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1. Introduction
With the increasing popularity of digital pay-
ments, fraud detection systems have become
indispensable in limiting monetary losses for
both customers and card-provider companies.
Recognizing the significance of this issue, online
payment platforms actively incorporate robust
fraud detection systems into their infrastructure.

When it comes to addressing fraud detection
challenges, Decision Trees have emerged as
a clear and efficient approach, extensively
integrated into current fraud detection systems
[1]. Gradient Boosting Trees (GBT), which
are a type of Decision Trees, are the focus
of this study. However, this relatively simple
model faces considerable difficulties effectively
handling the complexities associated with
fraud detection, particularly concerning data
imbalance and concept drift.

Therefore, this thesis presents an original contri-
bution by utilizing and analyzing Natural Lan-
guage Processing (NLP) methodologies in the
context of fraud detection, while directly com-
paring their performance against the Gradient
Boosting Trees approach. By doing so, we aim

to highlight the strengths and limitations of both
approaches and uncover the potential benefits of
applying NLP techniques in this specific domain.

2. Problem Formulation
Consider a dataset Dn = (xi, yj)

n
i=1 where

xi ∈ X ⊆ Rd and yi ∈ Y = 0, 1.
Each payment i is described by its features
xi (e.g. amount, date,. . . etc) and its label yi
flagging whether it is a fraud, yi = 1, or not,
yi = 0.
Fraud detection consists of estimating a func-
tion f : X 7→ Y using Dn, i.e. a function which
predicts whether a payment i is fraudulent
based on its features xi.

Fraud Detection is considered a challenging task
for three main reasons [5]:
• Imbalanced learning: non-fraudulent pay-

ments are significantly more numerous than
fraudulent ones.

• Concept drift: fraudsters change their be-
haviors due to a cat-and-mouse game.

Dtrain
n ∼ ptrain(x, y)

Dtest
n ∼ ptest(x, y)

ptest(x, y) ̸= ptrain(x, y)
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• Explainability: for regulatory reasons, it is
necessary to account for a model’s predic-
tion.

3. Related Work
Gradient Boosting Trees (GBT) have been
widely employed in various domains for build-
ing predictive models and classifiers. In this
approach, weak learners, which are represented
by decision trees, are enhanced by combining
them sequentially to construct more resilient
models. The objective of each subsequent tree
is to minimize the errors made by the previous
ones, resulting in an iterative improvement of
the model’s performance. The effectiveness of
GBT in fraud detection has been explored in
several studies [7], [6].

To further enhance fraud detection, we draw
inspiration from the FraudMemory study con-
ducted by Yang et al. [8] The authors propose
a hybrid fraud detection system that combines
sequential and memory-enhanced methods. The
core idea behind FraudMemory is to model
the normal behavior of each user and identify
transactions that significantly deviate from this
behavior as potential frauds. To capture the
valuable information from transactions, the
authors employ two distinct representations:
the user profile representation and the log
representation. The user profile representation
encapsulates user behavior by considering
metrics such as transaction intervals, frequency,
and monetary value. On the other hand, the log
representation focuses on extracting attribute-
level information using a modified version of
the Continuous Bag-of-Words model, called the
Continuous Bag-of-Attributes model (CBOA).
To capture the sequential patterns inherent in
transactional data, the FraudMemory model
utilizes a Gated Recurrent Unit (GRU) model.
The GRU model is designed to process se-
quential data and extract dependencies among
transactions. Finally, a Multilayer Perceptron
(MLP) is employed to evaluate the sequential
representation and assign a fraud score to each
transaction.

While GBT has demonstrated effectiveness in
fraud detection, the NLP-inspired approach
presented in FraudMemory offers a novel

perspective by combining sequential analysis
and memory-enhanced techniques. In our
study, we aim to build upon these ideas and
evaluate the performance of GBT as well as
compare it with the NLP-based model inspired
by FraudMemory. The evaluation encompasses
both the conventional GBT approach with
augmented feature engineering techniques
and an exploration of its performance when
augmented with NLP embeddings. Our focus
lies in isolating the latent representation of
transactions and utilizing an LSTM model to
extract sequential patterns, with the ultimate
goal of enhancing the accuracy and efficacy of
fraud detection systems.

4. Background
4.1. Gradient Boosting Trees
GBT are an extension of the AdaBoost algo-
rithm [2]. AdaBoost initially trains decision
trees on equally weighted observations and it-
eratively adjusts the weights based on misclas-
sified samples, leading to the construction of
an ensemble of trees. The final predictions
are obtained through a majority voting scheme
weighted by the individual accuracies of the
weak learners. GBT expands upon this ap-
proach by formulating the problem as a numer-
ical optimization task, using a gradient descent-
like procedure to sequentially add weak learners
and minimize the model’s objective.

4.2. Natural Language Processing
Natural Language Processing (NLP) is a field
of artificial intelligence that focuses on enabling
machines to understand, interpret, and generate
human language. One crucial aspect of NLP
is the representation of words in a format that
machines can effectively process.

Word embeddings are techniques used to
transform words or phrases from their original
high-dimensional input space into a lower-
dimensional numerical vector space. These
continuous vectors represent words and capture
their semantic meaning. Notably, word em-
beddings can create clusters in the projection
space, where similar words are located close [4].
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Another important aspect of NLP is the man-
agement of sequential data. Long Short-Term
Memory (LSTM) networks are a type of re-
current neural network (RNN) that addresses
the challenges associated with sequential data.
LSTMs are structured with recurrent connec-
tions and gated memory cells in each neuron.
The recurrent connectivity enables the network
to maintain memory of past inputs and learn
long-term dependencies. The gated memory
within each cell controls the flow of information,
allowing the retention or exclusion of data [3].

5. Proposed Models
The GBT model can be split into two stages:

1. In a first stage, we use features engineer-
ing to encapsulate time in new attributes.
These attributes are derived with the aid
of experts’ knowledge and comprise of, to
name a few: mean and standard deviation
(std) of the amount spent, cumulative stan-
dard deviation (nbstd) of the amount spent,
rolling sum of the amount spent, average
number of hours -in the range 1 to 24 over
a day period- and average minutes between
two consecutive transactions, . . .

2. In the second stage, an implementation
of Gradient Boosting Tree, Light Gradient
Boosted Machine (LightGBM), is utilized
to classify transactions as fraudulent or le-
gitimate.

The NLP model can also be divided into two
distinct phases:

1. In the first phase, which is a preliminary
phase, the attributes undergo a processing
step through an embedding layer. The em-
bedding layer is constructed using the Con-
tinuous Bag of Attributes (CBOA) dense
embedding technique. This technique en-
ables the projection of the attributes into a
lower-dimensional space. By doing so, the
attributes are quantified and represented as
real-valued vectors that capture their se-
mantic relationships with other attributes.
During this phase, the incoming transaction
is divided into aij , where i ∈ A and j ∈ Ai

represent the attribute and its correspond-
ing value. It is important to note that the
sequence order of aij is irrelevant, and each
aij relies on the other amn (where m be-

longs to A and m is not equal to i) as its
context. The objective of CBOA is to use
contextual attributes to predict the target
attribute, with the ultimate aim of maxi-
mizing the logarithmic probability [8].

log p(aij |{amn|m ∈ A,m ̸= i, n ∈ Am})

2. The second phase frames the model archi-
tecture.
The model compounds a LSTM layer and
two dense layers on top. The LSTM is fed
with sequences of vectorized attributes and
extracts temporal patterns. It uses the se-
quence of transactions ru1 , ru2 , . . . , rut of user
u to calculate the current hidden state vec-
tor hut at time-step t based on the previous
hidden state vector hut−1:

hut = LSTM(hut−1, r
u
t , θ)

where θ denotes the LSTM parameters to
learn. Finally, two dense layers are em-
ployed to evaluate the sequential represen-
tation and determine whether a transaction
is fraudulent or not.

Predictionsequence = Dense(hut )

Finally, a third model combines and integrates
the two previous models by incorporating the
CBOA representation of transactions and feed-
ing them into the LightGBM.

6. Experiments
6.1. Dataset
A large dataset of 100 million labeled transac-
tions from a real payment service is used. Each
transaction consists of several attributes, includ-
ing both categorical and continuous variables.
Of particular interest are the "card" attribute,
which identifies the card used for the transaction
and links it to the series of transactions associ-
ated with the same card, and the "fraud" flag
attribute, which indicates whether a transaction
is classified as fraudulent. Less than 1% of the
transactions in our dataset are flagged as fraud.
This makes the dataset highly imbalanced, pre-
senting a challenge in developing an effective
classification model for time-series input data.
The original dataset has been modified in sev-
eral ways: from dropping attributes useless to
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Loss TP FP TN FN ACC PREC RECALL AUC Support

LSTM 0,03138 5756 17795 7264219 34342 0,9928 0,2445 0,1435 0,8112 7322112

LGBM 5843 7841 7274411 34263 0,9942 0,4270 0,1457 7322358

LGBM-2 3297 4166 7278086 36809 0,9944 0,4418 0.0822 7322358

Table 1: Comparison LSTM, LGBM and LGBM with CBOA on short history

Loss TP FP TN FN ACC PREC RECALL AUC Support

LSTM 0,1414 9790 12900 3966309 20473 0,9917 0,4315 0,3235 0,9077 4009472

LGBM 5843 6112 3973264 24424 0,4887 0,1930 0,1457 4009643
LGBM-2 2854 2984 3976392 27413 0,9924 0,4889 0,0943 4009643

Table 2: Comparison LSTM, LGBM and LGBM with CBOA on long history

the learning process to change the data for-
mat to boost performances. Finally, cards and
merchants not associated to fraudulent transac-
tions are dropped to slightly balance the dataset
and focus the learning process on fraudulent se-
quences.

6.2. Metrics
Accuracy is a commonly used metric, but it’s
not a reliable metric for evaluating imbalanced
datasets as it can be misleading. For example,
if we had a model that predicts "non-fraud" for
all instances in a dataset where fraud represents
only 0.4% of the total instances, it would achieve
a 99.6% accuracy. To gain better insight, Preci-
sion, Recall and AUC (Area Under the Curve)
are used. In the fraud detection task, classifying
non-fraudulent transactions as fraudulent means
for the client to have their money frozen and the
service suspended for undefined time. Our ma-
jor interest relies on recall.

6.3. Experiments
This study presents two main objectives.
Firstly, it aims to compare different window
sizes and determine the optimal one for the
LSTM model’s performance. Here, the term
"window size" refers to the number of transac-
tions used to train the LSTM model. Secondly,
it focuses on comparing the LSTM model with
the LightGBM model.

To achieve these objectives, we conducted ex-

periments in three categories:
• The first category, which results are shown

in table 1, involved cards with short his-
tories, specifically those with 8 or more
transactions. This minimum value was cho-
sen based on an average of 7.76 transac-
tions, ensuring a substantial portion of the
dataset was included. To encompass a wide
range of cards, a window size of 3 was used
in this experiment. The goal is to assess the
model’s ability to learn despite the limited
number of transactions.

• The second category, which results are
shown in table 2, focused on cards with
longer histories, specifically those with 18
or more transactions. Although the ma-
jority of cards had fewer than 25 trans-
actions, longer card histories provide the
LSTM model with more data to learn pat-
terns effectively. To strike a balance be-
tween adequate data for the LSTM model
and a reasonable number of cards for anal-
ysis, a window size of 12 was selected.

• The third category, which results are shown
in table 3, involved cards with even longer
histories, specifically those with 40 or more
transactions. The objective here is to evalu-
ate the model’s performance with extended
card histories. Consequently, a window size
of 32 was chosen to accommodate these
lengthy sequences and assess the model’s
handling of them.
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window size Loss TP FP TN FN ACC PREC RECALL AUC Support

3 0,03138 5756 17795 7264219 34342 0,9928 0,2445 0,1435 0,8112 7322112

12 0,1414 9790 12900 3966309 20473 0,9917 0,4315 0,3235 0,9077 4009472

32 0.0330 8994 12590 3966619 21269 0.9916 0.4167 0.2972 0.8777 161200

Table 3: Comparison window sizes for LSTM performance

6.4. Model Architecture
In our experiments, we varied the architecture
of the LSTM model and discovered the following
empirical findings for optimal performance:

• The number of units in the LSTM should
match the maximum window size length.

• The length of the hidden state should corre-
spond to the length of the sequences being
handled to ensure proper memorization and
utilization.

• To avoid excessively long training times, we
limited the maximum window size to a fixed
value of 40, as some cards had thousands of
transactions.

Moreover, the presence of outliers can signifi-
cantly impact the training process, leading to
vanishing or exploding gradients. To mitigate
this issue, we took the following steps:

• We set the parameter "global clipnorm" of
the optimizer to 0.5. This parameter sets
an upper limit to the L2 norm of gradients,
ensuring smoother gradient values.

• We assigned a higher weight to instances
of the positive class when computing the
loss function to counterbalance the dataset
imbalance.

6.5. Results
Tables 1 and 2 provide a direct comparison
between the LightGBM and the NLP-based
model, either on short histories and on long
histories.

In the first case, we cannot see significant
improvements in the use of the NLP-based
model with respect to the use of the LightGBM.

On long histories, however, the NLP-based
model proves to perform remarkably better
than its counterpart. Indeed, we observe an
improvement in Recall, that scores around

0.3235.
Based on this results, we can conclude that
the LSTM-based model is superior to the
LightGBM, solving the task of fraud detection
on a dataset of cards with long history.

Table 3 provides an immediate comparison be-
tween the performances achieved by the NLP-
model set with different values of window
sizes. The three models are trained on differ-
ent datasets:

1. the first one, with a window size set to 3,
is trained on a database made of cards with
an history made of 8 or more transactions.

2. The second one, with a window size set to
12, is trained on a database made of cards
with an history made of 18 or more trans-
actions.

3. The last one, with a window size set to 32,
is trained on a database made of cards with
an history made of 40 or more transactions.

The three model are trained during 30 epochs.
The best performance is achieved by the second
model. Although, it must be considered that
most cards are related to short histories. Indeed,
when selecting cards with longer and longer his-
tories, we end up with much fewer populated
databases.

7. Conclusion
In conclusion, the experimental results pro-
vide two significant findings. Firstly, it was
determined that the optimal window size for
the LSTM model is 12. Additionally, when
compared to the LightGBM models, the LSTM
model showcased superiority on a dataset
consisting of cards with a long history and a
window size of 12, resulting in an improvement
of 0.1778 points in Recall with respect to the
best result achieved by the LightGBM.
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While the experimental results are presented, it
is worth noting that more advanced techniques,
such as transformers and attention mechanisms,
hold the potential to surpass the capabilities
of the current methodologies. These advanced
techniques offer the complexity required to cap-
ture intricate patterns and dependencies within
transactional data, which could significantly en-
hance the accuracy and effectiveness of fraud de-
tection systems.
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