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1 Introduction 

1.1 Scope of the work 

A smart grid is an electric grid designed to deliver 

electricity in a controlled, smart way from points of 

generation to consumers. Consumers are 

considered an integral part of the smart grid since 

they are able to modify their purchasing patterns 

and behaviors based on the information and 

incentives they receive. Smart meters, connected 

appliances, and in-home displays open up new 

opportunities for demand-side innovation. 

Empowered consumers can then play a bigger role 

by changing their consumption habits [1]. 

The presented work focuses on electrical 

consumption analysis of a residential district of 615 

apartments in Merezzate, Milan. Data mining is 

necessary to manage all energy consumption data 

which is becoming always larger with the increase 

of smart applications. 

Clustering techniques have been implemented in 

post-processing of data retrieved from smart 

meters, with the objective to create groups of 

customers based on their electricity consumption 

trends.  

A chapter of the work in centered on energy 

communities in Merezzate and their feasibility in 

two scenarios: the real district heating case and a 

hypothetical heat pump heating case.  

Residential demand side management strategies 

have been investigated in the last chapter of the 

thesis, taking into consideration Time of Use, 

Critical Peak Pricing and Incentive Based Pricing 

techniques.  

1.2 Demand response 

Demand response is defined as end-use 

consumers' variations in energy usage from their 

regular consumption patterns in response to 

changes in power prices over time. There are 

different types of demand-response programs, 

which can be classified into two main categories: 

Price-Based Programs (PBP) and Incentive-Based 

Programs (IBP). Incentive-Based Programs can be 

further divided into classical programs and 

market-based programs. Electricity suppliers offer 

time-varying pricing, which can range from simple 
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day and night rates to highly dynamic rates based 

on hourly wholesale rates. 

These rates include the Time of Use rate, Critical 

Peak Pricing, Extreme Day Pricing, Extreme Day 

Critical Peak Pricing, and Real Time Pricing. 

Demand response programs implemented for 

residential customers have been analyzed in many 

studies like [2]–[4].  

1.3 Monitoring systems 

Smart technology, such as smart meters, are 

required to monitor energy use on a more regular 

basis for most DR programs. Italy was the first 

European country to introduce large-scale 

electricity smart meters for low-voltage end 

customers, and by 2021 it is considered to be the 

top country in the world for the number of 

electricity smart meters in service [5]. The accuracy 

of demand response studies is influenced by the 

home load profile and electric power usage. This 

can be achieved by installing smart plugs into our 

homes, devices that sit between a power outlet and 

a home appliance. A smart plug allows appliances 

connected to it to be operated remotely and 

provides feedback on the appliance's energy usage. 

Smart metering and smart plugs are examples of 

innovative enabling technologies that allow for 

improved consumer receptivity as well as greater 

utility confidence. 

1.4 Clustering methods 

Clustering is a term that encompasses a wide range 

of approaches for identifying subgroups, or 

"clusters," in a data collection. Load profiling, 

which refers to consumers' energy consumption 

patterns over a given period of time (for example, 

one day), can assist in determining how electricity 

is really utilized by different customers and 

obtaining their load profiles or load patterns. 

The clustering techniques can be classified into two 

categories: direct clustering, the approach that uses 

data obtained directly from smart meters, and 

indirect clustering.  

The two methods used in this thesis are time-series 

k-means clustering and hierarchical clustering, 

thanks to their simplicity. 

2 Merezzate district 

The Merezzate project [6] co-funded by EIT 

Climate-KIC (Knowledge and Innovation 

Community) consists in a residential district near 

Rogoredo Santa Giulia, in the eastern part of Milan. 

It is composed of 615 apartments partially 

dedicated to social housing. The project's goal is to 

boost the adoption of innovative solutions by 

incorporating them into an urban development 

model that promotes social inclusion, renewable 

energy and energy efficiency, sustainable mobility, 

and circular economy activities. A2A Smart City, 

alongside with A2A Calore e Servizi, Politecnico di 

Milano and Poliedra, is one of the Partners of 

Merezzate + project.  

The monitoring systems used for power metering 

in Merezzate are Unreti’s second generation smart 

meter, Chain2Gate and Smart plugs.  

 

 

Figure 2-1: a) Smart meter, b) Chain2Gate, c) Smart plug 

3 Data mining 

3.1 Preliminary analysis and energy 

demand 

Different aspects have been analyzed in the 

preliminary evaluations.  

Power consumption data of Merezzate residents 

are measured with a 15 minute interval. By 

summing the quarterly power for a month period 

and reporting the power demand into a 24 hour 

range, it’s possible to find the mean daily total 

power. The maximum at dinner time is in the range 

of 160-170 kW, and the minimum during night 

hours around 30 kW.  
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Figure 3-1: Daily total power trend, May 2021. 

It has been noticed that moving by looking at the 

total power trend that the minimum power 

demand changed with the change of daily 

temperature. In particular, from the 4th of June to 

the 16th of June it was recorded an increase of 70% 

in the minimum power demand, which could be 

linked to a raise in HVAC systems during the 

night. 

It was possible to compute the total energy 

demand of each month that has been considered in 

the analysis (May, June, July and August), by 

summing the energy of each apartment. It was 

found out that the most energy demanding months 

were June and August, with a total around 39’000 

kWh for each month.  

3.2 Load curves clustering 

After some data cleaning steps, each resident 

would have two load curves, one representing the 

mean power for weekdays and one for weekends. 

Load curves of residents have been clustered with 

time-series k-means method. It has been decided to 

divide the load curves into three clusters, because 

the separation into three classes (low, medium and 

high consumption) looked the more natural and 

suitable.  

Figure 3-2 and Figure 3-3 are a visual representation 

of the three clusters found. 

During both workdays and weekends, the typical 

power demand presents two peaks, one around 

lunch time and one around dinner time. However, 

the magnitude of power demand is different. 

Weekdays typically present a larger peak in the 

late afternoon. Weekends have a power demand 

where the two peaks have about the same 

magnitude, due to the different lifestyle of each 

resident.  

 

 

Figure 3-2: Mean curves of the three clusters (weekdays), 

May 

 

Figure 3-3: Mean curves of the three clusters (weekends), 

May 

After the clustering process, it has been added the 

information of the apartment type, whether it was 

a one, two, three or four-rooms apartment.  

 

Table 3-1: Cluster vs apartment type classification, 

workdays, May (load curves) 

 One-

room 

Two-

room 

Three-

room 

Four-

room 

Low 73% 67% 22% 17% 

Medium 13% 25% 54% 45% 

High 13% 7% 23% 38% 

 

Looking at the “low” cluster, we can notice a 

decreasing trend going from one-room to four-

room apartment. Most of the one-room and two 

room apartments have been clustered in the “low” 

group, while just about 20% of three-room and 

four-room apartments have been grouped as 

“low” power demand. On the contrary, most of 

three-room and four-room apartments have been 

grouped as “medium” and “high” power 

consumers. The same trend can be seen in the case 

of the other months. 
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3.3 Energy consumption clustering 

Next, it was performed the clustering of Merezzate 

neighborhood based on the energy consumed by 

each apartment during a month period. In this 

analysis the information about apartment typology 

has been added before the implementation of the 

clustering technique. 

The clustering method chosen for this section is 

hierarchical clustering. This method is different 

from k-means clustering method because it doesn’t 

depend on the number of clusters that must be 

specified at the beginning of the assignment. 

The method can be visually represented by the 

typical dendrogram, where all the data are linked 

in clusters, depending on the measure of 

dissimilarity between the groups. 

 

Figure 3-4: Dendrogram for hierarchical clustering 

The results of clustering can be seen in different 

ways. The three mean values (centroids) of each 

cluster of Figure 3-5 are “low” = 54,8 kWh, 

“medium” = 126,9 kWh, “high” = 226,5 kWh, 

visible in the plot of apartments ordered in 

ascending energy consumption order. 

 

Figure 3-5: Monthly energy consumption of clusters, 

May 

Another visual representation is the one of Figure 

3-6, which is also possible to view analytically in 

Table 3-1. The results of these clusters are not very 

different from the one of workdays of the analysis 

based on power load curves. There is always a 

decreasing trend for the “low” cluster, and an 

increase in the percentages for the “high” cluster. 

Talking about the “medium” cluster, it keeps 

almost constant, with about 50% of the apartments 

that are clustered in this group, for all the 

apartment types. 

 

Figure 3-6: Monthly energy vs apartment type, clusters, 

May 

Table 3-2: Cluster vs apartment type classification, 

May (energy) 

 One-

room 

Two-

room 

Three-

room 

Four-

room 

Low 44,44% 38,82% 19,02% 20,00% 

Medium 44,44% 55,88% 53,26% 50,00% 

High 11,11% 5,29% 27,72% 30,00% 

 

The same trend can be seen for other months of the 

analysis. By looking at the users that going from 

May to August have been clustered always in the 

same group, it becomes possible to define the mean 

monthly energy consumption of the clusters of this 

thesis: “low” = 42 kWh, “medium” = 110 kWh, 

“high” = 287,3 kWh, values in line with literature, 

especially for mean energy consumption which is 

estimated to be 1200 kWh/year. 

3.4 Smart plugs data mining 

Smart plugs have been installed in about 60 

households as an efficient way to follow the 

consumes of home appliances. This gives another 

valuable information when combining this data 

with the global apartment consumption as it can be 

seen in Figure 3-7. 

 

Figure 3-7: Single day power demand of one apartment 

with details of appliances (14th of September 2021) 



Executive summary Nicola Perrucci 

 

5 

 

Figure 3-8: Monthly mean energy consumption per 

home appliance 

From a mean point of view, Figure 3-8 shows that 

the refrigerator is the most energy consuming 

appliance, while the second is the electric 

induction cooking stove.  

If we sum the mean monthly energy of each 

appliance we can find the value of energy 

consumption of a typical resident that possess 

those appliances, which is in line with what was 

found with clustering on energy consumption (110 

kWh/month for “medium” consumer). 

4 Energy community 

4.1 REC definition  

The clustering of residents into groups based on 

their power demand habits gives the possibility to 

simulate a scenario with the presence of a REC, 

Renewable Energy Community.  

It is a configuration in which the energy produced 

with a renewable plant can be shared between 

residents of the same condominium of 

neighborhood, gaining advantages from the 

environmental and economic point of view. 

4.2 District heating 

In Merezzate there is a district heating plant 

dedicated to the heating of the neighborhood and 

on the roof of each building there is a photovoltaic 

plant (PV) that produced clean energy. The 

analysis in this chapter has been made of one 

building “Edificio 2”, made of 30 apartments 

divided into three clusters. Three different cases 

have been considered: DH 1 is the case with district 

Figure 4-1: Building scheme 

District Heating and PV plant 

Figure 4-2: Building scheme 

Heat Pump and PV plant 
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heating, a PV plant of 10 kW and no REC, DH 2 is 

the case equal to DH 1 but with the Renewable 

Energy Community and finally DH 3 is the case of 

district heating, with a bigger PV plant of 30 kW 

and with REC. 

Energy consumption of the condominium has been 

evaluated with RECON, a REC simulator 

developed by ENEA [7].  

By considering a price of electricity equal to 0,22 

€/kWh, a selling price of electricity of 0,05 kWh and 

a MISE incentive on the shared energy equal to 0,1 

€/kWh, it’s possible to obtain the net cash flow of 

each scenario. The introduction of REC is clearly an 

advantage from the point of view of the cash flow 

since the MISE incentive are an additional revenue.  

4.3 Heat pump 

The same evaluations can be made for a case with 

a heat pump as heating system for the building, 

instead of district heating. The heat pump would 

then self-consume a portion of the energy 

produced with the PV plant.  

The scenarios are the same as district heating, 

called HP 1, HP 2 and HP 3.  

Net cash flow is estimated to be lower than DH 

cases, thanks to the possibility to self-consume 

energy produced with PV. In addition, as for the 

DH cases, REC is more convenient for both 

residents and environment.  

Table 4-1: Economic analysis for District Heating 

 DH 1 DH 2 DH 3 

DH cost [€/y] -7718,75 -7718,75 -7718,75 

DH OPEX cost [€/y] -617,5 -617,5 -617,5 

Residents’ bill [€/y] -8360 -8360 -8360 

Common areas bill [€/y] -53,24 -53,24 -53,24 

Revenues fed grid [€/y] +512,65 +512,65 +1738,95 

Revenues MISE [€/y] +0 +849,2 +1501,5 

Net cash flow [€/y] -16237 -15388 -13509 

 

Table 4-2: Economic analysis for Heat Pump 

 HP 1 HP 2 HP 3 

HP cost [€/y] -3227,4 -3227,4 -2533,5 

HP OPEX cost [€/y] -379,07 -379,07 -379,07 

Residents’ bill [€/y] -8360 -8360 -8360 

Revenues fed grid [€/y] +182,2 +182,2 +958,8 

Revenues MISE [€/y] +0 +348,3 +1200 

Net cash flow [€/y] -11784 -11436 -9114 

 

For the DH 3 and HP 3 cases, there is the CAPEX 

cost of the additional 20 kW of the PV plant. Taking 

DH 1 and HP 1 as base cases, the Payback-time of 

the investment is respectively 9 years and 10 years. 

5 Demand response analysis 

The DR analysis consists of quantifying the 

economic advantages for end users that derive 

from the modification of their energy consumption 

habits. May is the month that has been considered 

in the chapter of DR, with the respective Price of 

Electricity (Prezzo Unitario Nazionale, PUN in 

Italian). Electricity contracts for residential users 

are typically made considering just two time slots, 

F1 (peak hours) and F23 (off-peak hours).  

Three residents have been taken as typical 

consumers, one for each cluster found before.  

All DR tests have been performed by making the 

hypothesis to “move” 20% of energy consumption 

from the high cost time slot to the low cost time 

slot. 

Table 5-2: Savings of DR feasibility tests,  

20% shift of energy 

 F1 & F23 4TS CPP IBP 

Low 0,41 % 0,76 % 3,40 % 6,2 % 

Medium 0,46 % 0,65 % 2,79 % 5,5 % 

High 0,36 % 0,76 % 2,95 % 6,7 % 

 

The first test was performed using real PUN prices 

of peak hours and off-peak hours. The results were 

not promising, and reason could be linked to the 

small difference in cost between F1 and F23. Then, 

the next step was to create a new ToU scheme 

divided in 4 time steps (4TS), based on the real 

trend of May’s PUN. With the cases of F1&F23 and 

4TS just described, it becomes very difficult to 

implement a residential DR mechanism in which 

residents would change their energy habits to have 

a reduction in energy cost component of just 

around 0,4-0,8%.  

The third DR strategy that has been tested is CPP, 

Critical Peak Pricing. 4TS scheme has been 

modified by raising the peak price to 3 times of the 

original value. In this way, a change in habits of 

20% from peak to off-peak periods bring savings in 

the order of 3% of the sole energy component of the 

 F1 (€/kWh) F2 (€/kWh) F3 (€/kWh) F23 (€/kWh) 

May 2021 0,074270 0,077970 0,063020 0,069897 

 

Table 4-1: PUN for each time slot, May 2021 
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electricity bill, equal to about 5 €/year for a medium 

consumer.  

Another demand-response mechanism that has 

been evaluated is IBP, incentive based pricing. In 

particular, it has been considered a scheme where 

residents would receive a monetary compensation 

of 0,1 €/kWh for their active modification of energy 

consumption from peak to off-peak. Results of this 

case are the most promising, in the order of 6% of 

savings of energy cost for all “type” residents.  

6 Conclusions 

The proposed thesis work analyzes different 

aspects of residential energy demand. 

Merezzate+ is the case study, a new generation 

residential district where state of the art measuring 

instruments such as 2G Meters and Smart Plugs are 

installed.  

Power demand profile of the residents has been 

obtained, identified by two peaks around lunch 

and dinner time and one minimum at night. The 

trend is dependent on the day of the week, or also 

on users’ habits.  

Clustering has been performed of both power load 

curves and monthly energy consumption.  

By adding the info of type of the apartment, some 

trends have been found: one-room apartments 

have been clustered for the major part in the “low” 

power demand group, while three-room and four-

room apartments have a higher chance of being 

grouped in the “high” power demand cluster.  

Clustering results have then been applied on the 

Renewables Energy Communities, both for district 

heating and heat pump heating scenarios.  

The last chapter treated DR feasibility for residents 

of Merezzate. Of four rates described, the most 

promising is IBP, with savings of about 6% of the 

energy cost.  

Next step would be to mine data for a longer 

period of time 

Investigate different DR mechanisms like Real 

Time Pricing, thanks to the advanced measure 

instruments installed in the district.  
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Abstract in italiano 

Il settore civile è oggi incentrato sul miglioramento dell’efficienza energetica degli 

edifici, con lo scopo di ottenere residenze dal consumo energetico estremamente 

basso per combattere i cambiamenti climatici. Siamo ancora in una fase di 

sperimentazione di soluzioni ampiamente studiate a livello teorico per quanto 

riguarda l’applicazione di tecniche di modifica del carico energetico residenziale. 

Questa tesi analizza la sperimentazione in corso su un intero distretto di edifici di 

un quartiere di Milano, attraverso il monitoraggio dei residenti tramite smart meters 

e smart plugs. Sono state adottate tecniche di clustering per effettuare la 

segmentazione dei residenti in tre gruppi in base alle caratteristiche di consumo 

energetico. Combinando le informazioni sul consumo di energia e il tipo di 

appartamento, la maggior parte dei monolocali e bilocali sono stati raggruppati nel 

gruppo "basso" e la maggior parte dei trilocali e quadrilocali in "medio" e "alto". 

Inoltre, il clustering dei residenti dà la possibilità di trovare chi tende ad essere un 

consumatore virtuoso o chi dovrebbe abbassare il suo uso di energia per essere più 

simile ai suoi vicini. I risultati del clustering sono stati implementati nella 

simulazione di una Comunità Energetica a Merezzate. È stato considerato un unico 

edificio composto da 30 appartamenti che condividono l'energia prodotta da un 

impianto fotovoltaico. Sono stati studiati due scenari, uno con il teleriscaldamento 

e uno in cui questo viene sostituito da una pompa di calore. L'introduzione della 

comunità energetica porta un notevole aumento dell’autoconsumo del campo 

fotovoltaico già presente, fino al 76% nel caso di teleriscaldamento e 96% per la 

pompa di calore. La parte finale della tesi consiste nell'analisi di fattibilità delle 

strategie di demand side management, facendo l'ipotesi di "spostare" il 20% dei 

consumi energetici dalla fascia oraria ad alto costo a quella a basso costo. Sia un 

primo test con i prezzi reali delle ore di punta e delle ore non di punta, sia un 

secondo schema Time of Use (ToU) non portano oggi a vantaggi significativi data 

la piccola differenza di costo delle fasce orarie. La terza strategia DR che è stata 

testata è il CPP, Critical Peak Pricing che porta un risparmio nell'ordine del 3% della 

sola componente energetica della bolletta elettrica. L'ultimo meccanismo DR che è 

stato valutato è l'IBP, Incentive Based Pricing, dove i residenti riceverebbero una 

compensazione monetaria di 0,1 €/kWh per la loro modifica attiva del consumo 

energetico. I risultati di questo caso sono i più significativi, nell'ordine del 6% di 

risparmio del costo energetico. 

 

Parole chiave: monitoraggio, data mining, clustering, demand response, demand 

side management, efficienza energetica, comunità energetiche 
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Abstract 

Nowadays the civil sector is focused on improving energy efficiency of the 

buildings, with the aim of obtaining residencies with extremely low energy 

consumption. We are still in a phase of experimentation of solutions widely studied 

at theoretical level regarding the application of techniques that modify the 

residential energy load. This thesis analyzes the experimentation in progress on an 

entire district if buildings in a neighborhood of Milan, through monitoring of 

residents using smart meters and smart plugs. Clustering techniques have been 

adopted to make residents segmentation into three groups based on energy 

consumption characteristics. Combining information of energy consumption and 

apartment type, most of one and two-room apartments have been clustered in 

“low” group and most of three and four-room into “medium” and “high”. Also, 

clustering of residents give the possibility to find who tend to be a virtuous 

consumer or who should lower their energy use to be more similar to their 

neighbors. Clustering results have been implemented in the simulation of a 

Renewable Energy Community (REC) in Merezzate. Here it was considered a single 

building made of 30 apartments that would share energy produced by a 

photovoltaic plant. Two scenarios are investigated, one with district heating and 

one where it is replaced with a heat pump. The introduction of the energy 

community brings a significant increase in the self-consumption of the PV plant 

already present, up to 76% in the case of district heating and 96% for the heat pump. 

The final part of the thesis consists of the feasibility analysis of demand side 

management strategies, making the hypothesis to “move” 20% of energy 

consumption from the high cost time slot to the low cost time slot. Both a first test 

with real PUN prices of peak hours and off-peak hours and a second Time of Use 

(ToU) scheme do not lead to significant benefits today given the small difference in 

cost of the time slots. The third DR strategy that has been tested is CPP, Critical Peak 

Pricing which brings savings in the order of 3% of the sole energy component of the 

electricity bill. The last DR mechanism that has been evaluated is IBP, incentive 

based pricing, where residents would receive a monetary compensation of 0,1 

€/kWh for their active modification of energy consumption. Results of this case are 

the most promising, in the order of 6% of savings of energy cost. 

 

Keywords: monitoring, data mining, clustering, demand side response, energy 

efficiency, energy community 
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1 Introduction 

In this Chapter the scope of the work is presented as well as the state of the art of 

demand response strategies. The last introductory part is centered on the 

monitoring systems used in this thesis. 

1.1 Scope of the work 

The presented thesis work treats different aspects related to residential energy 

consumption of a residential district of Milan, REDO Milano, also called Merezzate. 

Thanks to the several monitoring devices installed it is possible to know the power 

consumption habits of the residents. Many techniques of data mining have been 

implemented in this study, in order to analyze different aspects linked to power 

consumption, from transformers, to apartments’ energy consumption, to daily 

energy curves. Results of data mining have then been implemented in a simulator 

to evaluate the advantages that could derive from the establishment of a renewable 

energy community. The last part of this thesis is centered on the feasibility of 

different demand side management techniques for the residents of Merezzate.  

1.2 Demand Response - State of the art 

The following section will focus of demand response. It will be presented an 

introduction on smart grids and demand response, a definition of demand 

response, demand response programs, residential demand response and an 

overview on demand response in Europe.  

1.2.1 Introduction on smart grids and demand response 

A smart grid is an electric grid designed to deliver electricity in a controlled, smart 

way from points of generation to consumers. Consumers are considered an integral 

part of the smart grid since they are able to modify their purchasing patterns and 

behaviors based on the information and incentives they receive. 

The demand side management process, which includes everything done on the 

demand side, is an integral part of the smart grid. Communication systems, sensors, 
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automated meters, mobile devices, and specialized processors are all required for 

demand response to be fully integrated in the smart grid.  

Programs implemented by utilities to manage energy consumption at the customer 

side of the meter are known as demand side management. Electricity markets can 

operate more efficiently with these programs that can help reduce peak demand 

and spot price volatility, benefiting both utilities and their customers.[1] 

For years, demand response has been active in the electrical system; for example, 

suppliers offer time-of-use rates to their customers. Nonetheless, as the electricity 

system evolves, it is becoming more crucial. 

With big, controllable power plants on one hand and relatively easy-to-predict 

demand on the other, matching electricity supply and demand has historically been 

quite simple. However, smaller, more variable, and less predictable renewable 

power has emerged in recent years. Furthermore, rather than being connected to 

the transmission grid, renewable energy generation is frequently connected to the 

distribution grid.  

As a result of these developments, it is becoming more difficult to match supply and 

demand at all times, and the energy system requires more flexibility. Smart meters, 

connected appliances, and in-home displays, on the other hand, open up new 

opportunities for demand-side innovation. Empowered consumers can then play a 

bigger role by changing their consumption habits: another weapon in the flexibility 

toolbox is demand response. [2] 

1.2.2 Demand response definition 

Demand response is defined as end-use consumers' variations in energy usage from 

their regular consumption patterns in response to changes in power prices over 

time. Demand-response may alternatively be described as payments intended to 

incentivize the decrease of power use during periods of high wholesale market 

pricing or when the system reliability is endangered. Demand response refers to all 

changes in end-use consumers' energy consumption patterns that are designed to 

change the timing, level of instantaneous demand, or overall power consumption 

[1], [3], [4]. 

There are three main activities that may be implemented to get a consumer 

response. Each of these activities has a cost and a set of steps that the client must do. 

First, consumers can minimize their power use during high-priced peak periods 

without affecting their other consumption patterns. This approach entails a short-

term loss of comfort. When the thermostat settings of heaters or air conditioners are 

temporarily altered, for example, this reaction is obtained. Second, consumers may 

respond to high power rates by moving part of their peak demand operations to off-

peak hours, for example, dishwashers and pool pumps. In this situation, the 
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residential customer will not suffer any losses or pay any costs. However, if an 

industrial client decides to reschedule some operations, he will likely incur into 

rescheduling fees to compensate for missed services. The third form of customer 

response is onsite generation. Customers that produce their own energy may see 

little or no change in their consumption patterns but, from utility perspective, usage 

patterns will vary a lot, and demand will appear to be lower [1], [3]. 

Demand response may be done both manually and automatically as a proactive 

strategy. The term "manual demand response" generally refers to the regulation of 

the usage of specific appliances at different times of the day. A pre-programmed 

demand response strategy is launched by a human via a centralized control system 

in semi-automated demand response. Demand response that is fully automated 

does not require human interaction and is launched at a house, building, or facility 

in response to an external communications signal [4]. 

1.2.3 Demand response programs 

There are different types of demand-response programs, which can be classified 

into two main categories, like it can be seen in Figure 1-1:  

• Price-Based Programs (PBP) and 

• Incentive-Based Programs (IBP). 

Incentive-Based Programs can be further divided into: 

• classical programs and  

• market-based programs.  

Classical IBP include Direct Load Control programs and Interruptible/Curtailable 

Load programs. Market-based IBP include Emergency DR Programs, Demand 

Bidding, Capacity Market, and the Ancillary services market.  

Customers who participate in Classical IBP programs are compensated for their 

involvement in the programs, generally in the form of a bill credit or a discount rate. 

Participants in market-based programs are compensated with a monetary sum for 

their efforts, based on the amount of load reduction achieved during critical 

situations. 

Utilities participating in Direct Load Control schemes have the option to remotely 

shut down participant equipment at any time. Air conditioners and water heaters 

are common examples of remotely operated equipment. This type of offer is mostly 

targeted towards residential and small commercial users. 

Customers who participate in Interruptible/Curtailable Programs get upfront 

incentive payments or rate savings, just as those who participate in Direct Load 

Control programs. Participants are instructed to lower their power load to 
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predetermined levels. Participants who do not answer may be penalized, 

depending on the terms and circumstances of the program. 

Demand Bidding (also known as Buyback) schemes allow users to bid on particular 

load reductions in the wholesale energy market. If a bid is less than the market price, 

it is accepted. If a bid is approved, the customer must reduce his load by the 

stipulated amount or suffer penalties. 

Customers who participate in Emergency DR Programs, on the other hand, get 

compensated for calculated load reductions during emergency situations. 

Customers who can agree to pre-specified load reductions when system 

emergencies arise are eligible for Capacity Market Programs. Participants are 

generally given a day-ahead notice and are punished if they do not comply with 

requests to reduce their load. 

Through Ancillary services market programs, customers can bid for load 

curtailment in the spot market as an operational reserve. Participants are paid the 

spot market price for agreeing to be on standby, as well as the spot market price for 

energy if load reduction is necessary. 

Price-Based Programs are based on pricing rates that change with time, so that 

electricity prices are not flat. The tariffs change in accordance with the real-time cost 

of electricity. The final goal of these initiatives is to flatten the demand curve by 

charging more during peak times and less during off-peak times.  

With this knowledge, customers may choose (or have chosen for them) to move 

their power consumption away from periods of high costs, lowering their energy 

bill. Electricity suppliers offer time-varying pricing, which can range from simple 

day and night rates to highly dynamic rates based on hourly wholesale rates. 

These rates include the  

• Time of Use rate,  

• Critical Peak Pricing,  

• Extreme Day Pricing,  

• Extreme Day Critical Peak Pricing, and  

• Real Time Pricing.  

Time of Use rates are the most fundamental form of price-based program, and they 

are the rates of electricity price per unit use that change in various time ranges. 

During peak periods, the rate is greater than during off-peak hours. The most basic 

Time of Use rate consists of two time blocks: peak and off-peak. The tariff structure 

aims to represent the average cost of power over time. 

Rates for Critical Peak Pricing contain a pre-determined increased power use charge 

that is overlaid on Time of Use or standard flat rates. For a limited number of days 
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or hours per year, Critical Peak Pricing rates are utilized during contingencies or 

high wholesale power costs. 

Extreme Day Pricing, on the other hand, is similar to Critical Peak Pricing in that it 

has a higher electricity price, but it varies from Critical Peak Pricing because the 

price remains constant for the whole 24 hours of the extreme day, which is unknown 

until a day in advance.  

Furthermore, during extreme days, Critical Peak Pricing prices for peak and off-

peak hours are referred to as Extreme Day Critical Peak Pricing rates. On the other 

days a flat charge is utilized.  

Customers are charged hourly changing prices reflecting the true cost of power in 

the wholesale market under Real Time Pricing systems. Customers that use Real 

Time Pricing are notified of pricing a day or hour in advance. Many economists 

believe that Real Time Pricing schemes are the most direct and efficient DR 

programs for competitive electricity markets, and that policymakers should focus 

on them. [1], [3] 

 

 
Figure 1-1 - Demand Response Programs 

 

Differentiating between market DR (i.e., real-time pricing, price signals, and 

incentives) and physical DR (i.e., grid management and emergency signals) is 
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another approach to look at the many DR initiatives. Market DR is triggered by 

economics, whereas physical DR is triggered by reliability needs. 

Emergency-based, system-led, load-response, incentive-based, direct-load control 

programs are often used to increase system reliability. On the other hand, DR with 

the goal of lowering system costs is often achieved through price-based, market-led, 

price-response and passive load management programs. [1] 

1.2.4 Residential demand response 

In comparison to big commercial and industrial customers, residential customers 

have relatively modest and limited types of power loads and are not motivated to 

invest much in order to regulate their electrical use.  

In the first decade of the 2000s, residential consumers exclusively participated in 

retail electricity markets and mostly in direct load control programs. This is already 

changing, owing to the adoption of new standards and technologies such as 

enhanced metering infrastructure, which allows for the sale of lower-cost 

equipment. Smart homes can now provide technical assistance to the smart grid 

thanks to new building automation standards and technology. [1] 

Smart metering (advanced metering) is a metering system that collects a customer's 

usage and other characteristics on a regular basis (hourly or more often) and 

transmits the data to a data consolidation point hourly or even minutely through a 

communication network. Real-time electrical energy usage monitoring inside the 

smart grid has become widely available as a result of better infrastructure in 

residential sectors and greater penetration of smart meters.  

Demand response programs implemented for residential customers have been 

analyzed in many studies. Papers from [5] and [4] review the residential demand 

response programs summarizing all the studies that have been performed during 

the years. In particular, the first paper analyzes 14 demand response programs, 9 

demand response scheduling techniques and 8 IoT applications in demand 

response. The second paper focuses on price driven demand response program, 

analyzing 25 case studies divided based on the program type: Time of Use, Critical 

Peak Pricing and Real Time Pricing. The different types of DR programs are 

described in the table in the next page, with the respective advantages and 

disadvantages. 
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Figure 1-2 – Price-driven demand response programs 

a: Time of use, b: Critical peak pricing, c: Real time pricing 
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1.2.5 Demand response in Europe  

The Energy Union Strategy which was published in 2015 is one of the key elements 

of the European Energy Commission. The aim was to build an energy union the 

gives the consumers secure, sustainable, competitive and affordable energy. The 

energy union was built on five pillars: 

• Security, solidarity and trust 

• A fully integrated internal energy market 

• Energy efficiency 

• Climate action, decarbonizing the economy 

• Research, innovation and competitiveness 

The main instrument to put forward these objectives was the Clean Energy Package, 

in which Demand Response is clearly mentioned as one of the tools to achieve a 

competitive, consumer-centered, flexible and non-discriminatory electricity market. 

The European Green Deal of 2019 is relevant for DR, in order to better integrate 

renewable sources and reach decarbonization of the energy sector.  

The customers of Demand response are Transmission system operators (TSO), 

Distribution System Operators (DSO) and Balance Responsible Parties (BRP). The 

services can be offered through DR Aggregators, the energy provider retailers or 

energy communities and individual active consumers.  

Boundaries and labels between Virtual Power Plants (VPPs), demand response 

providers, and prosumers are becoming less relevant as demand-side flexibility 

platforms proliferate. Major utility providers are diversifying their offers even 

further by offering VPPs that combine DR with other types of demand-side 

flexibility and/or generation. DSOs are increasingly sourcing flexibility locally and 

attempting to postpone or prevent grid improvements and reinforcement by 

utilizing local demand-side flexibility, among other things. In the United Kingdom, 

Netherlands, Germany, and Norway, this is already done through third-party 

platforms or direct purchase by DSOs. [6] 

The status of DR in the European Union is analyzed in [6] and an extract is reported 

below. 

Belgium and France have both defined roles and responsibilities for independent 

aggregators. A number of other countries including the Nordics, Netherlands or 

Austria have implemented retailer-based DR programs, but not yet recognized 

aggregators. In Ireland 426 MW cleared in a 2019/20 capacity auction from demand 

response, out of 8266 MW total. In the United Kingdom DR aggregators participated 

in capacity auctions up until 2018 when the European Court of Justice suspended it 

due to violation of EU state aid rules. In Germany DR underway through VPPs 

qualified by TSOs. In Italy there are 350 MW of power dedicated to DR through 
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Virtual Power Plants. Also, the fully deployment of smart meters are a key 

component to the development of residential DR and with the integration of Chain 

2 second generation of smart meters make it the best way to have efficient price 

signals.  

The EU market monitor for demand side flexibility shows that UK, Ireland, France 

and Finland are the countries that have the best engagement for demand side 

flexibility, with Germany, Italy, Netherlands, Austria and the Nordics following 

behind [7]. It is worth noticing that industrial customers are the most engaged with 

demand response programs, but less than 2% of the global potential for demand-

side flexibility is currently being utilized with a huge portion of energy set to 

residential market that can be efficiently managed [6]. 

Access to markets for DR providers in Europe continues to be a challenge for many 

reasons. There is lack of standardization across countries and lack of a framework 

for DR providers. The integration of implicit and explicit Demand Response is 

complex in a fragmented market [8]. 

Demand Response is seen as a crucial technology on the Strategy for the Energy 

Union, by allowing the full participation of consumers in the market. In terms of 

accelerating Demand Response in the residential sector, the promotion of 

household appliances that are able to modulate temporarily their energy use, smart 

metering systems and energy storage possibilities are seen as solutions for an 

effective adoption of Demand Response in the European market. [9]. 
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1.3 Monitoring systems 

This section is formed of four sub-sections: Introduction on monitoring systems, 

Power smart metering, Power smart metering and Chain2 in Italy, Smart plugs. 

1.3.1 Introduction on monitoring systems 

Smart metering and advanced information and communication technology 

solutions for building energy management look to be a real possibility for achieving 

energy savings, utilizing renewable energy resources, and encouraging consumer 

involvement in the energy market. Demand response faces new problems as new 

infrastructures facilitate more efficient network operation and allow for the delivery 

of rapid pricing adjustments. They provide a far more dynamic, reactive pricing 

system, which is necessary to account for real-time renewables availability and to 

track the evolution of the supply-demand balance in real time.  

Smart technology, such as smart meters, are required to monitor energy use on a 

more regular basis for most DR programs, allowing for an increase in the amount 

of load that may be lowered. Smart metering and smart plugs are examples of 

innovative enabling technologies that allow for improved consumer receptivity as 

well as greater utility confidence. These smart technologies enable a variety of tasks, 

such as automated energy consumption reduction in response to high-energy 

processes or an emergency signal from the DSO [1]. 

1.3.2 Power smart metering 

There are numerous requirements that must be met for the effective deployment 

and usage of smart appliances and home energy management systems in the smart 

home. Some of the most significant include the implementation of smart meters, the 

existence of smart grids, an unrestricted market for Demand Response, and the 

availability of a fast internet connection. This will allow for a gradual but 

continuous shift in paradigm, with energy consumers transitioning from a passive 

to an active role in the energy system.  

The installation of a smart meter is the first step toward improved control of the 

household's energy usage patterns. The fact that end consumers may access near-

real-time data on their consumption habits and act on it may provide leverage for 

energy system changes on both the supply and demand sides.  

A set of standard minimum functional requirements for power smart metering 

systems was defined by the EU Commission. The meters should send readings to 

the customer immediately, as direct consumer input is considered essential for 

ensuring energy reductions on the demand side. There is also a reference for 

standardized interfaces that should allow real-time energy management systems 
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such as home automation and demand response schemes to be implemented. 

Reading updates should be made every 15 minutes at the very least. Meters should 

allow remote reading, provide two-way communication between the smart meter 

and external networks, and allow frequent readings so that the information may be 

utilized for network planning on the metering operator's side [9]. 

1.3.3 Power smart metering and Chain2 in Italy 

In the early 2000s, Italy was the first country to implement smart meters on a wide 

basis. Between 2001 and 2011, the country installed 36.7 million meters. Enel 

Distribuzione (now known as e-distribuzione), the largest DSO, which controls 

approximately 86 percent of the distribution points, began the rollout on its own 

initiative in 2001-2006, encompassing almost its whole network. Other DSOs, such 

as Unareti and Areti, followed when the regulator imposed an obligatory strategy 

[10]. 

Italy was the first European country to introduce large-scale electricity smart meters 

for low-voltage end customers, and by 2021 it is considered to be the top country in 

the world for the number of electricity smart meters in service. According to a recent 

report by the European Commission, Italy's smart metering system, with 

replacement of traditional meters since 2001, was the most efficient in Europe [11]. 

The first generation meter installed in the first roll-out phase in the early 2000s has 

the following characteristics. The bidirectional communication between the meter 

and the concentrator takes place by means of a Power Line Communication (PLC) 

signal that uses the same low voltage power line for data transmission. The data 

collected by the concentrator are then addressed and processed by the Central 

System [12]. 

 

 
Figure 1-3 – PLC communication 
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Italy’s smart meters installed until 2011 were in line with the EU requirements, but 

after EC communication of 2012 the necessity of a new meter raised. Italy's smart 

meters were not capable of giving an updated reading at least every 15 minutes [10]. 

The natural consequence was the implementation of a second generation (2G) 

meter, which exploits the so-called Chain 2. At present, Unareti's active 1G meter 

fleet totals approximately 1.1 million meters. The installation plan will be focused 

over 6 years, with the goal of replacing 94% of the meters in the 2020/2025 phase. 

The 2G meter has the possibility to communicate with the concentrator also through 

a second channel in addition to the primary one. The first channel exploits the low 

voltage electrical connection between the meter and the concentrator and uses PLC 

technology for communication. In fact, in the event that the meter is not reached by 

PLC, remote management takes place via radio frequency (160 MHz) from one of 

the nearest concentrators which is able to establish communication through this 

backup channel. Consequently, the new backup channel allows to overcome some 

problems typical of the first generation meter equipped with only PLC channel. For 

example, electromagnetic disturbances generated by equipment not belonging to 

the Distributor and therefore extremely difficult to detect and eliminate can be 

avoided [12]. 
The electricity market will inevitably change with the arrival of these new devices 

as it is believed that Sales Companies will be able to issue invoices more promptly 

and in line with real energy use and therefore more consistent with consumption 

actually incurred by the end customer. In addition, a wider range of new offers 

(prepaid, hourly, customizable bands) will create greater commercial opportunities 

[13]. 

1.3.4 Smart plugs 

The accuracy of demand response studies is influenced by the home load profile 

and electric power usage [14]. This can be achieved by installing smart plugs into 

our homes. Smart plugs are devices that sit between a power outlet and a power-

hungry gadget. Because of their intelligent characteristics, these devices have the 

ability to transform non-smart equipment into smart ones. A smart plug allows 

appliances connected to it to be operated remotely and provides feedback on the 

appliance's energy usage. [9] 

To attain its full potential, a smart house must connect with a variety of agents, such 

as energy or internet suppliers. Smart appliances and smart home gadgets such as 

smart plugs and smart thermostats have been on the market for a few years now, 

and some of the benefits that may be reaped in terms of energy savings are already 

evident, even though their full potential has yet to be realized. [9] 
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1.4 Clustering methods 

The present section is composed of three sub-sections. The first consists of the 

definition of clustering, the second is on Load profiling and the third focuses on 

Clustering techniques classifications. 

1.4.1 Clustering definition 

Clustering is a term that encompasses a wide range of approaches for identifying 

subgroups, or "clusters," in a data collection. Cluster analysis, often known as data 

segmentation, serves a number of purposes. One of them is generally to create a 

natural hierarchy out of the clusters. 

When we cluster a data set's observations, we want to split data so that items within 

each cluster are more closely connected to one another than objects in other clusters. 

Of course, we must define what it means for two or more observations to be similar 

or different in order to make this tangible. Indeed, this is frequently a domain-

specific judgment that must be made based on prior knowledge of the material 

under investigation. [15] [16]  

This chapter focuses on clustering of electricity consumption load curves and on 

total monthly energy consumption clustering.  

1.4.2 Load profiling 

Load profiling, which refers to consumers' energy consumption patterns over a 

given period of time (for example, one day), can assist in determining how 

electricity is really utilized by different customers and obtaining their load profiles 

or load patterns. 

Time of Use tariff design, nodal or customer scale load forecasting, demand 

response and energy efficiency targeting, and non-technical loss detection are 

examples of some applications benefitting from load profiling. [17]. 

Usually, the load profiling process can be divided into five stages: 

• Stage 1: Load data preparation.  

Individual customers' electricity usage trends collected by smart meters 

may contain inaccurate information. The first step should be to clear the 

data.  

• Stage 2: Load curve clustering.  

Clustering is a technique for dividing large load curves into several 

clusters. A typical load curve is at the middle of each cluster. Load profiling 

relies heavily on clustering. Researchers have experimented with a number 

of clustering approaches.  
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• Stage 3: Clustering evaluation.  

The load curves in the same cluster should have similar patterns, but the 

curves in separate clusters should have substantial differences. By 

measuring these similarities and differences, several criteria may be used to 

evaluate clustering performance.  

• Stage 4: Customer segmentation.  

Client categorization is a method of assigning a new customer to a certain 

customer group based on the customer's load profile pattern.  

• Stage 5: Result application.  

Load profiling has many applications including demand response, load 

forecasting, and non-technical loss detecting.  

Customers' active engagement in the smart grid is a critical component of the two-

way power flow, and demand response is one approach to achieve this.[18] 

1.4.3 Clustering techniques classification 

The clustering techniques can be classified into two categories: direct clustering and 

indirect clustering. Direct clustering is a clustering approach that uses data obtained 

directly from smart meters. Instead, we talk about indirect clustering if the load data 

have been treated by dimension reduction techniques or another approach before 

clustering. 

On the basis of load data collection and processing, various clustering techniques 

are used to detect the electricity consumption patterns. The most widely used 

methods for clustering to handle load profiling are K-means, Fuzzy k-means, 

Hierarchical clustering, and Self-Organizing Map, which have been provided and 

analyzed in different papers. These traditional clustering methods are often used as 

a benchmark to assess other new methods. [18] 

As previously stated, indirect clustering refers to the clustering of characteristics 

derived from electricity consumption data rather than the data itself. 

The technique of feature extraction is frequently used to decrease the size of input 

data. The indirect clustering approaches may be classified into two types depending 

on the feature extraction techniques used: dimension reduction based and time 

series based clustering. Dimension reduction based clustering consists of Principle 

Component Analysis, Sammon map, Deep learning, others. Time series based 

clustering techniques are Discrete Fourier Transform, Discrete Wavelet Transform, 

Symbolic Aggregate Approximation, Hidden Markov Model, others [18][17]. 

Every clustering method for load separation has pros and cons, widely treated in 

literature. Despite the fact that there are several current clustering algorithms, k-

means has a significant advantage in that it is easily applicable, interpretable and 

performs well in a variety of problem-solving scenarios [19]. 



Introduction  

 

15 

1.4.3.1 Number of clusters 

Two choices in clustering analysis heavily influence the results of clustering: the 

number of clusters and the distance measure between each data. 

The selection of clusters number necessitates a detailed analysis. On the one hand, 

clustering performance varies depending on how many clusters we're looking for. 

Clustering should be repeated several times to determine the number of clusters 

that produce the best performance metrics. However, having an additional 

information on the dataset that has to be clustered gives a hint on the number of 

clusters that are to be found.  

1.4.3.2 Similarity distance  

Another factor that has a direct influence on clustering performance is the similarity 

distance chosen. The three most commonly used metrics are Euclidean distance, 

Dynamic time warping and Shape-based distance [20]. 

Euclidean distance is the most widely used distance measurement in a wide range 

of applications. The equation below shows how to compute the Euclidean distance 

between two time series 𝑇1 = (𝑇11, 𝑇12, … , 𝑇1𝑛) and 𝑇2 = (𝑇21, 𝑇22, … , 𝑇2𝑛) 

 

𝑑(𝑇1, 𝑇2) = √∑ (𝑇1𝑖 − 𝑇2𝑖)2
𝑛

𝑖
 

 

Dynamic time warping (DTW) is a mapping of points between a pair of time series, 

𝑇1 and 𝑇2 designed to minimize the pairwise Euclidean distance. 

 

 
Figure 1-4 – Alignment between two time series for calculating distance [20] 
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The third distance metric is Shape-based distance which is both shift-invariant and 

scale-invariant, so that it is not affected by the shifting or scaling of the time series 

data. The metric evaluates the cross-correlation between two time series and returns 

a distance value ranging from 0 to 2, with 0 representing identical forms and 2 

suggesting maximally dissimilar shapes. Each time series is normalized to 

guarantee that the distance metric is scale-invariant. 

1.4.3.3 Evaluation criteria 

Based on clustering results, various assessment criteria may be used to measure the 

performance of different clustering algorithms and lead us to pick an acceptable 

number of clusters [18].  

External or internal metrics might be used to evaluate clustering output [20]. When 

class labels are provided for individual data points, external measures are utilized. 

Examples include the Rand Index (RI), Adjusted Rand Index (ARI), Adjusted 

Mutual Information (AMI), Fowlkes Mallows index (FMS), Homogeneity, and 

Completeness. Internal measures, which do not require class labels, quantify the 

quality of clusters based on an optimization target for the clustering output. 

Examples include Silhouette score, Davies–Bouldin index, Calinski–Harabasz 

index, the I-index and sum of square errors (SSE).  

1.4.3.4 Time-series k-means clustering 

The two methods used in this thesis are time-series k-means clustering and 

hierarchical clustering. The first one has been used for clustering of daily power 

load curves, while hierarchical clustering is dedicated for clustering of monthly 

energy consumption. For this reason, the two methods will be discussed in detail in 

the next pages. 

One of the most common iterative descent clustering algorithms is the k-means 

algorithm. It's designed for scenarios when all of the variables are quantitative [16]. 

The k-means clustering method divides a data set into k separate, non-overlapping 

groups in a straightforward way. To use k-means clustering, first it is necessary to 

know the number of clusters k in advance; then the k-means algorithm will allocate 

each sample to one of the k clusters. The K-means clustering technique is the 

outcome of a simple mathematical problem. K-means clustering is based on the 

concept that a successful clustering has as little within-cluster variance as possible. 

There are several ways to define the metric distance, but the squared Euclidean 

distance is by far the most used. 
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The algorithm for K-Means Clustering is the following: 

• Assign a number to each observation at random, ranging from 1 to K. These 

act as the observations' initial cluster allocations. 

• Iterate the following two points until the cluster assignments stop changing: 

o Calculate the cluster centroid for each of the K clusters. The vector of 

the p feature means for the observations in the kth cluster is the kth 

cluster centroid. 

o Assign each observation to the cluster with the closest centroid, where 

closest is defined using Euclidean distance. 

The results achieved will be dependent on the initial random cluster assignment of 

each observation in Step 1 of the Algorithm since the K-means algorithm finds a 

local rather than a global optimum [15]. 

K-means method has been implemented for time series clustering. The library scikit 

for Python provides this method. Three variants of the algorithm are available: 

standard Euclidean k-means, DBA-k-means (for DTW Barycenter Averaging) and 

Soft-DTW k-means, based on the DTW distance measure.  

1.4.3.5 Hierarchical Clustering 

The number of clusters to be found and the initial configuration assignment affect 

the outcomes of using K-means clustering methods. Hierarchical clustering 

approaches, on the other hand, do not require such inputs. Instead, they ask the user 

to provide a measure of dissimilarity across sets of data based on pairwise 

differences between the observations in the two groups [16]. 

Divisive and agglomerative techniques are the two primary types of hierarchical 

cluster analysis methodologies. 

• Agglomerative is a "bottom-up" approach: each observation starts in its own 

cluster, and as one progresses up the hierarchy, pairs of clusters are 

combined. 

• Divisive is a "top-down" method in which all observations begin in one 

cluster and are divided iteratively as one travels down the hierarchy. 

Agglomerative techniques are more often used in practice. [21]. 
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The merging strategy is determined by the linkage criteria [16]: 

• Single linkage; minimizes the distance between the closest observations of 

pairs of clusters. 

• Complete linkage; minimizes the maximum distance between observations 

of pairs of clusters. 

• Average linkage; minimizes the average of the distances between all 

observations of pairs of clusters. 

• Ward; minimizes the sum of squared differences within all clusters. 

Hierarchical clustering, as the name implies, produces hierarchical representations 

in which clusters at each level of the hierarchy are produced by merging clusters 

from the previous level. Each cluster has a single observation at the most basic level. 

There is just one cluster that contains all of the data at the highest level. 

Each level of the hierarchy reflects a distinct grouping of observations into separate 

groups. The whole hierarchy is made up of such groups in an orderly succession. It 

is up to the user to determine which level truly reflects a "natural" clustering in the 

sense that observations allocated to various groups at that level are sufficiently more 

similar to each other. 

 

 
Figure 1-5 – Hierarchical clustering dendrogram [22] 

 

A dendrogram (such as the one shown in Figure 1-5) is a graphical representation 

of a highly interpretable full description of hierarchical clustering. The length of the 

tree’s branches along the vertical axis is proportional to the dissimilarity between 

two clusters. This is one of the primary reasons why hierarchical clustering methods 

are so popular [16]. 
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2 Case study – REDO Milano 

This thesis project has been written based on an internship in A2A Smart City from 

March 2021 to November 2021.  

A2A Smart City is the largest Italian multi utility company and is part of the A2A 

Group. It develops and manages enabling technology infrastructure for integrated, 

networked digital services. The first step toward the smart city is the expansion of 

digital, innovative IoT technologies that enable the collection of recorded data from 

sensors. The competences of A2A Smart City, as well as its interaction with the 

territory, ensure the rapid implementation of new initiatives aimed at improving 

city quality of life. 

The present Chapter presents two sections, the Merezzate+ project and the 

Monitoring systems used in the case study.  

2.1 Merezzate+ project 

A2A Smart City, alongside with A2A Calore e Servizi, Politecnico di Milano and 

Poliedra, is one of the Partners of Merezzate + project.  

The Merezzate+ project intends to demonstrate an innovative approach in a new 

affordable housing district in the south-east of the city of Milan called REDO 

Milano, composed by 800 apartments 615 of which dedicated to social housing. It is 

near Rogoredo Santa Giulia, in the eastern part of Milan. It is a living lab for 

integration of clean energy, sustainable mobility and circular economy. A2A Smart 

City played the role of installing surveillance systems and IoT technologies for 

homes of Merezzate residents. In particular, the different types of devices installed 

consists of lampposts, thermostats, smart meters, smart plugs, smart water meters, 

for a total of more than 2200 instruments. 

In this thesis only data retrieved with smart electricity meters and smart plugs have 

been analyzed. 
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EIT Climate-KIC is a Knowledge and Innovation Community (KIC) dedicated to 

speeding up the transition to a carbon-free, climate-resilient society. 

Climate-KIC, which is funded by the European Institute of Innovation and 

Technology, identifies and supports innovation that aids society in mitigating and 

adapting to climate change. The main focus of the Community in on three key 

systems to deliver the outputs and impacts required by 2030. They are in the area 

of focus of Urban transitions, Sustainable land use, Sustainable production systems 

and Decision metrics and finance. 

Climate-KIC focuses on transformational, systemic innovation, which entails 

multiple interconnected ideas occurring at the same time to cause a systemic shift. 

Its goal is to transfer products, good ideas, or services from niche to mainstream in 

order to achieve a tipping point and have the most influence possible. 

The Knowledge and Innovation Community has identified cities, land use, and 

manufacturing as the three major systems that, if change were triggered wholesale 

and emissions reduced, would have the most potential in realizing a climate-

resilient society and net-zero carbon economy, as guided by the Paris Agreement, 

advisors, and community. 

Climate-KIC takes the strategy of piloting, testing, and scaling to create room for 

experimentation. 

Milan Merezzate+ is one of numerous Climate- KIC's strategic initiatives taking 

place in Milan. Much of the information about the trials is still confidential, but they 

involve fundraising and leveraging a carbon fund, new contracting and 

procurement models, new policies and resilience, greening Milan through nature, 

and controlling the effects of the urban heat island [23]. 
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The Merezzate+ project aims to demonstrate an innovative method in a new 

affordable housing district in Milan's south-east, with 615 apartments partially 

dedicated to social housing. The project's goal is to boost the adoption of innovative 

solutions by incorporating them into an urban development model that promotes 

social inclusion, renewable energy and energy efficiency, sustainable mobility, and 

circular economy activities. 

 

 
Figure 2-1 – Merezzate district area 

 

The activities are fueled by the district's new residents, as well as the main local 

public actors and demand-side players like housing associations and utilities 

providers. This allows for a better reflection of user needs and, as a result, increased 

efficacy, the creation of a community, and the encouragement of social activities. 

Merezzate+ results will be utilized to develop recommendations for the model's 

possible transferability and replication in other parts of Milan, as well as other 

Italian and European cities. 

An integrated set of measures has been co-designed, executed, and monitored, 

based on the three pillars of the project:  

• Clean energy and energy efficiency 

• Sustainable mobility 

• Circular economy 
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The testing of a new low-temperature district heating model in the Merezzate+ 

neighborhood has a unique feature: it is the first plant of its kind in Italy to also be 

utilized for summer cooling, making it an excellent alternative for efficient clean 

energy production in our cities. The air conditioning and ventilation of a few 

specific environments has been achieved using "Freescoo," an innovative 

technology that is mostly powered by the district heating network. Other 

apartments present split air conditioners.  

ICT solutions for controlling individual residences' thermal and electrical 

consumption have been evaluated, allowing tenants to monitor their behaviors in 

real time, ensuring autonomy in the management of comfort in interior spaces, and 

establishing the conditions for sensible energy usage [24]. 

All appliances installed in Merezzate district are electric. The trend of newly 

constructed buildings is going in the direction of creating only electric 

neighborhoods to prevent the dangers linked to gas leaks explosions. The main 

difference with respect to “classical” Italian apartments is the absence of gas for the 

water boiler heaters and for the cooking stove.  

2.2 Monitoring systems used in Merezzate 

The monitoring systems used in this case study are mainly of three types. The most 

obvious instrument is Unareti’s smart meter installed in every apartment. The 

second is the so called Chain2Gate, a device that has been developed by Mac srl (a 

company based in Recanati, Italy) and produced by A2A Smart City. This device is 

installed in the electrical panel of every apartment in Merezzate and sends data 

monitored by the smart meter to the network server of A2A Smart City. The third 

device are the smart plugs, produced by enginko (an Italian company that designs 

and manufactures IoT devices, software applications and cloud systems).  
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2.2.1 Second generation smart meter 

As stated before, smart meters installed in Italy have to be replaced due to the 

absence of possibility to retrieve data at least every 15 minutes. In the case of 

Merezzate, second generation smart meters have been installed during the 

construction of the buildings in every apartments.  

The smart meter communicates with the concentrator through PLC channel, with 

the possibility to talk also via a second PCL channel. 

2.2.2 Chain2Gate 

Chain2Gate has been installed in 615 apartments in Merezzate and monitors the 

energy consumption of every residence. It’s the device that talks with the power 

meter via PLC channel, retrieving data every 15 minutes. Data is then sent via 

LoRaWan protocol to the gateways in Merezzate neighborhood, so that they arrive 

in A2A Smart City’s network servers.  

The properties measured with Chain2Gate are Active Energy, Instantaneous Active 

Power and Mean Active Power.  

 

Figure 2-2 – Second generation smart meter 

Figure 2-3 – Chain2Gate 



 Case study – REDO Milano 

 

24 

2.2.3 Smart plug 

Smart plugs are installed to follow the energy consumptions of home appliances of 

residents in Merezzate. A first batch of smart plugs was delivered to the users in 

October of 2020, while a second distribution happened in June 2021. A total of 200 

smart plugs have been given to Merezzate residents.  

Smart plugs manufactured by mcf88 (a branch of engiko) have the possibility to 

remotely switch on/off the appliance, even if this feature was not applied in this 

study. The features for power metering include the measure of instantaneous active, 

reactive and apparent power, instantaneous active, reactive and apparent energy, 

current, tension and running time. All this data is sent via LoRaWan protocol, just 

like Chain2Gate devices. 

 

Figure 2-4 – Smart plug 
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3 Data mining 

The goal of this chapter is to show how raw data can be edited to obtain information 

on the single electricity consumer and on the whole Merezzate district. 

In particular, the following sections of this Chapter will focus on the transformers, 

clustering of the customers (by clustering load curves and monthly energy 

consumption), analysis of smart plugs and the last step is about combining the 

information of electricity consumption of an apartment with information about the 

set of appliances checked with smart plugs. 

3.1 Introduction on data mining 

One of the main parts of this thesis is about the analysis of the collected data from 

smart plugs and chain2gate devices.  

In order to work with the big mole of data it was necessary to use Python 

programming language and the most common libraries for data science. In 

particular, Pandas and scikit-learn are the libraries used for data mining in this 

thesis work. Plots have been produced with matplotlib and Plotly libraries.  

Data analyzed in this thesis received a preliminary cleansing process, in order to 

have the best set of measurements possible. For instance, data retrieved from a 

Chain2Gate every 15 minutes showed one or more missing values for a single day. 

The method used for correcting this missing value was linear interpolation. Simply 

the vacant value was addressed as the mean value of the previous and the following 

measure. This reasoning is in line with the methods used is real measurements for 

billing electricity consumptions. 

If the missing values for a day were greater than 20, on a total of 96 quarter-hour 

intervals, the data for that single day was considered non valid and discarded. 

Many papers regarding clustering of load curves implemented the normalization of 

data between values ranging from 0 to 1 to find similar profiles between different 

types of users, like residential, offices, companies and factories. In this thesis 

normalization was not used. The main reason for this decision is that the group of 

residential customers tends to have a comparable load profile and the objective of 

clustering of load curves was to define who consumed more than others. This can 
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be done if the data is “raw”, not normalized, otherwise there would be only the 

information on the time at which energy have been consumed, not the quantity.  

3.2 Preliminary analysis 

One of the possible things to analyze is how the transformers are working in a 

certain period. Thanks to the information of how each apartment is connected to the 

respective transformer, it is possible to identify the five transformers that are 

installed in Merezzate.  

In total there are 412 apartments of the 615 total apartments that are connected to 

the grid because they have been sold or given in social housing. About 200 

apartments haven’t been delivered yet at the time of this thesis.  

The 412 apartments are respectively connected to the transformers as follows: 

• Transformer 1: A01943_TR1 – 95 apartments 

• Transformer 2: A01944_TR1 – 85 apartments 

• Transformer 3: A01946_TR1 – 41 apartments 

• Transformer 4: A01947_TR1 – 99 apartments 

• Transformer 5: A01948_TR1 – 92 apartments 

Every transformer is not completely dedicated to the apartments, so the info found 

in this paragraph is solely related to the information received by the chain2gate 

instruments. It’s important to point this out because it could be possible that some 

other services are connected to these five transformers like shops, electric cars’ 

charging stations and street lighting.  

Summing the active power measured every quarter of an hour of all the apartments 

that are connected to the respective transformer, it is possible to obtain five different 

curves. Each curve is referred to one transformer. 

The graphs related to the month of May 2021 for each transformer are reported in 

the Appendix. It’s also possible to obtain the total curve of the active power as a 

sum of the five power curves of the transformers.  

The result is a line whose trend shows how the transformers are busy, due to the 

power demand of residences in Merezzate neighborhood. In Figure 3-1 it has been 

represented in black. 
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Figure 3-1 – Total power trend, May 2021  

 

From a quick look at the graph, it’s possible to notice that the maximum requested 

power for this month is between 160-170 kW and it has been reached for about four 

times in the whole month. Meanwhile, the minimum power ranges around 30 kW, 

continuously asked each day. 

The plot of Figure 3-1 can be difficult to visualize, so below is reported a week of 

May, in particular form Monday the 10th to Sunday the 16th.  

 

 
Figure 3-2 – Total power trend of one week, 10th to 16th of May 2021 

 

From Figure 3-2 we can see that power consumption differs based on the day of the 

week. In particular, weekdays from Monday to Friday present a peak around dinner 

time. Energy consumption in weekends have a different trend, linked to the habits 

of residents to stay at home since early in the morning. This will be further examined 

in the section on clustering of the residents. 
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The power load curves can be seen in the same daily time range, from 00:00 to 24:00. 

It can be seen in the figure below with respect to the month of May 2021, with the 

addition of the mean trend colored in red. Every line is the power curve of one day. 

The mean curve of Figure 3-3 clearly tells us that residential power demand has a 

minimum during night hours and two peaks around lunch and dinner time. This is 

a common trend for all months that has been analyzed in this study. The differences 

between months will be further analyzed in the next sections, from the power and 

energy point of view. 

 

 
Figure 3-3 – Daily total power trend, May. 
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The same graph can be obtained for the following months, June, July and August 

2021. 

 

 
Figure 3-4 – Total power trend, June 2021 

 

 
Figure 3-5 – Total power trend, July 2021 
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Figure 3-6 – Total power trend, August 2021 

 

From these power consumption trends, it’s possible to make some remarks.  

The maximum power demand is quite variable, ranging from 100 kW to 170 kW. It 

is reached every day around dinner time, from 19.00 to 21.00 depending on the day. 

This is an indication of the fact that the contemporaneity of power consumption is 

linked to cooking appliances. This aspect will be pointed out in the section about 

smart plugs measurements analysis. 

Another aspect that can be observed is that the trend of the minimum power raises 

from May to July, as it can be seen in Figure 3-7. The red circle points out this trend. 

 
Figure 3-7 – Total power trend – May, June and July 
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An obvious link to the increase of power consumption can be found in the 

temperature increase, typical of summer months. In particular, the correlation can 

be seen considering the perceived temperature by humans, as a combination of 

temperature and humidity (heat index).  

 
Figure 3-8 – Heat Index and Total power trend – May, June and July 

 

The red line in Figure 3-8 shows the trend of apparent temperature perceived by 

people living in Milan during months from May to July.  

Combining the information of power and heat index, it’s possible to notice that 

when the heat index raises over a value of 25°C, the minimum power consumption 

in Merezzate district raises. In particular, the minimum power demand was equal 

to 23,7 kW on the 4th of June. The temperature and humidity increase of the 

following days brought an increase in minimum power up to 40,2 kW on the 16th of 

June. The increase is equal to 70% with respect to the value of 4th of June. This could 

be linked to a raise in HVAC usage during the night.  

In the next section there will be some insights about this power increase trend from 

the point of view of active energy analysis. 

3.3 Energy demand 

Active energy is measured with Chain2Gates every 15 minutes for each apartment. 

From the sum of all apartments’ active energy, it’s possible to obtain the following 

graphs. On the x-axis there is the number of quarter-hours, while on the y-axis there 

are represented the values of average active energy for the respective quarter-hour. 
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Figure 3-9 – Energy consumption - May 

 
Figure 3-10 – Energy consumption – June 

 
Figure 3-11 – Energy consumption – July 
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Figure 3-12 – Energy consumption – August 

 

It is quite trivial to find some additional information by just looking at these graphs 

separately, so in the following plot it is represented a comparison of the different 

energy consumption trends. As an additional point, the plots have been shifted to 

match weekdays and weekends of different months so that they are comparable. 

 

 
Figure 3-13 – Energy consumption trends overlapped 

 

A thing that can be pointed out is that the maximum energy consumption for the 

whole apartment complex doesn’t exceed 40 kWh for all the months taken into 

examination. An important thing to notice is that the maximum is not the only 

problem related to the stability of the distribution grid. In fact, as it is explained in 

the Unareti’s 2021 development plan [13], another important factor is the surge of 

energy consumption in the night-time hours. One of the most recent examples is 

related to a heat wave that affected Milan from 24th of June to 30th of June 2019. In 

the 5-day range, the maximum power distributed my Unareti increased by 27%, 

while the minimum power of the night-time of the same 5-day range increased by 
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40%. This brought to thermal stresses extended in time, resulting in grid failures 

and power outages. In the case of this data mining, it can be seen in detail the 

increase of minimum energy consumption making a close-up of the graph above. 

Considering only May and June, respectively in blue and red. 

 
Figure 3-14 – Energy consumption of May and June  

 
Figure 3-15 – Detail of energy consumption of 13th and 14th of May and June. 

As stated in the previous section this increase in energy consumption in the night-

time can be linked to the increase in ambient temperature. In particular, after the 

12th of June the profile of Merezzate district changes due to the beginning of air-

conditioning use. 

As a next step it is interesting to understand if the energy usage is increasing or 

decreasing from May to August. Considering a specific set of days in order to have 

a good comparison, it has been defined a set of days for each month: 

• From the 4th to the 25th of May 

• From the 1st to the 22nd of June 

• From the 6th to the 27th of July 

• From the 3rd to the 24th of August 
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In this way there is the same number of weekdays (fifteen) and weekends (eight) 

for all months taken into consideration. 

The results are the following: 

May  35’748,3 kWh 

June  36’324,3 kWh 

July  39’331,2 kWh 

August  39’023,7 kWh 

In each month it has been measured an increase in energy consumption. From the 

percentages point of view, June increased by 1,6% with respect to May, July 

increased by 8,2% with respect to June and August decreased just by 300 kWh with 

respect to July. 

As stated before, the minimum energy consumption increases in June and July 

during the night-hours, but it is interesting to know if this increase concerns also 

peak daily hours. For this purpose, we can obtain the graph of the mean power 

consumption of each daily measurement for each month.  

 
Figure 3-16 – Daily mean power consumption 

 

From the graph above, it can be noticed that peak hour electricity demand was 

lower for June and July, while during off-peak hours (afternoon and night-time) the 

mean power increased. This off-peak power increase is the main component that 

led to an increase in global energy consumption in Merezzate neighborhood. 

The purple curve is related to the mean power consumption of all apartments in 

Merezzate during August and it is clearly showing lower peaks, while during the 

night it is similar to June and July’s trends. The low peaks can be linked in an 

important number of people that went on holidays, leaving their dwellings for some 

days.  
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3.4 Load curves clustering 

This section will focus on post-processing of data retrieved from Chain2Gate 

meters, with the objective to create clusters of customers. The idea is to split the 

users into groups based on their trends of electricity consumption. The result of 

clustering can be exploited into different types of analysis and evaluations, like 

demand-response and peak shaving mechanisms. 

Into this section the separation of users will be based on daily power load curves, 

as the one represented in Figure 3-17. 

 
Figure 3-17 – Example of daily load power curve of one customer 

 

The curve is referred to the active power requested by an apartment during the 18th 

of May As we can see, it had a peak in the range of the 80th quarter of hour, which 

is referred to about 20 pm, probably because the customer had dinner and cooked 

something with kitchen appliances. 

Obviously, this curve is different for every day and for every apartment, based on 

the appliances that are in use in a specific period. The curves are influenced by the 

type of appliance in use and from the resident’s habits. For a whole month there 

would be around 30 curves, one for each day. 
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In order to “normalize” the curves of every customer, it has been performed the 

mean of the load profiles, as it can be seen in the two graphs below. 

Since it is known that the trend of electricity consumption differs from weekdays 

and weekends, it has been made a separation. Every user would have two mean 

load profiles, one for weekdays and one for weekends. In this way it is possible to 

understand who consumes more during the working days and less during the 

weekends of vice versa.  

Figure 3-18 represents the weekdays daily power curves (with lower opacity) and 

the red line is the mean value of one single resident.  

Figure 3-19 is the same but with respect to weekends. 

The apartments that are inhabited are around 400, on a total of 615 apartments since 

some of the remaining 200 are still to be occupied. For this reason, the clustering 

method has been done on a total of about 400 curves, with each curve representing 

the mean power consumption of a single customer. 
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Figure 3-18 – Daily (weekdays) power curves of one customer, May. 

 

 

 
Figure 3-19 – Daily (weekends) power curves of one customer, May. 
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3.4.1 Clustering 

To divide the mean load curves into clusters, it is necessary to define a clustering 

method. The method employed for this purpose is a k-means method built for time 

series clustering. This algorithm is present in scikit-learn, an open-source machine 

learning library for Python programming language.  

The parameters that must be decided for the implementation of this clustering 

method are the number of clusters to be found, the metric used for cluster 

assignment and barycenter computation and the number of iterations of the k-

means algorithm for a single run.  

The number of clusters needs to be decided a priori. It has been decided to divide 

the load curves into three clusters, because the separation into three classes (low, 

medium and high consumption) looked the more natural and suitable, looking at 

other analysis performed in literature. This decision has been validated during the 

hierarchical clustering analysis of Section 3.5 (Energy consumption clustering), 

which finds the best customers separation into three clusters.  

As for the metric it has been chosen a Euclidean metric, in line with what was 

described in Section 1.4.3.4 Time-series k-means clustering. 

The number of iterations for a single run was set to 50, since k-means algorithm 

needs a lot of iteration to find the best solution.  

The result of clustering of customers for the month of May is the following.  

Talking about weekdays’ curves clustering, on a total of 389 mean load curves, 167 

were clustered in one cluster, 155 into the second cluster and 67 into the third 

cluster.  

A visual representation of this division in groups can be seen below, where there 

are drawn the mean curves of the 3 clusters. 
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Figure 3-20– Mean curves of the three clusters (weekdays), May 

 

 

 
Figure 3-21- Mean curves of the three clusters and mean power curves of daily (weekdays) power curves of all 

customers, May. 
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It is possible to see that the clustering algorithm divided all the curves into three 

groups, that can be called as “low”, “medium” and “high” consumption.  

From Figure 3-20 it can be noticed a distinct color difference in the mean load curves, 

based on the group they belong to, which justifies for this classification. 

As stated above, clustering has been made making the differentiation between 

weekdays and weekends. The result of weekends clustering referred to the month 

of May is the following. 

 

 
Figure 3-22– Mean curves of the three clusters (weekends), May 

 

 

 
Figure 3-23- Mean curves of the three clusters and mean power curves of daily (weekends) power curves of all 

customers, May. 
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It is possible to notice a distinct difference in mean power consumption, by looking 

at Figure 3-20 and Figure 3-22. During both workdays and weekends, the typical 

power demand presents two peaks, one around lunch time and one around dinner 

time. However, the magnitude of power demand is different. Weekdays typically 

present a larger peak in the late afternoon, mostly because people tend to work 

during daytime. Weekends have a power demand where the two peaks have about 

the same magnitude, due to the presence of the tenants who tend to use home 

appliances earlier. The different lifestyle of each resident influences and 

considerably affects the electricity demand pattern [25]. This difference in power 

consumption trends justifies the separation between weekdays and weekends to 

notice the different tendencies of every customer.  

The clustering of the data has been performed for the months during which 

electricity consumption was monitored with Chain2Gates. The graphical results of 

clustering for June, July and August are represented in the Annex, both for 

weekdays and weekends. 

It’s interesting to focus on the numbers of the clustering division. The total number 

of users for each clustering differs because of a pre-processing of the data. For 

instance, users that presented a mean power consumption curve with all the values 

lower than 30 W have been removed from this clustering, because they wouldn’t be 

important for this analysis. The result is a dataset that varies, from 389 residents for 

May to 436 residents for August. 

So, the numbers of people divided into the three clusters, low, medium, and high, 

for the four months of the analysis can be seen from a percentages point of view. 

 

Table 3-1 – Percentages of division of mean power curves into clusters (workdays) 

Clusters May June July August 

Low 42,9% 48,7% 56,3% 61,7% 

Medium 39,9% 36,4% 33% 27,5% 

High 17,2% 14,9% 10,7% 10,8% 

Total 100% 100%  100% 100% 

 

It’s possible to notice that the percentages of customers divided in clusters change 

with the months; in particular, going from May to July, a higher percentage of 

apartments are clustered into the “low” power consumption cluster, while the 

percentage of “medium” and “high” cluster decreases. This could be linked to the 

change in habits of people typical of summer months where it’s usual to leave the 

habitation to go on holiday. In this way the electricity consumption decreases a lot 

because the only appliance that could be operating would be the fridge that has a 
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low energy demand, almost constant in time. This observation can be done in the 

exact same way for clustering of weekends. 

3.4.2 Clustering analysis vs Apartment type 

Another information that has been added to this clustering analysis is the type of 

apartment that are present in Merezzate district. There are four types of dwelling 

indeed: one-room, two-room, three-room and four-room apartments. 

Adding this information to the previous clusters found, it’s possible to obtain a table 

of the three clusters (low, medium, high) versus the apartment type. 

The table below represents this classification for the clustering of workdays in the 

month of May for a total of 389 apartments. 

 

Table 3-2 – Cluster vs apartment type classification, workdays, May 

 One-room Two-room Three-room Four-room 

Low 11 111 40 5 

Medium 2 42 98 13 

High 2 12 42 11 

Total 15 165 180 29 

 

As for the previous case, the table above can be better understood from the 

percentages point of view, computing the percentages with respect to the total 

apartments number of each typology. 

 

Table 3-3 – Cluster vs apartment type classification – percentages, workdays, May 

 One-room Two-room Three-room Four-room 

Low 73% 67% 22% 17% 

Medium 13% 25% 54% 45% 

High 13% 7% 23% 38% 

 

Highlighting with colors like in a density map, it becomes easy to notice a peculiar 

trend. Looking at the “low” cluster, we can notice a decreasing trend going from 

one-room to four-room apartment. Most of the one-room and two room apartments 

have been clustered in the “low” group, while just about 20% of three-room and 

four-room apartments have been grouped as “low” power demand. On the 

contrary, most of three-room and four-room apartments have been grouped as 

“medium” and “high” power consumers.  
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The same trend can be seen in the case of June and July. 

 

Table 3-4 - Cluster vs apartment type classification – percentages, workdays, June 

 One-room Two-room Three-room Four-room 

Low 80% 69% 33% 17% 

Medium 7% 26% 46% 50% 

High 13% 5% 21% 33% 

 

Table 3-5 - Cluster vs apartment type classification – percentages, workdays, July 

 One-room Two-room Three-room Four-room 

Low 77% 76% 41% 36% 

Medium 23% 20% 43% 46% 

High 0% 4% 16% 18% 

 

For both June and July, the percentages decrease going from one-room to four room 

in the case of “low” cluster, while the percentages increase for both “medium” and 

“high” cluster going from one to four room apartment. 

A thing that could be noticed by looking at the differences between May, June and 

July is the increase of the percentage of three-room and four-room apartments that 

are grouped in the “low” cluster. This is linked to the same observation made for 

Table 3-1. 

It’s important to notice that these trends have been found a posteriori of the 

clustering of mean power load curves, without using the information of the type of 

the apartment as an additional input in the clustering method.  
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3.5 Energy consumption clustering  

The previous section focused on clustering of residential customers’ power load 

curves, with a differentiation between workdays and weekends, to notice the 

different trend of power consumption in terms of magnitude. This type of analysis 

keeps into consideration the difference in habits between workdays and weekends, 

so that one residential customer could be grouped in a “low” cluster for workdays 

and in a “high” cluster for weekends.  

This section is made to have a clustering of Merezzate neighborhood based on the 

energy consumed by each apartment during a defined month. Also, in the following 

analysis the information about apartment typology will be added to the clustering 

algorithm.  

3.5.1 Monthly energy consumption 

As said in a previous chapter, Chain2Gate retrieves data of mean active energy 

consumption every quarter-hour for each apartment, measured in Wh.  

 

 
Figure 3-24 – Energy load curve of a single day for a user, example 

 

The sum of active energy measured in the 96 intervals is equal to the active energy 

of the day. Summing the total energy for all the days of a month gives us the value 

of energy consumed by an apartment, measured in kWh. 

In addition, for every user we will add the information of the apartment type. Like 

for the case of power curves clustering analysis, in Merezzate there are one, two, 

three or four-room apartments. The typology of apartment is inserted into the 

dataset for clustering via a ratio of monthly energy consumption over the apartment 

size. For instance, if one inhabitant of Merezzate consumed 120 kWh of energy for 

the month of May and his apartment size was 72 m2, the ratio of energy consumed 
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per square meter would be 1,66 kWh/m2. The addition of this ratio is interesting in 

the visual representation of the clustering results. 

The dataframe for clustering has the following appearance. 

For each device ID-code, there is the respective energy consumption of the analyzed 

month and its energy consumption over apartment size ratio.  

  

Figure 3-25– Dataframe for 

clustering 
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3.5.2 Clustering and user behavior impact 

The clustering method chosen for this section is hierarchical clustering. This method 

is different from k-means clustering method because it doesn’t depend on the 

number of clusters that must be specified at the beginning of the assignment. 

Instead, hierarchical clustering needs the specification of a measure of dissimilarity 

between the groups. The result is a hierarchical representation of the dataset where 

every level of the hierarchy is created by merging clusters at the nearest lower level.  

The method can be visually represented by the typical dendrogram, where all the 

data are linked in clusters, from the lowest level where the number of clusters is 

equal to the number of single data, to the higher level where all data are grouped in 

a single cluster.  

The measure of dissimilarity in this data analysis is “ward linkage”, which 

minimizes the variance of the cluster that must be merged from a lower level to a 

higher level. 

Hierarchical clustering method is implemented in the scikit-learn library for 

Python, the same that was used for power load clustering.  

 

 
Figure 3-26– Dendrogram for hierarchical clustering with ward linkage 

 

Above is represented the dendrogram of the dataset of May. By making a straight 

horizontal line it becomes possible to find the number of clusters that are wanted to 

be found. As a similarity with the previous clustering of power load curves, the 

number of clusters is set equal to three. 
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The results of hierarchical clustering of data of May show that 115 users have been 

clustered as “low” energy consumption, 216 as “medium” and 71 as “high”. This 

classification is easily understandable by looking at the plot of monthly energy 

consumption in ascending order for all the apartments in Merezzate, represented 

with the respective color of the cluster they belong. On the x-axis there is the number 

of apartments. The centroid of the three clusters can be obtained by summing the 

active energy of every apartment that belongs to the same cluster and dividing the 

total by the number of apartments in that same cluster. In this way it’s possible to 

obtain the three mean values of each cluster: “low”=54,87 kWh, “medium”=126,92 

kWh, “high”=226,53 kWh. 

 

 
Figure 3-27– Clustering results (May), Monthly energy consumption 

 

 
Figure 3-28 – Clustering results (May), Monthly energy vs energy consumption per square meter 



Data mining  

 

49 

 
Figure 3-29– Clustering results (May), Monthly energy vs apartment type 

 

From Figure 3-28 and Figure 3-29 we can see how clustering separated the 

apartments considering the information on the typology of apartment.  

We can obtain a table of the users clustered by apartment typology like for the case 

of power load curves. 

 

Table 3-6 – Cluster vs apartment type classification, May 

 One-room Two-room Three-room Four-room 

Low 8 66 35 6 

Medium 8 95 98 15 

High 2 9 51 9 

Total 18 170 184 30 

 

And transforming it into percentages points: 

 

Table 3-7 – Cluster vs apartment type classification – percentages, May 

 One-room Two-room Three-room Four-room 

Low 44,44% 38,82% 19,02% 20,00% 

Medium 44,44% 55,88% 53,26% 50,00% 

High 11,11% 5,29% 27,72% 30,00% 

 

The results of these clusters are not very different from the one of workdays of the 

analysis based on power load curves. There is always a decreasing trend for the 
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“low” cluster, and an increase in the percentages for the “high” cluster. Talking 

about the “medium” cluster, it keeps almost constant, with about 50% of the 

apartments that are clustered in this group, for all the apartment types. 

Clustering of data from June is different from the month of May for the following 

reason. By clustering into three groups like as before, the result is depicted by the 

image below. 

 

 
Figure 3-30– Clustering results (June), Monthly energy consumption 

 

There are only 11 users that are clustered into the “high” energy consumption 

cluster simply because they consumed a lot more than the other inhabitants of 

Merezzate. This suggests that clustering for the month of June can be done by 

finding four clusters instead of three, by threating this “high” cluster as a sort of an 

outlier. 

 

 
Figure 3-31 – Clustering results (June), Monthly energy consumption, 4 clusters 
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Figure 3-32– Clustering results (June), Monthly energy vs energy consumption per square meter 

 

 
Figure 3-33– Clustering results (June), Monthly energy vs apartment type 

 

Separation of user’s electricity consumption in four clusters for June can be seen 

from percentages point of view like May, with the same considerations. 

 

Table 3-8 – Cluster vs apartment type classification – percentages, June 

 One-room Two-room Three-room Four-room 

Low 31,25% 24,42% 18,82% 18,75% 

Medium 43,75% 54,65% 38,17% 28,13% 

High 12,50% 19,77% 40,86% 43,75% 

Very high 12,50% 1,16% 2,15% 9,38% 
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The analysis on clustering of data related to June, suggests that the number of 

clusters can be different than three, with the purpose of making different 

evaluations.  

In the analysis of curve power load clustering, the information about type of 

apartment was added after clustering. For clustering of monthly energy 

consumption, the info of the apartment type has been used combined with the 

energy values. Now the next step is making the previous separation of Merezzate 

apartments based on the type of apartment before clustering. In this way one-room 

apartments will be clustered into three groups (low, medium, high). Then two-room 

apartments will be clustered and so on. In total, this reasoning leads to a total of 12 

separated groups that can all be labeled as “low”, “medium” or “high” energy 

consumption, bringing the clusters number back to three. 

 

 
Figure 3-34– Clustering results based on apartment type, May 

 

The separation into 12 clusters is easily seen from Figure 3-34, where each cluster is 

circled in blue, while the three “classic” clusters are indicated by the colored dots. 

It’s possible to notice the consequence of this analysis by having a comparison of 

the graph of monthly energy consumption in ascending order.  

We can see that values in Figure 3-35 are more heterogeneous with respect to Figure 

3-36. This is linked to the fact that by dividing the users beforehand by the typology 

of their apartment, the hierarchical clustering method have been implemented four 

separated different times, one for each apartment type. The result is a case where it 

becomes possible to define if a particular user consumed energy in a “good” way, 

in line with similar users, or in a “bad” way, by consuming more electricity with 

respect to the whole apartments in the neighborhood.  
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For instance, users that live in a two-room apartment that have been clustered in 

the “medium” group and have consumed less than 100 kWh are actually “low” 

energy consumption users, by the global clustering results. However, the two-room 

apartment users that consumed more than 150 kWh are asking too much energy 

when comparing them with the other two-room apartment users, so they should 

lower their energy use.  

 

 
Figure 3-35– Clustering results by apartment type (May), Monthly energy consumption 

 

 
Figure 3-36– Clustering results (May), Monthly energy consumption 
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After performing the clustering on data related to all the months in exam, it becomes 

possible to notice who has been clustered always into the same category, or who 

moved from one cluster to another, based on their monthly energy consumption. 

By combining data from May, June, July and August into a single dataframe with 

the information of the clusters for each apartment, it’s easy to filter users. Now the 

goal is to find the apartments that have always been clustered into the “low” group, 

for May, June, July and August.  

 

Table 3-9 – Number of residents clustered in the same group from May to August 

 Cluster    

May Low Low Low Low 

June  Low Low Low 

July   Low Low 

August    Low 

 111 56 52 46 

 100% 50% 46% 42% 

 

 Cluster    

May Medium Medium Medium Medium 

June  Medium Medium Medium 

July   Medium Medium 

August    Medium 

 209 113 95 66 

 100% 54% 46% 32% 

 

 Cluster    

May High High High High 

June  High & very 

high 

High & very 

high 

High & very 

high 

July   High High 

August    High 

 71 59 22 16 

 100% 83% 31% 23% 
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The number of apartments on the fourth column of these tables are the apartments 

that never changed their habits of electricity consumption, being grouped always 

as the same type. For “low” and “medium” clusters, about the 42% and 32% of the 

users that were clustered into that group of May kept the same group in June, July 

and August. It’s obvious that the remaining 58% consists of users that changed their 

energy consumption and have moved of cluster. In the same way, 23% of residents 

that were grouped in the “high” cluster of May, were still grouped in the “high” 

group. It’s interesting to notice that the cluster changing rate has a different trend 

for each cluster. For instance, the decrease of “low” customers in less steep that 

“high” customers since “low” group goes from 100% to 42% from May to August, 

while “high” group drops from 100% to 23% in the same four months period.  

We can use these “true” consumers to obtain the mean energy consumption values 

of the different months divided by cluster. 

 

Table 3-10 – Mean energy consumption for “true” residents 

 Low Medium High 

May 46,6 kWh 118,4 kWh 234 kWh 

June 38 kWh 104,3 kWh 265 kWh 

July 40,6 kWh 105 kWh 315 kWh 

August 42,4 kWh 112,8 kWh 335,1 kWh 

    

Mean energy 

consumption 

41,9 kWh 110,1 kWh 287,3 kWh 
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3.6 Smart plugs analysis 

Smart plugs are tools used to control electricity consumption of home appliances 

installed in Merezzate district. After a first survey, 18 residents have accepted to 

install from one to five smart plugs in their dwelling. The second survey brought 

the total apartment number with installed smart plugs to 65 of the total 615 

apartments of the whole neighborhood. 

Smart plugs monitor incremental active energy, instantaneous power demand, 

current, voltage, inputs and outputs. Measure of these quantities are carried out 

every fifteen minutes.  

In this study smart plugs have been implemented as an efficient way to follow the 

consumes of home appliances to have another valuable information when 

combining them with the global apartment consumption. In this section there will 

be analyzed data from June, July and August.  

The following sub-sections treat different aspects of smart plugs analysis. First, it 

will be shown the mean energy consumption per each appliance typology followed 

with smart plugs in Merezzate. The next point will focus on how appliances have 

been used during the day in a 24-hours span, with some details on demand-

response mechanism. As a last sub-section, it will be presented how information of 

Chain2Gate (power metering) and smart plugs (appliance metering) can be 

combined to educate the resident on his electric consumptions and for an overall 

better user experience  
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3.6.1 Mean energy consumption per appliance 

As a first step, it was interesting to find what appliance was the most energy 

demanding. This has been performed by analyzing the monthly active energy 

demand of each smart plug, dividing them by type of appliance performing a 

weighted mean between all the same appliances.  

In the following table it can be seen the number of appliances followed by smart 

plugs installed in Merezzate, with the respective mean energy consumption.  

 

Table 3-11 – Mean energy consumption per home appliance 

 June July August 

 no 

Energy 

[kWh/month] no 

Energy 

[kWh/month] no 

Energy 

[kWh/month] 

Drying machine 2 12,3 3 11,4 3 10,9 

Oven 9 8,5 12 6,7 13 7,7 

Refrigerator 1 22,1 11 28,5 11 30,8 

Dishwasher 7 10,7 10 11,3 10 9,8 

Washing 

machine 17 6,1 33 7,4 33 5,6 

Induction 

cooker 11 19,3 16 18,7 16 17,1 

Tv 0 - 10 7,8 10 5,0 

 

From Table 4-11 we can see that the number of appliances increased from June to 

July because A2A Smart City gave out more smart plugs for residents in Merezzate 

to have a higher number of devices to be followed. 

In particular, the smart plugs distribution carried out in June (with the activation of 

the plugs in July) gave the possibility to have the trends of consumption of 

television, a new appliance that wasn’t considered before. Additionally, 

refrigerators controlled with smart plugs became eleven and washing machines 

almost doubled, being seventeen in June and thirty-three in July and August.  

This increment of appliances was necessary to have a better understanding of the 

situation. For instance, the only refrigerator that was paired to a smart plug in June 

consumed 22,1 kWh. By increasing the refrigerators inspected with smart plugs, it 

was possible to determine an increase in mean energy consumption. This let us 

define that the most energy consuming appliance between the ones analyzed into 

this study is the refrigerator. However, it is worth noticing that this increase in mean 

energy consumption could be linked to the increase of temperatures typical of 
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summer months, so it would be necessary to have yearly data to better understand 

this effect. 

The same table from above can be seen from the graphical point of view. 

 

 
Figure 3-37 - Monthly mean energy consumption per home appliance 

 

 
Figure 3-38 – Boxplot of monthly energy consumption per home appliance (June, July, August) 

 

From Figure 3-37 it’s easy to see that the refrigerator is the most energy consuming, 

while the second appliance is the electric induction cooking stove, from a mean 

point of view. This tells us that if the residents want to lower their energy 

consumption, the first appliance they should invest in is the refrigerator. Mostly 

because it is a home appliance that is always working 24/7, its efficiency affects 

greatly the annual energy consumption. The higher the efficiency class, the lower 

the energy consumption and therefore the energy costs decrease.  
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Obviously, this analysis should be refined by having access to a higher number of 

appliances to be checked. By raising the number of appliances, the values of mean 

energy consumption should stabilize to the most realistic value.  

From the boxplot of monthly energy consumption values (Figure 3-38), it’s possible 

to notice the variance for each home appliance. Here it becomes clear that people 

with induction cookers that are followed with smart plugs have very different 

habits in appliance use. For instance, a person could use very little it’s induction 

cooker because he often goes out of his home to eat, while other families tend to 

cook a lot both at lunch and dinner. The big variance for the refrigerators is probably 

linked to the different class of the appliance or to the different model. For example, 

an A+ Refrigerator would consume a lot less than a 30 year old fridge. Also, a small 

refrigerator would consume less than a double door style refrigerator, hence the big 

difference in monthly energy use.  

One of the factors that influence these results in the presence of people in their 

dwellings. This is a key data because it influences all appliances usage, from the 

induction cooker to the fridge. This information is not in our possession, so for a 

further study this could be taken into account as an additional point of view.  

If we sum the mean energy of each appliance for each month, we should find a value 

of energy consumption of a typical resident that possess the appliances considered 

in this analysis. For example, a customer that has into his home a drying machine, 

an oven, a refrigerator, a dishwasher, a washing machine, an induction cooker and 

a tv, should consume around 90 kWh. This value doesn’t consider the energy 

consumption due to appliances that were not followed with smart plugs. For 

instance, lighting devices, electronics (like personal computers) and air-

conditioning systems should add a value of energy consumption to the monthly 

estimate. 

However, considering this lack of information, the value of mean energy 

consumption for the months of July is equal to 91,7 kWh, while for August is equal 

to 86,8 kWh. These two values are not so distant from the ones find with clustering 

analysis, where the result of medium “pure” cluster was around 105 kWh.  
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3.6.2 Number of uses during the day 

Another aspect that can be analyzed from smart plugs’ data is how appliances have 

been used during the day. This step was achieved by representing the smart plugs 

measurements of one month in a single 24-hour span. To notice the differences in 

appliance consumption trend, it has been implemented the difference between 

workdays and weekends.  

The result is a graph where each color represents a home appliance type and on the 

y-axis there is the number of times that the appliances have been used, having done 

the mean value by dividing the total number of uses for the number of appliance of 

that type. This brings to a total bar-plot which indicates a contemporaneity 

information on Merezzate residents. In this plot data of refrigerators and tv are not 

reported because they tend to have a constant usage during the day, without 

showing particular trends. 

The difference in plot shape is a confirmation of what was found from Chain2Gate 

data mining. From Figure 3-39 it’s possible to see that weekdays present a peak in 

appliance usage in the evening around dinner time, from 19.00 to 21:00. On the 

contrary, weekends tend to have a different profile, with an increase in home 

appliance use from early in the morning, with a peak around lunch and dinner 

hours.  

This implies that residents in Merezzate district that were followed with smart 

plugs have a tendency to use home appliances depending on the day of week based 

on their habits. If a person works an 8-hour job from Monday to Friday, he will 

probably use home appliances during late evening and during weekends. Many 

variables come into this thinking, like the number of people that live in the 

apartment, the age of the residents, the wealth of the family. Figure 3-39 Figure 3-40 

are an indication of how lifestyle considerably affects home appliance use and 

therefore energy demand.  
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Figure 3-39 – Number of daily appliance usages for one month period. Weekdays 

 

 
Figure 3-40 – Number of daily appliance usages for one month period. Weekends 
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The next step is to understand which appliance is the one that weighs more in the 

peak hour. As stated before, peak hour for workdays is from 19 to 21 in the evening, 

due to the presence in their homes of a higher portion of residents, with respect to 

daytime.  

By representing the number of uses of home appliances from Figure 3-39 and Figure 

3-40 in percentages, it’s possible to obtain the values of Table 3-12. 

 

Table 3-12 – Percentages of appliance use during peak hour (19.00 – 21.00) 

 Weekdays Weekends 

Induction cooker 46% 32% 

Oven 19% 18% 

Washing machine 17% 25% 

Dishwasher 8% 10% 

Others 10% 15% 

 

Here it’s possible to notice that the most used appliances are electric cooking stove 

and oven. These two appliances combined sum up for 65% and 50% in workdays 

and weekends respectively. This is expected, as during dinner time from 19 to 21 

pm people would tend to use those appliances to cook instead of others.  

The point that was just exposed is interesting in a demand-response peak-shaving 

logic. In the peak hour induction cooker and oven can’t be used for a direct load 

control demand-response program because it’s very inconvenient to users to stop 

cooking for energy demand reasons. Using a price driven demand-response 

program could reduce the peak because users would tend to use just the necessary 

appliances for cooking in order to reduce the cost of energy consumed.  

Demand-response will be further analyzed in Chapter 6. 

3.7 Smart plugs + Chain2Gate 

One of the pros of installing smart plugs to follow electricity consumption of users 

is the possibility to implement information of single appliances on the total energy 

demanded by an apartment.  

For example, we can consider an apartment in which electric cooking stove, oven, 

dishwasher, washing machine and drying machine are connected to their respective 

smart plug. Data is sent every 15 minutes by each smart plug to the A2A Smart 

City’s network, like data related to the whole apartment electricity demand 

followed with the Chain2Gate instrument. The near-real time measurements give 



Data mining  

 

63 

the possibility to create an interface for the resident of the apartment where he can 

follow his electric utilities consumptions. 

Figure 3-41 shows the power demand of the apartment taken into consideration, 

with respect to the 1st of May 2021. Here it’s possible to notice that he used four of 

the five appliances that are followed by smart plugs. The dark green line represents 

the total power demand for the apartment, data coming from Chain2Gate. We can 

see how the contemporaneity of appliance usage around 13 pm caused a peak in 

power demand of about 3,2 kW. Obviously, the Chain2Gate connected to the meter 

shows some electricity consumes that are not checked with smart plugs, like the last 

peak power demand on the right of Figure 3-41 around midnight.  

 

 
Figure 3-41 – Total apartment power demand with details of appliances 

 

The same plot can be made for every apartment, to follow daily power 

consumptions of different home appliances. It’s easy to understand that the higher 

the number of appliances connected to a smart plug, the higher the quality of the 

plot from a thoroughness point of view.  
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Another step that can be made with data retrieved from smart plugs consists in a 

monthly report for each user in Merezzate neighborhood. From Chain2Gate data, 

we have the monthly energy consumption for each apartment and from smart plugs 

we have the monthly energy consumption of each smart plug. 

The values of energy consumption could be given raw, measured in kWh, on into a 

more graphical way thanks to a pie chart. Also, the information of monthly energy 

consumption can be given with respect to the mean of the cluster into which the 

customer has been grouped. With more months of analysis, it becomes possible to 

make a comparison with the previous month. Here the terms would be how much 

the energy consumption increased or decreased and therefore if the user has been 

grouped in a different cluster. 

As a sample, it has been chosen an apartment followed with Chain2Gate and four 

smart plugs. The appliances connected to the plugs are cooking stove, oven, 

refrigerator and washing machine.  

These reports like the ones of Figure 3-42 give the knowledge to the user so that he 

can better understand how his habits influence his energy bill. It becomes possible 

to auto-modify the appliances in use to reduce the monthly energy consumption. 

For instance, the resident of the apartment that has been analyzed in the following 

pages can modify the electric consumption of the fridge by buying a more efficient 

one, can decide to change his cooking habits. If he tends to cook for long periods of 

time, reducing the cooking stove usage by 30% also the cost of electricity related 

should reduce of 30%. This type of pie chart representation invites the user to adopt 

more smart plugs to have a better view of his energy consumption trend. 

 

 

Figure 3-42 – Example of monthly reports of one apartment 
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3.8 Other appliances  

Smart plugs give a huge help in following energy consumption trends of a resident’s 

home appliances. The optimal solution would be installing a number of smart plugs 

equal to the number of appliances that a person owns. In this way the single user 

would have the best possible analysis of his energy habits.  

One of the appliances that hasn’t been analyzed with smart plugs in this thesis is 

the air conditioner. During the smart plug delivery campaign, it was confirmed that 

many residents of Merezzate neighborhood did not have an air conditioning system 

in their dwelling. Other residents have air conditioning but directly connected to 

the electrical panel, so it was impossible to implement a smart plug for their energy 

consumption.  

 

 
Figure 3-43 – Split air conditioner 

 

Having information on air conditioning would have been interesting to understand 

how each inhabitant tends to cool his home, whether by using AC all day or 

activating air conditioners only in small time slots to cool one room.  

The global energy consumption related to air conditioners would be the difference 

in energy between summer months and the rest of the year, where usually AC is 

not turned on. It would be interesting to have some real time data to better 

understand the problems related to air conditioning linked summer blackouts.  

 

On the other hand, heating hasn’t been analyzed in this thesis. The main reason is 

because in Merezzate it has been implemented a district heating plant. Also, the 

analysis focuses on summer months, during which heating is typically shut off in 

northern Italy cities like Milano.  

If we imagine that a study like this can be developed on the level of a whole city or 

region, the possibility to follow electric boiler consumptions arises. This would be a 

very interesting aspect to examine, especially to notice heating habits and boilers 

efficiency’s influence.  
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For the installation of new water electricity boilers, there are some new technology 

boilers that work in combination with the second-generation meter, talking through 

the chain 2.  

The example is Ariston’s new boiler PRO 1 Powerflex T-flex 

2.0, which implements the chain 2 technology for some user 

focused advantages. Advantages are the home blackout 

prevention, usually caused by exceeding the contract limits 

of an apartment, and the half time necessary to heat up the 

water. Blackout prevention is achieved by modulating the 

power demanded by the boiler if home utilities are asking too 

much electricity that would cause the power to go out.  

Just like the boiler can reduce its power, it can also increase 

the power demand up to 2,5 kW during periods low energy 

demand periods, with the goal of reducing the time of water 

heating. 

As an added benefit, the user would have an application on 

his smartphone like the smart plugs app that gives him the 

possibility to follow his boiler power demand. 

The combined use of appliances that are always smarter that can “talk” with the 

power meter and smart plugs that give the possibility to the user to modify 

appliances use bring people’s homes to a higher level of technology and closer to 

the concept of home automation.  

 

Figure 3-44 – Ariston’s 

PRO 1 water boiler 
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4 Renewable Energy Community 

scenarios 

Clustering of residential energy demand can be used for different purposes. One of 

these is the evaluation of a renewable energy community establishment. The first 

section of this Chapter focus on the definition of energy community. Then, there is 

an energy analysis for the real case with district heating. The energy analysis in the 

hypothetical situation with a heat pump as heating technology is the third section. 

The last part of the chapter consists of the economic analysis of district heating and 

heat pump case, with and without the presence of renewable energy community. 

 

4.1 Energy community 

The EU has included the notion of renewable energy communities into its 

legislation through the Clean Energy for All Europeans package, notably as citizen 

energy communities and renewable energy communities. 

More specifically, the Directive on common rules for the internal electricity market 

((EU) 2019/944) includes new rules that enable active consumer participation in all 

markets, whether by generating, consuming, sharing, or selling electricity, or by 

providing flexibility services through demand-response and storage, either 

individually or through citizen energy communities. The order intends to increase 

the number of energy communities and make it simpler for residents to become 

active participants in the power system [26]. 
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Table 4-1 – Energy community definitions 

 Citizen Energy 

Community, CEC  

(IEM 944/2019) 

Renewable Energy 

Community, REC  

(RED II 2001/2018) 

Membership Open to different legal 

forms, but decision 

making not to 

commercial shareholders 

No-profit entities or small 

enterprises not operating 

in the energy sector 

Spatial Limitation No geographical 

limitation 

All shareholders located 

near the renewable 

projects they own 

Allowed Activities Limited to electricity 

sector, but entailing all 

types of activities  

Active in all energy 

sectors for production, 

consumption and supply 

Technologies Involved Technology neutral Limited to renewable 

energy 

 

Table 4-1 summarizes the two definitions of energy community stated by the EU 

and in this thesis, there will be considered the second one on REC, Renewable 

Energy Communities. 

4.2 District heating and energy community  

In Merezzate there is a district heating plant that delivers heating in all homes 

during winter period and hot sanitary water during the whole year.  

On the roof of the buildings there are photovoltaic power plants dedicated to the 

production of renewable energy.  

For the analysis presented in this chapter it will be considered a single REDO Milano 

building, Building 2 of UDC 1. It is made of 30 apartments, and the dwellings are 

divided in three clusters with the characteristics of the Table. 
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Figure 4-1 – Condominium 2, UDC 1, Merezzate district 

 

Table 4-2 – Residents’ consumption values 

 Cluster 1 Cluster 2 Cluster 3 

Cluster name Low Medium High 

Number of apartments 15 10 5 

Number of occupants 2 3 4 

Surface of apartment 40 m2 65 m2 90 m2 

Monthly consumption 41,9 kWh 110,1 kWh 287,3 kWh 

Annual energy consumption 500 kWh 1400 kWh 3400 kWh 

Annual energy consumption 

during peak hours 

150 kWh 400 kWh 980 kWh 

 

The electricity consumption of the condominium is equal to 38'000 kWh/year, result 

of the sum of all dwellings’ consumption. The energy part dedicated to the elevator 

and illumination of common areas has been estimated to be around 500 kWh per 

year. 

The total heated surface is equal to 1625 m2, resulting in a thermal demand necessary 

for heating and hot sanitary water. Respectively, the thermal energy for heating of 

Merezzate apartments is equal to 30 kWh/m2 and the thermal energy for the 

production of hot sanitary water is 17,5 kWh/m2. The resulting value is 77’187,5 

kWh/year of thermal energy produced by the district heating plant. 

As it can be seen in the Figure 4-1, on the building’s roof there are 33 photovoltaic 

mono-crystalline silicon panels of dimensions of 1,6x1 meters, for a total of 51 

square meters. The photovoltaic plant has an installed power equal to 10 kW of peak 

power at standard test conditions.  
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The scheme of the condominium is the one below, with the district heating 

technology. 

 

 
Figure 4-2 – District heating scheme 

 

RECON [27] is a simulator developed by ENEA, Italian National Agency for New 

Technologies, Energy and Sustainable Economic Development. It is a tool designed 

to support preliminary energy, economic, and financial assessments for the 

establishment of renewable energy communities (RECs) or renewable energy self-

consumers acting collectively.  

The characteristics of the apartments, the energy consumption values and the 

information of the photovoltaic plant can be implemented into the simulator. The 

results of the simulation that are considered in this section are solely related to the 

energy point of view, and the economic evaluation will be made afterwards. 

The table reports the results of the simulation in the case of Building 2 of Merezzate+ 

district, with district heating, a 10 kW PV power plant and no Renewable Energy 

Community.  

  



Renewable Energy Community scenarios  

 

71 

 

Table 4-3 – Energy results DH 1 

 District heating + 

PV 10 kW, no REC 

E_tot, Total electrical consumption [kWh/y] 38.500 

Daily electrical consumption [kWh/y] 17.735 

E_PV, PV plant production [kWh/y] 10.511 

E_self-consumed, Energy self-consumed [kWh/y] 258 

E_injected, Energy fed into the grid [kWh/y] 10.253 

E_virtual, Shared Energy [kWh/y] 0 

E_excess, Energy in excess sold to the grid [kWh/y] 10.253 

Physical self-consumption index 2,50% 

Virtual self-consumption index (shared energy) 0,00% 

Total self-consumption index 2,50% 

 

It can be seen that a part of the energy produced by the PV plant has been self-

consumed by common areas and the remaining energy has been injected into the 

grid. The virtual energy, also called shared energy, is equal to zero kWh since there 

is no energy community in this simulation.  

 

The possible evolutions of this configuration are many, and here are reported two 

of them. The simplest evolution is the adoption of renewable energy community 

scheme, with the possibility to share energy produced with the renewable 

photovoltaic plant between residents of the condominium.  

The second evolution is the choice of REC with the addition to install other 20 kW 

of photovoltaic panels on the surface of the roof of the building, reaching a total of 

30 kW of installed nominal power.  

The three scenarios identified in this section are related to the district heating, hence 

they are abbreviated as DH 1, DH 2 and DH 3. Respectively, DH 1 is the case with 

district heating, a PV plant of 10 kW and no REC, DH 2 is the case equal to DH 1 

but with the Renewable Energy Community and finally DH 3 is the case of district 

heating, with a bigger PV plant of 30 kW and with REC.  

The results of the RECON simulator are presented in the table below.  
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Figure 4-3– Condominium 2, UDC 1, Merezzate district, PV plant of 30 kW 

 

 

Table 4-4 Energy results, DH 1, DH 2, DH 3 

 DH 1 DH 2 DH 3 

 District heating 

+ PV 10 kW, no 

REC 

District heating 

+ PV 10 kW + 

REC 

District heating 

+ PV 30 kW + 

REC 

E_tot, [kWh/y] 38.500 38.500 38.500 

Daily energy 

consumption 

[kWh/y] 

17.735 17.735 17.735 

E_PV, [kWh/y] 10.511 10.511 35.038 

E_self-consumed, 

[kWh/y] 

258 258 258 

E_injected, [kWh/y] 10.253 10.253 34.779 

E_virtual, [kWh/y] 0 7.720 13.650 

E_excess, [kWh/y] 10.253 2.533 21.129 

Physical self-

consumption index 

2,50% 2,50% 0,70% 

Virtual self-

consumption index 

(shared energy) 

0,00% 73,40% 39,00% 

Total self-

consumption index 

2,50% 75,90% 39,70% 
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Some things can be observed from this table. The activation of REC raises the value 

of virtual energy (shared) from 0 to 7720 for the DH2 case, with the following 

increase of virtual self-consumption index.  

For DH3 there is the obvious increase of PV energy production and shared energy 

by the residents. In this scenario the energy in excess sold to the grid increases a lot 

because the daily energy consumption of the building is almost saturated by the 

shared energy part. The consequence is that the self-consumption index decreases. 

4.3 Heat pump and energy community 

Now it will be analyzed a different base case. Instead of the district heating system, 

there is a centralized heat pump that provides heating for the whole condominium.  

The electricity consumption data used for the heat pump has been derived from 

data of the district heating plant. In particular, taking into account the SCOP, 

seasonal coefficient of performance, of the district heating plant (equal to 4 for 

heating and 3,5 for hot sanitary water) it becomes possible to obtain the value of 

electric energy that would consume a vapor compression heat pump.  

The resulting energy needed for heating of the building is 13’930 kWh for heating, 

7’108 kWh for hot sanitary water, for a total of 21’038 kWh/year.  

The electrical energy consumed by the condominium is now equal to the sum of 

electricity consumption of the residents, common areas and heat pump, resulting in 

59’540 kWh/year.  

 

 
Figure 4-4 – Heat pump scheme 
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From the scheme of this case, there is no district heating grid, and the heat pump is 

connected to the condominium’s power meter, together with common areas. In this 

way, the heat pump can utilize energy produced by the PV plant installed on the 

roof.  

Just as the case of district heating, in this heat pump case three scenarios have been 

identified (HP 1, HP 2, HP 3) with the same logic as before and calculations for the 

energy consumptions have been performed with RECON simulator. 

 

Table 4-5 - Energy results, HP 1, HP 2, HP 3 

 HP 1 HP 2 HP 3 

 Heat pump + PV 

10 kW, no REC 

Heat pump + PV 

10 kW + REC 

Heat pump + PV 

30 kW + REC 

E_tot, [kWh/y] 59.540 59.540 59.540 

Daily energy 

consumption [kWh/y] 

30.024 30.024 30.024 

E_PV, [kWh/y] 10.511 10.511 29.198 

E_self-consumed, 

[kWh/y] 

6.868 6.868 10.022 

E_injected, [kWh/y] 3.644 3.644 19.176 

E_virtual, [kWh/y] 0 3.166 10.909 

E_excess, [kWh/y] 3.644 478 8.267 

Physical self-

consumption index 

65,30% 65,30% 34,30% 

Virtual self-

consumption index 

(shared energy) 

0,00% 30,10% 37,40% 

Total self-

consumption index 

65,30% 95,50% 71,70% 

 

It’s worth noticing that for the heat pump, the difference from between HP 1 and 

HP 2 consists in the presence of virtual energy for the case with energy community.  

The energy self-consumed increases with the increase of installed power of PV 

plant, which suggests that the heat pump can still consume energy directly from the 

PV plant.  

  



Renewable Energy Community scenarios  

 

75 

4.4 Economic analysis  

Energy evaluations of the previous two sections can be associated with economic 

evaluations, taking into account different costs.  

The following subsections will treat about the economic analysis of district heating 

scenario and heat pump scenario. 

4.4.1 District heating economics 

Annual cash flows can be identified in different voices: cost of district heating (DH) 

and DH OPEX operating costs, residents’ electricity bill, common areas bill, 

Revenues from PV. If there is a Renewable Energy Community, there are the 

additional revenues linked to the MISE incentive.  

The cost of electricity has been considered equal to 0,22 €/kWh. 

The price of electricity at which energy is sold to the grid is equal to 0,05 €/kWh. 

The electricity consumption of the condominium is equal to 38'000 kWh/year, and 

as stated before, they are divided between 30 apartments in 3 clusters. As a result 

of the product of the electricity consumption by the cost of 0.22 €/kWh, the 

electricity bill of the condominium amounts to 8360 €/year. This value is equivalent 

for all the cases of district heating and heat pump. 

Common areas electricity bill is the value of energy dedicated to the common areas, 

paid at cost of electricity. For DH cases, it is always equal to 53,2 €/year. 

Cost of district heating can be obtained by multiplying the annual thermal energy 

by the cost of district heating of 0,1 €/kWh_thermo. 

𝐶_𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡_ℎ𝑒𝑎𝑡𝑖𝑛𝑔 =  𝐸_𝐷𝐻 ∗  𝑐_𝑡ℎ𝑒𝑟𝑚𝑜 

Operating costs are assumed to be 10% of the annual cost of C_district_heating: 

𝑂𝑃𝐸𝑋_𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡_ℎ𝑒𝑎𝑡𝑖𝑛𝑔 =  0,1 ∗  𝐶_𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡_ℎ𝑒𝑎𝑡𝑖𝑛𝑔 

 

Revenues from PV plant are computed by multiplying the energy fed into the grid 

by the price of electricity sold to the grid, p_z. 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠_𝑃𝑉 =  𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 ∗  𝑝_𝑧 

 

The energy that has been shared benefits an incentive of 100 €/GWh, issued by MISE 

(Ministero dello Sviluppo Economico, Ministry of Economic Development): 

MISE incentives are computed on the quota of shared energy. Obviously it is equal 

to 0 for DH1 case since there is no energy community.  

𝑀𝐼𝑆𝐸 𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒 =  𝑆ℎ𝑎𝑟𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 ∗  0,1 



 Renewable Energy Community scenarios 

 

76 

 

The net result of district heating is: 

𝑁𝑒𝑡_𝐷𝐻 =  𝐶_𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡_ℎ𝑒𝑎𝑡𝑖𝑛𝑔 +  𝑂𝑃𝐸𝑋_𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡_ℎ𝑒𝑎𝑡𝑖𝑛𝑔 +  𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑏𝑖𝑙𝑙

+  𝐶𝑜𝑚𝑚𝑜𝑛 𝑎𝑟𝑒𝑎𝑠 𝑏𝑖𝑙𝑙 −  𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠_𝑃𝑉 −  𝑀𝐼𝑆𝐸 𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒 

 

Table 4-6 – Economic analysis DH 1, DH 2, DH 3 

 DH 1 DH 2 DH 3 

 District heating + 

PV 10 kW, no 

REC 

District heating + 

PV 10 kW + REC 

District heating + 

PV 30 kW + REC 

District heating cost 

[€/y] 

-7718,75 -7718,75 -7718,75 

District heating OPEX 

cost [€/y] 

-617,5 -617,5 -617,5 

Residents’ electricity 

bill [€/y] 

-8360 -8360 -8360 

Common areas 

electricity bill [€/y] 

-53,24 -53,24 -53,24 

Revenues from energy 

fed into grid [€/y] 

+512,65 +512,65 +1738,95 

Revenues MISE 

incentive [€/y] 

+0 +849,2 +1501,5 

Net cash flow (year 0) 

[€/y] 

-16236,84 -15387,64 -13509,04 

 

The observations that can be made on this table are that the last three rows are 

changing with the change of DH 1 into DH 2 and DH 3. With the activation of the 

energy community the MISE incentive appears, and with the increase of PV plant 

the revenues from energy injected in grid increase, with a net cash flow decreasing.  

The last value of the table can be used to compare DH 3 with the cases DH 1 and 

DH 2 and compute the Payback-time (PBT) of the investment and the Net Present 

Value (NPV).  

The PV plant is estimated to have a CAPEX of 1400 €/kW, so for an increase of 

nominal power of 20 kW, the resulting CAPEX is equal to 28’000 €. 

The OPEX cost for the maintenance of the PV plant is estimated to be 690 €/year for 

a 20 kW PV plant. 
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The deduction on the CAPEX is equal to 50% of the total, delivered each year for a 

duration of ten years. 

The actualization factor equal to 2% gives the possibility to find the actualized cash 

flow: 

𝐶𝑎𝑠ℎ_𝑓𝑙𝑜𝑤 =  (𝑁𝑒𝑡_𝐷𝐻 1 –  𝑁𝑒𝑡_𝐷𝐻 3)  +  𝐸𝑥𝑒𝑚𝑝𝑡𝑖𝑜𝑛 –  𝑂𝑃𝐸𝑋 𝑜𝑓 𝑃𝑉 

 

𝐴𝑐𝑡𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑎𝑠ℎ 𝑓𝑙𝑜𝑤 =  
𝐶𝑎𝑠ℎ_𝑓𝑙𝑜𝑤

((1 + 𝑓)𝑦𝑒𝑎𝑟)
 

 

Table 4-7 - PBT and NPV results, DH 1 vs DH 3, DH 2 vs DH 3 

 

It can be seen that for the scenario with district heating, the introduction of energy 

community and the enhancement of the PV plant to 30 kW (DH 1 vs DH 3) has a 

payback time of 9 years of the investment, which coincides with the CAPEX of the 

PV plant.  

For the case of DH 2 vs DH 3, the presence of REC causes some revenues that were 

not present for DH 1, so the difference in net cash flow between DH 2 and DH 3 is 

lower. This brings to a PBT of 16 years and a NPV after 20 years which is around 

4’000 €.  

4.4.2 Heat pump economics 

Economic analysis for the scenario in which there is the heat pump as heating 

technology is the same as the district heating case, with some differences.  

The electricity that is consumed by the heat pump (and common areas) is the 

difference between the total demand of heat pump (and common areas) and the 

self-consumption. 

𝐸_ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝 =  𝐸_𝑡𝑜𝑡 ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝 –  𝐸_𝑠𝑒𝑙𝑓 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 

The energy from the heat pump is paid for at the classic market price of electricity 

of 0.22 €/kWh. 

𝐶_ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝 =  𝐸_ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝 ∗  𝑝𝑟𝑖𝑐𝑒_𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 

 

 DH 1 VS DH 3 DH 2 VS DH 3 

CAPEX PV [€] 28000 28000 

OPEX PV [€/y] 690 690 

PBT [years] 9 16 

NPV (20 years) [€] 17.896,57 4.010,93 
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The operating cost of the heat pump is estimated to be 8% of the heat pump cost: 

𝑂𝑃𝐸𝑋_ ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝 =  0,08 ∗  𝐶_ ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝 

 

The net result of heat pump is: 

𝑁𝑒𝑡_𝐻𝑃 =  𝐶_ℎ𝑒𝑎𝑡_𝑝𝑢𝑚𝑝 +  𝑂𝑃𝐸𝑋_ℎ𝑒𝑎𝑡_𝑝𝑢𝑚𝑝 +  𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑏𝑖𝑙𝑙 −  𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠_𝑃𝑉 

−  𝑀𝐼𝑆𝐸 𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒  

 

Table 4-8 - Economic analysis HP 1, HP 2, HP 3 

 HP 1 HP 2 HP 3 

 Heat pump + PV 

10 kW, no REC 

Heat pump + PV 

10 kW + REC 

Heat pump + PV 

30 kW + REC 

Heat pump cost [€/y] -3227,4 -3227,4 -2533,5 

Heat pump OPEX cost 

[€/y] 

-379,07 -379,07 -379,07 

Residents’ electricity 

bill [€/y] 

-8360 -8360 -8360 

Revenues from energy 

fed into grid [€/y] 

+182,2 +182,2 +958,8 

Revenues MISE 

incentive [€/y] 

+0 +348,3 +1200 

Net cash flow (year 0) 

[€/y] 

-11784,3 -11436 -9113,8 

 

The same comments of the previous sub-section can be made for this table, with the 

additional note that there is the additional change in cost of heat pump (and 

common areas). This value decreases for HP 3 case because of the increase of 

electricity production of the PV plant, with the increase in self-consumed energy by 

the heat pump.  

Table 4-9 - PBT and NPV results, HP 1 vs HP 3, HP 2 vs HP 3 

 

 HP 1 VS HP 3 HP 2 VS HP 3 

CAPEX PV [€] 28000 28000 

OPEX PV [€/y] 690 690 

PBT [years] 10 11 

NPV (20 years) [€] 16.959,14  11.264,59  
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Similar comments of the case of district heating can be made here, with the case HP 

3 being the best solution from the economic point of view. The investment that has 

to be sustained for the increase in power of the PV plant comes back after 10 years 

when compared to HP 1 and after 11 years when compared with HP 2. 

4.4.3 Conclusions on energy communities 

The choice to make an energy community is always convenient form the 

environmental and economic point of view.  

The implementation of a 10 kW PV plant brings to an avoided annual CO2 around 

3,5 tons of CO2, while the choice of a 30 kW plant avoids 11,3 tons of CO2 every 

year.  

The increase of the surface of the photovoltaic power plant is not always 

economically convenient since there is a maximum point at which the energy 

demand of the building is saturated. Still, the two sizes of PV plant considered in 

this chapter always bring savings. 

MISE incentives are very convenient, both in the district heating and heat pump 

scenarios. They are the main economic reason to form an energy community. In 

addition, the possibility to share energy between the members of the energy 

community is a valid option to answer the residential demand of condominiums.  

This intelligent way to consume energy produced by the PV is a very powerful tool 

necessary to move towards a more affordable and climate oriented world.  
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5 Demand response 

One of the objectives of the project Merezzate+, funded by European Institute of 

Innovation & Technology’s KIC, Knowledge and Innovation Community, was the 

feasibility and implementation of a demand-response program in a new generation 

neighborhood. The community of Merezzate is partially made up of social housing 

projects, whose residents have been selected based on their affinity for themes like 

environment sustainability, the best subject for the research project. 

The analysis consists of quantifying the economic advantages for end users that 

derive from the modification of their energy consumption habits. For this purpose, 

data of electricity meters retrieved with Chain2Gate instruments were necessary to 

study the feasibility of demand-response mechanisms in Merezzate. 

The following Chapter will focus on DR feasibility, with a first digression on electric 

energy price in Italy, necessary to quantify the savings for residents.  

Next, there will be an evaluation of what would change by modifying the electricity 

price. The section after will consists in the demand-response tests implementing 

different DR techniques.  

At last, the final section hints demand-response feasibility for the whole city of 

Milan, whether to change the investments of grid expansion of the distribution 

system operator.  
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5.1 Electricity price 

The two core elements for the analysis of demand-response program feasibility are 

the price of electricity and the energy consumption of the residents. This section will 

focus on the Italian price of electricity.  

The electricity wholesale market in Italy is divided in four steps and is based on a 

bidding mechanism. The first step consists of long terms markets where players buy 

or sell electricity with future delivery in a continuous trading mechanism that can 

range from 365 days before the day market to 2 days before the day market. The 

second step is the day ahead market where equilibrium price is set trough an 

auction mechanism. Intraday market is the third step where market player adjusts 

their net withdrawn of injected position. The last step is called balancing market 

where the Transmission System Operator acquires services to resolve grid 

constraints to maintain real time balancing. The most important session is the 

second one, Day Ahead market, where one day before the delivery of electricity bids 

are presented to buy and sell electricity for every hour of the following day.  

The key element of Italian electricity market is PUN (Prezzo Unico Nazionale) 

national unitary price, measured in €/kWh. The PUN is defined by GME (Gestore 

dei Mercati Energetici), energy market operator. The value of PUN is defined as the 

mean of zonal prices of Day Ahead market weighted on the total purchases, after 

deduction of purchases of pumped storage and foreign zones.  PUN changes every 

hour based on the balancing of supply and demand and can be monitored 

constantly on GME site [28].  

Typically, the price of electricity varies based on the time of the day so that the price 

is higher in those time slots where it’s more difficult the energy production and 

lower in the time slots where there is a surplus in energy production.  

PUN varies every day, and with data from GME site it’s possible to plot the daily 

trends for a whole month. 

 
Figure 5-1 – Daily PUN, May 2021 
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The trends in Figure 5-1 represent the curves of electricity price for each day. These 

can be grouped into one single trend that is representative of the electricity price of 

the whole month of May, by making the mean value of PUN for every hour. This is 

highlighted in purple in Figure 5-1 and Figure 5-2. In particular, the mean hourly 

value of PUN for the month of May varies between 6 and 8,5 € cents/kWh, showing 

two peaks at 8 in the morning and 8 in the afternoon.  

 

 
Figure 5-2 – Mean daily PUN, May 2021 

 

PUN variations brought to the definition of time slots by ARERA (Autorità di 

Regolazione per Energia Reti e Ambiente) which is the organism that conducts 

regulation and control in sectors of electric energy, natural gas, hydro cycles and 

waste cycles.  

For the electricity market there are three time slots: F1, F2 and F3. Each time slot has 

its electricity price.  

 

Table 5-1 – Time slots  

F1 Monday to Friday 8:00-19:00 

F2 

Monday to Friday 

Saturday 

7:00-8:00, 19:00-23:00 

7:00-23:00 

F3 

Monday to Saturday 

Sunday and Holidays 

00:00-7:00, 23:00-24:00 

00:00-24:00 

   

F23 

Monday to Friday 

Saturday, Sunday and 

Holidays 

19:00-8:00 

00:00-24:00 
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As it can be seen from Table 5-1, time slots are implemented considering the day of 

the week and holidays. There is the need to point out that the use of three time slots 

is typical of industrial electricity pricing.  

For domestic customers, the price of electricity of time slots F2 and F3 coincide into 

time slot F23, whose time specifics are reported in Table 5-1. 

The following analysis on demand-respond will focus on real PUN values for time 

slots of the month of May 2021, reported in Table 5-2 [28]. A thing that can be 

pointed out is the fact that for May 2021 the price of electricity in F2 is higher than 

F1. This is linked to the different trends of electricity price during the day in the 

different months of the year. The main reason for the lower price of F1 is due to the 

penetration of photovoltaic energy produced during the day. PV plants produce 

energy at marginal cost equal to zero, so they are present on the electricity market 

at cost equal to zero; the following effect is that the total energy demand is equal to 

the total energy demand minus the electricity produced with renewables. The result 

is a “net” demand that during the hours of the middle of the day and during the 

night tend to be equal, because in the first case there is a high demand and a high 

production from PV, while in the second case there is a low demand and no 

production from PV. The remaining hours of early morning and evening present a 

high demand, but with little PV energy production, with a result in a higher 

electricity cost for F2.  

Even if it’s not so unusual that F2 is greater than F1, in the end the low peak price 

of electricity for resident customers (F23) is always lower than F1.  

 

Table 5-2 – PUN for each time slot, May 2021 

 F1 (€/kWh) F2 (€/kWh) F3 (€/kWh) F23 (€/kWh) 

May 2021 0,074270 0,077970 0,063020 0,069897 

 

5.2 Demand response test 

As stated above, electricity contracts for resident users can be made considering just 

two time slots, F1 and F23. The proposals for electricity contracts of A2A Energia 

(the company of A2A Group which offers services and delivery of electric energy 

and gas) are based on a mono-hour or two time slots systems. For this reason, a first 

analysis will focus on just two time slots PUN, F1 and F23.  

Data retrieved with Chain2Gates every 15 minutes from every active apartment in 

Merezzate gives us the possibility to make a division of energy consumption of each 

customer based on the time slots during which they consumed energy.  
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After writing a code that could address at each user his energy consumption in Peak 

and No-Peak time slots, it was possible to make a preliminary cost analysis.  

As an example, it has been analyzed a first apartment that has been clustered as a 

high energy consumer. The total energy consumed in May is equal to 233,23 kWh, 

with a detail of 166 kWh during workdays, and 66,23 kWh in weekends. Workdays’ 

energy can be divided between F1 and F23, while weekends energy consumption is 

always paid with the PUN price of F23. By multiplying the energy for the respective 

price of electricity, it’s possible to find the cost that the resident has to pay for the 

only electricity part of the bill.  

Table 5-3 shows what’s been described before. It’s important to notice that the price 

of electricity used is the respective PUN of F1 and F23 of Table 5-2. 

 

Table 5-3 – Energy consumption and cost of a sample apartment, May 2021 

 Weekdays Weekends  

Energy 166,00 67,23 kWh 

 F1 F23 F1 F23  

Energy 71,79 94,21 0 67,23 kWh 

Energy 

cost 

5,33 6,58 0 4,7 € 

11,92 4,7 € 

16,62 € 

 

It’s obvious to understand that the energy that could be moved from the peak F1 to 

the “low price” time slot F23 is equal to 71,79 kWh.  
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5.2.1 Energy shift from F1 to F23 

The following step wants to focus on what happens if a portion of energy consumed 

in peak hours would move to F23. If the resident changed his habits and moved 20% 

of energy consumption from F1 to F23, it would result in a decrease in monthly 

energy cost of just 0,07 €. This can be seen in the Table 5-4, which consists of Table 

5-3 with a 20% shift in energy consumption.  

The same results are obtained if we consider another resident that have been 

clustered as low or medium energy consumption. 

 

Table 5-4 – Energy consumption shifted and cost of a sample apartment, May 2021 

 Weekdays Weekends  

Energy 166,00 67,23 kWh 

 F1-20% F23+20% F1 F23  

Energy 57,43 108,56 0 67,23 kWh 

Energy 

cost 

4,26 7,59 0 4,7 € 

11,85 4,7 € 

16,55 € 

 

This mere change in energy cost is linked to the obvious fact that energy that is 

shifted from F1 to F23 has to be paid at PUN relative to F23.  

The maximum savings in this case happens if the resident would have shifted all 

his energy consumption into F23, with a result of 1,02€ of saving (15,60 €/month 

paid as energy cost). This extreme and almost unreal case serves as the limit of the 

Time of use demand-response. With the case just described, it becomes very difficult 

to implement a demand-response mechanism for residents of a neighborhood in 

which they would change their energy habits to have a reduction in energy cost 

component of just around 0,5%. 

If moving energy from peak hours to non-peak hours leads to these results, it 

becomes obvious that one problem of this analysis consists in PUN values. In 

particular, by looking at Figure below, it’s easy to notice that the delta of price 

between F1 and F23 is very small. 
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Figure 5-3 – Delta of price between real F1 and F23 prices 

5.2.2 New 4 time slots, 4TS 

For this reason, the next step focus on analyzing how it would have changed if the 

energy costs were defined in a different way, with higher differences between peak 

prices and off-peak prices. The test considers 4 time slots so that the delta of energy 

price is higher. PUN prices are defined as it can be seen in the graph below. 

 

 
Figure 5-4 – Delta of price between 4 new time slots 
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Figure 5-5 – 4TS, 4 time slots PUN trend from Monday to Friday, May 

 

Table 5-5 – 4TS, 4 time slots PUN trend 

 Day of week Time range PUN [€/kWh] 

F1 Monday to Friday 7:00-8:00, 19:00-20:00 0,086 

F2 Monday to Friday 12:00-14:00, 20:00-22:00 0,075 

F3 Monday to Friday 
00:00-7:00, 8:00-12-00, 

14:00-19:00, 22:00-24:00 
0,065 

F4 
Saturday, Sunday 

and Holidays 
00:00-24:00 0,058 

 

As stated before, the chain2gate data gives the possibility to determine the time slot 

in which energy has been consumed, so it’s possible to write a code that divides the 

monthly energy consumption of a customer into these 4 new time slots. The 

reasoning that has been implemented for the demand-response feasibility is the 

same as the previous sub-section: what changes if 20% of peak energy consumption 

from F1 and F2 moves to off-peak F3. 

Considering a high, medium and low energy consumption resident, results are very 

similar to the case with just 2 time slots. In the annex it’s possible to view at the 

simulation made in Excel for three test residents for the month of May.  

This Time of Use DR mechanism with four time slots performs slightly better than 

the two time slots mechanism. If the resident shifts 20% of his energy consumption 

from peak to off-peak, he can achieve savings ranging from 0,10€ to 0,06€ for the 

month of May.  

Results of Time of Use DR are not promising for residential customers that would 

not tend to reduce their energy consumption for a very small return.  
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5.2.3 Critical peak pricing 

As a following step, it has been analyzed the possibility to implement a critical peak 

pricing demand-response mechanism, modifying the DR scheme of the previous 

sub-section. 

Table 5-5 has been modified into Table 5-6 so that the cost of sole electricity in peak 

hours, F1, would be more than double, fixing it at 0,25 €/kWh. 

 

Table 5-6 – CPP pricing 

 Day of week Time range PUN [€/kWh] 

F1 Monday to Friday 7:00-8:00, 19:00-20:00 0,25 

F2 Monday to Friday 12:00-14:00, 20:00-22:00 0,075 

F3 Monday to Friday 
00:00-7:00, 8:00-12-00, 

14:00-19:00, 22:00-24:00 
0,065 

F4 
Saturday, Sunday 

and Holidays 
00:00-24:00 0,058 

 

 
Figure 5-6 – CPP PUN trend from Monday to Friday, May 

 

In this case, for all the resident clusters it becomes more realistic to modify one’s 

electricity habits to obtain a monetary saving. Considering data of a resident of 

medium cluster, it can be seen that the energy in time slot F1 is equal to 8,14 kWh, 

with a respective cost of 2,03€ for the month of May. By reducing of 20% the energy 

consumed in F1 and F2, it’s possible to reach a decrease in cost of sole electricity of 

2,79%.  
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If we make the hypothesis to use May as the prototype month, we can multiply the 

cost of sole electricity by 12 to find the annual cost of electricity of a single resident 

of Merezzate. In this way it’s possible to quantify in euros the annual savings linked 

to a demand-response method.  

 

Table 5-7 – Energy savings for CPP demand-response test 

 

Energy cost 

[€/y] 

Energy cost – CPP DR 

[€/y] 

Savings 

[€/y] 

Savings 

[%] 

Low 84,49 81,62 2,88 3,40 

Medium 145,16 141,12 4,05 2,79 

High 233,19 226,31 6,88 2,95 

 

Savings are linked to the quantity of energy consumed in peak hours. For instance, 

the low energy resident that has been taken as example had 6,3% of electricity 

demand during F1, 11,39% during F2, 45,4% during F3 and 36,9% during F4. The 

higher the share of energy in time slot F1, the higher the energy savings that a 

customer can reach.  

It’s important to point out that the energy cost of Table 5-7 is related to the sole 

energy component of the bill. Italian electricity price for a domestic user is 

essentially composed of four shares: energy expenses, expenses linked to 

transportation of energy and meter management, system charges and finally 

taxation. Typically, the most volatile voice is the energy expenses, linked to the cost 

of raw materials used for electricity production. The remaining voices cover a total 

of 0,128 €/kWh for the second trimester of 2021 [29]. Introducing this cost voice, the 

total energy annual bill is in line with real values. 

By making this CPP demand-response test, it’s possible to determine that the 

residents would obtain a reduction in electricity bill, but if we consider the whole 

bill, a 20% shift in energy consumption from peak hours to off-peak hours brings 

only to a 1% reduction on the annual bill cost.  

5.2.4 Incentive based pricing 

Another demand-response mechanism that has been evaluated is incentive based 

pricing. In particular, it has been considered a scheme where residents would 

receive a monetary compensation for their active modification of energy 

consumption.  

The evaluation for this thesis has been done on data from May, following the same 

3 sample residents of the previous sub-section and using energy prices defined in 

Table 5-5 (new 4 time slots PUN trend). Here the reasoning implemented for this 
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step consists in shifting 20% of peak energy consumption to F3. As an incentive, the 

energy that have been shifted is paid to the resident at a hypothetical price, fixed at 

0,1 €/kWh.  

In this way, the cost of energy of time slot F3 is reduced, on the contrary of what 

happened for the CPP demand-response mechanism. The savings for the incentive-

based DR come from this modification of voice cost.  

 

Table 5-8 – Energy savings for IBP demand-response test 

 

Energy cost 

[€/y] 

Energy cost – CPP DR 

[€/y] 

Savings 

[€/y] 

Savings 

[%] 

Low 72,86 68,36 4,53 6,21 

Medium 129,14 122,03 7,11 5,51 

High 206,72 192,85 13,87 6,71 

 

In the annex it’s possible to see the excel sheets used for the IBP simulation for all 

three resident samples.  

One thing that can be noticed by looking at Table 5-7 and Table 5-8, is the difference 

in the first energy cost, without a DR mechanism. It’s clear that cost related to energy 

in a CPP scheme is higher with respect to an incentive DR program, because of the 

fact that the price of electricity in the peak hours is way higher than the other time 

slots. For this reason, a change of energy use brings a reduction in costs.  

For an incentive-based program, the base energy cost is the same of a realistic 4 time 

slots energy contract. The savings here are linked to the incentive value. Obviously, 

the higher the incentive, the higher the savings for the client. One of the key 

elements for the success of an incentive-based DR program is the determination of 

the incentives. In this thesis analysis it has been decided to use a fixed value 

measured in €/kWh for simplicity of the calculations, but it is surely not the best 

possibility and needs further investigations.  

For instance, an article published on Energy Policy by [30], focus on an experiment 

of incentive-based residential electricity demand response. Residents in the 

implementation area can participate in trials of demand response by receiving SMS 

messages from the platform about the plan. After, the platform can track changes in 

the electricity consumption levels of the residents and calculate energy savings, 

which can automatically provide rewards to eligible clients. The test has been 

performed on 20000 Chinese dwellings. Households who perform well in the trials 

will receive monetary subsidies, and the subsidies will be stored in an electronic 

account that is used to pay the houses' electricity bills. The conclusions of this study 

highlight the necessity to increase the monetary return as much as possible, to 
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publicize the demand-response mechanism and policy to promote energy-saving 

behaviors.  

This study suggests that a test like this can be implemented in a European city like 

Milan. It could focus on one the active modification of energy habits of a 

neighborhood like Merezzate, or on a greater scale for a whole side of the town.  

5.2.5 Thoughts of feasibility of demand-response models  

A preliminary analysis like the one performed in this thesis let us understand some 

aspects of demand response models and their feasibility in a real neighborhood like 

Merezzate. The three DR mechanism seen in the previous sub-sections lack all 

under some aspects. Time of Use DR with two or four time slots if greatly affected 

by the PUN value and in particular of the delta of price between peak-hours and 

off-peak hours. Here is highly necessary a greater difference in electricity price in 

order to have a valid monetary saving linked to the variation of energy 

consumption.  

Critical Peak Pricing DR shares the same basic idea of Time of Use DR, but the price 

of peak hours is way higher, so that a reduction in energy use during those hours 

has a positive effect of money savings. However, this could be one of the problems 

for the policy makers because the resident user would have a high disadvantage if 

he or she couldn’t make a modification of the energy habits.  

Incentive-Based Pricing has the highest potential between these three methods 

because users would have to actively modify their home appliances use and would 

see a real money subsidy for their home electricity bill. 

For an in-depth understanding of the DR methods, it would be necessary to develop 

more detailed models where active residents play a key role changing energy 

consumption in a DR methodology way. Example would be models developed in 

studies like [19], [31], [30], [32].  

The next step for residential demand response becomes possible with the 

implementation of devices like Chain2Gate that follow residents’ energy 

consumption in a near-real time way. Thanks to the second-generation smart meter 

and Chain2Gate, it’s realistic to warn residential users of the price of electricity in 

real time. The result would be to implement a model with active residents that 

modify their energy trends based on requests or based or real time prices of 

electricity. This can be possible because price of electricity is at clear view of 

everyone on GME site. The idea would be letting the resident know the price of 

electricity a quarter of hour in advance so that he can decide when to use his home 

appliances in a more intelligent way. This last Real Time Pricing DR would be 

similar to the telecommunications plans active in the nineties in Italy. The price of 

making a phone call during peak hours was way higher than low peak hours, due 
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to the high demand of tertiary industry where telecommunications were essential 

for working. In a similar way, a real time pricing would lead to a high energy price 

linked to the high demand of industry, commercial and residential users and the 

higher difficulty in providing the electricity demanded. At low hours where there 

is an abundance of renewable energy and a lower demand from the user side, 

electricity prices would decrease. Implementing this scheme on a residential level, 

there would likely be a modification in peak demand because the user would have 

more knowledge and info at his disposal.  

5.3 Demand-response for grid development 

During the internship in A2A Smart City it has been brought up the possibility to 

have a brainstorming with Unareti, the company of the A2A group that deals with 

gas and electricity distribution. During this conversation it has been considered the 

possibility to implement a demand-response mechanism in large scale as an 

additional model for the handling of power peak demand in the city of Milan. In 

the development plan of Unareti issued in 2021, the solutions described for the peak 

power demand management are vehicle-to-grid, behind-the-meter generation with 

photovoltaic, hydrogen, energy storage and Power-to-Grid/Grid-to-Power 

mechanisms [13]. All these options are oriented to the reduction of congestions on 

the electricity grid, the main problem of high peak demand. An additional solution 

could be demand-response.  

The idea of the rollout of a demand-response project on a city scale is that a portion 

of the annual investment destined to the upgrade and expansion of the grid could 

be allocated as an incentive of a DR program. For instance, from the development 

plan of Unareti, the investment made in 2020 for the Milan’s grid expansion was 

equal to 91 M€/y [13], while the investment for 2021 was budgeted at more than 100 

M€/y.  

If we assume that for the year 2022 the grid expansion investment would be around 

120 M€/y, it becomes possible to calculate that reducing the investment by 30% the 

investment for grid expansion would become 86 M€/y, while the budget for a 

demand-response program would be the remaining 36 M€/y. This last quantity is 

the monetary value that could be destined as incentives for an incentive-based DR 

program. By dividing the 36 M€/y for the total number of users served by Unareti 

in Milan (9 million people), it’s possible to find an estimated monetary 

compensation that can be given to the users of 40 € each year for the participation 

in a demand response program. This number can help reduce a hypothetical 

electricity bill of 600 €/y of around 6%, which is considered to be not enough. A 

reduction of investment for the global expansion of the Milan electricity grid should 

bring a way higher result for the customer for thinking to be feasible. The critical 

issues for Unareti are linked to the congestion of the electricity grid. It’s essential to 
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make investments to enhance the grid in order to avoid blackouts and lack of service 

for Unareti clients. The exponential increase in energy demand for the city of Milan 

badly needs the increase of investments on the grid to sustain future energy 

scenarios. 

Incentive based DR can become a solution if the Italian state of the European 

Commission decide to invest a very important amount of money in order to sustain 

the costs. The other solution could be a critical peak pricing of energy where peak 

hours energy costs way more than off-peak hours, so that the clients are obliged to 

modify their energy habits to avoid very high electricity bills. 
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6 Conclusions and remarks 

The proposed thesis work analyzes different aspects of residential energy demand.  

The first Chapter, divided in three sections focus on state of the art of Demand 

response, Power metering instruments and clustering techniques for residential 

customers.  

The second Chapter is centered on the presentation of Merezzate+ case study. It is 

a new generation residential district which aims to be sustainable and to create a 

community of intelligent energy users, via the implementation of state of the art 

instruments such as smart meters, smart plugs and smart thermostats.  

In the third Chapter the main goal was to analyze data retrieved with smart meters 

(chain2gate) and smart plugs. Firstly, data was analyzed from a global point of 

view, by looking at the connections of the households to the transformers. Form this 

it was firstly noted how the total power ranges between a maximum (160-170 kW) 

and a minimum (30 kW), following patterns dependent on the day of the week. For 

instance, workdays from Monday to Friday tend to have the higher peak at dinner 

time, while weekends and holidays tend to have a power trend with two peaks of 

around the same magnitude, due to the fact that people tend to stay home more and 

use home appliance early in the morning.  

Then it was pointed out how the minimum power increases with the variation of 

perceived temperature. In particular, for the days of 12-15th of June, a high increase 

in ambient temperature and humidity in Milan led to the increase of minimum 

power demand (+70 %) that maintained for the summer months. 

In the following section data was analyzed from the energy point of view and it was 

possible to notice this increase in the daily mean trend. Here, the difference between 

the months analyzed (May, June, July and August) is the increase in the minimum 

energy demand during night-time, which can be linked to the beginning of air 

conditioning systems.  

The analysis then continued with the clustering of time series with k-means 

algorithm, doing the differentiation between workdays and weekends. Here, 

clustering of power load curves has been performed by making the mean of daily 

load curves for each resident. In this way, it was possible to find three clusters one 

for low, one for medium and one for high power demand. The difference of trends 
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between workdays and weekends has been also found here, confirming the global 

power trends for the single residents’ profiles. 

By adding the information of type of the apartment in which residents live there 

have been found some trends of use. In particular, one-room apartments have been 

clustered for the major part in the “low” power demand group, while three-room 

and four-room apartments have a higher chance of being grouped in the “high” 

power demand cluster.  

As a next step it was performed a different clustering analysis, based on the total 

energy consumption of the residents over a month period. The information of type 

of apartment have been inserted before the clustering as an additional parameter. 

The results of this clustering are very similar to the ones of time series clustering. 

The motivation of the differences between the two methods used is mainly the fact 

that clustering of monthly energy consumption keeps into consideration all energy 

use, without the difference between workdays and weekends.  

Clustering of monthly energy has also been performed for single type of 

apartments, obtaining 12 separate clusters. Then the clusters were brought back to 

3. With this reasoning it was possible to visually determine the residents that are 

consuming more or less than the residents in the same type of apartment.  

The following section consists of smart plugs data mining. The home appliances 

considered in this thesis work are conduction stove, oven, dishwasher, washing 

machine, drying machine, tv, refrigerator. The mean monthly energy consumption 

shows that the refrigerator and the cooking stove are the two most energy 

demanding appliances, even if their power demand is different, being the 

refrigerator always turned on, while the cooking stove is used only when necessary.  

From the daily trend of home appliance usage, it was possible to notice that during 

peak time from 19.00 to 21.00, the most used appliances are cooking stove and oven 

in the range of 50-60% of uses. The remaining home appliances are the ones that 

could be moved in a demand response mechanism (not considering refrigerator and 

tv).  

Information of energy use from smart meter and smart plugs can be used together 

to give added value to the resident. It’s possible to make a real time power demand 

graph with both info of power meter and smart plugs. Another visual output could 

be a monthly report with information of energy consumption, divided for home 

appliance followed by smart plugs. The optimal situation would be a resident with 

all of his appliance connected to smart plugs so that he could understand his energy 

habits at best.  

Results of monthly energy consumption have been implemented in a renewable 

energy community simulator called Recon. Here the three cluster of residents have 

been characterized by the mean value of energy consumption for the respective 

clusters. Two different scenarios have been considered: the first one is the real 
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configuration, based on a district heating, system and in the second one a 

centralized electric heat pump heating system is considered. A simulator like Recon 

gives the possibility to understand the feasibility of the creation of a photovoltaic 

power plant for a neighborhood, giving back information on energy consumptions 

and environmental impact. Then, a section was dedicated to the economic analysis 

of the two scenarios, taking into account the realization of an energy community 

and the enlargement of the PV plant.  

The introduction of REC is clearly an advantage from the point of view of the cash 

flow since the MISE incentive are an additional revenue computed on the energy 

shared between residents of the same condominium.  

For the cases of district heating the incentive is about 850 €/year for a renewable 

energy community of 30 apartments that share energy produced with a 10 kW PV 

plant, while it is 1500 €/year for the same case but with a bigger PV plant of 30 kW.  

Similar results are obtained for a heat pump that would self-consume a portion of 

the energy produced by the PV plant. The revenues would be around 450 and 1200 

€/year for the two cases of 10 kW PV and 30 kW PV, a bit lower that the district 

heating case, mostly because the heat pump would consume a higher portion of 

energy produced by the photovoltaic plant, so there would be less energy dedicated 

to being shared.  

The last chapter of this thesis in centered on the feasibility of a demand response 

program for residents of Merezzate neighborhood. At first it was analyzed the price 

of electricity, PUN. With a real value of PUN, it has been performed a first test by 

moving 20% of energy consumption from the high price to the low price time slot, 

as in a Time of Use DR mechanism. This leads to very thin 0,5% of cost of energy 

decrease. A similar result has been obtained by implementing a ToU mechanism 

with 4 new time slots (F1, F2, F3, F4). Cost reduction in this case was just of 1%.  

The next step was to understand the feasibility of a Critical Peak Pricing DR 

mechanism. The results are definitely better than ToU, leading to a cost reduction 

of around 3%, by moving 20% of energy use from peak hours to low peak hours.  

The final DR analysis focused on Incentive-based DR mechanism, where the 

resident should be motivated by the incentive to move the energy use from peak 

hours to off-peak hours. Here the result brought to an energy cost reduction of 

around 5-6%.  

Last subsections have been written to summarize DR mechanisms seen in this thesis 

and to understand if DR can be an alternative to grid expansion. For this last point, 

it was possible to come to the conclusion that DR can be powerful tool to lighten the 

system, but it has to be used with the conjunction of the increment of the grid, which 

is vital for big cities like Milan.  
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Some aspects of this thesis project need some further analysis that couldn’t be 

analyzed for time or external reasons. For instance, the data collected with smart 

instruments are related to a 6 month period. Without any doubt, the possibility to 

have access to data ranging from January to December would give us the chance to 

make some remarkable considerations. Surely it would be possible to better analyze 

the seasonality of energy consumption of a whole district.  

In the chapter regarding data mining, it was possible to determine the increase in 

minimum power demand passing from May to June, due to the increase in ambient 

temperature and humidity. A further step would be to identify this change in 

energy consumption linked to other season changes, for example moving from 

autumn to winter or from winter to spring.  

A thing that could be pointed out is that the power demand curve could have a 

different profile. For instance, the peak power demand at dinner time could be also 

higher, or the whole power demand profile could be different from the one found 

in this data. The Covid-19 pandemic, for example, changed the residential profile of 

energy demand. It has been seen in many studies [33], [34], [35] how the trends of 

workdays became very similar to weekends, due to the compulsory presence of 

people in their dwellings.  

Data for this thesis was related only to 2021, so it was not possible to identify the 

differences between Covid time, from March 2020, and post-Covid time.  

For sure, the collection of data for the next years will give us the possibility to find 

different trends if there will be the complete return to normality or even if there will 

be a new external event like a pandemic.  

The apartments that are occupied in Merezzate kept increasing during 2021 and, at 

the time of writing of this thesis, it reached 450 apartments inhabited on a total of 

615 apartments. A following step would be to analyze data when all the apartments 

are occupied so that all results would be as realistic as possible. Another possible 

solution would be the data mining of an already living neighborhood. Here it would 

be interesting to find the differences in energy consumption patterns with respect 

to Merezzate residents. In fact, people of Merezzate have been preliminary selected 

based on their interests on environmental and sustainability matters. A different 

district with people of another mental approach could and should bring to different 

results.  

Another aspect that could be found by analyzing other pre-existing districts is that 

the efficiency of the buildings and of the home appliances should impact on the 

energy consumption patterns.  

Regarding the clustering of monthly energy consumption, it would be very 

interesting to introduce the information of the number of inhabitants in each 

apartment, like in the study of [36]. In this way it would be possible to have an 

additional level on analysis that can give further results for customer segmentation.  
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The results of clustering of monthly energy consumption would be definitely useful 

for the implementation of a simulator like Recon. Here, energy for the month would 

be used as an input for all single months, without the need to make a mean value 

that characterizes the yearly energy demand.  

For the smart plugs point of view, it is obvious that having access to a higher 

number of home appliances can be crucial to better understand the power demand 

trends and habits of use. Also, if every resident will have the possibility to install 

many smart devices, he will have more control over his home and more knowledge 

over his energy use.  

For what regards the feasibility of Demand Response mechanisms in the residential 

sector, it has been described in this thesis that the delta of price between peak slot 

and off-peak slot is too little to act on energy consumption to have important money 

savings for the resident. It becomes obvious that a PUN, price of electricity, with a 

higher variability and difference between maximum and minimum value could 

lead to the active implementation of DR programs.  

It is worth noticing that a Direct Load Control DR program has not been analyzed 

in this thesis. The main reason for this choice is that the only appliances that could 

be feasible for this type of program are Dishwasher, Washing machine and Drying 

machine. Even if there have been made some studies in this direction, one of the 

common results is that this mechanism turns out to be uncomfortable for the final 

user. It has been decided to analyze energy use from a total point of view, with the 

concept of giving the user the possibility actively to modify his power trends and 

habits.  

A next step for this thesis would be the realization of an experiment implementing 

a Real Time Pricing DR program with real residents. In fact, this method requires 

some effort to evaluate in an analytical environment, so it would be better to directly 

see the results on a real residential case. 

In the near future, when most of the Italian population will have the second 

generation smart meter, one of the goals will be to have to analyze a large amount 

of data in an intelligent way. One of the results is that residents will be more 

informed about their consumption and will be able to react to responses from the 

outside such as a real-time change in the cost of energy. 

An example of application could be a solution to the problem created in August, 

September and October 2021. In Europe, and in particular in Italy, there are 

increases of around 40% in electricity and gas costs linked to the increase in the cost 

of raw materials [37].  

The case is becoming really important and is getting more and more political and 

media attention; it is estimated that rising energy prices will lead to the temporary 

closure of manufacturing companies [38]. 
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The real-time response of the customer will be an excellent point of advantage of a 

DR technique, because it would bring immediate added value to the customer, who 

would have the possibility to avoid consuming energy in the most expensive time 

range. 

The problem of the increase in the cost of energy in August, September, October is 

mainly related to the increase in the cost of raw materials, in particular natural gas, 

so partly detached from the dependence of daily demand. Energy costs more on 

average throughout the day.  

Without a doubt, the implementation of energy production from renewable sources 

remains one of the possible solutions to the problem. This is one of the main reasons 

why it is necessary to encourage the emergence of energy communities that produce 

renewable energy bringing benefits to the residents of which they are an active 

member. 
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Appendix 

The appendix of this thesis consists of graphs and calculations that have been 

omitted for the sake of simplicity of the text.  

In order, there have been reported: 

• Transformers, May 

• Clustering results, May, June, July and August 

• Monthly reports examples, June, July and August 

• DR calculations for: 

o 4 time slots 

o Critical peak pricing 

o Incentive based pricing 
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Transformers 

May 

Here are reported the power trends of apartments in Merezzate for the month of May, with 

their respective link to the transformers.  

 

Figure 6-1 – Power trend of Transformer 1: A01943_TR1, May 

 

 

Figure 6-2 – Power trend of Transformer 2: A01944_TR1, May 
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Figure 6-3 – Power trend of Transformer 3: A01946_TR1, May 

 

 

Figure 6-4 – Power trend of Transformer 4: A01947_TR1, May 

 

 

Figure 6-5 – Power trend of Transformer 5: A01948_TR1, May 
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Clustering results 

JUNE 

 
Figure 6-6 – Mean curves of the three clusters (weekdays), June  

 

 
Figure 6-7 – Mean curves of the three clusters and mean power curves of daily (weekdays) power curves of all 

customers, June.  
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Figure 6-8 – Mean curves of the three clusters (weekends), June  

 

 
Figure 6-9 - Mean curves of the three clusters and mean power curves of daily (weekends) power curves of all 

customers, June. 
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JULY 

 
Figure 6-10 – Mean curves of the three clusters (weekdays), July 

 

 
Figure 6-11 – Mean curves of the three clusters and mean power curves of daily (weekdays) power curves of 

all customers, July. 
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Figure 6-12 – Mean curves of the three clusters (weekends), July 

 

 
Figure 6-13 – Mean curves of the three clusters and mean power curves of daily (weekends) power curves of 

all customers, July. 
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AUGUST 

 
Figure 6-14 - Mean curves of the three clusters (weekdays), August 

 

 

 
Figure 6-15 – Mean curves of the three clusters and mean power curves of daily (weekdays) power curves of 

all customers, August. 
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Figure 6-16 -– Mean curves of the three clusters (weekends), August 

 

 
Figure 6-17 – Mean curves of the three clusters and mean power curves of daily (weekends) power curves of 

all customers, August. 
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• Monthly reports examples, June, July and August 
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DR calculations 

4 time slots – 20% energy shift 
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Critic peak pricing – 4 time slots – 20% energy shift 

 

 

 

  

840d8ee31675 - ALTO

FASCE PUN ENERGIA COSTO ENERGIA_NEW COSTO NEW

feriale F1 7-8, 19-20 0,25 €/kWh 13,45 kWh 3,3625 € 10,76 kWh 2,69 € 20

F2 12-14, 20-22 0,075 €/kWh 37,743 kWh 2,830725 € 30,1944 kWh 2,26458 € 20

F3 00-7, 8-12, 14-19, 22-24 0,065 €/kWh 117,238 kWh 7,62047 € 127,4766 kWh 8,285979 € 8,031749

festivo F4 sabato e domenica 0,058 €/kWh 96,8785 kWh 5,618953 € 96,8785 kWh 5,618953 € 0

tot feriale 168,431 kWh 13,8137 € 168,431 kWh 13,24056 € 4,149042

tot festivo 96,8785 kWh 5,618953 € 96,8785 kWh 5,618953 € 0

tot 265,3095 kWh 19,43265 € 265,3095 kWh 18,85951 € 2,949346

233,1918 226,3141 € differenza 6,877632 €/anno

FASCE PUN ENERGIA COSTO ENERGIA_NEW COSTO NEW

feriale F1 7-8, 19-20 0,25 €/kWh 8,1395 kWh 2,034875 € 6,5116 kWh 1,6279 € 20

F2 12-14, 20-22 0,075 €/kWh 17,9915 kWh 1,349363 € 14,3932 kWh 1,07949 € 20

F3 00-7, 8-12, 14-19, 22-24 0,065 €/kWh 72,588 kWh 4,71822 € 77,8142 kWh 5,057923 € 6,716255

festivo F4 sabato e domenica 0,058 €/kWh 68,87 kWh 3,99446 € 68,87 kWh 3,99446 € 0

tot feriale 98,719 kWh 8,102458 € 98,719 kWh 7,765313 € 4,161015 %

tot festivo 68,87 kWh 3,99446 € 68,87 kWh 3,99446 € 0

tot 167,589 kWh 12,09692 € 167,589 kWh 11,75977 € 2,787028 %

145,163 141,1173 4,045734 €/anno

840d8ee26509 - MEDIO

240ac41e7051 - BASSO

FASCE PUN ENERGIA COSTO ENERGIA_NEW COSTO NEW

feriale F1 7-8, 19-20 0,25 €/kWh 5,8995 kWh 1,474875 € 4,7196 kWh 1,1799 € 20

F2 12-14, 20-22 0,075 €/kWh 10,6655 kWh 0,799913 € 8,5324 kWh 0,63993 € 20

F3 00-7, 8-12, 14-19, 22-24 0,065 €/kWh 42,493 kWh 2,762045 € 45,806 kWh 2,97739 € 7,232677

festivo F4 sabato e domenica 0,058 €/kWh 34,56 kWh 2,00448 € 34,56 kWh 2,00448 € 0

tot feriale 59,058 kWh 5,036833 € 59,058 kWh 4,79722 € 4,757206

tot festivo 34,56 kWh 2,00448 € 34,56 kWh 2,00448 € 0

tot 93,618 kWh 7,041313 € 93,618 kWh 6,8017 € 3,402952

84,49575 81,6204 2,87535 €/anno
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Incentive base pricing – 4 time slots – 20% energy shift 

 

 

 

 

 

840d8ee31675 - ALTO

FASCE PUN ENERGIA COSTO ENERGIA_NEW COSTO NEW

feriale F1 7-8, 19-20 0,086 €/kWh 13,45 kWh 1,1567 € 10,76 kWh 0,92536 € 20

F2 12-14, 20-22 0,075 €/kWh 37,743 kWh 2,830725 € 30,1944 kWh 2,26458 € 20

F3 00-7, 8-12, 14-19, 22-24 0,065 €/kWh 117,238 kWh 7,62047 € 127,4766 kWh 7,262119 € -4,93452

festivo F4 sabato e domenica 0,058 €/kWh 96,8785 kWh 5,618953 € 96,8785 kWh 5,618953 € 0

incentivo tot feriale 168,431 kWh 11,6079 € 168,431 kWh 10,45206 € 9,957326

0,1 €/kWh tot festivo 96,8785 kWh 5,618953 € 96,8785 kWh 5,618953 € 0

tot 265,3095 kWh 17,22685 € 265,3095 kWh 16,07101 € 6,709504

18,57167 206,7222 192,8521 13,87003 €/anno

FASCE PUN ENERGIA COSTO ENERGIA_NEW COSTO NEW

feriale F1 7-8, 19-20 0,086 €/kWh 8,1395 kWh 0,699997 € 6,5116 kWh 0,559998 € 20

F2 12-14, 20-22 0,075 €/kWh 17,9915 kWh 1,349363 € 14,3932 kWh 1,07949 € 20

F3 00-7, 8-12, 14-19, 22-24 0,065 €/kWh 72,588 kWh 4,71822 € 77,8142 kWh 4,535303 € -4,03318

festivo F4 sabato e domenica 0,058 €/kWh 68,87 kWh 3,99446 € 68,87 kWh 3,99446 € 0

incentivo tot feriale 98,719 kWh 6,76758 € 98,719 kWh 6,174791 € 8,759245 %

0,1 €/kWh tot festivo 68,87 kWh 3,99446 € 68,87 kWh 3,99446 € 0

tot 167,589 kWh 10,76204 € 167,589 kWh 10,16925 € 5,508146 %

129,1445 122,031 7,113467 €/anno

840d8ee26509 - MEDIO

240ac41e7051 - BASSO

FASCE PUN ENERGIA COSTO ENERGIA_NEW COSTO NEW

feriale F1 7-8, 19-20 0,086 €/kWh 5,8995 kWh 0,507357 € 4,7196 kWh 0,405886 € 20

F2 12-14, 20-22 0,075 €/kWh 10,6655 kWh 0,799913 € 8,5324 kWh 0,63993 € 20

F3 00-7, 8-12, 14-19, 22-24 0,065 €/kWh 42,493 kWh 2,762045 € 45,806 kWh 2,64609 € -4,38213

festivo F4 sabato e domenica 0,058 €/kWh 34,56 kWh 2,00448 € 34,56 kWh 2,00448 € 0

incentivo tot feriale 59,058 kWh 4,069315 € 59,058 kWh 3,691906 € 9,274508

0,1 €/kWh tot festivo 34,56 kWh 2,00448 € 34,56 kWh 2,00448 € 0

tot 93,618 kWh 6,073795 € 93,618 kWh 5,696386 € 6,213725

72,88553 68,35663 4,528907 €/anno


