agree is that the variable input factor xi (4" input factor
belonging to Corey model) is the less relevant in this multi-model scenario.

The detailed multi-model statistical moments-based global sensitivity analysis of the relative
permeability models model for oil-relative permeability is reported in appendix C, section C1.

4.2.2. MULTI-MODEL, VARIANCE-BASED SENSITIVITY ANALYSIS

n = 100,000 (number of model evaluations for the first-order index)
p =50 (number of parameters’ bins for the first-order index)
n, = 1,000 (number of model evaluations for the total-order index)
p: =10 (number of parameters’ bins for the total-order index)

Before considering the sensitivity indices, it is important to understand that in this multi-model
approach the models lose their identity as singular entities: the three relative permeability models
are considered acting as a single more complex model. It follows that if a certain input factor
appears in more than one model, it is anyway considered as one single input variable factor (as
opposed to what happens for the multi-model statistical moments-based approach). For this reason,
the variable input factors belonging to this new more complex “hybrid model” must be redefined.

When considering water relative permeability, the variable input factors of the models are:

e x;: k%, end point of the water relative permeability curve.
o x5:8,i, irreducible water saturation.

® x3: N, parameter belonging to Corey model for water.

® x4 B, parameter belonging to Chierici model for water.

e x5: M,,, parameter belonging to Chierici model for water.
e x4 L, parameter belonging to LET model for water.

e x,: E,, parameter belonging to LET model for water.

e xg: T,, parameter belonging to LET model for water.

®  x4:S,,, residual oil saturation.

The input variability spaces of all these input variable factors have been defined in chapter 3.
It follows that, in this context:

e Corey model depends only on the input factors x4, x5, X3, Xg.
e  Chierici model depends only on the input factors x;, x5, x4, X5, Xg.
e LET model depends only on the input factors x4, X, X¢, X7, Xg, Xo.
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In the figures below the multi-model first order and total order variance-based sensitivity indices
are reported for each of the nine variable input factors. The single-model first order and total order
Sobol (variance-based) sensitivity indices are also reported for the sake of comparison.
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Figure 44: multi-model and single-model first order variance-based sensitivity indices for water relative permeability
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total order sensitivity indices for water, x1
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Figure 45: multi-model and single-model total order variance-based sensitivity indices for water relative permeability
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The ranking of the 9 variable input factors x; is determined calculating and sorting the two ranking
indices:

Sw,max Sflmultimodel (4- 12)

Rsfimultimodel - st,min

Sw,max Stmultimodel (413)

RSthultimodel = Z i

Sw,min
For the multi-model variance-based sensitivity analysis of the three water relative permeability
models the resulting rankings are shown in the table below. Each variable input factor is associated
with a colour, to grant an easy visual inspection.

Ranking according to | Ranking according to
R fmultimodel R gultimodel
x3: Ny, (18.27) X1: ko (43.67)
X1: ko (16.16) x3: N, (18.12)
Xg: Sor (10.43) X9t Sor (17.11)
Xe: Ly, (8.00) X2t Sy (14.65)
Xg: Ly, (12.92)

xy:S,,; (6.78)

X4: By, (4.09) X4 By, (7.22)
x7: Ey, (3.48) x5: My, (7.08)
Xs5: My, (2.60) x7: E,, (4.62)

The rankings obtained by these two multi-model variance-based indices are not in agreement at all
with each other. It should be remembered that the sensitivity index S fmimodel accounts only for
the first order effect of the input factors on the output variability, while the sensitivity index
sgmultimodel ¢ngiders also the effect of the interactions between different variable input factors.
In this case, the rankings show that in this multi-model context the interactions between the variable

input factors play a significant role and can change the relative importance of the input factors.

The detailed multi-model variance-based global sensitivity analysis of the relative permeability
models’ model for oil relative permeability is reported in appendix C, section C2.
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4.2.3. DISCUSSION

In the table below the rankings obtained from the different multi-model sensitivity analysis
techniques, when applied to the three water relative permeability models, are summarized:

Multi-model statistical moments-based
sensitivity analysis of the water relative
permeability models

Multi-model variance-based sensitivity
analysis of the water relative permeability
models

Ranking according
to
R

AMAE]

Ranking according
to

R

amav/

x1: N1 (37.13)

x3: 13, (26.26)

x2: 52, (20.68)

x1: N1 (30.06)

113, (23.18)

x2: B2 (20.51)

x3:53; (18.68)

x2: M2 (16.71)

x3: 53, (20.76)

x2: 52, (18.67)

Ranking according to
RSfmultimodel

i

Ranking according
to
RStimultimodel

x3: N, (18.27)

X1 ko (43.67)

X1 ko (16.16)

x3:N,, (18.12)

Xo: Sor (10.43)

Xo: Sor (17.11)

xg: Ly, (8.00)

Xy Swi (678)

Xy Swi (1465)

Xe: Lyy (12.92)

x4: B, (4.09) x4: B, (7.22)
x,:E, (3.48) xs: M, (7.08)
xs: M, (2.66) x,: E, (4.62)

x2: B2 (17.58)

x3: Sk (15.68)

x2: M2 (17.55)

x3: E3 (15.38)

x3: Sk (14.96)

x3: S (14.99)

x3: S (14.36)

It can be observed that, even within the application of the same multi-model sensitivity analysis
technique, there is no accordance between the rankings obtained from different sensitivity indices.

The comparison between the rankings obtained from the two multi-model sensitivity analysis
techniques does not make any theoretical sense, because of the different definition of the input
variable factors (see chapter 2 for complete details). For this reason, the most appropriate multi-
model sensitivity analysis technique (and the corresponding ranking index/indices) must be chosen
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case-by-case according to the output distribution features of interest and to the ultimate goal of the
analysis. In general, as a first approach, the following guidelines can be taken into account:

e If a complete characterization of the output probability density function (through many
statistical moments) is required, the statistical moments-based analysis should be chosen. For
the quantification of sensitivity through the output variance only both the techniques are valid
(but not equivalent!).

o Ifthe models’ input factors are meant to be calibrated model-by-model conserving the different
models’ identity (for example, by fitting each model to a set of measurements), the multi-model
statistical moments-based sensitivity analysis should be adopted. If the models’ input factors
are meant to be calibrated according to their physical meaning only (for example, by
experimentally measuring the factors or by inverse modelling in a multi-model context), the
multi-model variance-based sensitivity analysis should be adopted.

Be aware: these few considerations are not exhaustive of all the possible cases and scenarios! So,
for any specific application the theories, assumptions and mathematical workflows at the base of
these two multi-model sensitivity analysis techniques should be carefully consulted and taken into
account.
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4.3. MULTI-MODEL INFORMED SCENARIO

In this section the multi-model informed global sensitivity analysis techniques described in chapter
2.3. are applied to the two different samples described in the research article “Interpretation of two-
phase relative permeability curves through multiple formulations and model quality criteria”
(Moghadasi, Guadagnini, Inzoli, & Bartosek, 2015). In this article, model identification criteria are
employed to rank and evaluate a set of alternative models (Corey model, Chierici model, LET
model) in the context of the interpretation of laboratory scale experiments yielding two-phase
relative permeability curves. High quality two-phase relative permeability estimates are employed,
which result from steady-state imbibition experiments on two diverse porous media: a quartz sand
pack and a Berea sandstone core.
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a Measured (K,,)
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== 100 % Water 9 S,)
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‘Water Pump

Figure 46: (a) sketch of experimental set-up; (b) steady state imbibition process

Model uncertainty is quantified through the model weights w/ which are rendered by model
posterior probabilities conditional on the experimental observations. These weights are then
employed to rank the models according to their relative skill to interpret the observations and obtain
model averaged results which allow accommodating uncertainties arising from differences amongst
model structures within a unified theoretical framework.
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Figure 47: posterior probabilities associated with the models in the considered scenarios for water relative
permeability
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Figure 48: posterior probabilities associated with the models in the considered scenarios for oil relative permeability

The models input factors which are physical properties of the porous medium (k%,, Si, Sor) are
experimentally measured multiple times, obtaining their estimated mean value and standard
deviation: the uncertainty in the value of these input factors is a direct consequence of the
measurement errors. The input factors which are model parameters (N, By, My, Ly, Eq, Ty) are
estimated within a Maximum Likelihood framework, and for each of these variable input factors
the lower and upper limits identifying the 95% confidence limits are provided.
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Figure 49: Estimated Corey model input factors values for (a) k., and (b) k., associated with the considered datasets.
Intervals associated with the upper (U) and lower (L) limits identifying the 95% uncertainty bounds around the
estimate are also depicted
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Figure 50: Estimated Chierici model input factors values for (a) k., and (b) k., associated with the considered datasets
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Figure 51: Estimated LET model input factors values for (a) k., and (b) k., associated with the considered datasets

The results obtained in the previously mentioned article highlight that in most cases the complexity
of the problem appears to favour a model with a high number of uncertain parameters over a simpler
model structure. Posterior probabilities reveal that in several cases, most notably for the assessment
of oil relative permeabilities, the weights associated with the simplest models is not negligible. This
suggests that, in these cases, uncertainty quantification might benefit from a multi-model analysis,
including both low and high-complexity models. In most of the analysed cases, the model averaging
leads to interpretations of the available data, which are characterized by a higher degree of fidelity
than that provided by the most skillful model.
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4.3.1. “SAND PACK” SAMPLE

4.3.1.1. MULTI-MODEL, INFORMED
SENSITIVITY ANALYSIS

POSTERIOR MODELS PROBABILITIES

e w!=0.05

e w?2=03

e w!=0.65

VARIABLE INPUT FACTORS

STATISTICAL

The models variable input factors are expressed in the form:

J_ o v oad
xi - (xi,min , xi,max)

MOMENTS-BASED

Where xij represents the it variable input factor of the j** model, and the values in the brackets

define its 95% confidence limits.

e xl: k%, = (0.405; 0.461)
e x1:5,;=(0.166; 0.214)
e x1:N, =(49; 6.8)

e x}:S,-=(0.1;0.18)

o x%: k%, = (0.405; 0.461)
e x%:5,;=(0.166; 0.214)
e x%:B, =(3.03; 4.5)
e x2: M, =(0.62;0.7)
e x2:5,.=(0.1;0.18)

o x3: k%, = (0.405; 0.461)
e x3:5,;=(0.166; 0.214)
e x3:L,=(271; 5.32)
e x3:E,=(0.73; 3.28)
e x3:T, =(0.27; 0.55)
e x3:5,,=(0.1;0.18)

Unacceptable combinations of input variable factors could be generated from the provided data,
due to the fact that the Gaussian probability distribution function is not inferiorly or superiorly
limited. This would lead to non-sensical model evaluations (like imaginary or negative relative
permeabilities) during the Monte Carlo simulations of the models, which eventually cause lower

accuracy and greater instability in the results.

For this reason, the input variable factors probability density functions are truncated to guarantee
the respect of the following mathematical constraints:

 Ng By MyLy Eg,Ty >0
e 0<Kk2<1
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hd Swi < Sw
e Syr=(1-5y)

To avoid excessive instability in the statistical moments’ evaluations (and hence in the sensitivity
indices’ evaluations) it is also necessary to limit the range of water saturations S,, for which the
models’ output is evaluated: water relative permeability k,.,, is evaluated for 0.4 < S, < 0.82.

n = 200,000 (number of model evaluations)

p =25 (number of parameters’ bins)

In the figure below the unconditional single-model and multi-model statistical moments are
reported for water relative permeability for the “sand pack” sample:

- unconditional output statistics 510 unconditional output statistics
——Corey model ——Corey model
——Chierici model ——Chierici model
= LET model 25 LET model
=-=-multi-model H =-=-multi-model
3 g L
025} -
— o
o [}
c o
@ o2 8
E &
E '
O o1t g
= kel
el =
c
g 5
0.1
5 g
=}
0.05 -
d ) .
0. 085 0.85
»s unconditional output statistics 1400 unconditional output statistics
——Corey model ——Corey model
| —— Chierici model —— Chierici model
LET model b LET model
g 2 --=-multi-model z | --=-multi-model
5 £ 1000
P 5]
@ | 7}
T i. 2
S £ 80
(7] v, =5 1
B i = ]
2 I'n L
] [} C 600l
g 10 W _g ‘|‘ s
= \ 35 H
T i, c 7
< A o H
Q P Q 4o0r \
8 Vv »-\ 3 c \
3 s} & i S ‘\‘
e, i
“-—.\_~- 200 V‘\“~
~~~~~~~ 2
:\ ______________ - N
004 045 05 055 06 065 0.7 075 08 085 00.4 0.45 0.5 055 06 065 0.7 0.75 08 0.85
Sw Sw

Figure 52: single-model and multi-model unconditional output statistics of the relative permeability models informed to
the “sand pack” sample for water relative permeability

Despite of the measures adopted to prevent instability in the results, it can be observed that the

skewness and kurtosis of the unconditional outputs are still strongly unstable, especially for lower
values of water saturation S,,,.

92



In the figures below the informed multi-model statistical moments-based sensitivity indices for the
“sand pack” sample are reported for water relative permeability. The single-model statistical

moments-based indices are reported too, in the attempt to highlight the differences between the
multi-model and the single-model approach:
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Figure 53: multi-model and single-model informed AMAE sensitivity indices of the “sand pack” sample for water
relative permeability
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Figure 54: multi-model and single-model informed AMAYV sensitivity indices of the “sand pack” sample for water
relative permeability
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Figure 55: multi-model and single-model informed AMASk sensitivity indices of the “sand pack” sample for water
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Figure 56: multi-model and single-model informed AMAK sensitivity indices of the “sand pack” sample for water
relative permeability
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The ranking of the 15 variable input factors xij (4 belonging to Corey model, 5 to Chierici model
and 6 to LET model) is determined calculating and sorting the two ranking indices:

Sw,max j
Rynias! = Zsumin AMAE] (4.14)

Sw,max j
RAMAVL.j = X Swmin AMAV] (4.15)
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For the multi-model statistical moments-based informed global sensitivity analysis of the “sand
pack” sample for water relative permeability the resulting rankings are shown in the following table.
Each variable input factor is associated with a shade of the colour indicating the belonging model
of the factor itself, for the sake of an easy visual inspection:

Input factors belonging to Corey model

Input factors belonging to Chierici model

Input factors belonging to LET model

Ranking according to | Ranking according to
RAMAEL.j RAMAVij
x3: E3 (30.29) x3: E3 (61.66)
x3: L3, (26.46) x3: 13, (32.66)

: B2 (25.72)

: B2 (12.65)

3.52; (11.91)

: M2 (22.82)

:52.(22.72)

:52.(8.79)

x3: M2 (8.50) x3:83, (15.62)
x3: Sk (2.16) x3:52,(4.66)
x3: N} (2.09) x3: N (3.93)

: St (1.65)

x3: Sk (3.62)
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4.3.1.2. MULTI-MODEL, INFORMED VARIANCE-BASED SENSITIVITY ANALYSIS

POSTERIOR MODELS PROBABILITIES

e w!=0.05

e w?2=03

e w!=0.65

VARIABLE INPUT FACTORS

The models variable input factors are expressed in the form:
X = (xi,min; xi,max)
The values in the brackets define its 95% confidence limits.

e x.: k%, =(0.405; 0.461)
e x,:5,; =(0.166; 0.214)
e x3:N, =(49; 6.8)

e x4 B, =(3.03; 4.5)

e x5:M, =(0.62; 0.7)

e x4 L, =1(271;532)

e x;:E, =(0.73; 3.28)

e xg:T, =(0.27; 0.55)

* x9:5, =(0.1; 0.18)

Water relative permeability k., is evaluated for 0.4 < S, < 0.82.

n = 200,000 (number of model evaluations for the first-order index)

p =25 (number of parameters’ bins for the first-order index)
ne = 700 (number of model evaluations for the total-order index)
p.=6 (number of parameters’ bins for the total-order index)
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In the figures below the single-model and multi-model first order and total order variance-based
informed sensitivity indices of the “sand pack™ sample for water relative permeability are reported:
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Figure 57: first order single-model and multi-model informed variance-based sensitivity indices of the “sand pack”
sample for water relative permeability
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total order sensitivity indices for water, x1
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Figure 58: total order single-model and multi-model informed variance-based sensitivity indices of the “sand pack”
sample for water relative permeability

The ranking of the nine variable input factors x; is determined calculating the two ranking indices:

S Itimodel
R . — w,max mu
Sfimultlmodel st,min fl
S Itimodel
R . — w,max t‘mu
Stlmultlmodel st,min i

(4.16)

(4.17)
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For the informed variance-based global sensitivity analysis of the “sand pack” sample for water
relative permeability the resulting rankings are shown in the following table. Each variable input
factor is associated with a colour, aiming to ease visual inspection.

Ranking according to

R multimodel
Sfi

Ranking according to

RSt{nultimodel

x,:E, (48.05)

x,:E, (70.78)

xg: Ly, (27.83)

Xg: Ly, (34.47)

Xo: Syr (16.07)

Xo: Sop (12.91)

Xx4: B, (4.51)

x3:S,; (0.97)

x4: B, (3.16)

Xy Swi (159)

X1: kg (0.96)

X1: kg (1.21)

x3:N,, (0.46)

x3:N,, (0.32)

xs: M, (0.25)

xs: M, (0.17)
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4.3.1.3. DISCUSSION

In the table below the rankings obtained from the different informed multi-model sensitivity
analysis techniques when applied to the “sand pack” sample for water relative permeability are

summarized.

Multi-model informed statistical moments-
based sensitivity analysis of the “sand pack”
sample for water relative permeability

Multi-model informed variance-based
sensitivity analysis of the “sand pack”
sample for water relative permeability

: B2 (25.72)

: B2 (12.65)

: 83, (11.91)

: M2 (22.82)

i . . Ranking accordin
Ranking according to Rank.mg Ranking according to gto s
R } according to r .
AMAE; RAMAVij Sfl_multzmodel RStmultimodel
x3: E3 (30.29) x3: E3 (61.66) x7: Ey (48.05) x7: Ey, (70.78)
x3: 13, (26.46) x3: L3, (32.66) Xg: Ly, (27.83) Xg: Ly, (34.47)

Xo: Sor (16.07) Xo: Sor (12.91)

x4: B, (4.51) x4: B, (3.16)

Xy Swi (097) Xy Swi (159)

Xq: kO,TW (096) Xq: kO,T‘W (121)

:52.(22.72)

:52.(8.79)

x3: M2 (8.50) x3:83,(15.62)

x3:N,, (0.46) x3:N,, (0.32)

xs: M, (0.25) xs: M, (0.17)

x3: Sk (2.16) x3: S, (4.66)

xk: NI (2.09) xL: N1 (3.93)

:S1.(1.65)

Sk (3.62)

It can be observed that, within the application of the statistical moments-based sensitivity analysis,
there is no univocal accordance between the rankings obtained from the two different sensitivity
indices. This result shows how, in this informed scenario, the relative importance of the input
factors changes when considering different statistical moments of the output as measures of

sensitivity.
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On the other hand, the first-order and total-order sensitivity indices obtained from the variance-
based analysis show remarkable unambiguity, leading to the conclusion that, in this informed case,
the interactions between the variable input factors do not play a decisive role concerning their
relative importance.

The colour shades of the AMAE-based ranking show that, except for the variable input factor x3,
the importance of the input factors belonging to a certain model follows the relative skill of the

model to interpret the observations, given by the model’s posterior probability.

The AMAV-based ranking shows how, despite the Chierici model’s relatively low posterior
probability, its variable input factors have a very strong effect on the output variance.
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4.3.2. “BEREA SANDSTONE” SAMPLE

4.3.2.1. MULTI-MODEL, INFORMED STATISTICAL
SENSITIVITY ANALYSIS

POSTERIOR MODELS PROBABILITIES

e wl=0.01
e w2=0.04
e w!=0095
VARIABLE INPUT FACTORS:

The models variable input factors are expressed in the form:

J_ o v oad
xi - (xi,min , xi,max)

MOMENTS-BASED

Where xi} represents the it variable input factor of the j** model, and the values in the brackets

define its 95% confidence limits.

e xl: k%, =(0.431; 0.435)
e x1:5,; =(0.39; 0.45)

e x1:N, =(0.69; 1.2)

e x}:S, =(032; 0.36)

o x%: k%, =(0.431; 0.435)
e x%:5,;=(0.39; 0.45)

e x2:B,=(08;0.9)

o x2:M,=(117; 2.2)

e x2:5, =(032; 0.36)

o x3: k%, =(0.431; 0.435)
e x3:5,; = (0.39; 0.45)

e x3:L,=(17; 2.6)

e x3:E,=(052;1.02)

e x3:T,=(218; 3.01)

e x3:5,=(032; 0.36)

Water relative permeability k., is evaluated for 0.5 < S, < 0.64.
n = 200,000 (number of model evaluations)

p =25 (number of parameters’ bins)
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In the figure below the unconditional single-model and multi-model statistical moments are
reported for the “Berea sandstone” sample, for water relative permeability.
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Figure 59: single-model and multi-model unconditional output statistics of the relative permeability models informed to

the “Berea sandstone” sample for water relative permeability

For the “Berea sandstone” sample, the unconditional output statistical moments result to be

particularly irregular and non-monotonic.
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In the figures below the multi-model and single-model statistical moments-based informed
sensitivity indices of the “Berea sandstone” sample for water relative permeability are reported:
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Figure 60: multi-model and single-model informed AMAE sensitivity indices of the “Berea sandstone” sample for
water relative permeability
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Figure 61: multi-model and single-model informed AMAV sensitivity indices of the “Berea sandstone” sample for
water relative permeability
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Figure 63: multi-model and single-model informed AMAK sensitivity indices of the “Berea sandstone” sample for
water relative permeability

The ranking of the 15 variable input factors xij (4 belonging to Corey model, 5 to Chierici model
and 6 to LET model) is determined calculating and sorting the two ranking indices:

R Sw,max j
RAMAEL.J - ZSw,min AMAE;
R, ;=Y AMAY]

AMAV/ Sw,min i
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For the multi-model statistical moments-based informed global sensitivity analysis of the “Berea
sandstone” sample for water relative permeability, the resulting rankings are:

Input factors belonging to Corey model

Input factors belonging to Chierici model

Input factors belonging to LET model

Ranking according to
R

AMAE]

Ranking according to
R

AMAv/

x3:53; (8.38)

x3: 13, (4.99)

x3: E3 (47.59)

x3: E3 (4.73)

x2: 52, (1.26)

x2: M2 (1.10)

x3: 83, (62.28)

x3: 13, (47.08)

x2: M2 (5.23)

x2:SZ; (4.59)

x2: B2 (0.99)

xi: N (0.23)

x3: B2 (3.22)

x3: 8L (2.57)

x3: Sk (0.21)

xk: N3 (1.99)

x3: 5% (0.21)

x3: Sk (1.68)




4.3.2.2. MULTI-MODEL, INFORMED VARIANCE-BASED SENSITIVITY ANALYSIS

POSTERIOR MODELS PROBABILITIES

e wl=0.01
e w2=0.04
e w!=0095
VARIABLE INPUT FACTORS:

The models variable input factors are expressed in the form:

Where xij represents the i*" variable input factor of the j* model, and the values in the bracket
define its 95% confidence limits.

o x;: k%, = (0.431; 0.435)
o x,: S, = (0.39; 0.45)

e x3:N, =(0.69; 1.2)

e x,:B,=(08;09)

o x5:M, = (117; 2.2)

o xg:L,=(17;26)

e x,:E, = (0.52; 1.02)

o x4 T, =(2.18; 3.01)

o x9:Sor = (0.32; 0.36)

Water relative permeability k., is evaluated for 0.5 < S, < 0.64.
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ng

Dt

200,000 (number of model evaluations for the first-order index)

25 (number of parameters’ bins for the first-order index)
=700 (number of model evaluations for the total-order index)
6 (number of parameters’ bins for the total-order index)

In the figures below the single-model and multi-model first order and total order variance-based
sensitivity indices informed to the “Berea sandstone” sample for water relative permeability are

reported.
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Figure 64: first order single-model and multi-model informed variance-based sensitivity indices of the “Berea
sandstone” sample for water relative permeability
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Figure 65: total order single-model and multi-model informed variance-based sensitivity indices of the “Berea

sandstone” sample for water relative permeability

The ranking of the nine variable input factors x; is determined calculating the two ranking indices:

R multimodel
Sf;

RSt

multimodel = Z
i

— st,max f'multimodel
Sw,min t
Sw,max t‘multi‘model
L

Sw,min
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Ranking according to

Rsf}nultimodel

Ranking according to

RStimultimodel

Xo: Syp (44.98)

Xo: Syr (29.88)

x%3:S,; (39.79)

x,:E, (11.89)

Xy SWi (31.12)

x,:E, (11.49)

Xg: Ly, (9.68)

xg: Ly, (7.67)

xs: M,, (6.25)

xs: M,, (5.65)

X1: kg (1.89)

X1: ko (1.38)

x3: Ny, (1.26)

x3:N,, (1.06)

x4: B, (0.075)

x4:B,, (0.088)

For the variance-based informed global sensitivity analysis of the “Berea sandstone” sample for
water relative permeability the resulting rankings are:
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4.3.2.3. DISCUSSION

In the tables below the rankings obtained from the different informed multi-model sensitivity
analysis techniques, when applied to the “Berea sandstone” sample for water relative permeability,
are summarized.

Multi-model informed statistical moments-
based sensitivity analysis of the “Berea
sandstone” sample for water relative
permeability

Multi-model informed variance-based
sensitivity analysis of the “Berea sandstone”
sample for water relative permeability

Ranki . Ranki .
anking according anking according Ranking according to | Ranking according to

to to
. i R -multimodel R multimodel
RAMAEL.J RAMAVi] St St
x3:53;(8.38) x3: 83, (62.28) Xo: Sor (44.98) Xo: Sor (29.88)

x3:E3 (4.73) x7: B, (11.89) x7: By (11.49)

x3: 13, (47.08) Xg: Ly (9.68) Xg: Ly, (7.67)

xs: M,, (6.25) xs: M, (5.65)

x2: 52, (1.26) x1: kg (1.89) x1: kg (1.38)

x2: M2 (5.23) x3: N, (1.26) x3: N, (1.06)

x3: M2 (1.10) x2: 52, (4.59) x4 B,, (0.075) x4: B, (0.088)
x2: BZ (0.99) x2: B2 (3.22)

| A 00 | st o) |

x3: N} (0.23) x}: Sk (2.57)
x3: Sk (0.21) x2: N} (1.99)
x}: Sk (0.21) x3: Sk (1.68)

It can be observed that, within the application of the statistical moments-based sensitivity analysis,
there is no perfect accordance between the rankings obtained from the two different sensitivity
indices. This result shows how, in this informed scenario, the relative importance of the input
factors can change when considering different statistical moments of the output as measures of
sensitivity.
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The first-order and total-order sensitivity indices obtained from the variance-based analysis show
remarkable unambiguity, leading to the conclusion that, in this informed case, the interactions
between the variable input factors do not play a decisive role concerning their relative importance.

The colour shades of the statistical moments-based rankings show that the importance of the input

factors belonging to a certain model follows precisely the relative importance of the model given
by its posterior probability.
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5. CONCLUSION

The objective of this essay has been to demonstrate the need to adopt many different approaches
and techniques when investigating the most widely used water-oil relative permeability models by
the tool of global sensitivity analysis, both in single-model and multi-model applications, both in
uninformed and informed scenarios.

This goal has been achieved by a preliminary study of the relative permeability models from a
mathematical point of view, followed by the rigorous application of the state-of-the-art global
sensitivity analysis techniques and by the in-depth analysis of the results, both from a qualitative
and (most importantly) quantitative point of view.

The obtained results clearly show that relying indiscriminately on a single global sensitivity
analysis method is in general a failure approach which can lead to deceiving conclusions when there
is not a perfect theoretical understanding of the adopted method, especially when considering
complex numerical models and when operating in multi-model contexts. The only case in which
the global sensitivity analysis has proven forgiving (in terms of consistency between the results
obtained from different methods) is when applied to very simple numerical models (Corey model).
Despite of that, in light of the results, a multi-method sensitivity analysis investigation associated
with a case-by-case identification of the most suitable sensitivity index/indices is always
recommended.

The proper application of the different sensitivity analysis techniques and the analysis of the results
have required a rich acquisition of information to allow the understanding of the theoretical
foundations of the methodologies, and the numerical complexity of the sensitivity analysis
procedures has led to an intense process of optimization (often carried out by a trial and error
approach) of the MATLAB algorithms, aimed to find an optimal trade-off between computation
time obtainable by home-available computers and accuracy (reliability) of the results. At their
actual state, the developed MATLAB algorithms can provide the results of any sensitivity analysis
described in the essay in less than an hour (on a modern computer).

The most significant and useful outcomes of the work carried out are the MATLAB codes
themselves, which are specifically designed and ready to run for the global sensitivity analysis of
the main water-oil relative permeability models. I personally invite any student, researcher or
worker who can benefit from the use of these codes to download them from the link that I make
available below.

Figure 66: link to the MATLAB scripts
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6. APPENDICES

APPENDIX A: VARIABLE INPUT FACTORS AND INPUT
VARIABILITY SPACE OF THE THREE RELATIVE
PERMEABILITY MODELS FOR OIL RELATIVE PERMEABILITY

Al: COREY MODEL

1-Sw—Sor

)N
1-Swi—Sor

kro = kro (Sw) = kgo(

Observing the analytical expression of the model it is possible to identify four independent model
parameters, which are the variable input factors x; of the model:

e x;: k% it must be greater than 0 (otherwise, the curve represents a case of complete
imperviousness to oil) and it can be as high as 1.

o x5 S, it can assume any value between 0 (no irreducible/initial water saturation) and 1 (the
porous rock is completely full of water which can not be displaced).

e x3: N,; it can assume any value greater than 0 without producing non-sensical relative
permeability results.

o x4:S,; 1t can assume any value between 0 (no residual oil) and 1 (the porous rock is completely
full of oil which can not be displaced).

The adopted input variability space for the Corey oil relative permeability model is:

b k?o,min =0.1 k?o,max =1
 Syimin=20 Swimax = 0.35
¢ Nymin=0.1 Nomax = 6
hd Sor,min =0 Sor,max =0.35

According to these assumptions, the model can be evaluated in (0.35 < S, < 0.65).
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Figure 67: effect of the variable input factors on Corey model for oil relative permeability

Similarly to what happens for Corey model for water relative permeability, the variable input factor
N, has the most dramatic effect on the output. It should be noted that the input factors S,,,; and S,
have inverted effects on water and oil relative permeability curves: the inversion of the roles of
these two parameters, when considering the two phases, is effect of the symmetry of the relative
permeability models for water and oil with respect to water saturation S,,.
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A2: CHIERICI MODEL

Sw—Swi +Mo
kro = kro(Sw) = kgoexp [_Bo (—) ]

1-Sor—Sw

Observing the analytical expression of the model it is possible to identify five independent model
parameters, which are the variable input factors x; of the model:

xq: kS,.

x50 Swi-

X3: B,; it can assume any value greater than 0 without producing non-sensical relative
permeability results.

X4: M,; it can assume any value greater than 0 without producing non-sensical relative
permeability results.

Xs5: Sor-

The adopted input variability space for Chierici model for oil relative permeability is:

kfomin = 0.1 ko max = 1

Swimin =0 Swimax = 0.35
omin = 0 By max = 8
omin = 0.1 Mo max =8

Sormin =0 Sormax = 0.35

According to these assumptions, the model can be evaluated in (0.35 < S, < 0.65).
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Figure 68: effect of the variable input factors on Chierici model for oil relative permeability
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A3: LET MODEL

kro = kro (Sw) = kgo

Sy =
W 1-Swi—Sor

(1-Sy)ko
(1-Sy) ko +Eq(Sy,)To

Sw—Swi

Observing the analytical expression of the model it is possible to identify six independent model
parameters, which are the variable input factors x; of the model:

xq: kS,.

x50 Swi-

x3: L,; the inventors of the LET model suggest considering only values of L, = 0.1. Despite
of that, any value above 0 is mathematically acceptable (it does not produce non-sensical
relative permeability curves).

x4: E,; the inventors of the LET model suggest considering only values of E, = 0.

x5: T,; the inventors of the LET model suggest considering only values of T, = 0.1. Despite of
that, any value above 0 is mathematically acceptable.

Xg: Sor-

The adopted input variability space for LET model for oil relative permeability is:

kgo,min =0.1 k?o,max =1
Swi,min =0 Swi,max =0.35

Lomin = 0.05 Lo max =10
E, min = 0.005 Ey max = 10
To,min = 0.05 To,max =

Sor,min =0 Sor,max =0.35

According to these assumptions, the model can be evaluated in (0.35 < S, < 0.65).
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Figure 69: effect of the variable input factors on LET model for oil relative permeability
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APPENDIX B: OIL RELATIVE PERMEABILITY, SINGLE MODEL
UNINFORMED SCENARIO

B1: COREY MODEL

B1.1: MULTIPLE START PERTURBATION METHOD SENSITIVITY ANALYSIS

. multiple start perturbation method, Corey oil i multiple start perturbation method, Corey oil

—

—S8D1

=82 —8D2

1| S3 = SD3
—84

—SD4

Figure 70: multiple start perturbation method global sensitivity analysis of Corey model for oil relative permeability

From the multiple start perturbation method global sensitivity analysis applied to Corey model for
oil relative permeability, the resulting ranking is:

Ranking
according to R ;

X2: Swi (42.85)

x4: Sor (28.11)

x1: kK% (26.21)

X3 No (814)

It is interesting to observe that, with respect to Corey model for water relative permeability, the
input factors x, (S,,;) and x4 (S,,) have an exactly opposite role in the model. This is consequence
of the symmetry of the relative permeability curves of water and oil with respect to water saturation
Sw (Syi determines the point of nil water relative permeability k,.,,, while S,,- determines the point
of maximum k,.,,; the opposite happens for oil relative permeability k,.,).
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B1.2: STATISTICAL MOMENTS-BASED SENSITIVITY ANALYSIS

. Corey oil unconditional output statistics - Corey oil unconditional output statistics
——expected value ' ——skewness
——variance ] —Kkurtosis
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Sw Sw
Figure 71: statistical moments of the unconditional output of Corey model for oil relative permeability
The unconditional statistical moments of oil relative permeability k,., show exactly opposite trends

with respect to the unconditional statistical moments of water relative permeability k,.,,, due to the
symmetry of Corey model with respect to water saturation S,, when considering the two fluids.
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Figure 72: statistical moments-based sensitivity analysis of Corey model for oil relative permeability

The sensitivity indices plots are perfectly symmetrical to the curves obtained for water relative
permeability (plus the inversion between the curves related to x, and xy).
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From the statistical moments-based sensitivity analysis applied to the Corey model for oil relative
permeability the resulting rankings are:

Ranking according to
Ramak,i

Ranking according to
Ramav,i

Ranking according to
RSobol first,i

Ranking according
to RSobol total,i

x3: N, (79.25)

x3: N, (69.79)

x3: N, (63.66)

x3: N, (63.48)

x1: k% (42.31)

x1: k%o (60.65)

x1: k% (17.40)

x1: k% (44.93)

X2: Swi (20.94)

X2: Swi (14.10)

X2: SWi (645)

X2: Swi (7.92)

x4: Sor (19.76)

x4: Sor (13.30)

X4 Sor (3 12)

X4: Sor (4.31)

It can be seen that (as it was observed from the multiple start perturbation method sensitivity
analysis) when considering oil relative permeability, the relative importance of the input factors x,
(Swi) and x4 (S,,) is inverted.

B1.3: CUMULATIVE PROBABILITY DENSITY FUNCTION-BASED

ANALYSIS
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Figure 73: cumulative distribution of Corey model unconditional output for oil relative permeability, S,,=0.5
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—Tmax,1
—Tmax,2

Tmax,3
—Tmax,4

0.1
035 04 045 0.5 055 0.6 0.65 0.7

Figure 74: cumulative probability density function-based sensitivity analysis of Corey model for oil relative
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For the cumulative density function-based sensitivity analysis applied to the Corey model for oil

relative permeability the resulting rankings are:

Ranking according to

R Tmax,i

Ranking according to

R Tmedian,i

x3: N, (63.93)

x3: N, (33.74)

x1: k% (43.98)

x1: k% (14.29)

X2: Swi (26.69)

X2: Swi (12.09)

X4: Sor (24.65)

X4: Sor (11.25)
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B1.4: VARIOGRAM-BASED SENSITIVITY ANALYSIS
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Figure 75: normalized variograms of Corey model conditional output for oil relative permeability, S,,=0.5
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Figure 76: variogram-based sensitivity analysis of Corey model for oil relative permeability
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For the variogram-based sensitivity analysis applied to the Corey model for oil relative permeability

the resulting rankings are:

Ranking according to Ranking according to
Rivars 10, Rivars s0,i
x3: No (0.011) x3: No (1.13)
x1: k% (0.0020) x1: k% (0.47)
X2: Swi (0.0010) X2: Swi (0.16)
x4: Sor (0.00030) Xa: Sor (0.064)
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B2: CHIERICI MODEL

B2.1: MULTIPLE START PERTURBATION METHOD SENSITIVITY ANALYSIS

multiple start perturbation method, Chierici oil
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Figure 77: multiple start perturbation method global sensitivity analysis of Chierici model for oil relative permeability

From the multiple start perturbation method global sensitivity analysis applied to Chierici model
for oil relative permeability, the resulting ranking is:

Ranking according
to RS,i

x2: Swi (75.91)

Xs: Sor (54.36)

x1: k% (29.28)

x3: B, (3.70)

x4: M, (2.62)

With respect to the Chierici model for water relative permeability, the input factors x, (S,,;) and x5
(S,) have an opposite role, due to the symmetry of the relative permeability models for water and
oil with respect to water saturation S,,. This symmetry reflects also on the sensitivity indices curves,
which are perfectly symmetrical to the ones obtained for water relative permeability.
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B2.2: STATISTICAL MOMENTS-BASED SENSITIVITY ANALYSIS
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Figure 78: statistical moments of the unconditional output of Chierici model for oil relative permeability

The statistical moments of the unconditional oil relative permeability k,, show exactly opposite
trends with respect to the statistical moments of the unconditional water relative permeability k.,
due to the symmetry of Chierici model with respect to water saturation S,,,, when considering water
and oil.
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Figure 79: statistical moments-based sensitivity analysis of Chierici model for oil relative permeability
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From the statistical moments-based sensitivity analysis applied to the Chierici relative permeability
model for oil relative permeability the resulting rankings are:

Ranking according to | Ranking according to | Ranking according to | Ranking according
Ramak,i Ramav,i Rsobot first,i to Rsobol totali
x3: Bo (59.58) x1: k% (62.55) x3: Bo (16.88) x1: k% (40.77)
X2: Swi (54.53) x3: B, (47.82) x2: Swi (15.70) x2: Swi (35.60)
Xs: Sor (51.95) X2: Syi (46.48) x1: k% (14.15) x3: Bo (33.56)
x1: k% (41.34) Xs: Sor (42.97) xs: Sor (9.77) xs: Sor (30.70)
x4: M, (30.09) x4: M, (31.53) Xa: Mo (7.24) x4: Mo (29.54)

B2.3: CUMULATIVE PROBABILITY DENSITY FUNCTION-BASED SENSITIVITY
ANALYSIS
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Figure 80: cumulative distribution of Chierici model unconditional output for water relative permeability, S,,=0.5
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cumulative distribution based SA, Chierici oil
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Figure 81: cumulative distribution-based sensitivity analysis of Chierici model for oil relative permeability

The sensitivity indices’ plots for oil relative permeability k,, are symmetrical to the ones for water
relative permeability k,.,, and the input variable factors x, and x5 invert their relative contributions.

For the cumulative probability density function-based global sensitivity analysis applied to the
Chierici model for oil relative permeability the resulting rankings are:

Ranking according to
R Tmax,i

Ranking according to

R Tmedian,i

x3: B, (46.70)

x2: Sui (16.50)

x1: k% (37.60)

x1: kK% (15.47)

X2: Syi (35.10)

Xs: Sor (14.81)

Xs: Sor (32.61)

x3: Bo (13.17)

xa: M, (31.86)

xa: M, (8.23)
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B2.4: VARIOGRAM-BASED SENSITIVITY ANALYSIS

Figure 82: normalized variograms of Chierici model conditional output for oil relative permeability, S,,=0.5
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Figure 83: variogram-based sensitivity analysis of Chierici model for oil relative permeability

The sensitivity indices’ curves are symmetrical to the curves obtained for water relative

permeability; and the role of the variable input factors x, and x5 is inverted.
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For the variogram-based sensitivity analysis applied to the Chierici model for oil relative
permeability the resulting rankings are:

Ranking according to Ranking according to
Rivarsio,i Rivarssoi
x3: B, (0.0086) x2: Swi (0.98)
x2: Swi (0.0051) x1: k% (0.78)
x4: M, (0.0040) x4: M, (0.63)
x1: k% (0.0033) xs: Sor (0.59)
xs: Sor (0.0030) x3: B, (0.53)

B3: LET MODEL

B3.1: MULTIPLE START PERTURBATION METHOD SENSITIVITY ANALYSIS

multiple start perturbation method, LET oil be multiple start perturbation method, LET oil
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Figure 84: multiple start perturbation method global sensitivity analysis of LET model for oil relative permeability
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With respect to the LET model for water relative permeability the input factors x, (S,,;) and xg
(Sor) have an opposite role, due to the symmetry of the LET relative permeability model with
respect to water saturation S,,,, when considering the two phases. This symmetry also reflects on
the sensitivity indices curves, which are perfectly symmetrical to the ones obtained for water
relative permeability.

From the multiple start perturbation method global sensitivity analysis applied to LET model for
oil relative permeability the resulting ranking is:

Ranking according
to RS,i

X2: Swi (63.77)

X6. Sor (5028)

x1: k% (34.31)

xs: To (3.67)

x4: Eo (3.11)

x3: Lo (2.84)

B3.2: STATISTICAL MOMENTS-BASED SENSITIVITY ANALYSIS

” LET oil unconditional output statistics - LET oil unconditional output statistics
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20

o
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Figure 85: statistical moments of the unconditional output of LET model for oil relative permeability
The unconditional statistical moments of oil relative permeability k,., show exactly opposite trends

with respect to the unconditional statistical moments of water relative permeability k,.,,,, due to the
symmetry of LET model with respect to water saturation, when considering water and oil.
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Figure 86: statistical moments-based global sensitivity analysis of LET model for oil relative permeability
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From the statistical moments-based global sensitivity analysis applied to the LET model for oil
relative permeability the resulting rankings are:

Ranking according to | Ranking according to | Ranking according to | Ranking according

Ramak,i Ramav,i Rsobot first,i to Rsobol totali
x3: Lo (53.28) x1: k% (61.41) x3: Lo (18.17) x1: kKo (46.73)
xs: T, (44.76) xs: To (42.53) xs: To (16.41) x3: Lo (29.27)
x1: k% (41.33) x3: Lo (34.16) x1: k% (16.18) xs: To (24.76)
Xe: Sor (33.49) Xe: Sor (28.44) X2: Swi (8.36) Xe: Sor (13.71)
X2 Swi (31.35) X2: Swi (25.85) x4: Eo (7.94) X2: Swi (12.32)
x4: B, (26.45) x4: Eo (22.56) X6: Sor (6.56) x4: Eo (10.55)

B3.3: PROBABILITY DENSITY FUNCTION-BASED SENSITIVITY ANALYSIS
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Figure 87: cumulative distribution of LET model unconditional output for oil relative permeability, S,,=0.5
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Figure 88: cumulative distribution function-based global sensitivity analysis of LET model for oil relative permeability

From the cumulative probability density function-based global sensitivity analysis applied to the

LET model for oil relative permeability the resulting rankings are:

Ranking according to

R Tmax,i

Ranking according to

R Tmedian,i

x3: Lo (46.78)

x3: Lo (22.65)

xa: Eo (46.26)

x1: kK% (17.64)

x1: k%o (44.08)

xs: To (15.57)

xs: To (37.69)

Xe: Sor (12.31)

Xe: Sor (26.08)

X2: Swi (12.01)

X2: Sui (24.97)

x4: Eo (6.45)
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B3.4: VARIOGRAM-BASED SENSITIVITY ANALYSIS
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Figure 89: normalized variograms of LET model conditional output for oil relative permeability, S,,=0.5
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Figure 90: variogram-based global sensitivity analysis of LET model for oil relative permeability
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From the variogram-based global sensitivity analysis applied to the LET model for oil relative
permeability the resulting rankings are:

Ranking according to Ranking according to
Rivarsio,i Rivarssoi
x4: Eo (0.0126) xs: To (1.04)
xs: To (0.0050) x1: k0 (0.89)
x3: Lo (0.0043) x3: Lo (0.75)
x1: k% (0.0038) X2 Swi (0.62)
X2: Swi (0.0031) Xs: Sor (0.40)
X6: Sor (0.0018) x4: Eo (0.38)
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B4: RECAP

B4.1: COREY MODEL

In the table below the rankings obtained from the different global sensitivity analysis techniques
when applied to Corey relative permeability model are summarized. A colour has been assigned to
each variable input factor in order to help visualizing eventual concordances and discordances
between the rankings obtained from different sensitivity analysis methods.

Rankings of the input factors of Corey model for oil relative permeability
multiple start stat.moments-based cumul.distrib.-based variogram-based

Ranking Ranking Ranking Ranking Ranking Ranking Ranking Ranking Ranking
according to | according to | according to | according to | according to | accordingto | accordingto | accordingto [according to

Rs,; R umar; R ara,i R sobot firsti R sopot toral R tnax,i R Tinedian,i Riyars 10 R vars 50

Swi (42.85) | No (79.25) | No (69.79) | No (63.66) | No (63.48) | No (63.93) | No (33.74) No (0.011) No (1.13)
Sor (28.11) | kOro (42.31) | kOro (60.65) | kOro (17.40) | kOro (44.93) | kOro (43.98) | kOro (14.29) | kOro (0.0020) | kOro (0.47)

kOro (26.21) | Swi (20.94) | Swi (14.10) | Swi (6.45) Swi (7.92) | Swi (26.69) | Swi(12.09) | Swi (0.0010) | Swi (0.16)
No (8.14) | Sor (19.76) | Sor (13.30) | Sor (3.12) Sor (4.31) | Sor (24.65) | Sor (11.25) | Sor (0.00030) | Sor (0.064)

B4.2: CHIERICI MODEL

In the tables below the rankings obtained from the different sensitivity analysis techniques when
applied to the Chierici relative permeability model are summarized.

Rankings of the input factors of Chierici model for oil relative permeability
multiple start stat.moments-based cumul.distrib.-based variogram-based

Ranking Ranking Ranking Ranking Ranking Ranking Ranking Ranking Ranking
according to | according to | according to | according to | according to | according to | accordingto | accordingto [according to

Rs, R umak,i R amav,i R sobo firss i R sopot totali R fnax,i R finedian,i R vars 10 R vars 50

Swi (75.91) | Bo (59.58) | kOro (62.55) | Bo (16.88) | kOro (40.77) | Bo (46.70) | Swi (16.50) | Bo (0.0086) | Swi (0.98)
Sor (54.36) | Swi(54.53) | Bo (47.82) | Swi(15.70) | Swi(35.60) | kOro (37.60) | kOro (15.47) | Swi (0.0051) | kOro (0.78)
kOro (29.28) | Sor (51.95) | Swi (46.48) | kOro (14.15) | Bo (33.56) | Swi (35.10) | Sor (14.81) | Mo (0.0040) | Mo (0.63)

Bo (3.70) | kOro (41.34) | Sor (42.97) | Sor (9.77) | Sor (30.70) | Sor (32.61) | Bo (13.17) | kOro (0.0033) | Sor (0.59)

4 M
Mo (2.62) | Mo(30.09) | 70 | Mo(7.24) | Mo(29.54) | Mo (31.86) | Mo (8.23) | Sor (0.0030) | Bo (0.53)

B4.3: LET MODEL

In the tables below the rankings obtained from the different sensitivity analysis techniques when
applied to the LET relative permeability model are summarized.

Rankings of the input factors of LET model for oil relative permeability
multiple start stat. moments-based cumul.distrib.-based variogram-based

Ranking Ranking Ranking Ranking Ranking Ranking Ranking Ranking Ranking
according to | according to | according to | according to | according to | accordingto | accordingto | accordingto [according to

Rg; R umaki R gmavi R Sobot firsti R Sobol torali R fnax,i R fnedian,i R yars 10, R yars s0.i

Swi (63.77) | Lo (53.28) | kOro (61.41) | Lo (18.17) | kOro (46.73) | Lo (46.78) | Lo (22.65) | Eo (0.0126) To (1.04)
Sor (50.28) | To (44.76) To (42.53) To (16.41) | Lo (29.27) | Eo (46.26) | kOro (17.64) | To (0.0050) | kOro (0.89)

kOro (34.31) | kOro (41.33) | Lo (34.16) | kOro (16.18) | To (24.76) | kOro (44.08) | To (15.57) | Lo (0.0043) | Lo (0.75)

To (3.67) Sor (33.49) | Sor (28.44) Swi (8.36) | Sor (13.71) | To (37.69) | Sor (12.31) | kOro (0.0038) | Swi (0.62)

Eo (3.11) Swi (31.35) | Swi (25.85) Eo (7.94) Swi (12.32) | Sor (26.08) | Swi (12.01) | Swi (0.0031) | Sor (0.40)

Lo (2.84) Eo (26.45) | Eo (22.56) Sor (6.56) Eo (10.55) | Swi (24.97) Eo (6.45) Sor (0.0018) | Eo (0.38)
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APPENDIX C: OIL RELATIVE PERMEABILITY, MULTI-MODEL
UNINFORMED SCENARIO

C1: MULTI-MODEL, STATISTICAL MOMENTS-BASED SENSITIVITY
ANALYSIS

unconditional output statistics - unconditional output statistics
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Figure 91: single-model and multi-model unconditional statistical moments of the three models for oil relative
permeability

The plots of the multi-model unconditional statistical moments for oil relative permeability are

symmetrical to the curves obtained for water relative permeability, with respect to water saturation
Sw-
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multi-m. AMAE of Corey input factors for oil
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Figure 92: multi-model and single-model AMAE sensitivity indices for oil relative permeability
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multi-m. AMAV of Corey input factors for oil
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Figure 93: multi-model and single-model AMAYV sensitivity indices for oil relative permeability
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Considering oil relative permeability, the multi-model statistical moments-based sensitivity
indices’ plots are simply symmetrical to the ones obtained for water relative permeability and, for
each model, the input factors corresponding to S,,; and S,,- invert their roles.

For the multi-model statistical moments-based global sensitivity analysis of the three oil relative
permeability models, the resulting rankings are:

Input factors belonging to Corey model

Input factors belonging to Chierici model

Input factors belonging to LET model

Ranking according to | Ranking according to
R

AMAE]

R

AMAv/

xi: N2 (37.17)

x3: I3 (26.26) xi: N2 (30.08)

x2: 52, (23.04)

(13 (23.21)

:S2,(21.19)

x2: B2 (20.53)

1S3, (17.82)

: 53, (19.50)

x3: E3 (17.94)

: M2 (16.72) x%: B2 (17.61)

x2: M2 (17.60)

L E3 (15.37)

x3: S; (15.00) x3: Sy (14.37)

As expected, these two rankings are equivalent to the ones obtained for water relative permeability,
except for the inversion of x3 with x}, the inversion of x with x2 and the inversion of xj with x3.
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The rankings obtained from these two indices are not in agreement with each other. The only aspect
on which they agree is that the variable input factor x3 (2™® input factor belonging to Corey model)
is the less relevant in this multi-model scenario.

152



C2: MULTI-MODEL, VARIANCE-BASED SENSITIVITY ANALYSIS

When considering oil relative permeability, the variable input factors of the models are:

x;: k2,, end point of the oil relative permeability curve.

X5: Syi: irreducible water saturation.

x3: N,: parameter belonging to Corey model for oil.

X4: B,: parameter belonging to Chierici model for oil.

Xs5: M,: parameter belonging to Chierici model for oil.

Xe: Lo: parameter belonging to LET model for oil.

x7: E,: parameter belonging to LET model for oil.

xg: T,: parameter belonging to LET model for oil.

Xg: S,r: residual oil saturation.
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Figure 96: multi-model and single-model first order variance-based sensitivity indices for oil relative permeability
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Figure 97: multi-model and single-model total order variance-based sensitivity indices for oil relative permeability

When considering oil relative permeability, the multi-model variance-based sensitivity indices’
plots are simply symmetrical to the ones obtained for water relative permeability plus the inversion
between the input factors corresponding to S,,; (x2) and Sy, (x9).
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For the multi-model variance-based sensitivity analysis of the three oil relative permeability
models, the resulting rankings are:

Ranking according to | Ranking according to
R fmuttimodel R gultimodel
x3: N, (18.20) X1: koo (43.55)
X1: ko ro (16.13) x3: N, (18.04)
X3: Sy, (10.43) x2: Sy, (17.07)
Xe: Lo (7.97) Xg: Sor (14.60)

xg: L, (12.87)

Xo: Sor (6.77)

x4: B, (4.08) x4: B, (7.20)
x,: E, (3.47) xs: M, (7.06)
x5: M, (2.66) x; (4.60)

As expected, these two rankings are equivalent to the ones obtained for water relative permeability,
except for the inversion of x, with xq.
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C3: RECAP

In the table below the rankings obtained from the different multi-model sensitivity analysis
techniques, when applied to the three oil relative permeability models, are summarized:

Multi-model statistical moments-based
sensitivity analysis of the oil relative

Multi-model variance-based sensitivity
analysis of the oil relative permeability

x3: N& (37.17)

x3: I3 (26.26)

x3: 52, (23.04)

xi: N1 (30.08)

(13 (23.21)

permeability models models
Ranking accordin Ranking accordin Ranking accordin . .
& to & & to & & to £ Ranking according to
R Itimodel
RAMAEl-j RAMAVij Rsfimultimodel Stlmu timode

x3: N, (18.20)

x1: koo (43.55)

x1: koo (16.13) x3: N, (18.04)

Xy Swi (1043) X! Swi (1707)

xg: L, (7.97)

Xo: Sor (14.60)

xg: L, (12.87)

Xo: Sor (6.77)

x2: B2 (20.53)

x3:83,(17.82)

x3: 52, (21.19)

: $3.(19.50)

L E3 (17.94)

x,: B, (4.08) x4: B, (7.20)
x,: E, (3.47) xs: M, (7.06)
xs: M, (2.66) x,: E, (4.60)

x2: M2 (16.72)

x2: B2 (17.61)

x3: E3 (15.37)

x3: 8L (15.00)

: M2 (17.60)

:S1.(14.37)
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APPENDIX D: OIL RELATIVE PERMEABILITY, MULTI-MODEL
INFORMED SCENARIO

D1: “SAND PACK” SAMPLE

D1.1: MULTI-MODEL, INFORMED STATISTICAL MOMENTS-BASED SENSITIVITY
ANALYSIS

POSTERIOR MODELS PROBABILITIES

e wl=001
e w?2=002
e wl=097
VARIABLE INPUT FACTORS:

The models variable input factors are expressed in the form:

Where xij represents the it variable input factor of the j** model, and the values in the brackets
define its 95% confidence limits.

e xl:k% =(0.751; 0.811)
e x1:5,;=(0.166; 0.214)
e x1:N,=(099; 1.05)
e x}:S,-=(0.1;0.18)

e x: k% =(0.751; 0.811)
e x%:5,;=(0.166; 0.214)
e x%:B,=(0.62; 0.73)

e xZ:M, = (0.53; 0.76)

e x2:5,.=(0.1;0.18)

o x3: k% =(0.751; 0.811)
e x3:5,;=(0.166; 0.214)
e x3:L,=1(0.79; 1.22)
e x3:E,=(0.70; 1.65)
o x3:T,=(091; 1.64)
e x3:5,,=(0.1;0.18)

Oil relative permeability k,., is evaluated for 0.25 < §,, < 0.8.

In the figure below the unconditional single-model and multi-model statistical moments are
reported for the “sand pack” sample, for oil relative permeability:
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Figure 98: single-model and multi-model unconditional output statistics of the relative permeability models informed to
the “sand pack” sample for oil relative permeability

In the figures below, the informed multi-model statistical moments-based sensitivity indices of the
“sand pack” sample for oil relative permeability are reported. The single-model statistical moments-
based indices are reported too, so as to highlight the differences between the multi-model and the
single-model approach.
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Figure 99: multi-model and single-model informed AMAE sensitivity indices of the “sand pack” sample for oil relative
permeability
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Figure 100: multi-model and single-model informed AMAYV sensitivity indices of the “sand pack” sample for oil
relative permeability
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Figure 101: multi-model and single-model informed AMASk sensitivity indices of the “sand pack” sample for oil

relative permeability
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Figure 102: multi-model and single-model informed AMAK sensitivity indices of the “sand pack” sample for oil
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The ranking of the 15 variable input factors xij (4 belonging to Corey model, 5 to Chierici model
and 6 to LET model) is determined calculating the two ranking indices:

RAMAEL.j =2

R

amav] = )

Sw,max
Sw,min

Sw,max
Sw,min

AMAE]

AMAV/

For the multi-model statistical moments-based informed global sensitivity analysis of the “sand
pack” sample for oil relative permeability, the resulting rankings are:

Input factors belonging to Corey model

Input factors belonging to Chierici model

Input factors belonging to LET model

Ranking according to
R

AMAE]

Ranking according to

RAMAVij

x3:E2 (10.11)

x3: E2 (48.24)

x3: 13 (5.96)

x%: M2 (0.24)

x3:53; (1.96)

x3: 13 (13.98)

x3:53; (6.35)

x2: M2 (1.54)

x2: B2 (0.20)

x2: 52, (0.17)

x3: B2 (1.43)

x2: 52, (1.39)

x3: S, (0.090)

x3: 8L (0.050)

|

x3: 5L (0.93)

x3: Sk (0.86)

xL: N2 (0.045)

x1: N2 (0.84)
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D1.2: MULTI-MODEL, INFORMED VARIANCE-BASED SENSITIVITY ANALYSIS

POSTERIOR MODELS PROBABILITIES

e wl=001
e w?2=002
e wl=097
VARIABLE INPUT FACTORS:

The models variable input factors are expressed in the form:

Where xij represents the i variable input factor of the j** model, and the values in the brackets
define its 95% confidence limits.

o x.:k% =(0.751; 0.811)
o x,: S, = (0.166; 0.214)
e x3:N,=(099; 1.05)

e x,:B,=(0.62;0.73)

e x5:M,=(0.53;0.76)

o x¢:L,=(079; 1.22)

e x,:E,=(0.70; 1.65)

o xg: T, =(091; 1.64)

o x9Sy = (0.1; 0.18)

Oil relative permeability k,., is evaluated for 0.25 < §,, < 0.8.

In the figures below, the single-model and multi-model first order and total order variance-based
sensitivity indices informed to the “sand pack” sample for oil relative permeability are reported:
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Figure 103: first order single-model and multi-model informed variance-based sensitivity indices of the “sand pack”
sample for oil relative permeability
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total order sensitivity indices for oil, x1
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Figure 104: total order single-model and multi-model informed variance-based sensitivity indices of the “sand pack
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The ranking of the nine variable input factors x; is determined calculating the two ranking indices:

Sw,max
Rsfimultlmodel - st,min

Sw,max
RSthulthodel - st,min

multimodel
Sfi

tmultimodel
i

For the variance-based informed global sensitivity analysis of the “sand pack” sample for oil
relative permeability the resulting rankings are:

Ranking according to

R multimodel
Sfi

Ranking according to

RSt{nultimodel

x,:E, (60.17)

xg: L, (15.08)

x,:E, (49.97)

x¢: Lo (12.51)

Xo: Sop (14.46)

Xo: Sop (11.54)

x1: koo (5.98)

Xq: kO,TO (452)

X5: S,; (4.69)

x5: S,; (3.03)

x5: M, (0.28)

xs: M, (0.21)

x4: B, (0.12)

x4: B, (0.093)

x3: N, (0.0078)

x3: N, (0.0057)
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D1.3: RECAP

In the table below the rankings obtained from the different informed multi-model sensitivity
analysis techniques when applied to the “sand pack” sample for oil relative permeability are

summarized:

Multi-model informed statistical moments-
based sensitivity analysis of the “sand
pack” sample for oil relative permeability

Multi-model informed variance-based
sensitivity analysis of the “sand pack” sample
for oil relative permeability

Ranking according | Ranking according
to to
RAMAEij RAMAVL.j

Ranking according to

R multimodel
Sfi

Ranking according to

RStimultlmodel

x3:E2 (10.11) x3: E3 (48.24)

x3: I3 (5.96)

x3: 13 (13.98)

x3:52; (1.96)

x3: 83, (6.35)

x2: M2 (0.24) x2: M2 (1.54)

x,:E, (60.17)

xg: L, (15.08)

x,: E, (49.97)

x¢: Lo (12.51)

Xo: Sor (14.46)

Xo: Sor (11.54)

X1: koo (5.98)

Xq: kO,TO (452)

Xy Swi (469)

X! Swi (303)

xs: M, (0.28)

xs: M, (0.21)

x4: B, (0.12)

x4: B, (0.093)

x%: B2 (0.20) x2: B2 (1.43)

x2:S2;(0.17) x2: 52 (1.39)

x3: N, (0.0078)

x3: N, (0.0057)

x5: S (0.090) x5: 5L (0.93)

x3: Sk (0.050) x2Sk (0.86)

xL: N2 (0.045) xk: N2 (0.84)
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D2: “BEREA SANDSTONE” SAMPLE

D2.1: MULTI-MODEL, INFORMED STATISTICAL MOMENTS-BASED SENSITIVITY
ANALYSIS

POSTERIOR MODELS PROBABILITIES

e w!=0.05

e w?=0235

e wl=06

VARIABLE INPUT FACTORS:

The models variable input factors are expressed in the form:

J_ o v oad
xi - (xi,min , xi,max)

Where xij represents the it variable input factor of the j** model, and the values in the brackets
define its 95% confidence limits.

o xl:k% =(0.779; 0.783)
e x1:5,; =(0.39; 0.45)

e x1:N,=(18; 2.6)

e x}:S, =(032; 0.36)

o x%: k% =(0.779; 0.783)
e x%:5,; = (0.39; 0.45)

e x2:B, = (1.11; 1.44)

e xZ:M,=(0.89; 1.81)

e x2:5, =(0.32; 0.36)

o x3: k% =(0.779; 0.783)
e x3:S5,; =(0.39; 0.45)
e x3:L,=(3.08; 3.54)
e x3:E,=(1.14; 1.59)
e x3:T,=(0.58; 4.29)
e x3:5, =(032; 0.36)
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In the figure below, the unconditional single-model and multi-model statistical moments are
reported for the “Berea sandstone” sample, for oil relative permeability:
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Figure 105: single-model and multi-model unconditional output statistics of the relative permeability models
conditional to the “Berea sandstone” scenario for oil relative permeability
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In the figures below, the multi-model and single-model statistical moments-based sensitivity
indices informed to the “Berea sandstone” sample for oil relative permeability are reported:
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Figure 106: multi-model and single-model informed AMAE sensitivity indices of the “Berea sandstone” sample for oil
relative permeability
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multi-m. AMAV of Corey input factors for oil single-m. AMAV of Corey input factors for oil
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Figure 107: multi-model and single-model informed AMAYV sensitivity indices of the “Berea sandstone” sample for oil
relative permeability
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multi-m. AMASKk of Corey input factors for oil

single-m. AMASk of Corey input factors for oil
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Figure 108: multi-model and single-model informed AMASk sensitivity indices of the “Berea sandstone” sample for oil
relative permeability
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multi-m. AMAK of Corey input factors for oil single-m. AMAK of Corey model input factors for oil
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Figure 109: multi-model and single-model informed AMAK sensitivity indices of the “Berea sandstone” sample for oil
relative permeability
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The ranking of the 15 variable input factors xij (4 belonging to Corey model, 5 to Chierici model
and 6 to LET model) is determined calculating and sorting the two ranking indices:

R Sw,max Jj
RAMAEL.J - ZSw,min AMAE;

- _ vSwmax Jj
RAMAVL.] - st,min AMAV;

For the multi-model statistical moments-based informed global sensitivity analysis of the “Berea
sandstone” sample for oil relative permeability, the resulting rankings are:

Input factors belonging to Corey model

Input factors belonging to Chierici model

Input factors belonging to LET model

Ranking according to
R

AMAE]

Ranking according to
R

AMAv/

: 53, (40.10)

x3:83,(15.93)

: S2.(26.62)

x2: M2 (14.43) : M2 (25.75)

x3: 52, (13.87)

x3: BZ (10.69) x3: L3 (25.02)
x3: 5% (9.95) x3: E3 (24.69)
x3: NE (9.44) x%: B2 (22.41)

x3: L3 (8.30)

x3: Sk (7.98)

.S (8.77)

x3: E3 (6.54) x3: N (8.68)

: St (7.51)
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D2.2: MULTI-MODEL, INFORMED VARIANCE-BASED SENSITIVITY ANALYSIS

POSTERIOR MODELS PROBABILITIES

e w!=0.05

e w?=0235

e wl=06

VARIABLE INPUT FACTORS:

The models variable input factors are expressed in the form:

Where xij represents the i variable input factor of the j** model, and the values in the brackets
define its 95% confidence limits.

o x.:k% = (0.779; 0.783)
o x,: S, = (0.39; 0.45)

e x3:N,=(18; 2.6)

o x,:B,=(111; 1.44)

o x5:M,=(0.89; 1.81)

o x¢ L, =(3.08; 3.54)

e x,:E,=(114; 1.59)

o xg: T, =(0.58; 4.29)

o x9:Sor = (0.32; 0.36)

In the figures below, the single-model and multi-model first order and total order variance-based
sensitivity indices informed to the “Berea sandstone” sample for oil relative permeability are
reported:
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Figure 110: first order single-model and multi-model informed variance-based sensitivity indices of the “Berea
sandstone” sample for oil relative permeability
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Figure 111: total order single-model and multi-model informed variance-based sensitivity indices of the “Berea
sandstone” sample for oil relative permeability

The ranking of the nine variable input factors x; is determined calculating and sorting the two

ranking indices:

S Itimodel
R . — w,max mu
Sfimultlmodel st,min fl
S Itimodel
R . — w,max t‘mu
Stlmultlmodel st,min i
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For the variance-based informed global sensitivity analysis of the “Berea sandstone” scenario for
oil relative permeability, the resulting rankings are:

Ranking according to | Ranking according to
Rsf}nultimodel RStimultimodel
| sen oo | wn e |
X9t Sor (29.14) X9t Sor (25.33)
X3: Sy (26.19) X3: Sy (25.16)
xs5: M, (6.84) xs5: M, (12.53)
x3: N, (4.58) x3: N, (4.62)
Xe: Lo (1.45) x4: B, (2.54)
x4: B, (1.28) Xe: Lo (1.40)
x7:E, (0.87) x7:E, (0.81)
X1: koo (0.0021) X1: kg o (0.0015)
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D2.3: RECAP

In the table below the rankings obtained from the different informed multi-model sensitivity
analysis techniques, when applied to the “Berea sandstone” sample for oil relative permeability, are

summarized:

Multi-model informed statistical moments-
based sensitivity analysis of the “Berea
sandstone” sample for oil relative
permeability

Multi-model informed variance-based
sensitivity analysis of the “Berea sandstone”
sample for oil relative permeability

Ranking according | Ranking according
to to
RAMAEij RAMAVij

x3: 53, (40.10)

: 53, (15.93)

Ranking according to | Ranking according to

Rsfimultlmodel RSt{nultlmodel

Xo: Sor (29.14) Xo: Sor (25.33)

Xy Swi (2619) Xy Swi (2516)

x2: 52, (26.62) x5: M, (6.84) xs: M, (12.53)
x2: M2 (14.43) xZ: M2 (25.75) x3: N, (4.58) x3: N, (4.62)
x2: 52, (13.87) _ Xg: Lo (1.45) x4: B, (2.54)
x3: B2 (10.69) x3: L3 (25.02) x4: By (1.28) Xe: Lo (1.40)
x3: 8%, (9.95) x3: E2 (24.69) x7: E, (0.87) x7: E, (0.81)
x3: N (9.44) x2: B2 (22.41) x1: Ko o (0.0021) x1: Ko o (0.0015)

x3: I3 (8.30)

x3: 5L (7.98)

:SL.(8.77)

x3: E3 (6.54) x3: NI (8.68)

: St (7.51)
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