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ABSTRACT 
La permeabilità relativa è una proprietà chiave dell’interazione tra roccia e fluido, necessaria per la 
modellazione alla scala del continuo della dinamica dei flussi multifase in mezzi porosi e fratturati. 
La quantificazione dei processi di flusso multifase che avvengono in rocce porose e fratturate ha 
una notevole rilevanza per la gestione e lo sfruttamento economicamente sostenibile di formazioni 
geologiche contenenti petrolio e gas naturale. Attualmente, sono disponibili diverse formulazioni 
empiriche per la caratterizzazione delle curve di permeabilità relativa di acqua e petrolio. La 
struttura di questi modelli è tipicamente guidata da osservazioni sperimentali, argomentazioni 
teoriche e/o concezioni euristiche (procedimenti non rigorosi che consentono di prevedere un 
risultato, ma che dovranno poi essere convalidati). A ciascun modello è associata una serie di 
parametri che sono normalmente stimati attraverso fitting di dati sperimentali, ovvero rispetto alle 
curve di permeabilità relativa disponibili. Una caratterizzazione affidabile delle curve di 
permeabilità relativa, inclusa la corretta quantificazione dell’incertezza, ci consente di valutare le 
prestazioni di un giacimento, prevedere il recupero finale di idrocarburi e studiare l’efficienza delle 
tecniche avanzate di recupero del petrolio. 

In questo saggio, diverse tecniche di analisi di sensitività globale sono applicate in modo rigoroso 
ai modelli di permeabilità relativa di acqua e petrolio più comunemente adottati nell’industria, sia 
per singoli modelli, sia in un contesto multi-modello. L’obiettivo finale del lavoro è indagare come 
la variazione nell’output dei modelli di permeabilità relativa possa essere attribuita alle variazioni 
dei loro fattori di input e alla mancanza di conoscenza sulla struttura/formato dei modelli in scenari 
non informati (in cui nessuna informazione è disponibile a priori) nonché in scenari informati. I 
risultati ottenuti dai diversi metodi di analisi di sensitività vengono analizzati e discussi 
concentrandosi sulle loro eventuali concordanze e discordanze. 

La tecnica dell’analisi di sensitività viene utilizzata sempre più frequentemente nell’ambito della 
modellazione ambientale per diversi scopi, tra cui la valutazione dell’incertezza, la calibrazione di 
modelli, la diagnostica dei modelli, l’analisi del controllo dominante e la sua funzione di supporto 
a un solido processo decisionale. Da un punto di vista pratico i risultati ottenuti in questo saggio 
puntano a guidare ulteriori azioni quali: ridurre l’incertezza dei parametri selezionati come i più 
rilevanti, programmare l’investimento di risorse dedicate all’acquisizione di dati più affidabili e 
guidare le attività di calibrazione dei modelli. Inoltre, l’analisi di sensitività offre anche spunti utili 
per la semplificazione dei modelli, per esempio, permettendo di identificare i parametri di input che 
hanno effetto trascurabile sull’output in esame. L’applicazione di numerose tecniche di analisi di 
sensitività mostra infine la necessità di non fare affidamento indiscriminatamente su un solo metodo 
di analisi. 

  



 

ABSTRACT 
Relative permeabilities are key rock-fluid properties, required for continuum-scale modelling of 
multiphase flow dynamics in porous and fractured media. Quantification of multi-phase flow 
processes taking place in natural porous and fractured rocks has a remarkable relevance to 
economically sustainable management and viable development of oil and gas-bearing geologic 
formations. Several empirical formulations are available to characterize observed water-oil relative 
permeability curves. The structure of these models is typically driven by experimental observations, 
theoretical arguments and/or heuristic concepts. Each model is associated with a set of parameters 
which are usually estimated through fits against experiments, id est, against available relative 
permeability curves. A reliable characterization of relative permeabilities, including proper 
quantification of uncertainty, enables us to assess reservoir performance, forecast ultimate oil 
recovery, and investigate the efficiency of enhanced oil recovery techniques. 

In this essay, several global sensitivity analysis techniques are rigorously performed on the most 
widely adopted water-oil relative permeability models in the industry, both in a single-model and 
in a multi-model context. The ultimate goal of the work is investigating how the variation in the 
output of the relative permeability models can be attributed to the variations of their input factors 
and to the lack of knowledge about the models’ structure/format in uninformed scenarios (no 
previous knowledge is available) as well as in informed scenarios. The outcomes of the different 
sensitivity analysis methods are analysed and discussed, focusing on eventual concordances and 
discordances. 

Sensitivity analysis is increasingly being used in environmental modelling for a variety of purposes, 
including uncertainty assessment, model calibration and diagnostic evaluation, dominant control 
analysis and robust decision-making. From a practical point of view, the results obtained in this 
essay aim to guide further actions such as: reducing the uncertainty of parameters selected as more 
relevant, guiding investment of resources dedicated to acquiring more reliable data and guiding 
model calibration activities. Furthermore, sensitivity analysis also offers insights to guide model 
simplification, for example, by identifying model input parameters that have negligible effects on 
a target output. The application of many different sensitivity analysis techniques finally shows the 
need not to rely indiscriminately on just one sensitivity analysis method. 
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1. INTRODUCTION 

1.1. THE SENSITIVITY ANALYSIS OF A MODEL OR OF A 
GROUP OF MODELS  

1.1.1. WHAT IS SENSITIVITY ANALYSIS 

Generally speaking, sensitivity analysis is a broad and multifaced collection of methods whose 
purpose is assisting the qualitative and quantitative characterization of the relevance of diverse 
model inputs affected by uncertainty with respect to a target output. 

The main subject of sensitivity analysis is the study of how the uncertainty in the output of a 
mathematical model or system of models can be divided and allocated to the different sources of 
uncertainty belonging to its inputs. The first and more common source of uncertainty in the inputs 
consists of the non-deterministic knowledge of the model parameters value, so sensitivity analysis 
investigates how the variability of the output of a model can be attributed to variations of its input 
factors (Pianosi, et al., 2016). Furthermore, the quality and amount of data available in many 
practical situations justify the interpretation of the system under investigation through a collection 
of many interpretative models, leading to the second source of uncertainty: the uncertainty about 
the model structure/format. These two sources of uncertainty are combined when the parameters 
associated with each one of the different considered models are affected by uncertainty (Dell'Oca, 
Riva, & Guadagnini, 2020). 
Accordingly, sensitivity analysis can be performed on any model or group of models describing the 
same phenomenon, when one or more of their input parameters are affected by uncertainty. 

 
Figure 1: example of sensitivity analysis of a flood inundation model 

  available to evaluate it for any given combination of input factor
values.

2.2. Types of Sensitivity Analysis

Sensitivity analysis investigates how the variation in the output
y can be attributed to variations in the different input factors x1, x2,
…, xM . Typical questions addressed by SA are: What input factors
cause the largest variation in the output? Is there any factor whose
variability has a negligible effect on the output? Are there in-
teractions that amplify or dampen the variability induced by indi-
vidual factors? We can distinguish different types of sensitivity
analysis depending on how these questions are formulated and
addressed.

2.2.1. Local and Global SA
Local sensitivity analysis considers the output variability against

variations of an input factors around a specific value x, while global
sensitivity analysis (or GSA) considers variations within the entire
space of variability of the input factors. The application of local SA
obviously requires the user to specify a nominal value x for the
input factors. While GSA overcomes this possible limitation, it still
requires specifying the input variability space X . When the latter is
poorly known, the conclusions drawn from GSA should be taken
with care.

2.2.2. Quantitative and Qualitative SA
We use the term quantitative SA to refer to methods where each

input factor is associated with a quantitative and reproducible
evaluation of its relative influence, normally through a set of
sensitivity indices (or ‘importance measures’). In qualitative SA,
instead, sensitivity is assessed qualitatively by visual inspection of
model predictions or by specific visualization tools like, for
instance, tornado plots (e.g. Howard,1988; Powell and Baker, 1992),
scatter (or dotty) plots (e.g. Beven, 1993; Kleijnen and Helton,
1999a) or representations of the posterior distributions of the
input factors (e.g. Freer et al., 1996, see also Section 3.4 and
Appendix A). Often such visual tools are used complementary to a

more quantitative analysis.

2.2.3. One-At-a-Time (OAT) and All-At-a-Time (AAT)
Another distinction often made is between ‘One-[factor]-At-a-

Time’ (OAT) methods and what we propose to call ‘All-[factors]-At-
a-Time’ (AAT) methods. This distinction refers to the sampling
strategy used to estimate the sensitivity indices. In fact, in general,
sensitivity indices cannot be computed analytically due to the
complexity of the inputeoutput relationship of Eq. (1) and thus
they are numerically approximated from a sample of input factors
and associated output evaluations (sampling-based SA fromnowon,
see also Fig. 2). The distinction between OAT and AAT methods is
based on the approach adopted to select input samples.
Specifically:

! In OAT methods, output variations are induced by varying one
input factor at a time, while keeping all others fixed.

! In AATmethods, output variations are induced by varying all the
input factors simultaneously, and therefore the sensitivity to
each factor considers the direct influence of that factor as well as
the joint influence due to interactions.

While local SA typically uses OAT sampling, global SA can use
either OAT or AAT strategies. In general, AAT methods provide a
better characterization of interactions between input factors, and
some of them (for instance, the variance-based methods described
in Section 3.5) allow the user to analyse interactions between
specific combinations (pairs, triples, etc.) of factors. OAT methods
do not provide such detailed insights although some methods, for
instance the EET described in Section 3.2, can give an indication on
whether interactions matter or not. The drawback of AAT methods
is that they typically require more extensive sampling and there-
fore a higher number of model evaluations (see further discussion
in Sections 4.5 and 4.6).

2.2.4. Purposes (settings) of SA
Following Saltelli et al. (2008), we distinguish the following

three purposes (or ‘settings’ in their terminology):

Fig. 1. Example of input factors and output definition for the SA of a (dynamic) flood inundation model.

F. Pianosi et al. / Environmental Modelling & Software 79 (2016) 214e232216
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1.1.2. CONCEPTUALIZATION: DEFINITION OF MODEL, INPUT FACTORS 
AND OUTPUTS 

In this essay the term model will be used to refer to the diverse formulations available for the 
quantification of water-oil relative permeabilities (see chapter 3 for details). An input factor is any 
element that can be changed before the model execution, the output is what is obtained after the 
model execution. Examples of input factors are the parameters appearing in the model equation. 

Given the above definitions, one can always resort to the general formula: 

𝑦 = 𝑔(𝒙) = 𝑔(𝑥!, 𝑥", … , 𝑥#)	 	 	 	 	 	 	 	 								(1.1)	

Where 𝑦 is the output, 𝑔 is the model response function and 𝒙 = [𝑥!, 𝑥", … , 𝑥#] is the vector of the 
input factors, which belongs to the input variability space 𝑿 = [𝑋!, 𝑋", … , 𝑋#], where the terms 
𝑋$ = [𝑥$,#$&	, 𝑥$,#'(] define the totality of the values which can be assumed by the input factors. 

For simplicity, the output of a model obtained adopting a certain input factors vector 𝒙 will be 
denoted as 𝑦(𝒙). 

1.1.3. PURPOSE OF THE SENSITIVITY ANALYSIS OF A MODEL 

Performing the sensitivity analysis of a model (or set of models) can be useful for a range of 
purposes (Pianosi, et al., 2016), (Saltelli, 2002): 

• Testing the robustness of the model results in presence of uncertainty. 
• Improving the understanding of the relationships between the input and output variables. 
• Reducing the uncertainty through the identification of the model inputs that cause significant 

uncertainty in the output. These inputs should be made the focus of the attention in order to 
improve the model robustness. 

• Looking for errors in the model, by encountering unexpected relationships between inputs and 
outputs. 

• Simplifying the model, by fixing the model inputs which have negligible effect on the output. 
• Identifying important relationships between observations, model inputs, and predictions, 

leading to the development of better models. 

This broad variety of uses of the sensitivity analysis can be summarized in three ultimate goals: 

1) Ranking (or factor prioritization): sorting of the input factors (𝑥1, 𝑥2, … , 𝑥𝑚) according to their 
relative contribution to the output variability. 

2) Screening (or factor fixing): identification of the input factors, if any, which have negligible 
influence on the output variability and which can therefore be fixed. 

3) Mapping: determination of the regions of the input variability space that produce significant 
(extreme) output values. 

Sensitivity analysis is key to assist understanding and improvement of models, aiming at rendering 
the dynamics of any phenomenon or system. The need for a proper sensitivity analysis is 
exacerbated by the increasing complexity of conceptual models, in terms of model formulation and 
associated parametrization. The increasing complexity of the models is in turn sustained by the 
increased knowledge of the described phenomena and by the exponentially increasing 
computational power, available for numerical model simulations (Dell'Oca, Riva, & Guadagnini, 
2020), (Ye & Dai, 2015). 
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1.1.4. TYPES OF SENSITIVITY ANALYSIS 

In the previous paragraph, the typical questions addressed by sensitivity analysis have been 
presented. Different types of sensitivity analysis can be distinguished according on how these 
questions are formulated and answered. The different sensitivity analysis methods can be classified 
as follows (Pianosi, et al., 2016), (Saltelli, 2002): 

• Local and global sensitivity analysis: local sensitivity analysis considers the output variability 
against variations of the input factors around a specific nominal value 𝒙1 = [𝑥!222, 𝑥"222, … , 𝑥#2222], 
while global sensitivity analysis considers variations of the input factors within their entire 
input variability space. Local sensitivity analysis is always used in combination with parameters 
estimation techniques, which provide the vector 𝒙1. 

• Quantitative and qualitative sensitivity analysis: quantitative sensitivity analysis refers to 
methods where each input factor is associated with a quantitative and reproducible evaluation 
of its relative influence, normally thorough a set of sensitivity indices. In qualitative sensitivity 
analysis, instead, sensitivity is assessed by visual inspection of model output’s predictions. 
Often such visual tools are used complementary to more quantitative measurements. 

• One-factor-at-a-time and all-factors-at-a-time sensitivity analysis: this distinction refers to the 
sampling strategy adopted to estimate the sensitivity indices. In fact, in general, sensitivity 
indices cannot be computed analytically due to the complexity of the input-output relationship, 
and thus they are numerically approximated from a sample of input factors and associated 
output evaluations. In one-factor-at-a-time methods, output variations are induced by varying 
one input factor at a time, while keeping the other fixed; in all-factors-at-a-time methods, 
output variations are induced by varying all the input factors simultaneously, and therefore the 
sensitivity to each input factor considers the direct influence of that factor as well as the joint 
influence due to interactions with other input factors. 

The particular sensitivity analysis methodologies that are implemented and run for the purposes of 
the essay will be discussed later. All the sensitivity analysis methods implemented in the course of 
this work are so-called sampling-based methods, which proceed through these three logical steps 
(Pianosi, et al., 2016): 

1) Sampling of the input factors. 

2) Numerical evaluation of the model. 

3) Processing of the results. 
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Figure 2: the three basic steps of sampling-based sensitivity analysis 

  ! Ranking (or Factor Priorization) aims at generating the ranking of
the input factors x1, x2,…, xM according to their relative contri-
bution to the output variability.

! Screening (or Factor Fixing) aims at identifying the input factors,
if any, which have a negligible influence on the output
variability.

! Mapping aims at determining the region of the input variability
space that produces significant, e.g. extreme, output values.

The purpose of SA defines the ultimate goal of the analysis. It
therefore guides the choice of the appropriate SA method since
different methods are better suited to address different questions.
Although SA is most commonly used for the three purposes above,
our list is not exhaustive and other SA settings have been proposed.
For instance the direction (or sign) of change is a question that can be
addressed by SA (e.g. Anderson et al. (2014)). Another question is
the presence of interactions between input factors. These aspects
will be further discussed in Section 3. In the remainder of this
Section, instead, we will discuss the links between SA and other
relatedmethods that can support the identification and assessment
of environmental models.

2.3. SA and uncertainty analysis

When used for uncertainty assessment of numerical models,
Sensitivity Analysis, and in particular global SA (GSA), is closely
related to Uncertainty Analysis. Some authors (e.g. Saltelli et al.,
2008), suggest that the discrimination is that UA focuses on
quantifying the uncertainty in the output of the model, while GSA
focuses on apportioning output uncertainty to the different sources
of uncertainty (input factors). While different in focus and objec-
tives, UA and GSA often use similar mathematical techniques. The
‘forward’ propagation of uncertainty by Monte Carlo simulation,
which is commonly employed in many UA methodologies (e.g.
Vrugt et al., 2009 or Beven and Freer, 2001) is also used to perform
the initial steps of sampling-based GSA (Fig. 2). Some UA and GSA
methods have been developed in close relation to each other: for
instance the GLUE strategy for uncertainty analysis (Beven and

Freer, 2001) was derived from the basic idea of Regional Sensi-
tivity Analysis (see Section 3.4). In practice, GSA and UA often offer a
valuable complement to each other: when performing GSA, UA
should be used to verify that the output variability captured by
sensitivity indices falls within the range of ‘acceptable’ model
behaviour (see further discussion in Section 4.3); conversely, dur-
ing UA, the estimation of sensitivity indices adds little computing
effort while offering potentially valuable extra insights.

2.4. SA and model calibration

Sensitivity Analysis is also closely connected to the process of
model calibration. By ‘model calibration’wemean here the process
of estimating the model parameters bymaximizing the model fit to
(or at least consistency with) observations. SA can be used to
support and complement a model calibration exercise by providing
insights on how variations in the uncertain parameters (the input
factors x) map onto variations of the performance metric (the
output y) thatmeasures themodel fit.When an ‘optimal’ parameter
estimate x has been found, local SA can be used to investigate the
uncertainty of such a parameterization: high local sensitivity to a
parameter indicates high accuracy of its optimal estimate, while
low sensitivity suggests that the parameter is poorly identified and
uncertainty is large (an example is given by Sorooshian and Farid,
1982). A rigorous mathematical interpretation is available for the
case when the output y is the mean squared error and gradient-
based local sensitivity (see Section 3.1) is an approximation of the
curvature (Hessian matrix) of y evaluated at x (for practical exam-
ples see for instance Sorooshian and Gupta (1985) or the PEST
approach by Moore and Doherty (2005)). Most established
analytical parameter-estimation methods for linear-in-parameters
models (e.g. prediction-error method or generalized least squares
and its variations) provide such local sensitivity information jointly
with optimal parameter estimates (Ljung, 1999). SA is closely
related to Identifiability Analysis (IA), which asks if parameters of a
given model can be (uniquely or adequately) estimated from the
available set of inputs and outputs.

While local SA usually follows the model calibration exercise,

Fig. 2. The three basic steps in sampling-based Sensitivity Analysis, with an example of qualitative or quantitative results produced by the post-processing step.

F. Pianosi et al. / Environmental Modelling & Software 79 (2016) 214e232 217
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1.2. RELATIVE PERMEABILITY: AN OVERVIEW 

1.2.1. THE PERMEABILITY OF A POROUS MEDIUM 

Permeability is the property of the porous medium that measures the capacity and the ability of the 
formation to transmit fluids. The rock permeability, 𝑘, is a subject of great interest because it 
controls the flow rate of the reservoir fluids in the formation. 

In 1855 Henri Darcy, a French hydraulic engineer, oversaw a series of experiments aimed to 
understand the rates of water flow through sand filters and their relationship to pressure loss along 
the flow paths for the water purification purpose. Darcy’s experiments consisted in a vertical steel 
column, with a water inlet at one end and an outlet at the other. The water pressure was controlled 
at the inlet and outlet ends of the column, using two reservoirs with constant water levels ℎ! and 
ℎ" (see Figure 3). The experiments included a series of tests with different packings of river sand, 
and a suite of tests using the same sand pack and column, but for which the inlet and outlet pressures 
were varied. 

 
Figure 3: schematic of Darcy’s experiment of water flow through sand 

During his experiments Darcy developed a fluid flow equation that has since become one of the 
standard tools of petroleum engineering: Darcy’s law (Darcy, 1856), (Whitaker, 1986). 

𝑄 = 𝐾𝐴 )!*)"
+
	 	 	 	 	 	 	 	 	 	 								(1.2)	

With: 

• 𝑄: volumetric flow rate [m3/s]. 
• 𝐾: hydraulic conductivity [m/s]. 
• 𝐴: cross section area [m2]. 
• (ℎ! − ℎ"): height difference [m]. 
• 𝐿: length of the column [m]. 
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Darcy’s law can be extended to the multidimensional case in which the driving force of fluid motion 
is not only gravity, but also pressure, obtaining the equation (Muskat & Meres, 1936): 

𝒒 = − 𝒌
-
(𝛻𝑃 − 𝜌𝒈)	 	 	 	 	 	 	 	 	 								(1.3)	

With: 

• 𝒒: vector of the fluid volumetric flux [m3/m2s]. 
• 𝒌 = 𝐾 -

.𝒈
: permeability tensor (3x3 tensor) [m2]. 

• 𝜇: fluid’s dynamic viscosity [Pa·s]. 
• 𝜌: fluid’s density [kg/m3]. 
• 𝒈: acceleration due to gravity [m/s2]. 
• ∇𝑃: pressure gradient [Pa/m]. 

In this essay only 1-dimensional flow in isotropic porous media will be discussed, hence the terms 
𝑘, 𝑞 and 𝑔 will be referred to as scalars. 

1.2.2. MULTIPHASE EXTENSION OF DARCY’S LAW: THE RELATIVE 
PERMEABILITY 

In 1936 Morris Muskat et al. developed the governing equation for multiphase flow in porous media 
as an extension of Darcy’s law. For each liquid (or gas) phase 𝛼 the extended form of Darcy’s law 
assumes the following form (Muskat, Wyckoff, Botset, & Meres, 1937): 

𝑞0 = − 1#$∙1
-$

(𝛻𝑃0 − 𝜌0 ∙ 𝑔∥)	 	 	 	 	 	 	 	 								(1.4)	

With: 

• 𝑞0: volumetric flux of the phase 𝛼 [m3/m2s].  
• 𝑘40: relative permeability of the phase 𝛼 [-]. 
• 𝑘: absolute permeability of the porous medium [m2]. 
• 𝜇0: dynamic viscosity of the phase 𝛼 [Pa·s]. 
• 𝜌0: density of the phase 𝛼 [kg/m3]. 
• ∇𝑃0: pressure gradient in the phase 𝛼 [Pa/m]. 
• 𝑔∥: gravity acceleration component which is parallel to the flow direction [m/s2]. 

The relative permeability 𝑘40 	of a certain fluid/phase 𝛼 is defined as the ratio of the effective 
permeability of the phase 𝛼 to some base permeability 𝑘, which in this case is the absolute 
permeability of the porous medium (id est, the permeability evaluated considering single-phase 
flow). It follows: 

0 ≤ 𝑘40 ≤ 1	 (1.5)	

In this essay only the two-phase mixture of water and oil will be considered, and the corresponding 
relative permeabilities of the two fluids will be referred to as 𝑘45 (for water) and 𝑘46 (for oil). 
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Figure 4: example of experimental measurements of water-oil relative permeabilities 

2. SENSITIVITY ANALYSIS: METHODOLOGIES AND 
WORKFLOW 

In this chapter the different sensitivity analysis methods which are adopted and implemented for 
the purpose of this essay are presented. Each method is discussed, focusing on the underlying 
concept, the assumptions, the specific purpose that the method can address, the mathematical 
workflow when applied to a model (or group of models) and the computational complexity. 

2.1. SINGLE-MODEL, UNINFORMED GLOBAL SENSITIVITY 
ANALYSIS: METHODOLOGIES AND WORKFLOW 

Single-model uninformed global sensitivity analysis investigates how the uncertainty in a defined 
model output 𝑦 can be attributed to variations of its input variable factors 𝑥$ within their entire 
variability space. For this reason, the global uninformed approach is particularly useful and 
meaningful for the preliminary study of models, when no previous knowledge of the input factors 
(coming from experimental measurements or inverse modelling techniques) is available. 

The single-model uninformed global sensitivity analysis techniques which are considered and used 
in this essay are: 

• Multiple start perturbation method sensitivity analysis. 
• Statistical moments-based (AMA and Sobol) sensitivity analysis. 
• Cumulative probability density function-based (PAWN) sensitivity analysis. 
• Variogram-based (VARS) sensitivity analysis. 

2.1.1. MULTIPLE START PERTURBATION METHOD SENSITIVITY 
ANALYSIS 

The simplest type of sensitivity analysis is the “perturbation and derivatives” method, which is 
based on the use of the partial derivatives evaluated at nominal values of the input variable factors 
as measurements of the output sensitivity (Devenish, Francis, Johnson, Sparks, & Thomson, 2012), 
(Paton, Maier, & Dandy, 2013), (Pianosi, et al., 2016): 

𝑆$ = L78((!,…,	(%,…,	(&)
7(%

L
(%,()&%(*+

	 	 	 	 	 	 	 	 								(2.1)	

SAND-PACK EXPERIMENTS

Steady-State imbibition relative permeabilities (a) and (b) 
versus water saturation for the Sand-pack experiments. 

roKrwK
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Where 𝑆$ is the sensitivity index with respect to the variable input factor 𝑥$ and 𝑦 = 𝑦(𝒙) is the 
model output. In the presented sensitivity analysis implementation partial derivatives are 
approximated by finite differences: 

L78
7(%
L
(%
~ L8((!,…,	(%=∆%,…,	(&)*8((!,…,	(%,…,	(&)

∆%
L	 	 	 	 	 	 								(2.2)	

Where ∆$ is a small and constant fraction of the variability range of 𝑥$: 

∆$=
?%
!@@@

	 	 	 	 	 	 	 	 	 	 								(2.3)	

This method only considers the local response of the model in the surroundings of the adopted input 
factors values and is therefore not suitable for a global sensitivity analysis. 

A global extension of the perturbation approach is the “multiple start perturbation method”, also 
called “Morris method” or “elementary effects test”. According to this method, each sensitivity 
index 𝑆$ is evaluated not by a single partial derivative with respect to 𝑥$, but by averaging a (large) 
number 𝑟 of partial derivatives which are evaluated for different variable input factors combinations 
(Morris, 1991), (Saltelli, et al., 2008), (Pianosi, et al., 2016): 

𝑆$ =
!
4
∑ Q

8A(!
, ,…,	(%

,=∆%,… ,(&
, B*8A(!

, ,…,	(%
,,…,	(&

, B

∆%
Q4

CD! = !
4
∑ 𝐸𝐸$

C4
CD! 	 	 	 	 								(2.4)	

Each partial derivative evaluation is called “elementary effect”, EE. Besides the above sensitivity 
measure, also the standard deviation of the elementary effects is computed: 

𝑆𝐷$ = 𝑠𝑡𝑑𝑣(𝐸𝐸$!, 𝐸𝐸$", … , 𝐸𝐸$4)	 	 	 	 	 	 	 								(2.5)	

The standard deviation 𝑆𝐷$ provides information on the degree of interaction of the 𝑖E) input factor 
with the others. An input factor interacts with a second input factor when its associated sensitivity 
depends also on the value assumed by the second input factor. A high standard deviation of the 
elementary effects indicates that a factor is interacting with others because its sensitivity changes 
across the variability space. 

According to this method, one sensitivity index 𝑆$ and one standard deviation 𝑆𝐷$ are computed for 
each variable input factor 𝑥$. 

In the presented implementation of the method, the sampling strategy to select the evaluation points 
Y𝑥!

C , … , 𝑥$
C , … , 𝑥#

C Z, 𝑗 = (1,… , 𝑟) simply consists, for each value of 𝑗, in picking random values of 
the input factors in their variability space according to a uniform probability density function: 

 
Figure 5: uniform probability density function 
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For a number 𝑟 high enough the values of 𝑆$ and 𝑆𝐷$ reach convergence and stay constant. The 
computation of the mean (and standard deviation) of the elementary effects of 𝑚 input factors 
require 𝑟(𝑚 + 1) model evaluations, a requisite that is far lower than the other considered global 
sensitivity analysis methods. Because of that, also extremely high values of 𝑟 can be used without 
causing unacceptable computation times. 

The multiple start perturbation method is particularly suitable for screening and for ranking the 
variable input factors. 

2.1.2. STATISTICAL MOMENTS-BASED (AMA and Sobol) SENSITIVITY 
ANALYSIS 

The statistical moments-based sensitivity analysis (Dell'Oca, Riva, & Guadagnini, 2017) studies 
the impact of the variable input factors on the main features of the probability density function of 
the model output, 𝑦. These features are the first four statistical moments: 

• The mean value, 𝐸(𝑦). 
• The variance, 𝑉(𝑦), measuring the spread around the mean of the output probability distribution 

function. 
• The skewness, 𝑆𝑘(𝑦), measuring the asymmetry of the output probability distribution function. 
• The kurtosis, 𝐾(𝑦), measuring the “tailedness” of the output probability distribution function. 

This method can be seen as an extension of Sobol’s analysis (typically referred as variance-based 
sensitivity analysis), where the output variance is taken as the only metric upon which sensitivity 
is quantified (Sobol, 1993). Relying solely on this criterion can provide an incomplete picture of a 
system response to model parameters, also considering that the relative permeability models output 
can be characterized by highly skewed and tailed distributions. The key idea at the basis of the 
statistical moments-based sensitivity analysis is that the joint use of sensitivity indices based on 
four different statistical moments of the model output leads to an improved understanding of the 
way a given uncertain model input can govern main features of the output probability density 
function. In the presented implementation of the method the calculation of the indices relies on 
Monte Carlo simulations of the models (in principle the indices could be calculated analytically). 

Monte Carlo simulation is the key process underlying not only the statistical moments-based 
sensitivity analysis, but also any other sensitivity analysis method which is discussed in this essay, 
except for the multiple start perturbation method. It is therefore appropriate to define inputs, outputs 
and methodology of this procedure as it is applied to the relative permeability models in the 
following chapters. 

The Monte Carlo simulation is a computational algorithm that relies on repeated random sampling 
of a model to obtain the results. For each considered model, the inputs of the Monte Carlo 
simulation consist of 𝑚 (number of variable input factors) input variability spaces 𝑋$ in the form 
[𝑥$,#$&	, 𝑥$,#'(], 𝑖 = (1,… ,𝑚) and a number 𝑛 of required model evaluations. 

The outputs of the Monte Carlo simulation as implemented for the purpose of this essay are two 
matrices: 

• The unconditional output matrix. 
• The conditional output matrix. 

The unconditional output matrix is a (1x𝑛) matrix containing 𝑛 model evaluations obtained by 
considering random values of each variable input factor of the model, picking them from their 
variability space according to a uniform probability density function. In other words, the model 
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outputs contained in the unconditional output matrix are obtained by considering each variable 
input factor of the model as a random variable uniformly distributed in its variability space. 

 
Figure 6: unconditional output matrix 

The conditional output matrix is a (𝑚x𝑛x𝑝) 3-dimensional matrix, and it is structured according to 
the following criteria: 

• The 𝑖E) row,	𝑖 = (1,… ,𝑚), contains model outputs obtained by conditioning the 𝑖E) variable 
input factor (𝑥$) of the model to a single and fixed value, while considering all the other input 
factors as random uniformly distributed variables. This model evaluation is repeated 𝑛 times 
building a complete row. 

• The 34F dimension of the matrix controls the specific value of the conditioned factors: each 
conditioned variable input factor 𝑥$ assumes values which range from 𝑥$,#$& in the cell (𝑖, 𝑗, 1) 
to 𝑥$,#'( in the cell (𝑖, 𝑗, 𝑝). The difference between the value of the conditioned factor 𝑥$ in 
the cell (𝑖, 𝑗, 𝑘+1) and its value in the cell (𝑖, 𝑗, 𝑘) results to be: 
 
𝑥$
($,C,1=!) − 𝑥$

($,C,1) = (%,&*-*(%,&%(
G*!

              (2.6) 

 
Figure 7: conditional output matrix 

Now that the unconditional and conditional output matrices have been defined, the methodology of 
the statistical moments-based sensitivity analysis can be described in detail. 

The conditional output matrix must be further elaborated in order to obtain the matrices of the 
conditional output statistical moments: 𝑬, 𝑽, 𝑺𝒌, 𝑲. These are (𝑝x𝑚) 2-dimensional matrices 
obtained by computing the statistical moments of the conditional output matrix row-by-row, as 
shown in the figure below (where the computation of the matrix 𝑬 is taken as an example): 
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Figure 8: calculation of the mean matrix E of the conditional output 

It should be remembered that the row 𝑖 of any statistical moment matrix (𝑬, 𝑽, 𝑺𝒌, 𝑲) is obtained 
conditioning the variable input factor 𝑥$.  

In the following, the complete 𝑖E) row of the statistical moment matrix (obtained conditioning 𝑥$) 
will be referred to as “conditional mean/variance/(…) with respect to 𝑥$” and as 𝑬(𝑖, : )/	𝑽(𝑖, : )/… 

Once 𝑬, 𝑽, 𝑺𝒌 and 𝑲 are calculated, six sensitivity indices are computed for each variable input 
factor 𝑥$ (Dell'Oca, Riva, & Guadagnini, 2017), (Sobol, 1993): 

• 𝐴𝑀𝐴𝐸 sensitivity index: 
 

𝐴𝑀𝐴𝐸$ = 𝐸(|I(J&K6&F$E$6&'L	6JEGJE)*𝑬($,:)||I(J&K6&F$E$6&'L	6JEGJE|
)             (2.7) 
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The index 𝐴𝑀𝐴𝐸$ quantifies the expected relative change of the output mean value due to the 
variation/conditioning of the input factor 𝑥$. 
 

• 𝐴𝑀𝐴𝑉 sensitivity index: 
 
𝐴𝑀𝐴𝑉$ = 𝐸(|O(J&K6&F$E$6&'L	6JEGJE)*𝑽($,:)||O(J&K6&F$E$6&'L	6JEGJE|

)             (2.8) 

 
The index 𝐴𝑀𝐴𝑉$ quantifies the expected relative change of the output variance due to the 
variation/conditioning of the input factor 𝑥$. 
 

• 𝑆𝑜𝑏𝑜𝑙 first order sensitivity index: 
 

𝑆𝑜𝑏𝑜𝑙$
Q = O(𝑬($,:))

O(J&K6&F$E$6&'L	6JEGJE)
              (2.9) 

 
The index 𝑆𝑜𝑏𝑜𝑙$

Q measures the expected reduction in the output variance that can be obtained 
conditioning the variable input factor 𝑥$. It measures the contribution to the output variance 
from the individual input factors without considering their interactions. The sensitivity index 
𝑆𝑜𝑏𝑜𝑙$

Qis equivalent to the index 𝐴𝑀𝐴𝑉$ only if the conditional variance 𝑽(𝑖, : ) is always (id 
est, for each value of 𝑥$) smaller than or equal to its unconditional counterpart. 
 

• 𝑆𝑜𝑏𝑜𝑙 total order sensitivity index: 
 

𝑆𝑜𝑏𝑜𝑙$E =
I(𝑽~𝒙𝒊)

O(J&K6&F$E$6&'L	6JEGJE)
            (2.10) 

 
The matrix 𝑽~𝒙𝒊 is a (𝑚-1)-dimensional matrix where each cell contains the variance of 𝑛E 
model realizations obtained conditioning all the input variable factors except 𝑥$, which is 
considered a random variable uniformly distributed in its variability space 𝑋$. Each dimension 
of the matrix is made of 𝑝E cells, so as to include any possible combination of conditioned input 
factors given the discretization parameter 𝑝E (𝑝E plays the exact same role of the discretization 
parameter 𝑝 in the Monte Carlo simulations). The index 𝑆𝑜𝑏𝑜𝑙$E describes the relative 
contribution to the variance of the output due to the variability of the input factor 𝑥$  considering 
both its direct effect and its interactions with all the other input factors (which might amplify 
or mitigate the individual effects). 
 

• 𝐴𝑀𝐴𝑆𝑘 sensitivity index: 
 
𝐴𝑀𝐴𝑆𝑘$ = 𝐸(|T1(J&K6&F$E$6&'L	6JEGJE)*𝑺𝒌($,:)||T1(J&K6&F$E$6&'L	6JEGJE|

)          (2.11) 

 
The index 𝐴𝑀𝐴𝑆𝑘$ quantifies the expected relative change of the output skewness due to the 
variation/conditioning of the input factor 𝑥$. 
 

• 𝐴𝑀𝐴𝐾 sensitivity index: 
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𝐴𝑀𝐴𝐾$ = 𝐸(|V(J&K6&F$E$6&'L	6JEGJE)*𝑲($,:)||V(J&K6&F$E$6&'L	6JEGJE|
)           (2.12) 

 
The index 𝐴𝑀𝐴𝐾$ quantifies the expected relative change of the output kurtosis due to the 
variation/conditioning of the input factor 𝑥$. 

These sensitivity indices are particularly suitable for the ranking of the input factors. The Sobol 
total order index is particularly suitable for screening because a value of 0 of the corresponding 
total order index is a necessary and sufficient condition for a factor to be non-influential. 

The Monte Carlo simulation is an extremely demanding process from the computational point of 
view: each simulation requires (𝑚 × 𝑛 × 𝑝) model evaluations and the simulation must be repeated 
many times. It should be noticed that the value of 𝑛 must be extremely high to obtain the necessary 
stability (and accuracy). Because of that, any sensitivity analysis method which relies on Monte 
Carlo simulations requires rather long computation times, and a trade-off between stability of the 
results and code run-time is often necessary. The computation of the matrix 𝑽~𝒙𝒊 is extremely 
demanding as well: it requires o𝑛E × 𝑝E

(#*!)p model evaluations, making the calculation 
exponentially slower when models with many input variable factors are considered.  

 
Figure 9: LET relative permeability model unconditional statistical moments for n=500 realizations (left) and 

n=100,000 realizations (right) 

2.1.3. CUMULATIVE PROBABILITY DENSITY FUNCTION-BASED (PAWN) 
SENSITIVITY ANALYSIS 

This sensitivity analysis technique is statistical moments-independent. It belongs to the family of 
the “density-based” sensitivity analysis: the entire probability distribution of the model output is 
considered rather than its statistical moments only (Pianosi & Wagener, 2015). The methods of this 
family measure sensitivity by estimating the variations that are induced in the output distribution 
when removing the uncertainty about one variable input factor (conditioning the factor). More 
specifically, the sensitivity to the variable input factor 𝑥$ is measured by quantifying the distance 
between the unconditional probability distribution of 𝑦, that is obtained when all inputs vary 
simultaneously, and the conditional distribution, that is obtained varying all inputs but 𝑥$ (id est, 
when 𝑥$ is conditioned). The cumulative probability density function-based approach, in particular, 
characterizes the conditional and unconditional distributions by their cumulative density functions. 
The main advantage of this approach is that the cumulative distribution functions vary between 0 
and 1, regardless of the variation of the model output 𝑦, making the sensitivity indices absolute 
(Pianosi & Wagener, 2015). 

The unconditional and conditional cumulative distribution functions are computed starting from the 
outputs of a Monte-Carlo simulation (unconditional output matrix and conditional output matrix). 
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In the following, the unconditional cumulative distribution function of the model output 𝑦 will be 
denoted by 𝐹(𝑦), and the conditional cumulative distribution function with respect to 𝑥$ (when 𝑥$ 
is conditioned) will be denoted as 𝐹$(𝑦). Since 𝐹$(𝑦) accounts for what happens when the variability 
due to 𝑥$ is removed, its distance from 𝐹(𝑦) provides a measure of the effect of 𝑥$ on 𝑦. The limiting 
case occurs when 𝐹$(𝑦) coincides with 𝐹(𝑦): in this case removing the uncertainty about 𝑥$ does 
not affect the output distribution and it can be concluded that 𝑥$ has no influence on 𝑦. Otherwise, 
if the distance between 𝐹$(𝑦) and 𝐹(𝑦) increases, it means that the influence of 𝑥$ increases as well. 
As a measure of the distance between unconditional and conditional cumulative distribution 
functions, the Kolmogorov-Smirnov statistic is used: 

𝐾𝑆$ = 𝑚𝑎𝑥
8
|𝐹(𝑦) − 𝐹$(𝑦)|	 	 	 	 	 	 	 	 					(2.13)	

As 𝐾𝑆$ depends on the value assumed by 𝑥$, the PAWN sensitivity index 𝑇$ considers a statistic 
over all possible values of 𝑥$. 

According to this method, for each variable input factor (𝑥$) of the considered model, two 
sensitivity indices (PAWN sensitivity indices) are computed: 

𝑇#'(,$ = 𝑚𝑎𝑥
(%

(𝐾𝑆$)	 	 	 	 	 	 	 	 	 					(2.14)	

 

𝑇#XF$'&,$ = 𝑚𝑒𝑑𝑖𝑎𝑛
(%

(𝐾𝑆$)	 	 	 	 	 	 	 	 					(2.15)	

𝑇#'(,$  quantifies the maximum possible sensitivity of the output to 𝑥$, which happens only for a 
precise combination of input factors, while 𝑇#XF$'&,$ is the quantification of the most likely 
sensitivity of the output to the variable input factor 𝑥$. 

These PAWN sensitivity indices are suitable for screening and for ranking the variable input 
factors. The main associated drawback of the method is that it relies on Monte Carlo simulations, 
making it rather time consuming. 

 
Figure 10: unconditional cumulative distribution function of the Corey relative permeability model for water, Sw=0.5 
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2.1.4. VARIOGRAM-BASED (VARS) SENSITIVITY ANALYSIS 

In the VARS framework, the variograms of the model output are interpreted as a comprehensive 
manifestation of sensitivity (Razavi & Gupta, 2016). 

In the field of spatial statistics, a variogram is a function that characterizes the spatial covariance 
structure of a stochastic process. The variogram of a mathematical model is defined as the variance 
of the differences between model output values computed at (a large number of) pairs of points at 
different locations across the input factors space, when these pairs of points are separated by the 
same difference. 

Let 𝒙 = [𝑥!, 𝑥", … , 𝑥#] be a generic vector of variable input factors and the increment  
𝒉 = [ℎ!, ℎ", … , ℎ#] = (𝒙𝑨 − 𝒙𝑩) be the difference between two specific variable input factors 
vectors. The multi-dimensional variogram (𝛾) of the model output 𝑦(𝒙) is defined as: 

𝛾(𝒉) = !
"
𝑉Y𝑦(𝒙 + 𝒉) − 𝑦(𝒙)Z	 	 	 	 	 	 	 	 					(2.16)	

The variogram is only function of the increment h. The relative permeability models respect the 
constant mean assumption, so the variogram can also be defined as: 

𝛾(𝒉) = !
"
𝐸 xY𝑦(𝒙 + 𝒉) − 𝑦(𝒙)Z"y	 	 	 	 	 	 	 					(2.17)	

In order to compute the variogram-based sensitivity indices, in this essay, only mono-dimensional 
variograms are considered, where the increment affects only one variable input factor at a time and 
is of the form: 

𝒉! = (ℎ!, 0, … ,0)	 …	 𝒉# = (0,0, … , ℎ#)	 	 	 	 	 					(2.18)	

The 𝑗E) mono-dimensional increment relative to the 𝑖E) variable input factor (𝑥$) is referred to with 
the term ℎC$ (scalar). The VARS sensitivity analysis of the relative permeability models is, again, 
based on Monte Carlo simulations: the matrices of the unconditional and conditional output of the 
model are needed for the computation of the variograms. This method requires a further input to 
evaluate the increments ℎC$: the conditioned input factors matrix. This matrix (represented in the 
figure below) contains the values at which each parameter is conditioned when computing the 
conditional output matrix, and it is simply built by knowing the input variability space of the model 
and the size (𝑝) of the conditional output matrix. Once all those inputs are defined, for each variable 
input factor the variogram can be calculated. 
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In the figure below it is also shown how the increments are defined from the conditioned input 
factors matrix: 

 
Figure 11: computation of the increments from the conditioned inputs matrix 

By definition, ℎ"$  is two times ℎ!$ , ℎ[$  is three times ℎ!$  and so on. The maximum considered 
increment for the calculation of the variograms corresponds to 50% of the variability range of the 
factors, since it is the maximum meaningful increment for the variogram evaluation. 

The variogram of the output with respect to each input factor is computed according to the formula: 

𝛾$YℎC$Z =
!
"
𝐸z(𝑦$Y𝑥!, … , 𝑥$ + ℎC$ , … , 𝑥#Z − 𝑦$(𝑥!, … , 𝑥$ , … , 𝑥#))"{	 	 	 					(2.19)	

Where 𝑦$ denotes the conditional output with respect to 𝑥$ (the variable input factor 𝑥$ is 
conditioned while the others are random variables) and 𝛾$ denotes its variogram. 
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The figure below shows how the conditional output matrix is used to extract the pairs of points 
z(𝑦$Y𝑥!, … , 𝑥$ + ℎC$ , … , 𝑥#Z		, 𝑦$(𝑥!, … , 𝑥$ , … , 𝑥#)){ which are used to compute the variograms. 

 
Figure 12: computation of the variogram from the conditional output matrix 

The computed variograms are then normalized with respect to the increment ℎ$; in this way, even 
if the different input factors have different variability ranges, the value of ℎ&64#'L$\XF$  always goes 
from 0 to 1, making the different variograms comparable and avoiding penalizing the quantification 
of the effect of factors with smaller variability ranges while computing the (integral) sensitivity 
indices. 

 

 
Figure 13: non-normalized (left) VS normalized (right) variograms of Corey relative permeability model for water 

relative permeability, Sw=0.5 

According to the VARS sensitivity analysis method, for each variable input factor 𝑥$ two sensitivity 
indices are computed: 

𝐼𝑉𝐴𝑅𝑆!@,$ = ∫ o𝛾$Yℎ&64#'L$\XF$ Zp 𝑑ℎ&64#$)()#&% D@."
)()#&% D@ 	 	 	 	 	 					(2.20)	
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𝐼𝑉𝐴𝑅𝑆^@,$ = ∫ o𝛾$Yℎ&64#'L$\XF$ Zp 𝑑ℎ&64#$)()#&% D!
)()#&% D@ 	 	 	 	 	 					(2.21)	

The sensitivity index IVARS!@ is so called because the normalized increment ℎ&64#'L$\XF$ = 0.2 
corresponds to 10% of the input variability space 𝑋$; The sensitivity index IVARS^@ is so called 
because the normalized increment ℎ&64#'L$\XF$ = 1 corresponds to 50% of the input variability 
space 𝑋$. The sensitivity index IVARS!@ is representative of the output sensitivity to small variations 
of the input variable factors (within 10% of the input variability space), while the index IVARS^@ is 
representative of the output sensitivity to large variations of the input factors (within 50% of the 
input variability space). The variogram-based analysis can also study the sensitivity of the output 
against extremely small variations of the input factors, for instance by defining the index 𝐼𝑉𝐴𝑅𝑆@,!: 
in this hypothetical case the variogram-based sensitivity index would tend to be equal to the 
multiple start perturbation method index. In practice it is much more convenient to directly use the 
multiple start perturbation method to study the sensitivity of the output against small variations of 
the input factors. 

Defining: 

𝛤$(𝐻$) = ∫ o𝛾$Yℎ&64#'L$\XF$ Zp 𝑑ℎ&64#$_%
@ 	 	 	 	 	 	 					(2.22)	

We can represent the IVARS (Integrated Variogram Across a Range of Scale) sensitivity indices 
as in the figure below: 

 
Figure 14: IVARS sensitivity indices 

The IVARS sensitivity indices can provide a meaningful measure of the sensitivity of a model 
response to its input factors at different scales. In particular, IVARS-based sensitivity measures are 
normally used to rank the variable input factors according to their relative influence. 

The main drawback of this sensitivity analysis method is its complicated workflow and the fact that 
it is extremely computationally intensive: both the Monte Carlo simulation and the computation of 
the variogram are highly time-consuming processes. 

  

 

under the variogram). Given a scale range varying from zero to Hi for the ith factor, the ‘‘Integrated Vario-
gram,’’ C Hið Þ, is computed as:

C Hið Þ5
ZHi

0

c hið Þ dhi (9)

Figure 3. Illustration of Integrated Variograms Across a Range of Scales (IVARS). The left column (subplots a, c, and e) shows integrated variograms corresponding to the response surfa-
ces in Example 1a, Example 1b, and Example 1c, respectively. The right column (subplots b, d, and f) shows corresponding comparisons between the IVARS metrics and the benchmark
methods.
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2.2. UNINFORMED GLOBAL SENSITIVITY ANALYSIS FOR 
MULTIPLE INTERPRETATIVE MODELS: METHODOLOGIES 
AND WORKFLOW 

The quality and amount of data available in many practical situations justify the interpretation of 
the system under investigation through a collection of alternative interpretative models. This 
follows the observation that there is uncertainty about model structure/format when only empirical 
or semi-empirical interpretative models are available (as happens for the study of relative 
permeability). So, when studying a phenomenon through the simultaneous application of multiple 
models, two distinct sources of uncertainty can be identified (Dell'Oca, Riva, & Guadagnini, 2020), 
(Ye & Dai, 2015): 

• Uncertainty affecting the model structure. 
• Uncertainty affecting the input variable factors of each model. 

In this context, quantification of the influence of these multiple sources of uncertainties on the 
output of interest is key to increase the understanding and confidence on model(s) functioning and 
guide further actions (including, for example, model calibration or collection of new data). The 
multi-model extension of global sensitivity analysis is not only preferable, but necessary when 
model uncertainty exists: identifying important parameters for a single model may be biased in that 
the important parameters identified for a single model may not be important to the processes that 
the models intend to simulate (Dell'Oca, Riva, & Guadagnini, 2020). The goal of this chapter is to 
provide the tools to quantify and allocate the uncertainty of the output obtained by the simultaneous 
application of many models in a completely uninformed scenario. It is appropriate to remind that a 
global uninformed sensitivity analysis is meaningful only if it is carried out when no previous 
knowledge (from experiments or model calibration) is available. 

The multi-model sensitivity analysis techniques which are considered and used in this chapter are: 

• Multi-model statistical moments-based global sensitivity analysis. 
• Multi-model variance-based global sensitivity analysis. 

2.2.1. MULTI-MODEL STATISTICAL MOMENTS-BASED GLOBAL 
SENSITIVITY ANALYSIS 

This multi-model global sensitivity analysis allows investigating the sensitivity of the models 
output through diverse aspects of uncertainty, focusing on various statistical moments of the 
probability density function of the target output (Dell'Oca, Riva, & Guadagnini, 2020). 
Furthermore, it allows discriminating between the contribution to sensitivity due to the lack of 
knowledge in model format and the contribution due to the lack of knowledge of the input factors 
values. The single-model statistical moments-based sensitivity analysis method (see chapter 2.1.2.) 
defines sensitivity in terms of the average variation of the output’s probability density function 
main statistical moments due to the model input factors uncertainty and proposes summary 
sensitivity indices (AMA indices) to quantify the concept. Here the AMA indices are extended to 
embed the effect of uncertainties both in the system model conceptualization and in the models 
input factors. 

In the following, the 𝑞 different models which are considered in a multi-model context are denoted 
as 𝑀C, 𝑗 = (1,… , 𝑞). This analysis examines an unconstrained case, id est, when no data are 
available to constrain input factors uncertainty and to evaluate the relative plausibility of each 
considered model. When prior information is unavailable, equal prior probability (or a-priori model 
weight) 𝑤C is assigned to each model 𝑀C: 
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𝑤! = 𝑤" = … = 𝑤` = 1 𝑞� 	 (2.23)	

This sensitivity analysis method is based on Monte Carlo simulations of the relative permeability 
models: for each considered model 𝑀C a Monte Carlo simulation is performed so as to obtain the 
corresponding unconditional output matrix (𝑢𝑛𝑐𝑜𝑛𝑑_𝑜𝑢𝑡𝑝𝑢𝑡C) and conditional output matrix. The 
conditional output matrices are then elaborated aiming to obtain the conditional statistical moments 
matrices 𝑬C, 𝑽C, 𝑺𝒌C and 𝑲C, 𝑗 = 1,… , 𝑞 (see chapter 2.1.2. for any additional information). 

The unconditional output matrices are used to compute the multi-model unconditional output 
statistics:  

• 𝐸!"#$"%&!'()&$%*' = ∑ 𝑤+{𝐸(𝑢𝑛𝑐𝑜𝑛𝑑_𝑜𝑢𝑡𝑝𝑢𝑡+)},
+-.             (2.24) 

 
• 𝑉!"#$"%&!'()&$%*' = ∑ 𝑤+{𝑉(𝑢𝑛𝑐𝑜𝑛𝑑_𝑜𝑢𝑡𝑝𝑢𝑡+)},

+-. +∑ 𝑤+6[𝐸!"#$"%&!'()&$%*' − 𝐸(𝑢𝑛𝑐𝑜𝑛𝑑_𝑜𝑢𝑡𝑝𝑢𝑡+)]/:,
+-.  

                 (2.25)	
 

• 𝑆𝑘!"#$"%&!'()&$%*' = ∑ 𝑤+ ?𝑆𝑘(𝑢𝑛𝑐𝑜𝑛𝑑_𝑜𝑢𝑡𝑝𝑢𝑡+) @01!"#$"%_$!(3!(
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• 𝐾!"#$"%&!'()&$%*' = ∑ 𝑤+ J𝐾(𝑢𝑛𝑐𝑜𝑛𝑑_𝑜𝑢𝑡𝑝𝑢𝑡+) @0(!"#$"%_$!(3!(
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MB            (2.27) 

Once these multi-model unconditional statistics have been calculated, it is possible to compute the 
sensitivity indices. The multi-model moments‐based sensitivity indices quantify sensitivity by the 
average variation of the first four statistical moments of the output due to conditioning of the 
adopted model and of the variable input factors. These sensitivity indices are structured according 
to two key components: 

• A model‐choice contribution related to the conditioning of the adopted model. 
• An input factor‐choice contribution related to the conditioning of the input factors. 

The sensitivity index corresponding to the variable input factor 𝑥$
C (𝑖E) input factor belonging to 

the model 𝑀C  ) is referred to as 𝐴𝑀𝐴$
C. It should be noticed that different models may have a 

different number of variable input factors. 

According to this method, for each variable input factor belonging to each model, four sensitivity 
indices are defined and calculated: 
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• 𝐴𝑀𝐴𝐸!
" = #!

$0
%&𝐸%&'(&$)%*+!)($,* − 𝐸(𝑢𝑛𝑐𝑜𝑛𝑑_𝑜𝑢𝑡𝑝𝑢𝑡")& + 𝐸(&𝑬"(𝑖, : ) − 𝐸(𝑢𝑛𝑐𝑜𝑛𝑑_𝑜𝑢𝑡𝑝𝑢𝑡")&7 

                (2.28) 
 
With 
 

𝑑- = ;&𝐸%&'(&$
)%*+!)($,*&, 𝐸%&'(&$)%*+!)($,* ≠ 0

1																						, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (2.29) 

 
The first term in the curly brackets is the model-choice contribution, the second is the input 
factor-choice contribution (this statement stays true to all the sensitivity indices below). The 
terms 𝑑O , 𝑑T1 and 𝑑V are calculated analogously to 𝑑I for the sensitivity indices below, 
considering the corresponding statistical moment. 
 

• 𝐴𝑀𝐴𝑉!
" = #!

$1
%&𝑉%&'(&$)%*+!)($,* − 𝑉(𝑢𝑛𝑐𝑜𝑛𝑑_𝑜𝑢𝑡𝑝𝑢𝑡")& + 𝐸(&𝑽"(𝑖, : ) − 𝑉(𝑢𝑛𝑐𝑜𝑛𝑑_𝑜𝑢𝑡𝑝𝑢𝑡")&7 

                (2.30) 
 

• 𝐴𝑀𝐴𝑆𝑘!
" = #!

$23
%&𝑆𝑘%&'(&$)%*+!)($,* − 𝑆𝑘(𝑢𝑛𝑐𝑜𝑛𝑑_𝑜𝑢𝑡𝑝𝑢𝑡")& + 𝐸(&𝑺𝒌"(𝑖, : ) +

−𝑆𝑘(𝑢𝑛𝑐𝑜𝑛𝑑_𝑜𝑢𝑡𝑝𝑢𝑡")&7             (2.31) 
 

• 𝐴𝑀𝐴𝐾!
" = #!

$4
%&𝐾%&'(&$)%*+!)($,* − 𝐾(𝑢𝑛𝑐𝑜𝑛𝑑_𝑜𝑢𝑡𝑝𝑢𝑡")& + 𝐸(&𝑲"(𝑖, : ) − 𝐾(𝑢𝑛𝑐𝑜𝑛𝑑_𝑜𝑢𝑡𝑝𝑢𝑡")&7 

                (2.32) 

These sensitivity indices are particularly suitable for ranking and for screening. 

It is important to observe that, in this multi-model approach, each considered model retains its own 
identity and that different models do not share input factors: even if an input factor appears in more 
than one model its contribution to the output variability changes according to the model to which it 
is considered belonging (the same input factor appearing in two models behaves like two distinct 
input factors). 

2.2.2. MULTI-MODEL VARIANCE-BASED GLOBAL SENSITIVITY 
ANALYSIS 

The variance-based sensitivity analysis methods consider the output variance as the only metric 
upon which sensitivity is quantified. The multi-model variance-based method is an extension of 
Sobol’s sensitivity analysis (in-depth presentation in chapter 2.1.2.): Sobol sensitivity indices are 
defined with consideration of only input factors uncertainty, while multi-model variance-based 
sensitivity analysis is centred on a hierarchical structure of input factors and model uncertainty, 
deriving new global sensitivity indices for multiple models (Ye & Dai, 2015). The multi-model 
variance-based sensitivity indices rely on the concept of model averaging. This (global) analysis 
considers an unconstrained case, id est, when no data are available to constrain input factors 
uncertainty and to evaluate the relative plausibility of each considered model, so equal prior 
probability 𝑤C (or a-priori model weight) is assigned to each model 𝑀C: 

𝑤! = 𝑤" = ⋯ = 𝑤` = 1 𝑞� 	 	 	 	 	 	 	 	 					(2.33)	

This sensitivity analysis method is based on Monte Carlo simulations of the models: for each 
considered model 𝑀C a Monte Carlo simulation is performed intending to obtain the corresponding 



36 

unconditional output matrix (𝑢𝑛𝑐𝑜𝑛𝑑_𝑜𝑢𝑡𝑝𝑢𝑡C) and conditional output matrix. The conditional 
output matrices are then elaborated in order to obtain the statistical moments matrices 𝑬C, 
𝑗 = 1,… , 𝑞. Furthermore, with a focus on the total order effect of the input factors, for each model 
and for each input factor the matrix 𝑽~$

C  must be evaluated (see chapter 2.1.2. for further details). 
Before defining the sensitivity indices, it is important to understand that in this multi-model 
approach the models lose their identity as singular entities: the different models are considered 
acting as a single more complex model. It follows that if a certain input factor appears in more than 
one model, it is anyway considered as one single input variable factor (as opposed to what happens 
for the multi-model statistical moments-based approach). For this reason, the variable input factors 
belonging to this new more complex “hybrid model” must be redefined with respect to their single-
model definition. Because of this behaviour of the variable input factors, each multi-model 
sensitivity index is only associated to the corresponding input factor 𝑥$, not to a specific model. 

The multi-model variance-based sensitivity indices are: 

• Multi-model first order Sobol sensitivity index: 
 

𝑆𝑓$#JLE$#6FXL =
∑ 5,Ob𝑬,($,:)c1
,2!

∑ 5,O(J&K6&F_6JEGJE,)1
,2!

           (2.34) 

 
This sensitivity index takes into account the influence of the variable input factor 𝑥$ under the 
individual models and provides a quantitative assessment of global sensitivity analysis with 
combined effects of uncertain input factors and models. 

• Multi-model total order Sobol sensitivity index: 
 

𝑆𝑡$#JLE$#6FXL =
∑ 5,Ie𝑽~%

, f1
,2!

∑ 5,O(J&K6&F_6JEGJE,)1
,2!

           (2.35) 

 
This total order index considers also the effect of possible interactions between 𝑥$ and the other 
input variable factors. It should be remembered that a variable input factor 𝑥$ interacts with the 
others when its associated sensitivity depends on the value assumed by the other input factors. 

It should be noticed that, if an input factor 𝑥$ does not belong to the model 𝑀C, it follows: 

𝑉z𝑬C(𝑖, : ){ = 𝐸z𝑽~$
C { = 0	 	 	 	 	 	 	 	 					(2.36)	

So, the single-model Sobol (variance-based) sensitivity indices of the model 𝑀C, corresponding to 
an input variable factor from which 𝑀C does not depend, are equal to zero. 

These multi-model sensitivity indices are particularly indicated for ranking and the total order index 
can be used for screening: a value of 0 of the corresponding total order index is a necessary and 
sufficient condition for a factor to be non-influential. 
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2.3. MULTI-MODEL, INFORMED GLOBAL SENSITIVITY 
ANALYSIS: METHODOLOGIES AND WORKFLOW 

The aim of the informed global sensitivity analysis techniques is exactly the same of the standard 
(uninformed) global sensitivity analysis: investigating how the variability in the output 𝑦 can be 
attributed to the uncertainty in the different input variable factors 𝑥$ and to the uncertainty in the 
interpretative model structure 𝑀C (in a multi-model context). The only difference between the two 
approaches is that, while uninformed global sensitivity analysis considers variations within the 
entire space of variability of the input factors according to a uniform probability density function, 
the informed global sensitivity analysis considers the output variability against variations of the 
input factors around a specific reference input factors vector 𝒙1 = [𝑥!222, 𝑥"222, … , 𝑥#2222], which is obtained 
from model calibration or parameters estimation techniques. The informed global approach should 
not be confused with the local sensitivity analysis approach: while in the local techniques the input 
variability space is limited between specific values around the reference input vector 𝒙1, in the 
informed global approach the input factors can vary within their entire variability space, but 
according to a probability density function which properly accounts for the higher probability of 
the input factors to lay close to their nominal (reference) values, rather than far from them. The use 
of an informed approach when performing a sensitivity analysis is not only preferable, but 
necessary, when previous knowledge of the model(s) input variable factors is provided by 
experimental measurements or by any inverse modelling technique: the indiscriminate use of a 
global approach when input factors have been correctly calibrated is not useful and can lead to 
deceiving conclusions. The application of informed global sensitivity analysis requires as extra 
inputs with respect to its unconditional counterpart the user-defined vector of the nominal input 
factors 𝒙1 and the posterior probabilities 𝑤C of the different models 𝑀C (if a multi-model approach 
is adopted). The single-model and multi-model sensitivity analysis techniques described in sections 
2.1. and 2.2. can be applied according to the exact same methodologies for informed global 
sensitivity analysis. 

In this essay only multi-model techniques will be applied for informed sensitivity analysis purposes, 
because of how the models of interest are calibrated in the studied scenarios. The adopted sensitivity 
analysis methodologies are the ones described in chapter 2.2. In the studied cases a posterior 
probability 𝑤C (or a-posteriori model weight) is assigned to each of the considered models 𝑀C 
according to their relative skill to interpret the experimental observations (which is quantified by 
the models’ posterior probabilities conditional to the observations in a maximum-likelihood 
estimation framework). The reference input factors are expressed by intervals (𝑥̅$,#$&, 𝑥̅$,#'() 
associated with their lower and upper limits identifying the Gaussian 95% confidence intervals 
around their estimated value. For each variable input factor 𝑥$, its Gaussian distribution parameters 
(mean 𝜇$ and standard deviation 𝜎$) can be derived from the provided confidence interval: 

𝜇$ =
((̅%,&%(=(̅%,&*-)

"
	 	 	 	 	 	 	 	 	 					(2.37)	

 

𝜎$ =
((̅%,&*-*(̅%,&%()

h
	 	 	 	 	 	 	 	 	 					(2.38)	

According to these hypotheses each variable-input factor, when not conditioned (according to the 
sensitivity analysis workflow described in chapter 2.2.), is considered a random variable with 
Gaussian probability density function. 
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3. WATER-OIL RELATIVE PERMEABILITY MODELS 

The relative permeability 𝑘40 of a certain phase 𝛼 is always a function of the phase saturation, id 
est, of the fraction of the fluid volume which is occupied by the phase 𝛼:  

𝑘40 = 𝑘40(𝑆0)	 	 	 	 	 	 	 	 	 	 								(3.1)	

Because of the definition of the saturation of a phase, for a water-oil binary mixture it follows that: 

𝑆5 + 𝑆6 = 1	 	 	 	 	 	 	 	 	 	 								(3.2)	

Where 𝑆5 is the water saturation and 𝑆6 is the oil saturation. 

In this essay the two-phase relative permeability models which are mainly employed in oil industry 
and for any industrial applications requiring water-oil relative permeability quantifications will be 
considered: the Corey model, the Chierici model, and the LET (Lomeland-Ebeltoft-Thomas) model. 

In order to perform a global sensitivity analysis, for each of the considered models the vector of the 
variable input factors 𝒙 and the input variability space 𝑿 must be defined. While the definition of 
the variable input factors is trivial, the definition of the variability space is not. In fact, some of the 
relative permeability models’ parameters are meant to be evaluated by model calibration starting 
from a set of experimental measurements of water-oil relative permeability. For this reason, their 
value lays in a range which is not limited by any mathematical definition or mathematical constraint 
and could therefore be infinitely wide. Hence, for each of the models, the variability space of each 
input factor is determined by two main criteria: 

• Studying how the value of the considered input factor affects the relative permeability curve 
𝑘4$ = 𝑓(𝒙, 𝑆5) and, accordingly, limiting the variability range of the parameter to the values 
which produce curves that can be considered representative of all the real-case scenarios. 

• Trading-off the variability space of the input factors which can be in conflict (for example, the 
irreducible water saturation 𝑆5$ 	and the residual oil saturation 𝑆64). 

While studying the effect of a certain model input, all the other variable input factors are kept 
constant at the average value defined by their variability space. 

3.1. THE COREY RELATIVE PERMEABILITY MODEL  

The Corey model (Corey, 1954) is usually employed due to its simplicity, the limited amount of 
input data requirements, and the small number of parameters to be estimated. The mathematical 
structure of the model rests on capillary pressure concepts and is widely accepted to be fairly 
accurate for consolidated porous media. The model has also been proposed for unconsolidated 
sands through proper tuning of its parameters. Corey’s equations for wetting (water) and non-
wetting (oil) relative permeability read: 

𝑘45 = 𝑘45@ ( T3*T3%
!*T3%*T)#

)i3 	 	 	 	 	 	 	 	 								(3.3)	

 

𝑘46 = 𝑘46@ (
T)*T)#

!*T3%*T)#
)i) 	 	 	 	 	 	 	 	 								(3.4)	

With: 
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• 𝑘45@ = 𝑘45#'( , 𝑘46@ = 𝑘46#'(: end points of water and oil relative permeability curves. 
• 𝑆5: water saturation. 
• 𝑆6 = (1 − 𝑆5): oil saturation. 
• 𝑆5$: irreducible water saturation, id est the water saturation for which 𝑘45 = 0. 
• 𝑆64: residual oil saturation, id est the oil saturation for which 𝑘46 = 0. 
• 𝑁5 , 𝑁6: parameters of the Corey model to be estimated through model calibration. 

3.1.1. INPUT FACTORS AND VARIABILITY SPACE 

Corey model for water relative permeability is now considered: 

𝑘45 = 𝑘45(𝑆5) = 𝑘45@ ( T3*T3%
!*T3%*T)#

)i3 	 	

Observing the analytical expression of the model it is possible to identify four independent model 
parameters, which are the variable input factors 𝑥$ of the model. 

The goal is now to determine the minimum and maximum value of each parameter, which define 
the Corey model input variability space. The minimum and maximum values of a certain input 
variable 𝑥$ are referred as 𝑥$,#$& and 𝑥$,#'(. Before performing any calculations, some 
considerations can already be made: 

• 𝑥!: 𝑘45@ ; it must be greater than 0 (otherwise, the curve represents a case of complete 
imperviousness to water) and it can be as high as 1 (because of the definition of relative 
permeability). 

• 𝑥":  𝑆5$; it can assume any value between 0 (no irreducible/initial water saturation) and 1 (the 
porous rock is completely full of water which can not be displaced). 

• 𝑥[: 𝑁5; it can assume any value greater than 0 without producing non-sensical relative 
permeability results. 

• 𝑥h:	𝑆64; it can assume any value between 0 (no residual oil) and 1 (the porous rock is completely 
full of oil which can not be displaced). 

• Because of the definition of water and oil saturations there are constraining relationships 
between water saturation 𝑆5, irreducible water saturation 𝑆5$ and residual oil saturation 𝑆64: 

o 𝑆5 ≥ 𝑆5$ 
o 𝑆5 ≤ (1 − 𝑆64) 
o (𝑆5$ + 𝑆64) ≤ 1 

These three conditions must always be satisfied, otherwise, non-sensical relative permeability 
curves will be obtained. It follows that the values of 𝑆5$,#'(, 𝑆64,#'(  and the values of water 
saturation 𝑆5  in which the model can be evaluated must be chosen according to a trade-off: 
having a wider variability range for 𝑆5$ and 𝑆64 leads to a narrower range of acceptable 𝑆5 
values. 

Now the input variability space of each factor can be fixed by trial and error, and the resulting 
output curves can be analysed. If the range of variability of a parameter produces a sufficiently wide 
change in the output (relative permeability curve), the variability space is considered satisfactory 
(id est, representative of the most of real case scenarios) and can be adopted; if not, the range of 
variability is made wider. 
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The adopted input variability space for Corey water relative permeability model is: 

• 𝑘45,#$&@ = 0.1 𝑘45,#'(@ = 1 
• 𝑆5$,#$& = 0 𝑆5$,#'( = 0.35 
• 𝑁5,#$& = 0.1 𝑁5,#'( = 6 
• 𝑆64,#$& = 0  𝑆64,#'( = 0.35 

According to these assumptions, the model can be evaluated in (0.35 ≤ 𝑆5 ≤ 0.65). 

It should be remembered that while studying the effect of a certain model input, all the other 
variable input factors are kept constant at the average value defined by their variability space. 

 
Figure 15: effect of the variable input factors on Corey model for water relative permeability 

A qualitative observation of the resulting water relative permeability curves shows that the input 
factor 𝑁5 has by far the most dramatic effect on the output. It should be noted that, according to 
the assumptions, in the global sensitivity analysis approach the resulting relative permeability curve 
can be consequence of any allowed combination of input variable factors, id est of any input 
variable factors combination laying in the input variability space. 
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The exact same procedure must be repeated in order to study the input variability space of Corey 
model for oil relative permeability. The three considered water-oil relative permeability models 
have a structure for which the relative permeability curves obtained for oil are perfectly symmetrical 
to the ones obtained for water (symmetrical with respect to water saturation 𝑆5), when the same 
input factors values are adopted. For all the considered models the input factors 𝑆5$  and 𝑆64  have 
inverted effects on water and oil relative permeability curves, due to the models’ format. For these 
reasons, the results obtained when studying the input variability space of the models for oil relative 
permeability are simply symmetrical to the ones obtained for water, and the effects of the input 
factors 𝑆5$  and 𝑆64 are inverted with respect to the ones observed for water relative permeability.  

The detailed study of the input variability space of Corey model for oil relative permeability is 
reported in appendix A, section A1. 
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3.2. THE CHIERICI RELATIVE PERMEABILITY MODEL 

The Chierici model (Chierici, 1984) provides a reasonably good match against experimental 
relative permeability curves. It is considered to provide improved approximations at and near the 
initial and end points of these curves when compared against the Corey model and other polynomial 
approximations. The flexibility of the model is mainly due to the possibility of representing concave 
and/or convex relative permeability curves as a function of parameters values. 

𝑘45 = 𝑘45@ 𝑒𝑥𝑝 �−𝐵5 o
T3*T3%
!*T)#*T3

p
*j3

�	 	 	 	 	 	 	 								(3.5)	

 

𝑘46 = 𝑘46@ 𝑒𝑥𝑝 �−𝐵6 o
T3*T3%
!*T)#*T3

p
=j)

�	 	 	 	 	 	 	 								(3.6)	

With: 

• 𝐵5 , 𝐵6, 𝑀5 , 𝑀6: parameters of the Chierici model to be estimated through model calibration. 

3.2.1. INPUT FACTORS AND VARIABILITY SPACE 

𝑘45 = 𝑘45(𝑆5) = 𝑘45@ 𝑒𝑥𝑝 �−𝐵5 o
T3*T3%
!*T)#*T3

p
*j3

�  

Observing the analytical expression of the model it is possible to identify five independent model 
parameters, which are the variable input factors 𝑥$ of the model: 

• 𝑥!: 𝑘45@ . 
• 𝑥":  𝑆5$. 
• 𝑥[: 𝐵5; it can assume any value greater than 0 without producing non-sensical relative 

permeability results. 
• 𝑥h: 𝑀5; it can assume any value greater than 0 without producing non-sensical relative 

permeability results. 
• 𝑥^:	𝑆64. 

The adopted input variability space for Chierici model for water relative permeability is: 

• 𝑘45,#$&@ = 0.1 𝑘45,#'(@ = 1 
• 𝑆5$,#$& = 0 𝑆5$,#'( = 0.35 
• 𝐵5,#$& = 0.1 𝐵5,#'( = 8 
• 𝑀5,#$& = 0.1 𝑀5,#'( = 8 
• 𝑆64,#$& = 0  𝑆64,#'( = 0.35 

According to these assumptions, the model can be evaluated in (0.35 ≤ 𝑆5 ≤ 0.65). 
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Figure 16: effect of the variable input factors on Chierici model for water relative permeability 

The plots above show that all the input variable factors have a really strong effect on the output of 
Chierici model for water relative permeability. For this reason, it is appropriate to avoid any 
statement until a proper quantitative analysis is performed. 

The detailed study of the input variability space of Corey model for oil relative permeability is 
reported in appendix A, section A2. 
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3.3. THE LET RELATIVE PERMEABILITY MODEL 

The LET model (Lomeland, Ebeltoft, & Thomas, 2005) was proposed as a new versatile model. It 
is expressed in the form: 

𝑘45 = 𝑘45@
T3∗

53

T3∗
53=I3(!*T3∗ )63

	 	 	 	 	 	 	 	 								(3.7)	

 

𝑘46 = 𝑘46@
(!*T3∗ )5)

(!*T3∗ )5)=I7(T3∗ )6)
	 	 	 	 	 	 	 	 								(3.8)	

With: 

• 𝑆5∗ =
(T3*T3%)

(!*T3%*T)#)
: normalized water saturation. 

• 𝐿5 , 𝐿6, 𝐸5 , 𝐸6, 𝑇5 , 𝑇6: parameters of the LET model to be estimated through model calibration. 

The values of 𝑇0 and 𝐿0 respectively drive the shape of the lower and upper part of the relative 
permeability curve, while 𝐸0 describes the slope and the elevation of the central portion of the 
curve. As such, the model is designed to include diverse parts of the relative permeability curve to 
capture variable behaviours across the entire water saturation range. The model has been shown to 
provide good interpretation of experimental data over a considerable range of saturations. 

3.3.1. INPUT FACTORS AND VARIABILITY SPACE 

𝑘45 = 𝑘45(𝑆5) = 𝑘45@
T3∗

53

T3∗
53=I3(!*T3∗ )63

  

𝑆5∗ =
T3*T3%

!*T3%*T)#
  

Observing the analytical expression of the model it is possible to identify six independent model 
parameters, which are the variable input factors 𝑥$ of the model: 

• 𝑥!: 𝑘45@ . 
• 𝑥":  𝑆5$. 
• 𝑥[: 𝐿5; the inventors of the LET model suggest considering only values of 𝐿5 ≥ 0.1. Despite 

of that, any value above 0 is mathematically acceptable (it does not produce non-sensical 
relative permeability curves). 

• 𝑥h: 𝐸5; the inventors of the LET model suggest considering only values of 𝐸5 ≥ 0. 
• 𝑥^: 𝑇5; the inventors of the LET model suggest considering only values of 𝑇5 ≥ 0.1. Despite 

of that, any value above 0 is mathematically acceptable. 
• 𝑥l:	𝑆64. 

The adopted input variability space for LET model for water relative permeability is: 

• 𝑘45,#$&@ = 0.1 𝑘45,#'(@ = 1 
• 𝑆5$,#$& = 0 𝑆5$,#'( = 0.35 
• 𝐿5,#$& = 0.05 𝐿5,#'( = 10 
• 𝐸5,#$& = 0.005 𝐸5,#'( = 10 
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• 𝑇5,#$& = 0.05 𝑇5,#'( = 8 
• 𝑆64,#$& = 0  𝑆64,#'( = 0.35 

According to these assumptions, the model can be evaluated in (0.35 ≤ 𝑆5 ≤ 0.65). 

 
Figure 17: effect of the variable input factors on LET model for water relative permeability 

The plots above show that all the input variable factors have an extremely strong effect on the 
output of LET model for water relative permeability. For this reason, it is appropriate to avoid any 
consideration until a proper quantitative analysis is performed. 

The detailed study of the input variability space of Corey model for oil relative permeability is 
reported in appendix A, section A3.  
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4. RESULTS FOR WATER RELATIVE PERMEABILITY 

4.1. SINGLE-MODEL UNINFORMED SCENARIO 

In this section the four single-model global sensitivity analysis techniques presented in chapter 2.1. 
are applied to the three relative permeability models according to the stated assumptions and 
methodologies. The sensitivity indices are computed for 100 different values of water saturation 𝑆5 
between 𝑆5,#$& and 𝑆5,#'( and they are plotted as functions of 𝑆5. The results are presented, and 
their most significant aspects are discussed. The focus is mainly set on the quantitative ranking of 
the variable input factors of each model on the base of their relative importance with respect to the 
output variability. The rankings derived from different sensitivity analysis methods are studied to 
observe possible analogies and/or discordances. Eventually, for each relative permeability model 
the results obtained from the different sensitivity analysis techniques are summarized in a table for 
the sake of an easy visual inspection. 

4.1.1. COREY MODEL 

4.1.1.1. MULTIPLE START PERTURBATION METHOD SENSITIVITY ANALYSIS 

𝑟 = 500,000 (number of elementary effects evaluations)	

In the figure below the multiple start perturbation method sensitivity indices and the corresponding 
standard deviations of the elementary effects are reported as function of water saturation 𝑆5 for 
each of the Corey model input factors: 

 
Figure 18: multiple start perturbation method global sensitivity analysis of Corey model for water relative permeability 

An interesting aspect that can be observed from the sensitivity indices (𝑆$) plots is that the 
sensitivity associated to the input factors 𝑥" and 𝑥[ is fairly constant on the whole water saturation 
domain, while the sensitivity associated to 𝑥! and 𝑥h strongly increases for increasing 𝑆5. 

The standard deviation of the elementary effects 𝑆𝐷$ is an indicator of the interaction of the 𝑖E) 
variable input factor with the others: a high value of 𝑆𝐷$ indicates that the sensitivity of the output 
with respect to 𝑥$ strongly depends on the values assumed by other variable input factors, while a 
value of 𝑆𝐷$ equal to 0 indicates that the sensitivity to 𝑥$ is independent from the values assumed 
by the other variable input factors. From the plots above it can be observed that for high values of 
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water saturation the sensitivity index 𝑆h (relative to the input factor 𝑥h) strongly depends on the 
values assumed by the other factors. 

For the multiple start perturbation method global sensitivity analysis applied to the relative 
permeability models the ranking of the variable input factors is determined by calculating and 
sorting from the highest to the lowest the values of the ranking indices 𝑅T,$: 

𝑅T,$ = ∑ 𝑆$
T3,&*-
T3,&%(

	 	 	 	 	 	 	 	 	 								(4.1)	

In the table below the ranking of the variable input factors of Corey model for water relative 
permeability is reported as obtained from the multiple start perturbation method sensitivity analysis. 
In the brackets, the corresponding ranking indices values are reported in order to quantify the 
difference between the relative importance of the input factors. 

Ranking 
according to 𝑅T,$  

x4: Sor (42.86) 

x2: Swi (28.11) 

x1: k0
rw (26.22) 

x3: Nw (8.14) 

In chapter (3.1.) it was qualitatively observed that the variable input factor 𝑥[ seems to have the 
greatest effect on the model output. It is interesting to observe that, in clear opposition to the 
previous statement, according to the multiple start perturbation method sensitivity analysis 𝑥[ has 
the smallest effect on the output variability. This result can be explained by looking at the 
methodology of this sensitivity analysis technique (see chapter 2.1.1.): the sensitivity indices 𝑆$ are 
numerical approximations of the output partial derivatives with respect to the input factors. This 
means that the sensitivity indices quantify the effect on the output variability only against extremely 
small variations of the variable input factors. This method is completely blind to the effect 
associated to the whole variability space of the input factors. From this analysis it results that small 
variations of the input factor 𝑥[ produce minor variations on the model output, despite the huge 
potential effect of 𝑥[ when considering its entire variability space. On the other hand, small 
variations of 𝑥h can have a strong effect on the output. This sensitivity analysis method is then 
particularly meaningful for the cases in which the variable input factors of a model are meant to be 
experimentally measured, and these measurements are affected by a reasonably small uncertainty: 
in these cases, the analysis successfully quantifies the effect of the uncertainty associated with the 
measurement errors, while considering other sensitivity analysis techniques would probably 
produce deceiving conclusions. It is important to be aware that any uninformed global sensitivity 
analysis technique is a tool for the a-priori study of a model, hence it is applied before any 
experimental measurement is available. If the input factors of the Corey model were hypothetically 
measured/calibrated with a small associated error, it could be stated that the uncertainty associated 
to 𝑥[ is less significant and troublesome than the uncertainty associated to 𝑥h. 
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The exact same procedure is repeated in order to study the sensitivity of Corey model for oil relative 
permeability. As mentioned in the previous section, the results obtained when studying the models 
for oil relative permeability are simply symmetrical to the ones obtained for water, and the effects 
of the input factors 𝑆5$  and 𝑆64 are inverted with respect to the ones observed for water relative 
permeability.  

The detailed multiple start perturbation method global sensitivity analysis of Corey model for oil 
relative permeability is reported in appendix B, section B1.1. 

4.1.1.2. STATISTICAL MOMENTS-BASED SENSITIVITY ANALYSIS 

𝑛 = 30,000	 (number of model evaluations for the AMA indices)	

𝑝 = 50  (number of parameters’ bins for the AMA indices)	

𝑛E = 2,000	 (number of model evaluations for the Sobol total-order index)	

𝑝E = 10	 (number of parameters’ bins for the Sobol total-order index))	

In the figure below the first four statistical moments of the unconditional output (𝑘45) of Corey 
model are reported, id est the statistical moments of the model output when all its input factors are 
random variables uniformly distributed in their input variability space. A residual instability is 
present in the curves due to the limited number of Monte Carlo realizations: increasing 𝑛 the 
amplitude of the oscillations decreases. Despite of that, 𝑛 = 30,000 is an acceptable trade-off 
between accuracy and computation time for the purposes of the sensitivity analysis (adopting the 
described assumptions the computation time is 1255s). 

 
Figure 19: statistical moments of the unconditional output of Corey model for water relative permeability 

The expected value of the unconditional output (water relative permeability 𝑘45), in agreement 
with the model structure, increases for increasing 𝑆5. The unconditional variance of 𝑘45 increases 
for increasing 𝑆5, meaning that the spread around the mean, and hence the associated uncertainty, 
is higher for higher values of 𝑆5. The unconditional skewness of 𝑘45 decreases for increasing 𝑆5, 
indicating that for higher values of 𝑆5 the unconditional probability distribution of 𝑘45 becomes 
less asymmetrical. The unconditional kurtosis of 𝑘45 decreases for increasing 𝑆5, indicating that 
for higher values of 𝑆5 the unconditional probability distribution of 𝑘45 becomes less tailed. 

In the following figure the six statistical moments-based sensitivity indices are plotted as functions 
of water saturation 𝑆5: 
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Figure 20: statistical moments-based sensitivity analysis of Corey model for water relative permeability 

It can be observed that, generally speaking, the instability of the sensitivity indices curves increases 
when considering higher-order statistical moments. The plots above show that in general terms, as 
expected, the effect of a same input factor changes when considering different statistical moments 
of the output. As previously observed, the effect of some input factors is almost constant across all 
the values of 𝑆5 (the curve of 𝐴𝑀𝐴𝐸! is, actually, perfectly horizontal), while the effect of some 
input factors depends strongly on 𝑆5. Comparing the plots of 𝑆𝑜𝑏𝑜𝑙Q and 𝑆𝑜𝑏𝑜𝑙E it can be observed 
that the interactions between the variable input factors can have a profound impact on the sensitivity 
of the output to the input factor 𝑥!. 

For the statistical moments-based global sensitivity analysis of the relative permeability models the 
ranking of the variable input factors is based on the four ranking indices: 

𝑅mjmI,$ = ∑ 𝐴𝑀𝐴𝐸$
T3,&*-
T3,&%(

	 	 	 	 	 	 	 	 								(4.2)	
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𝑅mjmO,$ = ∑ 𝐴𝑀𝐴𝑉$
T3,&*-
T3,&%(

	 	 	 	 	 	 	 	 								(4.3)	

 

𝑅T6n6L	Q$4oE,$ = ∑ 𝑆𝑜𝑏𝑜𝑙$
QT3,&*-

T3,&%(
	 	 	 	 	 	 	 	 								(4.4)	

 

𝑅T6n6L	E6E'L,$ = ∑ 𝑆𝑜𝑏𝑜𝑙$E
T3,&*-
T3,&%(

	 	 	 	 	 	 	 	 								(4.5)	

The ranking index 𝑅mjmI,$ quantifies the effect of the variable input factor 𝑥$ on the expected value 
of the output. The ranking index 𝑅mjmO,$ quantifies the effect on the variance of the output. The 
ranking index 𝑅T6n6L	Q$4oE,$ quantifies the effect on the dispersion of the conditional output mean. 
The ranking index 𝑅T6n6L	E6E'L,$ quantifies both the direct contribution of the variability of 𝑥$ and 
the contribution coming from the interactions between 𝑥$ and the other input factors. The higher 
order statistical moments are not used for ranking purposes, because in general the mean and the 
variance of the output are the main subjects of interest and the most evident manifestations of 
uncertainty. 

From the statistical moments-based sensitivity analysis applied to Corey model for water relative 
permeability the resulting rankings are: 

Ranking according to 
𝑅mjmI,$  

Ranking according to 
𝑅mjmO,$  

Ranking according to 
𝑅T6n6L	Q$4oE,$  

Ranking according 
to 𝑅T6n6L	E6E'L,$ 

x3: Nw (79.29) x3: Nw (69.74) x3: Nw (63.78) x3: Nw (63.61) 

x1: k0
rw (41.32) x1: k0

rw (60.67) x1: k0
rw (17.39) x1: k0

rw (45.00) 

x4: Sor (20.96) x4: Sor (14.18) x4: Sor (6.46) x4: Sor (7.92) 

x2: Swi (19.77) x2: Swi (13.33) x2: Swi (3.12) x2: Swi (4.32) 

The rankings based on these four different indices return the exact same result: in this case these 
four sensitivity indices are equivalent for the ranking purpose. The rankings also show that the 
interactions do not change the relative importance of the input factors. The statistical moments-
based sensitivity analysis technique confirms the qualitative observation made in chapter 3.1: the 
input variable factor 𝑥[ is the most influential on the model output. These rankings are not in 
agreement at all with the ranking obtained from the multiple start perturbation method sensitivity 
analysis. This difference can be explained observing that the statistical moments based-sensitivity 
indices are defined in order to study the variability induced by the input factors, regardless of their 
variation amplitude. This approach is in complete opposition to the multiple start perturbation 
method, and it follows that in general the results coming from the two methods are discordant. 

The detailed statistical moments-based global sensitivity analysis of Corey model for oil relative 
permeability is reported in appendix B, section B1.2. 
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4.1.1.3. CUMULATIVE PROBABILITY DENSITY FUNCTION-BASED SENSITIVITY 
ANALYSIS 

𝑛 = 30,000	 (number of model evaluations)	

𝑝 = 50		 (number of parameters’ bins)	

In the figure below the unconditional cumulative density function of Corey model output is reported 
for water relative permeability, 𝑆5 = 0.5. 

 
Figure 21: cumulative distribution of Corey model unconditional output for water relative permeability, Sw=0.5  

In the figure below the two PAWN sensitivity indices are reported as function of 𝑆5 for each of 
Corey model variable input factors. 

 
Figure 22: cumulative probability density function-based sensitivity analysis of Corey model for water relative 

permeability 

From the sensitivity indices plots it can be observed that the numerical values assumed by the 
sensitivity indices 𝑇#'(,$  are in general significantly larger than the values assumed by the indices 
𝑇#XF$'&,$. This is in accordance with the definition of the two sensitivity indices, which are slightly 
different in their meaning: 𝑇#XF$'&,$ is the quantification of the most likely sensitivity of the output 
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to the variable input factor 𝑥$, while 𝑇#'(,$  quantifies the maximum possible sensitivity of the 
output to 𝑥$, which happens only for a precise combination of input factors. For this reason, 
normally, the index 𝑇#'(,$ is a more conservative measure of sensitivity. Both the sensitivity indices 
related to any of the input factors appear to be strongly dependant on 𝑆5. It is interesting to observe 
that according to the sensitivity index 𝑇#'(,[ the sensitivity to the factor 𝑥[ always decreases for 
increasing 𝑆5, while according to the index 𝑇#XF$'&,[ the sensitivity to 𝑥[ reaches a global 
maximum. 

For the cumulative distribution function-based sensitivity analysis of the relative permeability 
models the ranking of the variable input factors is determined by two indices: 

𝑅p#'(,$ = ∑ 𝑇#'(,$
T3,&*-
T3,&%(

	 	 	 	 	 	 	 	 								(4.6)	

 

𝑅p#XF$'&,$ = ∑ 𝑇#XF$'&,$
T3,&*-
T3,&%(

	 	 	 	 	 	 	 	 								(4.7)	

From the cumulative probability density function-based sensitivity analysis applied to Corey model 
for water relative permeability, the resulting rankings are: 

Ranking according to 
𝑅p#'(,$  

Ranking according to 
𝑅p#XF$'&,$  

x3: Nw (63.97) x3: Nw (33.74) 

x1: k0
rw (43.97) x1: k0

rw (14.27) 

x4: Sor (26.76) x4: Sor (12.08) 

x2: Swi (24.68) x2: Swi (11.27) 

In this case, the rankings resulting from the two indices are equivalent. The rankings obtained from 
the cumulative distribution-based sensitivity analysis are equivalent to the ones obtained from the 
statistical moments-based sensitivity analysis. This is due to the characteristic that these two 
sensitivity analysis methods share: they both study the sensitivity of the model output regardless of 
the input factors variation amplitude. For this exact same reason, these rankings are completely 
different to the one obtained from the multiple start perturbation method sensitivity analysis. 

The detailed cumulative probability density function-based global sensitivity analysis of Corey 
model for oil relative permeability is reported in appendix B, section B1.3. 
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4.1.1.4. VARIOGRAM-BASED SENSITIVITY ANALYSIS 

𝑛 = 30,000	 (number of model evaluations)	

𝑝 = 50		 (number of parameters’ bins)	

In the figure below the normalized variograms of Corey model output conditional to each of the 
model input factors are reported for 𝑆5 = 0.5. 

 
Figure 23: normalized variograms of Corey model conditional output for water relative permeability, Sw=0.5 

In the figures below the IVARS sensitivity indices of Corey model for water relative permeability 
are reported as functions of 𝑆5. 

 
Figure 24: variogram-based sensitivity analysis of Corey model for water relative permeability 

This sensitivity analysis method shows remarkable stability in the calculation of the sensitivity 
indices (even for lower numbers of Monte Carlo realizations), due to the fact that the 𝐼𝑉𝐴𝑅𝑆 
sensitivity indices are integral quantities. From the sensitivity indices plots it can be observed that 
the change of scale of the input factors variations has noticeable effects on their relative importance: 
according to the index 𝐼𝑉𝐴𝑅𝑆^@ the sensitivity of the output to 𝑥! is always greater than the 
sensitivity to 𝑥h, while according to the index 𝐼𝑉𝐴𝑅𝑆!@ there are values of 𝑆5 for which the 
uncertainty associated to 𝑥h is more relevant than the uncertainty associated to 𝑥!. It should be 
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remembered that the index 𝐼𝑉𝐴𝑅𝑆!@ quantifies the sensitivity of the model output to small 
variations of the variable input factors (up to 10% of the input variability space), while the index 
𝐼𝑉𝐴𝑅𝑆^@ quantifies the sensitivity to large variations of the variable input factors (up to 50% of the 
input variability space). Another interesting observation is that according to the index 𝐼𝑉𝐴𝑅𝑆!@ the 
sensitivity to 𝑥[ always decreases for increasing 𝑆5, while according to the index 𝐼𝑉𝐴𝑅𝑆^@ the 
sensitivity to 𝑥[ reaches a global maximum. 

For the variogram-based sensitivity analysis applied to the relative permeability models, the ranking 
of the variable input factors is determined calculating the two indices: 

𝑅qOmrT	!@,$ = ∑ 𝐼𝑉𝐴𝑅𝑆!@,$
T3,&*-
T3,&%(

		 	 	 	 	 	 	 								(4.8)	

 

𝑅qOmrT	^@,$ = ∑ 𝐼𝑉𝐴𝑅𝑆^@,$
T3,&*-
T3,&%(

	 	 	 	 	 	 	 								(4.9)	

From the variogram-based global sensitivity analysis applied to Corey model for water relative 
permeability the resulting rankings are as follows: 

Ranking according to 
𝑅qOmrT	!@,$  

Ranking according to 
𝑅qOmrT	^@,$  

x3: Nw (0.011) x3: Nw (1.13) 

x1: k0
rw (0.0020) x1: k0

rw (0.47) 

x4: Sor (0.0010) x4: Sor (0.16) 

x2: Swi (0.00030) x2: Swi (0.064) 

In this case, the rankings obtained by these two indices are equivalent. This follows the fact that 
even the sensitivity index 𝐼𝑉𝐴𝑅𝑆!@ studies the output variability against rather large variations of 
the variable input factors (10% of their variability space). The rankings obtained from the 
variogram-based sensitivity analysis agree with the rankings obtained from the other methods 
except for the multiple start perturbation method. 

The detailed variogram-based global sensitivity analysis of Corey model for oil relative 
permeability is reported in appendix B, section B1.4. 
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4.1.2. CHIERICI MODEL 

4.1.2.1. MULTIPLE START PERTURBATION METHOD SENSITIVITY ANALYSIS 

𝑟 = 600,000	 (number of elementary effects evaluations)	

The number of evaluations 𝑟 is increased with respect to the number used for the Corey model 
sensitivity analysis, because the more complex a model is, the more unstable the calculated 
sensitivity indices will be (the complexity of a model is related to the number of its input factors). 
The only way to reduce the instability of the sensitivity indices curves is increasing the number of 
model evaluations. Even if this number is significantly high, this sensitivity analysis method is very 
computationally inexpensive, and its execution is remarkably quick (65s). 

 
Figure 25: multiple start perturbation method global sensitivity analysis of Chierici model for water relative 

permeability 

In this case the sensitivity to the input factors 𝑥!, 𝑥" and 𝑥^ varies widely across the considered 
values of water saturation, while the sensitivity to the input factors 𝑥[ and 𝑥h is almost constant and 
much lower in value. From the standard deviation of the elementary effect (𝑆𝐷$) plots it can be 
observed that the sensitivity to the input factors 𝑥^ and 𝑥" strongly depends on the values assumed 
by all the other input factors (especially for medium values of 𝑆5), while the sensitivity to the input 
factors 𝑥[ and 𝑥h weakly depends on the other factors. 
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From the multiple start perturbation method global sensitivity analysis applied to the Chierici model 
for water relative permeability, the resulting ranking is: 

Ranking according 
to 𝑅T,$ 

x5: Sor (75.91) 

x2: Swi (54.35) 

x1: k0
rw (29.28) 

x3: Bw (3.69) 

x4: Mw (2.62) 

This ranking shows that the variable input factors 𝑥[ (𝐵5) and 𝑥h (𝑀5) have only a minor effect on 
the output variability: their ranking indices are one order of magnitude smaller than the ranking 
indices of the other input factors. It should be remembered that the multiple start perturbation 
method, unlike all the other considered sensitivity analysis methods, quantifies the effect on the 
model output variability only against extremely small variations of the variable input factors. For 
this reason, this method is only meaningful for situations in which the variability of the input factors 
is likely to be extremely small, and the ranking resulting from the multiple start perturbation method 
is, in general, not in agreement with the rankings obtained by other techniques. 

The detailed multiple start perturbation method global sensitivity analysis of Chierici model for oil 
relative permeability is reported in appendix B, section B2.1. 

4.1.2.2. STATISTICAL MOMENTS-BASED SENSITIVITY ANALYSIS 

𝑛 = 50,000	 (number of model evaluations for the AMA indices)	

𝑝 = 50		 (number of parameters’ bins for the AMA indices)	

𝑛E = 1,000	 (number of model evaluations for the Sobol total-order index)	

𝑝E = 10	 (number of parameters’ bins for the Sobol total-order index)	

The number of Monte Carlo realizations 𝑛 has been increased for Chierici model with respect to 
the number used for Corey model, because the former is a more complex model and hence its output 
is subject to stronger instability when its input factors are random variables. The instability of the 
unconditional and conditional outputs gets further amplificated when computing the statistical 
moments-based sensitivity indices, especially the ones based on higher order statistical moments. 
A residual instability is still noticeable in the curves, but for the purpose of the essay 𝑛 = 50,000 
is a perfectly acceptable compromise between accuracy and required computation time. The 
number of Monte Carlo realizations 𝑛E used for the computation of the Sobol total order indices 
has instead been reduced with respect to the number used for Corey model to avoid an unacceptable 
associated computation time (which increases exponentially with the number of the model input 
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factors). Despite of the reduction of 𝑛E, the plots of the 𝑆𝑜𝑏𝑜𝑙$E sensitivity indices keep showing 
remarkable stability. 

In the figure below the first four unconditional statistical moments of Chierici model output are 
reported. 

 
Figure 26: statistical moments of the unconditional output of Chierici model for water relative permeability 

The unconditional variance of the output 𝑘45 increases for increasing 𝑆5  with asymptotical 
behaviour, meaning that the spread around the mean, and hence the uncertainty, increases for 
increasing 𝑆5 until 𝑆5~0.6, and stays constant for higher values of water saturation. The 
unconditional skewness of 𝑘45 decreases for increasing 𝑆5, indicating that for higher values of 𝑆5 
the unconditional probability distribution of 𝑘45 becomes less asymmetrical (for high values of 
water saturation 𝑆𝑘(𝑘45)~0, meaning that it is almost perfectly symmetrical). The unconditional 
kurtosis of 𝑘45 decreases for increasing 𝑆5, indicating that for higher values of 𝑆5 the 
unconditional probability distribution of 𝑘45 becomes less tailed. 
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Figure 27: statistical moments-based sensitivity analysis of Chierici model for water relative permeability 

It is interesting to observe that the sensitivity index 𝐴𝑀𝐴𝐸! is perfectly constant across the entire 
range of water saturation values, while all the other sensitivity indices are affected by the considered 
value of 𝑆5. 
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From the statistical moments-based global sensitivity analysis applied to Chierici model for water 
relative permeability the resulting rankings are: 

Ranking according to 
𝑅mjmI,$  

Ranking according to 
𝑅mjmO,$  

Ranking according to 
𝑅T6n6L	Q$4oE,$  

Ranking according 
to 𝑅T6n6L	E6E'L,$ 

x3: Bw (59.67) x1: k0
rw (62.56) x3: Bw (16.90) x1: k0

rw (40.77) 

x5: Sor (54.54) x3: Bw (47.84) x5: Sor (15.72) x5: Sor (35.64) 

x2: Swi (52.01) x5: Sor (46.50) x1: k0
rw (14.15) x3: Bw (33.53) 

x1: k0
rw (41.37) x2: Swi (43.05) x2: Swi (9.78) x2: Swi (30.71) 

x4: Mw (30.08) x4: Mw (31.48) x4: Mw (7.23) x4: Mw (29.50) 

The rankings based on these four different indices are not in agreement with each other. In the case 
of the sensitivity to the input factor 𝑥! they are even in direct opposition: 𝑥! is the most influential 
factor according to 𝑅mjmO and to 𝑅T6n6L	E6E'L, but it is nearly the least influential according to 
𝑅mjmI. This result shows how, even within the application of a same sensitivity analysis theory, 
the definition of the considered sensitivity index can affect the conclusions of the analysis. The 
rankings obtained from the indices 𝑅T6n6L	Q$4oE and 𝑅T6n6L	E6E'L are not equivalent, meaning that in 
this case the interactions between the variable input factors can affect their relative importance. In 
particular, it can be observed that the relative importance of the input factor 𝑥! strongly increases 
due to its interactions with the others, while the relative importance of the input factor 𝑥[ decreases 
due to the interactions. 

The lack of agreement between the four rankings makes the situation rather complex: the only 
univocal statement which can be made is that the variable input factor 𝑥h (𝑀5) is the least 
influential. 

These rankings are not in agreement with the ranking obtained from the multiple start perturbation 
method sensitivity analysis, due to the fact that the statistical moments based-sensitivity indices are 
defined in order to study the variability induced by the input factors regardless of their variation 
amplitude (unlike what happens for the multiple start perturbation method sensitivity index). 

The detailed statistical moments-based global sensitivity analysis of Chierici model for oil relative 
permeability is reported in appendix B, section B2.2. 
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4.1.2.3. CUMULATIVE PROBABILITY DENSITY FUNCTION-BASED SENSITIVITY 
ANALYSIS 

𝑛 = 50,000	 (number of model evaluations) 

𝑝 = 50		 (number of parameters’ bins) 

 
Figure 28: cumulative distribution of Chierici model unconditional output for water relative permeability, Sw=0.5 

 
Figure 29: cumulative distribution-based sensitivity analysis of Chierici model for water relative permeability 

In this case all the sensitivity indices are strongly dependant from 𝑆5. There are significant 
differences between the plots of the sensitivity indices 𝑇#'(,$ and 𝑇#XF$'&,$, meaning that the 
interactions between the variable input factors can have a noticeable effect on their relative 
importance (𝑇#XF$'&,$  quantifies the most likely sensitivity of the output to the variable input factor 
𝑥$, while 𝑇#'(,$ quantifies the maximum possible sensitivity to 𝑥$, which verifies only for a precise 
combination of input factors). It is interesting to note that the sensitivity indices’ curves relative to 
the input factor 𝑥! are the only monotonic ones (the sensitivity to the input factor 𝑥! always 
increases for increasing 𝑆5). 

From the cumulative probability density function-based sensitivity analysis applied to the Chierici 
relative permeability model for water relative permeability the resulting rankings are: 
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Ranking according to 
𝑅p#'(,$  

Ranking according to 
𝑅p#XF$'&,$  

x3: Bw (46.69) x5: Sor (16.48) 

x1: k0
rw (37.60) x1: k0

rw (15.47) 

x5: Sor (35.09) x2: Swi (14.84) 

x2: Swi (32.59) x3: Bw (13.19) 

x4: Mw (31.81) x4: Mw (8.23) 

The rankings resulting from the two indices are not in agreement with each other. Specifically, it 
should be noticed that according to the ranking index 𝑅p#'( the input variable factor 𝑥[ is the most 
relevant, while according to the ranking index 𝑅p#XF$'& the input factor 𝑥[ is the among the least 
relevant factors. For a more conservative sensitivity analysis the ranking based on 𝑅p#'(,$ should 
be considered, even though the ranking based on 𝑅p#XF$'&,$ is more likely to be close to reality due 
to its definition.  

The two rankings agree with each other and with the rankings obtained from the statistical 
moments-based sensitivity analysis only on the fact that the variable input factor 𝑥h is the least 
influential. 

The detailed cumulative probability density function-based global sensitivity analysis of Chierici 
model for oil relative permeability is reported in appendix B, section B2.3. 
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4.1.2.4. VARIOGRAM-BASED SENSITIVITY ANALYSIS 

𝑛 = 50,000	 (number of model evaluations)	

𝑝 = 50		 (number of parameters’ bins)	

 
Figure 30: normalized variograms of Chierci model conditional output for water relative permeability, Sw=0,5 

 
Figure 31: variogram-based sensitivity analysis of Chierici model for water relative permeability 

By a qualitative observation of the sensitivity indices curves it can be clearly seen that the change 
of scale of the input factors variations has a strong effect on the relative importance of the different 
variable input factors. It should be remembered that the index 𝐼𝑉𝐴𝑅𝑆!@ quantifies the sensitivity of 
the model output to small variations of the input variable factors, while the index 𝐼𝑉𝐴𝑅𝑆^@ 

quantifies the sensitivity to large variations of the input factors. It is interesting to note that the 
sensitivity curves relative to the input factors 𝑥! and 𝑥h are the only monotonic ones. 
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For the variogram-based global sensitivity analysis applied to the Chierici model for water relative 
permeability the resulting rankings are: 

Ranking according to 
𝑅qOmrT!@,$  

Ranking according to 
𝑅qOmrT^@,$  

x3: Bw (0.0086) x5: Sor (0.99) 

x5: Sor (0.0051) x1: k0
rw (0.78) 

x4: Mw (0.0040) x4: Mw (0.63) 

x1: k0
rw (0.0033) x2: Swi (0.59) 

x2: Swi (0.0030) x3: Bw (0.53) 

In this case, the rankings obtained by the two indices give deeply different conclusions about the 
relative importance of the model variable input factors. The most noticeable difference is that 
according to the ranking index 𝑅qOmrT!@ the input factor 𝑥[ is the most influential, while according 
to the ranking index 𝑅qOmrT^@ the same input factor 𝑥[ is the least influential. This shows again how 
the importance of a same input factor is tightly connected to the considered scale of the input factor 
variations. For this reason, the ranking based on the indices 𝑅qOmrT!@,$ is the most trustworthy in 
situations in which the variations of the variable input factors are likely to be small (maximum 10% 
of the input variability space), while the ranking based on the indices 𝑅qOmrT^@,$ is more suitable 
for situations in which a wide variability of the input factors is expected. 

The detailed variogram-based global sensitivity analysis of Chierici model for oil relative 
permeability is reported in appendix B, section B2.4. 
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4.1.3. LET MODEL 

4.1.3.1. MULTIPLE START PERTURBATION METHOD SENSITIVITY ANALYSIS 

𝑟 = 1,000,000	 (number of elementary effects evaluations)	

The number of model evaluations 𝑟 has been increased with respect to the number used for Corey 
and Chierici models, due to the higher complexity of the LET relative permeability model which 
makes the sensitivity indices evaluations more unstable. The higher complexity of the model 
follows its higher number of its input variable factors. 

 
Figure 32: multiple start perturbation method global sensitivity analysis of LET model for water relative permeability 

From the sensitivity indices plots it results that across all the possible values of water saturation 𝑆5 
the variable input factors 𝑥[ (𝐿5), 𝑥h (𝐸5) and 𝑥^ (𝑇5) have only a minor effect on the output 
variability. It should be noted that the multiple start perturbation method, unlike all the other 
considered sensitivity analysis methods, quantifies the effect on the output variability only against 
extremely small variations of the variable input factors. From the plots of the standard deviation of 
the elementary effects it can be observed that, especially for the input factors 𝑥" and 𝑥l, the 
interactions with the other input variable factors have an important role in the corresponding 
sensitivity indices. 
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From the multiple start perturbation method global sensitivity analysis applied to the LET model 
for water relative permeability, the resulting ranking is: 

Ranking according 
to 𝑅T,$ 

x6: Sor (63.78) 

x2: Swi (50.30) 

x1: k0
rw (34.32) 

x5: Tw (3.67) 

x4: Ew (3.12) 

x3: Lw (2.84) 

The ranking confirms that, according to this sensitivity analysis method, the variable input factors 
𝑥[, 𝑥h and 𝑥^ have only a marginal effect on the output variability. 

The detailed multiple start perturbation method global sensitivity analysis of LET model for oil 
relative permeability is reported in appendix B, section B3.1. 

4.1.3.2. STATISTICAL MOMENTS-BASED SENSITIVITY ANALYSIS 

𝑛 = 70,000	 (number of model evaluations for the AMA indices)	

𝑝 = 50		 (number of parameters’ bins for the AMA indices)	

𝑛E = 1,000	 (number of model evaluations for the Sobol total-order index)	

𝑝E = 6	 	 (number of parameters’ bins for the Sobol total-order index)	

The number of Monte Carlo realizations 𝑛 has been increased with respect to the number used for 
Corey and Chierici relative permeability models, due to the higher complexity of the LET model, 
which makes the sensitivity indices evaluations more unstable. The value of the discretization 
parameter 𝑝E used for the evaluation of the Sobol total order indices has instead been reduced with 
respect to the value used for the simpler models, due to its strong impact on the required 
computation time (further reducing the value of 𝑛E would affect the stability of the 𝑆𝑜𝑏𝑜𝑙$E indices 
plots). 
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Figure 33: statistical moment of the unconditional output of LET model for water relative permeability 

The unconditional variance of the output 𝑘45 increases for increasing 𝑆5, meaning that the spread 
around the mean, and hence the uncertainty, increases for increasing 𝑆5. The unconditional 
skewness of 𝑘45 decreases for increasing 𝑆5, indicating that for higher values of 𝑆5 the 
unconditional probability distribution of 𝑘45 becomes less asymmetrical. The unconditional 
kurtosis of 𝑘45 decreases for increasing 𝑆5, indicating that for higher values of 𝑆5 the 
unconditional probability distribution of 𝑘45 becomes less tailed. 
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Figure 34: statistical moments-based global sensitivity analysis of LET model for water relative permeability 

Observing the plots of the sensitivity indices 𝐴𝑀𝐴𝐸$ it is interesting to observe that the curves 
relative to the input factors 𝑥", 𝑥[ and 𝑥h strongly decrease for increasing water saturation 𝑆5, while 
the curve relative to the input factors 𝑥! is perfectly horizontal. Except for the index 𝐴𝑀𝐴𝐸!, all 
the represented sensitivity indices result to be dependant from 𝑆5. 
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From the statistical moments-based global sensitivity analysis applied to LET model for water 
relative permeability the resulting rankings are:  

Ranking according to 
𝑅mjmI,$  

Ranking according to 
𝑅mjmO,$  

Ranking according to 
𝑅T6n6L	Q$4oE,$  

Ranking according 
to 𝑅T6n6L	E6E'L,$ 

x3: Lw (53.22) x1: k0
rw (61.38) x3: Lw (18.13) x1: k0

rw (46.45) 

x5: Tw (44.72) x5: Tw (42.49) x5: Tw (16.39) x3: Lw (29.21) 

x1: k0
rw (41.33) x3: Lw (34.13) x1: k0

rw (16.17) x5: Tw (24.72) 

x2: Swi (33.44) x2: Swi (28.42) x6: Sor (8.35) x2: Swi (13.69) 

x6: Sor (31.32) x6: Sor (25.82) x4: Ew (7.93) x6: Sor (12.31) 

x4: Ew (26.44) x4: Ew (22.59) x2: Swi (6.55) x4: Ew (10.52) 

The rankings based on these four different indices are not in agreement with each other. This result 
shows again how, even within the application of a same sensitivity analysis theory, the definition 
of the considered sensitivity index can affect the conclusions of the analysis (in particular, when 
considering complex models, like the LET). The differences between the ranking based on the index 
𝑅T6n6L	Q$4oE,$ and the ranking based on the index 𝑅T6n6L	E6E'L,$ show that in this case the interactions 
between the variable input factors can affect their relative importance. The lack of agreement 
between the four rankings makes the situation rather complex: the only univocal statement which 
can be made is that the variable input factor 𝑥h (𝐸5) is the least influential. 

These rankings are not in agreement with the ranking obtained by the multiple start perturbation 
method sensitivity analysis, due to the fact that the statistical moments based-sensitivity indices are 
defined in order to study the variability induced by the input factors, regardless of their variation 
amplitude (unlike what happens for the multiple start perturbation method sensitivity index). 

The detailed statistical moments-based global sensitivity analysis of LET model for oil relative 
permeability is reported in appendix B, section B3.2. 

  



69 

4.1.3.3. CUMULATIVE PROBABILITY DENSITY FUNCTION-BASED SENSITIVITY 
ANALYSIS 

𝑛 = 70,000	 (number of model evaluations)	

𝑝 = 50		 (number of parameters’ bins)	

 
Figure 35: cumulative distribution of LET model unconditional output for water relative permeability, Sw=0.5 

 
Figure 36: cumulative distribution function-based global sensitivity analysis of LET model for water relative 

permeability 

There are noticeable differences between the plots of the sensitivity indices 𝑇#'(,$ and 𝑇#XF$'&,$, 
indicating that the interactions between the variable input factors can give a significant contribution 
to their relative importance. It is interesting to observe that the 𝑇#'( plots relative to the input 
factors 𝑥[ and 𝑥^ are monotonic, while the 𝑇#XF$'&  plots relative to the same input factors reach a 
global maximum. Both the sensitivity indices relative to the input factor 𝑥! increase for increasing 
value of 𝑆5. 

From the cumulative distribution function-based sensitivity analysis applied to the LET model for 
water relative permeability the resulting rankings are: 
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Ranking according to 
𝑅p#'(,$  

Ranking according to 
𝑅p#XF$'&,$  

x3: Lw (46.75) x3: Lw (22.65) 

x4: Ew (46.22) x1: k0
rw (17.65) 

x1: k0
rw (44.11) x5: Tw (15.56) 

x5: Tw (37.70) x2: Swi (12.32) 

x2: Swi (26.10) x6: Sor (12.03) 

x6: Sor (24.99) x4: Ew (6.44) 

In this case, the rankings resulting from the two indices are not in agreement with each other. 
Specifically, it should be noticed that according to the ranking index 𝑅p#'(  the input variable factor 
𝑥h is the second most relevant, while according to the ranking index 𝑅p#XF$'& the input factor 𝑥h 
is the least relevant. The two rankings agree on the fact that the input factor 𝑥[ is the most relevant. 

For a more conservative sensitivity analysis the ranking based on 𝑅p#'(,$ should be considered, 
even though the ranking based on 𝑅p#XF$'&,$ is more likely to be close to reality due to its definition. 

The detailed cumulative probability density function-based global sensitivity analysis of LET 
model for oil relative permeability is reported in appendix B, section B3.3. 

  



71 

4.1.3.4. VARIOGRAM-BASED SENSITIVITY ANALYSIS 

𝑛 = 70,000	 (number of model evaluations)	

𝑝 = 50		 (number of parameters’ bins)	

 
Figure 37: normalized variograms of LET model conditional output for water relative permeability, Sw=0.5 

 
Figure 38: variogram-based global sensitivity analysis of LET model for water relative permeability 

From the sensitivity indices plots it can be observed that the change of scale of the input factors 
variations has a clear effect on the relative importance of the different variable input factors. It 
should be remembered that the index 𝐼𝑉𝐴𝑅𝑆!@ quantifies the sensitivity of the model output to 
small variations of the variable input factors, while the index 𝐼𝑉𝐴𝑅𝑆^@ quantifies the sensitivity to 
large variations of the variable input factors. 
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From the variogram-based global sensitivity analysis applied to the LET model for water relative 
permeability the resulting rankings are: 

Ranking according to 
𝑅qOmrT!@,$  

Ranking according to 
𝑅qOmrT^@,$  

x4: Ew (0.0126) x5: Tw (1.04) 

x5: Tw (0.0050) x1: k0
rw (0.89) 

x3: Lw (0.0043) x3: Lw (0.75) 

x1: k0
rw (0.0038) x6: Sor (0.62) 

x6: Sor (0.0031) x2: Swi (0.40) 

x2: Swi (0.0018) x4: Ew (0.38) 

In this case the rankings obtained by the two indices give highly different conclusions about the 
relative importance of the model variable input factors. The most noticeable difference is that 
according to the ranking index 𝑅qOmrT!@ the input factor 𝑥h is the most influential, while according 
to the ranking index 𝑅qOmrT^@ the same input factor 𝑥h is the least influential. This shows again how 
the importance of an input factor is tightly connected to the considered scale of the input factor 
variations. For this reason, the ranking based on the indices 𝑅qOmrT!@,$ is the most trustworthy for 
situations in which the variations of the input factors are likely to be small (up to 10% of the input 
variability space), while the ranking based on the indices 𝑅qOmrT^@,$ is more suitable for situations 
in which a wide variability of the input factors is expected. 

The detailed variogram-based global sensitivity analysis of LET model for oil relative permeability 
is reported in appendix B, section B3.4. 
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4.1.4. DISCUSSION 

4.1.4.1. COREY MODEL 

In the table below the rankings obtained from the different global sensitivity analysis techniques 
when applied to Corey relative permeability model are summarized. A colour has been assigned to 
each variable input factor in order to help visualizing eventual concordances and discordances 
between the rankings obtained from different sensitivity analysis methods. 

 

In this case, the different sensitivity analysis techniques show remarkable concordance, thanks to 
the numerical simplicity of Corey model. The only sensitivity analysis method which produces an 
outlier result is the multiple start perturbation method. This difference follows the fact that the 
multiple start perturbation method is the only “short range” sensitivity analysis technique: it studies 
the sensitivity of the model output only against extremely small variations of the variable input 
factors. All the other sensitivity analysis methods study the sensitivity of the output to the variable 
input factors regardless of their variations’ amplitude (except for the variogram-based analysis, 
which anyway considers also relatively wide variations of the input factors). 

The above-presented results indicate that the main criteria for choosing the most appropriate 
sensitivity analysis for the Corey relative permeability model is the likely amplitude of the input 
factors variations. In cases where the input factors variations are expected to be extremely narrow, 
the most suitable sensitivity analysis method is the multiple start perturbation method; for, in all 
the other cases, any different sensitivity analysis technique produces the same results. 

It should be remembered that the global sensitivity analysis is a tool meant for the a priori study of 
a model, hence it must be applied before any model calibration or experimental measurement of the 
input factors is available. If the input factors have already been calibrated or measured, the 
indiscriminate application of a global sensitivity analysis technique could lead to deceiving 
conclusions. 

  

multiple start
Ranking 

according to 
R S,i

Ranking 
according to 

R AMAE,i

Ranking 
according to 

R AMAV,i

Ranking 
according to 

R Sobol first,i

Ranking 
according to 

R Sobol total,i

Ranking 
according to 

R Tmax,i

Ranking 
according to 

R Tmedian,i

Ranking 
according to 

R IVARS 10,i

Ranking 
according to 

R IVARS 50,i

Sor (42.86) Nw (79.29) Nw (69.74) Nw (63.78) Nw (63.61) Nw (63.97) Nw (33.74) Nw (0.011) Nw (1.13)

Swi (28.11) k0rw (41.32) k0rw (60.67) k0rw (17.39) k0rw (45.00) k0rw (43.97) k0rw (14.27) k0rw (0.0020) k0rw (0.47)

k0rw (26.22) Sor (20.96) Sor (14.18)  Sor (6.46) Sor (7.92) Sor (26.76) Sor (12.08) Sor (0.0010) Sor (0.16)

Nw (8.14) Swi (19.77) Swi (13.33) Swi (3.12) Swi (4.32) Swi (24.68) Swi (11.27) Swi (0.00030) Swi (0.064)

Rankings of the input factors of Corey model for water relative permeability
cumul.distrib.-based variogram-basedstat.moments-based
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4.1.4.2. CHIERICI MODEL 

In the tables below the rankings obtained from the different sensitivity analysis techniques when 
applied to the Chierici relative permeability model are summarized. 

 

In this case the discordances between the results from different sensitivity analysis techniques are 
dramatic. Even within the application of a same sensitivity analysis theory, different sensitivity 
indices return different rankings of the input factors. 

The above-presented results show that when performing a global sensitivity analysis to the Chierici 
relative permeability model, the specific method and ranking index should be carefully selected 
case-by-case according to the ultimate goal of the analysis.  

4.1.4.3. LET MODEL 

In the tables below the rankings obtained from the different sensitivity analysis techniques when 
applied to the LET relative permeability model are summarized.  

 

In this case, the discordances between the results from different sensitivity analysis techniques are 
dramatic. Even within the application of a same sensitivity analysis theory, different sensitivity 
indices return different rankings of the input factors. 

The above-presented results show that when performing a global sensitivity analysis to the LET 
relative permeability model, the specific method and ranking index should be carefully selected 
case-by-case according to the ultimate goal of the analysis.  

  

multiple start
Ranking 

according to 
R S,i

Ranking 
according to 

R AMAE,i

Ranking 
according to 

R AMAV,i

Ranking 
according to 

R Sobol first,i

Ranking 
according to 

R Sobol total,i

Ranking 
according to 

R Tmax,i

Ranking 
according to 

R Tmedian,i

Ranking 
according to 

R IVARS 10,i

Ranking 
according to 

R IVARS 50,i

Sor (75.91)  Bw (59.67) k0rw (62.56)  Bw (16.90)  k0rw (40.77) Bw (46.69) Sor (16.48) Bw (0.0086) Sor (0.99)

 Swi (54.35) Sor (54.54)  Bw (47.84) Sor (15.72) Sor (35.64) k0rw (37.60) k0rw (15.47) Sor (0.0051) k0rw (0.78)

k0rw (29.28)  Swi (52.01)  Sor (46.50) k0rw (14.15) Bw (33.53) Sor (35.09) Swi (14.84) Mw (0.0040)  Mw (0.63)

Bw (3.69) k0rw (41.37) Swi (43.05) Swi (9.78) Swi (30.71)  Swi (32.59) Bw (13.19) k0rw (0.0033) Swi (0.59)

Mw (2.62) Mw (30.08) Mw (31.48) Mw (7.23) Mw (29.50) Mw (31.81) Mw (8.23)  Swi (0.0030) Bw (0.53)

variogram-basedstat.moments-based cumul.distrib.-based
Rankings of the input factors of Chierici model for water relative permeability

multiple start
Ranking 

according to 
R S,i

Ranking 
according to 

R AMAE,i

Ranking 
according to 

R AMAV,i

Ranking 
according to 

R Sobol first,i

Ranking 
according to 

R Sobol total,i

Ranking 
according to 

R Tmax,i

Ranking 
according to 

R Tmedian,i

Ranking 
according to 

R IVARS 10,i

Ranking 
according to 

R IVARS 50,i

 Sor (63.78)  Lw (53.22) k0rw (61.38) Lw (18.13) k0rw (46.45) Lw (46.75)  Lw (22.65) Ew (0.0126) Tw (1.04)

 Swi (50.30)  Tw (44.72) Tw (42.49) Tw (16.39) Lw (29.21) Ew (46.22) k0rw (17.65)  Tw (0.0050)  k0rw (0.89)

k0rw (34.32) k0rw (41.33)  Lw (34.13) k0rw (16.17) Tw (24.72) k0rw (44.11) Tw (15.56) Lw (0.0043)  Lw (0.75)

Tw (3.67) Swi (33.44)  Swi (28.42)  Sor (8.35) Swi (13.69) Tw (37.70)  Swi (12.32)  k0rw (0.0038) Sor (0.62)

 Ew (3.12) Sor (31.32) Sor (25.82) Ew (7.93) Sor (12.31)  Swi (26.10) Sor (12.03) Sor (0.0031) Swi (0.40)

Lw (2.84)  Ew (26.44) Ew (22.59)  Swi (6.55) Ew (10.52) Sor (24.99) Ew (6.44)  Swi (0.0018) Ew (0.38)

stat.moments-based cumul.distrib.-based
Rankings of the input factors of LET model for water relative permeability

variogram-based
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4.2. MULTI-MODEL UNINFORMED SCENARIO 

In this section the different uninformed multi-model global sensitivity analysis techniques 
presented in chapter 2.2. are applied to the three relative permeability models, according to the 
stated assumptions and methodologies. The multi-model sensitivity indices are computed for 100 
different values of water saturation between 𝑆5,#$& and 𝑆5,#'(. The focus is set mainly on the 
ranking of the variable input factors on the base of their relative contribution to the output variability 
in an unconstrained multi-model context. 

In the following, the different considered relative permeability models are denoted as 𝑀C, with: 

• 𝑀!: Corey relative permeability model. 
• 𝑀": Chierici relative permeability model. 
• 𝑀[: LET relative permeability model. 

4.2.1. MULTI-MODEL, STATISTICAL MOMENTS-BASED SENSITIVITY 
ANALYSIS 

It should be remembered that different relative permeability models have a different number of 
variable input factors, so: 

𝑗 = 1 ⟶ 𝑖 = 1, 2, 3, 4	 	

𝑗 = 2 ⟶ 𝑖 = 1, 2, 3, 4, 5	 	

𝑗 = 3 ⟶ 𝑖 = 1, 2, 3, 4, 5, 6	 	

 

𝑛 = 200,000	 (number of model evaluations) 

𝑝 = 50		 (number of parameters’ bins)	

The number of Monte Carlo realization 𝑛 has been set to a very high value because the sensitivity 
indices’ values result to be quite unstable in this multi-model context. 

In the figure below the first four single-model and multi-model unconditional statistical moments 
are reported for each of the three relative permeability models for water relative permeability. 
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Figure 39: single-model and multi-model unconditional statistical moments of the three models for water relative 

permeability 

The single-model unconditional statistics plots show the differences between the unconditional 
realizations of the three relative permeability models. From the plots of the unconditional variance, 
it can be observed that, for an unconditional scenario, the model with the lowest mean associated 
variance, and hence the lowest mean output uncertainty, is the Corey model followed by the Chierici 
model and then by the LET model. Apparently, the more complex a model (the higher the number 
of the model input factors), the greater the associated uncertainty. It should be remembered that the 
multi-model statistical moments are not the simple arithmetic mean of the single-model statistical 
moments (see chapter 2.2.1. for details). 

In the figures below the four multi-model statistical moments-based sensitivity indices are reported 
for each variable input factor of each relative permeability model. The model-choice contributions 
to the sensitivity indices are plotted separately (dashed line) in order to allocate the contributions 
to sensitivity to the different sources of uncertainty (input factors uncertainty and model 
uncertainty). 
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The single-model statistical moments-based sensitivity indices are plotted too, with the purpose of 
visualizing the effect of the multi-model approach on the relative importance of the variable input 
factors: 

 
Figure 40: multi-model and single-model AMAE sensitivity indices for water relative permeability 
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Figure 41: multi-model and single-model AMAV sensitivity indices for water relative permeability 
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Figure 42: multi-model and single-model AMASk sensitivity indices for water relative permeability 
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Figure 43: multi-model and single-model AMAK sensitivity indices for water relative permeability 

From the sensitivity indices plots it can be observed that for some values of 𝑆5 the model-choice 
contribution to sensitivity is equal to 0: these values of 𝑆5 correspond to the points for which the 
single-model unconditional statistical moment of the model taken into account is equal to the multi-
model unconditional statistical moment (as it can be observed in figure 39). 

The ranking of the 15 variable input factors 𝑥$
C (4 belonging to Corey model, 5 to Chierici model 

and 6 to LET model) is determined calculating and sorting the two ranking indices: 

𝑅mjmI%
, = ∑ 𝐴𝑀𝐴𝐸$

CT3,&*-
T3,&%(

	 	 	 	 	 	 	 	 					(4.10)	

𝑅mjmO%
, = ∑ 𝐴𝑀𝐴𝑉$

CT3,&*-
T3,&%(

	 	 	 	 	 	 	 	 					(4.11)	
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From the multi-model statistical moments-based sensitivity analysis of the three water relative 
permeability models the resulting rankings are shown in the table below. Each variable input factor 
is associated with a shade of the colour indicating the belonging model of the factor itself, for the 
sake of an easy visual inspection. 

Input factors belonging to Corey model 

Input factors belonging to Chierici model 

Input factors belonging to LET model 

 

Ranking according to 

𝑅mjmI%
, 

Ranking according to 

𝑅mjmO%
, 

𝑥[!: 𝑁5!  (37.13) 𝑥![:	𝑘@,45[  (34.29) 

𝑥[[:	𝐿5[  (26.26) 𝑥[!: 𝑁5!  (30.06) 

𝑥^":	𝑆64"  (23.02) 𝑥!":	𝑘@,45"  (27.06) 

𝑥^[:	𝑇5[ (23.01) 𝑥!!: 𝑘@,45!  (26.93) 

𝑥!!: 𝑘@,45!  (22.42) 𝑥^[ :	𝑇5[ (26.46) 

𝑥![:	𝑘@,45[  (21.61) 𝑥[[:	𝐿5[  (23.18) 

𝑥"":	𝑆5$"  (20.68) 𝑥^":	𝑆64"  (21.14) 

𝑥[":	𝐵5"  (20.51) 𝑥"[:	𝑆5$[  (20.76) 

𝑥!":	𝑘@,45"  (20.38) 𝑥l[:	𝑆64[  (19.49) 

𝑥"[:	𝑆5$[  (18.68) 𝑥"":	𝑆5$"  (18.67) 

𝑥l[:	𝑆64[  (17.83) 𝑥h[:	𝐸5[  (17.93) 

𝑥h":	𝑀5
"  (16.71) 𝑥[":	𝐵5"  (17.58) 

𝑥"!: 𝑆5$!  (15.68) 𝑥h":	𝑀5
"  (17.55) 

𝑥h[:	𝐸5[  (15.38) 𝑥"!: 𝑆5$!  (14.96) 

𝑥h!:	𝑆64!  (14.99) 𝑥h!:	𝑆64!  (14.36) 

The rankings obtained from these two multi-model indices are not in agreement with each other. 
This shows that in the multi-model context the effect of the variable input factors changes when 
considering different statistical moments of the output. Hence, the most appropriate ranking index 
must be chosen case-by-case according to the output’s statistical moment of interest. The only 
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aspect on which the two rankings agree is that the variable input factor 𝑥h! (4E) input factor 
belonging to Corey model) is the less relevant in this multi-model scenario. 

The detailed multi-model statistical moments-based global sensitivity analysis of the relative 
permeability models model for oil-relative permeability is reported in appendix C, section C1. 

4.2.2. MULTI-MODEL, VARIANCE-BASED SENSITIVITY ANALYSIS 

𝑛 = 100,000	 (number of model evaluations for the first-order index) 

𝑝 = 50		 (number of parameters’ bins for the first-order index)	

𝑛E = 1,000	 (number of model evaluations for the total-order index) 

𝑝E = 10	 (number of parameters’ bins for the total-order index) 

Before considering the sensitivity indices, it is important to understand that in this multi-model 
approach the models lose their identity as singular entities: the three relative permeability models 
are considered acting as a single more complex model. It follows that if a certain input factor 
appears in more than one model, it is anyway considered as one single input variable factor (as 
opposed to what happens for the multi-model statistical moments-based approach). For this reason, 
the variable input factors belonging to this new more complex “hybrid model” must be redefined. 

When considering water relative permeability, the variable input factors of the models are: 

• 𝑥!: 𝑘45@ , end point of the water relative permeability curve. 
• 𝑥": 𝑆5$, irreducible water saturation. 
• 𝑥[: 𝑁5, parameter belonging to Corey model for water. 
• 𝑥h: 𝐵5, parameter belonging to Chierici model for water. 
• 𝑥^: 𝑀5, parameter belonging to Chierici model for water. 
• 𝑥l: 𝐿5, parameter belonging to LET model for water. 
• 𝑥s: 𝐸5, parameter belonging to LET model for water. 
• 𝑥t: 𝑇5, parameter belonging to LET model for water. 
• 𝑥u: 𝑆64, residual oil saturation. 

The input variability spaces of all these input variable factors have been defined in chapter 3. 

It follows that, in this context: 

• Corey model depends only on the input factors 𝑥!, 𝑥", 𝑥[, 𝑥u. 
• Chierici model depends only on the input factors 𝑥!, 𝑥", 𝑥h, 𝑥^, 𝑥u. 
• LET model depends only on the input factors 𝑥!, 𝑥", 𝑥l, 𝑥s, 𝑥t, 𝑥u. 

  



83 

In the figures below the multi-model first order and total order variance-based sensitivity indices 
are reported for each of the nine variable input factors. The single-model first order and total order 
Sobol (variance-based) sensitivity indices are also reported for the sake of comparison. 

 
Figure 44: multi-model and single-model first order variance-based sensitivity indices for water relative permeability 

  



84 

 
Figure 45: multi-model and single-model total order variance-based sensitivity indices for water relative permeability 
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The ranking of the 9 variable input factors xi is determined calculating and sorting the two ranking 
indices: 

𝑅TQ%&8+9%&):;+ = ∑ 𝑆𝑓$#JLE$#6FXL
T3,&*-
T3,&%(

	 	 	 	 	 	 	 					(4.12)	

𝑅TE%&8+9%&):;+ = ∑ 𝑆𝑡$#JLE$#6FXL
T3,&*-
T3,&%(

	 	 	 	 	 	 	 					(4.13)	

For the multi-model variance-based sensitivity analysis of the three water relative permeability 
models the resulting rankings are shown in the table below. Each variable input factor is associated 
with a colour, to grant an easy visual inspection. 

Ranking according to 

𝑅TQ%&8+9%&):;+ 

Ranking according to 

𝑅TE%&8+9%&):;+ 

𝑥[:	𝑁5 	(18.27) 𝑥!:	𝑘@,45 (43.67) 

𝑥!:	𝑘@,45 (16.16) 𝑥[:	𝑁5 	 (18.12) 

𝑥u:	𝑆64 	(10.43) 𝑥u:	𝑆64 (17.11) 

𝑥l:	𝐿5 (8.00) 𝑥":	𝑆5$  (14.65) 

𝑥t:	𝑇5  (6.90) 𝑥l:	𝐿5 (12.92) 

𝑥":	𝑆5$ (6.78) 𝑥t:	𝑇5  (10.62) 

𝑥h:	𝐵5  (4.09) 𝑥h:	𝐵5 	 (7.22) 

𝑥s:	𝐸5  (3.48) 𝑥^:	𝑀5   (7.08) 

𝑥^:	𝑀5  (2.66) 𝑥s:	𝐸5   (4.62) 

The rankings obtained by these two multi-model variance-based indices are not in agreement at all 
with each other. It should be remembered that the sensitivity index 𝑆𝑓$#JLE$#6FXL accounts only for 
the first order effect of the input factors on the output variability, while the sensitivity index 
𝑆𝑡$#JLE$#6FXL considers also the effect of the interactions between different variable input factors. 
In this case, the rankings show that in this multi-model context the interactions between the variable 
input factors play a significant role and can change the relative importance of the input factors. 

The detailed multi-model variance-based global sensitivity analysis of the relative permeability 
models’ model for oil relative permeability is reported in appendix C, section C2. 

  



86 

4.2.3. DISCUSSION 

In the table below the rankings obtained from the different multi-model sensitivity analysis 
techniques, when applied to the three water relative permeability models, are summarized: 

Multi-model statistical moments-based 
sensitivity analysis of the water relative 

permeability models 
 

Multi-model variance-based sensitivity 
analysis of the water relative permeability 

models 

Ranking according 
to 

𝑅mjmI%
, 

Ranking according 
to 

𝑅mjmO%
, 

 
Ranking according to 

𝑅TQ%&8+9%&):;+ 

Ranking according 
to 

𝑅TE%&8+9%&):;+ 

𝑥[!: 𝑁5!  (37.13) 𝑥![:	𝑘@,45[  (34.29)  𝑥[:	𝑁5 		(18.27) 𝑥!:	𝑘@,45 (43.67) 

𝑥[[:	𝐿5[  (26.26) 𝑥[!: 𝑁5!  (30.06)  𝑥!:	𝑘@,45 (16.16) 𝑥[:	𝑁5 	 (18.12) 

𝑥^":	𝑆64"  (23.02) 𝑥!":	𝑘@,45"  (27.06)  𝑥u:	𝑆64 	(10.43) 𝑥u:	𝑆64 (17.11) 

𝑥^[:	𝑇5[ (23.01) 𝑥!!: 𝑘@,45!  (26.93)  𝑥l:	𝐿5 (8.00) 𝑥":	𝑆5$  (14.65) 

𝑥!!: 𝑘@,45!  (22.42) 𝑥^[:	𝑇5[ (26.46)  𝑥t:	𝑇5  (6.90) 𝑥l:	𝐿5 (12.92) 

𝑥![:	𝑘@,45[  (21.61) 𝑥[[:	𝐿5[  (23.18)  𝑥":	𝑆5$  (6.78) 𝑥t:	𝑇5  (10.62) 

𝑥"":	𝑆5$"  (20.68) 𝑥^":	𝑆64"  (21.14)  𝑥h:	𝐵5 	 (4.09) 𝑥h:	𝐵5 	 (7.22) 

𝑥[":	𝐵5"  (20.51) 𝑥"[:	𝑆5$[  (20.76)  𝑥s:	𝐸5   (3.48) 𝑥^:	𝑀5   (7.08) 

𝑥!":	𝑘@,45"  (20.38) 𝑥l[:	𝑆64[  (19.49)  𝑥^:	𝑀5   (2.66) 𝑥s:	𝐸5   (4.62) 

𝑥"[:	𝑆5$[  (18.68) 𝑥"":	𝑆5$"  (18.67)    

𝑥l[:	𝑆64[  (17.83) 𝑥h[:	𝐸5[  (17.93)    

𝑥h":	𝑀5
"  (16.71) 𝑥[":	𝐵5"  (17.58)    

𝑥"!:	𝑆5$!  (15.68) 𝑥h":	𝑀5
"  (17.55)    

𝑥h[:	𝐸5[  (15.38) 𝑥"!:	𝑆5$!  (14.96)    

𝑥h!:	𝑆64!  (14.99) 𝑥h!:	𝑆64!  (14.36)    

It can be observed that, even within the application of the same multi-model sensitivity analysis 
technique, there is no accordance between the rankings obtained from different sensitivity indices. 

The comparison between the rankings obtained from the two multi-model sensitivity analysis 
techniques does not make any theoretical sense, because of the different definition of the input 
variable factors (see chapter 2 for complete details). For this reason, the most appropriate multi-
model sensitivity analysis technique (and the corresponding ranking index/indices) must be chosen 
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case-by-case according to the output distribution features of interest and to the ultimate goal of the 
analysis. In general, as a first approach, the following guidelines can be taken into account: 

• If a complete characterization of the output probability density function (through many 
statistical moments) is required, the statistical moments-based analysis should be chosen. For 
the quantification of sensitivity through the output variance only both the techniques are valid 
(but not equivalent!). 

• If the models’ input factors are meant to be calibrated model-by-model conserving the different 
models’ identity (for example, by fitting each model to a set of measurements), the multi-model 
statistical moments-based sensitivity analysis should be adopted. If the models’ input factors 
are meant to be calibrated according to their physical meaning only (for example, by 
experimentally measuring the factors or by inverse modelling in a multi-model context), the 
multi-model variance-based sensitivity analysis should be adopted. 

Be aware: these few considerations are not exhaustive of all the possible cases and scenarios! So, 
for any specific application the theories, assumptions and mathematical workflows at the base of 
these two multi-model sensitivity analysis techniques should be carefully consulted and taken into 
account. 

  



88 

4.3. MULTI-MODEL INFORMED SCENARIO 

In this section the multi-model informed global sensitivity analysis techniques described in chapter 
2.3. are applied to the two different samples described in the research article “Interpretation of two-
phase relative permeability curves through multiple formulations and model quality criteria” 
(Moghadasi, Guadagnini, Inzoli, & Bartosek, 2015). In this article, model identification criteria are 
employed to rank and evaluate a set of alternative models (Corey model, Chierici model, LET 
model) in the context of the interpretation of laboratory scale experiments yielding two-phase 
relative permeability curves. High quality two-phase relative permeability estimates are employed, 
which result from steady-state imbibition experiments on two diverse porous media: a quartz sand 
pack and a Berea sandstone core. 

 
Figure 46: (a) sketch of experimental set-up; (b) steady state imbibition process 

Model uncertainty is quantified through the model weights 𝑤C which are rendered by model 
posterior probabilities conditional on the experimental observations. These weights are then 
employed to rank the models according to their relative skill to interpret the observations and obtain 
model averaged results which allow accommodating uncertainties arising from differences amongst 
model structures within a unified theoretical framework. 

 
Figure 47: posterior probabilities associated with the models in the considered scenarios for water relative 

permeability 

may also be obtained from field data upon relying on the pro-
duction history of a reservoir, its geological makeup and its fluid
properties. This approach is conducive to effective/equivalent
macroscopic parameters. The way laboratory scale values can be
transferred to field scale settings is still a challenging area of
research.

Laboratory characterization of two-phase relative permeability
through either steady- or unsteady-state methods can be ex-
pensive and time consuming. Steady-state techniques consider
simultaneous injection of the two phases in a rock core. A given
total fluid flow rate is typically imposed and diverse fractional flow
rates are considered for each phase. Measurements of total pres-
sure drop, fluid flow rates and fluid flow saturations in the sample
are then taken after steady-steady state conditions are attained.
Experimental data are then interpreted through a selected model,
leading to estimates of two-phase relative permeabilities within a
relatively broad range of saturation values. A key drawback of the
technique is associated with the typically long times associated
with the attainment of steady-state (Cao et al., 2014; Honarpour
et al., 1986; Kikuchi et al., 2005).

Unsteady-state methods consider injection of only one of the
phases in the core. The latter is saturated with the displaced phase,
the displacing phase being at irreducible saturation. Phase re-
covery and pressure drop across the core are continuously re-
corded during the displacement process. The approach is efficient
in terms of execution time but leads to estimates of two-phase
relative permeabilities in a narrow saturation range, usually
grouped towards the high end of wetting phase saturation values
(Ebeltoft et al., 2014; Sylte et al., 2004).

Measurements of relative permeabilities can be employed to
test the reliability of a given conceptual structure and mathema-
tical formulation of an interpretive model. The reliability of model
predictions depends on the way the model structure is defined
and on the degree of fidelity associated with model parametriza-
tion. Empirical models which are most frequently employed to
interpret experimentally determined two-phase relative perme-
ability curves through model parameter estimation include (a) the
Corey formulation (Corey, 1954), (b) the models proposed by Sig-
mund and McCaffery (1979) and Chierici (1984), and (c) the recent
LET model (Ebeltoft et al., 2014; Lomeland et al., 2005). Inter-
pretation of laboratory measurements through these empirical
models may provide relative permeabilities for a limited range of
saturations. This is mainly due to hypotheses and heuristic con-
cepts associated with most of the available empirical models,
which might render them unsuitable to match laboratory data for
the whole range of saturations.

Notable weak points of available studies are that they (a) either
rely on a single mathematical model depicting the two-phase flow
processes, or (b) analyze alternative mathematical formulations
through criteria such as least-square regression (e.g., Lomeland
et al. (2005), and Ebeltoft et al. (2014)) which do not provide
rigorous information about the way diverse models can be ranked
and/or employed in a multi-model modeling framework. Yet, it is
known that multi-phase flow processes and the porous media
hosting them are remarkably complex. As a consequence, ob-
servations are amenable to be interpreted through various math-
ematical formulations, each requiring an appropriate para-
metrization. This aspect can be assessed through Model Quality
criteria employed within a Maximum Likelihood theoretical ap-
proach. This allows considering the effects of conceptual model
uncertainty on parameter estimation and provides theoretically
robust guidance in the model selection process. In this context, a
multi-model analysis based on averaging the responses of diverse
models can be a powerful tool to naturally accommodate existing
differences amongst models within a unique theoretical frame-
work (Lu, 2012). Benefits of the approach have been exposed in the
context of diverse environmental systems, including groundwater
flow settings (e.g., Carrera and Neuman, 1986; Ye et al., 2004; Ye
et al., 2008; Riva et al., 2009; Riva et al., 2011 and references
therein), as well as in the interpretation of complex competitive
sorption reactive processes in natural soils (Janetti et al., 2012).

To the best of our knowledge, analyses of applications of this
methodology to the interpretation of multiphase flow process are
still lacking. Here, we illustrate the way Maximum Likelihood
parameter estimation and model identification criteria associated
with a multi-model framework can be jointly employed on a set of
laboratory scale experiments involving steady-state two-phase
flow of oil and water in two cores, a quartz Sand-pack and a Berea
sandstone. We then apply the approach to reassess the inter-
pretation of a series of published data-sets. We do so by
(a) considering and comparing the performances of three com-
monly employed empirical models, i.e., the Corey (1954), Chierici
(1984), and LET (Ebeltoft et al., 2014; Lomeland et al., 2005)
models, (b) quantifying the uncertainty associated with each of
these models, and (c) illustrating the ability of a model averaging
(MA) approach to interpret the available data when compared
against the results provided by the model with the highest rank in
the model set considered.

Fig. 1. (a) Sketch of experimental set-up; (b) Steady State (SS) imbibition process.
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Fig. A3. Posterior probabilities associated with the models tested based on KIC and on Krw data interpretation.
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Fig. A4. Posterior probabilities associated with the models tested based on KIC and on Kro data interpretation.
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Figure 48: posterior probabilities associated with the models in the considered scenarios for oil relative permeability 

The models input factors which are physical properties of the porous medium (𝑘40@ , 𝑆5$ , 	𝑆64) are 
experimentally measured multiple times, obtaining their estimated mean value and standard 
deviation: the uncertainty in the value of these input factors is a direct consequence of the 
measurement errors. The input factors which are model parameters (𝑁0 , 𝐵0 , 𝑀0 , 𝐿0 , 𝐸0 , 𝑇0) are 
estimated within a Maximum Likelihood framework, and for each of these variable input factors 
the lower and upper limits identifying the 95% confidence limits are provided. 

 
Figure 49: Estimated Corey model input factors values for (a) krw and (b) kro associated with the considered datasets. 

Intervals associated with the upper (U) and lower (L) limits identifying the 95% uncertainty bounds around the 
estimate are also depicted 

 
Figure 50: Estimated Chierici model input factors values for (a) krw and (b) kro associated with the considered datasets 
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Fig. A3. Posterior probabilities associated with the models tested based on KIC and on Krw data interpretation.
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Fig. A4. Posterior probabilities associated with the models tested based on KIC and on Kro data interpretation.
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Fig. 3. Estimated Corey model parameter values for (a) Krw and (b) Kro associated with the four considered datasets. Intervals associated with the upper (U) and lower (L)
limits identifying the 95% uncertainty bounds around the estimate are also depicted.

Fig. 4. Estimated Chierici model parameter values for (a) Krw and (b) Kro associated with the four considered datasets. Intervals associated with the upper (U) and lower (L)
limits identifying the 95% uncertainty bounds around the estimate are also depicted.

Fig. 5. Estimated LET model parameter values for (a) Krw and (b) Kro associated with the four considered datasets. Intervals associated with the upper (U) and lower (L) limits
identifying the 95% uncertainty bounds around the estimate are also depicted.
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Figure 51: Estimated LET model input factors values for (a) krw and (b) kro associated with the considered datasets 

The results obtained in the previously mentioned article highlight that in most cases the complexity 
of the problem appears to favour a model with a high number of uncertain parameters over a simpler 
model structure. Posterior probabilities reveal that in several cases, most notably for the assessment 
of oil relative permeabilities, the weights associated with the simplest models is not negligible. This 
suggests that, in these cases, uncertainty quantification might benefit from a multi-model analysis, 
including both low and high-complexity models. In most of the analysed cases, the model averaging 
leads to interpretations of the available data, which are characterized by a higher degree of fidelity 
than that provided by the most skillful model. 

  

Fig. 3. Estimated Corey model parameter values for (a) Krw and (b) Kro associated with the four considered datasets. Intervals associated with the upper (U) and lower (L)
limits identifying the 95% uncertainty bounds around the estimate are also depicted.
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limits identifying the 95% uncertainty bounds around the estimate are also depicted.

Fig. 5. Estimated LET model parameter values for (a) Krw and (b) Kro associated with the four considered datasets. Intervals associated with the upper (U) and lower (L) limits
identifying the 95% uncertainty bounds around the estimate are also depicted.
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4.3.1.  “SAND PACK” SAMPLE  

4.3.1.1. MULTI-MODEL, INFORMED STATISTICAL MOMENTS-BASED 
SENSITIVITY ANALYSIS 

POSTERIOR MODELS PROBABILITIES 

• 𝑤! = 0.05 
• 𝑤" = 0.3 
• 𝑤! = 0.65 

VARIABLE INPUT FACTORS 

The models variable input factors are expressed in the form:  

𝑥$
C = (𝑥$,#$&

C 	; 	𝑥$,#'(
C )	 	

Where 𝑥$
C represents the 𝑖E) variable input factor of the 𝑗E) model, and the values in the brackets 

define its 95% confidence limits. 

• 𝑥!!: 𝑘45@ = (0.405	; 	0.461) 
• 𝑥"!: 𝑆5$ = (0.166	; 	0.214) 
• 𝑥[!: 𝑁5 = (4.9	; 	6.8) 
• 𝑥h!: 𝑆64 = (0.1	; 	0.18) 

 
• 𝑥!": 𝑘45@ = (0.405	; 	0.461) 
• 𝑥"": 𝑆5$ = (0.166	; 	0.214) 
• 𝑥[": 𝐵5 = (3.03	; 	4.5) 
• 𝑥h": 𝑀5 = (0.62	; 	0.7) 
• 𝑥^": 𝑆64 = (0.1	; 	0.18) 

 
• 𝑥![: 𝑘45@ = (0.405	; 	0.461) 
• 𝑥"[: 𝑆5$ = (0.166	; 	0.214) 
• 𝑥[[: 𝐿5 = (2.71	; 	5.32) 
• 𝑥h[: 𝐸5 = (0.73	; 	3.28) 
• 𝑥^[: 𝑇5 = (0.27	; 	0.55) 
• 𝑥l[: 𝑆64 = (0.1	; 	0.18) 

Unacceptable combinations of input variable factors could be generated from the provided data, 
due to the fact that the Gaussian probability distribution function is not inferiorly or superiorly 
limited. This would lead to non-sensical model evaluations (like imaginary or negative relative 
permeabilities) during the Monte Carlo simulations of the models, which eventually cause lower 
accuracy and greater instability in the results. 

For this reason, the input variable factors probability density functions are truncated to guarantee 
the respect of the following mathematical constraints: 

• 𝑁0, 𝐵0 , 𝑀0,𝐿0 , 𝐸0 , 𝑇0 > 0 
• 0 ≤ 𝑘4@ ≤ 1 
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• 𝑆5$ ≤ 𝑆5 
• 𝑆64 ≤ (1 − 𝑆5) 

To avoid excessive instability in the statistical moments’ evaluations (and hence in the sensitivity 
indices’ evaluations) it is also necessary to limit the range of water saturations 𝑆5 for which the 
models’ output is evaluated: water relative permeability 𝑘45 is evaluated for 0.4 ≤ 𝑆5 ≤ 0.82. 

𝑛 = 200,000	 (number of model evaluations) 

𝑝 = 25		 (number of parameters’ bins)	

In the figure below the unconditional single-model and multi-model statistical moments are 
reported for water relative permeability for the “sand pack” sample:  

 
Figure 52: single-model and multi-model unconditional output statistics of the relative permeability models informed to 

the “sand pack” sample for water relative permeability 

Despite of the measures adopted to prevent instability in the results, it can be observed that the 
skewness and kurtosis of the unconditional outputs are still strongly unstable, especially for lower 
values of water saturation 𝑆5. 
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In the figures below the informed multi-model statistical moments-based sensitivity indices for the 
“sand pack” sample are reported for water relative permeability. The single-model statistical 
moments-based indices are reported too, in the attempt to highlight the differences between the 
multi-model and the single-model approach: 

 
Figure 53: multi-model and single-model informed AMAE sensitivity indices of the “sand pack” sample for water 

relative permeability 
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Figure 54: multi-model and single-model informed AMAV sensitivity indices of the “sand pack” sample for water 

relative permeability 
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Figure 55: multi-model and single-model informed AMASk sensitivity indices of the “sand pack” sample for water 

relative permeability 
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Figure 56: multi-model and single-model informed AMAK sensitivity indices of the “sand pack” sample for water 

relative permeability 
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The ranking of the 15 variable input factors 𝑥$
C (4 belonging to Corey model, 5 to Chierici model 

and 6 to LET model) is determined calculating and sorting the two ranking indices: 

𝑅mjmI%
, = ∑ 𝐴𝑀𝐴𝐸$

CT3,&*-
T3,&%(

	 	 	 	 	 	 	 	 					(4.14)	

𝑅mjmO%
, = ∑ 𝐴𝑀𝐴𝑉$

CT3,&*-
T3,&%(

	 	 	 	 	 	 	 	 					(4.15)	
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For the multi-model statistical moments-based informed global sensitivity analysis of the “sand 
pack” sample for water relative permeability the resulting rankings are shown in the following table. 
Each variable input factor is associated with a shade of the colour indicating the belonging model 
of the factor itself, for the sake of an easy visual inspection: 

Input factors belonging to Corey model 

Input factors belonging to Chierici model 

Input factors belonging to LET model 

 

Ranking according to 

𝑅mjmI%
, 

Ranking according to 

𝑅mjmO%
, 

𝑥h[:	𝐸5[ 	(30.29) 𝑥h[:	𝐸5[  (61.66) 

𝑥[[:	𝐿5[ 	(26.46) 𝑥[[:	𝐿5[  (32.66) 

𝑥l[:	𝑆64[ 	(17.61) 𝑥^":	𝑆64"  (26.68) 

𝑥^[:	𝑇5[	(13.61) 𝑥[":	𝐵5"  (25.72) 

𝑥[":	𝐵5" 	(12.65) 𝑥l[:	𝑆64[  (24.13) 

𝑥"[:	𝑆5$[ 	(11.91) 𝑥!":	𝑘@,45"  (22.98) 

𝑥![:	𝑘@,45[ 	(11.33) 𝑥h":	𝑀5
"  (22.82) 

𝑥^":	𝑆64" 	(11.21) 𝑥"":	𝑆5$"  (22.72) 

𝑥"":	𝑆5$"  (8.79) 𝑥^[:	𝑇5[ (18.85) 

𝑥!":	𝑘@,45"  (8.54) 𝑥![:	𝑘@,45[  (17.26) 

𝑥h":	𝑀5
"  (8.50) 𝑥"[:	𝑆5$[  (15.62) 

𝑥h!:	𝑆64!  (2.16) 𝑥h!:	𝑆64! (4.66) 

𝑥[!: 𝑁5!  (2.09) 𝑥[!:	𝑁5!  (3.93) 

𝑥"!:	𝑆5$!  (1.65) 𝑥!!: 𝑘@,45!  (3.67) 

𝑥!!: 𝑘@,45!  (1.61) 𝑥"!: 𝑆5$!  (3.62) 
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4.3.1.2. MULTI-MODEL, INFORMED VARIANCE-BASED SENSITIVITY ANALYSIS 

POSTERIOR MODELS PROBABILITIES 

• 𝑤! = 0.05 
• 𝑤" = 0.3 
• 𝑤! = 0.65 

VARIABLE INPUT FACTORS 

The models variable input factors are expressed in the form:  

𝑥$ = (𝑥$,#$&	; 	𝑥$,#'()	 	

The values in the brackets define its 95% confidence limits. 

• 𝑥!: 𝑘45@ = (0.405	; 	0.461) 
• 𝑥": 𝑆5$ = (0.166	; 	0.214) 
• 𝑥[: 𝑁5 = (4.9	; 	6.8) 
• 𝑥h: 𝐵5 = (3.03	; 	4.5) 
• 𝑥^: 𝑀5 = (0.62	; 	0.7) 
• 𝑥l: 𝐿5 = (2.71	; 	5.32) 
• 𝑥s: 𝐸5 = (0.73	; 	3.28) 
• 𝑥t: 𝑇5 = (0.27	; 	0.55) 
• 𝑥u:	𝑆64 = (0.1	; 	0.18) 

Water relative permeability 𝑘45 is evaluated for 0.4 ≤ 𝑆5 ≤ 0.82. 

𝑛 = 200,000	 (number of model evaluations for the first-order index) 

𝑝 = 25		 (number of parameters’ bins for the first-order index)	

𝑛E = 700	 (number of model evaluations for the total-order index) 

𝑝E = 6	 	 (number of parameters’ bins for the total-order index) 
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In the figures below the single-model and multi-model first order and total order variance-based 
informed sensitivity indices of the “sand pack” sample for water relative permeability are reported: 

 
Figure 57: first order single-model and multi-model informed variance-based sensitivity indices of the “sand pack” 

sample for water relative permeability 
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Figure 58: total order single-model and multi-model informed variance-based sensitivity indices of the “sand pack” 

sample for water relative permeability 

The ranking of the nine variable input factors 𝑥$ is determined calculating the two ranking indices: 

𝑅TQ%&8+9%&):;+ = ∑ 𝑆𝑓$#JLE$#6FXL
T3,&*-
T3,&%(

	 	 	 	 	 	 	 					(4.16)	

𝑅TE%&8+9%&):;+ = ∑ 𝑆𝑡$#JLE$#6FXL
T3,&*-
T3,&%(

	 	 	 	 	 	 	 					(4.17)	
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For the informed variance-based global sensitivity analysis of the “sand pack” sample for water 
relative permeability the resulting rankings are shown in the following table. Each variable input 
factor is associated with a colour, aiming to ease visual inspection. 

Ranking according to 

𝑅TQ%&8+9%&):;+ 

Ranking according to 

𝑅TE%&8+9%&):;+ 

𝑥s:	𝐸5   (48.05) 𝑥s:	𝐸5   (70.78) 

𝑥l:	𝐿5 (27.83) 𝑥l:	𝐿5 (34.47) 

𝑥u:	𝑆64 (16.07) 𝑥u:	𝑆64 (12.91) 

𝑥h:	𝐵5 	 (4.51) 𝑥h:	𝐵5 	 (3.16) 

𝑥t:	𝑇5 	(3.61) 𝑥t:	𝑇5  (3.03) 

𝑥":	𝑆5$ 		(0.97) 𝑥":	𝑆5$  (1.59) 

𝑥!:	𝑘@,45 (0.96) 𝑥!:	𝑘@,45 (1.21) 

𝑥[:	𝑁5 	 (0.46) 𝑥[:	𝑁5 	 (0.32) 

𝑥^:	𝑀5   (0.25) 𝑥^:	𝑀5   (0.17) 
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4.3.1.3. DISCUSSION 

In the table below the rankings obtained from the different informed multi-model sensitivity 
analysis techniques when applied to the “sand pack” sample for water relative permeability are 
summarized. 

Multi-model informed statistical moments-
based sensitivity analysis of the “sand pack” 

sample for water relative permeability 
 

Multi-model informed variance-based 
sensitivity analysis of the “sand pack” 
sample for water relative permeability 

Ranking according to 
𝑅mjmI%

, 

Ranking 
according to 
𝑅mjmO%

, 
 

Ranking according to 

𝑅TQ%&8+9%&):;+ 

Ranking according 
to 

𝑅TE%&8+9%&):;+ 

𝑥h[:	𝐸5[ 	(30.29) 𝑥h[:	𝐸5[  (61.66)  𝑥s:	𝐸5   (48.05) 𝑥s:	𝐸5   (70.78) 

𝑥[[:	𝐿5[ 	(26.46) 𝑥[[:	𝐿5[  (32.66)  𝑥l:	𝐿5 (27.83) 𝑥l:	𝐿5 (34.47) 

𝑥l[:	𝑆64[ 	(17.61) 𝑥^":	𝑆64"  (26.68)  𝑥u:	𝑆64 (16.07) 𝑥u:	𝑆64 (12.91) 

𝑥^[:	𝑇5[	(13.61) 𝑥[":	𝐵5"  (25.72)  𝑥h:	𝐵5 	 (4.51) 𝑥h:	𝐵5 	 (3.16) 

𝑥[":	𝐵5" 	(12.65) 𝑥l[:	𝑆64[  (24.13)  𝑥t ∶ 	 𝑇5 (3.61) 𝑥t:	𝑇5  (3.03) 

𝑥"[:	𝑆5$[ 	(11.91) 𝑥!":	𝑘@,45"  (22.98)  𝑥":	𝑆5$ 		(0.97) 𝑥":	𝑆5$  (1.59) 

𝑥![:	𝑘@,45[ 	(11.33) 𝑥h":	𝑀5
"  (22.82)  𝑥!:	𝑘@,45 (0.96) 𝑥!:	𝑘@,45 (1.21) 

𝑥^":	𝑆64" (11.21) 𝑥"":	𝑆5$"  (22.72)  𝑥[:	𝑁5 	 (0.46) 𝑥[:	𝑁5 	 (0.32) 

𝑥"":	𝑆5$"  (8.79) 𝑥^[:	𝑇5[ (18.85)  𝑥^:	𝑀5   (0.25) 𝑥^:	𝑀5   (0.17) 

𝑥!":	𝑘@,45"  (8.54) 𝑥![:	𝑘@,45[  (17.26)    

𝑥h":	𝑀5
"  (8.50) 𝑥"[:	𝑆5$[  (15.62)    

𝑥h!:	𝑆64!  (2.16) 𝑥h!:	𝑆64!  (4.66)    

𝑥[!: 𝑁5!  (2.09) 𝑥[!: 𝑁5!  (3.93)    

𝑥"!:	𝑆5$!  (1.65) 𝑥!! : 𝑘@,45!  (3.67)    

𝑥!!: 𝑘@,45!  (1.61) 𝑥"!:	𝑆5$!  (3.62)    

It can be observed that, within the application of the statistical moments-based sensitivity analysis, 
there is no univocal accordance between the rankings obtained from the two different sensitivity 
indices. This result shows how, in this informed scenario, the relative importance of the input 
factors changes when considering different statistical moments of the output as measures of 
sensitivity. 
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On the other hand, the first-order and total-order sensitivity indices obtained from the variance-
based analysis show remarkable unambiguity, leading to the conclusion that, in this informed case, 
the interactions between the variable input factors do not play a decisive role concerning their 
relative importance. 

The colour shades of the 𝐴𝑀𝐴𝐸-based ranking show that, except for the variable input factor 𝑥[", 
the importance of the input factors belonging to a certain model follows the relative skill of the 
model to interpret the observations, given by the model’s posterior probability. 

The 𝐴𝑀𝐴𝑉-based ranking shows how, despite the Chierici model’s relatively low posterior 
probability, its variable input factors have a very strong effect on the output variance. 
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4.3.2. “BEREA SANDSTONE” SAMPLE 

4.3.2.1. MULTI-MODEL, INFORMED STATISTICAL MOMENTS-BASED 
SENSITIVITY ANALYSIS 

POSTERIOR MODELS PROBABILITIES 

• 𝑤! = 0.01 
• 𝑤" = 0.04 
• 𝑤! = 0.95 

VARIABLE INPUT FACTORS: 

The models variable input factors are expressed in the form:  

𝑥$
C = (𝑥$,#$&

C 	; 	𝑥$,#'(
C )	 	

Where 𝑥$
C represents the 𝑖E) variable input factor of the 𝑗E) model, and the values in the brackets 

define its 95% confidence limits. 

• 𝑥!!: 𝑘45@ = (0.431	; 	0.435) 
• 𝑥"!: 𝑆5$ = (0.39	; 	0.45) 
• 𝑥[!: 𝑁5 = (0.69	; 	1.2) 
• 𝑥h!: 𝑆64 = (0.32	; 	0.36) 

 
• 𝑥!": 𝑘45@ = (0.431	; 	0.435) 
• 𝑥"": 𝑆5$ = (0.39	; 	0.45) 
• 𝑥[": 𝐵5 = (0.8	; 	0.9) 
• 𝑥h": 𝑀5 = (1.17	; 	2.2) 
• 𝑥^": 𝑆64 = (0.32	; 	0.36) 

 
• 𝑥![: 𝑘45@ = (0.431	; 	0.435) 
• 𝑥"[: 𝑆5$ = (0.39	; 	0.45) 
• 𝑥[[: 𝐿5 = (1.7	; 	2.6) 
• 𝑥h[: 𝐸5 = (0.52	; 	1.02) 
• 𝑥^[: 𝑇5 = (2.18	; 	3.01) 
• 𝑥l[: 𝑆64 = (0.32	; 	0.36) 

Water relative permeability 𝑘45 is evaluated for 0.5 ≤ 𝑆5 ≤ 0.64. 

𝑛 = 200,000	 (number of model evaluations) 

𝑝 = 25		 (number of parameters’ bins)	
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In the figure below the unconditional single-model and multi-model statistical moments are 
reported for the “Berea sandstone” sample, for water relative permeability. 

 
Figure 59: single-model and multi-model unconditional output statistics of the relative permeability models informed to 

the “Berea sandstone” sample for water relative permeability 

For the “Berea sandstone” sample, the unconditional output statistical moments result to be 
particularly irregular and non-monotonic. 
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In the figures below the multi-model and single-model statistical moments-based informed 
sensitivity indices of the “Berea sandstone” sample for water relative permeability are reported: 

 
Figure 60: multi-model and single-model informed AMAE sensitivity indices of the “Berea sandstone” sample for 

water relative permeability 
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Figure 61: multi-model and single-model informed AMAV sensitivity indices of the “Berea sandstone” sample for 

water relative permeability 
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Figure 62: multi-model and single-model informed AMASk sensitivity indices of the “Berea sandstone” sample for 

water relative permeability 
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Figure 63: multi-model and single-model informed AMAK sensitivity indices of the “Berea sandstone” sample for 

water relative permeability 

The ranking of the 15 variable input factors 𝑥$
C (4 belonging to Corey model, 5 to Chierici model 

and 6 to LET model) is determined calculating and sorting the two ranking indices: 

𝑅mjmI%
, = ∑ 𝐴𝑀𝐴𝐸$

CT3,&*-
T3,&%(

	 	

𝑅mjmO%
, = ∑ 𝐴𝑀𝐴𝑉$

CT3,&*-
T3,&%(
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For the multi-model statistical moments-based informed global sensitivity analysis of the “Berea 
sandstone” sample for water relative permeability, the resulting rankings are: 

Input factors belonging to Corey model 

Input factors belonging to Chierici model 

Input factors belonging to LET model 

 

Ranking according to 

𝑅mjmI%
, 

Ranking according to 

𝑅mjmO%
, 

𝑥"[:	𝑆5$[  (8.38) 𝑥"[:	𝑆5$[  (62.28) 

𝑥l[:	𝑆64[  (5.40) 𝑥l[:	𝑆64[  (52.49) 

𝑥[[:	𝐿5[  (4.99) 𝑥h[:	𝐸5[  (47.59) 

𝑥h[:	𝐸5[  (4.73) 𝑥^[:	𝑇5[ (47.53) 

𝑥^[:	𝑇5[ (4.06) 𝑥[[:	𝐿5[  (47.08) 

𝑥![:	𝑘@,45[  (1.30) 𝑥![:	𝑘@,45[  (37.98) 

𝑥"":	𝑆5$"  (1.26) 𝑥^":	𝑆64"  (5.31) 

𝑥^":	𝑆64"  (1.17) 𝑥h":	𝑀5
"  (5.23) 

𝑥h":	𝑀5
"  (1.10) 𝑥"":	𝑆5$"  (4.59) 

𝑥[":	𝐵5"  (0.99) 𝑥[":	𝐵5"  (3.22) 

𝑥!":	𝑘@,45"  (0.96) 𝑥!":	𝑘@,45"  (2.99) 

𝑥[!: 𝑁5!  (0.23) 𝑥h!:	𝑆64!  (2.57) 

𝑥"!:	𝑆5$!  (0.21) 𝑥[!: 𝑁5!  (1.99) 

𝑥h!:	𝑆64!  (0.21) 𝑥"!: 𝑆5$!  (1.68) 

𝑥!!: 𝑘@,45!  (0.17) 𝑥!!: 𝑘@,45!  (1.46) 
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4.3.2.2. MULTI-MODEL, INFORMED VARIANCE-BASED SENSITIVITY ANALYSIS 

POSTERIOR MODELS PROBABILITIES 

• 𝑤! = 0.01 
• 𝑤" = 0.04 
• 𝑤! = 0.95 

VARIABLE INPUT FACTORS: 

The models variable input factors are expressed in the form:  

𝑥$
C = (𝑥$,#$&

C 	; 	𝑥$,#'(
C )	 	

Where 𝑥$
C represents the 𝑖E) variable input factor of the 𝑗E) model, and the values in the bracket 

define its 95% confidence limits. 

• 𝑥!: 𝑘45@ = (0.431	; 	0.435) 
• 𝑥": 𝑆5$ = (0.39	; 	0.45) 
• 𝑥[: 𝑁5 = (0.69	; 	1.2) 
• 𝑥h: 𝐵5 = (0.8	; 	0.9) 
• 𝑥^: 𝑀5 = (1.17	; 	2.2) 
• 𝑥l: 𝐿5 = (1.7	; 	2.6) 
• 𝑥s: 𝐸5 = (0.52	; 	1.02) 
• 𝑥t: 𝑇5 = (2.18	; 	3.01) 
• 𝑥u: 𝑆64 = (0.32	; 	0.36) 

Water relative permeability 𝑘45 is evaluated for 0.5 ≤ 𝑆5 ≤ 0.64. 
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𝑛 = 200,000	 (number of model evaluations for the first-order index) 

𝑝 = 25		 (number of parameters’ bins for the first-order index)	

𝑛E = 700	 (number of model evaluations for the total-order index) 

𝑝E = 6	 	 (number of parameters’ bins for the total-order index) 

In the figures below the single-model and multi-model first order and total order variance-based 
sensitivity indices informed to the “Berea sandstone” sample for water relative permeability are 
reported. 

 
Figure 64: first order single-model and multi-model informed variance-based sensitivity indices of the “Berea 

sandstone” sample for water relative permeability 



114 

 
Figure 65: total order single-model and multi-model informed variance-based sensitivity indices of the “Berea 

sandstone” sample for water relative permeability 

The ranking of the nine variable input factors 𝑥$ is determined calculating the two ranking indices: 

𝑅TQ%&8+9%&):;+ = ∑ 𝑆𝑓$#JLE$#6FXL
T3,&*-
T3,&%(

	 	

𝑅TE%&8+9%&):;+ = ∑ 𝑆𝑡$#JLE$#6FXL
T3,&*-
T3,&%(
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For the variance-based informed global sensitivity analysis of the “Berea sandstone” sample for 
water relative permeability the resulting rankings are: 

Ranking according to 

Rvw<=>?@<=ABC? 

Ranking according to 

RvE<=>?@<=ABC? 

𝑥u:	𝑆64 (44.98) 𝑥u:	𝑆64 (29.88) 

𝑥":	𝑆5$  (39.79) 𝑥":	𝑆5$  (31.12) 

𝑥t:	𝑇5  (16.14) 𝑥t:	𝑇5 	(12.21) 

𝑥s:	𝐸5   (11.89) 𝑥s:	𝐸5   (11.49) 

𝑥l:	𝐿5 (9.68) 𝑥l:	𝐿5 (7.67) 

𝑥^:	𝑀5  (6.25) 𝑥^:	𝑀5  (5.65) 

𝑥!:	𝑘@,45 (1.89) 𝑥!:	𝑘@,45 (1.38) 

𝑥[:	𝑁5 	 (1.26) 𝑥[:	𝑁5 	 (1.06) 

𝑥h:	𝐵5 	 (0.075) 𝑥h:	𝐵5 	 (0.088) 
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4.3.2.3. DISCUSSION 

In the tables below the rankings obtained from the different informed multi-model sensitivity 
analysis techniques, when applied to the “Berea sandstone” sample for water relative permeability, 
are summarized. 

Multi-model informed statistical moments-
based sensitivity analysis of the “Berea 

sandstone” sample for water relative 
permeability 

 
Multi-model informed variance-based 

sensitivity analysis of the “Berea sandstone” 
sample for water relative permeability 

Ranking according 
to 

𝑅mjmI%
, 

Ranking according 
to 

𝑅mjmO%
, 

 
Ranking according to 

𝑅TQ%&8+9%&):;+ 

Ranking according to 

𝑅TE%&8+9%&):;+ 

𝑥"[:	𝑆5$[  (8.38) 𝑥"[:	𝑆5$[  (62.28)  𝑥u:	𝑆64 (44.98) 𝑥u:	𝑆64 (29.88) 

𝑥l[:	𝑆64[  (5.40) 𝑥l[:	𝑆64[  (52.49)  𝑥":	𝑆5$ (39.79) 𝑥":	𝑆5$  (31.12) 

𝑥[[:	𝐿5[  (4.99) 𝑥h[:	𝐸5[  (47.59)  𝑥t:	𝑇5  (16.14) 𝑥t:	𝑇5  (12.21) 

𝑥h[:	𝐸5[  (4.73) 𝑥^[:	𝑇5[ (47.53)  𝑥s:	𝐸5  (11.89) 𝑥s:	𝐸5  (11.49) 

𝑥^[:	𝑇5[ (4.06) 𝑥[[:	𝐿5[  (47.08)  𝑥l:	𝐿5 (9.68) 𝑥l:	𝐿5  (7.67) 

𝑥![:	𝑘@,45[  (1.30) 𝑥![:	𝑘@,45[  (37.98)  𝑥^:	𝑀5  (6.25) 𝑥^:	𝑀5  (5.65) 

𝑥"":	𝑆5$"  (1.26) 𝑥^":	𝑆64"  (5.31)  𝑥!:	𝑘@,45 (1.89) 𝑥!:	𝑘@,45 (1.38) 

𝑥^":	𝑆64"  (1.17) 𝑥h":	𝑀5
"  (5.23)  𝑥[:	𝑁5 	 (1.26) 𝑥[:	𝑁5 	 (1.06) 

𝑥h":	𝑀5
"  (1.10) 𝑥"":	𝑆5$"  (4.59)  𝑥h:	𝐵5 	 (0.075) 𝑥h:	𝐵5 	 (0.088) 

𝑥[":	𝐵5"  (0.99) 𝑥[":	𝐵5"  (3.22)    

𝑥!":	𝑘@,45"  (0.96) 𝑥!":	𝑘@,45"  (2.99)    

𝑥[!:	𝑁5!  (0.23) 𝑥h!:	𝑆64!  (2.57)    

𝑥"!:	𝑆5$!  (0.21) 𝑥[!:	𝑁5!  (1.99)    

𝑥h!:	𝑆64!  (0.21) 𝑥"!:	𝑆5$!  (1.68)    

𝑥!!:	𝑘@,45!  (0.17) 𝑥!! :	𝑘@,45!  (1.46)    

It can be observed that, within the application of the statistical moments-based sensitivity analysis, 
there is no perfect accordance between the rankings obtained from the two different sensitivity 
indices. This result shows how, in this informed scenario, the relative importance of the input 
factors can change when considering different statistical moments of the output as measures of 
sensitivity. 
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The first-order and total-order sensitivity indices obtained from the variance-based analysis show 
remarkable unambiguity, leading to the conclusion that, in this informed case, the interactions 
between the variable input factors do not play a decisive role concerning their relative importance. 

The colour shades of the statistical moments-based rankings show that the importance of the input 
factors belonging to a certain model follows precisely the relative importance of the model given 
by its posterior probability. 
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5. CONCLUSION 

The objective of this essay has been to demonstrate the need to adopt many different approaches 
and techniques when investigating the most widely used water-oil relative permeability models by 
the tool of global sensitivity analysis, both in single-model and multi-model applications, both in 
uninformed and informed scenarios. 

This goal has been achieved by a preliminary study of the relative permeability models from a 
mathematical point of view, followed by the rigorous application of the state-of-the-art global 
sensitivity analysis techniques and by the in-depth analysis of the results, both from a qualitative 
and (most importantly) quantitative point of view. 

The obtained results clearly show that relying indiscriminately on a single global sensitivity 
analysis method is in general a failure approach which can lead to deceiving conclusions when there 
is not a perfect theoretical understanding of the adopted method, especially when considering 
complex numerical models and when operating in multi-model contexts. The only case in which 
the global sensitivity analysis has proven forgiving (in terms of consistency between the results 
obtained from different methods) is when applied to very simple numerical models (Corey model). 
Despite of that, in light of the results, a multi-method sensitivity analysis investigation associated 
with a case-by-case identification of the most suitable sensitivity index/indices is always 
recommended. 

The proper application of the different sensitivity analysis techniques and the analysis of the results 
have required a rich acquisition of information to allow the understanding of the theoretical 
foundations of the methodologies, and the numerical complexity of the sensitivity analysis 
procedures has led to an intense process of optimization (often carried out by a trial and error 
approach) of the MATLAB algorithms, aimed to find an optimal trade-off between computation 
time obtainable by home-available computers and accuracy (reliability) of the results. At their 
actual state, the developed MATLAB algorithms can provide the results of any sensitivity analysis 
described in the essay in less than an hour (on a modern computer). 

The most significant and useful outcomes of the work carried out are the MATLAB codes 
themselves, which are specifically designed and ready to run for the global sensitivity analysis of 
the main water-oil relative permeability models. I personally invite any student, researcher or 
worker who can benefit from the use of these codes to download them from the link that I make 
available below. 

 
Figure 66: link to the MATLAB scripts 
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6. APPENDICES 

APPENDIX A: VARIABLE INPUT FACTORS AND INPUT 
VARIABILITY SPACE OF THE THREE RELATIVE 
PERMEABILITY MODELS FOR OIL RELATIVE PERMEABILITY 

A1: COREY MODEL 

𝑘46 = 𝑘46(𝑆5) = 𝑘46@ (
!*T3*T)#
!*T3%*T)#

)i)  

Observing the analytical expression of the model it is possible to identify four independent model 
parameters, which are the variable input factors 𝑥$ of the model: 

• 𝑥!: 𝑘46@ ; it must be greater than 0 (otherwise, the curve represents a case of complete 
imperviousness to oil) and it can be as high as 1. 

• 𝑥":  𝑆5$; it can assume any value between 0 (no irreducible/initial water saturation) and 1 (the 
porous rock is completely full of water which can not be displaced). 

• 𝑥[: 𝑁6; it can assume any value greater than 0 without producing non-sensical relative 
permeability results. 

• 𝑥h:	𝑆64; it can assume any value between 0 (no residual oil) and 1 (the porous rock is completely 
full of oil which can not be displaced). 

The adopted input variability space for the Corey oil relative permeability model is: 

• 𝑘46,#$&@ = 0.1 𝑘46,#'(@ = 1 
• 𝑆5$,#$& = 0 𝑆5$,#'( = 0.35 
• 𝑁6,#$& = 0.1 𝑁6,#'( = 6 
• 𝑆64,#$& = 0  𝑆64,#'( = 0.35 

According to these assumptions, the model can be evaluated in (0.35 ≤ 𝑆5 ≤ 0.65). 
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Figure 67: effect of the variable input factors on Corey model for oil relative permeability 

Similarly to what happens for Corey model for water relative permeability, the variable input factor 
𝑁6  has the most dramatic effect on the output. It should be noted that the input factors 𝑆5$  and 𝑆64  

have inverted effects on water and oil relative permeability curves: the inversion of the roles of 
these two parameters, when considering the two phases, is effect of the symmetry of the relative 
permeability models for water and oil with respect to water saturation 𝑆5. 
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A2: CHIERICI MODEL 

𝑘46 = 𝑘46(𝑆5) = 𝑘46@ 𝑒𝑥𝑝 �−𝐵6 o
T3*T3%
!*T)#*T3

p
=j)

�  

Observing the analytical expression of the model it is possible to identify five independent model 
parameters, which are the variable input factors 𝑥$ of the model: 

• 𝑥!: 𝑘46@ . 
• 𝑥":  𝑆5$. 
• 𝑥[: 𝐵6; it can assume any value greater than 0 without producing non-sensical relative 

permeability results. 
• 𝑥h: 𝑀6; it can assume any value greater than 0 without producing non-sensical relative 

permeability results. 
• 𝑥^:	𝑆64. 

The adopted input variability space for Chierici model for oil relative permeability is: 

• 𝑘46,#$&@ = 0.1 𝑘46,#'(@ = 1 
• 𝑆5$,#$& = 0 𝑆5$,#'( = 0.35 
• 𝐵6,#$& = 0.1 𝐵6,#'( = 8 
• 𝑀6,#$& = 0.1 𝑀6,#'( = 8 
• 𝑆64,#$& = 0  𝑆64,#'( = 0.35 

According to these assumptions, the model can be evaluated in (0.35 ≤ 𝑆5 ≤ 0.65). 
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Figure 68: effect of the variable input factors on Chierici model for oil relative permeability 
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A3: LET MODEL 

𝑘46 = 𝑘46(𝑆5) = 𝑘46@
(!*T3∗ )5)

(!*T3∗ )5)=I7(T3∗ )6)
		

𝑆5∗ =
T3*T3%

!*T3%*T)#
		

Observing the analytical expression of the model it is possible to identify six independent model 
parameters, which are the variable input factors 𝑥$ of the model: 

• 𝑥!: 𝑘46@ . 
• 𝑥":  𝑆5$. 
• 𝑥[: 𝐿6; the inventors of the LET model suggest considering only values of 𝐿6 ≥ 0.1. Despite 

of that, any value above 0 is mathematically acceptable (it does not produce non-sensical 
relative permeability curves). 

• 𝑥h: 𝐸6; the inventors of the LET model suggest considering only values of 𝐸6 ≥ 0. 
• 𝑥^: 𝑇6; the inventors of the LET model suggest considering only values of 𝑇6 ≥ 0.1. Despite of 

that, any value above 0 is mathematically acceptable. 
• 𝑥l:	𝑆64. 

The adopted input variability space for LET model for oil relative permeability is: 

• 𝑘46,#$&@ = 0.1 𝑘46,#'(@ = 1 
• 𝑆5$,#$& = 0 𝑆5$,#'( = 0.35 
• 𝐿6,#$& = 0.05 𝐿6,#'( = 10 
• 𝐸6,#$& = 0.005 𝐸6,#'( = 10 
• 𝑇6,#$& = 0.05 𝑇6,#'( = 8 
• 𝑆64,#$& = 0  𝑆64,#'( = 0.35 

According to these assumptions, the model can be evaluated in (0.35 ≤ 𝑆5 ≤ 0.65). 
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Figure 69: effect of the variable input factors on LET model for oil relative permeability 
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APPENDIX B: OIL RELATIVE PERMEABILITY, SINGLE MODEL 
UNINFORMED SCENARIO 

B1: COREY MODEL 

B1.1: MULTIPLE START PERTURBATION METHOD SENSITIVITY ANALYSIS 

 
Figure 70: multiple start perturbation method global sensitivity analysis of Corey model for oil relative permeability 

From the multiple start perturbation method global sensitivity analysis applied to Corey model for 
oil relative permeability, the resulting ranking is: 

Ranking 
according to 𝑅T,$  

x2: Swi (42.85) 

x4: Sor (28.11) 

x1: k0
ro (26.21) 

x3: No (8.14) 

It is interesting to observe that, with respect to Corey model for water relative permeability, the 
input factors 𝑥" (𝑆5$) and 𝑥h (𝑆64) have an exactly opposite role in the model. This is consequence 
of the symmetry of the relative permeability curves of water and oil with respect to water saturation 
𝑆5 (𝑆5$ determines the point of nil water relative permeability 𝑘45, while 𝑆64 determines the point 
of maximum 𝑘45; the opposite happens for oil relative permeability 𝑘46). 
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B1.2: STATISTICAL MOMENTS-BASED SENSITIVITY ANALYSIS 

 
Figure 71: statistical moments of the unconditional output of Corey model for oil relative permeability 

The unconditional statistical moments of oil relative permeability 𝑘46 show exactly opposite trends 
with respect to the unconditional statistical moments of water relative permeability 𝑘45, due to the 
symmetry of Corey model with respect to water saturation 𝑆5  when considering the two fluids. 
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Figure 72: statistical moments-based sensitivity analysis of Corey model for oil relative permeability 

The sensitivity indices plots are perfectly symmetrical to the curves obtained for water relative 
permeability (plus the inversion between the curves related to 𝑥" and 𝑥h). 
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From the statistical moments-based sensitivity analysis applied to the Corey model for oil relative 
permeability the resulting rankings are: 

Ranking according to 
𝑅mjmI,$  

Ranking according to 
𝑅mjmO,$  

Ranking according to 
𝑅T6n6L	Q$4oE,$  

Ranking according 
to 𝑅T6n6L	E6E'L,$ 

x3: No (79.25) x3: No (69.79) x3: No (63.66) x3: No (63.48) 

x1: k0
ro (42.31) x1: k0

ro (60.65) x1: k0
ro (17.40) x1: k0

ro (44.93) 

x2: Swi (20.94) x2: Swi (14.10) x2: Swi (6.45) x2: Swi (7.92) 

x4: Sor (19.76) x4: Sor (13.30) x4: Sor (3.12) x4: Sor (4.31) 

It can be seen that (as it was observed from the multiple start perturbation method sensitivity 
analysis) when considering oil relative permeability, the relative importance of the input factors 𝑥" 
(𝑆5$) and 𝑥h (𝑆64) is inverted. 

 

B1.3: CUMULATIVE PROBABILITY DENSITY FUNCTION-BASED SENSITIVITY 
ANALYSIS 

 
Figure 73: cumulative distribution of Corey model unconditional output for oil relative permeability, Sw=0.5 
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Figure 74: cumulative probability density function-based sensitivity analysis of Corey model for oil relative 

permeability 

For the cumulative density function-based sensitivity analysis applied to the Corey model for oil 
relative permeability the resulting rankings are: 

Ranking according to 
𝑅p#'(,$  

Ranking according to 
𝑅p#XF$'&,$  

x3: No (63.93) x3: No (33.74) 

x1: k0
ro (43.98) x1: k0

ro (14.29) 

x2: Swi (26.69) x2: Swi (12.09) 

x4: Sor (24.65) x4: Sor (11.25) 
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B1.4: VARIOGRAM-BASED SENSITIVITY ANALYSIS 

 
Figure 75: normalized variograms of Corey model conditional output for oil relative permeability, Sw=0.5 

 
Figure 76: variogram-based sensitivity analysis of Corey model for oil relative permeability 
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For the variogram-based sensitivity analysis applied to the Corey model for oil relative permeability 
the resulting rankings are: 

Ranking according to 
𝑅qOmrT	!@,$  

Ranking according to 
𝑅qOmrT	^@,$  

x3: No (0.011) x3: No (1.13) 

x1: k0
ro (0.0020) x1: k0

ro (0.47) 

x2: Swi (0.0010) x2: Swi (0.16) 

x4: Sor (0.00030) x4: Sor (0.064) 
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B2: CHIERICI MODEL 

B2.1: MULTIPLE START PERTURBATION METHOD SENSITIVITY ANALYSIS 

 
Figure 77: multiple start perturbation method global sensitivity analysis of Chierici model for oil relative permeability 

From the multiple start perturbation method global sensitivity analysis applied to Chierici model 
for oil relative permeability, the resulting ranking is:  

Ranking according 
to 𝑅T,$ 

x2: Swi (75.91) 

x5: Sor (54.36) 

x1: k0
ro (29.28) 

x3: Bo (3.70) 

x4: Mo (2.62) 

With respect to the Chierici model for water relative permeability, the input factors 𝑥" (𝑆5$) and 𝑥^ 
(𝑆64) have an opposite role, due to the symmetry of the relative permeability models for water and 
oil with respect to water saturation 𝑆5. This symmetry reflects also on the sensitivity indices curves, 
which are perfectly symmetrical to the ones obtained for water relative permeability. 
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B2.2: STATISTICAL MOMENTS-BASED SENSITIVITY ANALYSIS 

 
Figure 78: statistical moments of the unconditional output of Chierici model for oil relative permeability 

The statistical moments of the unconditional oil relative permeability 𝑘46 show exactly opposite 
trends with respect to the statistical moments of the unconditional water relative permeability 𝑘46, 
due to the symmetry of Chierici model with respect to water saturation 𝑆5, when considering water 
and oil. 
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Figure 79: statistical moments-based sensitivity analysis of Chierici model for oil relative permeability 
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From the statistical moments-based sensitivity analysis applied to the Chierici relative permeability 
model for oil relative permeability the resulting rankings are: 

Ranking according to 
𝑅mjmI,$  

Ranking according to 
𝑅mjmO,$  

Ranking according to 
𝑅T6n6L	Q$4oE,$  

Ranking according 
to 𝑅T6n6L	E6E'L,$ 

x3: Bo (59.58) x1: k0
ro (62.55) x3: Bo (16.88) x1: k0

ro (40.77) 

x2: Swi (54.53) x3: Bo (47.82) x2: Swi (15.70) x2: Swi (35.60) 

x5: Sor (51.95) x2: Swi (46.48) x1: k0
ro (14.15) x3: Bo (33.56) 

x1: k0
ro (41.34) x5: Sor (42.97) x5: Sor (9.77) x5: Sor (30.70) 

x4: Mo (30.09) x4: Mo (31.53) x4: Mo (7.24) x4: Mo (29.54) 

 

B2.3: CUMULATIVE PROBABILITY DENSITY FUNCTION-BASED SENSITIVITY 
ANALYSIS  

 
Figure 80: cumulative distribution of Chierici model unconditional output for water relative permeability, Sw=0.5 
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Figure 81: cumulative distribution-based sensitivity analysis of Chierici model for oil relative permeability 

The sensitivity indices’ plots for oil relative permeability 𝑘46 are symmetrical to the ones for water 
relative permeability 𝑘45 and the input variable factors 𝑥" and 𝑥^ invert their relative contributions. 

For the cumulative probability density function-based global sensitivity analysis applied to the 
Chierici model for oil relative permeability the resulting rankings are: 

Ranking according to 
𝑅p#'(,$  

Ranking according to 
𝑅p#XF$'&,$  

x3: Bo (46.70) x2: Swi (16.50) 

x1: k0
ro (37.60) x1: k0

ro (15.47) 

x2: Swi (35.10) x5: Sor (14.81) 

x5: Sor (32.61) x3: Bo (13.17) 

x4: Mo (31.86) x4: Mo (8.23) 
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B2.4: VARIOGRAM-BASED SENSITIVITY ANALYSIS  

 
Figure 82: normalized variograms of Chierici model conditional output for oil relative permeability, Sw=0.5 

 
Figure 83: variogram-based sensitivity analysis of Chierici model for oil relative permeability 

The sensitivity indices’ curves are symmetrical to the curves obtained for water relative 
permeability; and the role of the variable input factors 𝑥" and 𝑥^ is inverted. 
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For the variogram-based sensitivity analysis applied to the Chierici model for oil relative 
permeability the resulting rankings are: 

Ranking according to 
𝑅qOmrT!@,$  

Ranking according to 
𝑅qOmrT^@,$  

x3: Bo (0.0086) x2: Swi (0.98) 

x2: Swi (0.0051) x1: k0
ro (0.78) 

x4: Mo (0.0040) x4: Mo (0.63) 

x1: k0
ro (0.0033) x5: Sor (0.59) 

x5: Sor (0.0030) x3: Bo (0.53) 

 

B3: LET MODEL 

B3.1: MULTIPLE START PERTURBATION METHOD SENSITIVITY ANALYSIS 

 
Figure 84: multiple start perturbation method global sensitivity analysis of LET model for oil relative permeability 
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With respect to the LET model for water relative permeability the input factors 𝑥" (𝑆5$) and 𝑥l 
(𝑆64) have an opposite role, due to the symmetry of the LET relative permeability model with 
respect to water saturation 𝑆5, when considering the two phases. This symmetry also reflects on 
the sensitivity indices curves, which are perfectly symmetrical to the ones obtained for water 
relative permeability. 

From the multiple start perturbation method global sensitivity analysis applied to LET model for 
oil relative permeability the resulting ranking is:  

Ranking according 
to 𝑅T,$ 

x2: Swi (63.77) 

x6: Sor (50.28) 

x1: k0
ro (34.31) 

x5: To (3.67) 

x4: Eo (3.11) 

x3: Lo (2.84) 

 

B3.2: STATISTICAL MOMENTS-BASED SENSITIVITY ANALYSIS 

 
Figure 85: statistical moments of the unconditional output of LET model for oil relative permeability 

The unconditional statistical moments of oil relative permeability 𝑘46 show exactly opposite trends 
with respect to the unconditional statistical moments of water relative permeability 𝑘45, due to the 
symmetry of LET model with respect to water saturation, when considering water and oil. 
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Figure 86: statistical moments-based global sensitivity analysis of LET model for oil relative permeability 
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From the statistical moments-based global sensitivity analysis applied to the LET model for oil 
relative permeability the resulting rankings are: 

Ranking according to 
𝑅mjmI,$  

Ranking according to 
𝑅mjmO,$  

Ranking according to 
𝑅T6n6L	Q$4oE,$  

Ranking according 
to 𝑅T6n6L	E6E'L,$ 

x3: Lo (53.28) x1: k0
ro (61.41) x3: Lo (18.17) x1: k0

ro (46.73) 

x5: To (44.76) x5: To (42.53) x5: To (16.41) x3: Lo (29.27) 

x1: k0
ro (41.33) x3: Lo (34.16) x1: k0

ro (16.18) x5: To (24.76) 

x6: Sor (33.49) x6: Sor (28.44) x2: Swi (8.36) x6: Sor (13.71) 

x2: Swi (31.35) x2: Swi (25.85) x4: Eo (7.94) x2: Swi (12.32) 

x4: Eo (26.45) x4: Eo (22.56) x6: Sor (6.56) x4: Eo (10.55) 

 

B3.3: PROBABILITY DENSITY FUNCTION-BASED SENSITIVITY ANALYSIS 

 
Figure 87: cumulative distribution of LET model unconditional output for oil relative permeability, Sw=0.5 



142 

 

Figure 88: cumulative distribution function-based global sensitivity analysis of LET model for oil relative permeability 

From the cumulative probability density function-based global sensitivity analysis applied to the 
LET model for oil relative permeability the resulting rankings are: 

 

Ranking according to 
𝑅p#'(,$  

Ranking according to 
𝑅p#XF$'&,$  

x3: Lo (46.78) x3: Lo (22.65) 

x4: Eo (46.26) x1: k0
ro (17.64) 

x1: k0
ro (44.08) x5: To (15.57) 

x5: To (37.69) x6: Sor (12.31) 

x6: Sor (26.08) x2: Swi (12.01) 

x2: Swi (24.97) x4: Eo (6.45) 
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B3.4: VARIOGRAM-BASED SENSITIVITY ANALYSIS 

 
Figure 89: normalized variograms of LET model conditional output for oil relative permeability, Sw=0.5 

 
Figure 90: variogram-based global sensitivity analysis of LET model for oil relative permeability 
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From the variogram-based global sensitivity analysis applied to the LET model for oil relative 
permeability the resulting rankings are: 

Ranking according to 
𝑅qOmrT!@,$  

Ranking according to 
𝑅qOmrT^@,$  

x4: Eo (0.0126) x5: To (1.04) 

x5: To (0.0050) x1: k0
ro (0.89) 

x3: Lo (0.0043) x3: Lo (0.75) 

x1: k0
ro (0.0038) x2: Swi (0.62) 

x2: Swi (0.0031) x6: Sor (0.40) 

x6: Sor (0.0018) x4: Eo (0.38) 
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B4: RECAP 

B4.1: COREY MODEL 

In the table below the rankings obtained from the different global sensitivity analysis techniques 
when applied to Corey relative permeability model are summarized. A colour has been assigned to 
each variable input factor in order to help visualizing eventual concordances and discordances 
between the rankings obtained from different sensitivity analysis methods. 

 

B4.2: CHIERICI MODEL 

In the tables below the rankings obtained from the different sensitivity analysis techniques when 
applied to the Chierici relative permeability model are summarized. 

 

B4.3: LET MODEL 

In the tables below the rankings obtained from the different sensitivity analysis techniques when 
applied to the LET relative permeability model are summarized.  

 

multiple start
Ranking 

according to 
R S,i

Ranking 
according to 

R AMAE,i

Ranking 
according to 

R AMAV,i

Ranking 
according to 

R Sobol first,i

Ranking 
according to 

R Sobol total,i

Ranking 
according to 

R Tmax,i

Ranking 
according to 

R Tmedian,i

Ranking 
according to 

R IVARS 10,i

Ranking 
according to 

R IVARS 50,i

Swi (42.85)  No (79.25) No (69.79) No (63.66) No (63.48) No (63.93) No (33.74) No (0.011) No (1.13)

Sor (28.11)  k0ro (42.31) k0ro (60.65) k0ro (17.40) k0ro (44.93) k0ro (43.98) k0ro (14.29) k0ro (0.0020)  k0ro (0.47)

k0ro (26.21) Swi (20.94) Swi (14.10) Swi (6.45) Swi (7.92) Swi (26.69) Swi (12.09) Swi (0.0010) Swi (0.16)

No (8.14) Sor (19.76) Sor (13.30) Sor (3.12) Sor (4.31) Sor (24.65) Sor (11.25) Sor (0.00030) Sor (0.064)

Rankings of the input factors of Corey model for oil relative permeability
variogram-basedstat.moments-based cumul.distrib.-based

multiple start
Ranking 

according to 
R S,i

Ranking 
according to 

R AMAE,i

Ranking 
according to 

R AMAV,i

Ranking 
according to 

R Sobol first,i

Ranking 
according to 

R Sobol total,i

Ranking 
according to 

R Tmax,i

Ranking 
according to 

R Tmedian,i

Ranking 
according to 

R IVARS 10,i

Ranking 
according to 

R IVARS 50,i

Swi (75.91) Bo (59.58)  k0ro (62.55) Bo (16.88) k0ro (40.77) Bo (46.70)  Swi (16.50)  Bo (0.0086) Swi (0.98)

Sor (54.36) Swi (54.53)  Bo (47.82) Swi (15.70)  Swi (35.60) k0ro (37.60) k0ro (15.47) Swi (0.0051)  k0ro (0.78)

k0ro (29.28) Sor (51.95) Swi (46.48) k0ro (14.15) Bo (33.56) Swi (35.10) Sor (14.81) Mo (0.0040)  Mo (0.63)

Bo (3.70) k0ro (41.34) Sor (42.97) Sor (9.77) Sor (30.70) Sor (32.61) Bo (13.17)  k0ro (0.0033) Sor (0.59)

Mo (2.62) Mo (30.09)
x4: Mo 
(31.53)

Mo (7.24) Mo (29.54) Mo (31.86) Mo (8.23) Sor (0.0030) Bo (0.53)

Rankings of the input factors of Chierici model for oil relative permeability
cumul.distrib.-based variogram-basedstat.moments-based

multiple start
Ranking 

according to 
R S,i

Ranking 
according to 

R AMAE,i

Ranking 
according to 

R AMAV,i

Ranking 
according to 

R Sobol first,i

Ranking 
according to 

R Sobol total,i

Ranking 
according to 

R Tmax,i

Ranking 
according to 

R Tmedian,i

Ranking 
according to 

R IVARS 10,i

Ranking 
according to 

R IVARS 50,i

Swi (63.77) Lo (53.28) k0ro (61.41) Lo (18.17) k0ro (46.73) Lo (46.78) Lo (22.65) Eo (0.0126) To (1.04)

Sor (50.28) To (44.76) To (42.53) To (16.41) Lo (29.27) Eo (46.26) k0ro (17.64)  To (0.0050) k0ro (0.89)

k0ro (34.31) k0ro (41.33) Lo (34.16) k0ro (16.18) To (24.76) k0ro (44.08) To (15.57) Lo (0.0043) Lo (0.75)

To (3.67)  Sor (33.49) Sor (28.44)  Swi (8.36) Sor (13.71) To (37.69) Sor (12.31) k0ro (0.0038) Swi (0.62)

Eo (3.11) Swi (31.35) Swi (25.85) Eo (7.94) Swi (12.32) Sor (26.08) Swi (12.01) Swi (0.0031) Sor (0.40)

 Lo (2.84) Eo (26.45) Eo (22.56) Sor (6.56) Eo (10.55) Swi (24.97) Eo (6.45) Sor (0.0018) Eo (0.38)

stat.moments-based cumul.distrib.-based
Rankings of the input factors of LET model for oil relative permeability

variogram-based
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APPENDIX C: OIL RELATIVE PERMEABILITY, MULTI-MODEL 
UNINFORMED SCENARIO 

C1: MULTI-MODEL, STATISTICAL MOMENTS-BASED SENSITIVITY 
ANALYSIS 

 
Figure 91: single-model and multi-model unconditional statistical moments of the three models for oil relative 

permeability 

The plots of the multi-model unconditional statistical moments for oil relative permeability are 
symmetrical to the curves obtained for water relative permeability, with respect to water saturation 
𝑆5. 
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Figure 92: multi-model and single-model AMAE sensitivity indices for oil relative permeability 
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Figure 93: multi-model and single-model AMAV sensitivity indices for oil relative permeability 
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Figure 94: multi-model and single-model AMASk sensitivity indices for oil relative permeability 

  



150 

 
Figure 95: multi-model and single-model AMAK sensitivity indices for oil relative permeability 
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Considering oil relative permeability, the multi-model statistical moments-based sensitivity 
indices’ plots are simply symmetrical to the ones obtained for water relative permeability and, for 
each model, the input factors corresponding to 𝑆5$ and 𝑆64 invert their roles. 

For the multi-model statistical moments-based global sensitivity analysis of the three oil relative 
permeability models, the resulting rankings are: 

Input factors belonging to Corey model 

Input factors belonging to Chierici model 

Input factors belonging to LET model 

 

Ranking according to 

𝑅mjmI%
, 

Ranking according to 

𝑅mjmO%
, 

𝑥[!:	𝑁6! (37.17) 𝑥![:	𝑘@,46[  (34.92) 

𝑥[[:	𝐿6[  (26.26) 𝑥[!:	𝑁6! (30.08) 

𝑥"":	𝑆5$"  (23.04) 𝑥!":	𝑘@,46"  (27.10) 

𝑥^[:	𝑇6[ (23.00) 𝑥!!:	𝑘@,46!  (26.94) 

𝑥!!:	𝑘@,46!  (22.42) 𝑥^[:	𝑇6[ (26.48) 

𝑥![:	𝑘@,46[  (21.59) 𝑥[[:	𝐿6[  (23.21) 

𝑥^":	𝑆64"   (20.72) 𝑥"":	𝑆5$"  (21.19) 

𝑥[":	𝐵6" (20.53) 𝑥l[:	𝑆64[  (20.79) 

𝑥!":	𝑘@,46"   (20.40) 𝑥"[:	𝑆5$[  (19.50) 

𝑥l[:	𝑆64[  (18.68) 𝑥^":	𝑆64"  (18.74) 

𝑥"[:	𝑆5$[  (17.82) 𝑥h[:	𝐸6[ (17.94) 

𝑥h":	𝑀6
"  (16.72) 𝑥[":	𝐵6" (17.61) 

𝑥h!:	𝑆64!  (15.70) 𝑥h":	𝑀6
"  (17.60) 

𝑥h[:	𝐸6[ (15.37) 𝑥h!:	𝑆64!  (14.98) 

𝑥"!:	𝑆5$!  (15.00) 𝑥"!:	𝑆5$!  (14.37) 

As expected, these two rankings are equivalent to the ones obtained for water relative permeability, 
except for the inversion of 𝑥"! with 𝑥h!, the inversion of 𝑥"" with 𝑥^" and the inversion of 𝑥"[ with 𝑥l[. 
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The rankings obtained from these two indices are not in agreement with each other. The only aspect 
on which they agree is that the variable input factor 𝑥"! (2&F input factor belonging to Corey model) 
is the less relevant in this multi-model scenario. 
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C2: MULTI-MODEL, VARIANCE-BASED SENSITIVITY ANALYSIS 

When considering oil relative permeability, the variable input factors of the models are: 

• 𝑥!: 𝑘46@ , end point of the oil relative permeability curve. 
• 𝑥": 𝑆5$: irreducible water saturation. 
• 𝑥[: 𝑁6: parameter belonging to Corey model for oil. 
• 𝑥h: 𝐵6: parameter belonging to Chierici model for oil. 
• 𝑥^: 𝑀6: parameter belonging to Chierici model for oil. 
• 𝑥l: 𝐿6: parameter belonging to LET model for oil. 
• 𝑥s: 𝐸6: parameter belonging to LET model for oil. 
• 𝑥t: 𝑇6: parameter belonging to LET model for oil. 
• 𝑥u: 𝑆64: residual oil saturation. 

 
Figure 96: multi-model and single-model first order variance-based sensitivity indices for oil relative permeability 
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Figure 97: multi-model and single-model total order variance-based sensitivity indices for oil relative permeability 

When considering oil relative permeability, the multi-model variance-based sensitivity indices’ 
plots are simply symmetrical to the ones obtained for water relative permeability plus the inversion 
between the input factors corresponding to 𝑆5$ (𝑥") and 𝑆64 (𝑥u). 
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For the multi-model variance-based sensitivity analysis of the three oil relative permeability 
models, the resulting rankings are: 

Ranking according to 

𝑅TQ%&8+9%&):;+ 

Ranking according to 

𝑅TE%&8+9%&):;+ 

𝑥[:	𝑁6  (18.20) 𝑥!:	𝑘@,46 (43.55) 

𝑥!:	𝑘@,46 (16.13) 𝑥[:	𝑁6  (18.04) 

𝑥":	𝑆5$ (10.43) 𝑥":	𝑆5$ 	(17.07) 

𝑥l:	𝐿6  (7.97) 𝑥u:	𝑆64 	(14.60) 

𝑥t:	𝑇6  (6.90) 𝑥l:	𝐿6 	(12.87) 

𝑥u:	𝑆64 (6.77) 𝑥t:	𝑇6 	(10.59) 

𝑥h:	𝐵6  (4.08) 𝑥h:	𝐵6 	(7.20) 

𝑥s:	𝐸6  (3.47) 𝑥^:	𝑀6  (7.06) 

𝑥^:	𝑀6  (2.66) 𝑥s (4.60) 

As expected, these two rankings are equivalent to the ones obtained for water relative permeability, 
except for the inversion of 𝑥" with 𝑥u. 
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C3: RECAP 

In the table below the rankings obtained from the different multi-model sensitivity analysis 
techniques, when applied to the three oil relative permeability models, are summarized: 

Multi-model statistical moments-based 
sensitivity analysis of the oil relative 

permeability models 
 

Multi-model variance-based sensitivity 
analysis of the oil relative permeability 

models 

Ranking according 
to 

𝑅mjmI%
, 

Ranking according 
to 

𝑅mjmO%
, 

 
Ranking according 

to 

𝑅TQ%&8+9%&):;+ 

Ranking according to 

𝑅TE%&8+9%&):;+ 

𝑥[!:	𝑁6! (37.17) 𝑥![:	𝑘@,46[  (34.92)  𝑥[:	𝑁6  (18.20) 𝑥!:	𝑘@,46 (43.55) 

𝑥[[:	𝐿6[  (26.26) 𝑥[!:	𝑁6! (30.08)  𝑥!:	𝑘@,46 (16.13) 𝑥[:	𝑁6  (18.04) 

𝑥"":	𝑆5$"  (23.04) 𝑥!":	𝑘@,46"   (27.10)  𝑥":	𝑆5$ (10.43) 𝑥":	𝑆5$ 	(17.07) 

𝑥^[:	𝑇6[ (23.00) 𝑥!!:	𝑘@,46!  (26.94)  𝑥l:	𝐿6  (7.97) 𝑥u:	𝑆64 	(14.60) 

𝑥!!:	𝑘@,46!  (22.42) 𝑥^[:	𝑇6[ (26.48)  𝑥t:	𝑇6  (6.90) 𝑥l:	𝐿6 	(12.87) 

𝑥![:	𝑘@,46[  (21.59) 𝑥[[:	𝐿6[  (23.21)  𝑥u:	𝑆64 (6.77) 𝑥t:	𝑇6 	(10.59) 

𝑥^":	𝑆64"  (20.72) 𝑥"":	𝑆5$"  (21.19)  𝑥h:	𝐵6   (4.08) 𝑥h:	𝐵6 	(7.20) 

𝑥[":	𝐵6" (20.53) 𝑥l[:	𝑆64[  (20.79)  𝑥s:	𝐸6  (3.47) 𝑥^:	𝑀6  (7.06) 

𝑥!":	𝑘@,46"   (20.40) 𝑥"[:	𝑆5$[  (19.50)  𝑥^:	𝑀6  (2.66) 𝑥s:	𝐸6  (4.60) 

𝑥l[:	𝑆64[  (18.68) 𝑥^":	𝑆64"  (18.74)    

𝑥"[:	𝑆5$[  (17.82) 𝑥h[:	𝐸6[ (17.94)    

𝑥h":	𝑀6
"  (16.72) 𝑥[":	𝐵6" (17.61)    

𝑥h!:	𝑆64!  (15.70) 𝑥h":	𝑀6
"  (17.60)    

𝑥h[:	𝐸6[ (15.37) 𝑥h!:	𝑆64!  (14.98)    

𝑥"!:	𝑆5$!  (15.00) 𝑥"!:	𝑆5$!  (14.37)    
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APPENDIX D: OIL RELATIVE PERMEABILITY, MULTI-MODEL 
INFORMED SCENARIO 

D1: “SAND PACK” SAMPLE  

D1.1: MULTI-MODEL, INFORMED STATISTICAL MOMENTS-BASED SENSITIVITY 
ANALYSIS  

POSTERIOR MODELS PROBABILITIES 

• 𝑤! = 0.01 
• 𝑤" = 0.02 
• 𝑤! = 0.97 

VARIABLE INPUT FACTORS: 

The models variable input factors are expressed in the form:  

𝑥$
C = (𝑥$,#$&

C 	; 	𝑥$,#'(
C )	 	

Where 𝑥$
C represents the 𝑖E) variable input factor of the 𝑗E) model, and the values in the brackets 

define its 95% confidence limits. 

• 𝑥!!: 𝑘46@ = (0.751	; 	0.811) 
• 𝑥"!: 𝑆5$ = (0.166	; 	0.214) 
• 𝑥[!: 𝑁6 = (0.99	; 	1.05) 
• 𝑥h!: 𝑆64 = (0.1	; 	0.18) 

 
• 𝑥!": 𝑘46@ = (0.751	; 	0.811) 
• 𝑥"": 𝑆5$ = (0.166	; 	0.214) 
• 𝑥[": 𝐵6 = (0.62	; 	0.73) 
• 𝑥h": 𝑀6 = (0.53	; 	0.76) 
• 𝑥^": 𝑆64 = (0.1	; 	0.18) 

 
• 𝑥![: 𝑘46@ = (0.751	; 	0.811) 
• 𝑥"[: 𝑆5$ = (0.166	; 	0.214) 
• 𝑥[[: 𝐿6 = (0.79	; 	1.22) 
• 𝑥h[: 𝐸6 = (0.70	; 	1.65) 
• 𝑥^[: 𝑇6 = (0.91	; 	1.64) 
• 𝑥l[: 𝑆64 = (0.1	; 	0.18) 

Oil relative permeability 𝑘46 is evaluated for 0.25 ≤ 𝑆5 ≤ 0.8. 

In the figure below the unconditional single-model and multi-model statistical moments are 
reported for the “sand pack” sample, for oil relative permeability: 
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Figure 98: single-model and multi-model unconditional output statistics of the relative permeability models informed to 

the “sand pack” sample for oil relative permeability 

In the figures below, the informed multi-model statistical moments-based sensitivity indices of the 
“sand pack” sample for oil relative permeability are reported. The single-model statistical moments-
based indices are reported too, so as to highlight the differences between the multi-model and the 
single-model approach. 
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Figure 99: multi-model and single-model informed AMAE sensitivity indices of the “sand pack” sample for oil relative 

permeability 
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Figure 100: multi-model and single-model informed AMAV sensitivity indices of the “sand pack” sample for oil 

relative permeability 
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Figure 101: multi-model and single-model informed AMASk sensitivity indices of the “sand pack” sample for oil 

relative permeability 
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Figure 102: multi-model and single-model informed AMAK sensitivity indices of the “sand pack” sample for oil 

relative permeability 
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The ranking of the 15 variable input factors 𝑥$
C (4 belonging to Corey model, 5 to Chierici model 

and 6 to LET model) is determined calculating the two ranking indices: 

𝑅mjmI%
, = ∑ 𝐴𝑀𝐴𝐸$

CT3,&*-
T3,&%(

	 	

𝑅mjmO%
, = ∑ 𝐴𝑀𝐴𝑉$

CT3,&*-
T3,&%(

	 	

For the multi-model statistical moments-based informed global sensitivity analysis of the “sand 
pack” sample for oil relative permeability, the resulting rankings are: 

Input factors belonging to Corey model 

Input factors belonging to Chierici model 

Input factors belonging to LET model 

 

Ranking according to 

𝑅mjmI%
, 

Ranking according to 

𝑅mjmO%
, 

𝑥h[:	𝐸6[ (10.11) 𝑥h[:	𝐸6[ (48.24) 

𝑥[[:	𝐿6[  (5.96) 𝑥^[:	𝑇6[ (27.45) 

𝑥l[:	𝑆64[  (5.87) 𝑥[[:	𝐿6[  (13.98) 

𝑥^[:	𝑇6[ (4.81) 𝑥l[:	𝑆64[  (12.86) 

𝑥![:	𝑘@,46[  (2.04) 𝑥![:	𝑘@,46[  (8.03) 

𝑥"[:	𝑆5$[  (1.96) 𝑥"[:	𝑆5$[  (6.35) 

𝑥^":	𝑆64" 	(0.27) 𝑥^":	𝑆64"  (1.60) 

𝑥h":	𝑀6
"  (0.24) 𝑥h":	𝑀6

"  (1.54) 

𝑥[":	𝐵6" (0.20) 𝑥[":	𝐵6" (1.43) 

𝑥!":	𝑘@,46"   (0.17) 𝑥!":	𝑘@,46"   (1.41) 

𝑥"":	𝑆5$"  (0.17) 𝑥"":	𝑆5$"  (1.39) 

𝑥h!:	𝑆64!  (0.090) 𝑥h!:	𝑆64!  (0.93) 

𝑥!!:	𝑘@,46!  (0.051) 𝑥!!:	𝑘@,46!  (0.87) 

𝑥"!:	𝑆5$!  (0.050) 𝑥"!:	𝑆5$!  (0.86) 

𝑥[!:	𝑁6! (0.045) 𝑥[!:	𝑁6! (0.84) 
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D1.2: MULTI-MODEL, INFORMED VARIANCE-BASED SENSITIVITY ANALYSIS 

POSTERIOR MODELS PROBABILITIES 

• 𝑤! = 0.01 
• 𝑤" = 0.02 
• 𝑤! = 0.97 

VARIABLE INPUT FACTORS: 

The models variable input factors are expressed in the form:  

𝑥$
C = (𝑥$,#$&

C 	; 	𝑥$,#'(
C )	 	

Where 𝑥$
C represents the 𝑖E) variable input factor of the 𝑗E) model, and the values in the brackets 

define its 95% confidence limits. 

• 𝑥!: 𝑘46@ = (0.751	; 	0.811) 
• 𝑥": 𝑆5$ = (0.166	; 	0.214) 
• 𝑥[: 𝑁6 = (0.99	; 	1.05) 
• 𝑥h: 𝐵6 = (0.62	; 	0.73) 
• 𝑥^: 𝑀6 = (0.53	; 	0.76) 
• 𝑥l: 𝐿6 = (0.79	; 	1.22) 
• 𝑥s: 𝐸6 = (0.70	; 	1.65) 
• 𝑥t: 𝑇6 = (0.91	; 	1.64) 
• 𝑥u: 𝑆64 = (0.1	; 	0.18) 

Oil relative permeability 𝑘46 is evaluated for 0.25 ≤ 𝑆5 ≤ 0.8. 

In the figures below, the single-model and multi-model first order and total order variance-based 
sensitivity indices informed to the “sand pack” sample for oil relative permeability are reported: 
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Figure 103: first order single-model and multi-model informed variance-based sensitivity indices of the “sand pack” 

sample for oil relative permeability 
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Figure 104: total order single-model and multi-model informed variance-based sensitivity indices of the “sand pack” 

sample for oil relative permeability 
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The ranking of the nine variable input factors 𝑥$ is determined calculating the two ranking indices: 

𝑅TQ%&8+9%&):;+ = ∑ 𝑆𝑓$#JLE$#6FXL
T3,&*-
T3,&%(

	 	

𝑅TE%&8+9%&):;+ = ∑ 𝑆𝑡$#JLE$#6FXL
T3,&*-
T3,&%(

	 	

For the variance-based informed global sensitivity analysis of the “sand pack” sample for oil 
relative permeability the resulting rankings are: 

Ranking according to 

𝑅TQ%&8+9%&):;+ 

Ranking according to 

𝑅TE%&8+9%&):;+ 

𝑥s:	𝐸6  (60.17) 𝑥s:	𝐸6  (49.97) 

𝑥t:	𝑇6  (34.13) 𝑥t:	𝑇6  (22.26) 

𝑥l:	𝐿6  (15.08) 𝑥l:	𝐿6  (12.51) 

𝑥u:	𝑆64 (14.46) 𝑥u:	𝑆64 (11.54) 

𝑥!:	𝑘@,46 (5.98) 𝑥!:	𝑘@,46 (4.52) 

𝑥":	𝑆5$ (4.69) 𝑥":	𝑆5$ (3.03) 

𝑥^:	𝑀6  (0.28) 𝑥^:	𝑀6  (0.21) 

𝑥h:	𝐵6  (0.12) 𝑥h:	𝐵6  (0.093) 

𝑥[:	𝑁6  (0.0078) 𝑥[:	𝑁6  (0.0057) 
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D1.3: RECAP 

In the table below the rankings obtained from the different informed multi-model sensitivity 
analysis techniques when applied to the “sand pack” sample for oil relative permeability are 
summarized: 

Multi-model informed statistical moments-
based sensitivity analysis of the “sand 

pack” sample for oil relative permeability 
 

Multi-model informed variance-based 
sensitivity analysis of the “sand pack” sample 

for oil relative permeability 

Ranking according 
to 

𝑅mjmI%
, 

Ranking according 
to 

𝑅mjmO%
, 

 
Ranking according to 

𝑅TQ%&8+9%&):;+ 

Ranking according to 

𝑅TE%&8+9%&):;+ 

𝑥h[:	𝐸6[ (10.11) 𝑥h[:	𝐸6[ (48.24)  𝑥s:	𝐸6  (60.17) 𝑥s:	𝐸6  (49.97) 

𝑥[[:	𝐿6[  (5.96) 𝑥^[:	𝑇6[ (27.45)  𝑥t:	𝑇6  (34.13) 𝑥t:	𝑇6  (22.26) 

𝑥l[:	𝑆64[  (5.87) 𝑥[[:	𝐿6[  (13.98)  𝑥l:	𝐿6  (15.08) 𝑥l:	𝐿6  (12.51) 

𝑥^[:	𝑇6[ (4.81) 𝑥l[:	𝑆64[  (12.86)  𝑥u:	𝑆64 (14.46) 𝑥u:	𝑆64 (11.54) 

𝑥![:	𝑘@,46[  (2.04) 𝑥![:	𝑘@,46[  (8.03)  𝑥!:	𝑘@,46 (5.98) 𝑥!:	𝑘@,46 (4.52) 

𝑥"[:	𝑆5$[  (1.96) 𝑥"[:	𝑆5$[  (6.35)  𝑥":	𝑆5$ (4.69) 𝑥":	𝑆5$ (3.03) 

𝑥^" ∶ 	 𝑆64" (0.27) 𝑥^":	𝑆64"  (1.60)  𝑥^:	𝑀6  (0.28) 𝑥^:	𝑀6  (0.21) 

𝑥h":	𝑀6
"  (0.24) 𝑥h":	𝑀6

"  (1.54)  𝑥h:	𝐵6  (0.12) 𝑥h: 	𝐵6  (0.093) 

𝑥[":	𝐵6" (0.20) 𝑥[":	𝐵6" (1.43)  𝑥[:	𝑁6  (0.0078) 𝑥[:	𝑁6  (0.0057) 

𝑥!":	𝑘@,46"   (0.17) 𝑥!":	𝑘@,46"   (1.41)    

𝑥"":	𝑆5$"  (0.17) 𝑥"":	𝑆5$"  (1.39)    

𝑥h!:	𝑆64!  (0.090) 𝑥h!:	𝑆64!  (0.93)    

𝑥!!:	𝑘@,46!  (0.051) 𝑥!!:	𝑘@,46!  (0.87)    

𝑥"!:	𝑆5$!  (0.050) 𝑥"!:	𝑆5$!  (0.86)    

𝑥[!:	𝑁6! (0.045) 𝑥[!:	𝑁6! (0.84)    
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D2: “BEREA SANDSTONE” SAMPLE  

D2.1: MULTI-MODEL, INFORMED STATISTICAL MOMENTS-BASED SENSITIVITY 
ANALYSIS  

POSTERIOR MODELS PROBABILITIES 

• 𝑤! = 0.05 
• 𝑤" = 0.35 
• 𝑤! = 0.6 

VARIABLE INPUT FACTORS: 

The models variable input factors are expressed in the form:  

𝑥$
C = (𝑥$,#$&

C 	; 	𝑥$,#'(
C )	 	

Where 𝑥$
C represents the 𝑖E) variable input factor of the 𝑗E) model, and the values in the brackets 

define its 95% confidence limits. 

• 𝑥!!: 𝑘46@ = (0.779	; 	0.783) 
• 𝑥"!: 𝑆5$ = (0.39	; 	0.45) 
• 𝑥[!: 𝑁6 = (1.8	; 	2.6) 
• 𝑥h!: 𝑆64 = (0.32	; 	0.36) 
• 𝑥!": 𝑘46@ = (0.779	; 	0.783) 
• 𝑥"": 𝑆5$ = (0.39	; 	0.45) 
• 𝑥[": 𝐵6 = (1.11	; 	1.44) 
• 𝑥h": 𝑀6 = (0.89	; 	1.81) 
• 𝑥^": 𝑆64 = (0.32	; 	0.36) 

 
• 𝑥![: 𝑘46@ = (0.779	; 	0.783) 
• 𝑥"[: 𝑆5$ = (0.39	; 	0.45) 
• 𝑥[[: 𝐿6 = (3.08	; 	3.54) 
• 𝑥h[: 𝐸6 = (1.14	; 	1.59) 
• 𝑥^[: 𝑇6 = (0.58	; 	4.29) 
• 𝑥l[: 𝑆64 = (0.32	; 	0.36) 
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In the figure below, the unconditional single-model and multi-model statistical moments are 
reported for the “Berea sandstone” sample, for oil relative permeability: 

 
Figure 105: single-model and multi-model unconditional output statistics of the relative permeability models 

conditional to the “Berea sandstone” scenario for oil relative permeability 
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In the figures below, the multi-model and single-model statistical moments-based sensitivity 
indices informed to the “Berea sandstone” sample for oil relative permeability are reported: 

 
Figure 106: multi-model and single-model informed AMAE sensitivity indices of the “Berea sandstone” sample for oil 

relative permeability 
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Figure 107: multi-model and single-model informed AMAV sensitivity indices of the “Berea sandstone” sample for oil 

relative permeability 
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Figure 108: multi-model and single-model informed AMASk sensitivity indices of the “Berea sandstone” sample for oil 

relative permeability 
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Figure 109: multi-model and single-model informed AMAK sensitivity indices of the “Berea sandstone” sample for oil 

relative permeability 
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The ranking of the 15 variable input factors 𝑥$
C (4 belonging to Corey model, 5 to Chierici model 

and 6 to LET model) is determined calculating and sorting the two ranking indices: 

𝑅mjmI%
, = ∑ 𝐴𝑀𝐴𝐸$

CT3,&*-
T3,&%(

	 	

𝑅mjmO%
, = ∑ 𝐴𝑀𝐴𝑉$

CT3,&*-
T3,&%(

	 	

For the multi-model statistical moments-based informed global sensitivity analysis of the “Berea 
sandstone” sample for oil relative permeability, the resulting rankings are: 

Input factors belonging to Corey model 

Input factors belonging to Chierici model 

Input factors belonging to LET model 

 

Ranking according to 

𝑅mjmI%
, 

Ranking according to 

𝑅mjmO%
, 

𝑥^[:	𝑇6[ (21.93) 𝑥^[:	𝑇6[ (61.67) 

𝑥l[:	𝑆64[  (20.82) 𝑥"[:	𝑆5$[  (40.10) 

𝑥"[:	𝑆5$[  (15.93) 𝑥l[:	𝑆64[  (36.08) 

𝑥^":	𝑆64"  (14.54) 𝑥"":	𝑆5$"  (26.62) 

𝑥h":	𝑀6
"  (14.43) 𝑥h":	𝑀6

"  (25.75) 

𝑥"":	𝑆5$"  (13.87) 𝑥^":	𝑆64"  (25.59) 

𝑥[":	𝐵6" (10.69) 𝑥[[:	𝐿6[  (25.02) 

𝑥h!:	𝑆64!  (9.95) 𝑥h[:	𝐸6[ (24.69) 

𝑥[!:	𝑁6! (9.44) 𝑥[":	𝐵6" (22.41) 

𝑥[[:	𝐿6[  (8.30) 𝑥![:	𝑘@,46[  (20.31) 

𝑥"!:	𝑆5$!  (7.98) 𝑥!":	𝑘@,46"   (18.76) 

𝑥!":	𝑘@,46"   (7.81) 𝑥h!:	𝑆64!  (8.77) 

𝑥h[:	𝐸6[ (6.54) 𝑥[!:	𝑁6! (8.68) 

𝑥![:	𝑘@,46[  (3.24) 𝑥"!:	𝑆5$!  (7.51) 

𝑥!!:	𝑘@,46!  (0.65) 𝑥!!:	𝑘@,46!  (6.09) 
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D2.2: MULTI-MODEL, INFORMED VARIANCE-BASED SENSITIVITY ANALYSIS 

POSTERIOR MODELS PROBABILITIES 

• 𝑤! = 0.05 
• 𝑤" = 0.35 
• 𝑤! = 0.6 

VARIABLE INPUT FACTORS: 

The models variable input factors are expressed in the form:  

𝑥$
C = (𝑥$,#$&

C 	; 	𝑥$,#'(
C )	 	

Where 𝑥$
C represents the 𝑖E) variable input factor of the 𝑗E) model, and the values in the brackets 

define its 95% confidence limits. 

• 𝑥!: 𝑘46@ = (0.779	; 	0.783) 
• 𝑥": 𝑆5$ = (0.39	; 	0.45) 
• 𝑥[: 𝑁6 = (1.8	; 	2.6) 
• 𝑥h: 𝐵6 = (1.11	; 	1.44) 
• 𝑥^: 𝑀6 = (0.89	; 	1.81) 
• 𝑥l: 𝐿6 = (3.08	; 	3.54) 
• 𝑥s: 𝐸6 = (1.14	; 	1.59) 
• 𝑥t: 𝑇6 = (0.58	; 	4.29) 
• 𝑥u: 𝑆64 = (0.32	; 	0.36) 

In the figures below, the single-model and multi-model first order and total order variance-based 
sensitivity indices informed to the “Berea sandstone” sample for oil relative permeability are 
reported: 
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Figure 110: first order single-model and multi-model informed variance-based sensitivity indices of the “Berea 

sandstone” sample for oil relative permeability 
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Figure 111: total order single-model and multi-model informed variance-based sensitivity indices of the “Berea 

sandstone” sample for oil relative permeability 

The ranking of the nine variable input factors 𝑥$ is determined calculating and sorting the two 
ranking indices: 

𝑅TQ%&8+9%&):;+ = ∑ 𝑆𝑓$#JLE$#6FXL
T3,&*-
T3,&%(

	 	

𝑅TE%&8+9%&):;+ = ∑ 𝑆𝑡$#JLE$#6FXL
T3,&*-
T3,&%(
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For the variance-based informed global sensitivity analysis of the “Berea sandstone” scenario for 
oil relative permeability, the resulting rankings are: 

Ranking according to 

Rvw<=>?@<=ABC? 

Ranking according to 

RvE<=>?@<=ABC? 

𝑥t:	𝑇6  (56.96) 𝑥t:	𝑇6  (47.20) 

𝑥u:	𝑆64 (29.14) 𝑥u:	𝑆64 (25.33) 

𝑥":	𝑆5$ (26.19) 𝑥":	𝑆5$ (25.16) 

𝑥^:	𝑀6  (6.84) 𝑥^:	𝑀6  (12.53) 

𝑥[:	𝑁6  (4.58) 𝑥[:	𝑁6  (4.62) 

𝑥l:	𝐿6  (1.45) 𝑥h:	𝐵6  (2.54) 

𝑥h:	𝐵6  (1.28) 𝑥l:	𝐿6  (1.40) 

𝑥s:	𝐸6  (0.87) 𝑥s:	𝐸6  (0.81) 

𝑥!:	𝑘@,46 (0.0021) 𝑥!:	𝑘@,46 (0.0015) 
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D2.3: RECAP 

In the table below the rankings obtained from the different informed multi-model sensitivity 
analysis techniques, when applied to the “Berea sandstone” sample for oil relative permeability, are 
summarized: 

Multi-model informed statistical moments-
based sensitivity analysis of the “Berea 

sandstone” sample for oil relative 
permeability 

 
Multi-model informed variance-based 

sensitivity analysis of the “Berea sandstone” 
sample for oil relative permeability 

Ranking according 
to 

𝑅mjmI%
, 

Ranking according 
to 

𝑅mjmO%
, 

 
Ranking according to 

𝑅TQ%&8+9%&):;+ 

Ranking according to 

𝑅TE%&8+9%&):;+ 

𝑥^[:	𝑇6[ (21.93) 𝑥^[:	𝑇6[ (61.67)  𝑥t:	𝑇6  (56.96) 𝑥t:	𝑇6  (47.20) 

𝑥l[:	𝑆64[  (20.82) 𝑥"[:	𝑆5$[  (40.10)  𝑥u:	𝑆64 (29.14) 𝑥u:	𝑆64 (25.33) 

𝑥"[:	𝑆5$[  (15.93) 𝑥l[:	𝑆64[  (36.08)  𝑥":	𝑆5$ (26.19) 𝑥":	𝑆5$ (25.16) 

𝑥^":	𝑆64"  (14.54) 𝑥"":	𝑆5$"   (26.62)  𝑥^:	𝑀6  (6.84) 𝑥^:	𝑀6  (12.53) 

𝑥h":	𝑀6
" (14.43) 𝑥h":	𝑀6

" (25.75)  𝑥[:	𝑁6  (4.58) 𝑥[:	𝑁6  (4.62) 

𝑥"":	𝑆5$"  (13.87) 𝑥^":	𝑆64"  (25.59)  𝑥l:	𝐿6  (1.45) 𝑥h:	𝐵6  (2.54) 

𝑥[":	𝐵6" (10.69) 𝑥[[:	𝐿6[  (25.02)  𝑥h:	𝐵6  (1.28) 𝑥l:	𝐿6  (1.40) 

𝑥h!:	𝑆64!  (9.95) 𝑥h[:	𝐸6[ (24.69)  𝑥s:	𝐸6  (0.87) 𝑥s:	𝐸6  (0.81) 

𝑥[!:	𝑁6! (9.44) 𝑥[":	𝐵6" (22.41)  𝑥!:	𝑘@,46 (0.0021) 𝑥!:	𝑘@,46 (0.0015) 

𝑥[[:	𝐿6[  (8.30) 𝑥![:	𝑘@,46[  (20.31)    

𝑥"!:	𝑆5$!  (7.98) 𝑥!":	𝑘@,46"  (18.76)    

𝑥!":	𝑘@,46"  (7.81) 𝑥h!:	𝑆64!  (8.77)    

𝑥h[:	𝐸6[ (6.54) 𝑥[!:	𝑁6! (8.68)    

𝑥![:	𝑘@,46[  (3.24) 𝑥"!:	𝑆5$!  (7.51)    

𝑥!!:	𝑘@,46!  (0.65) 𝑥!!:	𝑘@,46!  (6.09)    
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