
Executive Summary of the Thesis

Memory Models for Spaced Repetition Systems

Laurea Magistrale in Mathematical Engineering - Ingegneria Matematica

Author: Giacomo Randazzo

Advisor: Prof. Marco D. Santambrogio

Academic year: 2020-21

1. Introduction
Spaced repetition systems (SRS) allow students
to learn more in less time, by reviewing knowl-
edge over multiple intervals of time. SRS sched-
ule reviews to minimize forgetting while being
parsimonious with the student’s time. To do
that effectively, they rely on memory models.
Memory models are computational models that
predict the probability that the student will re-
call a piece of knowledge. The effectiveness of
SRS has been repeatedly proven over the past
three decades, but further improvement would
be beneficial for scaling SRS to a larger number
of students. Improving the accuracy of memory
model predictions is certainly an important step
in this direction.
In this work, we present a framework for
developing adaptive memory models for SRS
(Section 4) and introduce two novel models,
DASH[RNN] and R-17 (Sections 5, 6).

2. Overview of spaced repeti-
tion systems

Spaced repetition is the practice of reviewing one
or more cards over time according to a schedule,
in order to prevent forgetting. The practice is
based on results from cognitive science, in par-
ticular the testing and spacing effects [2]. The
testing effect suggests actively testing our knowl-

edge rather than re-studying. The spacing effect
suggests repeatedly reviewing our knowledge at
time-spaced intervals. In the present work we
only focus on time on a scale of days, weeks,
months, and years. In particular, we focus on
long-term memory.
Now we describe the fundamental components
of SRS.
The basic unit is the card (or item). A card
encodes a piece of knowledge. An example of a
card is shown in Figure 1. The front of the card
represents a test for the student and the back of
the card represents the corresponding answer.

(a) The front of a card. (b) The back of a card.

Figure 1: A simple card asking a question about
the C programming language instruction printf.

Each day, the SRS asks the student to review

1

Executive summary Giacomo Randazzo

a few cards according to a schedule. Each re-
view proceeds as follows. The front of the card
is presented, the student actively recalls the an-
swer before revealing it, and finally the card is
marked as either recalled or forgotten before the
next card is presented.
An important component of many SRSs is the
memory model. The memory model predicts
how likely the student is to remember a card,
given the review history and the time elapsed
since the last review. Thanks to the memory
model, every day the SRS can get an estimate
of the student’s current knowledge state. Based
on this estimate, it decides which cards should
be introduced or reviewed by the student.

3. Memory models
In this section we formalize the memory model.
Let Y be a binary random variable representing
a review rating, Y = 1 in the case of recall, and
Y = 0 in the case of forgetting. We want to
predict Y given additional information:

• card and student Let C be a set of cards
and S a set of students. Let C ∈ C and
S ∈ S be categorical random variables.

• review history We define as review history
of length K an ordered sequence of reviews
R(1), . . . , R(K) where R(i) = (∆(i), Y (i)) ∈
R+ × {0, 1} for all i. Here ∆(i) is a ran-
dom variable representing the time elapsed
between reviews i and i − 1 for i > 1, or
the time since the card was introduced to
the student for i = 1 (time is expressed in
days). Y (i) is a binary random variable for
the rating of the review.

• time elapsed Let ∆ ∈ R+ be a random
variable that expresses in days the time
elapsed since the last review in the history,
or, if the history is empty, since the card
was introduced to the student. We observe
∆ before making a prediction for the tar-
get rating Y , therefore, we include it as a
predictor.

For convenience, we denote the random input
vector by X = (C, S, (R(1), . . . , R(K)),∆). We
seek a memory model, a function pθ(X) with pa-
rameters θ such that

P (Y = 1|X = x) = pθ(x)

We call retrievability the output probability of
recall pθ(x).

Our goal is to find an approximation p̂ = pθ̂
given a previously collected reviews dataset D =

{(r(1)cs , . . . , r(kcs)cs)}c∈C,s∈S with r
(i)
cs = (δ

(i)
cs , y

(i)
cs).

Each card-student pair identifies an indepen-
dent review history of length kcs: all re-
views on the same card c by the student s.
Given a loss function ℓ : {0, 1} × {0, 1} →
R+ to penalize prediction errors, let ℓ

(k)
c,s =

ℓ(y
(k)
cs , pθ(c, s, (r

(1)
cs , . . . , r

(k−1)
cs), δ

(k)
cs)) be the loss

in the k-th review step, k = 1, . . . , kc,s. We com-
pute θ̂ as

θ̂ = argmin
θ

∑
c,s

kcs∑
k=1

ℓ(k)c,s (1)

The outer sum is over review histories. The in-
ner sum is over review steps of a single review
history; for each step, we consider only informa-
tion available up to that point in time. In the
inner sum, for k = 1 the review history is empty.
A memory model is a probabilistic binary clas-
sifier. We are not only interested in classify-
ing the next review as success or failure, we are
also concerned about predicting the probability
of the outcome. It is a regression task. As we
will see in Section 7 this framing leads to sensible
metrics for comparing memory models.

4. State of the art
This section briefly discusses the state of the
art. Our goal is to employ the memory model
in an SRS that can scale to a large number of
students, therefore, we only focus on adaptive
memory models. We leave out of the discus-
sion many important memory models that were
not designed to account for interactions between
students and cards.
Lindsey et al. [4] present the DASH (Difficulty,
Ability and Study History) framework. Letting
pθ(δ) = pθ(c, s, (r

(1), . . . , r(k)), δ) the framework
can be summarized as

pθ(δ) = σ
(
as − dc + h

(k)
θ (δ)

)
(2)

where as and dc are parameters for, respectively,
the ability of the student s ∈ S and the difficulty
of the card c ∈ C. h(k)θ (δ) = hθ((r

(1), . . . , r(k)), δ)
isolates the dependence of retrievability on the
review history and the time elapsed since the last
review. The DASH, DASH[MCM], DASH[ACT-

2

Executive summary Giacomo Randazzo

R] and 1PL-IRT memory models can all be un-
derstood as part of this framework.
HLR [5] takes a different approach and assumes
that retrievability decreases exponentially as

pθ(δ) = 2
− δ

hθ

where hθ = hθ(c, s, (r
(1), . . . , r(k)), δ) here can

also depend on c ∈ C and s ∈ S.

5. The R-17 memory model
In this section we present R-17, a neural net-
work approximation of SuperMemo Algorithm
SM-17 (SM-17) by the popular SRS SuperMemo
(https://www.supermemo.com/en).

Figure 2: The R-17 memory model
computing retrievability p(i) =
pθ(c, s, (r

(1), . . . , r(i−1)), δ(i)) for review i ≥ 2.
At each review step the inputs are δ(i), y(i−1)

and l(i−1). First we compute a new hidden state
h(i) from previous stability and retrievability
estimates ψ(i−1) and p(i−1) along with the
inputs y(i−1) and l(i−1). We update the stability
estimate ψ(i) from h(i) and easiness σe(c, s).
We then use ψ(i) and the remaining input
δ(i) to obtain a first theoretical retrievability
estimate p

(i)
fc through the Wickelgren power

law forgetting curve. Finally we correct the
estimate to obtain p(i), in the correction we also
account for stability ψ(i) and easiness σe(c, s).

Our aim with R-17 is to get a hint of the perfor-
mance of SM-17 as a memory model. R-17 is a
recurrent neural networks (RNNs) [3].
In order to compute the retrievability estimate
p(k) = pθ(c, s, (r

(1), . . . , r(k−1)), δ(k)) in the k-th
review step, we proceed as follows:
• We compute the ease σe(c, s) = σ(be+as−
dc) ∈ [0, 1] which can be viewed as the out-
put of a single dense layer with logistic (sig-
moid) activation function. This choice was
inspired by the 1PL-IRT model.

• A hidden state h(i) is updated at each
review step i of the review history, we need
it to compute stability ψ(i) (we will see
below how) and to propagate information
between review steps in the RNN. In
particular, for each review step i ≥ 2, h(i)

is the output of a neural network H: h(i) =
H(ψ(i−1), p(i−1)(δ(i−1)), y(i−1), l(i−1)),
where ψ(i−1) is the previous estimate of
stability, p(i−1)(δ(i−1)) is the previous esti-
mate of retrievability, y(i−1) is the previous
rating, and l(i−1) the previous number
of lapses (a lapse is a review with rating
0). H is composed of 3 dense layers, the
first and second of 8 units each and with
the ReLU activation function, the third
of 5 units and with the ReLU activation
function, therefore h(i) ∈ R5 for all i.
We need to pay special attention to the
first hidden state h(1), we cannot compute
it with H because we lack the required
inputs. We set h(1) = H0 ∈ R5 as a vector
with trainable components.

• At each review step i ≥ 1, we calculate
ψ(i) = Ψ(h(i), σe(c, s)) ∈ R where Ψ is
a dense layer with univariate output and
ReLU activation. Notice how, in the re-
view steps i ≥ 2, a new stability estimate
is obtained from the composition of Ψ and
H given estimates and data available before
the i-th review is rated.

• Given stability ψ(i), we can compute
pfc(δ;ψ

(i)) = (1 + δ)−ψ
(i) the theoretical

retrievability estimate δ days after review
i − 1. The function is a Wickelgren power
law [4]. For each review step i ≥ 1, we plug
δ(i) to obtain p(i)fc = pfc(δ

(i);ψ(i)).

• We don’t use p(i)fc directly as a prediction for
retrievability, but we correct the estimate
with the neural network P . We compute

3

Executive summary Giacomo Randazzo

the retrievability prediction before the i-th
review step p(i) = P (p

(i)
fc , ψ

(i), σe(c, s)) ∈ R.
P is a neural network with 3 dense layers,
the first and second layers of 8 units each
and with the ReLU activation function; the
last layer with univariate output and logis-
tic (sigmoid) activation function.

The modules are composed in Figure 2.
There are a total of 282 + |C| + |S| trainable
parameters. We train the RNN end-to-end with
gradient descent. The total loss is minimized as
in Equation 1, with single review step loss

ℓ(y, p) = (y − p)2 + λ∥θσe∥22
for the target rating y and the corresponding re-
trievability prediction p. We penalize large ease
weights θσe = {as : s ∈ S} ∪ {dc : c ∈ D}, λ
is a hyperparameter that controls the penaliza-
tion. The gradients are computed with the back-
propagation through time (BPTT) algorithm, for
the optimization, we employ the Adam opti-
mizer [3].

6. The DASH[RNN] memory
model

The DASH[RNN] memory model is an instance
of the DASH framework, where hθ is the out-
put of a RNN (see Equation 2). Our aim with
DASH[RNN] is to obtain accurate predictions
that outperform the state-of-the-art.
DASH[RNN] is developed as a recurrent neural
networks (RNNs) [3], which is presented in Fig-
ure 3.
If h(k) is the hidden state in the k-th review step,
setting hθ = b+Wh(k) in Equation 2 we obtain
the retrievability prediction

pθ = σ
(
as − dc + b+Wh(k)

)
(3)

where b ∈ R5 and W ∈ R1×5 are, respectively,
trainable bias and weights for the computation
pθ, which is cast as a dense layer with logistic
(sigmoid) activation function and single output.
That way we can train the model end-to-end as
an RNN.
For training the model parameters, we proceed
as in Section 5, with single review step loss
ℓ(y, p) = (y − p)2.

Figure 3: The time-unfolded computa-
tional graph of the DASH[RNN] mem-
ory model that computes retrievability
pθ(c, s, (r

(1), . . . , r(k−1)), δ) for the k-th re-
view in the history. At each review step i the
inputs are δ(i) and y(i−1), δ(i) is the time elapsed
between the i-th review and the i− 1-th review,
the latter with rating y(i−1). The inputs are
processed through two dense layers of 12 units
each, obtaining the output result d(i). d(i) is
fed to a simple RNN layer of 5 hidden units to
obtain the current hidden state h(i). Here is
where the dependence on the previous review
step i − 1 is accounted for. Finally, at review
step k, from h(k) and the additional inputs card
c and student s we obtain pθ as in Equation 3.
We set y(0) = 1 and h(0) = 0 ∈ R5.

7. Comparison of memory mod-
els

In this section we compare several memory mod-
els: DASH[RNN], R-17, DASH, DASH[MCM],
DASH[ACT-R], IRT [4] and HLR [5].
The goal of the memory model is to estimate
how likely the student is to successfully remem-
ber a card at a present or future point in time,
and the prediction is then used to schedule re-
views in an SRS. For this reason, we decided to
compare the models in terms of their predictive
power. We employ three metrics: AUC, ICI, and
Emax [1]. AUC is a measure of discrimination,
ICI and Emax of calibration of the probabilistic
binary classifier. Both ICI and Emax are based
on the concept of calibration curve. A calibra-
tion curve is a regression of the observed binary
outcome yi on the probability pi predicted by

4

Executive summary Giacomo Randazzo

a probabilistic binary classifier, in our case the
memory model. The plot of the calibration curve
allows us to graphically examine the calibration
of a memory model.
We run the comparison on two different
datasets: the Swift dataset and the IEIM
dataset.
The Swift dataset was collected from a popu-
lar German smart driving-learning app by Swift
(swift.ch) [6]. After preprocessing, we decided
to sample 5 different train-test samples of 10,000
training review histories and 5,000 testing re-
view histories. This translates to approximately
80,000 training reviews and 40,000 testing re-
views for each sample. The first train-test sam-
ple was used to tune the models. The models
were then fitted to each of the 4 remaining train-
ing sets and evaluated on the corresponding 4
held-out test sets. We obtained the results re-
ported in Table 1 and Figure 4.

Table 1: Sample mean of AUC, ICI, and Emax
for different memory models, aggregated across
4 different train-test samples from the Swift
dataset. Arrows indicate whether lower (↓) or
higher (↑) scores are better, for each metric the
model that achieved the best sample mean score
is shown in bold.

AUC↑ ICI↓ Emax↓
DASH[RNN] 0.858 0.007 0.044

R-17 0.841 0.014 0.037

DASH 0.829 0.020 0.133

DASH[MCM] 0.829 0.021 0.136

DASH[ACT-R] 0.833 0.012 0.202

IRT 0.768 0.034 0.168

HLR 0.610 0.145 0.509

Figure 4: Calibration curves (above) and density
of the distribution of predicted probabilities (be-
low) for different memory models, scored on the
first of the 4 different train-test samples from the
Swift dataset. In a perfectly calibrated memory
model the curve would match the identity line.
Out of DASH, DASH[MCM], and DASH[ACT-
R], we included only the latter variant in the
plots, in order not to clutter them with too many
lines. The choice is motivated by the better per-
formance compared to the other two variants in
Table 1.

The IEIM dataset was collected as part of this
work. We provided an SRS web application
to students of the 2020/2021 informatica e el-
ementi di informatica medica (IEIM) course by
Prof. Santambrogio at Politecnico di Milano.
After each week of the course we created cards
about the covered topics, the students could
opt in to review those cards following a spaced
repetition practice. We created a total of 146
cards and collected 16,189 reviews from 58 stu-
dents. After preprocessing, we performed a 10-
fold cross-validation repeated 50 times and ob-
tained the results reported in Table 2.

5

Executive summary Giacomo Randazzo

Table 2: Sample mean of AUC, ICI, and Emax
for different memory models, aggregated across
a 10-fold cross-validation repeated 50 times. Ar-
rows indicate whether lower (↓) or higher (↑)
scores are better, for each metric the model that
achieved the best sample mean score is shown in
bold.

AUC↑ ICI↓ Emax↓
DASH[RNN] 0.842 0.012 0.267

R-17 0.665 0.011 0.082

DASH 0.770 0.018 0.338

DASH[MCM] 0.771 0.019 0.357

DASH[ACT-R] 0.768 0.010 0.070

HLR 0.548 0.125 0.600

IRT 0.765 0.018 0.273

Overall DASH[RNN] and R-17, the two novel
models introduced in this thesis (Sections 5,
6) fare well against the state of the art.
DASH[RNN] outperforms the state of the art on
the large Swift dataset, a significant result for
developing spaced repetition systems at scale.
The results are not as clear in the very small
IEIM dataset. The small sample size, combined
with the large proportion of correct responses
(97% vs 78% for the Swift data set), makes it
more difficult to train larger models. R-17 per-
forms comparatively well to the state of the art,
this result hints that SM-17 deserves to be stud-
ied with more care.

8. Conclusions
The primary contribution of this work is two-
fold. We introduce two novel adaptive memory
models, DASH[RNN] and R-17; in building and
comparing the models, we construct a frame-
work for developing memory models specifically
for SRS, that can scale and adapt as the sys-
tem grows. DASH[RNN] outperforms the state
of the art from a predictive perspective. R-17
performs comparably well, but the significance
of the result lies in hinting at the performance
of the proprietary SuperMemo Algorithm SM-
17, as an adaptive memory model.

References
[1] Peter C. Austin and Ewout W. Steyerberg.

The Integrated Calibration Index (ICI) and
related metrics for quantifying the calibra-
tion of logistic regression models. Statistics
in Medicine, 38(21):4051–4065, September
2019.

[2] Nicholas J. Cepeda, Harold Pashler, Edward
Vul, John T. Wixted, and Doug Rohrer. Dis-
tributed practice in verbal recall tasks: A
review and quantitative synthesis. Psycho-
logical Bulletin, 132(3):354–380, May 2006.

[3] Ian Goodfellow, Yoshua Bengio, and Aaron
Courville. Deep Learning. MIT Press, 2016.

[4] Michael C. Mozer and Robert V. Lindsey.
Predicting and improving memory retention:
Psychological theory matters in the big data
era. In Big Data in Cognitive Science, Fron-
tiers of Cognitive Psychology, pages 34–64.
Routledge/Taylor & Francis Group, New
York, NY, US, 2017.

[5] Burr Settles and Brendan Meeder. A train-
able spaced repetition model for language
learning. In Proceedings of the 54th An-
nual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Pa-
pers), pages 1848–1858, 2016.

[6] Utkarsh Upadhyay, Graham Lancashire,
Christoph Moser, and Manuel Gomez-
Rodriguez. Large-scale randomized exper-
iments reveals that machine learning-based
instruction helps people memorize more ef-
fectively. npj Science of Learning, 6(1):1–3,
September 2021.

6

	Introduction
	Overview of spaced repetition systems
	Memory models
	State of the art
	The R-17 memory model
	The DASH[RNN] memory model
	Comparison of memory models
	Conclusions

