
 

 

 

 

 

 

 

 

 

 

1. Introduction 

The need to introduce advanced techniques for a 

greater understanding of the dynamic properties 

of complex phenomena has been approached 

through nonlinear analysis which, in the last 

twenty years, has seen a growing interest for 

application to neuro-electrophysiological 

recordings. These techniques integrated the 

classical linear techniques with the purpose to 

assess important information about brain 

functioning in both physiological and pathological 

conditions. However, despite the interesting 

results obtained in literature, such measures are 

still far from the clinical practice and this is due to 

the lack of proper guidelines aimed at increasing 

their knowledge and physiological interpretation. 

The presented work aimed to evaluate the 

performance of a set of selected nonlinear 

measures, defining specific criteria for their 

applicability on such signals and for the 

appropriate input parameter selection in order to 

increase the repeatability of the algorithms along 

different datasets. The features analyzed regards 

the fractal scaling properties, quantified by the 

power-law exponent (PLE) and the detrended 

fluctuation analysis (DFA), as well as the regularity 

of the time series, estimated by entropy indices, 

namely the Approximate Entropy (ApEn), 

the Sample Entropy (SampEn) and the multiscale 

entropy (MSE).   

The application of the algorithms and the correct 

parameters setting were presented on simulated 

time series, divided in fractional Gaussian noise 

(fGn) and fractional Brownian motion (fBm) for 

fractal indices, and white noise and 1/f noise for 

entropic measures. Moreover, to provide examples 

of application, two clinical datasets of real 

neurophysiologic signals are evaluated in terms of 

test benches for the investigated nonlinear analysis 

techniques 

2. Selected nonlinear methods 

The five methods selected in this work were 

chosen for their clinical and applicative relevance 

in the most common neurodegenerative disorders, 

i.e. Parkinson’s (PD) and Alzheimer’s diseases 

(AD).  
 

• Power law exponent (PLE) 

The power law exponent, also indicated as β-

exponent, is defined on the power spectrum 

density (PSD) of the signal. By considering the 

inversely proportional relationship between the 
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PSD and the frequency, the method measures 

changes in the scale-free dynamic properties of the 

time series as the slope of the regression line 

defined in log-log coordinates. 

Moreover, in this work, to guarantee that the 

estimation of the β-values was not compromised 

by the rhythmic oscillatory components, 

characterizing real neurophysiological time series, 

the regression line is identified following a peak 

removal operation. As suggested by the study of 

Colombo et al. the peaks of the signals 

are accurately suppressed before performing the 

linear regression operation [1].  
 

• Detrended fluctuation analysis (DFA) 

The detrended fluctuation analysis, also indicated 

as α-exponent, estimates the so-called long-range 

temporal correlation (LRTCs) present in the signal. 

By defining the relationship between the 

variability of the signal and the length of the 

intervals over which the variability is computed, 

the method measures the level of self-similarity in 

a time series as the slope of a regression line in log-

log coordinates. This procedure is applied on the 

amplitude envelopes of the oscillatory activity in 

specific frequency ranges, extracted by bandpass 

filtering the time series and by applying on the 

filtered signals the Hilbert transformation [2].  
 

• Entropy 

Entropy represents the most classic nonlinear 

measure used to evaluate the amount of 

information hidden in the signal. It arises from the 

idea of quantifying uncertainty and predictability 

in a time series, assuming high values for signals of 

great complexity and lower values for more 

regular and predictable signals. There are different 

indices of entropy, but those chosen for the current 

analysis are the approximate entropy (ApEn), 

sample entropy (SampEn) and multiscale entropy 

(MSE) [3]–[5]. The main idea of the first two is to 

calculate the conditional probability that two 

similar sequences of m points remain similar at the 

point m+1. The mathematical steps underlying 

their calculation are similar. The main difference 

regards the management of the self-counting in the 

mathematical computations. Although SampEn 

and ApEn are the traditional algorithms used to 

quantify the complexity, in some cases they seem 

to fail and not to correctly quantify the degree of 

randomness intrinsic in the time series. 

This happens when the series under analysis 

presents structures on multiple scales, as the case 

of neurophysiological time series. For this 

reason, the need of introducing a new measure of 

complexity to capture the information at multiple 

time scales gave rise to the so-defined multiscale 

entropy (MSE). MSE is estimated in two steps 

including the construction of the coarse-grained 

time-scale structure and the estimation of a 

measure of entropy (e.g., SampEn) at each time 

scale.  

3. Applicability criteria 

The intention to identify and verify the conditions 

of applicability of the different nonlinear methods, 

described in section 2, represents the main 

objective of this thesis. It arises from the need to 

provide guidelines for the correct implementation 

of the measures and the appropriate selection of 

the parameters which highly influence the 

application performances. The analyses are carried 

out on different sets of 1000 artificial time series in 

order to investigate both parameters common to 

all the measures, such as data length, and specific 

parameters linked to the implementation of each 

single measure. For sake of clarity, methods have 

been grouped into two different sections according 

to which aspects they analyze, i.e. whether the 

fractal behavior or the irregularity of the neural 

time series. 

3.1. Fractal analysis 

The decision to group the power-law exponent (β) 

and the detrended fluctuation analysis (α) under 

the section fractal finds confirmation in relations 

which exists among them: 

where fGn and fBm are respectively abbreviations 

of fractional gaussian noise and fractional 

brownian motion, mathematical models 

introduced by Mandelbrot and Van Ness in 1968 

and used to characterize and classify long-range 

dependent processes [6]. Briefly, the concepts of 

“fractional gaussian noise” and “fractional 

Brownian motion” are generalization of two 

classical processes: fGn constitutes  a stationary 

series of Gaussian random variables with constant 

variance and mean, whereas fBm is not stationary 

and represents the ordinary Brownian motion 

obtained by adding a parameter that assumes 

𝛽𝑓𝐵𝑚 = 1 + 2𝐻𝐸         𝛼𝑓𝐵𝑚 = 1 + 𝐻𝐸 (3.1) 

𝛽𝑓𝐵𝑚 = 2𝐻𝐸 − 1        𝛼𝑓𝐵𝑚 = 𝐻𝐸 (3.2) 
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values between 0 and 1 and is indicated by h, 

which it must not be confused with the Hurst 

exponent, estimator of the self-similarity property 

of signals [7].  The relations (3.1) and (3.2) are 

different according to whether the time series 

under analysis is fGn or fBm. This suggested the 

possibility to consider them as useful tool to verify 

the robustness of the fractal algorithms, and 

identify also the more suitable parameter to 

classify the time series as fBm or fGn.  

Hence, the idea to compare the direct estimation of 

both β and α exponents with the values indirectly 

obtained by applying the theoretical relations. For 

sake of completeness, two comparisons were 

carried out: the first performed on 1000 fBm and 

1000 fGn time series generated by implementing a 

function that receives as input the HE, while the 

second focused on similar artificial data but 

generated starting from known values of PLE (β-

exponent). In both cases, as expected, tables 3.1 

and 3.2 clearly showed that the measures estimated 

and the theoretically predicted ones were coherent.  
 

 

 
Theoretical 

results 

Estimated 

results 

 β-value α-value β-value α-value 

fGn (HE=0.25) -0.5 0.25 -0.57 +- 0.02 0.25 +- 0.03 

fGn (HE=0.5) 0 0.5 0.00 +- 0.02 0.49 +- 0.06 

fGn (HE=0.75) 0.5 0.75 0.53 +- 0.02 0.74 +- 0.07 

fBm (HE=0.25) 1.5 1.25 1.46 +- 0.02 1.25 +- 0.1 

fBm (HE=0.5) 2 1.5 1.97 +- 0.02 1.48 +- 0.1 

fBm (HE=0.75) 2.5 1.75 2.39 +- 0.03 1.72 +- 0.09 

Table 3.1 Measures estimated and theoretically predicted from 

fGn and fBm time series simulated from values of HE. 

 

The congruence in the results finds confirmation in 

literature [8] and allows to identify the more 

suitable parameter able to classify the time series 

as fBm or fGn, i.e. the β-exponent. Indeed, it is 

worth noting that the fact that the two classes are 

characterized by the same HE, ranging between 0 

and 1, makes the index less suitable for discerning 

them. Besides the analyses carried out to assess the 

correct functioning of the selected fractal measures, 

other simulation studies were performed aimed at 

evaluating the influence of the main parameters 

that play a key role in each nonlinear algorithm.  
 

•  Applicability criteria: PLE  

The way in which the frequency resolution affects 

the power spectrum density (PSD) needs to be 

evaluated before the application of the power-law 

exponent. Indeed, an incorrect estimation of PSD 

may invalidate the calculation of the β-slope of the 

regression line defined in log-log coordinates.  

It is worth to define that, in this work, the PSD is 

obtained by applying the modified Welch’s 

periodogram.  

Thus, to evaluate how β-exponents changes as 

function of the frequency resolution, the effect of 

using different windows-length was examined on 

two sets of 1000 realizations of time series 

generated from known β-values. i.e. fGn (β=0.5) 

and fBm (β=1.5). The study is based on the relation:  

that inversely links the frequency resolution (Δf) 

and the length of the windows expressed in terms 

of second-length (M) and the results showed how 

an increase of Δf led to a more stable evaluation of 

the β-exponent characterized by a reduced 

dispersion of the values measured across the 1000 

surrogate time series. 
 

• Applicability criteria: DFA 

The data length (N) and the minimum and the 

maximum window sizes n, in which fluctuations 

F(n) are estimated to provide the measure of α-

exponent, are supposed to influence the DFA-

method.  

The window sizes (n) along the x axis of the 

“diffusion plot”, on which the α-index is obtained 

as the slope of the linear regression, are placed 

following an evenly spaced procedure on the 

logarithmic scale. The selection of nmin and nmax 

were, instead, tested on the same two sets of 1000 

realizations defined for the evaluation of the 

applicability criteria of the power law exponent. 

Interestingly, the results showed how the accuracy 

of DFA in estimating the α-exponent appeared not 

influenced by the minimum window size. On the 

other hand, as regard the maximum window size, 

this need to be correctly combined with the data 

length, since an increase in N requires a larger 

number of intervals to provide the stability of the 

measure (thus, a lower value of nmax). Starting from 

 
Theoretical 

results 

Estimated 

results 

 β-value α-value β-value α-value 

fGn (β =0) 0 0.5 0.00 +- 0.02 0.50 +- 0.06 

fGn (β =0.5) 0.5 0.75 0.50 +- 0.02 0.74 +- 0.04 

fGn (β=0.98) 0.98 0.99 0.98 +- 0.02 0.99 +- 0.04 

fBm (β=1.02) 1.02 1.01 1.02 +- 0.02 1.01 +- 0.04 

fBm (β=1.5) 1.5 1.25 1.48 +- 0.02 1.25 +- 0.04 

fBm (β=2) 2 1.5 2.01 +- 0.02 1.48 +- 0.04 

Table 3.2 Measures estimated and theoretically predicted from 

fGn and fBm time series simulated from values of β. 

𝛥𝑓 =
𝑓𝑠
𝑀

 (3.3) 
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what has been described, changes of N values 

require further adjustment of the input parameter 

nmax. 
 

• Applicability criteria: ApEn and SampEn 

When the embedding dimension (m) and the 

tolerance (r) are properly set, reliable approximate 

and sample entropy estimations may be provided 

[3], [4]. The parameters are strictly related to the 

data length of the time series (N), and in order to 

evaluate to what extent this is true, changes of 

ApEn and SampEn indices as function of different 

data length were examined on a set of 1000 

artificial time series. In this regard, results revealed 

that not both entropic indices presented the 

expected trend on Gaussian realizations. Instead of 

presenting a linear decrease with an increase of 

tolerance r, in fact, ApEn index assumes a 

distribution of values that increases up to a certain 

peak and then decreases.  

In addition to this, the selection of values of r which 

allow to provide more accurate estimation of 

entropic indices are also evaluated. Such values are 

found in the range between 0.1 and 0.25 times the 

standard deviation of the data and were valid both 

for ApEn and for SampEn for larger values of N. 

These findings were considered for m=2 but did 

not change with different values of m, even if more 

unstable and unreliable entropic measures were 

found for embedding dimension m ≥ 3.  

As regard the multiscale entropy, the use of 

different temporal scales τ, supposed to be the 

influencing factor for the measure, has no 

considerable effects on the results. The tests, 

carried out on both white noise (β=0) and 1/f noise 

(β=1) time series, in fact, showed that with an 

increase of the scale factor the shape of MSE 

profiles maintains the same trend. Despite this, 

however, it is worth to consider that higher values 

of scale factor τ causes a lower number of samples 

in the coarse-grained sequence, thus the selection 

of the most suitable τmax is necessary to avoid 

unreliable multiscale sample entropy estimations. 

4. Application of nonlinear 

measures  

The usefulness of the applicability criteria 

investigated for the nonlinear measures was 

demonstrated by two applications to real neuro-

physiological signals. The two available datasets 

are used as a sort of test bench for the selected 

nonlinear measures. They have been introduced 

with the sole purpose to help understanding the 

basic implementation of the measures on real 

biological signals, since the reduced number of 

subjects involved and the limited in-depth studies 

in literature make difficult to evaluate the 

outcomes from a physiological and clinical point of 

view. 

4.1. LFP analysis in Parkinson’s 

disease 

The first case study was designed to assess the 

activity of the brain in the subthalamic region of 

Parkinson’s disease patients in conditions of pre 

and post levodopa administration. The aim was to 

identify the influence of the antiparkinsonian 

medication in 24 PD subjects, analyzing the 

dynamic nonlinear behavior of LFP (local field 

potential) time series. All data were acquired with 

a sampling rate of 2500 Hz and accurately 

preprocessed to remove movements and power-

line artifacts, prior to the application of the 

nonlinear measures.  

From the fractal point of view, the analysis of LFP 

time series showed significant differences in both 

the proposed measures between the conditions of 

pre and post levodopa administration. In 

particular, as shown in figure 4.1, β-exponents 

appeared to be lower in condition of pre levodopa 

in both the frequency bands (2-45) and (2-156) Hz 

evaluated.  

 

Lower β-values reflected into less steep PSD-slope 

were also found in the fronto-temporal sites of 

EEG by the recent study of Mostile et al.[9]. 

However, the different nature of the 

Figure 3.1 Boxplot comparison β scaling exponent quantifying 

power-law exponent on two frequency bands. The green line is 

the median value of each distribution while the dashed grey 

lines link the values referred to pre and post conditions 

respectively. Each boxplot provides the distribution of β-values 

estimated in condition of pre and post levodopa administration 

and β-values estimated on 1000 simulated white noise. 
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electrophysiological recordings may not provide 

a reliable comparison. Works based on LFP time 

series, instead, are mostly concentrated on the 

demonstration of the link between the excitation-

inhibition balance and the nonlinear β-value. In 

this regard, flatter PSD slopes were related to an 

increasing excitation/inhibition ratio, that means 

an increase in inhibition and/or a decrease in 

excitation [10].  

On the other hand, higher α-exponents in terms of 

long-range temporal correlations were found after 

the levodopa administration at high frequency 

range (250-350 Hz). Interestingly, this result finds 

confirmation in the work of Hohlefeld et al, 2012 

that showed how LRTC, being modulated by 

levodopa, may be proposed LRTC as a possible 

biomarker for PD [2].    

From the entropic point of view, findings suggest 

that levodopa-related changes in the complexity 

properties of LFP are not so evident, even if an 

interesting trend in correspondence of high scale 

factors (τ ≥ 7) seemed to reflect increases 

in SampEn(2, 0.2) values in condition of pre 

levodopa.  

4.2. EEG analysis in Alzheimer’s 

disease 

The second case study of this thesis was designed 

to assess the activity of the brain in patients 

affected by four different neurological disorders, 

i.e. Alzheimer’s disease (AD), Mild Cognitive 

Impairment (MCI), Lewy Body dementia (LBD) 

and Frontotemporal dementia (FTD). The aim was 

to verify if the use of parameters, evaluated on the 

dynamic behavior of EEG time series, might point 

out possible distinctions among the groups 

of patients.  

The EEG recordings, performed from 19 electrodes 

positioned according to the International 10-20 

System, were acquired at rest in both eyes-open 

and eyes-closed conditions. All data were recorded 

with sampling rates of 512 Hz in some cases and 

2048 Hz in others and were accurately pre-

processed to select 60-seconds stationary epochs, 

prior to the application of the nonlinear measures. 

The proposed parameters are calculated for all 

electrodes and for nine different subcategories of 

electrodes defined as follow: left frontal (Fp1, F7, 

F3), right frontal (Fp2, F4, F8), left central (T3, C3), 

right central (T4, C4), left temporal (T5, P3, O1), 

right temporal (T6, P4, O2), left fronto-temporal 

(Fp1, F7, F3, T3), right fronto-temporal (Fp2, F4, F8, 

T4), z-axis (Fz, Cz, Pz).  

From the fractal point of view, the analysis of EEG 

time series showed lower β-values for MCI in eyes-

closed condition and higher β-values for LBD 

patients in eyes-open conditions, as regard the 

power-law exponent. This is valid for all the 

different subcategories of electrodes.  

As regard the DFA algorithm, instead, in terms of 

LRTC, results revealed higher α-exponents for 

LBD group of patients in eyes-open conditions. 

This is valid for all subcategories in case of both (8-

12 Hz) and (30-40 Hz) frequency bands. 

From the entropic point of view, all MSE profiles 

were characterized by trends that increased up to 

the maximum SampEn(2, 0.2) value. In line 

with literature, the maximum value is usually 

reached on smaller time scales [11], [12], and in the 

present study such value was found both in eyes-

close and eyes-open conditions for all 

the subcategories of electrodes. Regarding the 

behavior of the signals at larger scale factors (τ ≥ 8), 

instead, the results suggested that in eyes-closed 

condition, LBD patients revealed values 

of SampEn(2, 0.2) approximately constant with 

increasing τ with respect to the other categories. 

MCI, AD and FTD, in fact, presented decreasing 

values of entropy with increasing τ. In eyes-open 

condition, all the diseases showed decreasing 

profiles at higher scale factors, even if less 

pronounced for LBD and steeper values for MCI 

against the other two categories.  

5. Conclusions 

The aim of this thesis was to investigate the 

conditions of applicability of selected nonlinear 

measures, providing guidelines for the correct 

setting of the parameters which influence their 

performance when applied to neuro-physiological 

signals. There is a clear need to analyze the effects 

and interactions of changing input parameters, 

since both fractal and entropic methods appear 

very sensitive to them [13]–[15].  Power-law 

exponent, detrended fluctuation analysis and 

multiscale entropy are the nonlinear techniques 

widely applied to quantify the information process 

capacity of the brain in Alzheimer’s and 

Parkinson’s disorders. However, even if 

interesting results were obtained in the literature, 

there is the suspect that the selection of input 

parameters for the algorithms was made 
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empirically without a deep investigation of the 

applicability criteria in each specific case. 

The present thesis evaluated some of 

methodological issues on the basis of theoretical 

simulations and demonstrated how concrete 

advices about the correct choice of nonlinear 

measures and relative parameters may help to 

avoid misleading estimations, minimizing errors 

made by the utilizers. Moreover, these measures 

were successfully applied on the two real clinical 

datasets available in this study, even if, in both 

cases, an increase of the sample sizes may provide 

more reliable results. 

In conclusion, the set of nonlinear tools for 

studying the neurophysiological signals and 

applying, if possible, the measures alongside the 

classical linear ones, could also facilitate clinical 

use. The idea of developing a graphical interface, 

which makes the tool easy to use for clinicians, may 

represent, in fact, a great challenge for research, 

helping to better answer the still open questions on 

the clinical interpretation of neural data.   
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Abstract 

Biomedical signal processing is fundamental in investigating and quantifying the 

information captured by neuro-electrophysiological recordings, such as local field 

potential (LFP), electrocorticogram (ECoG), electroencephalography (EEG) and 

magnetoencephalography (MEG).   

These biosignals have been traditionally studied by linear approaches such as 

descriptive statistics, and the analysis of the frequency content in terms of power 

spectral density (PSD). However, in the last few decades, concepts and techniques 

from nonlinear dynamics integrated the classical linear techniques to assess 

important information about brain functioning in both physiological and 

pathological conditions.   

Moreover, despite the potentiality of nonlinear approach in understanding the 

complex pathophysiology of neurodegenerative diseases has been shown by several 

scientific works, the lack of concrete advices about the correct implementation and 

the appropriate selection of the input parameters which influence the measures, 

make the applications still far from the clinical practice.  

The purpose of this thesis is to evaluate the performance of a set of selected 

nonlinear processing techniques, defining specific criteria for the appropriate 

parameter selection in order to increase the repeatability of the algorithms along 

different signals. In this regard, the fractal scaling properties of the time series is 

quantified by the power-law exponent (β-exponent) and the detrended fluctuation 
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analysis (DFA), while predictability and regularity are estimated by 

different entropy indices, namely the Approximate Entropy (ApEn), the Sample 

Entropy (SampEn) and the multiscale entropy (MSE).   

Insights about the application of the algorithms and the correct parameters 

setting were presented on simulated time series, but in order to provide examples of 

the implementation of the measures on real neurophysiologic signals, also two 

clinical datasets, proposed as test benches, are evaluated. The first one, related 

to local field potentials recorded from Parkinsonian patients, was analyzed in order 

to evaluate which is the measure that better enounce the possible effects of the 

levodopa on patients. The second one, focused on electroencephalograms acquired 

from different groups of patients, was examined with the purpose to verify if the use 

of parameters may point out possible distinctions among four neurological 

diseases, i.e. Alzheimer’s disease (AD), Mild Cognitive Impairment (MCI), Lewy 

Body dementia (LBD) and Frontotemporal dementia (FTD).  

The results of this study highlighted the importance of guidelines for a suitable 

implementation of nonlinear measures on neurophysiological signals. This might 

provide effective support to the correct choice of nonlinear measures, minimizing 

the errors made due to an improper selection and enabling future researches to better 

answer the still open questions in terms of clinical interpretation in neural data.     

 

Key-words: power law exponent, detrended fluctuation analysis, long-range 

temporal correlation, approximate entropy, sample entropy, multiscale entropy, 

applicability criteria, local field potential, electroencephalography, Parkinson’s 

disease, Alzheimer’s disease. 
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Abstract in lingua italiana 

L’elaborazione dei segnali biomedici è fondamentale per studiare e quantificare le 

informazioni acquisite da segnali elettrofisiologici, quali il potenziale di campo locale 

(LFP), l’elettrocorticografia (ECoG), l’elettroencefalografia (EEG) e la 

magnetoencefalografia (MEG).  

Questi segnali sono stati tradizionalmente studiati attraverso approcci lineali come 

le statistiche descrittive e l’analisi del contenuto in frequenza in termini di densità 

spettrale di potenza (PSD). Tuttavia, negli ultimi decenni, le tecniche classiche sono 

state integrate dai concetti e dalle tecniche della dinamica non lineare al fine di 

valutare importanti informazioni sul funzionamento del cervello in condizioni sia 

fisiologiche che patologiche. 

Inoltre, nonostante la potenzialità dell’approccio non lineare nella comprensione 

della complessa fisiopatologia dei disturbi neurodegenerativi sia stata dimostrata da 

diversi lavori scientifici, la mancanza di consigli concreti, in merito alla corretta 

implementazione e all’appropriata selezione dei parametri di ingresso che 

influenzano la misura, rende le applicazioni ancora lontane dalla clinica pratica. 

Lo scopo di questa tesi è quello di valutare le prestazioni di un insieme di tecniche 

di elaborazione non lineare selezionate, definendo specifici criteri per un’appropriata 

selezione dei parametri in modo da aumentare la ripetibilità degli algoritmi su 

diversi segnali. A questo proposito, la proprietà di ridimensionamento frattale della 
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serie temporale viene quantificata dal power-law exponent (esponente β) e dalla 

detrended fluctuation analysis (DFA), mentre la predicibilità e la regolarità vengono 

stimate attraverso diversi indici entropici, definiti Approximate entropy (ApEn), 

Sample entropy (SampEn) e Multiscale entropy (MSE).  

Gli approfondimenti sull’applicazione degli algoritmi e sulla corretta 

impostazione dei parametri sono stati presentati su serie temporali simulate, ma 

anche due dataset clinici, proposti come banco di prova, sono stati valutati al fine di 

fornire esempi di attuazione delle misure su segnali neurofisiologici reali. Il primo 

esempio, basato sui segnali LFP acquisiti da pazienti affetti da Parkinson, è stato 

analizzato in modo da valutare quale sia la misura che meglio evidenzia i possibili 

effetti della levodopa sui pazienti. Il secondo, centrato su segnali 

elettroencefalografici acquisiti da diversi gruppi di pazienti, è stato esaminato con 

l’obiettivo di verificare se l’utilizzo dei parametri possa sottolineare possibili 

distinzioni tra i quattro gruppi di patologie neurologiche, che sono Alzheimer, deficit 

cognitivo lieve, demenza frontotemporale, malattia a corpi di Lewi. 

I risultati di questo studio hanno sottolineato l’importanza di linee guida per 

un’implementazione più adatta delle misure non lineari su segnali neurofisiologici. 

Questo potrebbe fornire un supporto efficace alla scelta corretta delle misure non 

lineari, minimizzando gli errori commessi a causa di una selezione impropria e 

consentendo alle ricerche future di rispondere meglio alle domande ancora aperte in 

termini di interpretazione clinica nei dati neurali. 

 

Parole chiave: power law exponent, detrended fluctuation analysis, long-range 

temporal correlation, approximate entropy, sample entropy, multiscale entropy, 

criteri di applicabilità, potenziale di campo locale, elettroencefalografia, malattia di 

Parkinson, malattia di Alzheimer. 
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1. Introduction 

 

Biomedical signal processing is the branch of knowledge that deals with the 

methods that allow to manage physiological data continuously collected from 

patients. The great amount of data collected is processed through algorithms that 

correlate mathematical results to clinical aspects in order to detect useful information 

about the health state of the patient and/or the natural progression of a particular 

disease.  

In this regard, the simplest and most direct experimental approach implemented 

is the linear analysis, mainly focused on the estimation of the power spectrum and 

applied both in time and frequency domain. The approach results quite easy to be 

interpreted in physiological terms and it is largely implemented in clinical practice 

still now.  

However, the relevant information hidden within biomedical signals is often 

masked or not well defined, appearing corrupted by interference attributable to the 

complexity of the underlying generation systems. For this reason, in order to define 

the notion of complexity and quantify it, researches in the biomedical field have 

focused their attention on how each measure of complexity is related to particular 

aspects of the systems, such as regularity or irregularity, randomness, predictability, 

self -similarity, long-range correlation, etc. [1].   
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In this perspective, the need to introduce advanced techniques for a greater 

understanding of the dynamic properties of complex phenomena has been 

highlighted by the nonlinear analysis which, in the last twenty years, has seen a 

growing interest for application to electrophysiological recordings.  

The use of these measure appears as a great challenge for biomedical engineers, 

even if further investigations are still required, since until now their criteria of 

application are not clear. Hence, the need to define a sort of guidelines to increase the 

knowledge and the physiological interpretation of such measures has emerged, 

with the purpose of make clinicians more inclined to use them.  

Starting from these assumptions, the present thesis aims to evaluate the 

performances and the conditions of applicability of nonlinear measures of i) 

irregularity, such as the entropy, and measures of ii) fractal dimension, such as the 

power-law exponent and the detrended fluctuation analysis. The methodological 

analysis presented was developed in Matlab (version 9.1 R2021a), and based on 

selected studies in the literature which are outlined in detail in section 1.3.   

i) Entropy represents the most classic nonlinear measure used to evaluate the 

amount of information hidden in the signal. It arises from the idea of quantifying 

uncertainty and predictability in a time series, assuming high values for signals of 

great complexity and lower values for more regular and predictable signals. There 

are different indices of entropy, from the historical one given by Shannon and 

Kolmogorov-Sinai to those chosen for the current analysis, i.e. the approximate 

entropy (ApEn), sample entropy (SampEn) and multiscale entropy (MSE). These 

measures will be described in sections 2.2 and 2.3.  

ii) The fractal analysis aims at evaluating the scaling intrinsic properties of 

electrophysiological signals. One of the best-known fractal measures is the detrended 
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fluctuation analysis (DFA) that estimates the so-called long-range temporal 

correlation (LRTCs) present in the signal. By defining the relationship between the 

variability of the signal and the length of the intervals over which the variability is 

computed, the method measures the level of self-similarity in a time series as the 

slope of a regression line in log-log coordinates. Another important fractal measure is 

the power law exponent (PLE) that is defined on the power spectrum density (PSD) 

of the signal. By considering the inversely proportional relationship between the PSD 

and the frequency, the method measures changes in the scale-free dynamic 

properties of the time series as the slope of the regression line defined in log-log 

coordinates. These measures will be described in section 2.1. 

In the present work, such nonlinear measures have been studied and employed 

with the pursue to investigate abnormal changes in two examples of the most 

common neurodegenerative disorders, i.e. Parkinson’s and Alzheimer’s diseases.  

The analysis was carried out first on artificial data and then on neural signals 

recorded both outside and inside the brain using electroencephalography (EEG) and 

local field potential (LFP) respectively.    

In this regard, section 1.1 describes the neural signals used in this thesis and the 

corresponding recording techniques; section 1.2 outlines the two pathologies taken 

into account to evaluate the possible usefulness of the nonlinear approach, 

i.e. Alzheimer’s and Parkinson’s diseases; section 1.3 provides a rapid excursus of 

the studies found in literature about the application of the above-mentioned 

measures on EEG and LFP, centering the attention on the brain disorders under 

analysis; section 1.4 shows how the work is organized, summarizing the main 

aspects of the chapters that make up the thesis.   
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1.1 Neuro-electrophysiological recording techniques 

 

Neurons are the smallest unit that make up the nervous system and represent its 

functional activity. In normal condition, the human brain consist of 1010 units 

considered electrically excitable cells organized in a neural network and able to 

communicate by sending and receiving electrochemical signals. 

The flux of information exchanged among neurons is caused by the so-called action 

potential, a signal generated by the temporary shift in membrane potential and that 

propagates inside the network. The transmission is mediated by neurotransmitters, 

like dopamine, that is a chemical substance able to change the permeability of cell 

membrane favoring the passage of ions and producing variations of potential [2]. 

But, how this flux of information can be detected? Why it’s so important to record the 

neural activity? 

In this regard, it is worth specifying that during the last decade, advanced systems of 

acquisitions of neural signals have been introduced with the purpose of recording 

neuronal activity, such as local field potential (LFP), electrocorticogram 

(ECoG), electroencephalography (EEG) and magnetoencephalography (MEG).  

By processing streams of biosignals extracted from patients or healthy subjects 

through mathematical algorithms, it is possible to understand how the human brain 

works or how clinical information related to the behavior of the neural system can be 

detected. These algorithms, which can be distinguished between linear and 

nonlinear, have been largely discussed in literature in terms of applications on 

biomedical signals. However, the lack of definition of specific criteria for parameter 

selection makes difficult the possibility to compare different studies or to increase the 

measure repeatability, especially for the nonlinear dynamic approach.  
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For this reason, the present thesis aimed to investigate the effects of changing 

parameters of nonlinear techniques with the final goal to suggest rules to properly 

choose them in clinical application. To this end, this study is focused on the 

neurological EEG or LFP signals, which are distinguished by different spatial 

resolution and degree of invasiveness of the procedure [3]. Figure 1.1 (a) shows an 

example of thirty seconds of LFP recorded at 2500 Hz, while figure 1.1 (b) exhibits 

the EEG data recorded from the sensor C4 at 512 Hz.  

Figure 1.1 (a) Example of thirty seconds of local field potential (LFP) data recorded at 2500 Hz from a 

representative subject. (b) Example of thirty seconds EEG data recorded from the sensor C4 at 512 Hz. 
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1.1.1 Local field potential (LFP) 

 

The local field potential represents the electric potential measured through an 

invasive procedure based on the insertion of macroelectrodes inside the basal ganglia 

of the patient’s brain. It derives from the extracellular signal picked up by the 

implanted electrode and reflects the behaviors of multiple neurons summed up in a 

unique recording. This recording can be high-pass filtered (typically > 1000 Hz) 

originating the time series termed multi-unit-activity (MUA) or low-pass filtered 

(typically < 500 Hz) giving rise to the time series defined local field potential (LFP). 

The main difference between the two time series is the neuronal processes that they 

reflect in relation to the distance from the recording electrode. Indeed, the first 

represents the action potentials, identified as spikes and used by neurons placed in 

proximity to the recording electrode to communicate within the neural network [4]; 

the second one, instead, reproduces the output signal of more distant neuronal cells 

reflecting the single action potential in addition to the membrane currents and other 

charges in brain cells [5]. The latter category of signals, moreover, can be correctly 

outlined only if the impedance of the recording electrodes is low enough; if not, in 

fact, the high impedance would act as high pass filter preventing its correct detection 

[6]. 

The recording technique for LFPs acquisition takes place during the deep brain 

stimulation (DBS), a surgical procedure that involves the implantation of electrodes 

in a specific area of the brain and the application of a high frequency electrical 

stimulation. This makes the comparison between pathologic and healthy brain 

impossible in human, despite the high quality and significant spatial and frequency 

resolution that characterize the signal carried out.  
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1.1.2 Electroencephalography (EEG) 

 

Electroencephalography (EEG) is the most traditional and ancient technique used 

to measure the electrical activity produced by pyramidal neurons within the cerebral 

cortex. Introduced by Hans Berger, German professor of psychology, in 1929 it is still 

widely used for clinical purpose due to its non-invasive nature and excellent 

temporal resolution, which allows brain activity to be recorded in real time.   

The main advantage of the EEG acquisition is the simplicity of the recording 

procedure carried out through electrodes organized in a cap that can be easily placed 

on the human scalp. Each single electrode, accurately positioned and fixed through 

conductive gel, measures the extracellular currents generated by synchronized 

neurons and that propagate through the different cortical areas, revealing the 

mechanisms of information processing implemented in the brain. The positioning of 

sensors on the subject head is typically implemented in accordance with the 

suggestion of the International Federation of Societies for Electroencephalography 

and Clinical Neurophysiology (IFCN). The adopted method, defined “10-20 system”, 

by associating letters to the brain regions and numbers to the two hemispheres, 

allows to standardize the electrodes positioning making the recording technique less 

susceptible to measurement errors [7] 

Nevertheless, despite being widely applied to both pathological and healthy 

human brain, this non-invasive procedure has a particular limitation related to the 

signal to noise ratio (SNR) which results certainly lower compared to the invasive 

technique (section 1.1.1). Recording neural activity from the external surface of the 

brain, in fact, ensures that each electrode captures information not only from neurons 

directly below it, but also from the surrounding sensors increasing the contribution 

of error in the measurement. 



18 Introduction 

 

 

 

 

 

1.2 Neurodegenerative disorders 

 

Neurodegenerative disorders include all diseases caused by the progressive death 

of neuronal cells inside the brain. A large number of studies in literature have long 

described the possibility to make diagnosis through the visual inspection of 

neurological signals, for example by investigating possible alterations in patient’s 

neural activity with respect to healthy conditions.  In this regard, a quantitative 

analysis, based on the implementation of nonlinear algorithms, may lead to 

understand specific features related to neurodegenerative disorders adding useful 

information about both the treatment and the prediction of patient’s outcomes.  

The present study investigates two of the most common brain disorders 

worldwide, i.e. the Parkinson’s and the Alzheimer’s disease, described below.  

 

1.2.1 Parkinson’s disease (PD) 

 

Parkinson’s Disease (PD), affecting 1-2% of the population over 65 years [8], is 

related to the loss of dopamine-producing brain cells. Motor impairments 

(i.e. akinesia, rigidity and tremor) and cognitive decline are the main symptoms that 

affect PD patients’ independence and quality of life [9] 

The hallmark sign of the disease is the progressive drop in dopamine production 

caused by the death of the neurons within the substantia nigra of the basal ganglia. 

Indeed, in normal condition, the substantia nigra has a high number of dopaminergic 

neurons, but by the end stages of PD, patients have often lost more than half of those 

neurons in this region.   
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The most common treatment for PD involves restoring depleted dopamine levels 

in the basal ganglia through levodopa, a precursor of dopamine. The reason of the 

use of this type of treatment is related to the fact that levodopa, unlike dopamine, can 

cross the blood-brain barrier allowing the brain to synthetize more dopamine.   

However, despite this therapy doesn’t stop the neurodegeneration that affect PD, 

it has proved to be very successful in the earlier stages of the disease improving the 

patients’ motor symptoms, but not in the later stages. Indeed, the long-term use of it 

seems to develop a drug resistance diminishing the treatment’s effects and to 

increase a series of side effects, such as changes from involuntary movements to 

inability to move [10].  

In these later stages, the mobility of the patients is instead treated by deep brain 

stimulation (DBS), a surgical procedure that, by implanting electrodes in a specific 

area of the brain and applying high frequency electrical stimulation, appears to 

manage the motor symptoms which characterize the disease under analysis. In 

addition to its therapeutic function, the DBS also offers the opportunity to record the 

electrical activity from the patient’s basal ganglia, i.e. LFP signals [11] 

 

1.2.2 Alzheimer’s disease (AD) 

 

Alzheimer's disease (AD), affecting more than 47.5 million people worldwide and 

predicted to exponentially increase in the coming ten years, is caused by the 

gradually destruction of neuronal cells. Anxiety, depression, apathy, and abnormal 

behavior, accompanied by persistent memory loss are the main symptoms that affect 

AD patients[12] 
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The hallmark signs of the disease are the accumulation of amyloid plaques 

between neurons and the neurofibrillary tangles formation within the cerebral 

cortex. These structural changes in the brain lead to neuronal death, neurotransmitter 

deficits and, as a consequence, the progressive decline in cognitive functions [13].  

Unfortunately, there is no possibility to prevent or to stop the development of the 

disease, but on the other hand, important progresses were made in the development 

of new drugs aimed to improve the patient’s quality of life. In this regard, the main 

treatment is focused on relieve cognitive impairments and try to slow down the 

progress of the disease. It involves restoring the cholinergic functions through 

inhibitors, such as donepezil and galantamine and has proved to be very successful 

in delaying the decline in cognitive functions.   

However, despite these benefits are applicable to mild, moderate, and severe 

patients, the AD is a chronic disease, thus a regular monitoring of both side and long-

term effects of the therapy is necessary to avoid a reduction of treatment 

performance [14].  

 

1.3 Application of nonlinear analysis in literature 

 

Understanding a complex system such as the human brain has prompted 

researches to propose different techniques to carry out an in-depth and detailed 

study of neuronal activities. So far, much of what is known has been provided by the 

classical linear analysis, usually based on spectral analysis and widely applied to 

assess the frequency content of oscillatory fluctuations that arise from 

electrophysiological signals.  
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Over the years, in fact, works related to the application of such measures have 

been widely published, but all studies have been limited to observe and interpret the 

rhythmic oscillatory activity of the brain without taking into account the dynamic 

properties and the apparent randomness that reflect the brain’s functional 

organization. Hence, the need to introduce nonlinear techniques able to deepening 

interpret the complex interactions embedded into neural recordings, despite the 

presence of the nonlinear approach in the clinical application is still far in the future.   

Starting from these considerations, the aim of this section is to provide a brief 

overview of the applications of nonlinear algorithms used in context of LFP signals 

recorded in conditions of Parkinson’s disease and EEG signals related to the 

conditions of Alzheimer’s diseases. For sake of clarity, the reviewed works are 

divided into fractal and entropic measures.  

 

1.3.1 Application of fractal measures 

 

As regard the power law exponent, usually indicated as β exponent, the work 

of Vysata et al. revealed that, in resting conditions, an overall EEG decrease of 

power-law exponent were associated to AD patients and greater variance of the 

measured parameter were found in patients with respects to healthy subjects. The 

results were supposed by authors to be related to a reduction of complexity and to 

the presence of neuroanatomical connectivity changes caused by the brain atrophy, 

respectively [15].   

In case of PD, the recent work of Belova et al., based on the study of LFP signals of 

patients who had discontinued levodopa treatment, found a lower β-values during 

movement with respect to the state of rest. This has been considered by authors 
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reflecting changes in motor processing suggesting a possible correlation between the 

β exponent measure and the excitation-inhibition ratio [16].  This correlation was 

already proposed in 2017 by Gao et al, the first to suppose the link between the two, 

using the parameter to investigate many neural disorders. Since the acquisition of 

LFP required invasive procedure, they carried out the study on computational 

models, then validating the results on data recorded from rats. As expected, both 

artificial and real measures revealed a steeper slope when the inhibitory component 

prevailed and flatter slope in the opposite case [17]. Higher β-values were also 

identified in the study conducted by Huang et al. a few years later. Based on the same 

suppositions, authors demonstrated the link between the excitation-inhibition 

equilibrium and the nonlinear parameter by considering the slope on LFP signals of 

PD patients after propofol injection, a drug that induces anesthesia. Surprisingly, 

result does not change compared to the previously mentioned study; they found an 

increased β-value after anesthetic induction compared to the awake state [18].  

On the other hand, about the detrended fluctuation analysis, a relatively small 

number of studies have examined the evaluation of the long-range temporal 

correlations in the selected neurodegenerative disorders. One of these is the work 

of Stam et al, published in 2005 and based on the study of EEG signals recorded from 

AD patients. By implementing the DFA algorithm in different frequency bands, 

authors found higher values of the parameter in the lower alpha (8-10 Hz) and beta 

bands (13-30 Hz) with respect to the control subjects, suggesting a decrease 

of spontaneous fluctuations caused by the disease [19]. Instead, another study related 

to LFP signals, proved the presence of long-range temporal correlations in PD 

patients before and after levodopa administration. In details, the analysis performed 

by Hohlefeld et al. shown lower α-values in conditions of pre levodopa medications 
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in both β (13-35 Hz) and high-frequency (>200 Hz) bands, suggesting more irregular 

fluctuations after the attenuation of the symptoms of the disease [20].  

 

1.3.2 Application of measures of Entropy 

 

The main application of entropy is to analyze the regularity of the 

neurophysiological time series. In this regard, the work of Abasolo et al. aimed to 

analyze changes of the ApEn (m=1, r=0.2) index on EEG signals. The study revealed 

lower values in AD patients compared to healthy controls, suggesting a reduction in 

complexity in part of the brains of subjects affected by disease. The authors 

considered the outcomes caused by the neuronal death and the consequent loss of 

connectivity of local neural networks, explaining in this way the presence of 

the deficit in the information processing of the cortex [13]. Similar results were also 

detected performing entropic measures at different time scales. For example, the 

analyses carried out by Mizuno et al and Escudero et al. on EEG time 

series confirmed lower values of MSE entropy in AD patients than control subjects. 

The findings are related to lower time scales (1-5), indicating the neural activity less 

complex in patients affected by disease [21][22]. 

As regard the applications in the context of PD, no many studies used the entropic 

measures to analyze LFP. This can be related to the fact that no studies can be 

performed to compare for example healthy and parkinsonian subjects, since the 

recording procedure, implemented to extract LFP signals, is highly invasive. One of 

the few works present in literature, in fact, is that of Syrkin-Nikolau et al. that 

applied the SampEn (m=2, r=0.2) to band-pass filtered LFP signals recorded during 

DBS implantation. Authors estimated higher entropy in frequency band β (13-30 Hz) 
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during walking with freezing of gait with respect to walking without freezing of gait, 

suggesting a less efficient transfer of motor information during the manifestation of 

the phenomena [23].   

 

1.4 Organization of the thesis 

 

The principal purpose of the current work is to provide insight about the correct 

implementation and application of nonlinear analysis on electrophysiological 

recordings. How to manage data and which measure appears more suitable to be 

used in specific case of study, appears still controversial, despite the growing interest 

of researches in the use of this approach to detect clinical information related to both 

physiological and pathological conditions. 

The work is organized into two main parts, the first one including all the 

theoretical and mathematical aspects underlying the five nonlinear algorithms 

selected in this study and the second one concerning two examples of practical 

application.  

From this perspective, chapter 2 describes the mathematical implementation of the 

different nonlinear measures distinguishing between fractal and entropic measures. 

The distinction allows to explore the applicability criteria, outlined in chapter 3, 

referred to the proper setting of the parameters involved in the algorithms. The 

analysis is carried out on a large number of artificial time series defined ad hoc to test 

the outcomes of both fractal and entropic algorithms.  

Next, chapter 4 and 5 focused on the two cases of study aimed to apply selected 

nonlinear methods on real neurophysiological time series. In this regard, the first 

application aims to quantify the nonlinear parameters on LFP signals before and after 
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the levodopa administration, in order to evaluate which is the analysis that better 

enounce the possible effects of the drug on PD patients. The second investigates 

fractal and entropic features on EEG signals of AD subjects compared to patients 

affected by other brain disorders, i.e. mild cognitive impairment, lewy body 

dementia and frontotemporal dementia, with the purpose of verifying if the use of 

parameters may point out possible distinctions among the groups of subjects. For 

both studies, chapter 4 presents the study population, data acquisition and pre-

processing phase, while chapter 5 summarizes the detailed results also from a 

statistical point of view, through specific non-parametric analyses.  

Finally, chapters 6 discusses the results presented in the previous chapter, 

focusing the attention on the comparison between the obtained outcomes with those 

found in literature. Chapter 7 proposed possible directions for future applications.  
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2. Nonlinear methods for time series 

analysis 

 

The goal of this chapter is to outline the technical and mathematical details 

underlying the nonlinear algorithms selected for the current analysis. The five 

methods identified in this work are the power-law exponent, the analysis of 

detrended fluctuations, the approximate entropy, the sample entropy and the 

multiscale entropy. These methods were chosen for their clinical and applicative 

relevance. In this section, each of them is described in detail.   

 

2.1 Fractal analysis 

 

The concept of a fractal is usually associated with irregular geometric objects 

whose dimension is repeated on temporal and spatial scales. This means that the 

object exhibits self-similarity in the sense that each individual part of it represents a 

specific subunit that resembles the structure [24]. 

In this regard, fractal analysis represents a step forward in the study of biological 

systems. The nervous system and its activity over time depend on the interaction 

between numerous interconnected neurons that generate highly variable electro-
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physiological signals. Organizations of this type are characterized by structural and 

functional redundancies that recall the concept of self-similarity of fractal processes 

[25]. 

Measures based on fractal theory relate complexity with long-range correlation 

and scaling behavior of the system [26], which explains why the power-law exponent 

(β) and the detrended fluctuation analysis (α) algorithms are grouped under the 

section fractal analysis.   

To confirm this, since the indexes estimated through the algorithms measure the 

same feature, specific relationships exist among them that allow to derive one from 

the other [27]. However, these relationships also include another non-linear measure, 

the Hurst exponent (HE), introduced in 1951 by Harold Edwin Hurst, and currently 

used to estimate the presence or absence of long-range dependence or long-term 

memory, which is commonly referred to the ability of a time series to predict future 

events based on historical data [28]. For sake of clarity, it is important to underline 

that the Hurst exponent was not examined in this thesis due to the limited possibility 

of comparing its performance in terms of clinical information caused by the lack of 

studies in the literature linked to Alzheimer's and Parkinson's diseases.  

Thus, summarizing, the relations that link α, β and HE are [27][29]: 

 𝛽𝑓𝐵𝑚 = 1 + 2𝐻𝐸                      𝛼𝑓𝐵𝑚 = 1 + 𝐻𝐸 (2.1)  

 𝛽𝑓𝐵𝑚 = 2𝐻𝐸 − 1                      𝛼𝑓𝐵𝑚 = 𝐻𝐸 (2.2)  

where fGn and fBm are respectively abbreviations of fractional gaussian noise and 

fractional brownian motion, mathematical models introduced by Mandelbrot and 

Van Ness in 1968 and used to characterize and classify long-range dependent 

processes [30] 
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Without going into too much theoretical aspects, what is important to emphasize 

is that the concepts of “fractional gaussian noise” and “fractional brownian motion” 

are generalization of two classical processes. Indeed, fGn constitutes  a stationary 

series of Gaussian random variables with constant variance and mean, 

whereas fBm is not stationary and represents the ordinary Brownian motion 

obtained by adding a parameter that assumes values between 0 and 1 and is 

indicated by h, which must not be confused with the HE, estimator of the self-

similarity property of signals [31].   

What is reported, highlights that the proper identification of these two processes is 

a crucial step in the application of the fractal algorithms. This aspect is accurately 

investigated in section 3.1, since the preliminary classification of the time series 

as fGn or fBm largely influences the performances of the nonlinear measures. 

In other words, the categorization of the long memory-process signals as stationary 

(fGn) or non-stationary (fBm) avoids the incorrect evaluation of the results, since the 

measuring range of the DFA exponent (α) and power-law exponent (β) are 

respectively [0:1] and [-1:1] for fGn and [1:2] and [1:3] for fBm.   

 

2.1.1 Power-law exponent 

 

The power law exponent, indicated by β-exponent, is a nonlinear measure defined 

starting from the power spectrum and used to quantify the self-affinity 

characteristics of the signals under analysis. This parameter, in other words, instead 

of considering how the time series varies in the time domain, carries out the study in 

the frequency domain, starting from the so-called power spectrum density (PSD) 

[32].  
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The PSD is widely used as a linear approach to evaluate the frequency content 

of a time series, quantifying the total power stored in different frequency bands. On 

the other hand, the non-oscillatory content of the signal results in a PSD inversely 

proportional to its frequency.  

From the mathematical point of view, this means that the signals exhibit a 1/f non-

oscillatory [33] component usually neglected in the application of linear methods, 

since the linear approach evaluates the PSD in linear coordinated enouncing only the 

oscillatory components of the specific signal. By considering, on the contrary, the 

PSD in log-log coordinates, the decay related to the 1/f-β component can be extracted 

through an operation of linear regression, whose slope corresponds to the scaling 

exponent β, then used as possible neurological biomarkers of disease status [1]. 

The reduction of complexity in Alzheimer’s disease or the balance 

excitation/inhibition in Parkinson’s disease, in fact, seems to be highly related to 

changes in PSD-slope (section 1.3.1).  

The spectrum of the signal is usually obtained applying the modified Welch’s 

periodogram, a method that consists of dividing the time series into segments, 

calculating the periodogram on each of them and then averaging the spectral 

estimated obtained. Thus, by considering a time series X(i)={x(1), x(2), …, x(N)} of 

length N divided into k=1, 2, … K segments of length M, for each subsequence of M 

values, indicated as xk(1), xk(2), …, xk(M), the PSD is calculated as: 

 𝑃𝑠𝑑𝑘(𝑓) =  
1

𝑀𝑈
| ∑ 𝑥𝑘(𝑚) 𝑤(𝑚)𝑒−𝑗2𝜋𝑓𝑚

𝑀−1

𝑚=0

|

2

 (2.3) 
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where Psdk represents the periodogram of the k-th interval of M elements,          

W(m) ={w(1), w(2), …, w(M-1)} is the data window directly applied to each segment 

and U is the normalization factor given by:  

    𝑈 =
1

𝑀
∑ |𝑤(𝑚)|2

𝑀−1

𝑚=0

 (2.4) 

 

At the end, the modified Welch’s periodogram, that provides the PSD of the original 

time series, X(i) is obtained by the average of the modified periodograms Psdk over 

all K intervals: 

 𝑃𝑆𝐷𝐾(𝑓) =
1

𝐾
∑ 𝑃𝑠𝑑𝑘

𝐾−1

𝑘=0

(𝑓) (2.5) 

 

[34]. Once estimated the PSD, by showing its changes with respect to frequencies in a 

log-log graphic representation, the β-exponent is defined as the slope of the straight 

line obtained by performing an operation of linear regression. Figure 2.1 (a) shows a 

schematic representation of the power-law exponent procedure.  

Nevertheless, to be sure that the estimation of β-exponent is not compromised 

by the rhythmic oscillatory components, as suggested by the work of Colombo et al. 

[35], the regression line can be identified following a peak removal operation. In 

other words, the peaks are accurately suppressed before performing the linear 

regression operation. Figure 2.1 (b) shows the two estimation of the power law 

exponent respectively before and after oscillatory peaks removal. 
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As regard the Matlab implementation, the spectra of the time series was 

obtained applying the modified Welch’s periodogram with the pwelch() function 

defining, as input, the windows in terms of seconds-length and the percentage of 

overlapping segments. In this thesis, in relation to LFP and EEG time series, a 

Hamming window is used with an overlap of 50%.  

Note that choice of the frequency resolution, given by sampling rate divided by 

the windows-length, may interfere with the estimation of the power-law exponent; 

thus, in this regard, the section 3.1.1 will describe in detail how these parameters 

affect the measurement. 

 

Figure 2.1 Example of application of the power-law exponent procedure applied to the same LFP 
signal from a PD patient before levodopa administration. The power spectral density (PSD) was 
obtained with the Welch’s method setting windows of 2 seconds-length and overlap of 50%. The 
regression lines are the green ones respectively without (a) and after (b) the removal of oscillatory 
peaks, while the blue signal represent the PSD before (full line) and after (dotted line) the removal 
operation. 
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2.1.2 Detrended fluctuation analysis 

 

The detrended fluctuation analysis is the nonlinear parameter first proposed by 

Peng et al. [36], to evaluate the relationship between the variability of the time series 

and the length of the intervals over which the variability is measured. In this way, 

what is revealed is the level of self-similarity (or scale invariance) of the time series 

under analysis.   

The index, indicated by α, is extracted by considering the root-mean-square 

fluctuations of integrated and detrended time series measured at different 

observation windows. Then, by representing in log-log coordinates how the 

fluctuations change against the size of the observation windows, the α-value is the 

slope obtained following an operation of linear regression on the embedded data.   

In this regard, below the main mathematical steps involved in the implementation 

of the algorithm are outlined. Let X(i)={x(1), x(2), …, x(N)} of length N be the original 

time series under analysis, the average of the time series is calculated as: 

 

�̅� =
1

𝑁
∑ 𝑥(𝑖)

𝑁

𝑖=1

 (2.6) 

 

with i=1, 2, ..., N. Then, the mean is subtracted from the time series and the integrated 

series is defined as:  

 

𝑌(𝑖) = ∑(𝑥(𝑖) − �̅�)

𝑁

𝑖=1

 (2.7) 

 

where Y(i) is the cumulative sum of the entire time series then divided into k=N/n 

non-overlapping intervals of length n. Within each k-th segment of length n, the local 

trend is calculated through the least-squares line fitted to the data and then removed. 
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In this way, the size of fluctuation (FK) can be obtained as the standard deviation of 

the quantity (𝑌𝑘 - �̅�𝑘): 

 

𝐹𝑘(𝑛) = √
1

𝑛
∑(𝑌𝑘(𝑗) − 𝑌�̅�)2

𝑛

𝑗=1

 (2.8) 

 

with k=1, 2, …, N/n and j=1, 2, … n. 𝑌𝑘 denotes the single integrated and detrended 

th-segment of the time series and �̅�𝑘 the mean of 𝑌𝑘 defined as: 

 

𝑌�̅� =
1

𝑛
∑ 𝑌𝑘(𝑗)

𝑛

𝑗=1

 (2.9) 

 

At the end, the size of fluctuation averaged over all the k intervals of size n is given 

by:  

 

𝐹(𝑛) =
1

𝑁
𝑛⁄

∑(𝐹𝑘(𝑛)

𝑁∕𝑛

𝑘=1

) (2.10) 

 

The steps are repeated for different values of n ∈ {N, N/2, N/3, …}.  

Once a series of F(n) values is obtained with respect to a series of n window sizes, 

the operation of linear regression is performed in a double-logarithmic scale allowing 

the estimation of the fractal scaling α-exponent as the slope of the obtained straight 

line.   

As mentioned before, the α-exponent provides the level of self-similarity in a time 

series giving information about the existing level of correlation among data. In 

detail, data result uncorrelated when α <0.5 and correlated when α >0.5. However, 

for sake of clarity it is important to underline that from an applicative point of 
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view, what seems to reflect neuronal activity in its dynamicity are the so-called “long 

range temporal correlations (LRTC)” present in the time series [37].   

The analysis of the LRTC is linked to the DFA algorithm as indicated by Hohlefeld 

et al., that suggest to detect the α-exponent by applying the above-described steps on 

the amplitude envelopes of the oscillatory activity in specific frequency ranges. The 

envelopes are extracted by bandpass filtering the time series (finite impulse response 

filter, order 2000 and Hamming window) and by applying on the filtered signals the 

Hilbert transformation [20].  Figure 2.2 shows a schematic representation of the 

detrended fluctuation analysis procedure.   

Figure 2.2 Example of application of the detrended fluctuation analysis in terms of LRTC approach. 

The procedure is applied to the same LFP signal from a PD patient before levodopa administration. 

In detail, (a) application of the bandpass filter and the Hilbert transformation to extract the envelope 

on which the DFA-method is then applied. (b) Division of the integrated series into non-overlapping 

segments of size n within which the data are fitted with the least-square method. The green lines 

represent the single trends. (c) Log-log representation of the size of the fluctuation F(n) in function of 

the window sizes (n). The green line represents the regression line fitting the data in the double 

logarithmic plot. 
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In this thesis, for the applications related to LFP and EEG time series, the LRTC 

approach, based on the amplitude envelopes of the neuronal oscillations, is 

implemented. From this perspective, as regard the Matlab implementation, 

the envelope was obtained by applying first the bandpass filter with the filter() 

function defining as inputs the numerator and denominator coefficients and the 

original time series and then the Hilbert transformation with the hilbert() function.  

 

2.2 Approximate and sample entropy 

 

The introduction of a family of measures called Approximate Entropy (ApEn) 

is ascribable to Pincus and Goldberger (1994). Such indices have been commonly 

used to quantify the amount of information or uncertainty content of physiological 

signals [38][39] because they estimate the level of randomness, the regularity 

and the predictability of a time series showing higher values for greater irregularity 

and lower values in opposite case.   

Unlike the common Shannon entropy, defined as the information or the 

uncertainty associated with a set of possible events characterized by a certain 

probability p [40], Pincus’ entropy does not estimate a probability distribution. The 

ApEn measures the logarithm of the relative frequencies with which two sequences 

in the series contain similar patterns [41].   

From the mathematical point of view, ApEn is computed through the procedure 

described as follows. By considering a time series X(i)={x(1), x(2), …, x(N)} of N data 

points, the sequence of m (embedding dimension) points, defined template, is defined 

as:  
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 𝑥𝑚(𝑖) = [𝑥(𝑖), … , 𝑥(𝑖 + 𝑚 − 1)] (2.11)  

with i=1, 2, ..., N-m+1. By considering the distance between each couple of sequences 

equal to:   

 𝑑[𝑥𝑚(𝑖), 𝑥𝑚(𝑗)] = max
𝑘

 [|𝑥(𝑖 + 𝑘 − 1) − 𝑥(𝑗 + 𝑘 − 1)|] (2.12)  

where k=1, 2, …m, the number of sequences of m points similar to the template with 

a specific tolerance r is selected to compute 𝐶𝑟
𝑚(𝑖) as: 

 𝐶𝑟
𝑚(𝑖) =

1

𝑁−𝑚+1
 {number of couples for which 𝑑[𝑥𝑚(𝑖), 𝑥𝑚(𝑗)] ≤ 𝑟 } (2.13)  

that represents the regularity of the template in the time series for each i=1, 2, ..., N-

m+1. Then, by taking the natural logarithm of each 𝐶𝑟
𝑚(𝑖) and averaging it over a 

total of N-m+1, the quantity 𝛷𝑚(𝑟) is given by:  

 
𝛷𝑚(𝑟) =

1

𝑁 − 𝑚 + 1
∑ ln (𝐶𝑟

𝑚(𝑖))

𝑁−𝑚+1

𝑖=1

 (2.14) 

 

By repeating the previous steps after increasing the dimension to m+1, the entropic 

index is estimated as:  

 𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = 𝛷𝑚(𝑟) − 𝛷𝑚+1(𝑟) (2.15)  

[42].   

The sample entropy (SampEn) is another measure of complexity very similar 

to ApEn introduced by Richman and Moorman [43] to estimate the irregularity and 

the complexity of signals extracted from the heart rate variability.  
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The mathematical steps underlying the calculation of SampEn are reported 

following. Again, starting from a time series X(i)={x(1), x(2), …, x(N)} of N data 

points, the sequence of m points, defined template, is constructed as:  

 𝑥𝑚(𝑖) = [𝑥(𝑖), … , 𝑥(𝑖 + 𝑚 − 1)] (2.16)  

with i=1, 2, ..., N-m+1, and the distance between each couple of sequences is equal 

to:   

 𝑑[𝑥𝑚(𝑖), 𝑥𝑚(𝑗)] = max
𝑘

 [|𝑥(𝑖 + 𝑘 − 1) − 𝑥(𝑗 + 𝑘 − 1)|] (2.17)  

where k=1, 2, …m and i ≠ j. The number of sequences of m points similar to the 

template with a specific tolerance r, is indicated as 𝐵𝑟
𝑚(𝑖) and computed as:  

 𝐵𝑟
𝑚(𝑖) =

1

𝑁−𝑚+1
 {number of couples for which 𝑑[𝑥𝑚(𝑖), 𝑥𝑚(𝑗)] ≤ 𝑟 } (2.18)  

In the same way, by considering the number of sequences similar for 

m+1 points, 𝐴𝑟
𝑚(𝑖) is given by:  

 𝐴𝑟
𝑚(𝑖) =

1

𝑁−𝑚+1
 {number of couples for which 𝑑[𝑥𝑚(𝑖), 𝑥𝑚(𝑗)] ≤ 𝑟 } (2.19)  

Then, 𝐵𝑟
𝑚(𝑖) and 𝐴𝑟

𝑚(𝑖) are averaged over i= N-m, providing:  

 
𝐵𝑚(𝑟) =

1

𝑁 − 𝑚
∑ 𝐵𝑟

𝑚(𝑖)

𝑁−𝑚

𝑖=1

 (2.20) 

 

 
𝐴𝑚(𝑟) =

1

𝑁 − 𝑚
∑ 𝐴𝑟

𝑚(𝑖)

𝑁−𝑚

𝑖=1

 
(2.21)  

and the entropic index is estimated as:  
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𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = − ln (

𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
) (2.22) 

 

[42]. Figure 2.3 shows a schematic representation of the ApEn and SampEn 

computation. In practice, the main idea of both ApEn and SampEn is to calculate the 

conditional probability that two similar sequences of m points remain similar at the 

point m+1. Despite this, the two indices differ from each other based on how they 

manage the self-counting in the mathematical computation. Indeed, while for the 

first entropic index the procedure of self-counting is applied at each iteration in order 

to avoid the natural logarithm of zero, in the second index the natural logarithm is 

computed only once and the self-counting is excluded due to the necessary 

condition i ≠ j enounced in equation (2.15) [44].  

Moreover, the performance of the estimator is dependent on the length N of the 

time series, on the sampling rate and on the two parameters that need to be specified 

before the application: the embedding dimension of the comparison pattern (m), 

representing also the detail level at which the signals is analyzed, and the margin of 

tolerance (r), that filters out the irregularities. Indeed, even if these factors are 

strongly correlated to each other, their impact plays a key role in ApEn and SampEn 

performances [42][43]. In this regard, section 3.2 will describe in detail how these 

parameters affect the measurement.  
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Figure 2.3 Example of the procedure implemented for the construction of the template on a LFP 

signal recorded from a PD patient. The template represents a fundamental process for calculating 

both ApEn and SampEn. Purple points verify that |x(i+k)-x(j+k)|≤ r for k=0; blue points verify that 

|x(i+k)-x(j+k)|≤ r for k=1; green points verify that |x(i+k)-x(j+k)|≤ r for k=2. At the end, the template 

with m=2 is given by the red line in the bottom right panel of the figure. 
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2.3 Multiscale entropy 

 

SampEn and ApEn represents traditional algorithms used to quantify the 

complexity; however, in some cases they seem to fail and not to quantify correctly 

the degree of randomness intrinsic in the time series. This happens when the series 

under analysis presents structures on multiple scales, as the case of LFP and EEG. 

For this reason, the need of introducing a new measure of complexity to capture 

the information at multiple time scales gave rise to the so-defined multiscale 

entropy (MSE) [45].  

Two are the main steps used to estimate the MSE: the first regards the construction 

of a new time series generated from the original one, while the second involves the 

estimation of a measure of entropy, e.g. SampEn or ApEn, at each time scale. More 

specifically, by considering the time series X(i)={x(1), x(2), …, x(N)} of N data 

points, the coarse-grained sequence is originated by averaging consecutive points 

within specific non-overlapping windows of increasing length τ, named scale 

factor. The procedure implemented implies:  

 
𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = − ln (

𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
) (2.23) 

 

with 1 ≤ j ≤ N/τ. By repeating the previous step on different values of τ, multiple 

coarse-grained time series are defined and for each of them the SampEn (or ApEn) is 

calculated. At the end, all the entropic values are plotted against the scale factors 

[46]. In this thesis the MSE is implemented computing the SampEn for different scale 

factors.   

Note that for τ=1 the coarse-grained time series is simply the original one. Figure 

2.4 shows (a) the schematic representation of the construction of the coarse-graining 
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procedure for τ=2 and τ=3, while figure 2.4(b) depicts the graph of MSE complexity 

values versus scale factors.     

 

The described index can be used to compare the complexity among different time 

series. Indeed, by exploiting the MSE curves, a specific time series can be considered 

more complex than another if for the majority of the scales the entropy values (e.g. 

SampEn or ApEn) are higher than others; moreover, the monotonic decrease of the 

entropy values with scales suggests that the signal only contains information in the 

smallest scales [47].  

 

Figure 2.4 (a) Example of the coarse-graining procedure implemented on a LFP signal recorded from 

a PD patient. Starting from the original time series (dark circle), the average of consecutive samples 

within each window of length τ provides the coarse-grained time series (sequence of red circles). (b) 

Values of SampEn (2, 0.2) obtained at each scale factor τ. In this case the scale factor ranges from 1 to 

30. 
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3. Applicability criteria 

The intention to identify and verify the conditions of applicability of the different 

nonlinear methods, which were accurately described in the previous chapter, 

represents the main objective of this thesis. It arises from the need to provide 

guidelines on the correct implementation of the measures and to the appropriate 

selection of the parameters which highly influence the application performance.  

The analyses described in this chapter are carried out on a large number of 

artificial time series in order to investigate both parameters common to all the 

measures, such as data length and sampling frequency, and specific parameters 

linked to the implementation of each single measure. For sake of clarity, methods 

have been grouped into two different sections according to which aspects they 

analyze, i.e. whether the fractal behavior or the irregularity of the neural time series. 

In this regard, section 3.1 outlines the applicability criteria relating to the fractal 

analysis that involves the power-law exponent (PLE) and the detrended fluctuation 

analysis (DFA); in this case, the discussion is centered on the discrimination between 

fractional gaussian noise (fGn) and fractional Brownian motion (fBm). On the other 

hand, section 3.2 investigates the conditions of application referred to the entropic 

analysis, including Approximate entropy (ApEn), Sample entropy (SampEn) and 

Multiscale entropy (MSE), whose parameters, such as embedding dimension of 
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patterns or tolerance, seem play an essential role in terms of performance of the 

algorithm. 

3.1 Fractal analysis 

 

As described in the previous chapter, the decision to group the PLE (β) and the 

DFA (α) under the section fractal finds confirmation in relationships which exists 

among them. These relations allow to theoretically derive one measure from the 

other and are different according to whether the time series under analysis is fGn or 

fBm [27]. The latter aspect suggests the possibility to consider them as useful tool to 

verify the robustness of the fractal algorithms, identifying also the more suitable 

parameter to classify the time series as fBm or fGn. 

Hence, the idea is to carry out an analysis aimed at comparing the direct 

estimation of both β and α exponents and the values which are indirectly obtained 

by applying the theoretical relations (2.1) and (2.2).  

At the beginning, the HE has been considered as discriminating parameter 

between the two processes. Thus, two sets of 1000 fGn and 1000 fBm were simulated 

for different values of HE as shown in figure 3.1, by implementing a function that 

receives as inputs the signal length and the HE.  
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The signals are generated for HE values equal to 0.25, 0.5, 0.75, as suggested by the 

work of Eke et al. (2000), taken as reference for the current analysis [29]. The 

sampling rate was fixed equal to 512 Hz and the length of the signals equal to 60 

seconds.  

Table 3.1 summarizes the results obtained from the current analysis, reporting 

both the values of β and α estimated directly through the implementation of the 

nonlinear algorithms and β and α indirectly obtained by applying the theoretical 

relations (2.1) and (2.2). 

 

 

 

 

 

Figure 3.1 Simulated fGn and fBm paths for Hurst values equal to 0.25, 0.5, 0.75 respectively. The 

length of the signals is 60 seconds with a sampling rate of 512 Hz. 
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From table 3.1, the estimated results appear stable across the 1000 realizations and 

very close to the theoretically predicted values, thus demonstrating the validity of 

the fractal relations and the robustness of the implemented algorithms. However, it is 

worth noting that fBm and fGn are intrinsically characterized by the same HE, which 

falls within the range [0,1] in both cases. This makes the index less suitable for 

discerning the two classes. For this reason, a further simulation test was performed 

by selecting the PLE (β) as the discriminating parameter. The same analysis 

procedure was applied modulating the β-values, instead of HE, in order to obtain 

fGn (β equal to 0, 0.5 and 0.98) and fBm (β equal to 1.02, 1.5, 2).  

In this regard, the signals have been generated through a specific Matlab function 

dsp.ColoredNoise() which requires, as input, the length in samples and a value 

between -2 and 2, which indicates, as the β-exponent, the slope of the spectrum in the 

frequency domain. The sampling rate was fixed equal to 512 Hz and the length of the 

signals equal to 60 seconds. The results both estimated and obtained are then 

compared and summarized in table 3.2.  

 
Results theoretically 

obtained 

Results directly  

estimated 

 β - exponent α - exponent  β - exponent α - exponent 

fGn (HE=0.25) -0.5 0.25 -0.57 +- 0.02 0.25 +- 0.03 

fGn (HE=0.5) 0 0.5 0.00 +- 0.02 0.49 +- 0.06 

fGn (HE=0.75) 0.5 0.75 0.53 +- 0.02 0.74 +- 0.07 

fBm (HE=0.25) 1.5 1.25 1.46 +- 0.02 1.25 +- 0.1 

fBm (HE=0.5) 2 1.5 1.97 +- 0.02 1.48 +- 0.1 

fBm (HE=0.75) 2.5 1.75 2.39 +- 0.03 1.72 +- 0.09 

Table 3.1 Results indirectly obtained by the relations that link the two fractal measures selected in 

the current thesis and results directly estimated implementing each algorithm separately on the 

simulated fGn and fBm, originated from values of Hurst exponents (HE). 
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Table 3.2 displays results essentially similar to those found in table 3.1, confirming 

both the stability of the linear relationships existing between these fractal measures 

and the use of β-exponent as the most suitable parameter for the purposes of the 

classification between fBm and fGn. 

However, for sake of clarity and especially in view of applications on real 

neurophysiological signals, it is important to underline that not always β values 

ranges are perfectly delineated as [-1:1] for fGn and [1:3] for fBm, with β=1 as critical 

boundary. This is due to the performance dependence of the PLE algorithm on 

transformations, like detrending or filtering, used to estimate the power spectrum. 

For this reason, several works in literature, starting from that of Eke et al. (2000) [29], 

have proposed to exclude high frequencies, i.e. 1/8 <f <1/2 Hz, from the calculation of 

the PSD. In this way, the ranges of β-values are redefined respectively as [-1: 0.38] for 

fGn and [1.04: 3] for fBm, introducing a new critical zone between 0.38 and 1.04 

where further investigations are needed to distinguish the two processes correctly 

[27], [48]. 

 
Results theoretically 

obtained 

Results directly  

estimated 

 β - exponent α - exponent  β - exponent α - exponent 

fGn (β =0) 0 0.5 0.00 +- 0.02 0.50 +- 0.06 

fGn (β =0.5) 0.5 0.75 0.50 +- 0.02 0.74 +- 0.04 

fGn (β=0.98) 0.98 0.99 0.98 +- 0.02 0.99 +- 0.04 

fBm (β=1.02) 1.02 1.01 1.02 +- 0.02 1.01 +- 0.04 

fBm (β=1.5) 1.5 1.25 1.48 +- 0.02 1.25 +- 0.04 

fBm (β=2) 2 1.5 2.01 +- 0.02 1.48 +- 0.04 

Table 3.2 Results indirectly obtained by the relations that link the two fractal measures selected in 

the current thesis and results directly estimated implementing each algorithm separately on the 

simulated fGn and fBm, originated from values of power-law exponents (β). 
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Once the correct functioning of the selected fractal measures has been assessed on 

ad hoc simulations, the analysis proceeds with the evaluation of the parameters that 

play a key role in each single nonlinear algorithm. 

 

3.1.1 Applicability criteria: power-law exponent 

 

As demonstrated in section 3.1, the PLE is the method widely used to determine 

the signal class of time series. In the frequency domain, the fractal behavior is 

expressed through the power law: 

 
𝑃𝑆𝐷(𝑓) ∝

1

𝑓−𝛽
 (3.1) 

 

where PSD(f) is the power spectrum density for the corresponding frequency f 

obtained by applying the modified Welch’s periodogram. However, the choice of the 

frequency resolution and the parameters defined in the estimation of the power 

spectrum, such as the windows-length, need to be accurately selected to avoid 

misleading results. From this perspective, the effects that different frequency 

resolutions or different windows-length, as well as the sampling frequency and the 

data length, have on the β-values are evaluated below. 

The analysis is carried out on two sets of 1000 time series generated through the 

Matlab function dsp.ColoredNoise() for β-values equal to 0.5 for fGn and 1.5 for fBm, 

respectively. Figure 3.2 shows simulated fGn and fBm paths for the selected β-values.  

 

 

 

 



48 Applicability criteria 

 

 

 

 

 

 

 

In order to test whether β-exponents change as function of the frequency 

resolution, the effect of using different window-lengths with a sampling frequency 

fixed as 512 Hz is examined. It is known that the frequency resolution is defined as: 

 
𝛥𝑓 =

𝑓𝑠

𝑀
 (3.2) 

 

where fs is the sampling frequency and M is the number of samples constituting the 

length of the windows into which the original signal is split. Thus, by considering 

different values of M, figure 3.3 shows the boxplot of β-exponents calculated for 

different frequency resolutions.  

 

 

 

 

 

 

 

Figure 3.2 Example of simulated fGn and fBm paths for selected β-values equal to 0.5 and 1.5, 

respectively. The sampling frequency is 512 Hz, while the duration is about 10 seconds. 
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These results show that for time series characterized by a sampling frequency of 

512 Hz and a length of 60 seconds, a frequency resolution of at least 0.5 provides an 

accurate evaluation of the exponent. This draws attention to the importance of 

correctly choosing the parameters that influence the PLE as fractal method used in 

biomedical signal processing.  

In addition to this, it is also necessary to monitor other parameters that could 

influence the correct application of the algorithm, such as the length of the data and 

the sampling rate. However, in this case, these seem to depend on the frequency 

resolution. In fact, by repeating the same procedure aimed to test the influence of 𝛥𝑓 

on β-exponents for different lengths of the time series, for example 60, 120 or 180 

seconds, the obtained results are similar to the one reported in figure 3.3.  

 

Figure 3.3 Boxplot comparison of β-exponents obtained by considering different values of frequency 

resolution (Δf). The dashed grey lines represent the expected β-exponents respectively for fBm and 

fGn, and the line in the middle of each box is the median value. The x-axes represent frequency 

resolution Δf, given by fs/M, with fs=512 Hz and M equals to 10, 5, 2, 1 seconds. 



50 Applicability criteria 

 

 

 

 

 

3.1.2 Applicability criteria: detrended fluctuation analysis 

 

The DFA-based method acts in the time domain to evaluate the self-similarity (or 

scale invariance) of the time series. The α-index provided by the algorithm expresses 

the fractal behavior as: 

 𝐹(𝑛) ∝ 𝑛𝛼 (3.3)  

where 𝐹(𝑛) represent the fluctuations of the signal and n is the window size in which 

the fluctuations are evaluated. Despite being a powerful tool for determining if the 

data exhibit fractal characteristics, it is also highly dependent on input parameters, 

such as the data length (N) and the minimum (nmin) and maximum (nmax) window, or 

‘box’ sizes, in which the fluctuations are estimated [49], [50]. Thus, the analysis 

outlined below investigates the main effects produced by such parameters on the 

performance of the DFA method. 

The first aspect that must be taken into account is related to the way in which the 

window sizes are plotted against 𝐹(𝑛) forming the so-called “diffusion plot” on 

which the α-index is obtained as the slope of the linear regression (section 2.2). 

Indeed, the double-logarithmic nature of the plot appears to cause greater 

uncertainty, since the density of points increases for higher window sizes with 

respect to shorter ones. For this reason, a possible solution for overcoming this 

limitation is to consider the window sizes, in the diffusion plot, evenly spaced on the 

logarithmic scale [49], [50].  

Once established the correct procedure to place the window sizes along the 

abscissa axis, the analysis aimed to evaluate the effects of changing N, nmin, nmax on 

the estimated α-values can be carried out on the same two sets of 1000 fGn and fBm, 

previously described, with sampling frequency equals to 512 Hz 
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• Influence of data length (N)  

To verify the sensitivity of the algorithm to N, the following values were chosen: 

500, 1000, 2500, 5000, 7500, 10000 samples. By selecting nmin, nmax equals to the 

smallest and largest possible values on the basis of existing literature [49], [51], i.e. 4 

and N/10 respectively, figure 3.4 displays changes in α-values for the different data 

lengths. 

 

The findings revealed by the boxplots are consistent with ranges of α-values 

defined for fBm and fGn, i.e. [0:1] for the first class of time series and [1:3] for the 

second one. Size larger than 2500 samples are desirable to perform an appropriate 

fractal investigation through the DFA-method, while smaller data lengths, like 500 or 

1000, seem to provide less accurate estimates of α-exponents.  

 

 

Figure 3.4 Boxplot comparison of α-values calculated for different data lengths. The sampling 

frequency is 512 Hz, while the minimum and the maximum window sizes are 4 and N/10. The grey 

dashed lines represent the expected α-exponents on the basis of relations (3.1) and (3.2) starting from 

β-values used to originate the simulated fGn and fBm time series, and the line in the middle of each 

box is the median value. 
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• Influence of maximum window size (nmax). 

This parameter proved to be the most influencing factor when evaluating the 

accuracy of the DFA method on simulated data. Larger values of window sizes may 

provide unreliable estimations of fluctuations, since the number of intervals involved 

in the calculation of the α-slope is smaller for increasing maximum window size. By 

considering for example nmax equal to N/2, the time series is divided into two 

intervals which contribute to the calculation of the fluctuation F(n). This contribution 

is less than the one provided by the ten intervals obtained by setting nmax = N/10. 

Hence, the nmax parameters chosen for the investigation of DFA are given by N/2, 

N/4, N/6, N/8, N/10. Figure 3.5 summarizes the obtained results, displaying boxplots 

of α-distributions for each selected window sizes. The y-axis indicates the values of 

DFA-exponents, while the x-axis the different values of nmax examined. 

Figure 3.5 Boxplot comparison of α-values calculated for window sizes. The sampling frequency of 

the signals is 512 Hz, while the minimum window sizes is 4 samples and the data length are (a) 2500 

samples and (b) 7500 samples. The grey dashed lines represent the expected α-exponents on the basis 

of relations (2.1) and (2.2) starting from β-values used to originate the simulated fGn and fBm time 

series, and the line in the middle of each box is the median value. 
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Again, the findings are consistent with ranges of α-values defined for fBm and 

fGn. However, the most interesting aspect carried out from the analysis is related to 

the high dependency between N and nmax. From this perspective, figure 3.5 clearly 

shows how N/2 and N/4 values of maximum window sizes provide generally 

unreliable estimates of DFA-exponent for time series with data length of 2500 

samples (figure 3.5 (a)). Interestingly, an opposite trend is indeed shown when 

values of nmax equals to N/10 are applied on signals characterized by a data length of 

7500 (figure 3.5 (b)). In this latter case, in fact, lower values of maximum window 

sizes, such as N/2 or N/4, offer more accurate estimation of α-exponents.  

• Influence of minimum window size (nmin) 

This factor, unlike nmax, is not dependent on the data length. Indeed, by 

considering an analysis similar to the one carried out for nmax, thus evaluating 

changes in α-values, no differences were found. This shows that selection of nmin is 

not the most impactful parameter selection choice in terms of accuracy in estimating 

DFA α-exponents.  

 

3.2 Entropy analysis 

 

The entropy analysis includes indices that measure the level of complexity of time 

series. As largely outlined in previous chapters, the concept of complexity is related 

to the randomness of the signal and to the predictability of its future samples based 

on the previous ones [41]. In this study, it was decided to investigate in detail the 

Approximate Entropy (ApEn), the Sample Entropy (SampEn) and the Multiscale 
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Entropy (MSE), since such indices perform the quantification of the complexity 

through a similar procedure, as accurately described in chapter 2.  

It is no coincidence, in fact, neither that SampEn was introduced to overcome 

limitations of ApEn, such as the presence of self-matches in the measure or the 

instability related to increasing length of the time series, nor that MSE represents an 

extension of the previous indices, since by calculating one of them at different scales, 

it provides information about the complexity of signals characterized by a multi-scale 

structure [43], [47]. 

However, as for fractal analysis, also the correct estimation of the entropic 

measures may be guaranteed by appropriately selecting the parameters involved in 

the algorithm implementation. Thus, in this regard, sections 3.2.1 and 3.2.2 discuss 

the main factors that influence the selected entropy indices, through an analysis 

carried out on 1000 random white noise sequences generated through the Matlab 

function dsp.ColoredNoise() with β=0, and 1000 pure periodic signals given by 

sin(10𝜋𝑡). An example of such simulated signals characterized by 10 seconds-length 

and sampling frequency equals to 512 Hz, is shown in figure 3.6. 

 

Figure 3.6 Example of simulated gaussian and periodic paths with sampling frequency of 512 Hz and 

duration of 10 seconds. 



Applicability criteria 

 

 

 

55 

 

 

3.2.1 Applicability criteria: approximate and sample entropy 

 

Approximate entropy and Sample entropy are methods that quantify the 

dynamical complexity of time series by computing the conditional probability that a 

given sequence close to another one over m consecutive points, maintains this 

property when one or more samples are added. 

Generally, the factors that influences ApEn and SampEn indices are the length of 

the time series (N), the pattern dimension (m) and the tolerance (r). These, even if 

strongly correlated to each other, are investigated separately below. The works taken 

as references in the current analysis are those of Chen et al. (2005) and Richman e 

Moorman (2000) [42], [43]. 

• Influence of data length (N) 

The length of the time series is linked to the embedding dimension (m), since the 

number of sample points constituting the time series is recommended about 10m or at 

least 30m for ApEn estimation [41] and about 10m - 20m for SampEn [43]. For this 

reason, entropy values change as function of N and in order to examine to what 

extent this happens, a set of four different data lengths consisting of 100, 1000, 5000 

and 20000 is evaluated considering m=2. The simulated signal considered in the 

analysis is the gaussian noise shown in figure 3.6 with sampling frequency of 512 Hz. 
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The results related to Gaussian noise reveal two different trends for ApEn and 

SampEn, due to the respectively presence or absence of self-matches in the measure. 

Indeed, figure 3.7 shows that the ApEn values, characterized by self-matches, 

increase steadily up to a certain value of r and then decrease with increased r. On the 

other hand, SampEn values decrease with increased r, as expected, since the measure 

is designed not to count self-matches [42].  

However, in this regard, it is important to underline that in both cases, the 

expected shape of the entropic distribution should linearly increase as r decreases 

[43], but if this seems true for SampEn, it appears not be the same for ApEn, which 

assumes the expected shape only for values of tolerance higher than a specific peak 

in the distribution. The value of such peak value is provided at lower r with 

increasing the number of data points.  

Figure 3.7 Effect of changing the N values on ApEn (left) and SampEn (right) for a Gaussian noise 

characterized by sampling frequency of 512 Hz and data length of 5000 samples. The parameter r 

ranges from 0.01 to 1with step 0.02, while the embedding dimension is fixed equal to 2. 
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All these findings suggest that the smaller the data length, the higher is the value 

of recommended r to avoid misleading entropic estimations. 

• Influence of tolerance (r) 

The parameter r balances the quality of logarithmic likelihood estimates with loss 

of time series information. For this reason, a good selection of r is needed, since lower 

values appear to cause poor conditional probability estimates while larger values, in 

contrast, seem related to the loss of too much information [52]. 

Existing rules in literature suggest to use values of r between 0.1 and 0.25 times the 

standard deviation of the original time series [41]. Thus, in this regard, figure 3.8 

displays the results obtained implementing the analysis aimed to illustrate the 

sensitivity of SampEn and ApEn with respect to the choice of tolerance r.  

Figure 3.8 Effect of changing the r values on ApEn (left) and SampEn (right) for a Gaussian noise and 

periodic signal characterized by sampling frequency of 512 Hz and data length of 5000 samples. The 

parameter ranges from 0.01 to 1with step 0.02. The embedding dimension in both cases is m=2. 
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Figure 3.8 shows that the separation between the gaussian and periodic signals is 

guaranteed for almost all values of tolerance, even if it becomes smaller as the factor 

r increases suggesting a necessary caution when apply ApEn and SampEn with too 

large values of r. 

Moreover, the peak value for ApEn is seen in correspondence of r=0.1 that means 

that the tolerance should be greater than 0.2 for the specific combination of 

parameters N=5000 samples and m=2. In the same way, even if more stable with 

respect to ApEn, also for SampEn the values of r should range between 0.1 and 0.2 

since the distribution of entropic values doesn’t assume the expected linear shape for 

r ≤ 0.1. All these findings are in line with suggestion of Pincus et al in the perspective 

of obtaining more accurate estimations of entropic indices [41]. 

• Influence of embedding dimension (m) 

The embedding dimension represents the length of sequences compared in the 

entropic algorithms and is highly dependent on the time series length (N), as 

mentioned before. In clinical applications, the most popular choices proposed in 

literature are m=1 and m=2. Thus, in this regard, figure 3.9 investigates how values of 

m ranging from 1 to 5 impact on ApEn and SampEn measures, requiring also further 

adjustment of the value of tolerance (r). 
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The results shown in figure 3.9 confirm the suggestions of Pincus et al., since m=1 

and m=2 appear to provide more reliable indices estimations for both ApEn and 

SampEn. The proof of this is clearly pointed out by the shape of the distributions that 

deviates more and more from the expected one, with increased embedding 

dimensions (m ≥ 3). This is true both for ApEn algorithm, since reducing the values 

of embedding dimension the range of possible values of tolerance appears also 

reduced, and for SampEn algorithm which seems not provide stable results with 

values of m ≥ 3. 

 

 

 

 

 

Figure 3.9 Effect of changing the m values on ApEn (left) and SampEn (right) for a Gaussian noise 

characterized by sampling frequency of 512 Hz and data length of 5000 samples. The x-axis 

represents values of tolerance (r) ranging between 0.01 and 1with step 0.02. 
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3.2.2 Applicability criteria: multiscale entropy 

 

The multiscale entropy is a method designed for the analysis of complexity at 

different temporal scales which are generated using the so-called coarse-grained 

procedure, a combination of moving average filter and down-sampling process [53]. 

The factor which needs to be accurately discussed is the scale factor (τ), that 

determines the length of the coarse-grained time series on which the SampEn or 

ApEn is then computed.  

The mathematical procedure, described in section 2.3, clearly shows that the 

number of samples in the time series provided by the coarse-graining procedure 

decrease considerably as the scale factor increases. This may cause an unstable 

estimation of entropy [53]. Thus, to evaluate the sensitivity of MSE to the signal 

length, 1000 realizations of white noises and 1/f noises are considered as function of 

sample points (N). By considering the parameters of SampEn equal respectively to 

m=2 and r=0.15 times the standard deviation of the signal, the MSE values are 

computed for data lengths equal to 800, 1000, 5000 and 20000. Figure 3.10 shows an 

example of the two types of time series for N=5000, while figure 3.11 depicts the MSE 

profiles for each value of N.   

Figure 3.10 Example of simulated gaussian and periodic paths with sampling frequency of 512 Hz 

and duration of 10 seconds. 
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MSE analysis, depicted in figure 3.11, points out that, at lower scale (τ ≤ 3) white 

noise has higher values of entropy than the correlated 1/f scaling noise. With 

increasing scales, the entropy of the white noise decreases monotonically and falls 

below the entropy value of the 1/f noise, which instead remains constant with scale. 

This finding suggests that correlated signals are more complex than uncorrelated 

ones, in the sense that the former contain complex structures across multiple time 

scales whereas the latter does not. In addition to this, the MSE curves suggest also 

that the higher the value of N, the more robust the multiscale sample entropy 

estimations.  

Figure 3.11 MSE profiles as function of data length (N) from 1000 white noises and 1000 1/f noises. 

The entropy values are expressed in terms of mean and standard deviation. Blue profile represents 

the white noise, while peach profile the 1/f noise. 
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Besides the influence of the data length, also the value of the maximum scale 

factor may interfere with the entropy measure. Thus, by considering two different 

values of scale factor, like 10 and 30, changes of MSE profiles are evaluated and 

shown in figure 3.12 for signal length of 5000 and 20000 samples. The embedding 

dimension and the tolerance are equal respectively to 2 and 0.15 times the standard 

deviation of the signal.  

 

The influence of the scale factor on MSE curves may be considered as an operation 

of down-sampling. In fact, as described in section 2.3, the coarse graining procedure 

provides new sequences starting from τ samples of the original time series. This 

suggests to select the most suitable τmax, since when it is higher it causes a lower 

number of samples in the coarse-grained sequence.  

Figure 3.12 MSE profiles as function of scale factor (τ) from 1000 white noises and 1000 1/f noises. (a)  

indicates the evaluation for N=5000, (b) for N=20000 samples. The entropy values are expressed in 

terms of mean and standard deviation. Blue profile represents the white noise, while peach profile 

the 1/f noise. 
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4. Application of nonlinear measures to 

LFP and EEG time series 

The usefulness of the applicability criteria investigated for the nonlinear measures 

will be demonstrated by an application to local field potentials recorded from 

Parkinson’s Disease (PD) patients and an application to electroencephalograms 

acquired from both Alzheimer’s Disease (AD) patients and from subjects affected by 

Lewy body dementia (LBD), frontotemporal dementia (FTD) and mild cognitive 

impairment (MCI). 

In both cases, the two available datasets are used as a sort of test bench for the 

selected nonlinear measures described in chapter 2. The purpose is to evaluate the 

implementation of the nonlinear approaches on real neurophysiological time series, 

examining also the results in order to verify if they are in agreement with those 

present in literature.  

In this regard, the current chapter provides an introduction of the two conducted 

studies, in terms of database description, data acquisition and pre-processing 

requirements. Such aspects are discussed in separate sections. In detail, section 4.1 

outlines the analysis carried out on LFP of PD patients, while section 4.2 focuses on 

EEG of AD patients.  
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4.1 Study case: LFP analysis in Parkinson’s disease 

 

Levodopa represents the most common treatment strategy used to reduce 

parkinsonian motor symptoms. In this regard, the objective of the analysis carried 

out was to assess the nonlinear parameters before and after the levodopa 

administration, in order to evaluate which is the measure that better enounce the 

possible effects of the drug on patients.   

 

4.1.1 Study population 

The data used for the analysis have been provided by twenty-four subjects 

affected by Parkinson disease (12 females and 12 males). All patients recruited for the 

study gave their written informed consent to undergo data acquisition and the 

experiment was approved by the local ethics committees, in accordance with the 

Declaration of Helsinki.   

The subjects, aged between 38 and 70 years, were submitted to bilateral implant 

for STN stimulation with macroelectrodes (model 3389 Medtronic Minneapolis, USA) 

and were considered in two different dopaminergic conditions, i.e. before and after 

levodopa medication [54]. All patients had predominantly rigid-akinetic phenotype 

with severe motor fluctuations and motor scores were assessed with the Unified 

Parkinson's Disease Rating Scale - UPDRS III after surgery (off medication, for 

patients recorded before levodopa and on medication for patients recorded after 

levodopa).  
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4.1.2 LFP recordings 

During DBS electrode implantation, raw LFP recordings were acquired bilaterally 

from the subthalamic nucleus (STN) at rest before and after medication. The two 

different conditions were labeled “pre medication” and “post medication”, 

respectively and, in details, the first condition was referred to 12 h after withdrawal 

of levodopa treatment, while the second one to at least 30 minutes after drug 

administration.   

In total, 56 LFP time series were recorded from right and left STN nuclei, 35 in 

condition of pre medication and 21 in condition of post medication. Table 4.1 

summarizes further acquisition details.    

All data, on which the work of thesis is conducted through an off-line analysis 

implemented in Matlab, were acquired with a sampling rate of 2500 Hz, while the 

number of bit and the voltage needed for quantization process were 12 and 5V range, 

respectively [54]. 
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Table 4.1 Details of LFP recordings analyzed. 

Patient  Gender Recorded side  Recording condition Time recording 

P1 F DX Pre levodopa / post levodopa 356 sec /164 sec 

P2 F 
DX 

SX 

Pre levodopa / post levodopa  

Pre levodopa / post levodopa 

60 sec /60 sec         

81 sec /83 sec 

P3 F 
DX                     

SX 

Pre levodopa / post levodopa  

Pre levodopa / post levodopa 

56 sec /59 sec          

57 sec /63 sec 

P4 F 
DX                     

SX 

post levodopa                    

post levodopa 

94 sec                     

78 sec 

P5 F 
DX                    

 SX 

pre levodopa             

pre levodopa 

195 sec                    

171 sec 

P6 F SX Pre levodopa / post levodopa 375 sec /59 sec 

P7 F 
DX                    

SX 

pre levodopa             

pre levodopa 

115 sec                    

112 sec 

P8 F 
DX                    

SX 

pre levodopa             

pre levodopa 

295 sec                    

289 sec 

P9 F 
DX                    

SX 

pre levodopa             

pre levodopa 

178 sec                    

172 sec 

P10 F 
DX                    

SX 

Pre levodopa / post levodopa  

Pre levodopa / post levodopa 

54 sec /57 sec           

60 sec /57 sec 

P11 F DX pre levodopa 112 sec 

P12 F 
DX                        

SX 

Pre levodopa / post levodopa  

Pre levodopa / post levodopa 

81 sec /60 sec         

289 sec /66 sec 

P13 M 
DX                        

SX 

Pre levodopa / post levodopa  

Pre levodopa / post levodopa 

26 sec /86 sec           

66 sec /66 sec 

P14 M 
DX                        

SX 

Pre levodopa / post levodopa  

Pre levodopa / post levodopa 

63 sec /83 sec           

63 sec /69 sec 

P15 M SX Pre levodopa / post levodopa 108 sec /89 sec 

P16 M SX Pre levodopa / post levodopa 336 sec /43 sec 

P17 M 
DX                      

SX 

pre levodopa             

pre levodopa 

173 sec                     

80   sec 

P18 M 
DX                      

SX 

pre levodopa             

pre levodopa 

179 sec                  

184 sec 

P19 M 
DX                      

SX 

pre levodopa             

pre levodopa 

163 sec                 

 143 sec 

P20 M SX Pre levodopa / post levodopa 106 sec /94 sec 

P21 M 
DX                       

SX 

pre levodopa             

pre levodopa 

302 sec                  

147 sec 

P22 M 
DX                       

SX 

pre levodopa             

pre levodopa 

120 sec                 

123 sec 

P23 M 
DX                       

SX 

post levodopa                    

post levodopa 

66 sec                       

53 sec 

P24 M 
DX                       

SX 

post levodopa                     

post levodopa                     

69 sec                      

57 sec 
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4.1.3 LFP preprocessing 

Data pre-processing was necessary to remove movements and power-line artifacts, 

prior to the application of the nonlinear measures. Four are the main steps included 

in this phase.  

• Application of high pass filter through a sixth-order Butterworth filter with a cut-

off frequency of 2 Hz with the purpose to highlight the activities of interest, 

reducing the noise components which affect the signals at lower 

frequencies (below 2Hz).  

• Application of notch filter, commonly implemented to remove the power line 

noise (50 Hz) and its harmonics (multiples of 50 Hz), using a fourth-order 

Butterworth filter. The choice of this type of filter was related to the drop-off at 

the desired cut-off frequency as steep as possible and to the absence of “ripples” 

in the stopband.  In order to avoid the introduction of new artifact during the 

notch filter application, the bandwidth of the filter needed to be accurately 

defined. In this regard, the bandwidth was set up equal to 4 Hz except for the 

patient P3 whose signals required a wider bandwidth (10 Hz). To avoid phase 

distortion, the filter was implemented as ‘zero-phase’ using the ‘filtfilt’ MATLAB 

function.  

• Application of the normalization procedure aimed to reduce signal variability 

and ensure matching background noise in all recordings [55], [56]. LFPs were 

normalized by subtracting the mean and dividing the result by the standard 

deviation of the 600–1000 Hz band-pass filtered signals [54]. The operation is 

summarized in the formula 4.1:   
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signal =

signal − mean(signalfiltered)

std(signalfiltered)
 (4.1) 

 

• Application of the artifact removal procedure that requires the division of the 

signal into non-overlapping segments of 100 ms; in each segment, the calculation 

of the peak-to-peak distance is performed in order to eliminate those higher than 

two times the standard deviation of the segmented signal. 

All the described steps of the pre-processing phase were conducted on the original 

time-lengths of recorded time series (ranging from 24 seconds up to 6 minutes, as 

accurately indicated in Table 4.1). However, to enable a quantitative and qualitative 

comparison amongst nonlinear measures, the definition of a unique length equal to 

43 seconds was necessary. Such temporal length allowed not only to treat separately 

just the signal presenting inferior duration (24 seconds) but also to work on a number 

of points contained in each time series sufficiently high (107500 given by 43 seconds 

multiplied by the sampling rate).  

 

4.2 Study case: EEG analysis in Alzheimer’s disease 

 

Among the causes of cognitive impairment on neurodegenerative bases, 

Alzheimer's disease (AD) is the most frequent. To this group of pathologies are also 

involved other brain disorders, such as mild cognitive impairment (MCI), 

frontotemporal dementia (FTD) and Lewy body dementia (LBD). Briefly, MCI is a 

clinical state between elderly normal cognition and dementia, featuring memory 

complaints and cognitive impairment. It is a brain disorder with a high risk to 
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progress to AD, in fact it was estimated that annually between an 8 and 15% of 

people with MCI progress to AD [57]. FTD is a common dementia encompassing 

progressive dysfunction in executive functioning, behavior, language and 

movement. It is a disease still poorly recognized due to the overlapping clinical 

symptoms with respect to the AD [58], [59]. LBD is a degenerative disease which 

exhibits equivalent deficits in many cognitive abilities affected by AD, but assessing 

better scores than AD patients on most of tests focused on verbal memory.   

Starting from these descriptions, it is easy to understand why the diagnosis 

and the effective treatments of MCI, FTD and LBD are still critically debated. Indeed, 

the lack of a clear characterization of these pathologies is related to both misleading 

definition of the clinical symptoms and the brain region interested by the 

disease, usually confounded with those that affect the common AD. In this 

regard, the purpose of the analysis carried out is to assesses the application of the 

nonlinear parameters in order to verify if they may be used to differentiate the four 

groups of patients.   

 

4.2.1 Study population 

The data used for the analysis have been provided by 8 subjects affected by 

Alzheimer’s disease (5 females and three males), 4 subjects affected by 

Frontotemporal dementia (3 males and 1female), 2 patients affected by Lewy body 

dementia (males) and 3 patients affected by Mild cognitive impairment (two females 

and one male). All patients, aged between 63 and 85 years, recruited for the study 

were followed up at the “Centro per I disturbi cognitive e demenze” (CDCD) of the 

“Ospedale Maggiore Policlinico di Milano” and gave their written informed consent 
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to undergo data acquisition. Global cognitive impairment was assessed with Mini-

Mental State Examination (MMSE), a screening test for mental deterioration [60].   

 

4.2.2 EEG recordings 

The EEG recordings, performed from 19 electrodes positioned according to the 

International 10-20 System, were acquired from the scalp of each subject at rest in 

both eyes-open and eyes-closed conditions. The two different conditions were 

labeled “eyes-closed” and “eyes-open”, respectively, and the time recording was 

about 10 minutes with 5 minutes acquired when patient had their eyes open.   

In total, 608 EEG time series were recorded from 19 channels, 304 in eyes-open 

condition and 304 in eyes-closed condition. Table 4.2 summarizes further acquisition 

details.  The data, on which the work of this thesis was conducted through an off-line 

analysis implemented in Matlab, were acquired with sampling rates of 512 Hz in 

some cases and 2048 Hz in others. The proposed parameters are calculated for all 

electrodes and for nine different subcategories of electrodes defined as follow:  

• (LF) left frontal: Fp1, F7, F3 positions;  

• (RF) right frontal: Fp2, F4, F8 positions;   

• (LC) left central: T3, C3 positions;  

• (RC) right central: T4, C4 positions;  

• (LT) left temporal: T5, P3, O1 positions;  

• (RT) right temporal: T6, P4, O2 positions;  

• (LFT) left fronto-temporal: Fp1, F7, F3, T3 positions;  
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• (RFT) right fronto-temporal: Fp2, F4, F8, T4 positions;  

• (Z) z-axis: Fz, Cz, Pz positions.  

The ground electrode was placed at FCz and connected mastoid electrodes will be 

used as references. Contact impedances will be kept below 10 kΩ each.   

  

 

4.2.3 EEG preprocessing 

Data pre-processing, prior to the application of the nonlinear measures, were 

necessary to remove movements and power-line artifacts. Five are the main steps 

included in this phase.  

Patient  Gender Disease  Recording condition Sampling frequency 

P1 F AD  Eyes-closed  512 Hz  

P2 M AD  Eyes-closed/eyes-open  512 Hz  

P3 F AD  Eyes-closed/eyes-open  512 Hz  

P4 M AD  Eyes-closed/eyes-open  512 Hz  

P5 F AD  Eyes-closed/eyes-open  512 Hz  

P6 F AD  Eyes-open  2048 Hz  

P7 M AD  Eyes-closed/eyes-open  2048 Hz  

P8 F AD  Eyes-closed/eyes-open  2048 Hz  

P9 F FTD  Eyes-closed/eyes-open  512 Hz  

P10 M FTD  Eyes-closed/eyes-open  512 Hz  

P11 M FTD  Eyes-closed/eyes-open  2048 Hz  

P12 M FTD  Eyes-closed/eyes-open  512 Hz  

P13 M LBD  Eyes-closed/eyes-open  2048 Hz  

P14 M LBD  Eyes-closed/eyes-open  2048 Hz  

P15 M MCI  Eyes-closed/eyes-open  2048 Hz  

P16 F MCI  Eyes-closed/eyes-open  2048 Hz  

P17 F MCI  Eyes-closed/eyes-open  2048 Hz  

Table 4.2 Details of EEG recordings analyzed 



72 Application of nonlinear measures to LFP 

and EEG time series 

 

 

 

 

 

• Application of the artifact removal procedure based on the implementation of 

the independent component analysis (ICA). The ICA technique is commonly 

applied to EEG time series to reduce the artifacts without altering the brain 

activity. It is based on the research of independent components after the 

separation of the signal into its subcomponents and on correlation coefficients 

calculated between the initial and the “cleaned” signal in order to quantify the 

changes induced in each recording channels by removing the desired 

component[61]. The aim is to find a more significant representation of the data 

through a linear transformation of the same.  

• Extraction of continuous 60-seconds artifact-free epochs, selected by visual 

inspection. 

• Application of band-pass filter through a fourth-order Butterworth filter with cut-

off frequencies of 2 Hz and 120 Hz with the purpose to highlight the portion of 

the signal characterized by information.  

• Application of notch filter, commonly implemented to remove the power line 

noise (50 Hz) using a fourth-order Butterworth filter. The choice of this type 

of filter was related to the drop-off at the desired cut-off frequency as steep as 

possible and to the absence of “ripples” in the stopband. In order to avoid the 

introduction of new artifact during the notch filter application, the bandwidth of 

the filter needed to be accurately defined. In this regard, the bandwidth was set 

up equal to 2 Hz for all the patients. To avoid phase distortion, the filter was 

implemented as ‘zero-phase’ using the ‘filtfilt’ MATLAB function. 

• Application of the normalization procedure based on the simple subtraction of 

the mean to reduce signal variability and to ensure matching background noise in 

all recordings.  
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All the described steps of the pre-processing phase were conducted on the original 

recorded time series sampled with sampling frequencies ranging from 512 Hz up to 

2048 Hz (as accurately indicated in Table 4.2). However, to enable a quantitative and 

qualitative comparison amongst nonlinear measures, the definition of a unique 

sampling frequency equal to the minimum 512 Hz was necessary. This means that a 

further preprocessing step referred to the operation of down-sampling was 

implemented for the signal recorded at 2048 Hz.   
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5. Results 

The purpose of this chapter is to present the main results obtained from the 

application of nonlinear measures on real data. The ability of the proposed methods 

is inspected by the use of real LFP and EEG time series, outlined in the previous 

chapter. In detail, the current chapter is divided into two parts. Section 5.1 related to 

the results of the study conducted on PD patients and section 5.2 focused on the 

outcomes carried out from the detection of dynamical alterations in AD subjects and 

patients affected by other neurological dementias.  

In relation to the statistical analysis, it is worth stressing that for the first case 

study the differences were statistically evaluated in: i) a subset of patients whose LFP 

was recorded in conditions of both pre and post levodopa administration; ii) a set 

which includes all nuclei of PD patients considered individually. In this regard, the 

nonparametric Wilcoxon signed rank test signrank() was used to compare groups in 

condition i and the nonparametric Mann-Whitney rank sum test ranksum() was used 

to compare groups in condition ii. As regard, instead, the second case study, the 

small sample size of the dataset under analysis makes it difficult to evaluate 

differences from a statistical point of view. This is an obvious limitation of this 

analysis that may be object of future investigations.  
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5.1 Results: LFP analysis in Parkinson’s disease 

 

5.1.1 LFP classification 

The first analysis conducted on pre-processed LFP signals concerned the 

classification of the signals as fractional Brownian motion (fBm) or fractional 

Gaussian noise (fGn), in order to evaluate the applicability of nonlinear measures.   

The power-law exponent algorithm was examined by means of the slope of the 

regression line defined on the power spectral density (PSD) of the signal between 

2 and 
𝑓𝑚𝑎𝑥

8
 Hz. The idea of estimating the parameter (β) within the aforementioned 

range has been clarified in the chapter 3 concerning the investigation of the 

applicability criteria on fractal measures (in detail, section 3.1).  

In this regard, figure 5.1 displays the distributions of β-values estimated in 

condition of pre and post levodopa medication. The two vertical lines indicate the 

critical boundary, necessary for the signal classification, and are positioned at β = 0.38 

and β = 1.04 for fGn and fBm respectively. More in details, β-values positioned on the 

left of the first critical boundary can be classified as fGn, while β-values positioned 

on the right of the second critical boundary can be classified as fBm.  
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The analysis, made on all LFP time series, reveals that most of the signals 

appeared to be correctly considered as fBm while very few cases (three) have fallen 

into the range 0.38 < β < 1.04 where there is about 40% uncertainty in defining the 

signal class [29]. These few cases were included in the nonlinear analysis, but marked 

in order to be distinguished from the fBm LFP signals.   

 

5.1.2 LFP linear spectral analysis 

In accordance with literature [55], [56], the power spectrum is used to characterize 

the STN oscillatory pattern in five main frequency bands, i.e. δ (2-7), α (8-12), low-β 

(13-20), high-β (20-30), low-γ (60-80), high-γ (250-350) Hz. The PSD values within 

each band are calculated through the steps described in section 2.1.1; then, the 

spectral power is expressed in normalized units by considering: 

Figure 5.1 Result of LFP time series classification as fBm or fGn. The figure shows the distributions of 

β-values estimated in condition of pre (light-orange) and post (light-blue) levodopa medication. The 

two vertical lines mark the boundary beyond which the signal can be correctly classified 

as fBm or fGn. The range between the two boundaries presents the 40% uncertainty in signal class 

discrimination. 
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𝑃(𝑓1−𝑓2) =

1

𝑓2 − 𝑓1
∫ 𝑃𝑆𝐷(𝑓)

𝑓2

𝑓1

𝑑𝑓 (5.1) 
 

where 𝑓1 and 𝑓2 are the boundary frequencies of the considered band (𝑓1-𝑓2). The 

values of normalized spectrum appear as negative values because they are provided 

in logarithmic scale.  Table 5.1 summarizes the p-values of the two different non-

parametric tests performed to compare logarithmic values of normalized PSD in 

conditions of pre and post levodopa administration.  The differences considered 

significant were those that present p-value<0.05.  

 

Significant differences are found in low-γ (60 - 80 Hz) and high-γ (250 - 350 Hz) 

frequency bands. The findings reveal how the various LFP rhythms are differently 

affected by levodopa, since in the first band the power spectra decrease in condition 

of post levodopa administration while oppositely in the second band increase. In 

addition to this, also the low-β frequency band provides significant outcomes, even if 

only in the condition in which all nuclei of PD patients are considered individually. 

In detail, higher values of logarithmic PSD characterize the condition of post 

Table 5.1  P-values of the two different non-parametric tests performed to compare logarithmic 

normalized PSD concerning pre and post Levodopa conditions. The second column shows p-values 

obtained from the test conducted only on patients that present LFPs both in pre and post Levodopa 

conditions. The third column shows p-values obtained from the test conducted on all patient’s LFP. 

The first column defines the frequency bands in which the two tests are carried out. 

Analyzed frequency 

bands 

Log (PSD) values pre-post 

levodopa pairs 

Log (PSD) values pre-post 

levodopa distributions 

δ (2-7) Hz 0.7564 0.4647 

α (8-12) Hz 0.1477 0.3166 

low-β (13-20) Hz 0.0980 0.0345 

high-β (20-30) Hz 0.5350 0.4843 

low-γ (60-80) Hz 0.0200                    < 0.001 

high-γ (250-350) Hz 0.0437 0.0388 
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levodopa medication. All Significant changes in normalized power spectra are 

displayed in figure 5.2.  

 

5.1.3 LFP power law exponent 

The power-law exponent algorithm estimates β-exponents both on the whole 

spectrum (2 - 
𝑓𝑚𝑎𝑥

8
 ) and on the spectra computed on signals filtered in the ranges (2-

40) and (30-40) Hz. The parameters set for the algorithm application are those 

described in section 3.1.1, while the choice of the bands, in which the analysis is 

computed, is suggested by works present in literature. Indeed, the range (2-40) Hz is 

supposed to be referred to the presence of activity at lower frequencies (f <50 Hz) in 

PD, while the range (30-40) is related to the excitation/inhibition ratio of neurons [17]. 

Table 5.2 again displays the p-values of the two different non-parametric tests 

performed to compare β-values in conditions of pre and post levodopa 

Figure 5.2 Boxplot comparison of logarithmic power spectra values for low-β, high-β and high-γ 

frequency bands. Tops and bottoms of each box are the 25th and 75th percentiles, the green line is the 

median value of each distribution while the dashed grey lines link the values referred to pre and post 

conditions respectively. Each boxplot provides the distribution of values estimated in condition of pre 

and post levodopa administration. 
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administration. The differences considered significant were those that present p-

value<0.05.  

 

Results reveals no significant differences in the frequency band (30-40) Hz, while 

the analysis conducted on the other two ranges of frequency shows that, after 

levodopa medication, the β-exponents are significantly higher with respect to the 

condition before the drug administration. Such changes in the (2 - 
𝑓𝑚𝑎𝑥

8
 ) and (2 - 

40) Hz frequency bands are displayed in figure 5.3.  

Analyzed frequency 

bands 

β-values pre-post 

levodopa pairs 

β-values pre-post 

levodopa distributions 

(2 - 
𝑓𝑚𝑎𝑥

8
 ) Hz 0.0199 0.0171  

(2-40) Hz  0.0151  0.0469  

(30-40) Hz  0.5014  0.8115  

Table 5.2 P-values of the two different non-parametric tests performed to compare β-exponents of 

pre and post Levodopa conditions. The second column shows p-values obtained from the test 

conducted only on patients that present LFPs both in pre and post levodopa conditions. The third 

column shows p-values obtained from the test conducted on all patient’s LFP. The first column 

defines the frequency bands in which the two tests were carried out. 

Figure 5.3 Boxplot comparison β scaling exponent quantifying power-law exponent on both total 

spectrum (left) and low-frequency range (right). Tops and bottoms of each box are the 25th and 75th 

percentiles, the green line is the median value of each distribution while the dashed grey lines link 

the values referred to pre and post conditions respectively. Each boxplot provides the distribution of 

β-values estimated in condition of pre and post levodopa administration and β-values estimated on 

1000 simulated white noise. 
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5.1.4 LFP: detrended fluctuation analysis 

The long-range temporal correlations1, characterized by the DFA algorithm, are 

evaluated on the time series filtered in the common frequency bands adopted from 

the EEG literature: α (8-12), low-β (13-20), high-β (20-30), low-γ (60-80), high-γ (250-

350) Hz. The parameters set for the algorithm application are slightly different with 

respect to those descripted in section 3.1.2, since the procedure implemented for the 

detection of LRTC requires a filtering operation and Hilbert transformation before 

the application of the classical DFA-method. For this reason, the analysis was 

conducted on 30 windows sizes logarithmically-spaced from 1 seconds to 20 seconds. 

The choice of considering 1 second as minimum window sizes allows to avoid 

temporal correlation introduced by signal filtering, while the largest window of 20 

seconds allows to have at least 2 segments of that size.   

Results are summarized in table 5.3 that shows the p-values of the two different 

non-parametric tests performed to compare α-values estimated in the pre and post 

levodopa conditions. The differences considered significant were those that present 

p-value<0.05.  

 

 

 

 

 

 

 

1 The long-range temporal correlation, through DFA, was also examined centering the analysis in proximity of a 

pronounced peak. However, no statistical results were found. 
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The α-values discloses no significant differences in all the bands of interest except 

for that referred to the high-frequencies (250-350) Hz, in which the scaling exponent 

was higher for the post than for the pre levodopa condition, as depicted in figure 5.4.  

Analyzed frequency 

bands 

α-values pre-post 

levodopa pairs 

α-values pre-post 

levodopa distributions 

α (8-12) Hz 0.3519 0.7265 

low-β (13-20) Hz 0.3258 0.4175 

high-β (20-30) Hz 0.7959 0.5043 

low-γ (60-80) Hz 0.2343                    0.1979 

high-γ (250-350) Hz 0.0299 0.0100 

Table 5.3 P-values of the two different non-parametric tests performed to compare α-exponents of pre 

and post levodopa conditions. The second column shows p-values obtained from the test conducted 

only on patients that present LFPs both in pre and post Levodopa conditions (paired test). The third 

column shows p-values obtained from the test conducted on all patient’s LFP. The first column 

defines the frequency bands in which the two tests were carried out (test for independent samples). 

Figure 5.4 Boxplot of scaling exponent α quantifying long-range temporal correlation. Tops and 

bottoms of the box are the 25th and 75th percentiles, the green line is the median value of each 

distribution while the dashed grey lines link the values referred to pre and post conditions 

respectively. The boxes provide the distribution of α -values estimated in condition of pre and post 

levodopa administration compared to α -values estimated on 1000 simulated white noise. 
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5.1.5 LFP: multiscale entropy analysis 

The multiscale sample entropy estimates the sample entropy on several time 

scales. The procedure is applied both on pre-processed LFP time series without any 

filtering operation and on the signals filtered in the frequency band (2-45) Hz. The 

number of scale factors considered is 30, while the parameters set for 

the SampEn application are m=2 and r=0.2 times the standard deviation of the given 

signals. In this regard, figure 5.5 displays the profiles of MSE curves obtained 

through the application of MSE algorithm.  

 

Figure 5.5 shows a less steep decreasing curve from scale 4 to 30 for condition of 

pre levodopa with respect to post-levodopa. However, no significant differences are 

found from a statistical point of view, as reported in table 5.4. The measure extracted 

to compare changes of the entropic index between pre and post levodopa conditions 

are the slopes computed on MSE curves. In detail, such slopes are evaluated both on 

the smaller time scales, i.e. 1 ≤ τ ≤ 3, and on the larger ones, i.e. 4 ≤ τ ≤ 30.   

Figure 5.5 MSE curves of the SampEn values obtained in conditions of pre and post levodopa 

administration. The curves are shown in terms of mean value and standard deviation of the results. 

The embedding dimension is m=2, while the tolerance is r=0.2 times the standard deviation of the 

data sequence. 
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The results are obtained through the evaluation of the two different non-

parametric tests performed and reveal no significant correlations between changes in 

complexity and levodopa medication. This absence of differences can be clearly seen 

in the following figure 5.6, in which values of MSE slopes are displayed for the 

unfiltered LFP time series. Note that similar outcomes have been provided also 

considering the filtered time series.    

Analyzed range of scale factors 
MSE-slopes  

pre-post levodopa pairs 

MSE-slopes pre-post 

levodopa distributions 

1 ≤ τ ≤ 3, unfiltered time series  0.5014  0.9746  

4 ≤ τ ≤ 30, unfiltered time series  0.2775  0.2332  

1 ≤ τ ≤ 3, filtered time series  0.7960                   0.5353  

4 ≤ τ ≤ 30, filtered time series  0.7960  0.1119  

Table 5.4 P-values of the two different non-parametric tests performed to compare MSE slopes 

concerning pre and post Levodopa conditions. The second column shows p-values obtained from 

the test conducted only on patients that present LFPs both in pre and post Levodopa conditions. 

The third column shows p-values obtained from the test conducted on all patient’s LFP. The first 

column defines the frequency bands in which the two tests were carried out. 

Figure 5.6 Boxplot of MSE slopes quantifying the grade of complexity in PD patients before and after 

levodopa medication. Tops and bottoms of the box are the 25th and 75th percentiles, the green line is 

the median value of each distribution while the dashed grey lines link the values referred to pre and 

post conditions respectively. The boxes provide the distribution of MSE slope -values estimated in 

condition of pre and post levodopa administration. 
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5.2 Results: EEG analysis in Alzheimer’s disease 

 

 

5.2.1 EEG classification 

The first analysis conducted on pre-processed EEG signals concerned the 

classification of the signals as fractional Brownian motion (fBm) or fractional 

Gaussian noise (fGn), in order to evaluate the applicability of nonlinear measures.   

The power-law exponent algorithm was examined by means of the slope of the 

regression line defined on the power spectral density (PSD) of the signal between 

2 and 
𝑓𝑚𝑎𝑥

8
 Hz. The idea of estimating the parameter (β) within the aforementioned 

range has been clarified in the chapter 3 concerning the investigation of the 

applicability criteria on fractal measures (section 3.1).  

In this regard, figure 5.7 displays the distributions of β-values estimated in eyes-

open and eyes-closed conditions for the different groups of diseases. The two vertical 

lines indicate the critical boundary, necessary for the signal classification, and are 

positioned at β = 0.38 and β = 1.04 for fGn and fBm, respectively.  

More in details, β-values positioned on the left of the first critical boundary can be 

classified as fGn, while β-values positioned on the right of the second critical 

boundary can be classified as fBm.  
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Figure 5.7 Result of EEG time series classification as fBm or fGn. The figure shows the distributions of 

β-values estimated in condition of eyes-closed (up) and eyes-open (down) for the four different 

categories of disease. The two vertical lines mark the boundary beyond which the signal can be 

correctly classified as fBm or fGn. The range between the two boundaries presents the 40% 

uncertainty in signal class discrimination. 
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The analyses, made grouping together all the EEG time series recorded from the 

different electrodes of acquisition, reveal that most of the signals appeared to fall into 

the range 0.38 < β < 1.04 where there is about 40% uncertainty in defining the signal 

class [29]. Interestingly, this is not true for signals recorded from patients affected by 

LBD, for which the signals may be correctly considered as fBm. 

 

 

5.2.2 EEG: linear spectral analysis 

The analysis in the frequency domain is used to evaluate the power spectra in the 

following spectral bands: θ (2-7), α (8-12), β (13-35) Hz. The PSD within each band is 

calculated through the steps described in section 2.1.1; then, the spectral power is 

expressed in normalized units by considering  

 
𝑃(𝑓1−𝑓2) =

1

𝑓2 − 𝑓1
∫ 𝑃𝑆𝐷(𝑓)

𝑓2

𝑓1

𝑑𝑓 (5.2) 
 

where 𝑓1 and 𝑓2 are the boundary frequencies of the considered band (𝑓1-𝑓2). The 

values of normalized spectrum appear as negative values because they are provided 

in logarithmic scale.  Figure 5.8 displays changes in normalized PSD in relation to the 

frequency band 2-7 Hz. 
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Results reveal an overall decrease of normalized PSD values for MCI patients in 

both eyes-open and eyes-closed conditions. In comparison to the other groups, this is 

valid for all the different subcategories and also in the α (8-12 Hz) and β (13-35 Hz) 

frequency bands not shown below since they exhibit variations similar to those 

presented in figure 5.8. 

 

5.2.3 EEG: power law exponent 

The power-law exponent algorithm was used to estimate β-values of the power 

spectra computed on EEG signals filtered in the ranges (2-45) Hz. The parameters set 

for the algorithm application are those described in section 3.1.1, while the choice of 

the band is related to two main aspects. The first one is application of the high-pass 

filtering with the frequency cut off at 2 Hz to which the EEG time series used in this 

thesis have been subjected. This makes it necessary to apply the power-law 

exponent algorithm in a band whose lower frequency is 𝑓𝐿 ≥ 2 Hz. The other aspect is 

Figure 5.8 Boxchart comparison of normalized power spectra of EEG signals for θ frequency band. 

The blue boxes represent the closed-eyes condition, while the peach ones the open-eyes condition. 

Tops and bottoms of the boxes are the quartiles, while the horizontal lines defined within each 

distribution correspond to the median. 
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related to the application of the notch filter, with the purpose to avoid its influence 

on the β-values estimations. Figure 5.9 displays changes in β-values estimated for the 

different subcategories of electrodes in closed-eyes and open-eyes conditions. The x-

axis indicates the class of diseases to which the boxplots belong, while the y-axis 

represents the value of β-exponents.  

 

The findings reveal lower β-values of MCI patients compared to the other groups 

in the eyes-closed conditions for all the different subcategories, and that LBD patients 

exhibited higher β-values than the other groups in the eyes-opened conditions for all 

the different subcategories.  

The small number of patients involved in the study lead to consider the changes 

shown in figure 5.9 as a trend rather than something statistically defined.  

 

Figure 5.9 Boxchart comparison of power-law exponents (β) of EEG signals filtered between 2 and 45 

Hz. The blue boxes represent the closed-eyes condition, while the peach ones the open-eyes 

condition. Tops and bottoms of the boxes are the quartiles, while the horizontal lines defined within 

each distribution correspond to the median. 
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5.2.4 EEG: detrended fluctuation analysis 

The detrended fluctuation analysis, in terms of long-range temporal correlation 

approach, estimates α-exponents in the common frequency bands adopted from the 

EEG literature: α (8-12), β (13-30), low-γ (30-40), high-γ (60-80) Hz. The parameters 

set for the algorithm application are the same involved in the LFP analysis (section 

5.1.4).  Figures 5.10 and 5.11 display changes in α-values for all the subcategories of 

electrodes in closed-eyes and open-eyes conditions, evaluated respectively in the 

frequency bands α (8-12) and low-γ (30-40) Hz. Again, the x-axis indicates the class of 

diseases, while the y-axis represents the values of α-exponents.  

Figure 5.10 Boxchart comparison of detrended fluctuation analysis of EEG signals filtered between 8 

and 12 Hz. The blue boxes represent the closed-eyes condition, while the peach ones the open-eyes 

condition. Tops and bottoms of the boxes are the quartiles, while the horizontal lines defined within 

each distribution correspond to the median. 
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The considerations that may be extracted from the outcomes shown in figure 

5.10 are referred to an increasing trend for the LBD group compared to the other 

patients in the eyes-opened conditions for all the different subcategories of 

electrodes. The same trend is also found in the frequency band (30-40) Hz. In this 

latter case, higher α-values are visible in figure 5.11 not only in the eyes-opened 

condition for all the different subcategories, but also in the eyes-closed condition 

limitedly to the right central and right temporal subcategories of electrodes.  

The choice of showing only figures related to the frequency band (8-12) and (30-

40) Hz is simply due to the presence of interesting differences, even if not statistically 

evaluated among the different categories.   

 

 

Figure 5.11 Boxchart comparison of detrended fluctuation analysis of EEG signals filtered between 30 

and 40 Hz. The blue boxes represent the closed-eyes condition, while the peach ones the open-eyes 

condition. Tops and bottoms of the boxes are the quartiles, while the horizontal lines defined within 

each distribution correspond to the median. 
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5.2.5 EEG: multiscale entropy analysis 

The multiscale sample entropy estimates the sample entropy on several time 

scales. The procedure is applied both on pre-processed EEG time series both in open-

eyes and closed-eyes conditions, filtered in the frequency band (2-45) Hz. The idea to 

apply the MSE algorithm on the filtered signals have been suggested from works 

present in literature [21], [22] and the choice to define the cut-off frequencies of the 

band pass filter equal to 2 and 45 Hz is related to the aspects described in section 

5.2.3. The number of scale factors considered is 30, while the parameters set for 

the SampEn application are m=2 and r=0.2 times the standard deviation of the given 

signals. In this regard, figures 5.12 and 5.13 display the profiles of MSE curves 

obtained for the different subcategories of electrodes respectively in open-eyes and 

closed-eyes conditions.  

Figure 5.12 MSE curves computed from different subcategories of electrodes in open-eyes conditions. 

Blue curves represent AD, green LBD, purple FTD and red MCI. The y-axis indicates 

the SampEn values, that are shown in terms of mean and standard deviation in the curves, while the 

x-axis indicates the scale factors. 
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From a visual examination of figure 5.12, at larger-scale factors, i.e. τ ≥ 8, the group 

of LBD patients appears characterized by entropy values approximately constant, 

while the other categories of diseases present values that decrease in function of the 

scale factor τ. This is true for almost all subcategories in the open-eyes conditions.   

On the other hand, as regard the closed-eyes condition, all categories of diseases 

present again a decreasing trend at larger scale factors (τ ≥ 8) less pronounced for 

LBD and steeper for MCI category of patients (figure 5.13). The MSE curves are used 

to compare qualitatively the signal complexity of the time series [22], but to carry out 

the analysis from a quantitative point of view, changes of the entropic index can be 

evaluated extracting the slopes computed on MSE profiles. In this case, the slopes are 

evaluated both on the smaller time scales, i.e. 1 ≤ τ ≤ 7, and on the larger ones, i.e. 8 ≤ 

τ ≤ 30. 

Figure 5.13 MSE curves computed from different subcategories of electrodes in closed-eyes 

conditions. Blue curves represent AD, green LBD, purple FTD and red MCI. The y-axis indicates 

the SampEn values, that are shown in terms of mean and standard deviation in the curves, while the 

x-axis indicates the scale factors. 
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Figure 5.14 Boxchart of MSE slopes quantifying the grade of complexity in patients affected by four 

different neurological diseases. The blue boxes represent the closed-eyes condition, while the peach 

ones the open-eyes condition. Each box provides the distribution of MSE slope-values. Tops and 

bottoms of the boxes are the quartiles, while the horizontal lines defined within each distribution 

correspond to the median. 
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Figure 5.14 reveals higher values of MSE slopes (flatter slopes) evaluated at scale 

factors (8-30) for LBD group then the other patients in the eyes-closed condition 

(figure 5.14 b). This is consistent for all subcategories except for right frontal, right 

central, right fronto-temporal electrodes. Moreover, MSE slope evaluated at scale 

factors (8-30) shows lower values (steeper slopes) for MCI patients in the eyes-closed 

condition for all subcategories.   

As regard the eyes-opened condition, at scale factors (1-7) (figure 5.14 a) lower 

MSE slopes (less steep slopes) are found for LBD group compared to the others for 

all the subcategories, while at scale factors (8-30) (figure 5.14 b) higher values for 

MSE slopes (flatter slopes) are shown for LBD compared to the other groups for all 

subcategories.  

All considerations made on the outcomes interpreted from the figure 5.14 should 

be evaluated as trend due to the small number of patients involved in the study 
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6. Discussions 

In this chapter, a discussion is provided about the results obtained by the 

investigation of the applicability criteria and the outcomes achieved in the reported 

case study on real datasets. Section 6.1 offers a detailed methodological discussion 

about the usefulness and importance of the simulation results, provided in chapter 3, 

about the proper setting of the parameters involved in the nonlinear algorithms 

proposed in this thesis. Section 6.2, instead, summarizes the results outlined in 

chapter 5 about the application of the nonlinear parameters to the dataset of 

real neurophysiological time series, i.e. LFP and EEG, in the context of Parkinson’s 

and Alzheimer’s diseases.   

 

6.1 Methodological discussions 

The aim of this thesis was to investigate the conditions of applicability of a set of 

selected nonlinear measures, providing guidelines for the correct setting of the 

parameters influencing their performance when applied to neurophysiological 

signals. There is a clear need to analyze the effects and interactions of changing input 

parameters, since both fractal and entropic methods appear very sensitive to them 

[42][49][50]. 
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The first simulation study carried out in this thesis, tested the relationships (2.1) 

and (2.2) existing among the measures grouped under the section fractal, i.e. the 

power law exponent (β) and the detrended fluctuation analysis (α). Giving the fact 

that one measure can be theoretically derived by the others suggests the opportunity 

to verify the robustness of the fractal algorithms by comparing the direct estimations 

of β and α exponents with the values indirectly obtained (estimated) by applying the 

theoretical relations.   

For sake of completeness, two comparisons were carried out: the first performed 

on 1000 fractional Brownian motions (fBm) and 1000 fractional Gaussian noises (fGn) 

time series generated by implementing a function that receives as input the hurst 

exponent (HE), while the second focused on similar artificial data but generated 

starting from known values of power law exponents (i.e. β). In both cases, as 

expected, tables 3.1 and 3.2 clearly showed that the measures estimated and the 

theoretically predicted ones were coherent. The congruence in the results finds 

confirmation in literature [27], [29] and allows to identify the more suitable 

parameter able to classify the time series as fBm or fGn, i.e. the β-exponent.  The 

other simulation studies, instead, aimed at investigating the influence of the main 

factors that appear to play a key role in each nonlinear algorithm.  

• Power law exponent  

The way in which the frequency resolution affects the power spectrum density 

(PSD) needs to be evaluated before the application of the power-law exponent. The 

algorithm, in fact, exploits the inversely proportionality between the PSD and the 

frequency to measure changes in the scale-free dynamic properties of the time series. 

Thus, an incorrect estimation of PSD may invalidate the calculation of the β-slope of 

the regression line defined in log-log coordinates. An increase of the frequency 
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resolution led to a more stable evaluation of the β-exponent characterized by a 

reduced dispersion of the values measured across the 1000 surrogate time series. This 

is clearly shown in figure 3.3 and it may be explained considering the inverse 

proportionality between the frequency resolution and the window size M, exploited 

in the equation 3.2. M represents the length of segments in which the entire time 

series is divided into when applying the modified Welch’s periodogram. This means 

that the larger M, the smaller the number of available segments, the smoother the 

PSD shape.   

•  Detrended fluctuation analysis   

 The minimum and the maximum window sizes n in which fluctuations F(n) are 

estimated to provide the measure of α-exponent supposed to be the influencing 

factors that characterize the DFA-method. The algorithm, in fact, defines a 

relationship between the variability of the signal and the length of the intervals over 

which the variability is computed to estimate the so-called long-range temporal 

correlation present in the signals. Thus, the appropriate choice of nmin and nmax and the 

way in which the different values of n ∈ [nmin:nmax] are plotted against F(n) may affect 

the calculation of the α-slope of the regression line in log-log coordinates.   

As regard the procedure to place the window size along the x axis, the most 

suitable solution appears to be the evenly spaced distribution [49], [50]; on the other 

hand, the selection of nmin and nmax was tested on the same two sets of 1000 realizations 

defined for the evaluation of the applicability criteria of the power law exponent. 

Interestingly, the accuracy of DFA in estimating the α-exponent appeared not 

influenced by the minimum window size but by a careful choice of maximum 

window size and data length combination. The results of the analysis carried out, in 

fact, revealed that for a fixed value of data length (N), lower values of nmax provide 
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unreliable estimates of the α-value with respect to higher values; on the other hand, 

instead, by considering an increase in data length, an opposite trend was found since 

more accurate estimations of DFA-exponent are guaranteed when lower values 

of nmax were selected. These findings are clearly depicted in figure 3.5 and may be 

explained by the fact that the number of intervals involved in the calculation of 

the α-slope depends on the length of the window sizes chosen. In other words, with 

an increase in data length, a larger number of intervals is required to guarantee the 

stability of the measure, and this corresponds to the selection of a lower value of nmax. 

If the time series are shorter, instead, a smaller number of intervals, that means 

higher value of nmax, is necessary to properly estimate the fluctuations.  

•  Entropy   

Pincus and Goldberger (1991) and Richman and Moorman (2000) shows that when 

the embedding dimension (m) and the tolerance (r) are properly set, reliable 

approximate and sample entropy estimations may be provided [41], [43]. The 

algorithms, in fact, associates the conditional probability that two similar sequences 

of m points remain similar at the point m+1 to the grade of predictability in a time 

series. The expected trend of both entropic indices on Gaussian time series is a linear 

decrease with an increase of tolerance r. However, figure 3.8 clearly depicts how this 

is true for SampEn but not for ApEn, which assumes a distribution of values that 

increases up to a certain peak and then decreases. In addition to this, a closer 

inspection of the results showed how specific values of r allow to provide more 

accurate estimation of entropic indices. Such values are in the range between 0.1 and 

0.25 times the standard deviation of the data and are valid both for ApEn and 

for SampEn for values of N < 5000. These findings did not change with different 

values of m (figure 3.9), where more unstable and unreliable entropic measures were 

found for embedding dimension m ≥ 3.  
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 As regard the multiscale entropy, the use of different temporal scales τ has no 

considerable effects on the results (figure 3.12). The tests on both white noise (β=0) 

and 1/f noise (β=1) time series showed that with an increase of the scale factor the 

shape of MSE profiles maintains the same trend. However, it is worth to consider 

that higher values of scale factor τ causes a lower number of samples in the coarse-

grained sequence, thus the selection of the most suitable τmax is necessary to avoid 

unreliable multiscale sample entropy estimations.  

• Data length  

Simulation studies were carried out to test the influence of the data 

length, a parameter that commonly affect all the selected nonlinear algorithms. The 

results, shown in figures 3.4, 3.7 and 3.11, revealed that with an increase in data 

length led to a better estimation of both fractal and entropic measures.   

However, for sake of clarity, it is important to underline that the input parameters, 

previously described for each nonlinear method, are dependent on the data length. 

This means that changes of N values required further adjustment of nmax for DFA, of 

m and r for SampEn and ApEn and of τmax for MSE.  

 

6.2 Discussion of practical application 

The knowledge about the behavior of the entropic and fractal measures, enriched 

with the simulation studies carried out in chapter 3, is crucial for correctly applying 

the algorithms to real datasets of neurophysiological signals. In this thesis, nonlinear 

measures were investigated on two types of neural recordings, i.e local field potential 

and electroencephalography.   
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•  Local field potential (LFP) analysis in Parkinson’s disease (PD)  

The first case study included in the thesis was designed to assess the activity of 

the brain in the subthalamic region of Parkinson’s disease patients in conditions of 

pre and post levodopa administration. The aim was to identify the influence of 

the antiparkinsonian medication in 24 PD subjects, analyzing spectral and 

dynamic nonlinear behavior of LFP time series.   

From a linear point of view, the oscillatory patterns recorded from the subthalamic 

nucleus (STN) of patients at rest were quantified by the standard power spectral 

analysis. The results showed that the various LFP rhythms were differently affected 

by levodopa, since the normalized power in low-β (13-20 Hz) and low-γ (60-80 Hz) 

frequency bands was lower after levodopa medication, while the power in high-

γ (250-350 Hz) increased after levodopa administration (figure 5.2). These differences 

were statistically evaluated in: i) a subset of patients whose LFP was recorded in 

conditions of both pre and post levodopa administration; ii) a set of nuclei of all PD 

patients, considered individually. In this regard, the decrease in low-β rhythm after 

drug medication was significant only in condition (i), while the decrease in low-γ 

after levodopa administration and the increase in high-γ rhythms were significant in 

both conditions (i) and (ii). These findings are summarized in table 5.1 and are in 

accordance with previous studies conducted on the same dataset under analysis 

[54].  

From the fractal point of view, the analysis of LFP time series showed significant 

differences in both the proposed measures between the conditions of pre and post 

levodopa administration (see tables 5.2 and 5.3). In particular, as shown in figure 

5.3, β-exponents appeared to be lower in condition of pre levodopa in both the 

frequency bands (2-45) and (2-156) Hz evaluated. Lower β-values reflected into less 



Discussions 

 

 

 

101 

 

 

steep PSD-slope were also found in the fronto-temporal sites of EEG by the recent 

study of Mostile et al. [62]. However, the different nature of the electrophysiological 

recordings may not provide a reliable comparison. Works based on LFP time series, 

instead, are mostly concentrated on the demonstration of the link between the 

excitation-inhibition balance and the nonlinear β-parameter. In this regard, flatter 

PSD slopes were related to an increasing excitation/inhibition ratio, that means an 

increase in inhibition and/or a decrease in excitation. (Gao).  

On the other hand, figure 5.4 exhibited higher α-exponents, in terms of long-range 

temporal correlations, after the levodopa administration at high frequency range 

(250-350 Hz). This result finds confirmation in the work of Hohlefeld et al, 2012 that 

showed the presence of prominent LRTC in the high frequency (<200 Hz) when PD 

patients are treated with levodopa. As suggested by the authors, decreased LRTC are 

supposed to be associated with less efficient information processing and excessive 

neuronal hyperactivity in STN, while increased LRTC may be related to the optimal 

balance between stability and excitability. All these aspects highlight how LRTC 

were modulated by levodopa and lead to propose LRTC as a possible biomarker 

for PD [20].   

From the entropic point of view, findings suggest that levodopa-related changes in 

the complexity properties of LFP are not so evident. In fact, the MSE proposed 

parameter showed no significant changes among the condition of pre and post 

levodopa administration (see table 5.4), but an interesting trend in correspondence of 

high scale factors (τ ≥ 7) seemed to reflect increases in SampEn(2, 0.2) values in 

condition of pre levodopa. This behavior was depicted in figure 5.5 and may be 

considered in line with works found in literature. Chung et al (2013) and Alam et al 

(2016), in fact, found a higher entropy in brain activity of PD patients with respect to 

control [63][64]. Thus, since higher entropy of the basal ganglia activity is supposed 
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to be associated to a more error-prone and less efficient motor information transfer 

[65], lower values of entropy were expected in conditions of post levodopa 

medication, due to the fact that antiparkinsonian medication improves the motor 

symptoms in PD, leading to consider the brain activity of patients to be closer to 

healthy control.  

• Electroencephalography (EEG) analysis in Alzheimer’s disease (AD)  

The second case study of this thesis was designed to assess the activity of the brain 

in patients affected by four different neurological disorders, i.e. Alzheimer’s disease 

(AD), Mild Cognitive Impairment (MCI), Lewy Body dementia (LBD) and 

Frontotemporal dementia (FTD), in closed-eyes and open-eyes resting conditions. 

The aim was to verify if the use of parameters, evaluated on spectral and dynamic 

behavior of EEG time series, might point out possible distinctions among the groups 

of patients. Even if not statistically relevant, results revealed interesting differences 

particularly with regard to LBD and MCI against the other diseases. Despite this, the 

lack of studies aimed at discriminating the different disorders and the small sample 

size of the dataset under analysis, make it difficult to both understand the 

physiological outcomes and also to compare them with the results present in 

literature.   

From a linear point of view, the oscillatory patterns recorded from the scalp of 

patients at rest were quantified by the standard power spectral analysis. The results 

showed that the various EEG rhythms were different for MCI patients with respect to 

the other diseases. Indeed, the normalized power in θ (2-7 Hz), α (8-12 Hz) and β (13-

35 Hz) frequency bands revealed lower values for MCI in both eyes-closed and eyes-

open conditions. These findings, exhibited in figure 5.8, are valid for all subcategories 
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of electrodes evaluated and are in accordance with previous studies conducted on 

EEG between MCI and AD[66] 

From the fractal point of view, the analysis of EEG time series showed differences 

among AD, FTD, MCI and LBD in eyes-open and eyes-closed conditions in both the 

proposed measures (i.e. LRTC and power-law exponent). In particular, as regard the 

power-law exponent, experimental results revealed lower β-values for MCI in eyes-

closed condition and higher β-values for LBD patients in eyes-open conditions, in 

comparison to the other groups. This is clearly visible in figure 5.9 and is valid for all 

the different subcategories of electrodes. In general, it has been demonstrated that 

decreased EEG complexity in AD patients with respect to healthy control was 

reflected by lower values of β-exponents (flatter PSD-slopes), which is associated to 

the presence of brain atrophy that affects the disease [15], but the lack of studies 

carried out on the other categories of disease make it difficult to infer the 

proper physiological interpretation of the measure in case of MCI, LBD and FTD.   

On the other hand, as regard the DFA algorithm in terms of LRTC, results 

summarized in section 5.2.4 revealed higher α-exponents for LBD group of patients 

in eyes-open condition. This is clearly visible in figures 5.10 and 5.11 and is valid for 

all subcategories in case of both α (8-12 Hz) and low-γ (30-40 Hz) frequency bands. 

Moreover, a similar increasing trend was also found in eyes-closed condition, even if 

it was not confirmed in all the subcategories of electrodes under analysis. Indeed, the 

right central and right frontal are the only groups of electrodes in which the 

phenomenon is evident.   

From the entropic point of view, all MSE profiles were characterized by trends 

that increased up to the maximum SampEn(2, 0.2) value. In line with literature, the 

maximum value is usually reached on smaller time scales [21], [22], and in the 
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present study such value was found both in eyes-close and eyes-open conditions for 

all the subcategories of electrodes. Regarding the behavior of the signals at larger 

scale factors (τ ≥ 8), the results suggested that in eyes-closed condition, LBD patients 

revealed values of SampEn(2, 0.2) approximately constant with increasing τ with 

respect to the other categories. MCI, AD and FTD, in fact, presented decreasing 

values of entropy with increasing τ. In eyes-open condition, all the diseases showed 

decreasing profiles at higher scale factors, even if less pronounced for LBD 

and also steeper values for MCI against the other two categories.   

All the described findings may be visual examined in figures 5.12 and 5.13 in 

which MSE curves are displayed for each category of patients, and find confirmation 

in figure 5.14 in which slopes computed on profiles are evaluated in order to 

quantitatively compare the entropic measures.  
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7. Conclusions and future researches 

Power-law exponent, detrended fluctuation analysis and multiscale entropy are 

the nonlinear techniques widely applied to quantify the information process capacity 

of the brain in Alzheimer’s and Parkinson’s disorders. However, the lack of 

application guidelines for the applicability of measures on neurophysiological 

signals and to the appropriate selection of the parameters, which highly influence the 

performance, impedes a considerable comparison between the different works in 

literature.    

Even if interesting results were obtained in the literature on the application of 

such nonlinear measures on LFP and EEG, there is the suspect that the selection of 

input parameters for the algorithms was made empirically without a deep 

investigation of the applicability criteria in each specific case. Thus, the need of 

defining specific criteria for the appropriate parameter selection may increase the 

repeatability of the results along different signals and provide estimations in line 

with the rationale behind their definition.   

  Despite this study aims to highlight how selected nonlinear algorithms perform 

under different combinations of input parameters, there are limitations whose should 

be considered to improve the reliability of these methods for the future development 

of data-driven nonlinear approaches. The first obstacle is related to the ranges in 

which the input parameters were analyzed. These were selected based on preexisting 
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works on literature and were mainly applied on fractional Brownian motion and 

fractional Gaussian noise. Thus, future studies should investigate wider ranges of 

parametric inputs or either evaluate other time series, such as pink noise for fractal 

analysis or chirp signal for entropy analysis. In this way, additional insights for 

nonlinear analysis may be provided in order to improve the reliability of these 

methods and for defining reference rules for different kind of investigators.    

The second limitation is a clear consequence of the previous one and regards the 

difficult interpretation of the results for clinical applications. The case studies 

presented in this thesis, in fact, must be taken in consideration as a test bench for the 

selected nonlinear measures. They have been introduced with the sole purpose to 

help understanding the basic implementation of the measures on real biological 

signals. Indeed, the reduced number of subjects involved and the limited in-depth 

studies in literature make difficult to highlight the great potential of the nonlinear 

techniques for application in neuroscience. Further investigations, thus, may lead to 

verify the grade of correlation between the nonlinear parameters and the motor 

impairment scores as regard the PD as well as the cognitive impairment scores in 

case of AD.   

In conclusions, the present thesis investigated some of methodological issues on 

the basis of theoretical simulations. The obtained results provide concrete advices on 

the correct choice of nonlinear measures and parameters helping to minimize errors 

made by the utilizer. This set of nonlinear tools for studying the neurophysiological 

signals and applying, if possible, the measures alongside the classical linear ones, 

could also facilitate clinical use. The idea of developing a graphical interface, which 

makes the tool easy to use for clinicians, may represent, in fact, a great challenge for 

research, helping to better answer the still open questions on the clinical 

interpretation of neural data.   
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