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When you face a new problem,
study the fundamental physics and solve it by yourself.

After you got to your solution, look at the literature.
If you find the same, then you deeply understood the problem.

If you don’t find it, then you made a discovery.

Mac
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"Sennò potremmo buttarci sui kite". Ero perplesso, ma Mike continuò: "Potrebbe sem-
brarti strano, ma si può generare energia dal vento anche con degli aquiloni" e mi
spiegò i concetti principali. Effettivamente sembrava una follia. Aggiunse: "Dovrem-
mo parlarne con Mac". Michael McWilliam e Mac Gaunaa mi hanno trasmesso la cosa
più importante di tutte, per la quale sarò per sempre grato: cosa significa essere un
ricercatore.

Era l’inizio del 2019. Mi diedero "Crosswind Kite Power", il paper di Loyd (1980)
che aveva gettato le basi del settore che ora chiamiamo "Airborne Wind Energy". Così
iniziò il mio viaggio. Che visione grandiosa: energia eolica volante. Mi misi rapida-
mente al passo con il settore, studiando lo stato dell’arte e le aziende già attive. La mia
tesi di laurea magistrale fu l’antipasto della tesi che state leggendo, con modelli sem-
plificati, ottimizzazione e analisi di sensitività. Roland Schmehl fu il mio esaminatore
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stesso background accademico. Amavamo perderci in deliri a proposito dei nostri studi
e, chiacchierando, concordammo sull’importanza di modellare i kite come un siste-
ma lineare per studiarne la stabilità. Ma rispetto a che condizione di volo? Non lo
sapevamo.

In quell’autunno andai con Mac alla conferenza sull’Airborne Wind Energy a Gla-
sgow, scoprendo ed immergendomi in una comunità di sognatori. Makani, l’azienda
finanziata da Google sui kite, mostrò i risultati dei loro test in mare su piattaforma gal-
leggiante: da non crederci. Poi, Lorenzo Fagiano tenne una plenaria che mi impressionò
e andai a incontrarlo e conoscerlo.

Dopo la tesi, iniziai a lavorare come assistente di ricerca al DTU di Copenaghen,
imparando l’arte del progettare turbine eoliche dai padri stessi dell’energia del ven-
to. Con Mac e Mike cercavamo finanziamenti per la ricerca sui kite senza trovarli e,
parallelamente, ci preparavamo per la conferenza TORQUE. Io iniziai a studiare la
fisica del cavo con una formulazione matematica inutilmente complessa e trovai una
sorpresa. Trascurando la gravità, il problema diventa assialsimmetrico ed esiste una
traiettoria circolare che massimizza la potenza. Se le forze centrifughe sono bilanciate
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dalla componente radiale della forza del cavo, allora la portanza viene utilizzata solo
per la generazione di energia. Detta in breve: sinΦ tanΦ = M . Boom. Avevo trovato
l’orbita che stavo cercando per studiare la stabilità del volo. Nel frattempo, Mac mise
ordine nel problema aerodinamico dei kite con un semplice messaggio: la teoria del
momento non funzionava, bisognava usare la teoria dei vortici.

All’improvviso, intanto, Makani chiuse. "Google non ce l’ha fatta, starai coi piedi
per terra ora?" mi dicevano. Perchè si erano fermati? Avevano trovato problemi inge-
gneristici o fisici? Queste domande furono uno stimolo in più per me. Il finanziamento
per il mio dottorato sui kite non arrivava, così mi ricordai di Lorenzo e gli mandai un
messaggio. Mi consigliò di candidarmi al Dipartimento di Aerospaziale a Milano e di
parlare con Alessandro Croce e Carlo Riboldi, esperti in meccanica del volo e energia
eolica. In Italia, c’erano alcune borse di dottorato generiche e avrei potuto propor-
re al dipartimento il mio progetto di ricerca. Lo feci e ottenni la posizione. Mi misi
sinΦ tanΦ =M in tasca e tornai in Italia.

Fin dal primo giorno di dottorato, il mio studio si concentrò sulla stabilità del volo
in quella traiettoria circolare. Volevo capirla a fondo. Derivai tutto in modo analitico in
40 pagine di matematica pesante - poveri revisori. Il cavo à attaccato un po’ più a poppa
rispetto al centro di massa, il timone spinge verso l’esterno ed eccoci qua: stabilità! Era
un ottimo punto di partenza. Ma quanto era teorico? Quanto era lontano dalla realtà?
E se avessi reintrodotto la gravità?

Nell’autunno 2021 Gregorio Pasquinelli iniziò la sua tesi di laurea con noi. Sviluppò
un modello dinamico semplificato dei kite che volano in traiettorie circolari, perfetto
per comprendere l’effetto della gravità sulla potenza. In quel momento ero a Delft,
per il mio periodo all’estero, e condividevo l‘ufficio con Iván Castro, che veniva dalla
UC3M di Madrid. Gregorio provò la presentazione della tesi con noi ed Iván, ascoltan-
dolo, ebbe un’intuizione: "Perchè non usi il metodo del bilanciamento delle armoniche
per integrare la dinamica?". Ci accese: un’idea semplice ed elegante, come tutte le mi-
gliori. Partendo da quello spunto, migliorammo il modello e guardammo le armoniche
della traiettoria. Lo scambio di energia potenziale gravitazionale lungo la traiettoria,
funzione della massa e del raggio di curvatura, riduce la potenza. Per questo effetto,
sono preferibili i kite che riducono il raggio di curvatura. Tuttavia per un raggio di
curvatura più piccolo, l’area spazzata è inferiore e quindi meno energia eolica è dispo-
nibile. Come modellare la diminuzione dell’energia del vento dovuta al minor raggio
di curvatura? Mac lo aveva indicato: teoria dei vortici.

Con la testa che frullava con queste nuove idee, prima andai alla conferenza TOR-
QUE a Delft e poi ospitammo la Conferenza sull’Airborne Wind Energy a Milano
nell’estate 2022. Grazie a Lorenzo Fagiano e Alessandro Croce per aver organizza-
to un evento del genere. Mamma mia, quanto sono felice della nostra comunità eolica!
Anime affamate che scambiano idee con un obiettivo comune: capire come meglio
raccogliere energia eolica dalla natura.

Il problema aerodinamico dei ventoplani, ho iniziato a chiamarli così, è estrema-
mente affascinante, avendo caratteristiche sia degli aeroplani che delle turbine eoliche.
Ho ideato un modello semplificato per capire quanto il vento sia rallentato dal vento-
plano stesso. Se il raggio di curvatura è più piccolo, allora il vento viene fermato di più.
Ho incluso questo effetto nelle equazioni di potenza e ho definito un nuovo coefficiente
di potenza. Questo coefficiente mostra quanta potenza il ventoplano raccoglie per una
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Preface and acknowledgments

"Otherwise, we could look into kites". I was puzzled, Mike continued: "It might sound
crazy, but you can harvest wind power with kites" and he explained the main concepts.
It was definitely crazy. He added: "We should talk with Mac". Michael McWilliam and
Mac Gaunaa showed me the most important thing, for which I will always be grateful:
what being a researcher means.

It was the starting of 2019. They gave me "Crosswind Kite Power", the paper by
Loyd (1980) which kicked off the sector that we now call "Airborne Wind Energy" and
my journey started. What a great vision! Wind energy going airborne! I quickly got
to speed with the field, studying the state-of-the-art and looking at the companies. My
master thesis was the teaser of my Ph.D. thesis, with simplified models, optimization
and sensitivity analyses. Roland Schmehl was my examiner, and in the following years
has been my editor, reviewer, supervisor, colleague. Thank you Roland for being a
pillar for Airborne Wind Energy.

I was living in Copenhagen and my flatmate was Fabio Spagnolo, with my same
academic background. In one of our endless conversations about our studies, we agreed
on the importance of modeling the kite as a linear system to study its stability. But,
about which reference flight condition? We did not know.

That autumn, I attended with Mac the Airborne Wind Energy Conference in Glas-
gow, finding a community of dreamers. Makani, the company funded by Google,
showed the results of their astonishing test floating offshore. Lorenzo Fagiano gave
an impressive plenary talk, and I went to meet him.

After the thesis, I started working as a research assistant at DTU in Copenhagen,
learning the art of designing wind turbines from the fathers of wind energy. How much
I learned that year! With Mac and Mike, we were -unsuccessfully - looking for funding
to research on airborne wind and, as side projects, we did some studies for the TORQUE
conference. I started looking into the tether physics with an unnecessarily complicated
mathematical formulation and I found a surprise. By neglecting gravity, the problem
becomes axial symmetric and there exists one circular trajectory that maximizes power.
If centrifugal forces are balanced by the radial component of the tether force, then lift
is only used for power generation! Simply: sinΦ tanΦ = M . Wow! I found the orbit
I was looking for to study the flight stability! In the meantime, Mac made order in
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the aerodynamic problem of kites with a simple message: momentum theory does not
work here, we should use vortex theory.

Suddenly, Makani was shut down. "Google did not make it, will you stay on the
ground now?" Why did they stop? That was an extra motivation for my research. The
funding for my PhD on airborne wind was still not coming, so I remembered about
Lorenzo and texted him. He told me to apply to the Aerospace Department and to talk
with Alessandro Croce and Carlo Riboldi, experts in flight dynamics and wind energy.
In Italy, there are some general PhD scholarships and I could apply with my own PhD
project. I got the position, I took sinΦ tanΦ = M in my pocket and I moved back to
Italy.

From the very first day of the PhD, I looked at the flight stability about that circular
trajectory. I wanted to understand it deeply and I derived everything analytically in 40
pages of heavy math, poor reviewers. The tether is attached a bit aft than the center of
mass, the vertical tail pushes outward and there you are! Stable designs! That was a
great starting point. But how far is this from reality? What if we put gravity back?

In the fall 2021, Gregorio Pasquinelli started his master’s thesis with us. He devel-
oped a simplified dynamical model of the kite flying circular trajectories, perfect for
the understanding of the effect of gravity on power. At the time of his thesis defense,
I was in Delft, doing my external stay, and I shared the office with Iván Castro, doing
his external stay from UC3M Madrid. Gregorio rehearsed the thesis presentation with
us. "Why don’t you use the harmonic balance method to integrate the dynamics?" and
Iván introduced the method to us. Oh, what a simple and elegant idea! We improved
the model and looked at the harmonics of the trajectory. The exchange of gravitational
potential energy over the loop, function of mass and turning radius, reduces the power
output. For this effect, the designs reducing the turning radius are preferable. Wait.. For
a smaller turning radius, the swept area is lower, and then less wind power is available.
How to model the decrease in available wind power due to the smaller turning radius?
Mac pointed it out: vortex methods.

With these thoughts in mind, I went to the TORQUE Conference in Delft and we
hosted the Airborne Wind Energy Conference in Milan in the summer 2022. Thanks to
Lorenzo Fagiano and Alessandro Croce for organizing such an event. Oh, how much I
enjoy our (airborne) wind community! Many friends sharing ideas with a unique goal:
to understand how to better collect wind energy from nature to power our civilization
sustainably.

The aerodynamic problem of windplanes, I started calling them in this way, is ex-
tremely fascinating, having features of both airplanes and wind turbines. I came out
with a simplified model to find how much the wind is slowed down by the windplane.
If the turning radius is smaller, then the wind is stopped more! I then included this
effect in the power equations, and I defined a novel power coefficient. This coefficient
shows how much power the windplane harvests per wing span. Similarly, the power
coefficient for conventional turbines shows how much power the wind turbine harvests
per blade span. This opened up a completely new understanding: the optimal aspect
ratio is finite, the optimal airfoils are maximizing the CL/CD and the optimal mass is
also finite.

The last few months spent on giving a framework to all these thoughts have been
extremely intense, but also extremely bright. I have a deep feeling of satisfaction for this
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Copenhagen, Delft, Munich, and all around our planet. Thanks to Rishikesh Joshi for
undertaking the development of the reference economic model with me, a crucial effort
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Abstract

Windplanes can be understood as an evolution of conventional wind turbines. In this
thesis, the conceptual design of windplanes is investigated by addressing two main
research questions.

The first research question is "Given a wingspan, which design maximizes power?".
The windplane is idealized as a point mass flying circular trajectories. If gravity is
removed from the model, the dynamic problem is axial symmetric and the solution is
steady. The generated power can be expressed in non-dimensional form by normalizing
it with the wind power passing through a disk with radius the wingspan. Since the ref-
erence area is taken to be a function of just the wingspan, looking for the design which
maximizes this power coefficient addresses the first main research question. The opti-
mal designs have a finite aspect ratio and operate at the maximum lift-to-drag ratio of
the airfoil. Airfoils maximizing the lift-to-drag ratio are then optimal for windplanes. If
gravity is included in the model, the gravitational potential energy is being exchanged
with the kinetic energy, the aerodynamic energy and the electric energy over one rev-
olution. Since this exchange comes with an associated efficiency, the plane mass and
the related trajectory are designed to reduce the potential energy fluctuating over the
loop. Reducing the potential energy means reducing the turning radius and the mass.
However, for decreasing turning radii, the available wind power decreases because the
windplane sweeps a lower area. For these two conflicting reasons, the optimal mass is
finite. Depending on the independent variables, extremely light designs might then not
be required. High power coefficients can be obtained even at low wind speeds.

The second research question is "Can windplanes fly stable orbits?". The windplane
is modeled as a rigid-body with an aerodynamic model analytically linearized about
non-linear operating points and subject to gravity. The nonlinear equations of motion
are solved with a harmonic balance method to look for periodic solutions. If the grav-
ity is removed from the model, the problem has a steady solution. The windplane is
trimmed in the circular crosswind trajectory which maximizes the swept area. The
vertical stabilizer pushes outwards, to compensate for the yaw moment induced by the
centrifugal force. If the gravity is included in the model, the simplest control strategy is
to trim the horizontal stabilizer, the vertical stabilizer and the turbine thrust coefficient
to constant values, to actuate the ailerons cyclically and to control the vertical stabi-
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lizer in closed loop. The cyclic control of the ailerons rolls the plane and redirects the
lift to compensate gravity and to stay airborne. The vertical stabilizer is controlled in
closed loop to increase directional stability and damp the precession mode. A moder-
ate reduction in power coefficient between the steady case and the dynamic case with
this simple control is found at low wind speed. A complete stability analysis is carried
out, showing that the pendulum mode is lightly damped and the precession mode needs
feed-back control.

The development of a reference economic model for airborne wind energy has been
initiated and will be concluded in the near future.

Keywords: windplanes; airborne wind energy; conceptual design; optimization; flight
stability
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CHAPTER1
Introduction

"The era of global boiling has arrived" A. Guterres, UN secretary general, July 2023.
We, humans, must stop warming up our planet. To keep warming the climate is un-
bearable for the planet Earth, which is kindly hosting us, and for the future generations
of humans, which will not have time left to act. Renewables are playing a fundamen-
tal role in decarbonizing the human civilization and any candidate innovation in this
sector must be tried out as soon as possible. The role of academia is to explore these
innovations and to educate students to drive the "global boiling era" into the "green
era".

Renewable energy should generate the 68 % of the total generated energy by 2030
to meet the 1.5 ◦C target, from the share of 28 % of 2021. Of this generated power,
approximately one third should come from wind energy (IRENA and GRA (2023)).
Conventional wind energy is quickly ramping up the production. However, the tech-
nology can reach the installation targets for 2030 only with public support and after
some of the research grand challenges are solved (Veers et al. (2022)). Will conven-
tional wind energy alone satisfy the need for wind power in the following decades? A
report from the International Energy Agency (IEA (2021)) shows that almost half of the
reduction in carbon emission in 2050 should come from technologies that are currently
at the demonstration or prototype phase.

Which role will airborne wind energy play in the innovation-hungry green era?

1.1 Airborne wind energy

Airborne Wind Energy (AWE) refers to the field of wind energy in which tethered air-
borne systems are used to harvest wind power at high altitudes. Airborne Wind Energy
Systems (AWESs) are typically classified based on their flight operations, which can
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Chapter 1. Introduction

be crosswind or tether-aligned. Crosswind AWESs make use of wings flying perpen-
dicular to the wind direction. Electric power is generated with onboard wind turbines
and transferred to the ground through the tether (Fly-Gen), generated on the ground
by a pulling the tether and unwinding a generator (Ground-Gen) or generated on the
ground by converting the torque transmitted by a network of wings (Rotational). The
main change between the three different concepts in the crosswind family is how elec-
tric power is produced, while the aerodynamic problem is similar. A further distinction
is on the wings mass. The dynamics of extremely light wings, such as soft kites or
biplanes, might be really different from that of heavier rigid wings.

To investigate the crosswind physics, the simplest concept to be modeled should be
considered first. In my opinion, the simplest concept from a modeling point of view
is a rigid wing Fly-Gen. Ground-Gen systems operate in cycles of reel-out and reel-
in, where the two phases have really different operating points. Rotational systems
have many wings and many tethers. Fly-Gen systems instead operate continuously in
production phase and are characterized by one main wing and one tether. Moreover,
if the gravity is neglected and the mass is large enough, Fly-Gen systems fly circular
steady trajectories. This is an interesting starting point for investigating the crosswind
physics. This thesis focuses then on crosswind Fly-Gen AWESs, and we we will refer
to them as windplanes, or shortly planes.

Loyd (1980) first derived the power equations of crosswind AWES and his paper
is commonly considered as the starting of AWE. The scientific research took almost
30 years to ramp up, with most of the research studies carried out after 2010. Among
the many scientific contributions in a variety of journals, the two Springer books -
collections of articles- (Ahrens et al. (2013); Schmehl (2018)) and the MDPI special
issue (Hackl and Schmehl (2023)) show well the progresses in the field over the last
decade. For a better overview of the different concepts and players, please follow
the industry association Airborne Wind Europe (2023b), which is doing a great job in
promoting Airborne Wind Energy in the world. They are managing the IEA Wind TPC
Task 48 on Airborne Wind Energy (Airborne Wind Europe (2023a)), which started
in 2021 and creates strong community that works together to develop airborne wind
energy. Moreover, they co-organize the bi-annual Airborne Wind Energy Conferences.
The previous edition was held in Milan, Italy and the next will be in Madrid, Spain in
April 2024.

1.2 From conventional wind turbines to windplanes

Windplanes can be understood as an evolution of conventional wind turbines. Referring
to Fig. 1.1, we go through the conceptual steps that bring from a conventional upwind
turbine (a) to a windplane (e) to identify some characteristics helpful for the physical
understanding of the technology.

(a) Wind turbine
Some conceptual characteristics of conventional horizontal axis wind turbines are

1 The aerodynamic thrust slows down the wind by producing a distributed aero-
dynamic induction over the rotor disk.

2 The aerodynamic thrust generates flapwise bending moments at the blade
root, transmitted to the nacelle.

2
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(c)

vw

(a) (d) (e)(b)

Figure 1.1: Evolution from a conventional wind turbine to a windplane. (a) Conventional horizontal
axis turbine; (b) wind turbine with lifting bodies moved outwards; (c) wind turbine with lifting bodies
moved outwards and load alignment; (d) windplane mounted on a tower; (e) windplane.

3 The aerodynamic torque, generated by the tangential aerodynamic compo-
nent of lift and drag at each blade section, is equal to the generator torque,
necessary to produce electric power.

4 The aerodynamic torque is transmitted to the generator via edgewise bending
moments.

5 The rotor center of mass does not move.
6 The aerodynamic thrust generates bending moments at the tower root, dis-

charged at the ground.

(b) Wind turbine with lifting bodies moved outwards
The lifting bodies (blades) are moved outwards so that the aerodynamic power is
just produced over an annulus. A supporting structure to transmit flapwise and
edgewise bending moments is still needed.
Point (a).1 is modified to

1 The aerodynamic thrust slows down the wind by producing a concentrated
aerodynamic induction over an annulus.

(c) Wind turbine with lifting bodies moved outwards and load alignment
The lifting bodies are moved downwind such that the sum of centrifugal forces,
acting radially, and aerodynamic thrust, acting axially, is aligned with the support-
ing structure direction.
Point (a).2 is modified to

2 No flawise bending moment is transmitted to the nacelle.

(d) Windplane mounted on a tower
The generator can be moved from the nacelle to the lifting body (wing), using
small wind turbines.
Point (a).3, (a).4 and (a).5 are modified to

3 The tangential aerodynamic component of lift and drag is equal to the wind
turbines thrust, necessary to produce electric power.

4 No edgewise bending moment is transmitted to the ground station.

3



Chapter 1. Introduction

5 The wing center of mass moves vertically, so that there is an exchange of
potential energy over one revolution.

Since no edgewise nor flapwise bending moments are transmitted to the nacelle,
the corresponding supporting structure is converted to a tensile structure (i.e. a
tether).

(e) Windplane
As the tether can be used to reach higher altitudes, the tower is removed.

Point (a).6 is modified to

6 The aerodynamic thrust is discharged at the ground via tensile force in the
tether.

This thesis investigates the design of a windplane mounted on a tower (d), as this
configuration allows an easier understanding of the physics. Moreover, we expect the
design of the final configuration (e) to be similar to the design of configuration (d).

After having understood the physics behind configuration (d), the methodologies
developed in this thesis can be applied to configuration (e) and other AWE topologies
(Ground-Gen AWESs and rotational).

1.3 Thesis outline

In this thesis, no knowledge of airborne wind energy is assumed in the derivations and
analyses. To make the main text easier to read, the state of the art and some open
questions are discussed at the end of each chapter.

This thesis is organized in two parts, which are to be read sequentially.
In Part I, the windplane is modeled as a point mass and simplified models of the key

physical aspects are derived. The main research question addressed in the first part is:
"Given a wingspan, which design maximizes power?" This Part is divided into three
Chapters

Chap. 2: In this chapter, we write the point mass equations of motion in a cylindrical co-
ordinate system. By neglecting gravity, we find a steady-state equation of motion
and an idealized power equation. This power equation is a function of geometrical
and aerodynamic quantities of the windplane and control inputs. We finally de-
fine a power coefficient by normalizing the generated power with the wind power
passing through a disk with radius equal to the windplane wing span. This power
coefficient definition allows us to compare windplanes for a given wing span.

Chap. 3: In this chapter, we characterize the windplane parasite aerodynamic drag and the
aerodynamic induction to populate the power equation derived in Chap. 2. The
aerodynamic drag is composed of mainly two terms: the airfoil drag and the equiv-
alent tether drag.

Chap. 4: In this chapter, we look for a solution of the equations of motion, including grav-
ity and periodic control inputs. We formulate an optimal control problem (OCP),
where the optimizer modifies the control variables to maximize the mean power.
Later, the OCP is upgraded to an optimal design problem, where the optimizer
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modifies the control variables and the design variables to maximize the mean
power. The optimal windplane designs are then analyzed.

Before moving to Part II, the reader should make sure that the key concepts of Part I
are well understood.

In Part II, the windplane is modeled as a rigid body and the design framework T-
GliDe (Tethered Gliding systems Design) is introduced. The main research question
addressed in the second part is: "Can windplanes fly stable orbits?" This part is
divided into four Chapters

Chap. 5: In this chapter, the nonlinear equations of motion of the windplane modeled as a
rigid body are derived.

Chap. 6: In this chapter, the aerodynamics of the windplane is analytically linearized about
given nonlinear operating points.

Chap. 7: In this chapter, the design framework T-GliDe (Tethered Gliding systems Design)
is introduced. T-GliDe solves the nonlinear equations of motion with an harmonic
balance method. The results of an optimal control problem are analyzed.

Chap. 8: In this chapter, the nonlinear equations of motion are linearized about a represen-
tative point. The windplane eigendynamics of the linearized problem is studied.

In Chap. 9, the methodology used in the development of a reference economic
model for airborne wind energy is presented.

Finally, in Chap. 10 the main conclusions of the thesis are summarized and a nomen-
clature is given in Chap. 11
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Part I

Point mass
Given a wingspan, which design maximizes power?
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CHAPTER2
Equations of motion

In this chapter, we model the windplane as a point mass and we write its equations
of motion in a cylindrical reference frame. We look for a steady-state solution by
removing gravity from the external forces and we use the resulting relations to derive a
power equation. Finally, we define a power coefficient, which will be used throughout
all this thesis.

2.1 Coordinate systems

We start by introducing the three coordinate systems we use to write the equations of
motion.

vw

g

e2,g

e3,g

Ψ
Φ

e1,g

e2,r
e3,r

e1,r

e2,b

e3,b

e1,b

Figure 2.1: Ground coordinate system FG, Rotating coordinate system FR and Body coordinate system
FB .

Referring to Fig. 2.1, the ground coordinate system FG is inertial and fixed at the
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Chapter 2. Equations of motion

tether attachment at the ground station. Its versor e1,g points to the ground and e3,g

upwind. A second coordinate system FR (Rotating) is defined such that it moves with
an angular velocity Ψ̇ around e3,g and e2,r points to the tether attachment at the wind-
plane. When Ψ = 0, FG and FR are parallel. The third coordinate system FB (Body)
is attached to the the windplane and it is centered at the tether attachment, denoted with
T . The rotational matrices between these reference systems, which are not necessary
here, are derived in Sect. 5.1. The position of FB with respect to FG, expressed in FR

is

XR
G→T = Lte

 0

sinΦ

− cosΦ

 =

 0

r

−z

 , (2.1)

where Lte is the tether length and Φ is called the opening angle.

2.2 Equations of motion

We now write the equations of motion of the windplane, modeled as a point mass, in
FR. The external forces acting on the windplane are the aerodynamic force F a, the
tensile force T acting on the tether and the gravitational force mg.

The aerodynamic force F a in FR is

F a =

 Fa,1

Fa,2

Fa,3

 . (2.2)

The tether tensile force T acting on the point mass is expressed as function of its
axial component T as

T = T

 0

− tanΦ

1

 . (2.3)

The gravitational force mg is

mg = mg

 cosΨ

− sinΨ

0

 , (2.4)

where m is the windplane mass and g is the gravitational acceleration.
The equations of motion then read

mu̇+ 2mṙu = Fa,1 +mg cosΨ

mr̈ −mu2

r
= Fa,2 − T tanΦ−mg sinΨ

mz̈ = Fa,3 + T

(2.5)

where u is the tangential velocity, 2mṙu is the Coriolis force and mu2

r
the centrifugal

force.
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2.3 Steady-state

We look for a steady-state solution of the equations of motion in (2.5) by removing the
periodic input given by gravity. In absence of gravity, the steady equations of motion
are 

Fa,1 = 0

m u2

R0
= T tanΦ− Fa,2

T = −Fa,3

(2.6)

where R0 is the trajectory radius in steady-state.
We need now to characterize the aerodynamic force. In this chapter, we assume

the wing span direction e2,b to be aligned with e2,r. In this condition, the projected
crosswind area is maximized, such that the windplane "catches as much wind as pos-
sible". Moreover, the aerodynamic lift is exclusively used for power generation and,
consequently, the aerodynamic forces do not have any radial component Fa,2 = 0.

γ

vw

u Dp

γ

L

e1,r

e2,r

e3,r

ΦT

T tanΦ

Fc

ξt
b
2

va

γ
Tt b

e1,b

e2,b

e3,b
avw

Figure 2.2: Velocity triangle and forces acting on a windplane in steady-state.

Referring to Fig. 2.2, the aerodynamic lift L and the parasite drag Dp are, by defini-
tion, perpendicular and parallel to the apparent velocity va, respectively. The onboard
wind turbines thrust Tt is assumed to be parallel to the drag. The induced velocities are
avw, where a is the aerodynamic induction. The aerodynamic force can then be written
as

F a =

 L sin γ − (Dp + Tt) cos γ

0

L cos γ + (Dp + Tt) sin γ

 , (2.7)

where the inflow angle γ is

tan γ =
vw(1− a)

u
=

(1− a)

λ
, (2.8)

and λ is the wing speed ratio.
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Chapter 2. Equations of motion

The system of equations 2.6 then become
L sin γ − (Dp + Tt) cos γ = 0

m u2

R0
= T tanΦ

T = L cos γ + (Dp + Tt) sin γ

(2.9)

Considering Eq. (2.8), the steady-state equations of motion are re-written as
λ = L

Dp+Tt
(1− a)

tanΦ = mu2

TR0

T = L cos γ
Ä
1 + Dp+Tt

L
(1−a)
λ

ä
≈ L

(2.10)

where in the third equation (axial equilibrium), large values of λ are assumed (λ2 ≫ 1).

2.4 Geometry

In order to further characterize the steady-state equilibrium in Eq. (2.10), we need to
define a few geometrical quantities. Referring to Fig. 2.2, we denote the windplane
wing span as b. The wing area A is

A =
b2

AR
, (2.11)

where AR is the wing aspect ratio. The onboard wind turbine radius is expressed as
function of the wing semi-span as

Rt = ξt
b

2
. (2.12)

Assuming two turbines, the total rotor area At is

At = 2 · πR2
t =

πξ2t
2
b2. (2.13)

2.5 Wing speed ratio estimation

The wing speed ratio is found in Eq. (2.10) to be λ = L
Dp+Tt

(1− a), where L is the lift,
a the induction, Dp the parasite drag and Tt turbine thrust.

The aerodynamic lift is

L =
1

2
ρACLv

2
a, (2.14)

where CL is the lift coefficient. The aerodynamic parasite drag is

Dp =
1

2
ρACD,pv

2
a, (2.15)

where CD,p is the parasite drag coefficient. The thrust force produced by the onboard
wind turbines is

Tt =
1

2
ρAtCT,tv

2
a, (2.16)
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where CT,t is the thrust coefficient of the onboard wind turbines.
The wing speed ratio is then

λ =
1
2
ρACLv

2
a

1
2
ρA(CD,p +

At

A
CT,t)v2a

(1− a) =
CL(1− a)

CD,p +
π
2
ARξ2tCT,t

. (2.17)

2.6 Power and thrust coefficients

The power equation can be written with respect to the onboard turbines as

P =
1

2
ρAtCP,tv

3
a ≈

1

2
ρAtCP,tλ

3v3w, (2.18)

where CP,t is the power coefficient of the onboard wind turbines and large values of λ
are assumed (λ2 ≫ 1).

Taking inspiration from conventional wind energy, we define the power coefficient
by normalizing the power P with the power of the wind passing through a reference
area Aref

CP =
P

P
=

P
1
2
ρArefv3w

. (2.19)

The thrust coefficient is defined as the dot product of the resultant aerodynamic force
and the wind speed, normalized with P

CT =
F a · vw

P
≈ L

1
2
ρArefv2w

(2.20)

where vw = −vwe3,r

We take Aref as the area of a disc with radius equal to the AWES wing span Aref =
πb2 (orange area in Fig. 2.3). In this way, Aref is a value defined by the geometry of the
system, as for conventional wind turbines, and allows to compare AWESs for a given
wing span.

e1,r

e2,r
e3,r

R0
bb

Aref

vw

Figure 2.3: Reference area for the power coefficient evaluation.

The power coefficient is then

CP = CP,t
ξ2t
2
λ3, (2.21)

and the thrust coefficient
CT =

CL
πAR

λ2. (2.22)
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2.7 Power balance

The power balance equation is derived by performing the dot-product of the steady-
state equation of motion (Eq. 2.9) with the plane velocity, which results in

L sin γu− (Dp + Tt) cos γu = 0 (2.23)

Writing tan γ = (1−a)
λ

(Eq. 2.8) and inserting the definition of lift L, parasite drag
Dp and turbines thrust Tt (Sec. 2.5), the power balance equation become

1

2
ρACLλ

3v3w
(1− a)

λ
− 1

2
ρACD,pλ

3v3w =
1

2
ρAtCT,tλ

3v3w. (2.24)

We can now normalize it with P = 1
2
ρπb2v3w, similarly to what done for the power

and thrust coefficient definition, as

CL
πAR

λ2︸ ︷︷ ︸
CT

(1− a)− CD,p
πAR

λ3︸ ︷︷ ︸
Cτ

=
ξ2t
2
CT,tλ

3︸ ︷︷ ︸
CT,t
CP,t

CP

, (2.25)

which in compact form can be written as

CT (1− a)− Cτ︸ ︷︷ ︸
Ca

=
CT,t
CP,t

CP . (2.26)

The left-hand-side represents the aerodynamic power Ca, where CT (1 − a) is the
wind power andCτ is the power dissipated in parasite drag. The right-hand-side CT,t

CP,t
CP

is the onboard turbines thrust power.
Modeling the onboard turbines with momentum theory CP,t

CT,t
= (1 − at), where at

is the axial induction of the onboard turbines, and neglecting the power dissipated in
parasite drag Cτ , we get to

CP
CT

= (1− a)(1− at) ≈ (1− a− at). (2.27)

2.8 Discussion

In this chapter, we model the windplane as a point mass and we introduce its equa-
tions of motion in a cylindrical reference frame. We first look for a steady-state so-
lution by removing the contribution of gravity from the external forces. We assume
that aerodynamic forces are just acting in the tangential and axial direction so that the
aerodynamic lift is just used for power generation and not for turning. This reveals
key relations between the dynamic and kinematic quantities. We finally derive a power
equation and define a power coefficient by normalizing the power with the wind power
passing through a disc with radius equal to the plane wing span, allowing us to compare
concepts for given wing spans.

The power coefficient is a function of the onboard wind turbines power coefficient
CP,t, their non-dimensional radius ξt and the wing speed ratio λ (Eq. 2.21). The wing
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speed ratio λ is a function of the lift CL and parasite drag CD,p coefficients, the axial
induction a, the wing aspect ratio AR, the onboard turbines thrust coefficient CT,t and
ξt (Eq. 2.17).

To estimate the power coefficient for a given design, we need to understand which
parameters are independent variables and which need to be modeled as a function of
these variables. The geometrical parameters ξt and AR are independent variables as
they are fixed for a given design. CT,t and CP,t are typically functions of each other
through the turbine axial induction, which is a control variable. CL is also a control
variable, as any feasible lift coefficient can be obtained by pitching the wing. We then
need to model the parasite drag coefficient CD,p and the axial induction a as a function
of the independent and control variables, to get to a realistic estimation of the power
coefficient. This is the topic of Chapter 3.

Once the drag coefficient and the axial induction are modeled, we need to understand
how gravity is modifying the solution and quantify its impact on the power coefficient
and on the system design. This is the topic of Chapter 4.

2.9 State of the art and open questions

2.9.1 Power equation

The first theoretical power equation of crosswind AWESs is derived by Loyd (1980),
for given lift and drag coefficients of the system. In the book Airborne Wind Energy
(Ahrens et al. (2013)), we find many contributions to the physical understanding of
crosswind AWESs. Diehl (2013) introduce the basic concepts and physical foundation
of Fly-Gen and Ground Gen AWES. Schmehl et al. (2013); Luchsinger (2013); Argatov
and Silvennoinen (2013) develop further the modeling of Ground-Gen AWESs. Van-
der Lind (2013) presents the modeling of a Fly-Gen AWES, accounting for the onboard
wind turbine induction. Later, Trevisi et al. (2020b) unify the modeling of Fly-Gen and
Ground-Gen, getting to a unified power equation. The windplane power equation is
written as an explicit function of the thrust and power coefficient of the onboard tur-
bines for the first time in this thesis, to the best of the author’s knowledge.

2.9.2 Lateral equilibrium

The effect of centrifugal forces on power production is investigated by Luchsinger
(2013), assuming they are balanced by a component of lift, obtained by rolling the
plane. Trevisi et al. (2020a) write the equations of motion in a cylindrical reference
system, finding then that it exists one opening angle Φ that maximizes power produc-
tion (second equation in (2.10)). The power losses for other opening angles are also
quantified. Tucker (2020) investigates optimal flight radii and derives a similar expres-
sion to the one presented here for the later equilibrium, with the assumption of small
opening angles Φ.

Note that if the lateral equilibrium, as written in the second equation of (2.10), is
fulfilled, the radial component of the tether force is used to turn and the aerodynamic
lift is just used for power production. This might not be possible for extremely light
topologies (e.g. soft kites or bi-planes) as the resulting flight radius would be too small.
Therefore, for those topologies, a component of the aerodynamic force needs to be used
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to turn and different trajectories than circular might be optimal.

2.9.3 Power coefficient definition

The most commonly used metric in AWE is the power harvesting factor, defined by
taking as reference area in Eq. (2.19) the wing area A. This allows us to compare
systems for a given wing area. It is defined by Diehl (2013) and used by Schmehl
et al. (2013); Vander Lind (2013); Bauer et al. (2018); Tucker (2020) among others.
Performing a system design based on the power harvesting factor would answer the
question: "Given a wing area, which system design maximizes power?"

The power coefficient as defined in this thesis is introduced by Trevisi et al. (2023b).
This enables to compare systems for a given wing span. Performing a system design
based on this power coefficient would answer the question: "Given a wing span, which
system design maximizes power?" This thesis gives an attempt of answering to the
latter question.
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CHAPTER3
Parasite drag and aerodynamic induction

In this chapter, we investigate the main sources of parasite aerodynamic drag and the
aerodynamic induction of windplanes. In the first part of this thesis, the drag produced
by the stabilizer, the fuselage, and the turbines’ nacelles is neglected, so that the wind-
plane parasite drag coefficient can be written as

CD,p = Cd + CD,te, (3.1)

where Cd is the airfoil drag coefficient and CD,te is the coefficient modeling the equiv-
alent tether drag.

In the following two sections, we characterize these two drag sources. In Sect. 3.3,
the aerodynamic induction is modeled. In Sect. 3.4, we summarize the main results
that we will use in this thesis.

3.1 Airfoil drag

We model the airfoil drag in an idealized way by writing the drag coefficient Cd as
function of the lift coefficient

Cd = Cd,0 + kdC
2
L, (3.2)

where Cd,0 and kd are parameters of the selected airfoil at the given Reynolds number.
We assume in this thesis an airfoil NACA 2412, for which the airfoil characteris-

tics are well known in the literature and a Reynolds number Re = 106. From the
airfoil polars, we can estimate the coefficients of Eq. (3.2). In Figures 3.1a and 3.1b
the approximated airfoil drag coefficient and the approximated airfoil lift to drag ratio
are compared with the airfoil polars obtained with Xfoil. In Table 3.1, the estimated
coefficients and the condition at maximum lift to drag ratio are listed.
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Chapter 3. Parasite drag and aerodynamic induction

(a) NACA 2412 drag coefficient at Reynolds number
Re = 106. Data from Xfoil (-) and analytical ap-
proximation (- -).

(b) NACA 2412 lift to drag ratio at Reynolds number
Re = 106. Data from Xfoil (-) and analytical ap-
proximation (- -).

Figure 3.1

Table 3.1: Coefficients for the NACA 2412 drag coefficient estimation (Eq. 3.2) and maximum lift to
drag ratio.

Re = 106 Cd,0 = 0.004 kd = 0.008 CL

Cd
(CL = 0.70) = 88

3.2 Tether drag

The drag acting on the tether is a distributed force over its length. We denote the
nondimensional curvilinear coordinate running along the tether length as ξte, which
ranges from 0 to 1. The tether section at the ground station (ξte = 0) is fixed, while the
section at the windplane (ξte = 1) moves with the same velocity of the windplane u.
The aerodynamic drag experienced by each tether section can be approximated with

d(ξte) =
1

2
ρDteCd,teu

2

Å
ξte
Lte

ã2
, (3.3)

where Dte is the tether diameter section and Cd,te is the tether section drag coefficient.
The term u ξte

Lte
indicates the apparent velocity at each tether section, neglecting the

contribution from the wind speed.
The aerodynamic drag generates a moment at the ground station Mte

Mte =

∫ 1

0

Lteξte·d(ξte)dξte =
Å
1

2
ρDteCd,teu

2

ã
Lte

∫ 1

0

ξ3tedξte =

Å
1

2
ρDteCd,teu

2

ã
Lte
4
.

(3.4)
We look for an equivalent drag force Deq, which can be lumped with windplane.

The moment that this equivalent drag generates at the ground station needs to be equal
to the one given in Eq. (3.4). The moment generated by the equivalent drag is

Mte = LteDeq = Lte

Å
1

2
ρACD,teu

2

ã
, (3.5)

where CD,te is the equivalent drag coefficient. By setting Eq. (3.4) equal to Eq. (3.5),
the equivalent tether drag coefficient is

CD,te = Cd,te
DteLte
4A

. (3.6)
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By defining the tether diameter ratio as

dte =
Dte

b/2
, (3.7)

and the tether length ratio as

lte =
Lte
b/2

, (3.8)

the equivalent tether drag coefficient can be expressed as function of non-dimensional
quantities as

CD,te =
Cd,te
16

dtelteA. (3.9)

3.3 Aerodynamic induction

The aerodynamic induction measures how much the wind is slowed down by the wind-
plane. It physically corresponds to the velocity induced by the windplane trailed vor-
tices, which have a helicoidal shape, on the wing itself. The strength of the vortices is
determined by the span-wise lift distribution. The velocities induced by the trailed vor-
tices reduce the wind velocity and effectively rotate the apparent velocity, composed of
the undisturbed wind velocity and the windplane velocity, by an induced angle. Since
the aerodynamic lift is defined to be perpendicular to the local apparent velocity, it is
rotated by the induced angle. The component of lift parallel to the undisturbed apparent
velocity can be modeled as the induced drag.

In Sect. 3.3.1, we introduce the modeling of the induction produced by a helicoidal
vortex filament. The helicoidal vortex filament can be described as a near vortex fila-
ment, modeled by the first half revolution of the filament in the rotor plane, and a far
vortex filament, modeled by an infinite series of vortex rings. In Sect. 3.3.2, the near
wake model and the relative induced drag coefficient are derived. In Sect. 3.3.3, the far
wake model, which depends on the radial (known) and axial (unknown) position of the
vortex rings and the relative induced drag coefficient are derived. A closure model is
finally proposed to find the axial position of the vortex rings.

u vw h0R0

va

e1,r

e2,r

e3,r

Figure 3.2: Wake structure of a windplane flying circular trajectories. The solid and dashed lines
represent the left and right rolled up trailed vortices respectively.
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Chapter 3. Parasite drag and aerodynamic induction

3.3.1 Modeling of a helicoidal vortex filament

Referring to Fig. 3.2, we assume that the windplane moves along a circular trajectory
with radius R0 with a constant velocity u. The vortices trailed by the windplane are
transported downwind by the wind and have a helicoidal shape. It is assumed no dis-
tortion and expansion of the wake. The geometry of the helicoidal vortex filament is
shown in Fig. 3.3a.

Rf

hf

Rj

l

dl

r

(a)

l
dl

r

(b)

hf
e1,r

e2,r

e3,r

e1,r
e2,r

e3,r
Rj

Rf

Figure 3.3: (a) Helicoidal vortex filament and (b) relative modeling after assumptions.

The radius of the filament is Rf and the pitch hf . The filaments are trailed by a
lifting line, placed along the direction e2,r. The induction is evaluated at a generic
point pj on the lifting line, with radius Rj . With these definitions, the radial difference
∆R between the evaluation point and the filament is

∆R = Rj −Rf , (3.10)

and it is normalized with the evaluation radius as

η =
∆R

Rj

= 1− Rf

Rj

. (3.11)

Note that η = 0 when ∆R = 0, η = 1 when Rj → +∞ and η → −∞ when Rj → 0.
The normalized position of the vortex filament with respect to the mid-span turning
radius R0 (see Fig. 3.2) is indicated as

η0 =
R0 −Rf

R0

= − yf
R0

, (3.12)

where yf indicates the position of the vortex filament along the wing span direction.
The filament radius Rf can then be expressed as

Rf = Rj (1− η) = R0 (1− η0) . (3.13)

Assuming that the helix pitch of any vortex filament hf trailed by the wing is equal
to the helix pitch h0 of the vortex filament at the wing center, the normalized torsional
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3.3. Aerodynamic induction

parameter λ0 is the ratio between the projected circumference length 2πR0 and the
helix pitch h0 of the vortex filament

λ0 =
2πR0

h0
=

2π

1− η0

Rf

h0
. (3.14)

The helix can be modeled as

l =

 −Rf sin θ

Rf cos θ

−h0 θ
2π

 = Rf

 − sin θ

cos θ

− 1
1−η0

θ
λ0

 , (3.15)

where θ ∈ [0,∞[ is the angular parameter of the helix.
The induced velocities wj,f produced by the filament of vorticity Γ at a point pj is

found using Biot-Savat law

wj,f =
Γ

4π

∫ +∞

0

dl× r

|r|3
, (3.16)

where

dl = −Rf

 cos θ

sin θ
1

1−η0
1
λ0

 dθ, (3.17)

and r = pj − l. We assume that the evaluation point pj is on the lifting line itself

pj =

 0

Rj

0

 , (3.18)

so that r is

r =

 0

Rj

0

−

 −Rf sin θ

Rf cos θ

− Rf

1−η0
θ
λ0

 =

 Rf sin θ

Rj −Rf cos θ
Rf

1−η0
θ
λ0

 . (3.19)

When looking for the axial induced velocity wj,f = wj,f · e3, the third component
of the numerator of Eq. (3.16) becomes

(dl× r) · e3 = −Rf (Rj cos θ −Rf cos θ
2 −Rf sin θ

2)

= −R2
j (1− η) (cos θ − (1− η)) dθ.

(3.20)

The norm of r squared can be expressed as

|r|2 =R2
f sin θ

2 + (Rj −Rf cos θ)
2 +

Å
Rf

1− η0

θ

λ0

ã2
=R2

j

Ä
1− 2 (1− η) cos θ + (1− η)2

ä︸ ︷︷ ︸
|r1,2|2

+

Å
Rf

1− η0

θ

λ0

ã2

,
(3.21)
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where a distinction between the distance in the rotor plane (e1,r, e2,r) and in the axial
direction is made. Note that |r1,2| is a periodic function of θ.

The Biot-Savat law (Eq. 3.16) can be re-written considering (3.21) as

wj,f =
Γ

4π

∫
+∞

0

(dl× r) · e3(
|r1,2|2 +

Ä
Rf

1−η0
θ
λ0

ä2) 3
2

. (3.22)

By splitting the integration interval as [0,+∞[= [0, π] ∪ [π, 3π] ∪ [3π, 5π] ∪ .. =
[0, π]∪

⋃∞
k=1 (2πk + [−π,+π]) , the integral can be re-written as an infinite summation

of integrals. By properly re-writing the non-periodic terms, Eq. (3.22) becomes

wj,f =
Γ

4π

∫ π

0

(dl× r) · e3(
|r1,2|2 +

Ä
Rf

1−η0
θ
λ0

ä2) 3
2︸ ︷︷ ︸

near vortex filament

+
Γ

4π

∞∑
k=1

∫
π

−π

(dl× r) · e3(
|r1,2|2 +

Ä
Rf

1−η0
2πk+θ
λ0

ä2) 3
2︸ ︷︷ ︸

far vortex filament

.

(3.23)
In Eq. 3.23 a distinction between near and far vortex filament is done, noting that

the near vortex filament (i.e. the first integral) models the induction produced by the
first half revolution of the filament, whereas the far vortices are modeled through the
infinite summation of integrals.

The integrals modeling the near and the far vortex filament have terms proportional
to θ in the denominator. These terms physically represent the contribution to |r| from
the projection of r along e3,r and they have a maximum value at θ = ±π, which is
also where the projection of r in the (e1,r, e2,r) plane is largest. This suggests that the
overall contribution of the terms proportional to θ to the integral should be limited.

By neglecting the terms proportional to θ, the helicoidal vortex filament model of
Fig. 3.3a reduces into the model of Fig. 3.3b (i.e. half a vortex ring plus a semi-infinite
vortex rings cascade). The axial velocity at point pj , induced by the idealized helicoidal
vortex filament, is then approximated as

wj,f ≈
Γ

4π

∫ π

0

(dl× r) · e3

|r1,2|3
+

Γ

4π

∞∑
k=1

∫
π

−π

(dl× r) · e3(
|r1,2|2 +

Ä
Rf

1−η0
2πk
λ0

ä2) 3
2

, (3.24)

which in extended form is

wj,f ≈ − Γ

4π∆R

∫ π

0

η (1− η) (cos θ − (1− η))Ä
1− 2 (1− η) cos θ + (1− η)2

ä 3
2

dθ +

+
∞∑
k=1

∫ π

−π

η (1− η) (cos θ − (1− η))(
1− 2 (1− η) cos θ + (1− η)2 +

Ä
1−η
1−η0

2πk
λ0

ä2) 3
2

dθ

 .
(3.25)

The integrals involved in Eq. (3.25) have now a closed form solution, which are used
to derive a near and a far wake model in the next sections. Recall that this expression
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3.3. Aerodynamic induction

is derived by approximating the helicoidal vortex system of Fig. 3.3a with the vortex
rings system of Fig. 3.3b to compute the induction, which is a good idealization when
the normalized torsional parameters λ0 of the helicoidal vortex filament is large.

3.3.2 Near wake model

In Sect. 3.3.1, the axial induced velocity produced by a helical vortex filament is mod-
eled as half a vortex ring plus a semi-infinite vortex ring cascade, as in Fig. 3.3b. In
this section, a near wake model is developed based on this idealization. The velocities
induced at the windplane by the near vortex filaments trailed by the windplane itself are
studied here, so that values of η (Eq. 3.11) are expected, and consequently assumed, to
be small.

Velocity induced by the near vortex filament

The axial velocity at point pj induced by the near vortex filament of intensity dΓ is (Eq.
3.25)

dwnj,f = − dΓ

4π∆R

∫ π

0

η (1− η) (cos θ − (1− η))Ä
1− 2 (1− η) cos θ + (1− η)2

ä 3
2

dθ = − dΓ

4π∆R
Υn (η) .

(3.26)
where the term outside the integral models the induced velocity produced by a semi-
infinite straight vortex filament pointing in the −e1,r direction. Υn can be then under-
stood as the near vortex filament shape factor and the integral defining it has a close
form solution

Υn (η) = − η

|η|

Å
K

Å
π

2

∣∣∣∣mã+
η

(η − 2)
E

Å
π

2

∣∣∣∣mãã (3.27)

where K
(
π
2

∣∣m) and E
(
π
2

∣∣m) are the complete elliptic integral of the first and second
kind respectively. Eq. (3.27) can be linearized with respect to η, as its values for
windplanes are expected to be small. Therefore, Υn becomes

Υn (η) ≈ 1− η

Å
1− 1

4
ln(η2)

ã
(3.28)

Figure 3.4 shows the trend of Υn obtained with Eq. (3.27) (solid lines) and with the
linearized version (Eq. 3.28) (dashed lines). The near vortex filament shape factor Υn

can be interpreted as a corrective factor to the straight vortex filament solution due to
the filament curvature. The following regions of η can be analyzed:

η → 1 is obtained for Rj >> Rf and Υn → 0, meaning that no velocities are induced.

η > 0 is obtained for Rj > Rf and Υn < 1, meaning that less velocities are induced
compared to the straight filament case.

η → 0 is obtained for Rj ≈ Rf or (Rj → ∞, Rf → ∞) and Υn → 1, meaning that
the filament curvature is negligible and the solution coincides with the straight
filament case.

η < 0 is obtained for Rj < Rf and Υn > 1, meaning that more velocities are induced
compared to the straight filament case.
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Chapter 3. Parasite drag and aerodynamic induction

Figure 3.4: Near vortex filament shape factor Υn as function of η for the complete solution (-) and with
the linearized version (- -).

η → −∞ is obtained for Rj << Rf , and Υn → π, as the evaluation point is close to the
center of the half circle.

Induced drag coefficient due to the near wake for an elliptic lift distribution

We assume here an elliptic lift distribution, as it produces minimum induced drag in
forward flight. We then take the bound vorticity Γ as

Γ = Γ0

 
1−
Å
2yf
b

ã2

. (3.29)

The trailed vorticity, according to Helmholtz’ law, is the derivative of the bound
vorticity with respect to the wing span coordinate

dΓ

dyf
= −4Γ0

b2
yf√

1−
Ä
2yf
b

ä2 . (3.30)

The axial induced velocity wj,n on a point pj along the lifting line due to the near
wake is found by integrating the effects of the trailed vorticity along the wing span

wj,n = − 1

4π

∫ b/2

−b/2

(∂Γ/∂yf )

∆R
Υn dyf =

Γ0

πb2

∫ b/2

−b/2

yf

∆R
√

1−
Ä
2yf
b

ä2Υndyf . (3.31)

By changing the integration variable as yf = b
2
cos θ and considering Υn = 1 1, the

integral has an analytical solution

wn = −Γ0

2b
, (3.32)

meaning that the induced velocities are constant over the lifting line.
The aerodynamic lift can be found with the Kutta-Joukowski relation

L = ρuΓ0

∫ b/2

−b/2

 
1−
Å
2yf
b

ã2
dyf = ρuΓ0

b

4
π, (3.33)

where we assume u to be constant over the wing span 1.
1This is a good approximation only when looking at integral quantities and not when analyzing induced velocities along the

wing span. See Trevisi et al. (2023a) for more details.
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By writing the lift as L = 1
2
ρACLu

2, we solve for Γ0

Γ0 =
2buCL
πA

. (3.34)

The change in angle of attack αj,n can be written as

αn =
wn
u

=
CL
πA

, (3.35)

The wing drag coefficient can be found by multiplying the lift coefficient with the
change in angle of attack wj,n/u

CDi,n ≈ C2
L

πA
. (3.36)

We then found that the induced drag due to the near wake of a wing with an elliptical
lift distribution is similar to the induced drag of the same wing in forward flight.

Similarly, the axial induction due to the near wake an is defined as the ratio between
the induced velocity from the the near wake and the incoming wind speed

an =
wn
u

u

vw
=

CL
πA

λ =
CT
λ
, (3.37)

where the wing speed ratio is λ = u
vw

and CT = CL

πA
λ2 (Eq. 2.22).

3.3.3 Far wake model

In Sect. 3.3.1, the axial induced velocity produced by a helical vortex filament is mod-
eled as half a vortex ring plus a semi-infinite vortex ring cascade, as in Fig. 3.3b. In
Sect. 3.3.2, a near wake model is built based on this idealization, while in this section
a far wake model is developed.

In the far wake, the wake is assumed to be already rolled up into two separate vor-
tices, one for each of the wing tips. The velocities induced by the far wake are as-
sumed to be constant over the wing span, therefore they are evaluated at the wing
center Rj = R0. The velocity induced by the cascade of vortex rings of intensity Γ on
the wing center is

wf ≈ − Γ

4π∆R

∞∑
k=1

∫ π

−π

η0 (1− η0) (cos θ − (1− η0))(
1− 2 (1− η0) cos θ + (1− η0)

2 +
Ä
2πk
λ0

ä2) 3
2

dθ

︸ ︷︷ ︸
Υf

z,k

. (3.38)

The integral has a closed form solution, so Υf
z,k takes the form

Υf
z,k(η0, λ0) =

−2η0(
η20 +

Ä
2πk
λ0

ä2)1/2 ÑK (m) +
η0(η0 − 2)−

Ä
2πk
λ0

ä2
(η0 − 2)2 +

Ä
2πk
λ0

ä2 E (m)

é
, (3.39)

with m = 4(η0−1)

η20+
(
2πk
λ0

)2
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The outer and inner trailed vortexes are assumed to be located at Rf = R0 ± yv,
such that ∆R = ∓yv and η0 = ∓ηv = ∓ yv

R0
, with an intensity of Γ = ±Γ0 respectively.

The velocity at the wing center induced by the two vortex ring cascades is

wf ≈
Γ0

4πyv

(
∞∑
k=1

Υf
z,k (η0 = −ηv, λ0) +

∞∑
k=1

Υf
z,k (η0 = ηv, λ0)

)
. (3.40)

The summations can be solved numerically for different values of λ0 and ηv and its
solution fitted as function of these two parameters. The approximated solution of the
summation is

∞∑
k=1

Ä
Υf
z,k (−ηv, λ0) + Υf

z,k (ηv, λ0)
ä
≈ 9

2
ηπ/2v

Å
λ0
2π

ã3/2
. (3.41)

Figure 3.5 shows the comparison between the solution obtained numerically and the
approximation given in Eq. (3.41).
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Figure 3.5: Summation modeling the far wake shape function obtained numerically (-) and fitted function
(- -).

For an elliptical wing, the rolled-up trailed vortices are located approximately at the
center of trailed vorticity at yv = π

8
b for the outer and inner wing respectively, such that

their non-dimensional radial coordinate is ηv = πb
8R0

= π
4
κ0, where κ0 is the inverse

turning ratio

κ0 =
b/2

R0

. (3.42)

The approximate solution for the induced velocity, using the fitted solution of Eq. (3.41)
into Eq. (3.40) and considering Γ0 =

2buCL

πA
, is

wf ≈ u
CL
πA

κ
π/2
0

4π
λ
3/2
0 . (3.43)

To find the normalized torsional parameter λ0, we assume that the axial velocity of
the vortex filaments is vw (1− an), where an is the axial induction at the lifting line
induced by the near wake (Eq. 3.37). The helix pitch h0 can be approximated with the
distance covered by the vortex filaments moving downwind in the revolution period.
The revolution period is the ratio between the circumference length and the windplane
tangential velocity 2πR0

u

h0 = vw (1− an)
2πR0

u
=

2πR0

λ
(1− an) . (3.44)
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Considering the definition of the normalized torsional parameter λ0 = 2πR0

h0
(Eq

3.14), λ0 can be linked to the the wing speed ratio λ as

λ0 =
λ

1− an
=

λ

1− CL

πA
λ
=

λ2

λ− CT
, (3.45)

where the axial induction due to the near wake is given in Eq. (3.37) (an = CL

πA
λ = CT

λ
).

This equation links λ0 (non dimensional torsional parameter of the helicoidal wake)
to λ (wing speed ratio) and to either the induced change in angle of attack produced by
the near wake CL

πA
or the thrust coefficient CT . Substituting the normalized torsional

parameter (Eq. 3.45) into Eq. (3.43), the induced velocity due to the far wake is

wf = u
CL
πA

κ
π/2
0

4π

λ3

(λ− CT )3/2
, (3.46)

The axial induction due to the far wake af can be expressed as a function of the
thrust coefficient CT and the wing speed ratio λ as

af =
wf
vw

=
CL
πA

κ
π/2
0

4π

λ4

(λ− CT )3/2
= CT

κ
π/2
0

4π

λ2

(λ− CT )3/2
, (3.47)

The change in angle of attack due to the far wake can be written as a function of CL

πA
and λ as

αf =
wf
u

=
CL
πA

κ
π/2
0

4π

Ç
λ

1− CL

πA
λ

å3/2

, (3.48)

where we used the second expression in Eq. (3.45) into Eq. (3.43). In alternative, we
can write the change in angle of attack due to the far wake as a function of the thrust
coefficient CT and λ as

αf =
wf
u

=
wf
vw

vw
u

=
af
λ

= CT
κ
π/2
0

4π

λ

(λ− CT )3/2
, (3.49)

where af is found in Eq. 3.47.
The induced drag coefficient due to the far wake CDi,f can be written as

CDi,f = CLαf = CLCT
κ
π/2
0

4π

λ

(λ− CT )3/2
=

C2
L

πA

κ
π/2
0

4π

Ç
λ

1− CL

πA
λ

å3/2

. (3.50)

In Fig. 3.6, two different ways of accounting for the far wake are shown. In Fig.
3.6(a) the effect of the induced velocities is taken into account by including the induc-
tion in the velocity triangle, as typically done for wind turbines. If only the induced
velocity due the far wake is subtracted to the incoming wind, the induced drag due to
near wake should be included in the force balance, as in Fig. 3.6(b).

3.4 Windplane drag coefficient

In this chapter, we characterized the main sources of drag in windplanes. We write the
windplane parasite drag coefficient as

CD,p = Cd,0 + kdC
2
L︸ ︷︷ ︸

Cd

+
Cd,te
16

dtelteA︸ ︷︷ ︸
CD,te

(3.51)
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Figure 3.6: Velocity triangle and force balance if the effect of the induced velocities are taken into
account by including the induction in the velocity triangle (a) or by reducing the incoming wind with
the induction doe to the far wake and including the induced drag due to the near wake in the force
balance (b).

If only the parasite drag coefficient CD,p is included in the drag term (as in Chap. 2),
the induction a should be considered in the velocity triangle (Fig. 3.6(a))

a = an + af =
CT
λ

Ç
1 +

κ
π/2
0

4π

λ3

(λ− CT )3/2

å
. (3.52)

We define the windplane drag coefficient by including the contribution from the near
wake as

CD = Cd,0 +
Cd,te
16

dtelteA+ kdC
2
L +

C2
L

πA︸︷︷︸
Cn

Di

= Cd,0 +
Cd,te
16

dtelteA︸ ︷︷ ︸
CD,0

+
C2
L

πA
(1 + kdπA)︸ ︷︷ ︸

1
e

, (3.53)

where CD,0 is the zero-lift drag coefficient of the windplane and the term C2
L

πAe
is the

drag coefficient due to lift, including both induced drag and the part of parasite drag
function of lift. The factor e is named the Oswald efficiency (see Sect. 6.7.2 ofAnderson
(2017)). The Oswald efficiency (or Oswald factor) typically includes also a contribution
from the span-wise efficiency. In this thesis we assumed elliptical wing, which have a
unitary span-wise efficiency. If this drag coefficient is used, just the far wake induction
af should be included in the model (see Fig. 3.6(b))

af =
κ
π/2
0

4π

CTλ
2

(λ− CT )3/2
. (3.54)

3.5 Discussion

In this chapter, we characterized the main sources of aerodynamic parasite drag and the
aerodynamic induction for windplanes.
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3.5. Discussion

We started by approximating the airfoil polars with an analytical expression quadratic
on the lift coefficient. When employing this expression in a design framework, we ex-
pect the optimizer to design the plane about a specific lift coefficient. By characterizing
which design lift coefficient is chosen, we can can understand which type of airfoils are
optimal for windplanes. This is investigated in Chap. 4.

We then found an expression for the equivalent tether drag coefficient, as function of
the non-dimensional dimensions of the tether, its section drag coefficient and the wing
aspect ratio. When employing this expression in a design framework, we expect the
optimizer to decrease as much as possible the tether diameter to reduce the equivalent
tether drag. The tether section drag coefficient is dependent on the aerodynamic design
of the tether.

We finally derived an expression for the velocities induced by the trailed vorticity,
which has an helicoidal shape. Under the assumption of steady crosswind operations,
the expression for the velocities induced on the lifting line from a helicoidal vortex
filament, trailed by a position on the windplane wing, is divided into an expression
modeling the near vortex filament and one for the far vortex filament.

The near vortex filament is modeled as the first half rotation of the helicoidal fila-
ment, where the axial component of the filament is neglected. The velocity induced by
the near vortex filament is expressed in terms of elliptic integrals, and it is linearized to
a more intuitive expression. The induced drag coefficient modeling the near wake, built
up from the near vortex filaments contributions, is found to be similar to the drag coef-
ficient the same wing would have in forward flight. This suggests that models assuming
straight trailed vortex filaments are a good approximation of the near wake only.

The far wake is modeled as two semi-infinite vortex rings cascades with opposite in-
tensity. The related induced velocities depend on the radial position of the rings, which
is known, and on the axial distance of the rings, which is unknown. The axial distance
of the rings is found by assuming that the vortex filaments move downwind with the
velocity of the wind minus the velocity induced by the near wake. The induction due
to the far wake is then dependent on the turning radius. When employing this expres-
sion in a design framework, we expect the optimizer to increase the turning radius to
decrease the induction due to the far wake.

This wake model is validated with the free wake vortex model (Marten et al. (2015))
implemented in Qblade. See Trevisi et al. (2023a) for more details. The main assump-
tions of this aerodynamic model define its validity range. The model is derived by
assuming that the windplane flies steady fully crosswind trajectories with a steady and
uniform inflow. The model is then challenged with general trajectories (e.g. with an
elevation angle) and with the plane velocity changing over the loop. However, it is rea-
sonable to expect that the plane velocity fluctuations will mainly impact the near wake,
while the far wake is manly influenced by average values. The assumption of steady
and uniform inflow is also challenged in realistic conditions. Indeed, the windplane
will fly in a sheared and turbulent inflow. The wind turbulence will define the wake
breakdown and thus influence the wind recovery after the windplane. This effects are
relevant when studying the aerodynamic interaction between windplanes. This model
can be directly applied to Ground-Gen AWESs (Trevisi et al. (2023a)) and some mod-
ifications are required for Rotational AWESs. Rotational AWESs are characterized by
multiple wings, thus the aerodynamic interaction among them shall be modeled.
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Chapter 3. Parasite drag and aerodynamic induction

3.6 State of the art and open questions

3.6.1 Tether drag

The effect of tether drag on airborne wind energy is well know in the literature. The
formulation presented in this thesis was first derived by Houska and Diehl (2006), used
by Fagiano (2009) and Argatov et al. (2009), and later adopted in all low-fidelity works
in the field. Trevisi et al. (2020a) develop a more elaborated formulation, resolving the
tether displacement, and finding the same final result.

3.6.2 Aerodynamic induction

For wind energy systems, the evaluation of the induced velocities is of extreme impor-
tance to properly estimate the power production.

Learning from conventional wind energy, the induced velocities for AWE are esti-
mated in the literature with momentum-based and vortex-based methods. High-fidelity
computational fluid dynamics (CFD) methods are typically used to study the wake char-
acteristics and validate lower fidelity models.

Initially, the applicability of momentum methods for AWE was doubted (Loyd (1980);
Archer (2013); Costello et al. (2015)), as the definition of swept area is not settled, but
by intuition way larger than the windplane wing. Recently, however, momentum meth-
ods have been developed for AWE, with De Lellis et al. (2018) and Kheiri et al. (2018,
2019) independently generalizing momentum theory to compute the induced velocity.
This is derived by equating the aerodynamic lift of the windplane to the thrust applied
to the annulus swept by the wing, with the momentum formulation.

Gaunaa et al. (2020) point out that using momentum theory to evaluate the induc-
tion of an windplane, which is described by 3D polars, is not physically consistent.
Momentum theory is indeed used in wind turbine aerodynamics to compute the lo-
cal velocity triangle of the airfoil (2D polars) in the wind turbine blade. If the wind-
plane is described by 3D polars (i.e. the drag coefficient is including the induced drag
coefficient that the windplane would have in a forward flight) in the momentum for-
mulation, then a part of the wake would be counted twice. If, instead, momentum
theory is used to evaluate the velocity triangle of an airfoil (2D polars) in the wind-
plane wing, then a root and a tip correction would be needed to take into account that
the rotor is not a disc built up of an infinite number of wings, but one single wing.
The root and tip corrections for windplanes would however differ largely from conven-
tional wind turbines corrections, as these are developed for blades extending almost to
the rotation axis, and need a re-work. Gaunaa et al. (2020) then build a vortex-based
engineering model, which is physically consistent and it is tuned with CFD simula-
tions. Based on these considerations, Trevisi et al. (2023a) (Please see the corrigendum
at https://doi.org/10.5194/wes-8-999-2023-corrigendum) find an
induced drag coefficient of the windplane with vortex methods. The derivation by Tre-
visi et al. (2023a) is more general than the one presented here, as that formulation
allows the evaluation of the induction in the neighborhood of the lifting line (and not
strictly on the lifting line). The model is validated with the the lifting line free vortex
wake method (Marten et al. (2015)) implemented in QBlade. Another vortex method,
based on the vortex tube model, is developed by Leuthold et al. (2019) for an AWE
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3.6. State of the art and open questions

system composed of more wings flying in the same annulus to compute the induction
at the windplanes middle-span. This model takes as inputs the system thrust coefficient,
relative radius and reel-out factor.

As the field counts a limited number of prototypes with limited number of flying
hours, the benchmark of engineering models is typically done with higher fidelity
codes, instead of experiments. For aerodynamic models, CFD studies then represent
the reference. Haas and Meyers (2017) describe the wake characteristics for a given
aircraft in Fly-Gen and Ground-Gen circular path with a LES setup. Aerodynamic
forces, applied with an actuator line technique, are computed to impose an induction of
1/3 at the kite location. Haas et al. (2019b) further develop the same LES framework
by including an optimal control problem for Ground-Gen AWES in non-turbulent and
turbulent sheared inflow conditions. Mehr et al. (2020) investigate the aerodynamic
interaction of the onboard wind turbines with the main wing in a crosswind circular
maneuver with a viscous vortex particle method. The main wing wake is however re-
moved one span downstream from the trailing edge, not resolving the helicoidal wake.
Branlard et al. (2022) extend the AeroDyn module of OpenFAST through the open
source lifting line vortex code OLAF to support arbitrary collections of wings, rotors
and towers. Complex geometries, such as windplanes, can then be handled by OLAF.

There are a number of open research questions related to the aerodynamic induction
modeling. We list some here

• The windplane with ground station at the ground level (configuration (e), Fig. 1.1)
operates with an elevation angle. How is the aerodynamic induction influenced by
the elevation angle?

• Are the onboard wind turbines influencing the aerodynamic wake structure?

• Are elliptic wings minimizing the induced drag for windplanes?
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CHAPTER4
Windplane conceptual design

In this chapter, we look for a periodic approximate solution of the equations of motion.
The periodicity is driven by the gravity and the periodic control inputs. We formulate
an optimal control problem, where the optimizer modifies the control variables to max-
imize the mean power. We then upgrade it to an optimal design problem, where the
optimizer modifies the control variables and the design variables to maximize the mean
power. Finally, we analyze the optimal designs and their optimal control.

4.1 Equations of motion

We recall the equations of motion in the cylindrical reference frame given in Eq. (2.5)
mu̇+ 2mṙu = Fa,1 +mg cosΨ

mr̈ −mu2

r
= Fa,2 − T tanΦ−mg sinΨ

mz̈ = Fa,3 + T

where F a is the aerodynamic force and T is the axial component of the tensile force
acting on the tether (Eq. 2.3). In this chapter, we assume a circular trajectory, so that r
and z are constant and the motion is allowed only in the tangential direction.

The equations of motion thus become one differential equation (the tangential equa-
tion of motion) and two algebraic equations (radial and axial equilibria)

mu̇ = Fa,1 +mg cosΨ

m u2

R0
= T tanΦ +mg sinΨ− Fa,2

T = −Fa,3

(4.1)
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Chapter 4. Windplane conceptual design

Similar to what assumed in the Chapter 2, we model the aerodynamic forces as

F a =

 L sin γ − (Dp + Tt) cos γ

(L cos γ + (Dp + Tt) sin γ)ϕ

−(L cos γ + (Dp + Tt) sin γ)

 ≈

 L
λ
(1− a)− (Dp + Tt)

ϕL

−L

 , (4.2)

where ϕ is named the roll angle. The equations of motion then are
mu̇ = L

λ
(1− a)− (Dp + Tt) +mg cosΨ

m u2

R0
= T tanΦ +mg sinΨ− ϕL

T = L

(4.3)

By substituting the third equation into the second, we find an algebraic equation for
the roll angle ϕ

ϕ = tanΦ− m

L

u2

R0

+
mg

L
sinΨ. (4.4)

This equation defines the roll angle necessary to keep the windplane in the circular
trajectory.

We now insert the lift force definition L ≈ 1
2
ρCL

b2

AR
u2 into the expression for the

opening angle Φ that we found for the steady-state (Eq. 2.10)

tanΦ =
m

L

u2

R0

=
m

1
2
ρACLR0

, (4.5)

finding that the opening angle Φ does not depend on the tangential velocity because
both the centrifugal forces and aerodynamic forces scale with the tangential velocity
squared. By expressing the turning radius as R0 = Lte sinΦ (Eq. 2.1), we find an
equation for the opening angle Φ

sinΦ tanΦ =M =
m

1
2
ρACLLte

= 4
µAR

CLlte
, (4.6)

where µ is the non-dimensional mass

µ =
m

ρb3
, (4.7)

and lte = Lte

b/2
(Eq. 3.8). Eq. (4.6) can be expressed to explicit Φ as

Φ = arccos

Ç
−M

2
+

√
M2 + 4

2

å
. (4.8)

Substituting the expression of the steady-state opening angle (Eq. 4.5) into Eq. (4.4),
we find that the roll angle is just used to compensate the radial component of gravity

ϕ =
mg

L
sinΨ, (4.9)

so that lift is not used to turn, but just to stay airborne. A graphical representation of
the radial force balance is given in Fig. 4.1.
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4.2. Periodic solution of the tangential equation of motion

vw

e2,g

e3,g
Ψ Φ

e1,g

e2,re3,r

e1,r

−mg sinΨ e2,r

ϕL e2,r
L

Figure 4.1: Radial force balance.

4.2 Periodic solution of the tangential equation of motion

The equation of motion along the tangential direction (first equation in 4.3) can be
written as

mu̇ =
1

2
ρACLuvw︸ ︷︷ ︸

propulsive lift

(1− a)− 1

2
ρACD,pu

2︸ ︷︷ ︸
parasite drag

− 1

2
ρAtCT,tu

2︸ ︷︷ ︸
turbines thrust

+mg cosΨ︸ ︷︷ ︸
gravity

. (4.10)

We model the induction as (Eq. (3.52))

a = an + af =
CL
πAR

λ+
κ
π/2
0

4π

ĈT λ̂
2

(λ̂− ĈT )3/2
, (4.11)

where the induction due to the far wake is assumed to be function of the mean quantities
over the loop. Indeed, the model of the aerodynamic induction in Chap. 3 is derived
assuming a constant tangential velocity and we expect the far wake to be mostly influ-
enced by average values over the loop.

The tangential equation of motion (Eq. 4.10) can also be written as (see Fig. 3.6)

mu̇ =
1

2
ρACLuvw︸ ︷︷ ︸

propulsive lift

(1−af )−
1

2
ρA(CD,p + Cn

Di)u
2︸ ︷︷ ︸

drag

− 1

2
ρAtCT,tu

2︸ ︷︷ ︸
turbines thrust

+mg cosΨ︸ ︷︷ ︸
gravity

. (4.12)

Normalizing the equation of motion in Eq. (4.12) with P
vw

= 1
2
ρπb2v2w, similarly to

what done for the thrust coefficient definition (Eq. 2.20), and expressing the onboard
wind turbines area as At =

πξ2t
2
b2 (Eq. 2.13), the non-dimensional tangential equation

of motion hτ is

hτ (t) =
CL
πAR

λ (1− af )−
CD
πAR

λ2− ξ2t
2
CT,tλ

2+
2

π
µ
bg

v2w
cosΨ− 2

π
µ
b

vw
λ̇ = 0. (4.13)

where CD = CD,p + Cn
Di (Eq. (3.53)).

Since the dynamic problem is periodic, we look for a periodic solution of hτ (t). We
therefore expand hτ (t) as a Fourier series of the azimuth position Ψ(t)

hτ (t) = h̃τ +
∞∑
k=1

Hτ,s,k sin(kΨ(t)) +Hτ,c cos(kΨ(t)) = 0. (4.14)
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where the coefficients are

h̃τ =
1
2π

∫ 2π

0
hτ (Ψ)dΨ = 0

Hτ,s,k =
1
π

∫ 2π

0
hτ (Ψ) sin (kΨ) dΨ = 0 for k ≥ 1

Hτ,c,k =
1
π

∫ 2π

0
hτ (Ψ) cos (kΨ) dΨ = 0 for k ≥ 1,

(4.15)

For the tangential equation of motion to be fulfilled hτ (t) = 0, all its Fourier coeffi-
cients have to be null.

We can now expand also the wing speed ratio as a Fourier series

λ(Ψ(t)) = λ̃+
∞∑
k=1

Λs,k sin(kΨ(t)) + Λc,k cos(kΨ(t))

λ̃

(
1 +

∞∑
k=1

Λ̃s,k sin(kΨ(t)) + Λ̃c,k cos(kΨ(t))

)
,

(4.16)

where the coefficients Λ = [λ̃,Λs,1,Λs,2, ...,Λc,1,Λc,2, ...] are set to fulfill the equation
of motion (Eq. 4.15).

To write the acceleration term as a function of Λ, we write the time derivative of the
azimuth position Ψ as a function of λ as

Ψ̇ =
dΨ

dt
= − u

R0

= −2λκ0
vw
b
. (4.17)

The time derivative of the wing speed ratio is

λ̇(Ψ(t)) = Ψ̇(t)
∞∑
k=1

k (Λs,k cos(kΨ(t))− Λc,k sin(kΨ(t)))

= −2λκ0
vw
b

∞∑
k=1

k (Λs,k cos(kΨ(t))− Λc,k sin(kΨ(t))) .

(4.18)

We can now write the h̃τ equation (Eq. 4.15) as

h̃τ =
1

2π

∫ 2π

0

Å
CL
πAR

λ (1− af )−
CD
πAR

λ2 − ξ2t
2
CT,tλ

2

ã
dΨ = 0, (4.19)

where the terms related to gravity and to the acceleration are null.
The Hτ,c,1 equation can be written as

Hτ,c,1 =
1

2π

∫ 2π

0

Å
CL
πAR

λ (1− af )−
CD
πAR

λ2 − ξ2t
2
CT,tλ

2 +
2µ

π

bg

v2w
cΨ − 2

π
µ
b

vw
λ̇

ã
cΨdΨ

=
µ

π

Å
bg

v2w
+ 2κ0λ̃Λs,1

ã
+

1

2π

∫ 2π

0

Å
CL
πAR

λ (1− af )−
CD
πAR

λ2 − ξ2t
2
CT,tλ

2

ã
cΨdΨ = 0.

(4.20)
The other coefficients in Eqs. 4.15 can be found by applying the definition. We

then wrote the nonlinear differential equation of motion as a set of algebraic equations.
Among these algebraic equations, the Hτ,c,1 (Eq. 4.20) is the only one where the peri-
odic external input (i.e. gravity) appears. This method of solving a partial differential
equation, which accept periodic solution, is named harmonic balance in the literature
and it is detailed in Sect. 7.1.
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4.3. Fundamental frequency

4.3 Fundamental frequency

We want now to further characterize the periodic solution by finding the fundamental
frequency. The time at the angular position Ψ is

t =

∫ t

0

dt̃ = −
∫ Ψ

0

R0

λvw
dΨ̃, (4.21)

where dt̃ = − R0

λvw
dΨ̃ (Eq. 4.17). The revolution period T is

T = − R0

λ̃vw

∫ −2π

0

1

1 +
∑∞

k=1

Ä
Λ̃s,ks(kΨ) + Λ̃c,kc(kΨ)

ädΨ
≈ − R0

λ̃vw

∫ −2π

0

1 +

(
∞∑
k=1

Λ̃s,ks(kΨ) + Λ̃c,kc(kΨ)

)2

+O

Ñ(
∞∑
k=1

Λ̃s,ks(kΨ) + Λ̃c,kc(kΨ)

)4
é
dΨ

≈ 2πR0

λ̃vw

(
1 +

1

2

∞∑
k=1

Ä
Λ̃2
s,k + Λ̃2

c,k

ä)
.

(4.22)
We can now write the fundamental frequency

ω =
2π

T
= λ̂

vw
R0

≈ λ̃

1 + 1
2

∑∞
k=1

Ä
Λ̃2
s,k + Λ̃2

c,k

ä vw
R0

, (4.23)

where λ̂ is the mean value in time of the wing speed ratio over one revolution

λ̂ =
λ̃

1 + 1
2

∑∞
k=1

Ä
Λ̃2
s,k + Λ̃2

c,k

ä . (4.24)

We then found that the mean wing speed ratio in time λ̂ is equal to the mean wing
speed ratio in azimuth λ̃ divided by a term function of the wing speed ratio fluctuations
squared.

4.4 Power balance

To better understand results, we derive the power balance equation by multiplying the
equation of motion in Eq. (4.10) with the tangential velocity u

1

2
ρACLvwu

2(1− a)− 1

2
ρACD,pu

3 − 1

2
ρAtCT,tu

3 +mg cosΨu = mu̇u, (4.25)

where the first term is the aerodynamic power due to propulsive lift, the second the
aerodynamic power dissipated in parasite drag, the third is the onboard turbines thrust
power, the fourth is the gravitational power and the right-hand-side is the variation of
kinetic energy. We can normalize Eq. (4.25) with P = 1

2
ρπb2v3w, similar to what done

for the power coefficient definition, to get to a non dimensional version of the power

37



Chapter 4. Windplane conceptual design

balance equation

CL
πAR

λ2︸ ︷︷ ︸
CT

(1− a)− CD,p
πAR

λ3︸ ︷︷ ︸
Cτ

− ξ2t
2
CT,tλ

3︸ ︷︷ ︸
CT,t
CP,t

CP

+
2

π
µ
bg

v2w
λ cosΨ︸ ︷︷ ︸
Cg

=
2

π
µ
b

vw
λ̇λ︸ ︷︷ ︸

∂ek
∂t

, (4.26)

which can be written in compact form as

CT (1− a)− Cτ︸ ︷︷ ︸
Ca

+Cg =
CP

(1− at)
+
∂ek
∂t

. (4.27)

The mean value of the power balance equation over the loop is

1

T

∫ T

0

(CT (1− a)− Cτ ) dt︸ ︷︷ ︸
Ĉa

=
1

T

∫ T

0

CP
(1− at)

dt, (4.28)

where the integrals of the gravitational energy Cg and of the change of ∂ek
∂t

over the pe-
riod are null. This equation then represents the balance between the mean aerodynamic
power and the mean turbines’ thrust power over the period.

The mean aerodynamic power can be also written as

Ĉa =
1

T

∫ T

0

Å
an(1− a)λ− CD,p

πAR
λ3
ã
dt, (4.29)

where an = CT

λ
(Eq. 3.37).

4.5 Power coefficient

The mean value of the power coefficient in time ĈP is

ĈP =
ξ2t
2

1

T

∫ T

0

CP,tλ
3dt =

ξ2t
2
λ̂
1

2π

∫ 2π

0

CP,tλ
2dΨ (4.30)

where dt = − R0

λvw
dΨ and T = 2πR0

λ̂vw
.

Using the Fourier expansion of λ in Eq. (4.16), the power coefficient is

ĈP =
ξ2t
2
λ̂λ̃2

1

2π

∫ 2π

0

CP,t

(
1 +

∞∑
k=1

Λ̃s,ks(kΨ) + Λ̃c,kc(kΨ)

)2

dΨ. (4.31)

4.6 Optimal control problem (OCP)

We now formulate an optimal control problem (OCP) with the model just introduced.
The independent variables are the variables that determine the OCP and are fixed. The
control variables are the variables modified by the optimizer to maximize the objective
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function. The dependent variables are the variables which solve the equality constraints
for the given control variables. The optimal control problem reads

maximize: ĈP (

dependent vars︷ ︸︸ ︷
af ,Λ ,

control variables︷ ︸︸ ︷
CL(Ψ), at(Ψ),

independent variables︷ ︸︸ ︷
AR, µ, dte, b, vw, ξt, Cd,0, kd, Cd,te, lte, σte)

subject to: [haf ;H ] = 0 equality constraint

cPr < 0 inequality constraint,
(4.32)

which is equivalent to look for the lift coefficient CL and the onboard wind turbines
induction at which maximize the mean value of the power coefficient for the given
independent variables. Note that the denominator in the power coefficient definition is
just function of independent variables, so that optimizing for the mean power coefficient
is equivalent to optimizing for the mean power. The inequality constraint cPr limits the
mean generated power to the rated power of the generators.

A reminder of the physical interpretation of the independent variables is given in
Table 4.2. The air density ρ and the gravitational acceleration g are not listed among
the independent variables in OCP (4.32) because they can be considered fixed for wind
energy systems on planet Earth at this stage of development. We take ρ = 1.225 kg/m3

and g = 9.81 m/s2.
We want to upgrade this optimal control problem to an optimal design problem. To

do this, we need a model for the tether design.

4.7 Tether design

The tether is typically designed for ultimate strength and to survive a given period of
operations. Bosman et al. (2013) describe the tether types for airborne wind energy and
highlight the creep phenomenon as the main driver determining the tether life. They
provide the safe working life curve Lte, showing the estimated life of the tether if only
one stress level is applied. In Figure 4.2 this curve for a DM20 Dyneema tether is
shown. The safe working life curve Lte can be approximated with

Lte(σte) = 10
(̂
cte,0 + cte,1σte + cte,2σ

2
te + cte,3σ

3
te

)
(4.33)

where σte is in GPa and the parameters are estimated by fitting the DM20 data in Fig.
33.16 from Bosman et al. (2013) and reported in Table 4.1.

Figure 4.2: Safe working life (T= 20C) graphs for DM20 Dyneema fibers based on creep rupture
(Bosman et al. (2013)).
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Table 4.1: Safe working life (T= 20C) parameters for DM20 Dyneema fibers based on creep rupture.

cte,0 = 5.2 cte,1 = −11.2 cte,2 = 8.3 cte,3 = −2.4

Bosman et al. (2013) suggest the use of the Miner’s rule for the estimation of tether
life Tte

Tte
∫ vw,out

vw,in

W (vw)

Lte (σ̂te (vw))
dvw = 1, (4.34)

where W (vw) is the wind distribution (e.g. Weibull), σ̂te(vw) is the mean tether stress
applied as a function of wind speed and Tte in measured in years. In this thesis, we
assume a Weibull wind distrubution function

W (vw) =
k

A

(vw
A

)k−1

e−(
vw
A )

k

, (4.35)

where we take A = 8 m/s and k = 2.
This design methodology shall be considered when designing for the whole wind

speed range. In this thesis, we design for one single wind speed to simplify the results
and their understanding. Therefore, we design the tether based on a representative
tether strength. We can however use Eq. (4.34) to estimate the life of the tether when
studying how the design performs as a function of wind speed.

The tether is designed according to the inequality constraint cσ

cσ(vw) = σ̂te(vw)− σte < 0, (4.36)

where σte is the representative tether strength. In this work, we take σte = 600 MPa.
Note that the electrical component of the tether (needed to transmit the electrical power
to the ground station) is not modeled.

To derive an expression for the mean tether stress, we first write the mean force
acting on the tether

Tte(t) ≈ L(t)
√
1 + tanΦ2 =

1

2
ρ
b2

AR

√
1 + tanΦ2v2wCL(t)λ(t)

2

=
1

2
ρπb2

√
1 + tanΦ2v2wCT (t),

(4.37)

where CT is the thrust coefficient. Writing the tether diameter as Dte, the mean stress
acting on the tether σ̂te is

σ̂te =
T̂te

πD2
te/4

= 8ρv2w
ĈT
d2te

√
1 + tanΦ2, (4.38)

where dte is the tether diameter ratio, defined as the ratio between the tether diameter
and the semi-span of the plane dte = Dte

b/2
(Eq. 3.7).

4.8 Optimal design problem (ODP)

We now upgrade the OCP (4.32) to an optimal design problem ODP. We consider the
aspect ratio AR, the non-dimensional mass parameter µ and the tether diameter ratio
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dte as design variables and not any more as independent variables. The design problem
reads

maximize: ĈP (

dependent vars︷ ︸︸ ︷
af ,Λ ,

design variables︷ ︸︸ ︷
CL(Ψ), at(Ψ), AR, µ, dte,

independent variables︷ ︸︸ ︷
b, vw, ξt, Cd,0, kd, Cd,te, lte, σte)

subject to: [haf ;H ] = 0 equality constraint

cσ < 0 inequality constraint,
(4.39)

which is equivalent to look for the lift coefficientCL, the mean turbines induction at, the
aspect ratio AR, the non-dimensional mass parameter µ and the tether diameter ratio
dte which maximize the mean power for the given independent variables. Note that
the inequality constraint on the rated power has been removed in the optimal design
problem formulation. The inequality constraint defines the tether diameter.

In this work, we model the lift coefficient with two harmonics as

CL(Ψ) = C̃L + ACL,s,1 sinΨ + ACL,c,1 cosΨ + ACL,s,2 sin(2Ψ) + ACL,c,2 cos(2Ψ),
(4.40)

and the onboard turbines’ induction with one harmonic as

at(Ψ) = ãt + Aat,s sinΨ + Aat,c cosΨ. (4.41)

4.9 Optimal designs

A realistic windplane design is carried out accounting for the power generated in a
range of wind speeds. The design of a wind energy system is typically determined
to maximize an economic or a performance metric. A key performance indicator is
the capacity factor, measuring how much energy is produced by the system compared
with its rated power. Windplanes are expected to reach higher capacity factors than
conventional turbines because of the lower CapEx, thus they have lower rated wind
speed. Wind turbines typically reach rated power at ≈ 10 m/s.

We chose here to design the windplane and the tether, which is the component trans-
mitting the aerodynamic thrust to the ground, at a wind velocity representative of the
rated wind speed for windplanes vw = 7 m/s.

The design is then carried out at a wind speed of vw = 7 m/s and for the independent
variables in Table 4.2. The tether drag coefficient is taken as Cd,te = 0.8, which is
representative of a cylindrical tether section. The design tether material strength σte
is used to size the tether diameter, according to the design methodology illustrated in
Sect. 4.7. We consider the order of the Fourier series for the equation of motion hτ (t)
in Eq. 4.14 and of the wing speed ratio λ(t) in Eq. 4.16 to be k = 5.

We solve three optimal design problems (ODP) of incremental complexity to better
understand the results. The optimal designs are detailed in Table 4.3. The first optimal
design problem, denoted with PMS (Point mass steady), is solved by setting gravity
to zero, then looking for steady solutions, and for a constant nondimensional mass
parameter µ = 0.1. This is purely an aerodynamic design problem. The second optimal
design problem, denoted with PML (Point mass light), is solved by including gravity
and keeping the nondimensional mass parameter constant to µ = 0.1. The third optimal
design problem, denoted with PMH (Point mass heavy), is solved by considering the
full design problem.
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Table 4.2: Values and description of the independent variables for the optimal design problems.

units Description
b 10 m Wing span
vw 7 m/s Wind velocity
ξt 0.15 - Non dimensional onboard wind turbines radius
Cd,0 0.004 - Airfoil polar parameters (Eq. 3.2)
kd 0.008 -
Cd,te 0.8 - Tether drag coefficient
lte 20 - Tether length ratio
σte 600 MPa Design tether material strength

The power coefficient for the first two design problems is ĈP = 1.12 and the designs
almost identical. The dynamic is then not influencing the aerodynamic design problem
if the mass is kept fixed. When including the nondimensional mass among the design
variables, the power coefficient improves and the optimal design slightly changes.

The design lift coefficient is found to be ĈL ≈ 0.70 for all designs, corresponding to
the maximum lift-to-drag ratio of the airfoil. We then need to use airfoils designed to
maximize the lift to drag ratio. These airfoils are well-known as they are used for wind
turbines, gliders, aircraft designed to have efficient long cruise, and other applications.
The windplane drag coefficient at zero lift is dominated by the equivalent tether drag
coefficient.

The optimal aspect ratios are finite and have low values. Low aspect ratio designs
are easier to be manufactured and meet the weight requirements.

The non-dimensional mass µ for the third optimization is among the design variables
and its optimal value is finite. Depending on the independent variables, extremely light
designs might be not required and the optimal mass might be obtained with cheap and
sustainable materials.

We try to give a physical interpretation of these results in this section.

Table 4.3: Optimal designs ODs for the three optimal design problems ODPs.

PMS (steady) ĈP = 1.12 ĈT = 2.96 ĈL = 0.70 CD,0 = 0.014 CD,te = 0.010
(AR, dte) ⊂ dv AR = 6.0 e = 0.87 µ = 0.1 m = 122 kg dte = 1.6 mm/m
g = 0 m/s2 κ0 = 0.13 af = 0.05 λ̂ = 8.87 P̂ = 74.2 kW T = 4.0 s
PML (light) ĈP = 1.12 ĈT = 2.96 ĈL = 0.71 CD,0 = 0.014 CD,te = 0.010

(AR, dte) ⊂ dv AR = 6.0 e = 0.87 µ = 0.1 m = 122 kg dte = 1.6 mm/m
κ0 = 0.13 af = 0.05 λ̂ = 8.86 P̂ = 73.8 kW T = 4.0 s

PMH (heavy) ĈP = 1.16 ĈT = 3.27 ĈL = 0.73 CD,0 = 0.014 CD,te = 0.010
(AR, dte, µ) ⊂ dv AR = 5.3 e = 0.88 µ = 0.32 m = 390 kg dte = 1.8 mm/m

κ0 = 0.08 af = 0.03 λ̂ = 8.71 P̂ = 77.1 kW T = 6.3 s

The wing speed ratio λ as function of the non-dimensional time t/T is shown in
Fig. 4.3a for the three ODPs. The initial time corresponds to the position Ψ = 0, with
the plane moving downwards and thus accelerating (Ψ̇ < 0, see Fig. 4.1).

The roll angle, necessary to fulfill the radial equation of motion and maintain the
circular trajectory, is shown in Fig. 4.3b. When the plane approaches the top part of
the loop, its velocity is the lowest. To compensate the radial component of gravity (Eq.
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4.9), the roll angle then has the largest value in the top part.

(a) Wing speed ratio λ as function of non-dimensional
time t/T for the three ODPs.

(b) Roll angle ϕ (Eq. 4.9) as function of non-dimensional
time t/T for the three ODPs.

Figure 4.3

The onboard turbines induction at, the thrust coefficient CT,t and the power coeffi-
cient CP,t are shown as function of non-dimensional time t/T in Fig. 4.4a.

In Fig. 4.4b, the lift coefficient as a function of the non-dimensional time is shown.
The lift coefficient decreases when the plane moves downwards, and it is in phase with
the wing speed ratio (Fig. 4.3a).

Gravity can be compensated by controlling the lift coefficient and the axial induction
of the onboard turbines. Gravity has its largest value in the tangential equation of
motion at Ψ = 0 (t = 0) and at Ψ = π. The lift coefficient appears out of phase with
respect to gravity, while the turbines’ thrust in phase. This means that the cyclic control
of the turbines’ thrust is aimed at compensating gravity.

(a) Onboard turbines induction at, thrust coefficient
CT,t and power coefficient CP,t as function of non-
dimensional time t/T for ODP PMS (-), ODP PML

(- -), ODP PMH (··).

(b) Lift coefficient CL as function of non-dimensional
time t/T for the three ODPs. The dotted lines are
found with the approximation in Eq. (4.44).

Figure 4.4

The axial induction of the windplane a (Eq. 4.11), is shown in Fig. 4.5a. For all
designs, it is constant over the period. The induction a(t) (Eq. (4.11)) is

a(t) = an(t) + af =
CL(t)

πAR
λ(t) +

κ
π/2
0

4π

ĈT λ̂
2

(λ̂− ĈT )3/2
. (4.42)

The only way for the induction a to be constant is that the product between the two
time dependent terms is also constant

CL(t)λ(t) = ĈLλ̂

Å
1 +

∆CL(t)

ĈL

ãÅ
1 +

∆λ(t)

λ̂

ã
≈ ĈLλ̂

Å
1 +

∆CL(t)

ĈL
+

∆λ(t)

λ̂

ã
,

(4.43)
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where ĈL and λ̂ are the mean value of the lift coefficient and of the wing speed ratio in
time. The change in lift coefficient, due to the change in wing speed ratio, necessary to
maintain a constant induction is

CL(t) ≈ ĈL

Å
1− ∆λ(t)

λ̂

ã
. (4.44)

The dotted lines in Fig. 4.4b are found with the approximation in Eq. (4.44)
In Fig. 4.5b, the power coefficient as a function of the nondimensional time is

shown. Recall that the power coefficient is defined as CP =
ξ2t
2
CP,tλ

3, where CP,t is
shown in Fig. 4.4a and λ in Fig. 4.3a.

(a) Axial induction a as function of non-dimensional time
t/T for the three ODPs.

(b) Power coefficient CP as function of non-dimensional
time t/T for the three ODPs.

Figure 4.5

We now look at the power balance for the different designs, as formulated in Eq.
4.27. In Fig. 4.6a we show the power balance for the steady ODP PMS , in Fig. 4.6b
for the ODP PML and in Fig. 4.6a for the ODP PMH .

In the steady ODP PMS , the gravitational power is not present, thus the balance
is steady. The aerodynamic power Ca is exclusively balanced by the turbines’ thrust
power CP

1−at . A considerable amount of wind power CT (1− a) is dissipated in parasite
drag Cτ .

In the ODP PML, the gravitational power Cg is present and has its largest value at
Ψ = 0 and Ψ = π. The change in kinetic energy ∂ek

∂t
is in phase with Cg. The plane

then accelerates due to gravity. The aerodynamic power Ca is almost constant, while
CT (1− a) and Cτ are not.

We can then solve the integral on the left-hand-side of Eq. (4.29) to find the mean
value of the aerodynamic power Ĉa. We assume a constant induction a, as a conse-
quence of the optimal result shown in Fig. 4.5a. To find the mean power dissipated in
parasite drag Ĉτ , we first solve

1

T

∫ T

0

λ3dt = λ̂λ̃2
1

2π

∫ 2π

0

(
1 +

∞∑
k=1

Λ̃s,ks(kΨ) + Λ̃c,kc(kΨ)

)2

dΨ

= λ̂λ̃2
1

2π

∫ 2π

0

1 + 2

(
∞∑
k=1

Λ̃s,ks(kΨ) + Λ̃c,kc(kΨ)

)
+

(
∞∑
k=1

Λ̃s,ks(kΨ) + Λ̃c,kc(kΨ)

)2

dΨ

= λ̂3

(
1 +

1

2

∞∑
k=1

Ä
Λ̃2
s,k + Λ̃2

c,k

ä)3

,

(4.45)
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where the relation between λ̂ and λ̃ is given in Eq. (4.24).
The mean power balance can therefore be written as

1

T

∫ T

0

CP
(1− at)

dt︸ ︷︷ ︸
turbines’ thrust power

= an(1− a)λ̂︸ ︷︷ ︸
wind power

− CD,p
πAR

λ̂3

(
1 +

1

2

∞∑
k=1

Ä
Λ̃2
s,k + Λ̃2

c,k

ä)3

︸ ︷︷ ︸
parasite drag power

, (4.46)

where the left-hand-side is the mean turbines’ thrust power over the loop and the right-
hand-side is the mean aerodynamic power. To maximize the generated power, the wind
power shall be maximized and the power dissipated in parasite drag minimized.

To maximize the wind power, the induction is constant. Therefore, the wing, which
travels with a varying velocity in the circular trajectory, generates constant induced
velocities. This means that the trailed vorticity is constant over the trajectory and so is
the bound circulation.

To minimize the power dissipated in parasite drag, the wing speed ratio shall be as
constant as possible. To obtain a constant velocity, the onboard turbines should convert
all the potential energy to electric energy, avoiding the conversion to kinetic energy.
However, the potential energy converted to electric energy is reduced by the onboard
generation efficiency, which decreases for increasing turbines’ axial induction CP,t

CT,t
=

1−at. It is therefore optimal to let a part of the gravitational energy to be converted into
kinetic energy and a part into electric energy. The ratio of energy converted to kinetic
and to electric is defined by the nonlinear conversion processes efficiencies.

(a) Non-dimensional power balance for the ODP PMS . (b) Non-dimensional power balance for the ODP PML.

Figure 4.6

In the ODP PMH , the nondimensional mass µ is considered among the design vari-
ables. Increasing the nondimensional mass increases the opening angle (Eq. 4.8), thus
increases the trajectory radius and decreases the inverse turning ratio κ0. This results
in a decrease of the induction due to the far wake af and thus an increase in aerody-
namic power. However, a larger and larger mass also increases the gravitational power
Cg. The conversion of the gravitational power, as just discussed, has an associated
efficiency. For these two conflicting reasons, the optimal mass, which is the main pa-
rameter determining the trajectory radius, is finite. In Fig. 4.7b the dependency of the
power coefficient with respect to the non-dimensional mass is shown, highlighting that
the optimal mass is finite.

In Figure 4.8a, the optimal power coefficients found by solving ODPs with pre-
scribed aspect ratios are shown. The optimal aspect ratios are finite and have low val-
ues. Increasing the aspect ratio is found to be detrimental for power production. The
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(a) Non-dimensional power balance for the ODP PMH . (b) Power coefficient ĈP found by solving ODPs with
prescribed non-dimensional mass µ.

Figure 4.7

aspect ratio can be understood as the solidity for wind turbines.
In Fig. 4.8b, the power coefficients found by solving OCPs with prescribed lift

coefficients C̃L are shown for the light design PMS and the heavy design PMH . As for
conventional turbines, the power coefficient is decreased when decreasing or increasing
the lift coefficient with respect to the optimal value.

(a) Power coefficient ĈP found by solving ODPs with
prescribed aspect ratio AR for the optimal designs
ODs.

(b) Power coefficient ĈP as a function of the mean lift
coefficient in time ĈL, found by solving OCPs with
prescribed C̃L for the optimal designs ODs.

Figure 4.8

We can investigate the operations of the optimal design PML and PMH as a function
of wind speed by solving optimal control problems (OCPs). Note that the optimal
control problem formulation (Sect. 4.6) lists among the inequality constraints the rated
power constraint cPr . We need then to decide which rated power to assign to the two
windplanes. Recall that the rated wind speed is typically determined by economic
factors, so we can arbitrarily select a rated power. We chose Pr = 100 kW. Above the
rated wind speed, a number of strategies to limit power and loads are available (e.g.
decreasing lift coefficient, increasing or decreasing the opening angle Φ, increasing the
elevation angle, etc.). Analyzing the windplane behavior above the rated wind speed
with this simplified formulation would be misleading and therefore it is avoided.

Figure 4.9a shows the power curve of the two windplanes up to vw = 10 m/s and
the minimum and maximum power over the loop at low wind speed. The heavy design
PMH has a minimum negative power at very low wind speed. This means that the
onboard turbines are used as propellers in the ascending part of the loop. It is inefficient
to use the turbine as propellers because the power used to propel the plane has to pass
the electric efficiencies twice: when converted from shaft power to electric power and
when converted from electric power to shaft power. This phenomenon reduces the
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mean electric power and thus it should be avoided if possible. Moreover, a lighter
design reduces the power needed during take-off and landing.

In Figure 4.9b the tether stress curve is shown. After the rated power is reached, the
tether stress decreases.

The power and tether stress trends are typical trends for wind energy machines.
Using the Weibull distribution function for the wind speed (Eq. 4.35), we can esti-

mate the capacity factor CF and the tether life due to creep Tte (Sect. 4.7), considering
only the wind speeds from 3 to 10 m/s. The capacity factor for both designs is of
CF = 0.37. For the light design PML the tether life is Tte = 27 years, while for the
heavy design PMH Tte = 30 years. If we extend the power curve up to vw = 25 m/s,
the capacity factor for both design would be CF = 0.59.

(a) Normalized power found by solving OCPs at differ-
ent wind speeds vw for the light design PML and the
heavy PMH design. The rated power is Pr = 100
kW.

(b) Mean tether stress σ̂te found by solving OCPs at dif-
ferent wind speeds vw for the light design PML and
the heavy PMH design.

Figure 4.9

Figure 4.10a shows the power coefficients for the two planes as functions of the
wind speed. The highest power coefficient is found at the rated wind velocity. For
wind speeds below the rated wind speed, the power coefficients decrease. This is be-
cause gravity is influencing more and more the dynamics, decreasing the power output.
For wind speeds above the rated wind speed, the rated power constraint becomes ac-
tive, thus decreasing the power coefficient. Reducing the power coefficient is mainly
achieved by reducing the lift coefficient, as shown in Figure 4.10b. This is typical of
wind energy machines, but it is not the only option available for windplanes.

(a) Mean power coefficient ĈP found by solving OCPs
at different wind speeds vw for the light design PML

and the heavy PMH design.

(b) Mean lift coefficient ĈL found by solving OCPs at
different wind speeds vw for the light design PML

and the heavy PMH design.

Figure 4.10

Figure 4.11a shows the thrust coefficients as functions of wind speed. Before the
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rated wind speed, the ĈT is approximately constant, then it decreases. To conclude,
Fig. 4.11b shows the windplanes velocity as a function of wind speed. The maximum
velocity û is found at the rated wind speed and it is û ≈ 70 m/s. Typically the blade
tips of conventional wind turbines reach a velocity of 80 to 100 m/s. The tip velocity
of a conventional turbine is limited because of noise (if onshore) and erosion. We then
expect the noise produced by the main wing and the erosion on the main wing to be
reduced compared to conventional wind turbines.

(a) Mean thrust coefficient ĈT found by solving OCPs
at different wind speeds vw for the light design PML

and the heavy PMH design.

(b) Mean tangential velocity û found by solving OCPs
at different wind speeds vw for the light design PML

and the heavy PMH design.

Figure 4.11

4.10 Discussion

In this chapter, we assume circular trajectories, so that only one degree of freedom in
the tangential direction is remaining. We look for a periodic solution to the tangential
equation of motion by expanding the wing speed ratio into Fourier series and applying
a harmonic balance methodology. The power balance is composed by the aerodynamic
power, the turbines’ thrust power, the gravitational power and the change in kinetic
energy. The aerodynamic power is the wind power harvested by the plane minus the
power dissipated in parasite drag. The mean values in time of the aerodynamic power
and the turbines’ thrust power are equal.

We use this simplified dynamic model to formulate an optimal control problem
(OCP), where the cyclic controls of the lift coefficient CL and the onboard turbines
induction at are the control inputs. We later upgrade the OCP into an optimal de-
sign problem (ODP), where the wing aspect ratio AR, the windplane non-dimensional
mass µ and the tether diameter ratio dte are included among the design variables. This
simplified design methodology shows how different disciplines combine in the design
process.

We find that the optimal design is obtained by operating the wing at the maximum
lift-to-drag ratio of the airfoil. In windplanes, we then need to use airfoils designed to
maximize the lift to drag ratio. These airfoils are well-known as they are used for wind
turbines, gliders, airplanes designed to have efficient cruise, and other applications.

If the wing is designed to operate at the maximum lift-to-drag ratio of the airfoil,
the optimal wing aspect ratio is finite and has a low value. Low aspect ratio designs are
easier to be manufactured and meet the weight requirements.

Gravitational potential energy is being exchanged with kinetic energy, aerodynamic
energy and electric energy over one revolution. Since this exchange comes with an
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associated efficiency, the plane mass and the related trajectory are designed to reduce
the potential energy fluctuating over the loop. Reducing the potential energy means
reducing the turning radius and the mass. However, for decreasing turning radii, the
available wind power decreases because the windplane sweeps a lower area. For these
two conflicting reasons, the optimal mass is finite. Depending on the independent vari-
ables, extremely light designs might be not required and the optimal mass might be
obtained with cheap and sustainable materials.

The windplane makes work on the wind by slowing it down of the induced velocity.
It is optimal to have a constant induction over the loop to maximize the raw wind power
to be harvested. Therefore, the lift coefficient changes according to the change in wing
speed ratio to ensure a constant intensity of the wing circulation, which translates in a
constant induction.

Having understood these key points, we can safely move to the second part of this
thesis, where we approach the design modeling the windplane as a rigid body.

The formulation presented in this chapter and the resulting considerations on optimal
designs are part of the abstract submitted to Torque 2024 Conference (Trevisi and Croce
(2024))

4.11 State of the art

4.11.1 Optimal control problem

Optimal control problems employ dynamical models, ranging from low to high fidelity.
Typically, low- to mid-fidelity models are used to investigate optimal trajectories of
AWE. Low-fidelity dynamic models are characterized by multiple assumptions, which
simplify the models, and by the low computational cost. The quasi-steady model (van
der Vlugt et al. (2019)) assumes the kite as a point mass in steady state for each point
of the loop. This model is validated with experimental data (Schelbergen and Schmehl
(2020)) and it is considered accurate for soft kites, where the inertia is low and the
AWES quickly reaches the steady state. A similar approach is considered while de-
riving the Unicycle model (Fagiano et al. (2014); Vermillion et al. (2021)). Also this
model, based on a point mass, is developed for soft-wing AWES and computes the
velocity vector via quasi-steady flight equations. The kite orientation is found by a
turning law that is derived from lateral force equilibrium and is validated through a
number of experiments. The Unifoil model (Cobb et al. (2020)) is derived by modifi-
cation of the Unicycle model in order to be applied to fixed-wing AWES. Indeed, the
quasi-steady assumption is removed and the turning maneuvers modelled with a yaw
dynamic equation.

Higher fidelity, but still computationally efficient, dynamic models are developed by
Sánchez-Arriaga et al. (2017, 2019); Sánchez-Arriaga and Serrano-Iglesias (2021) as
a part of the Lagrangian Kite Flight Simulators (LAKSA) package based on minimal
coordinates, and by Gros and Diehl (2013) to study the dynamics of multiple AWES
configurations. Moreover, thorough Newtonian dynamic models are used to compute
reference flight paths and the consequent flight path control for soft-wing AWES (Fech-
ner et al. (2015); Fechner and Schmehl (2016)) and for fixed-wing AWES (Licitra et al.
(2019); Malz et al. (2019); Eijkelhof and Schmehl (2022)).

The dynamic models just introduced are particularly suitable to be used within opti-
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mal control studies for their computational inexpensiveness and for the reduced number
of nonlinearities compared to even higher fidelity codes, such as kiteFAST (Jonkman
et al. (2018)). The Unicycle and Unifoil models, introduced earlier, are mainly used
to compute reference flight paths and for flight path control development (Cobb et al.
(2020); Fernandes et al. (2021)). To ease the deployment of optimal control problems
for AWE, awebox (De Schutter et al. (2023)) is developed and used, for instance by
Leuthold et al. (2018), Haas et al. (2019a) and De Schutter et al. (2019), to solve opti-
mal control problems. awebox solves optimal control problems in time, imposing peri-
odicity constraints. A similar optimal control problem is studied by Horn et al. (2013),
Malz et al. (2020a) and Malz et al. (2020b), where the optimal trajectory is found in
time using a discretization by direct collocation and a homotopy strategy based on the
relaxation of the dynamic constraints (Gros et al. (2013)). Licitra et al. (2019) solved an
optimal control problem with an experimentally validated dynamic model of a Ground-
Gen AWES. They find that, under some prescribed constraints, circular and figure of
eight trajectories produce similar mean power and that closed-loop control enhance ro-
bustness but decreases power production of about 10 %. Control in all operation phases
is studied by Rapp et al. (2019) and Todeschini et al. (2021).

Pasquinelli (2021) investigates the power losses in a circular trajectory with a dy-
namical quasi-analytical model. He finds that the causes of power losses are mainly
two: the AWES span non-perpendicularity with respect to the incoming wind during the
motion and the AWES speed fluctuation over the loop. Makani team (Tucker (2020))
studies the flight trajectories of Fly-Gen AWES with a simplified quasi-analytical ap-
proach, aiming at describing their physical characteristics. They run their flight simula-
tor for different trajectories and production strategies to derive analytical expressions,
which can describe the consequences of different operational choices. Their produc-
tion strategy at low wind speed is to convert part of the potential energy into kinetic
and part into electrical, when the AWES moves downward. To reduce the potential
energy exchange, they suggest to squash the trajectories along the vertical direction.
Moreover, they explain that using electrical power to push the AWES upward dras-
tically decreases the overall power production, as power needs to be converted from
mechanical to electrical and again from electrical to mechanical, so that the related ef-
ficiencies are counted twice. They, in accord with the study for Ground-Gen by Stuyts
et al. (2015), conclude that the electrical conversion losses should be considered when
deciding on the production strategy. Trevisi et al. (2022a) investigate optimal trajecto-
ries for Fly-Gen AWESs using the harmonic balance method detailed in Sect. 7.1. A
simplification of this method is used in the current Section to solve the tangential equa-
tion of motion. This method allows to potentially reduce the problem size by solving
only for the main harmonics and to implicitly impose periodicity of the solution. The
flight trajectory is described by the Fourier coefficients of the dynamics (elevation and
azimuth angles) and of the control inputs (on-board wind turbines thrust and AWES
roll angle). To isolate the effects of each physical phenomenon, optimal trajectories
are presented with an increasing level of physical representation from the most ideal-
ized case: i) If the mean thrust power (mechanical power linked to the dynamics) is
considered as the objective function, optimal trajectories are characterized by a con-
stant AWES velocity over the loop and a circular shape. This is done by converting all
the gravitational potential energy into electrical energy. At low wind speed, on-board
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wind turbines are then used as propellers in the ascendant part of the loop; ii) If the
mean shaft power (mechanical power after momentum losses) is the objective function,
a part of the potential energy is converted into kinetic and the rest into electrical energy.
Therefore, the AWES velocity fluctuates over the loop; iii) If the mean electrical power
is considered as the objective function, the on-board wind turbines are never used as
propellers because of the power conversion efficiency. Optimal trajectories for case ii)
and iii) have a circular shape squashed along the vertical direction. The optimal control
inputs can be generally modelled with one harmonic for the on-board wind turbines
thrust and two for AWES roll angle without a significant loss of power, demonstrating
that the absence of high-frequency control is not detrimental to the power generated by
Fly-Gen AWES.

4.11.2 Tether design

Bosman et al. (2013) describe the design drivers for the tether and highlights the creep
phenomenon as main cause of tether failure. The authors provide the creep curves
relating the tether stress to the operational life for three different rope types and suggest
the usage of Miner’ Rule for the life estimation. Trevisi et al. (2020b) formulate the
Miner’ Rule to estimate the tether life and apply this formulation in a design context
(Trevisi et al. (2021b)). Bauer et al. (2018) design the tether diameter according to a
maximum tether force.

4.11.3 Optimal design problem

Optimal system design problems in airborne wind energy are approached with engi-
neering models by Fasel et al. (2017), Bauer et al. (2018) and Trevisi et al. (2021b).
Candade et al. (2020) perform the aero-structural design for specific design load cases
to minimize the wing mass.

Fasel et al. (2017) optimize the aerodynamic shape, compliant structure, and com-
posite layup of a morphing wing, with the objective of maximizing the the average
annual power production per wing area. Bauer et al. (2018) perform a system design to
maximize an economic metric per wing area. Trevisi et al. (2021b) perform a system
design to maximize the annual energy production and later the cost of energy. The wing
area is fixed within an optimization, leading to optimal designs per wing area. Naik
et al. (2021, 2022) study the co-design problem for an underwater crosswind Ground-
Gen system maximizing the power and minimizing the structural mass. The wing area
is fixed within one optimization, leading to optimal designs per wing area. Naik and
Vermillion (2024) integrate the site selection in the design problem.

In this chapter, we formulate the design problem in a different way compared to the
literature, by optimizing the system design per wingspan. This is similar to what is
typically done for wind turbines, where the design is optimized per lifting body span
and not per lifting body area. If we perform the aerodynamic design of wind turbines
per blade area, the optimal rotor would have infinite long blades, as in this condition
the swept area is maximized and thus is power. For conventional operations of wind
turbines (manufacturing, storage in hangars, transportation, etc.), the critical dimension
is the lifting body span, and not the area. Thus, we claim that we should optimize
windplanes per wingspan and not per wing area.
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4.11.4 Optimal aspect ratio

As just discussed, designing the system per wing area leads to very large aspect ratio,
as found by Fasel et al. (2017), Bauer et al. (2018), Tucker (2020), Trevisi et al. (2021b)
among others.

Trevisi et al. (2023b) introduce the power coefficient as defined in this thesis (Eq.
2.19) and consequently speculate on the existence of an optimal finite aspect ratio when
optimizing for the power production per wingspan.

4.11.5 Optimal airfoils

Airfoils used in airborne wind energy are designed to maximize the metric C3
L

C2
d

(Bauer
et al. (2018); Thedens et al. (2019); Tucker (2020); De Fezza and Barber (2022); Ran-
griz and Kheiri (2023); Porta Ko et al. (2023) among others) and thus to be operated at
high lift coefficients. This metric points to multi-elements airfoils to achieve high lift
coefficients, close to stall. These airfoils are complex to be designed, manufactured and
operated. Using this metric is a consequence of optimizing the design per wing area
and not per wingspan.

If we design the system per wingspan and consider the optimal aspect ratio, we find
that the airfoils which maximize the aerodynamic efficiency CL

Cd
are required. These

airfoils are used in wind turbines and gliders, among other applications, and they are
well-known in the literature.

This, to the best of the author’s knowledge, is fist time these airfoils are considered
optimal for crosswind airborne wind energy applications.

4.11.6 Optimal mass

In airborne wing energy, the system mass is typically associated with power losses, as
the system has to stay airborne and centrifugal forces are typically seen as a source
of power losses. Thus, the system mass is typically minimized (Bauer et al. (2018);
Candade et al. (2020); Tucker (2020); Trevisi et al. (2021b)). Including a wake model
and using the radial component of the tether force to turn (and not the aerodynamic lift),
we find that there exist an optimal trajectory radius and thus an optimal mass (which is
the main parameter determining the trajectory radius).

This, to the best of the author’s knowledge, is fist time an optimal mass is theorized
for crosswind airborne wind energy applications.
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Part II

Rigid body
Can windplanes fly stable orbits?
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CHAPTER5
Equations of motion

The flight mechanics problem of windplanes is fundamentally different from the one of
airplanes for mainly three reasons: the presence of the wind, needed for the power gen-
eration (the average wind speed does not influence conventional aircraft flight stability
analyses, as the inertial coordinate system can be considered to move with the average
wind speed, but this is not the case for windplanes), the presence of the tether, which
transfers the aerodynamic forces to the ground, and the always-present turning maneu-
ver. It is therefore clear that conventional design techniques assuming straight and level
flight can hardly be used for windplanes. To understand the flight mechanics problem
we then need to develop a methodology, analogue to the one used for conventional
airplanes, that consider the characteristics of windplanes.

In Chapter 4, we learned that potential energy is being exchanged with kinetic and
electric energy over one revolution. This phenomenon is intrinsically non linear, as
the change of kinetic energy is function of the velocity squared. This means that for
capturing the potential energy exchange in a design framework we need to implement
the non-linear equations of motion and a non-linear aerodynamic model.

5.1 Coordinate systems

We define four coordinate systems to derive the equations of motion. The ground co-
ordinate system FG (Figure 5.1) is centered at the ground station and it is inertial. Its
origin is denoted as G. e3,g points upwind and e1,g toward the ground. A second coor-
dinate system FR (Rotating) is defined such that it moves with an angular velocity Ψ̇
around e3,r and e2,r points to the tether attachment point.

The third coordinate system FB (Body) is attached to the windplane and it is cen-
tered at the tether attachment. The geometry and the inertia properties are given in this

55



Chapter 5. Equations of motion

coordinate system. The fourth coordinate system FS (Stability) is attached to the the
windplane, it is centered at the tether attachment but it is rotated of a constant pitch
angle with respect to the Body coordinate system.

In Part I, we wrote the equation of motion of the point mass in the rotating coordinate
system FR, we now write the in the equation of motion of the rigid body in the stability
coordinate system FS .

vw

g

e2,g

e3,g

Ψ
Φ

e1,g

e2,r
e3,r

e1,r

e2,b ≡ e2,s

e3,b

e1,b

e3,s

e1,s

Figure 5.1: Ground coordinate system FG, Rotating coordinate system FR, Body coordinate system FB
and Stability coordinate system FS .

The rotation matrix RG
z,GR (Ψ), which brings from FG to FR, is defined by one pla-

nar rotation of Ψ around the e3,g axis (see Appendix A for rotational matrix notation).
The body coordinate system FB (Figure 2.1) is centered at the tether attachment

point and is moving with the windplane. Its origin is denoted as T. The geometry and
the inertia properties are given in this coordinate system. The rotation matrix which
brings from FR to FB is defined with three sequential planar rotations, around the
third, first (rotated) and second (rotated) axes of the frame respectively (Euler angles in
the sequence (3, 1, 2))

RR
RB (ϕ, θrb, ψ) = RR

R′′B (θrb)R
R
R′R′′ (ϕ)RR

RR′ (ψ) = RR
z,RR′ (ψ)RR′

x,R′R′′ (ϕ)RR′′

y,R′′B (θrb) .
(5.1)

The stability coordinate system FS is centered at the tether attachment point and is
moving with the windplane. The rotation matrix which brings from FB to FS is defined
with one planar rotation around e2,b of a constant angle θbs: RB

y,BS (θbs). Note that
we expect the mean plane pitch to change as a function of wind speed to limit power,
similar to conventional turbines. The pitch angle θbs, constant over one time integration,
can be arbitrarily chosen as function of wind speed to follow this pitch variation. This is
important when employing a linearized aerodynamic model about nonlinear operating
points, as in this thesis. We choose to write the equations of motion in FS and not in
FB for this reason.

The rotation matrix which brings from from FR to FS is then

RR
RS(ϕ, θ, ψ) = RR

BS (θbs)R
R
RB (ϕ, θrb, ψ) = Rz (ψ)Rx (ϕ)Ry(θrb + θbs︸ ︷︷ ︸

θ

). (5.2)
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As a result of the choice of the rotation sequence for RR
RB, the rotation matrix is func-

tion of θ = θrb + θbs.
The rotation matrix which brings from from FG to FS is then

RG
GS = RG

BS (θbs)R
G
RB (ϕ, θrb, ψ)R

G
GR (Ψ) = Rz (Ψ + ψ)Rx (ϕ)Ry (θ) . (5.3)

5.2 Equations of motion in the stability coordinate system FS

The stability coordinate system FS is centered on the tether connection, so the wind-
plane center of mass can therefore be elsewhere. The equations of motion for a non-
barycentric moving coordinate system areñ

m1 −mtcg×

mtcg× I

ôÇ
v̇

ω̇

å
+ñ

ω× 0

v× ω×

ô ñ
m1 −mtcg×

mtcg× I

ôÇ
v

ω

å
=

Ç
F

T t

å
,

(5.4)

where m is the windplane mass, 1 is a 3-by-3 identity matrix, tcg is the position of
the center of mass in FS , the symbol ()× indicates the skew-symmetric tensor, I is the
inertia tensor by components in FS , v and ω are the linear and angular velocity of FS

with respect to FG, expressed in FS , and f and Tt are the external forces and moments.
We rewrite the equations of motion in compact form as

mv̇+ v×mv = F ext, (5.5)

wherein

m =

ñ
m1 −mtcg×

mtcg× I

ô
, v× =

ñ
ω× 0

v× ω×

ô
, v =

Ç
v

ω

å
, (5.6)

and F ext = (F ;T t).

5.3 Kinematic constraints: linear velocity

To properly write the kinematic constraints for the linear velocity, we define the tether
reference frame FTe. FTe is centered at the tether attachment and it defined by a rotation
around e1,r of Φ, as in Fig. 5.2. The rotation matrix which brings from FR to FTe is
then

RRTe = Rx(Φ), (5.7)

with Rx(Φ) given in Appendix A.
The velocity of the reference frame FS with respect to FG, expressed in FT , is

vTeGS = RTeSv = RTeRRRSv =

 −LteΨ̇ sinΦ

LteΦ̇

L̇te

 , (5.8)

where L̇te = 0.
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e2,te
vw

g

e2,g

e3,g

Ψ
Φ

e1,g

e2,r
e3,r

e1,r

e3,te e1,te

Figure 5.2: Ground coordinate system FG, Rotating coordinate system FR and tether coordinate system
Fte.

5.4 Kinematic constraint: angular velocity

The angular velocity of the reference frame FS with respect to FG, expressed in FG is

ωG
GS = RGSω =

 0

0

Ψ̇ + ψ̇

+Rz(Ψ + ψ)

 ϕ̇

0

0

+Rz(Ψ + ψ)Rx(ϕ)

 0

θ̇

0


(5.9)

In alternative, we can express the same expression in FS as

ω = RT
y (θ)R

T
x (ϕ)

 0

0

Ψ̇ + ψ̇

+RT
y (θ)

 ϕ̇

0

0

+

 0

θ̇

0

 (5.10)

5.5 External force: gravity

Since the center of mass is not located at the center of the coordinate system, the grav-
itational force generates moments. This is dissimilar to the most typical treatment of
the dynamic equations for aircraft, which are typically put in barycentric body compo-
nents. For windplanes, and considering the reference at the anchor point of the tethering
system, the force due to gravity can be written as

F g =

ñ
1

tcg×

ô
RSG

 mg

0

0

 = mgPgRSR

 cosΨ

− sinΨ

0

 , (5.11)

where tcg is the position of the center of mass with respect to the tether attachment
expressed in FS and RSG is the rotational matrix which brings from FS to FG (its
transposed is given in Eq. 5.3).
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5.6 External force: tether tensile force

Since the equations of motion are written in a reference system centered at the tether
attachment, no moment is generated by the tether.

The nonlinear equations of motion are

mv̇+ v×mv = F a + F t + F g + F te, (5.12)

where F a is the aerodynamic force vector, F t the turbines’ force vector, F g the gravi-
tational force and F te the tether force vector.

The tether force can be written explicitly as

F Te
te = RTS

(
mv̇+ v×mv− F a − F t − F g

)
, (5.13)

The tether force in the tether reference frame FTe is

F Te
te = Ttee3,te (5.14)

where Tte is the tether tension. Since we model the tether as a constraint, no change of
velocity can happen along e3,t (L̇te = 0), such that

Tte = RTS

(
v×mv− F a − F t − F g

)
· e3,te (5.15)

This value of the tether force is then needed to ensure the equilibrium in the tether
direction.

5.7 Discussion

In this chapter, the rigid-body nonlinear 6 degree-of-freedom equations of motion are
written in a reference system attached to the windplane and centered at the tether at-
tachment. The equations of motion are complemented with 6 kinematic constraints, so
that a set of 12 equations describes the rigid-body dynamics. The plane 3D position
is parameterized with the azimuth angle Ψ, the opening angle Φ and the tether length
Lte, which is constant. The plane 3D orientation is parameterized with the azimuth
angle Ψ and the three Euler angles (ϕ, θ, ψ). With this formulation, the Euler angles
are expected to be small for nearly circular trajectories. The plane linear and angular
velocities are described with a common formulation for airplanes.

The external forces are the aerodynamic force, the onboard turbines’ force, the grav-
ity and the tether tensile force. The gravitational force is applied to the center of mass
and thus generated moments. The tether acts as a constraint, so the resulting tensile
force can be found from the force balance in the tether direction. The aerodynamic
force and the onboard turbines’ force are derived in the next chapter.
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In this chapter, we model the windplane nonlinear aerodynamics to characterize the
external forces in the nonlinear equations of motion (Eq. 5.5).

In Chapter 4, we learned that potential energy is being exchanged with kinetic en-
ergy, wind energy and electric energy over one revolution. This phenomenon is intrin-
sically nonlinear, as the change of kinetic energy is function of the velocity squared. To
cope with this non-linearity, the aerodynamic model cannot be linearized with respect
to one single reference condition in the loop. However, employing a fully nonlinear
aerodynamic model in a design framework at this stage of development would be too
computational expensive and not necessary. We then linearize the aerodynamic model
about nonlinear operating points. Since the non-linearities are coming from the change
in kinetic energy, we should pick the states describing the nonlinear operating point
appropriately, so that the nonlinear change of these states can cope with the change in
kinetic energy over the revolution. In this chapter, we then linearize the aerodynamic
model about a nonlinear operating point.

6.1 Operating point

The state vector for the evaluation of the aerodynamic forces is

y =
[
u, v, w︸ ︷︷ ︸

v

, p, q, r︸ ︷︷ ︸
ω

, ϕ, θ, ψ︸ ︷︷ ︸
eu

, CL,al, θh, θv, at︸ ︷︷ ︸
u

]T
, (6.1)

where v and ω are the linear and angular velocity of FS with respect FG, expressed in
FS , eu define the rotational matrix RR

RS (Eq. 5.2) and u are the control inputs. CL,al
is the increment in lift coefficient provided by a deflection of the ailerons, θh and θv
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are the pitch angle of the horizontal and vertical stabilizers and at is the onboard wind
turbine axial induction.

To make the state vector y non-dimensional, we introduce a diagonal matrix as

Sy = diag

Åï
u0, u0, u0,

2u0
b
,
2u0
c
,
2u0
b
, 1, 1, 1, 1, 1, 1, 1

òã
. (6.2)

where b is the wing span and c the reference chord.
We use the inverse of Sy to define the non-dimensional state vector

ỹ = S−1
y y =

[ u
u0
,
v

u0
,
w

u0
,
pb

2u0
,
qc

2u0
,
rb

2u0
, ϕ, θ, ψ, CL,al, θh, θv, at

]T
=
[
ũ, ṽ, w̃︸ ︷︷ ︸

ṽ

, p̃, q̃, r̃︸ ︷︷ ︸
ω̃

, ϕ, θ, ψ︸ ︷︷ ︸
eu

, CL,al, θh, θv, at︸ ︷︷ ︸
u

]T
.

(6.3)

We now write the dimensional aerodynamic forces in FS as

F a = F a,0 +
∂F a

∂ỹ
∆ỹ (6.4)

where in F a,0 we want to capture the nonlinear part of the aerodynamics and in ∂F a

∂ỹ
∆ỹ

the linear part.
To make the aerodynamic force non-dimensional, we consider the unit force F

F =
1

2
ρAu20, (6.5)

and we introduce a diagonal matrix as

S = diag ([1, 1, 1, b, c, b]) . (6.6)

We can write the non-dimensional aerodynamic force vector as

fa =
S−1

F
F a = fa,0 +

∂fa
∂ỹ

∆ỹ (6.7)

The nonlinear part of the aerodynamic force fa,0 is defined by the state

y0 = [u0, 0, 0, 0, 0, r0, 0, 0, 0, CL,al, θh, θv, at]
T . (6.8)

Writing r0 = − u0
R0

and thus r0b
2u0

= − b
2R0

= −κ0, the non-dimensional state vector
defining the nonlinear part of the aerodynamic force is

ỹ0 = [1, 0, 0, 0, 0, −κ0, 0, 0, 0, CL,al, θh, θv, at]T . (6.9)

The linear part of the aerodynamics is then defined by the incremental non-dimensional
state

∆ỹ = [0, ṽ, w̃, p̃, q̃, 0, ϕ, θ, ψ]T . (6.10)

In the next sections, we will compute the nonlinear force at the operating point fa,0
and take derivatives of the aerodynamic forces with respect to nine nondimensional
states ∂fa

∂ỹ
: three linear velocities ṽ, three angular rates ω̃, and three angles eu.
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6.2 Angular velocity

As we want to linearize the aerodynamic forces about the operating point y0, the Eu-
ler angles eu = [ϕ, θ, ψ]T are assumed to be small and RR

RS (ϕ, θ, ψ) (Eq. 5.2) is
linearized, so that

RRS (ϕ, θ, ψ) ≈

 1 −ψ θ

ψ 1 −ϕ
−θ ϕ 1

 = 1+

 ϕ

θ

ψ

×

= 1+ eu×, (6.11)

where 1 is a 3 by 3 identity matrix and the symbol (·)× applied to a vector represents
its corresponding skew-symmetric tensor form. Considering this linearization, RSR =
RT
RS = 1− eu×.
The angular velocity of FS with respect to FG, expressed in FS takes the form

ω ≡ [p, q, r]T = ωS
GS ≈ RR

SRω
R
GR + ˙eu = (1− eu×)ωR

GR + ˙eu. (6.12)

6.3 Apparent wind speed

The wind velocity is along the e3,g axis and has a negative direction. The aerodynamic
induction due to the far wake af is considered constant over the trajectory and it is
subtracted to the incoming wind speed.

The definition of the wind speed in the near wake, expressed in the stability coordi-
nate system, can be written as

vSw = RG
SG

 0

0

−vw(1− af )

 = −vw(1− af )

 −θ
ϕ

1

 . (6.13)

By considering a generic position in FS , namely xS = [x, y, z]T , the undisturbed
apparent wind speed vSa in FS is defined as the subtraction of the plane motion from
the wind velocity, yielding

vSa ≡ −

U
V
W

 = vSw − v − ω×xS = −vw(1− af )

 −θ
ϕ

1

−

u+ zq − yr

v + xr − zp

w + yp− xq

 ,
(6.14)

where v ≡ [u, v, w]T = vSGS is the velocity of FS with respect to FG, expressed in FS .
The operating state is indicated with the subscript 0, therefore yielding for the baseline
condition

vSa,0 = −

U0

V0

W0

 = −vw(1− af )

00
1

−

u0 − yr0

xr0

0

 = −u0

1 + η

−ξ
1
λn

 , (6.15)

where u0 is the plane velocity along e1,s at the operating point, r0 = − u0
R0

, ξ = x
R0

,
η = y

R0
and λn is the wing speed ratio of the near wake, defined as

λn =
u0

vw(1− af )
=

λ

1− af
. (6.16)
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6.4 Main wing

The main wing is assumed to have an elliptic planform with no twist. Wing dihedral
and sweep are considered small. The squared wing span is considered small compared
to the turning radius squared, or in analytic terms,

Ä
b

2R0

ä2
= κ20 ≪ 1. To make the

notation compact, the index "w" is avoided in this section.

6.4.1 Wing coordinate system

Dihedral angle Γ and sweep angle Λ are expected to influence the windplane stability.
Therefore, aerodynamic derivatives shall consider these angles. FWr, a reference sys-
tem attached to the wing, is defined to be with the e2,wr along the quarter chord line,
pointing to the tip of the right wing, as in Figure 6.1. The rotation matrix between FS

and FWr is defined by applying first a rotation around e1,s of Γ (i.e. the dihedral angle),
followed by a rotation around the third axis of intensity Λ (i.e. sweep). This yields

RS→Wr (Γ,Λ) = RS
x,SS′ (Γ)RS′

z,S′Wr (Λ) ≈ 1+ ds×, (6.17)

where sweep and dihedral angles are assumed to be small and ds = [Γ, 0,Λ]T . Note
that Γ is positive with the right wing pointing down, and Λ is positive with the right
wing pointing backwards.

e3,s

e3,wr

e1,wr

e2,wr e2,s

e1,s

Figure 6.1: Right wing coordinate system FWr and stability coordinate system FS .

The coordinate system of the left wing FWl can be defined in similar manner. The
rotational matrix from FS to FWl is

RS→Wl (Γ,Λ) ≈ 1− ds×. (6.18)

The rotational matrices of the two wings can be unified as follows

RS→W (Γ,Λ) = 1+
y

|y|
ds×, (6.19)

where y
|y| =

y
|y|

R0

R0
= η

|η| is the signum function of the wing span coordinate, over the
full left and right wing span.

A given position along the wing axis e2,w with respect to the tether attachment can
be expressed in FS as

twS = twS
0 +RSW

 0

yw

0

 =

 twx

0

twz

+

 0

yw

0

+
yw
|yw|

yw

 −Λ

0

Γ

 , (6.20)
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where tw0 is the position of the wing root with respect to the tether attachment.

6.4.2 Apparent wind speed in FW

The aerodynamic forces are evaluated in the wing coordinate system. Thus, the appar-
ent wind speed in the wing coordinate system FW is

vWa = RWSv
S
a = vSa −

η

|η|
ds×vSa = −

U
V
W

− η

|η|

 ΛV
−ΛU + ΓW

−ΓV

 , (6.21)

where the apparent velocity vSa and its components are defined in Eq. (6.14). Note that
(x, y, z) in Eq. (6.14) are still the coordinates in FS . Therefore, vWa is the apparent
wind velocity in FW given a point in the FS .

For the cross-flow principle, only the components on the e1,w and e3,w axes produce
aerodynamic forces. Thus, the apparent velocity in the wing coordinate system, needed
for the evaluation of aerodynamic forces, does not take into account the component
along the e2,w axis. The modulus of the apparent speed squared is then written as the
summation of the first and third rows of Eq. (6.21) squared

v2a =

Å
−U − η

|η|
ΛV
ã2

+

Å
−W +

η

|η|
ΓV
ã2

≈ U2 +W2 − 2
η

|η|
ΓVW + 2

η

|η|
ΛUV ,

(6.22)
where terms proportional to the sweep and dihedral squared are neglected (small higher
order terms). Note that the two first terms are not dependent on the dihedral and sweep,
so they are the only surviving results for a straight wing.

The inflow angle γn in the near wake, assumed to be small, is defined as the angle
between the apparent velocity and the e1,w axis measured in the (e1,w, e3,w) plane (see
Fig 6.2 for a straight wing). Angle γn is used to project lift and drag in FW ; it can be
written as the ratio between the third and the first row of Eq. (6.21)

γn =

Ä
−W + η

|η|ΓV
äÄ

−U − η
|η|ΛV

ä =
W
U

Ä
1 + η

|η|Γ
V

−W

äÄ
1− η

|η|Λ
V
−U

ä Ä1 + η
|η|Λ

V
−U

äÄ
1 + η

|η|Λ
V
−U

ä
≈ W

U
− Γ

η

|η|
V
U

− Λ
η

|η|
WV
U2

,

(6.23)

where the first term is for a straight wing and the odd functions take into account wing
geometry. Terms proportional to the sweep and dihedral squared are neglected (small
higher order terms).

6.4.3 Angle of attack

The angle of attack is evaluated in the body coordinate system. Thus, the apparent wind
speed in the body coordinate system FB is

vBa = RBSv
S
a = −

 cos θbs 0 sin θbs

0 1 0

− sin θbs 0 cos θbs

U
V
W

 , (6.24)
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The angle of attack α is the ratio between the third velocity component of vBa and
the first

α =
−U sin θbs +W cos θbs
U cos θbs +W sin θbs

≈ W
U

− tan θbs. (6.25)

6.4.4 Operating point

At the operating point, the apparent velocity, using Eq. (6.22), and the inflow angle,
using Eq. (6.23), take the forms

v2a,0 ≈ u20 (1 + η)2 ≈ u20 (1 + 2η) , γn,0 ≈
1

λn (1 + η)
≈ 1

λn
(1− η) , (6.26)

where the assumption η2 =
Ä
y
R0

ä2
≪ 1 has been invoked and terms proportional to

sweep and dihedral angle neglected. Both the apparent velocity squared and inflow
angle are linear functions of η.

The angle of attack α0 at the operating point at the mid span airfoil is derived from
Eq. (6.25)

α0 ≈
1

λn
− θbs (6.27)

e3,s

e2,s

vw(1− afz )
va

u0 (1 + η)

d

l

γn

l

l

d

d

e1,s

Figure 6.2: Velocity triangle and aerodynamic forces for the main wing.

Considering strip theory (Nelson (1998)), the aerodynamic lift coefficient in the FW

at a given yw position of the wing is computed as

CL(yw) = CL(y) = CL(y = 0) + CLα
∂α

∂y
y = CL(y = 0)− CLα

η

λn
, (6.28)

where CLα can be computed from the airfoil lift coefficient slope Clα and ∂α
∂y

= ∂γn
∂y

≈
− 1
R0λn

CLα =
Clα

1 + Clα

πAR

, (6.29)

which is a good approximation for an elliptic wing with no twist. A similar procedure
can be applied to the drag coefficient, such that CD(y) = CD(y = 0)− CDα

η
λn

, where
CD(y = 0) and CDα can be found with lifting line theory

CD(y = 0) = Cd0 + kdCL(y = 0)2 +
C2
L(y = 0)

πAR
, (6.30)
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and

CDα = 2kdCL(y = 0)CLα + 2
CL(y = 0)CLα

πAR
(6.31)

No dependence of the lift coefficient on the side slip angle is considered. From now on,
CL(y = 0) will be indicated as CL and CD(y = 0) as CD.

Given this modeling, the non-dimensional aerodynamic forces given by the main
wing can be written as

f =

∫
b/2

−b/2

1

2
ρ c(y)

S−1

F

ñ
1

tw×

ô
RSW

 CL(y)γn(y)− CD(y)

0

−CL(y)

 va(y)2dy,
(6.32)

where the apparent wind velocity squared va(y)2 (Eq. (6.22)) and the aerodynamic co-
efficients matrix C = [CL(y)γn(y)− CD(y), 0,−CL(y)]T are computed in FW , there-
fore RSW (Eq (6.19)) brings them into FS , where the integration happens. The term
CL(y)γn(y) in the aerodynamic coefficient matrix models the propulsive lift. The term
tw× indicates the skew symmetric matrix of the application location of the aerody-
namic forces in FS and it is needed to compute moments. The matrix S−1 (Eq. (6.6))
brings moments into forces, the unit force F (Eq. (6.5)) makes the equation non dimen-
sional and c(y) is the chord.

To get to a closed form solution of the integral, the odd functions of the wing span
coordinate in the integral variable are to be separated from those which are even or
constant. The first part of the integral function of Eq. (6.32) can be written using Eq.
(6.20) and identity RSW = 1+ η

|η|ds
× (Eq. (6.19))

S−1

ñ
1

tw×

ô
RSW = S−1

Åñ
1

[twx, 0, twz]
×

ô
+ η

ñ
0

[0, R0, 0]
×

ô
+ η

η

|η|

ñ
0

(ds×[0, R0, 0]
T )×

ô
+

η

|η|

ñ
ds×

[twx, 0, twz]
×ds×

ô
+ η

η

|η|

ñ
0

[0, R0, 0]
×ds×

ô
+ η

η2

|η|2

ñ
0

(ds×[0, R0, 0]
T )×ds×

ôã
.

(6.33)
The very last term, including effects proportional to dihedral and sweep squared, can

be neglected. Also the second last term can be left out, since the aerodynamic loads
are only in the first and third axes 1. With these two considerations, Eq (6.33) can be
written highlighting the dependence on the wing span non-dimensional coordinate η

S−1

ñ
1

tw×

ô
RSW ≈ S−1

Çñ
1

[twx, 0, twz]
×

ô
+ η

η

|η|

ñ
0

(ds×[0, R0, 0]
T )×

ôå
+ ηS−1

Çñ
0

[0, R0, 0]
×

ô
+

1

|η|

ñ
ds×

[twx, 0, twz]
×ds×

ôå
≡ P+ ηD,

(6.34)
where P and D are even functions of η.

1[0, R0, 0]×ds×[Cx, 0, Cz ]T = [0, R0, 0]T × ([Γ, 0,Λ]T × [Cx, 0, Cz ]T ) = [0, R0, 0]T × [0,ΛCx − ΓCz , 0] = 0.
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For readability, the following matrices, derived in Appendix B.1, are defined

PA ≡ 1

A

∫ b/2

−b/2
c(y)Pdy, Pη ≡

1

A

∫ b/2

−b/2
c(y)

η2

|η|
Pdy, Pηη ≡

1

A

∫ b/2

−b/2
c(y)η2Pdy,

Dη ≡
1

A

∫ b/2

−b/2
c(y)

η2

|η|
Ddy, Dηη ≡

1

A

∫ b/2

−b/2
c(y)η2Ddy.

(6.35)

The aerodynamic coefficient matrix at trim C0, where C is introduced in Eq. (6.32),
is

C0 =

 CL(y)γn,0(y)− CD(y)

0

−CL(y)

 ≈


CL

λn
− CD

0

−CL

− η

λn

 CL + CLα

λn
− CDα

0

−CLα


= CR0 − η

Cη

λn
,

(6.36)
where γn,0(y) is given in Eq. (6.26) and CL(y) in Eq. (6.28). The definition of CR0 and
Cη is useful when performing derivatives with respect to a generic state variable ỹj of
the state vector (Eq. (6.3))

∂C

∂ỹj
=

 CLαγn,0(y)− CDα

0

−CLα

 ∂α

∂ỹj
+

 CL − η
λn
CLα

0

0

 ∂γn
∂ỹj

=

Ö CL + CLα

λn
− CDα

0

−CLα

− 2η


CLα

λn

0

0


è

∂γn
∂ỹj

= (Cη − 2ηCLα)
∂γn
∂ỹj

,

(6.37)
where the derivative of the angle of attack with respect to a generic variable is equal
to the derivative of the inflow angle with respect to the same variable ∂α

∂ỹj
= ∂γn

∂ỹj
. The

three new aerodynamic coefficient matrices, defined to highlight the dependence of the
aerodynamic coefficient matrix at trim C0 (Eq. (6.36)) and of its derivative ∂C

∂ỹj
(Eq.

(6.37)) with respect to η are

CR0 =


CL

λn
− CD

0

−CL

 , Cη =

 CL + CLα

λn
− CDα

0

−CLα

 , CLα =


CLα

λn

0

0

 .
(6.38)

Deleting the odd functions of y, which provide a null contribution along the wingspan,
the following form for non-dimensional force and moment at the operating point is ob-
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tained

fw,0 =
1

F

1

2
ρ

∫ b/2

−b/2
c(y) (P+ ηD)

Å
CR0 − η

Cη

λn

ã
u20 (1 + η)2 dy

≈ 1

A

∫ b/2

−b/2
c(y) (P+ ηD)

Å
CR0 + η

Å
2CR0 −

Cη

λn

ãã
dy

= PACR0 +Dηη

Å
2CR0 −

Cη

λn

ã
.

(6.39)

fw,0 can be written explicitly as

fw,0 =



X̃w,0

Ỹw,0

Z̃w,0

L̃w,0

M̃w,0

Ñw,0


=



1 0

0 0

0 1

0 0
twz

c
− Γyη

c
− twx

c
− Λyη

c

0 0


ñ CL

λn
− CD

−CL

ô

+


Iηη
A



0 0

0 0

0 0

0 R0

b

0 0

−R0

b
0


+
Iη
A



0 0

Λ −Γ

0 0

−Λ twz

b
Γ twz

b

0 0

Λ twx

b
−Γ twx

b




ñ CL

λn
− 2CD − CLα

λ2n
+ CDα

λn

−2CL + CLα

λn

ô
.

(6.40)
The non dimensional aerodynamic force component X̃w,0 is equal to the propulsive
lift minus the drag. Ỹw,0 appears just because of the dihedral angle Γ and sweep Λ
and the difference in apparent wind speed between the inner and outer wing. Indeed,
loads in the two wings are different and so is their projection on the e2,s axis. . Z̃w,0
is just function of the lift coefficient. The moments L̃w,0 and Ñw,0 appear because
of the difference in apparent wind speed between an inner and outer wing. It is also
noteworthy that M̃w,0 basically does not depend on dihedral nor sweep.

In Appendix B, we go through the steps to compute derivatives of the aerodynamic
forces and moments with respect to the non-dimensional state vector ỹ. Table 6.1
summarizes all the non-null derivatives for the case of a straight wing. The passages
leading to these forms are provided in Appendix B.3. In Table 6.2 all the non-null
derivatives due to sweep and dihedral angle are reported. The passages leading to the
results presented here are given in Appendix B.4.

6.5 Ailerons

Equation 6.40 shows that the linear variation of the apparent wind and of the inflow
angle are generating a roll moment L in the operating condition. A control strategy to
control the roll axis of windplanes could be based on the use of ailerons, as shown in
Figure 6.3. For this reason, it is especially interesting to model the effect of ailerons on
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∂fw

∂ũ PA

Ä
2Cw,R0

− Cw,η

λn

ä
+ 2Dηη

Ä
Cw,R0

− Cw,η

λn
+

Cw,Lα

λn

ä
∂fw

∂w̃ PA

Ä
Cw,η + 2

Cw,R0

λn

ä
+Dηη (Cw,η − 2Cw,Lα)

∂fw

∂p̃
R0

b/2

ï
Pηη

Å
Cw,η − 2Cw,Lα

ã
+Dηη

Å
Cw,η + 2

Cw,R0

λn

ãò
∂fw

∂q̃

PA,z

c/2

ï
2Cw,R0

− Cw,η

λn

ò
− PA,x

c/2

ï
Cw,η + 2

Cw,R0

λn

ò
+

2
Dηη,z

c/2

ï
Cw,R0 −

Cw,η

λn
+

Cw,Lα

λn

ò
− Dηη,x

c/2

ï
Cw,η − 2Cw,Lα

ò
∂fw

∂r̃ − R0

b/2

î
2Pηη

Ä
Cw,R0

− Cw,η

λn
+

Cw,Lα

λn

ä
+Dηη

Ä
2Cw,R0

− Cw,η

λn

äó
∂fw

∂ϕ − c/2
R0

∂fw

∂q̃

∂fw

∂θ PACw,η + 2Dηη (Cw,η −Cw,Lα)

Table 6.1: Derivatives for the case of the straight main wing (the passages leading to these forms are
provided in Appendix B.3).

aerodynamics. This can be done again via strip theory, thus making use of most of the
formulation already introduced. The corresponding control derivative, expressing the
sensitivity of aerodynamic forces and moments to control variables, can be studied as
follows.

By hypothesis, a relatively small sensitivity to aileron control can be considered,
since the size of ailerons (hence their control authority) is generally limited compared
to that of the wing. Furthermore, derivatives and forces at the operating point are
computed neglecting the dihedral and sweep angle for simplicity and it is assumed
that outside the wing sections where ailerons are deflected, the span-wise aerodynamic
loading remains unaffected.

Assuming a symmetric displacement of the right and left ailerons, the force associ-

∂fw

∂ṽ

−Γ
î
Pη (Cw,η − 2Cw,Lα) +Dη

Ä
Cw,η + 2

Cw,R0

λn

äó
+Λ
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λn
+

Cw,Lα

λn

ä
+Dη

Ä
2Cw,R0 −

Cw,η

λn

äó
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∂p̃

Γ
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Pηz

b/2 (Cw,η − 2Cw,Lα) +
Dηz

b/2

Ä
Cw,η + 2

Cw,R0

λn

äó
−Λ
î
2
Pηz

b/2

Ä
Cw,R0

− Cw,η

λn
+

Cw,Lα

λn

ä
+

Dηz

b/2

Ä
2Cw,R0

− Cw,η

λn

äó
∂fw

∂r̃

−Γ
î
Pηx

b/2 (Cw,η − 2Cw,Lα) +
Dηx

b/2

Ä
Cw,η + 2

Cw,R0

λn

äó
+Λ
î
2
Pηx

b/2

Ä
Cw,R0

− Cw,η

λn
+

Cw,Lα

λn

ä
+

Dηx

b/2

Ä
2Cw,R0

− Cw,η

λn

äó
∂fw

∂ϕ
1
λn

∂fw

∂ṽ

∣∣
Γ,Λ

Table 6.2: Derivatives due to dihedral and sweep angle (The passages leading to the results presented
here are given in Appendix B.4).
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e1,s

e2,s
f2

f1

Figure 6.3: Symmetrical ailerons deflection.

ated to their deflection is

fal =

∫
b/2

−b/2

1

2
ρ c(y)fal(y)

S−1

F

ñ
1

twS×

ô
η

|η|

 CL,alγw,n − CD,al

0

−CL,al

 v2ady,
(6.41)

where the function fal(y) takes a value of 1 along the portion of the wingspan between
the aileron extremities

fal(y) =


0 for |y| < f1

1 for f1 < |y| < f2

0 for f2 < |y|
, (6.42)

where f1 and f2 are shown in Fig. 6.3 and in this thesis we take f1 = 0.5 and f2 = 0.8.
Typically, CL,al and CD,al are provided as function of the ailerons deflections. We

define the aerodynamic coefficient matrix Ca

Cal = [CL,alγw,n − CD,al, 0,−CL,al]T , (6.43)

where γw,n is the inflow angle at the main wing due to the near wake. Its value at the
operating point is

Cal,0 ≈


CL,al

λn
− CD,al

0

−CL,al

− η

λn

 CL,al

0

0

 = Cal,R0 −
η

λn
Cal,η. (6.44)

Consequently, the derivative of the aerodynamic coefficient matrix can be written
(according to the same procedure introduced for other force and moment derivatives)
as

∂Cal

∂ỹj
=

∂

∂ỹj

 CL,alγw,n − CD,al

0

−CLal

 =

 CL,al

0

0

 ∂γw,n
∂ỹj

= Cal,η
∂γw,n
∂ỹj

, (6.45)

where it is assumed that CL,al and CD,al do not depend on the angle of attack. The force
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vector due to the ailerons at the operating point is therefore

fal,0 =
1

A

∫ b/2

−b/2
c(y)fal(y)

η

|η|
(Pal + ηDal)

Å
Cal,R0 −

η

λn
Cal,η

ã
(1 + 2η) dy

≈ Ifη
A

Pal

Å
2Cal,R0 −

Cal,η

λn

ã
+
Ifη
A

DalCal,R0 ,

(6.46)

where the new terms appearing in the latter expression are Pal = S−1
[
1; [twx, 0, twz]

×],
Dal = S−1

[
0; [0, R0, 0]

×] and Ifη =
∫ b/2
−b/2 c(y)fal(y)

η
|η|ηdy.

In Table 6.3 the derivatives due to the ailerons are reported. In this thesis, the change
in drag coefficient due to the change in lift coefficient due to ailerons CD,al is neglected.
Note that ∂γw,n

∂ỹj
and ∂v2a

∂ỹj
are the same as for the straight wing case (Table B.1).
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∂ũ 2
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ä
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Ä
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ä
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R0

b/2
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Å
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λn

ã
∂fal

∂q̃
twz

c/2
∂fal

∂ũ − twx

c/2
∂fal

∂w̃

∂fal

∂r̃ − R0

b/2
Ifη

A Pal

Ä
2Cal,R0

− Cal,η

λn

ä
∂fal

∂ϕ − c/2
R0

∂fal

∂q̃

∂fal

∂θ 2
Ifη

A PalCal,η +
Ifη

A DalCal,η

Table 6.3: Derivatives of the ailerons contribution.

6.6 Horizontal tail

For the sake of simplicity, the horizontal tail surface is lumped at the symmetry plane
of the aircraft. Thus, only the apparent wind velocity and the inflow angle at the mid-
airfoil of the horizontal tail are to be considered. The inflow angle is the summation of
the apparent wind speed (Eq. (6.14)) and of the downwash of the main wing

γh ≈
W
U

− εd = γ∗h − εd, (6.47)

where εd is evaluated using the formulation by Phillips et al. (2002), which models
the downwash in the aft tail considering also the contribution of the main wing sweep,
yielding

εd ≈
κvκpκs
κb

CL,w
ARw

, (6.48)

where ARw is the main wing aspect ratio. For an elliptic wing, κv = 1, κb = π
4
, and

κp takes into account the aft tail position with respect to the main wing. Finally κs
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models the effect of the main wing sweep on the downwash. Based on the model just
introduced, the variation in the downwash angle for a change in the angle of attack of
the main wing can be computed as

εd,α =
∂εd
∂α

=
κvκpκs
κb

CLα,w
ARw

. (6.49)

The angle of attack αh of the horizontal stabilizer is

αh = γh − θbs + θh, (6.50)

where θh is the pitch of the horizontal stabilizer, measured as a rotation around e2,b.
The lift coefficient CL,h can be found as function of the angle of attack as

CL,h =
Clα,h

1 +
Clα,h

πARh

αh (6.51)

and the drag coefficient CD,h as

CD,h = Cd,h,0 + kd,hC
2
L,h +

C2
L,h

πARh

, (6.52)

where Cd,h,0 and kd,h describe the airfoils polars.
The non-dimensional force given by the horizontal tail can be written as

fh =
Ah
Au20

S−1

ñ
1

th×

ô CL,hγh − CD,h

0

−CL,h

 v2a, (6.53)

where Ah is the horizontal tail area. At the operating point y0, the aerodynamic force
non-dimensional force given by the horizontal tail is

fh,0 =
Ah
A

PhCh. (6.54)

where Ph = S−1
[
1; th×] and Ch = [CL,hγh − CD,h, 0,−CL,h]T .

The derivative of the force with respect to a generic variable ỹj is

∂fh
∂ỹj

=
∂

∂ỹj

ß
Ah
Au20

PhChv
2
a

™
=
Ah
A

Ph

Å
∂Ch

∂ỹj
+

Ch,0

u2
∂v2a
∂ỹj

ã
. (6.55)

The derivative of the aerodynamic coefficient matrix Ch with respect to a generic
variable ỹj is

∂Ch

∂ỹj
=

∂

∂ỹj

 CL,hγh − CD,h

0

−CL,h

 =

 CLα,hγh,0 − CDα,h

0

−CLα,h

 ∂α

∂ỹj
+

 CL,h

0

0

 ∂γh
∂ỹj

= Cθ
∂γh
∂ỹj

,

(6.56)
where ∂α

∂ỹj
= ∂γh

∂ỹj
.
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The derivative of the inflow angle γh for the horizontal tail features two contribu-
tions, according to the model in Eq. (6.47)

∂γh
∂ỹj

=
∂γ∗h
∂ỹj

− ∂εd
∂ỹj

=
∂γ∗h
∂ỹj

− εdα
∂γw,n
∂ỹj

=
∂γ∗h
∂ỹj

Ñ
1− εdα

∂γw,n

∂ỹj

∂γ∗h
∂ỹj

é
(6.57)

where ∂γw,n

∂ỹj
/
∂γ∗h
∂ỹj

is a function of the derivation variable. In particular, ∂γw,n

∂u
/
∂γ∗h
∂u

=
∂γw,n

∂w
/
∂γ∗h
∂w

= ∂γw,n

∂θ
/
∂γ∗h
∂θ

= 1 and εdα
∂γw,n

∂q
/
∂γ∗h
∂q

≪ 1 2. In Table 6.4, the derivatives with
respect to the pertinent states of the windplane are provided. Furthermore, note that
derivatives given in Table B.1 can be used also for the horizontal tail.
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∂fh
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∂fh

∂θ
Ah

A Ph (1− εdα)Cθ

Table 6.4: Derivatives of the horizontal tail.

6.7 Vertical tail

The vertical tail is meant to give lateral stability over the circular path. As the tether
attachment position is not located in the center of mass in general, the centrifugal forces
generate a moment around the e3,s axis. The vertical tail should then contribute to the
moment balance around the yaw axis, as shown in Figure 6.4.

Fv

e1,s

e2,s

e3,s

Fc

T sinΦ

CG

Figure 6.4: Main forces acting along the ys axis. The vertical tail aerodynamic force Fv is stabilizing
the effect of the centrifugal forces Fc.

2
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Similar to the horizontal tail, the vertical tail is modelled as a lumped lifting sur-
face, located on the aircraft symmetry plane (i.e. tvy = 0). We assume the vertical tail
quarter-chord axis to be parallel to the e3,b axis. The apparent wind velocity perpen-
dicular to the vertical tail lifting line generates aerodynamic forces and can be written
as

v2a =(cθbsU − sθbsW)2 + V2 ≈ c2θbsU
2 + V2 − cθbssθbsUW ≈ c2θbsU

2, (6.58)

where (U ,V ,W) the are given in Eq. (6.14).
The inflow angle on the vertical tail γv is defined as

γv =
V

cθbsU − sθbsW
=

V
cθbsU

(
1− tgθbs

W
U

) ≈ V
cθbsU

. (6.59)

The inflow angle on the vertical tail γv at the operating point is defined as

γv,0 =− xv
R0cθbs

, (6.60)

where xv is the vertical tail collocation point along e1,s.
The angle of attack αv of the vertical stabilizer is

αv = γv − θv, (6.61)

where θv is the pitch of the vertical stabilizer wing, measured as a rotation around e3,b.
The lift coefficient CL,v can be found as function of the angle of attack as

CL,v =
Clα,v

1 +
Clα,v

πARv

αv (6.62)

and the drag coefficient CD,v as

CD,v = Cd,v,0 + kd,vC
2
L,v +

C2
L,v

πARv

. (6.63)

where Cd,v,0 and kd,v describe the airfoils polars.
The force given by the vertical tail can be written in vector form as

f v =
Av
Au20

S−1

ñ
1

tv×

ô CL,vγv − CD,v

−CL,v
0

 v2a, (6.64)

where Av is the vertical tail area and CL,v and CD,v the aerodynamic coefficients of the
vertical tail.

At the operating point y0, the aerodynamic force non-dimensional force given by
the vertical tail is

f v,0 =
Av
A

PvCv,0c
2
θbs
, (6.65)

where Pv = S−1 [1; tv×], Cv,0 = [CL,vγv − CD,v,−CL,v, 0]T .
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Chapter 6. Aerodynamic forces

Correspondingly, the derivative of the force vector with respect to a generic variable
ỹj can be written as

∂f v
∂ỹj

≈ Av
A

Pv

Å
∂Cv

∂ỹj
+

Cv,0

u20

∂U2

∂ỹj

ã
c2θbs , (6.66)

and the derivative of the aerodynamic coefficient matrix ∂Cv

∂ỹj
can be written as follows

∂Cv

∂ỹj
=

 CL,v

0

0

 ∂γv
∂ỹj

+

 CLα,vγv,0 − CDα,v

−CLα,v
0

 ∂αv
∂ỹj

= Cψ
∂γv
∂ỹj

. (6.67)

The derivative with respect to the control input θv is

∂f v
∂θv

=
Av
A

Pv
∂Cv

∂αv

∂αv
∂θv

c2θbs = −Av
A

Pv

 CLα,vγv,0 − CDα,v

−CLα,v
0

 c2θbs , (6.68)

where ∂αv

∂θv
= −1.

In Table 6.5 the derivatives of γv and v2a with respect to U , V , W are reported, while
in Table 6.6 the contributions to the force and moment derivatives with respect to the
windplane state variables are provided for the vertical tail.

γv U2

U −γv,0

u0
2u0

V 1
cθbsu0

≈ 0

W 0 0

Table 6.5: Derivatives of γw,n and v2a with respect to U , V and W for the vertical tail.

∂fv

∂ũ
Av

A Pv (−γv,0Cψ + 2Cv) c
2
θbs

∂fv

∂ṽ
Av

A PvCψcθbs

∂fv

∂p̃ − tvz
b/2

∂fv

∂ṽ

∂fv

∂q̃
tvz
c/2

∂fv

∂ũ

∂fv

∂r̃
tvx
b/2

∂fv

∂ṽ

∂fv

∂ϕ − c/2
R0

∂fv

∂q̃

Table 6.6: Derivatives of the vertical tail.
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6.8. Tether

6.8 Tether

In this thesis, we treat the tether as a constraint on the radial position with respect to
the ground station. Since only the component of the apparent velocity perpendicular to
the tether direction generates drag, the apparent velocity is expressed in FTe, defined
in Sect. 5.3. As in Sect. 3.2, the tether drag is lumped with the windplane at the tether
attachment and the wind velocity is neglected. We use the same modeling approach
here

vTea = RTeSva ≈ −RTeRRRSv = −

 1 0 0

0 cosΦ sinΦ

0 − sinΦ cosΦ

 1 −ψ θ

ψ 1 −ϕ
−θ ϕ 1

 u

v

w


(6.69)

where RTeR = Rx(−Φ) and RRS = 1 + eu×.
For the crossflow principle, only the components of the apparent velocity perpen-

dicular to the tether are contributing to aerodynamic forces. The apparent velocity
contributing to aerodynamic force is

vTea,te ≈

 −u
cosΦ (−ψu− v) + sinΦ (θu− w)

0

 (6.70)

where the products of two small quantities are neglected.
The modulus of the apparent velocity is then

v2a,te = u2 + (cosΦ (−ψu− v) + sinΦ (θu− w))2 ≈ u2 (6.71)

which at the operating point is v2a,te,0 = u20.
The inflow angle γte is the ratio between the second and the first element of Eq.

(6.70)

γte =
cosΦ (ψu+ v) + sinΦ (w − θu)

u
(6.72)

The equivalent tether drag force in FS is

f te = −CD,teRSTe

 1

γte

0

 v2a,te
u20

= −CD,te(1− eu×)RRTe

 1

γte

0

 v2a,te
u20

, (6.73)

where CD,te is defined in Eq. (3.6)
At the operating point y0, the aerodynamic force due to the tether acting on the

windplane is
f te,0 = −CD,tee1, (6.74)

The derivative of the equivalent tether drag with respect to a generic variable ỹj is

∂f te
∂ỹj

= −CD,te

Ç
1

u20

∂v2a,te
∂ỹj

− ∂eu×

∂ỹj

å
e1 − CD,te

 0

cosΦ0

sinΦ0

 ∂γte
∂ỹj

(6.75)
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Chapter 6. Aerodynamic forces

where Φ0 is the opening angle at the operating point.
The only derivative of the apparent velocity squared different from zero is the deriva-

tive with respect to ũ ( 1
u20

∂v2a,te
∂ũ

= 2). In Table 6.7, the derivatives of the inflow angle γte
with respect to the state variables is given. The derivative of the force with respect to ũ
is

∂f te
∂ũ

= −2CD,tee1. (6.76)

γte
∂eu×

∂ỹj
e1

ũ 0 0

ṽ cosΦ0 0

w̃ sinΦ0 0
θ − sinΦ0 e3

ψ cosΦ0 −e2

Table 6.7: Derivatives of γw,n and v2a with respect to U , V and W for the vertical tail.

The other derivatives can be evaluated with the results in Table 6.7. The derivative
of the force with respect to ṽ is

∂f te
∂ṽ

= −CD,te cosΦ0

 0

cosΦ0

sinΦ0

 . (6.77)

The derivative of the force with respect to w̃ is

∂f te
∂w̃

= −CD,te sinΦ0

 0

cosΦ0

sinΦ0

 . (6.78)

The derivative of the force with respect to the pitch angle θ is

∂f te
∂θ

= CD,te

Ö
e3 + sinΦ0

 0

cosΦ0

sinΦ0


è

. (6.79)

Finally, the derivative of the force with respect to the yaw angle ψ is

∂f te
∂ψ

= −CD,te

Ö
e2 + cosΦ0

 0

cosΦ0

sinΦ0


è

. (6.80)

Note that this last derivative is the only dependence of the aerodynamic forces fa with
respect to the yaw angle ψ. The aerodynamic of the windplanes, similarly to airplanes,
does not depend of the yaw, but the aerodynamics of the tether does.
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6.9. Onboard wind turbines

6.9 Onboard wind turbines

The onboard turbines generate aerodynamic forces, necessary for the power genera-
tion. Depending on where they are located and how they are operated, they generate
moments. For a easier understanding of the results, we assume they are concentrated at
the tether attachment and thus do not generate any moment.

The rotor axes are assumed to be aligned with the e1,b direction. The apparent
velocity in the body coordinate system FB along e1,b is

va,t = va · e1,b = −RBS

U
V
W

 ·

10
0

 = −(U cos θbs +W sin θbs) ≈ −u0 cos θbs

(6.81)
The aerodynamic force generated by the onboard turbines is

f t = − At
Au20

RS
SB

 CT,t

0

0

 v2a,t. (6.82)

At the operating point y0, the turbine force is

f t,0 = −At
A
CT,t cos θ

2
bs

 cos θbs

0

sin θbs

 . (6.83)

Neglecting the dependence of the thrust coefficient with respect to any state variable,
the only derivative different from zero is

∂f t
∂ũ

= −2
At
A
CT,t cos θ

2
bs

 cos θbs

0

sin θbs

 . (6.84)

The dimensional instantaneous power generated by the onboard turbines is

P =
1

2
ρAtCP,tv

3
a,t ≈

1

2
ρAtCP,tu

3
0 cos θ

3
bs. (6.85)

6.10 Discussion

In this section, the aerodynamic forces acting on the windplane are linearized about a
nonlinear operating point. The non-dimensional aerodynamic force can then be written
as

fa = fw,0+fal,0+fh,0+f v,0+f te,0+

Å
∂fw
∂ỹ

+
∂fal
∂ỹ

+
∂fh
∂ỹ

+
∂f v
∂ỹ

+
∂f te
∂ỹ

ã
∆ỹ,

(6.86)
where the operating point state vector y0 is defined in Eq. (6.8) and the incremental
state vector ∆ỹ in Eq. (6.9). Note that the contribution from the onboard wind turbines
is not considered among the aerodynamic force.
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Chapter 6. Aerodynamic forces

In the derivation of this aerodynamic model, an elliptic planform for the main wing,
for the horizontal and vertical stabilizers is assumed. The main wing dihedral and
sweep angles are considered small. The wake curvature is neglected and the induction
due to the far wake is decreasing the incoming wind speed. The aerodynamic deriva-
tives are taken analytically by an extensive use of strip theory.

This aerodynamic model has been validated with a vortex lattice formulation (Tre-
visi et al. (2021a)).
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CHAPTER7
Windplane optimal trajectories: T-GliDe

In Part I, the windplane is modeled as a point mass and a conceptual design is performed
based on this idealization. We now want to study the design with an higher level of
physical representation. The nonlinear rigid body equations of motion derived in Chap.
5 and the aerodynamic model derived in Chap. 6 are then used to formulate optimal
problems.

In this chapter, the design framework T-GliDe (Tethered Gliding systems Design)
is introduced and it is used to study optimal trajectories. This chapter is organized as
follows:

The harmonic balance method, which is used to solve the equations of motion, is
introduced in Sec 7.1. The fundamental frequency and the power balance equation are
derived in Sect. 7.2 and 7.3. A yaw stability augmentation system, needed to enhance
flight stability, is proposed in Sect. 7.4. The optimization problem is formulated in
Sect. 7.5. The optimal trajectories of the light windplane, designed in Chap. 4, are
analyzed in Sect. 7.6. The main results are discussed in Sect. 7.7.

7.1 Harmonic balance method

Since the problem of optimal trajectories for windplanes has a periodic nature, its flight
dynamic model is expressed in the frequency domain. The harmonic balance method-
ology is used to transform the differential equations of motion into a set of nonlinear
algebraic equations (Dimitriadis (2017)). In this section, the formulation of the har-
monic balance method used in this thesis is presented.

The equations of motion (Eq. 5.5) can be written as a set of nonlinear differential
equations with respect to the state variables y and the control variables u

h(y, ẏ,u) = 0. (7.1)
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Chapter 7. Windplane optimal trajectories: T-GliDe

The state vector y describing the windplane dynamic is

y =
[
u, v, w, p, q, r, ϕ, θrb, ψ, Ψ̇, Φ

]T
, (7.2)

and the control vector u is

u =
[
CL,al, θh, θv, at

]T
, (7.3)

By assuming that the equations of motion (Eq. 7.1) accepts periodic solutions, every
variable of the state vector y is expanded as a Fourier series of order Ny

yj(t) ≈
Yj,0
2

+

Ny∑
k=1

Yj,k,s sin (kωt) + Yj,k,c cos (kωt) , (7.4)

with ω =
2π

T
being the fundamental frequency of the motion and T the period. Note

that we listed among the state vector y the time derivative of the azimuth position Ψ̇,
which is periodic, and not the azimuth position itself Ψ, which is not periodic. The
Fourier coefficients can be grouped as

Yj =
[
Yj,0, Yj,1,s, Yj,2,s, ...Yj,1,c, Yj,2,c, ...

]T
, (7.5)

The first and second time derivatives of the state vector can be found analytically

ẏj(t) ≈
Nx∑
k=1

kω (Yj,k,s cos (kωt)− Yj,k,c sin (kωt)) , (7.6)

and

ÿj(t) ≈ −
Nx∑
k=1

(kω)2 (Yj,k,s sin (kωt) + Yj,k,c cos (kωt)) . (7.7)

Similarly, the control inputs, assumed to be periodic, can be modeled as a Fourier
series of order Nu

uj(t) =
Uj,0
2

+
Nu∑
k=1

Uj,k,s sin (kωt) + Uj,k,c cos (kωt) , (7.8)

where Nu < Ny because the equations of motion need to be solved at frequencies
higher than the control inputs order. The Fourier coefficients can be grouped as

Uj =
[
Uj,0, Uj,1,s, Uj,2,s, ...Uj,1,c, Uj,2,c, ...

]T
, (7.9)

Each equation of the equations of motion (Eq. 7.1) can also be expanded as a Fourier
series of order Ny

hj(Y,U, ω, t) ≈
Hj,0

2
+

Ny∑
k=1

Hj,k,s sin (kωt) +Hj,k,c cos (kωt) = 0, (7.10)

where the Fourier coefficients of the nonlinear equations of motion are grouped as

Hj =
[
Hj,0, Hj,1,s, Hj,2,s, ...Hj,1,c, Hj,2,c, ...

]T
. (7.11)
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7.2. Fundamental frequency estimation

The Fourier coefficients of the equations of motion are found numerically by applying
the Fourier coefficient definition to the time series, which should have a minimum size
of 2Ny + 1. The result is (2Ny + 1) nonlinear algebraic equations per each state as
a consequence of the orthogonality properties of the selected basis of trigonometric
functions

hocp = H(Y,U, ω)=
[
H0, H1,s, H2,s, ...H1,c, H2,c, ...

]T
= 0, (7.12)

which can be understood as the residuals of the equations of motion expressed in the
frequency domain. For given periodic control inputs U, the periodic solution can be
found by looking for the Fourier coefficients Y of the dynamics which solve Eq. 7.12.

7.2 Fundamental frequency estimation

The azimuth Ψ(t) can be found by integrating Ψ̇(t) between the initial time and t

Ψ(t) =

∫ t

0

Ψ̇dt. (7.13)

For the solution to be periodic, Ψ after one period needs to be −2π

Ψ(T ) =

∫ T0+T

T0
Ψ̇dt =

∫ T

0

Ψ̇dt = −2π. (7.14)

The mean value of Ψ̇(t) over a period is

ˆ̇Ψ(T ) =
1

T

∫ T0+T

T0
Ψ̇dt =

1

T

∫ T

0

Ψ̇dt = −2π

T
. (7.15)

Defining the fundamental frequency ω = 2π
T , we find that

ω = − ˆ̇Ψ. (7.16)

7.3 Power balance

We can get to a power balance equation by multiplying the dimensional equations of
motion (Eq. 5.5) with the plane velocity(

mv̇+ v×mv
)
· v = F a · v+ F t · v+ F g · v, (7.17)

Note that the tether force does not contribute to the power balance because no displace-
ment is allowed in the tether direction (i.e. the tether is a constraint).

We write the power balance equation in non-dimensional form considering the ref-
erence power P = 1

2
ρπb2v3w, so that the nondimensional aerodynamic power is

1

P
F a · v =

F
P
Sfa · v =

λ2

πA
Sfa ·

v

vw
. (7.18)

where in the unit force F, used to compute the aerodynamic force, we take the plane
velocity u

F
P
=

1
2
ρAu2

1
2
ρπb2v3w

=
λ2

πA

1

vw
. (7.19)
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We can now rewrite Eq. (7.17) in nondimensional form as

1

P
(
mv̇+ v×mv

)
· v︸ ︷︷ ︸

∂ek
∂t

=
λ2

πA
Sfa ·

v

vw︸ ︷︷ ︸
Ca

+
λ2

πA
Sf t ·

v

vw︸ ︷︷ ︸
CP

CT,t
CP,t

+
F g · v
P︸ ︷︷ ︸
Cg

,
(7.20)

where the left-hand-side is the change in kinetic energy and on the right-hand-side the
first term is the aerodynamic power, the second is the thrust power of the onboard
turbines, the third is the gravitational power.

The aerodynamic power Ca can be written as in Sec. 4.4

Ca = CT (1− a)− Cτ , (7.21)

where CT is the thrust coefficient, defined as in Eq. (2.20), and Cτ is power dissipated
in parasite drag. The thrust power of the onboard turbines can be derived from Eq.
(6.82) and the gravitational power from Eq. (5.11).

7.4 Yaw stability augmentation system

The aerodynamic model depends on the yaw angle exclusively because of the tether
drag through Eq. (6.80). Thus, the open-loop aerodynamic yaw damping relies only on
the tether drag. A closed-loop control is needed to increase directional stability. The
benefits of the simple yaw stability augmentation system presented in this section are
discussed in the next chapter.

The control force due to the pitching of the vertical stabilizer θv is

f θv =
∂f v
∂θv

θv (7.22)

where ∂fv

∂θv
is found in Eq. (6.68).

The pitch angle of the vertical stabilizer can be controlled proportionally to the time
derivative of the yaw angle θv = κdψ̇, such that

f θv = κd
∂f v
∂θv

ψ̇. (7.23)

In this chapter, the derivative gain is considered to be κd = 0.075 s.

7.5 T-GliDe

In this section, the multidisciplinary design, analysis and optimization framework T-
GliDe (Tethered Gliding systems Design) is introduced and the optimal design prob-
lem formulated. T-GliDe has a monolithic structure, characterized by an "all-at-once"
formulation. This enable the use of algorithmic differentiation for the gradient evalua-
tion. The problem is solved with gradient descendant optimization algorithms, which
are typically the best methods for continuous physics-based design problems.

In Fig. 7.1, the XDSM diagram (Lambe and Martins (2012)) of T-GliDe is pre-
sented. The XDSM diagram describes the optimal design problem, which can be easily
converted to an optimal control problem by moving (AR, µ, dte) from design variables
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to independent variables. A reminder of the physical meaning of the design variables is
given in Table 7.1, the constraints in Table 7.2 and the independent variables in Table
7.3.

UQ
b,vw, ξt, lte, σt,
Cd0, kd, C⊥

b,vw, ξt, lte, σt,
Cd0, kd, C⊥

AR∗, µ∗, d∗te,
a∗
f ,Y

∗,U∗ Optimizer AR,µ, dte af ,Y ,U

Build
Geometry &
Inertia in FB

hocp,haf ,
cβ , cPr , cσ

OCP
∀vw ∈ vw

Figure 7.1: XDSM diagram of T-GliDe.

The geometrical design variablesA, µ, dte are first used to build the plane geometry
and compute the inertia tensor in FB. The inertia tensor is estimated with the procedure
in Appendix C. The optimal control problems are then solved at each wind speed. The
optimizer makes use of the optimal control problems’ outputs to improve the design,
while setting the residual of the equations of motion to zero and respecting the other
constraints. This problem formulation is called "all-at-once" (AAO), as it makes the
main optimizer to solve at the same time the optimization problem and the individual
disciplines (Martins and Lambe (2013)). As this problem formulation is suitable to
be used with algorithmic differentiation, Casadi (Andersson et al. (2019)) is used to
compute analytically the derivatives of the objective function and of the constraints
with respect to the design variables. The derivative expressions are then provided to
the optimizer. This technique enable a drastic reduction in computational time with
respect to a problem formulation employing a finite-difference method for the gradient
evaluation. In this thesis, T-GliDe is not used to solve optimal design problems, but to
solve optimal control problems. The optimal design problem will be approached with
T-GliDe in the future.

To study how uncertainties propagate throughout the design process, the uncertainty
quantification toolbox UQLab (Marelli and Sudret (2014)) is linked to the optimiza-
tion problem. In this thesis, no uncertainty quantification study is carried out. These
investigations will be performed in the future.

7.6 Optimal trajectories

In this section, we analyze two optimal trajectories of the light windplane in Table 4.3.
The first OCP is an open-loop aerodynamic steady problem, with the gravity set to

zero g = 0. We refer to this OCP as T-GliDea, where a stands for aerodynamic. The
control inputs (CL,al, θh, θv, at) are trimmed to constant values by the optimizer.

The second OCP is a closed-loop dynamic problem, where the gravity is included.
We refer to this OCP as T-GliDeg, where g stands for gravity. In Chap. 4, we found
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Table 7.1: Dimension and description of the design variables for the optimal design problems.

dimensions Description
AR 1 Wing aspect ratio
µ 1 Non-dimensional mass (µ = m

ρb3 )
dte 1 Non-dimensional tether diameter (dte = Dte

b/2 )
af Nvw Far wake induction
Y Nvw · 11 · (2Ny + 1) Fourier coefficients of the state variables y
U Nvw · 4 · (2Nu + 1) Fourier coefficients of the control variables u

Table 7.2: Description of the constraints for the optimal design problems. h are equality constraints
and c are inequality constraints.

dimensions Description
hocp Nvw · 11 · (2Ny + 1) Residuals of the equations of motion (Eq. (7.12))
haf Nvw Residual of the far wake equation
cβ Nvw Positive mean elevation angle β̂ > 0
cPr

Nvw ·Nt Rated power of onboard generators
cσ Nvw Maximum mean tether stress

that the windplane stays airborne by compensating the radial component of gravity by
means of the roll angle (Figures 4.1 and 4.3b). The roll is mainly controlled by the
differential lift coefficient provided by the ailerons CL,al. Therefore, the control input
CL,al is modeled up to the first harmonic as

CL,al = ĈL,al + YCL,al,1,s sin(ωt) + YCL,al,1,c cos(ωt). (7.24)

The other control inputs (θh, θv, at) are still trimmed to constant values by the opti-
mizer.

The equations of motion are solved up to the tenth harmonic Ny = 10. The algo-
rithm SQP available in MATLAB is used to solve the optimization problems.

The OCPs are solved on an Intel Core i7-9700 3.0 GHz, 16GB RAM, system. The
computation times of the presented optimal control problems require a few minutes.
The optimization problem T-GliDea converges in 61 iterations and 262 seconds, starting
from a general and not feasible circular trajectory. The OCP T-GliDeg converges in 20
iterations and 65 seconds, starting from the solution of T-GliDea.

We consider the same independent variables as for the point mass case (Table 4.2),
which are reported in Table 7.3 with some additional independent variables defining
the problem in T-GliDe. A wind speed of vw = 5 m/s is considered in this chapter, to
study the windplane at a low wind speed. The inequality constraint related to the tether
stress cσ and the rated power cPr are not considered for the optimal control problem.
The optimal design problem is modified to an optimal control problem by treating the
variables (AR, µ, dte) as independent variables.

In Table 7.4, the main results from the point mass model are reported, together with
the corresponding results from the aerodynamic OCP T-GliDea and the dynamic OCP
T-GliDeg. To compare results between the point mass and the rigid body formulations,
two point mass OCPs are solved. The first is a steady aerodynamic OCP, where gravity
is set to zero (PMa). In the second OCP PMg, the gravity is included. The onboard
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Table 7.3: Values and description of the independent variables for the optimal control problem.

units Description
b 10 m Wing span
AR 6 - Aspect ratio of main wing and stabilizers
vw 5 m/s Wind velocity
ξt 0.15 - Non dimensional onboard wind turbines radius
Cd,0 0.004 - Airfoil polar parameters (Eq. 3.2) of main wing and stabilizers
kd 0.008 -
Cd,te 0.8 - Tether section drag coefficient
lte 20 - Tether length ratio (Lte/(b/2))
dte 1.6 mm/m Tether diameter ratio (Dte/(b/2))
µ 0.1 - Nondimensional mass (m/(ρb3)), leading to a mass m = 122.5 kg
Γ -20 ◦ Main wing dihedral in FB
Λ 0 ◦ Main wing sweep in FB
bh/b 0.3 - Ratio between horizontal stabilizer span and wingspan
bv/b 0.2 - Ratio between vertical stabilizer span and wingspan
tw [0.1, 0, 0] - Non-dimensional main wing quarter-chord position (normalized with b/2)
ts [−1, 0, 0] - Non-dimensional vertical and horizontal stabilizer position (normalized with b/2)
Ixx 277 kg m2 Inertia with respect to e1,b axis
Iyy 133 kg m2 Inertia with respect to e2,b axis
Izz 410 kg m2 Inertia with respect to e3,b axis
κd 0.075 s Derivative gain for the yaw SAS (θv = κdψ̇)

turbines axial induction is set constant, and two harmonics are used to model the lift
coefficient as a function of the azimuth position.

Table 7.4: Optimal trajectory results obtained with the point-mass model (OD PML of Table 4.3) and
with T-GliDe at vw = 5 m/s. The pedix a and g stand for aerodynamic and gravity.

PMa ĈP = 1.13 ĈT = 3.2 ĈL = 0.70 κ0 = 0.13 af = 0.057

g = 0 m/s2 at = 0.03 CT,t = 0.13 λ̂ = 9.29 P̂ = 27.3 kW T = 5.4 s
PMg ĈP = 1.11 ĈT = 3.2 ĈL = 0.72 κ0 = 0.13 af = 0.058

at = 0.03 CT,t = 0.12 λ̂ = 9.24 P̂ = 26.7 kW T = 5.35 s
T-GliDea ĈP = 1.052 ĈT = 3.01 ĈL = 0.72 κ0 = 0.135 af = 0.058

g = 0 m/s2 at = 0.040 CT,t = 0.15 λ̂ = 8.58 P̂ = 25.3 kW T = 5.4 s
T-GliDeg ĈP = 1.035 ĈT = 3.32 ĈL = 0.83 κ0 = 0.16 af = 0.094

at = 0.043 CT,t = 0.16 λ̂ = 8.11 P̂ = 24.9 kW T = 4.7 s

The mean quantities predicted by T-GliDe and by the point mass model PM are
similar. The differences, analyzed in this section, are attributed to the presence of the
stabilizers and to the different hypotheses of the models.

The wing speed ratio as a function of the non-dimensional time is shown in Fig.
7.2a and the power coefficient CP in Fig. 7.2b. The trends predicted by the two models
are similar, with the plane increasing the velocity and generating more electric power
when moving downwards.

In Fig. 7.3a, the differential lift coefficient provided by the ailerons CL,al and the
roll angle ϕ are shown. The trend of the roll angle is similar to what found with the
point mass model (Fig. 4.3b), with a different mean value. The cyclic control of the
ailerons makes the windplane to stay airborne and respect the minimum elevation angle
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(a) Wing speed ratio λ as function of non-dimensional
time t/T .

(b) Power coefficient CP as function of non-dimensional
time t/T .

Figure 7.2

constraint cβ (Table 7.2). A negative roll angle rotates the lift inwards, to decrease the
trajectories radius and thus increase the turning ratio κ0. This is to reduce the potential
energy fluctuating over the loop.

In Fig. 7.3b, the lift coefficient provided by the horizontal stabilizer CL,h (left axis)
and pitch angle θrb (right axis) are shown. The horizontal stabilizer pitch angle θh is
constant, so the change in lift coefficient is only driven by the change in inflow angle.
The change of inflow angle at the horizontal stabilizer is mainly due to the change in
wing speed ratio.

(a) Differential lift coefficient provided by the ailerons
CL,al (left axis) and roll angle ϕ (right axis). OCP
T-GliDea with continuous lines and OCP T-GliDeg
with dotted lines.

(b) Lift coefficient provided by the horizontal stabilizer
CL,h (left axis) and pitch angle θ (right axis). OCP
T-GliDea with continuous lines and OCP T-GliDeg
with dotted lines.

Figure 7.3

In Fig. 7.4a, the lift coefficient provided by the vertical stabilizer CL,v (left axis) and
yaw angle ψ (right axis) are shown. The vertical stabilizer pitch angle θv is constant, so
the change in lift coefficient is only driven by the change in inflow angle at the vertical
tail. The vertical stabilizer lift coefficient has a negative mean value. This is to balance
the positive yaw moment induced by the centrifugal force, as shown in Fig. 6.4.

In Fig. 7.4b, the main wing lift coefficients found with the point mass model and
with the rigid body model are shown. In the point mass model, the lift coefficient
is controlled cyclically, while in T-GliDe it is not. This explains the differences in
amplitude and phase. The dynamic problem T-GliDeg finds an optimal lift coefficient
higher than the steady case T-GliDea. This is also seen with the point mass model in
Fig. 4.10b. In this chapter, the control inputs, apart from the ailerons, are trimmed
to constant values and the vertical stabilizer is controlled in closed-loop. High power
coefficients can be achieved with just a cyclic control of the ailerons and a yaw stability
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augmentation system.

(a) Lift coefficient provided by the vertical stabilizer
CL,v (left axis) and yaw angle ψ (right axis). OCP
T-GliDea with continuous lines and OCP T-GliDeg
with dotted lines.

(b) Main wing lift coefficient CL as function of non-
dimensional time t/T .

Figure 7.4

Fig. 7.5a shows the tether stress. The point mass under-predicts the fluctuations of
the forces acting on the tether. This is because of the assumption of lateral equilibrium
and circular trajectories in the point mass model.

The axial induction a for both models is shown in Fig. 7.5b. In the point mass
model, the optimal induction a is found to be constant (Eq. 4.46). With the rigid body
model, considering constant control inputs, the optimal induction a fluctuates. The
power coefficient decreases of a small quantity when including gravity (i.e. passing
from the aerodynamic to the dynamic OCPs). Therefore, the sensitivity of the power
coefficient with respect to the longitudinal cyclic controls (at, θh) and to the vertical
stabilizer (θv) is found to be small.

(a) Tether stress σ as function of non-dimensional time
t/T .

(b) Axial induction a as a function of the non-
dimensional time t/T .

Figure 7.5

In Fig. 7.6a, the power balances of the two models are shown for the aerodynamic
case. As in these OCPs the gravity is set to zero, the problem is just an aerodynamic
problem, where Ca = − CP

1−at . The wind power CT (1−a) is also shown. The difference
between the wind power and the aerodynamic power is the power dissipated in parasite
drag Cτ = CT (1− a)− Ca (Eq. 7.21).

In Fig. 7.6b, the power balances for the cases including gravity is shown. The wind-
plane accelerates due to gravity gravitational power Cg, changing its kinetic energy ek.
Since the horizontal stabilizer is trimmed, the aerodynamic power Ca is not controlled
cyclically. Therefore, it fluctuates. The onboard turbines thrust powers CP

1−at predicted
by the two models have however a similar trend.

89
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(a) Non-dimensional power balance as function of non-
dimensional time t/T for the steady aerodynamic
case. The continuous line refers to the point mass
model PMa, while the dotted line to the rigid body
model T-GliDea.

(b) Non-dimensional power balance as function of non-
dimensional time t/T for the dynamic case including
gravity. The continuous line refers to the point mass
model PMg , while the dotted line to the rigid body
model T-GliDeg .

Figure 7.6

In Fig. 7.7a, the opening angle predicted by the two models is shown. A constant
opening angle Φ is assumed in the point mass model. In the problem T-GliDeg, the
optimal trajectory has an optimal lower opening angle (hence higher κ0) to reduce
the trajectory radius and thus the potential energy exchanged. In Fig. 7.7b, the time
derivative of the azimuth angle Ψ̇ and the yaw rate r are shown. They have a similar
trend and magnitude.

(a) Opening angle Φ as function of non-dimensional time
t/T .

(b) Time derivative of the azimuth angle Ψ̇ and the yaw
rate r as function of non-dimensional time t/T . The
dotted lines refer to the aerodynamic case T-GliDea,
while the continuous lines to the dynamic case T-
GliDeg .

Figure 7.7

Finally, the linear velocities v andw are shown in Fig. 7.8a and the angular velocities
p and q are shown in Fig. 7.8b. The fluctuations are small compared to the longitudinal
velocity u = λvw and to the yaw rate r. Recall that the aerodynamic model is linearized
with respect to (v, w, p, q, ϕ, θ, ψ), which seems reasonable.
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(a) Linear velocities v and w as function of non-
dimensional time t/T . The continuous line refers to
the aerodynamic case T-GliDea, while the dotted line
to the dynamic case T-GliDeg .

(b) Angular velocities p and q as function of non-
dimensional time t/T . The continuous line refers to
the aerodynamic case T-GliDea, while the dotted line
to the dynamic case T-GliDeg .

Figure 7.8

7.7 Discussion

In this chapter, the optimization problem implemented in T-GliDe (Tethered Gliding
system Design) is formulated and optimal trajectories are analyzed.

T-GliDe is a multidisciplinary design, analysis and optimization framework for wind-
planes. The current version of T-GliDe involves a structural model (Appendix C), a
aerodynamic model (Chap. 3 and 6), an optimal control formulation based on a har-
monic balance method, and an economic model (Chap. 9). The gradient-descendant
optimizer solves all disciplines at the same time ("all-at-once" formulation), enabling
the use of automatic differentiation. An uncertainty quantification toolbox is also linked
to the optimization framework to study how uncertainties propagate throughout the de-
sign process.

In this chapter, T-GliDe is used to solve two optimal control problems OCPs at a
low wind speed of vw = 5 m/s. The first OCP is an open-loop aerodynamic steady
problem, where the gravity is set to zero g = 0. The second OCP is a closed-loop
dynamic problem, which includes gravity. The onboard turbines axial induction at
and the horizontal and vertical stabilizers pitch angles (θh, θv) are trimmed to constant
values to study a baseline trajectory. The ailerons are actuated cyclically to control the
roll angle. The cyclic control of the roll angle redirects the lift to compensate gravity
and thus to stay airborne. The vertical stabilizer is controlled in closed loop to augment
stability. This is discussed in the next chapter. A small reduction in power coefficient
between the steady aerodynamic case and the dynamic case is found. Therefore, the
sensitivity of the power coefficient with respect to the control inputs (at, θh, θv) is found
to be small. A rigorous validation of these results is still to be done.

The assumptions of the models employed in T-GliDe ultimately define the appli-
cability of the results. The equations of motion describe the rigid body motion, thus
neglecting aero-elastic effects. The linearized aerodynamic model, using the assump-
tions listed in Sect. 6.10, is challenged when the optimal trajectory deviates signifi-
cantly from a circular trajectory, which does not seem the case for the current example.
Since the sensitivity of the power coefficient with respect to the longitudinal controls is
small, to maintain a constant induction over the trajectory, as found with the point mass
model, is found to be not necessary to maintain high lift coefficients. Similar results
are expected for Ground-Gen AWESs as the flight dynamics is similar.
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7.8 State of the art and open questions

The state of the art of the optimal control problems and of the optimal design problems
is given in Sect. 4.11.

A preliminary version T-GliDe was introduced by Trevisi et al. (2022b), where a
global sensitivity analysis of a set candidate design variables on the eigendynamics
was performed. The results presented in this chapter are produced for this thesis and
will be published in the future. They need to be validated. Many research questions on
optimal designs will be addressed with T-GliDe in the future.
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CHAPTER8
Flight stability

An asymptotically stable windplane returns back to the periodic trajectory after a per-
turbation from an external disturbance. The main disturbance is expected to be the wind
turbulence. A good windplane design should be open-loop asymptotically stable, or at
least open-loop simply stable. This relieve the closed-loop control design from the task
of stabilizing the system. Closed-loop control can be anyway used to increase stability.

The stability of a nonlinear periodic dynamic problem should be evaluated with Flo-
quet theory or similar methods. If gravity is neglected, the trimmed solution is steady
and its aerodynamic quantities are similar to the mean quantities obtained including
gravity. The flight dynamics about the trimmed steady problem is then considered rep-
resentative of the flight dynamics over the loop. In this chapter, the flight dynamics is
modeled as a linear time invariant system about the steady solution and the eigendy-
namics is studied.

8.1 Representative point

The generic state vector defining the windplane dynamics is

y =
[
u, v, w︸ ︷︷ ︸

v

, p, q, r︸ ︷︷ ︸
ω

, ϕ, θrb, ψ︸ ︷︷ ︸
eu

, Ψ, Φ, Lte︸ ︷︷ ︸
x

]T
, (8.1)

which we want to write as

y = y0 +∆y. (8.2)

where y0 describes the representative point and ∆y the perturbation.
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The representative state is

y0 =
[
u0, 0, 0︸ ︷︷ ︸

v0

, 0, 0, r0︸ ︷︷ ︸
ω0︸ ︷︷ ︸

v0

, 0, θrb,0, 0, 0, Φ0, Lte
]T
, (8.3)

where we consider the non-null states of the representative point as the values of the
aerodynamic optimal control problem T-GliDea.

Taking θbs = −θrb,0, the incremental state ∆y is

∆y =
[
∆u, v, w︸ ︷︷ ︸

∆v

, p, q, ∆r︸ ︷︷ ︸
∆ω︸ ︷︷ ︸

∆v

, ϕ, θ, ψ︸ ︷︷ ︸
eu

, Ψ, ∆Φ, ∆Lte
]T
, (8.4)

where θ = θrb − θrb,0 = θrb + θbs = θrs.
The time derivative of the state vector is

ẏ =
[
u̇, v̇, ẇ︸ ︷︷ ︸

v̇

, ṗ, q̇, ṙ︸ ︷︷ ︸
ω̇︸ ︷︷ ︸

v̇

, ϕ̇, θ̇, ψ̇︸ ︷︷ ︸
˙eu

, Ψ̇, Φ̇, L̇te
]T
, (8.5)

which we write as
ẏ = ẏ0 +∆ẏ. (8.6)

The time derivative of the state at the representative point ẏ0 is

ẏ0 =
[
0, 0, 0, 0, 0, 0, 0, 0, 0, Ψ̇0, 0, 0

]T
, (8.7)

and the incremental state ∆ẏ is

∆ẏ =
[
u̇, v̇, ẇ, ṗ, q̇, ṙ, ϕ̇, θ̇, ψ̇, ∆Ψ̇, Φ̇, L̇te

]T
, (8.8)

We now want to linearize the equations of motion and the external forces about the
representative point y0.

8.2 Linearized equations of motion

The equations of motion are linearized about the reference condition as

S−1

F
mv̇+

S−1

F
v×0 mv0 +

S−1

F
∆v×mv0 +

S−1

F
v×0 m∆v = f 0 +∆f , (8.9)

where ∆v = v − v0, m and v× are given in Eq. (5.6), the diagonal matrix is given in
Eq. (6.6) and

F =
1

2
ρAu20. (8.10)

The third term in the latter form can be expressed as a function of the incremental
velocity ∆v as

∆v×mv0 =

ñ
∆ω× 0

∆v× ∆ω×

ôÇ
c0

d0

å
= −
ñ

0 c×0
c×0 d×

0

ôÇ
∆v

∆ω

å
= −cd×

0 ∆v.

(8.11)
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Upon substitution, the linearized part of the equation of motion is

S−1

F
∆v×mv0 +

S−1

F
v×0 m∆v = −S−1

F

(
cd×

0 − v×0 m
)
∆v = −Ac∆v. (8.12)

The linearized equation of motion (Eq. 8.9) can be then written as

S−1

F
mv̇ =

Å
f 0 −

S−1

F
v×0 mv0

ã
+Ac∆v+∆f , (8.13)

8.3 Kinematic constraints: linear velocity

The kinematic constraints of the linear velocity are given in Sect. 5.3. We now need to
linearize them.

We recall that RTeR = Rx(−Φ), such that its perturbation is

∆RTeR =
∂RTeR

∂Φ

∣∣∣∣
Φ=Φ0

∆Φ =

 0 0 0

0 sinΦ0 cosΦ0

0 − cosΦ0 sinΦ0

∆Φ (8.14)

We write the linear version of the left-hand-side of Eq. 5.8 vTeGS = RTeRRRSv as

∆vTeGS = ∆RTeRv0 +RTeR(Φ0)∆RRSv0 +RTeR(Φ0)∆v

= −Rx(−Φ0)v
×
0 eu+Rx(−Φ0)∆v

(8.15)

where ∆RR
RS = eu× and ∆RTeRv0 = 0.

The linear version of the right-hand-side of Eq. 5.8 is

∆vTeGS =

 −Lte∆Ψ̇ sinΦ0 − LteΨ̇0 cosΦ0∆Φ

Lte∆Φ̇

∆L̇te



=

 0 −LteΨ̇0 cosΦ0 0

0 0 0

0 0 0


 0

∆Φ

0

+

 −Lte sinΦ0 0 0

0 Lte 0

0 0 1


 Ψ̇

∆Φ̇

L̇te


(8.16)

8.4 Kinematic constraints: angular velocity

The kinematic constraints of the linear velocity are given in Sect. 5.4. Equation (5.10)
can be linearized as

∆ω = (−θe×
2 − ϕe×

1 )

 0

0

Ψ̇0

+

 0

0

∆Ψ̇ + ∆ψ̇

+

 ∆ϕ̇

0

0

+

 0

∆θ̇

0

 , (8.17)

which can be re-organized as 0

0

∆Ψ̇

+

 ϕ̇

θ̇

ψ̇

 =

 p

q

∆r

−

 0

0

Ψ̇0


×  ϕ

θ

ψ

 . (8.18)

95



Chapter 8. Flight stability

8.5 Linearized dynamics: explicit formulation

Based on the linearization just introduced, the linearized dynamics of the system can
be written as

M∆ẏ = Aeq∆y +
∂fa
∂y

∆y +
∂fa
∂ẏ

∆ẏ. (8.19)

In this expression, the mass matrix M writes

M =



S−1

F m 06×3 06×3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

03×3 03×3 03×3

−Lte sinΦ0 0 0

0 Lte 0

0 0 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

03×3 03×3 13×3

0 0 0

0 0 0

1 0 0


, (8.20)

with 13×3 is a 3 by 3 identity matrix. The coefficient matrix Aeq can be written as

Aeq =



Ac 06×3 06×3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rx(−Φ0) 03×3 −Rx(−Φ0)v
×
0

0 LteΨ̇0 cosΦ0 0

0 0 0

0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

03×3 13×3 −Ψ̇0e
×
3 03×3


. (8.21)

The external force matrix Af is instead used to describe the linear variation of the
external forces with respect to a variation of the state space variables. As a further step
in dealing with dynamic equations, the system of linearized equations can be made non-
dimensional. This is achieved by normalizing the state variables according to dimen-
sional groups typically found in flight mechanics literature. In the process, a diagonal
matrix Sy is defined as

Sy = diag

Åï
u0, u0, u0,

2u0
b
,
2u0
c
,
2u0
b
, 1, 1, 1, 1, 1, 1

òã
. (8.22)

We use the inverse of Sy to define the non-dimensional state vector

ỹ = S−1
y ∆y =

[ ∆u
u0
,
v

u0
,
w

u0︸ ︷︷ ︸
ṽ

,
pb

2u0
,
qc

2u0
,
∆rb

2u0︸ ︷︷ ︸
ω̃

, ϕ, θ, ψ︸ ︷︷ ︸
eu

, Ψ, Φ, Lte︸ ︷︷ ︸
x

]T
.

(8.23)

The linearized dynamic problem in Eq. (8.19) can be expressed with respect to the
non dimensional state as

MSy ˜̇y − ∂fa
∂˜̇y

˜̇y = AeqSyỹ +
∂fa
∂ỹ

ỹ (8.24)

96



8.6. Windplane eigendynamics

The linear problem can be finally written as

˜̇y = Ãỹ, (8.25)

where the linear matrix Ã is

Ã = inv
Å
MSy −

∂fa
∂˜̇y

ãÅ
AeqSy,+

∂fa
∂ỹ

ã
. (8.26)

The aerodynamic derivatives term ∂fa

∂ỹ
can be taken from the linearized model derived

in Chapter 6 (Eq. 6.7) and the aerodynamic derivaties term ∂fa

∂˜̇y
from the feedback

control formulation in Sect. 7.4.

8.6 Windplane eigendynamics

The state vector characterizing the dynamics ỹ has 12 dimensions, so the linearized
dynamics has 12 eigenmodes and 12 eigenvalues. Since gravity is removed from the
modeling, the dynamics is not influenced by the azimuth position Ψ. Moreover, the
state related to the tether elongation Lte is constrained. Therefore only 10 states are
actually entering the dynamical problem. We then find 10 eigenvalues different from
zero. In Figure 8.1, the open-loop eigenvalues in the complex plane are shown. In
Table 8.1, the eigenvalues are given, together with their correspondent eigenfrequency
fn, damping ratio ζ and time to halve t1/2 for the open-loop and for the closed-loop
case. The plane is controlled in closed-loop with the yaw stability augmentation system
proposed in Sect. 7.4.

roll. subsidence

short period

dutch roll

Loyd

pendulum

precession

Figure 8.1: Open-loop eigenvalue position in the complex plane.

The roll subsidence is a real fast mode. In Table 8.2 the components of its eigen-
vector, normalized with the largest value, are shown. The roll subsidence eigenmode
mainly involves the roll rate p̃ and the roll angle ϕ, as for airplanes.

The other eigenmode with real eigenvalue is the Loyd mode (named after Miles L.
Loyd (1980)). The Loyd mode involves mainly the lateral variables (ṽ, ϕ, ψ), typical of
the spiral mode for airplanes, and the longitudinal velocity ũ. The longitudinal velocity
in equilibrium is given by the balance of the projection of lift along the e1,s axis and
drag. When ũ is perturbed, the plane tends to go back to the equilibrium point. A
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open-loop closed-loop
mode eigenvalue fn (Hz) ζ t1/2 (s) eigenvalue fn (Hz) ζ t1/2 (s)
Roll −54 - - 0.013 −54 - - 0.013

Short period −26.8± 12.0i 4.6 0.91 0.026 −26.8± 12.0i 4.6 0.91 0.026
Dutch roll −3.4± 5.7 1.06 0.51 0.20 4.96± 4.11 1.03 0.77 0.14

Loyd −1.73 - - 0.40 −2.05 - - 0.34
Pendulum −0.25± 1.50i 0.24 0.16 2.77 −0.15± 1.53i 0.24 0.10 4.5
Precession −0.02± 1.06i 0.17 0.021 31.6 −0.12± 1.00i 0.16 0.12 5.58

Table 8.1: Eigenvalues, eigenfrequency, damping ratio and time to halve of the windplanes eigendynam-
ics evaluated with and without yaw SAS.

state ũ ṽ w̃ p̃ q̃ r̃ ϕ θ ψ ∆Φ

Roll -0.0035 -0.0617 -0.0122 -1.0000 -0.0090 -0.1251 0.1594 0.0033 0.0200 0.0004
Loyd -0.6737 -0.4349 -0.1623 0.1728 0.0059 -0.1409 -0.6550 0.2992 1.0000 -0.0875

Table 8.2: Eigenmode for the two real negative eigenvalues.

graphical representation of this part of the mode is given in Figure 8.2. In the figure,
the windplane velocity is decreased of ∆u, such that the inflow angle γa is increased
with respect to the steady state value (γ′a > γa). Since lift is perpendicular to the
apparent wind speed, a positive force ∆X along the e1,s axis is generated. This force
acts to restore the equilibrium condition.

γ′a
γa

vw(1− af )

va

u0

D′

L′

∆u

∆X

Figure 8.2: Graphical representation of the longitudinal part of the Loyd mode.

The short period is a fast oscillating mode with a high damping ratio. Its eigenmode
is shown in Fig. 8.3a. It involves mainly longitudinal states (w̃, q̃, θ), as for airplanes,
and the roll rate p̃. The dutch roll is also a fast oscillating mode with a relative high
damping ratio. Its eigenmode is shown in Fig. 8.3b. It involves mainly the lateral states
(ṽ,p̃,r̃, ϕ,ψ), as for airplanes.

The pendulum is slow oscillating mode with low damping ratio typical of wind-
planes, shown in in Fig. 8.4a. The pendulum involves the linear velocities w̃, all the
Euler angles (ϕ, θ, ψ) and the opening angle ∆Φ. There is a phase difference of approx
π/2 between the roll angle and the opening angle (∆Φ, ϕ) and (w̃, θ, ψ). The pendulum
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(a) Open-loop short period eigenmode in the complex
plane.

(b) Open-loop dutch roll eigenmode in the complex
plane.

Figure 8.3

damping is strongly influenced by the main wing dihedral angle. This is the reason for
taking a dihedral angle of Γ = −20◦.

The precession eigenmode in open-loop has an almost null real part, meaning that
it is an oscillatory mode lightly damped. The damping is due to the derivative of the
tether aerodynamic force with respect to the yaw angle ∂f te

∂ψ
(Eq. 6.80). Controlling the

vertical stabilizer proportionally to the time derivative of the yaw, as proposed in Sec.
7.4, increases the damping of this mode (Table 8.1).

(a) Open-loop pendulum eigenmode in the complex
plane.

(b) Open-loop precession eigenmode in the complex
plane.

Figure 8.4

Figure 8.5 shows a graphical illustration of the precession mode. The plane pre-
cesses by making the opening angle Φ and the azimuth position Ψ (this is not shown in
the figure for simplicity) to oscillate. Since the plane aerodynamics is not influencing
this mode, the aerodynamic velocity triangle remains constant and the yaw angle ψ is
settled such that the velocity along the e2,s direction (i.e. the side-slip) is constant.
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LteΦ̇
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Figure 8.5: Graphical representation of the precession mode.

8.7 Discussion

In this chapter, the eigendynamics of the light windplane designed in Chap. 4 is inves-
tigated. The windplane dynamics is modeled as a linear time invariant system about
the trimmed steady solution obtained by neglecting gravity. As the steady solution in-
volves a constant turning maneuver, the longitudinal and lateral equations of motion are
coupled. The dynamic problem is characterized by 12 states, of which 10 are actually
entering the linear problem. Therefore, 10 non-null eigenvalues are found.

The roll and the Loyd modes are real stable eigenmodes. The longitudinal part of
the Loyd mode brings the plane back to the equilibrium longitudinal velocity after a
perturbation.

Four oscillating modes are found. The short period and the dutch roll are modes
typical of airplanes, which are modified by the presence of the tether and the constant
turning maneuver. The pendulum eigenmode is a lightly damped mode typical of wind-
planes. The precession eigenvalue has an almost null real part in open-loop. The little
open-loop damping of this mode is exclusively due to the derivative of the tether drag
with respect to the yaw angle. Controlling in closed-loop the vertical stabilizer propor-
tionally to the time derivative of the yaw increases the damping of the precession mode.
A rigorous validation of these results is still to be done.

The flight stability of the non-linear trajectory needs to be evaluated with rigor-
ous methods (e.g. Floquet theory), which will ultimately prove its stability. However,
the linear time-invariant approximation about aerodynamic steady trajectories is an in-
valuable tool to understand the system dynamics and to develop closed-loop control
strategies. Similar results are expected for Ground-Gen AWESs as the flight dynamics
is similar.

8.8 State of the art and open questions

Houska and Diehl (2010) look for the open-loop stability of a soft kites for airborne
wind energy flying figure of eights. They find that open-loop stable trajectories can
be obtained with a considerable power loss. Later, Sternberg et al. (2012) robustify
these open-loop stable trajectories with respect to wind turbulence. Terink et al. (2011)
fly an experimental inflatable kite from Tu Delft group, which suffers from pendulum
instability in crosswind mode. They then find that the dihedral angle and the vertical
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stabilizer area are most influencing this mode.
Salord Losantos and Sánchez-Arriaga (2015) study the stability of the periodic kite

motion around the vertical equilibrium with Floquet theory and Pastor-Rodríguez et al.
(2017) investigate the longitudinal stability of kites in this condition. Sánchez-Arriaga
et al. (2017) study the flight stability of a two-lines kite fling crosswind figure-of-eight
trajectories. They find that the effective dihedral largely impacts the lateral kite dynam-
ics.

Makani Power, before the shutdown, started investigating the possibility of design-
ing the flight path and aerodynamic characteristics of the AWES to achieve passive
stability (Homsy (2020); Sicard et al. (2020)). Stable AWESs would maintain the flight
path with the least amount of control activity.

Trevisi et al. (2021a) study the linear stability about the axial-symmetric trajectory
obtained by neglecting the gravity. In populating the linearized dynamic model, ana-
lytical derivatives of external forces are computed, allowing for a fast formulation of
the linearized problem and for a quantitative understanding of how design parameters
influence stability. A complete eigenanalysis is carried out, showing that a stable-by-
design windplane can be obtained and how. It is shown how conventional airplanes
eigenmodes are modified for a windplane. The pendulum eigenmode has the lowest
damping ratio. The Loyd mode is found and its physical interpretation given. Trevisi
et al. (2022b) performs a global sensitivity analysis of the eigenvalues with respect to
a set of independent variables using the uncertainty quantification toolbox in T-GliDe.
The pendulum eigenmode is found to be largely influenced by the dihedral angle and
the vertical stabilizer area. This study served the design of the dihedral angle and the
vertical stabilizer area carried out in this thesis. The pendulum is found to be almost
not sensitive to the moments of inertia. This justifies the simple model used to estimate
the inertia from a given mass of this thesis (Appendix C). A sensitivity analysis on the
eigendynamics of the optimal windplane will be carried out in the future. The pre-
cession mode is found while producing this thesis and its feed-back control designed
consequently. In future version of T-GliDe, the damping ratios will enter the optimiza-
tion problem as inequality constraints to design for stability.
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CHAPTER9
Economics

For a successful diffusion of airborne wind energy (AWE) in the energy sector, the
development of the technology should be aligned with the needs dictated by the market.
Every market has different characteristics which can be suitable for different AWE
concepts. For example, soft-wing and fixed-wing systems, depending on the wind and
site requirements, replacement costs, operation & maintenance costs, etc., could be
suitable for different markets. Such trade-offs could only be evaluated by employing
an economic model along with a performance model.

The IEA Wind Task 48 (Airborne Wind Europe (2023a)) aims at building a strong
community that works together to accelerate the development and commercialization
of AWE technology. Within this IEA Wind Task, Rishikesh Joshi, PhD student at
TU Delft, and I have initiated the development of a reference open-source economic
model, which researchers and companies can use to assess the performances of their
AWE concepts for different market scenarios. This work falls under Work Package 1,
which focuses on identifying economic drivers and the potential of deploying AWE in
different markets.

The primary aspect of the economic model is the cost modeling of different concepts
where we build cost functions parametric to key design parameters such as the kite wing
area, span, aspect ratio, tether force, generator characteristics, etc. The process of de-
veloping this model is shown in Fig. 9.1. We developed a first version of the economic
report (Joshi and Trevisi (2023)), which was provided to participants together with an
individual spreadsheets. Participants were asked to fill the report and the spreadsheet
with their feedback. At the time of writing this thesis, Rishikesh and I are collecting
the participants inputs. We will postprocess the data and update the report accordingly.
The report will be finalized in the Spring 2024. The updated report will be provided
to collaborators and the individual spreadsheets archived with Airborne Wind Europe
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(Airborne Wind Europe (2023b)) to preserve anonymity. Airborne Wind Europe acts
as an intermediary to host the data collection, storage and dissemination.

The developed report and the code can be used to perform techno-economic anal-
ysis, in system design optimization studies, and to evaluate business cases for specific
market scenarios. The model will also provide input to technology development road-
maps and inform policymakers, organizations like the IRENA or the IEA, as well as
the industry.

This process needs to be repeated periodically, to align the economic report with
the development of airborne wind energy. Therefore, Rishikesh and I call for new
researchers to help on the development of the future versions of this report.

For an extensive literature review and to look at the first version of the cost model,
please see Joshi and Trevisi (2023).

Participant n

Filled R+S  

Filled R+S

Filled R+S 

Report +
Spreadsheet 

(R+S)

Participant 2

Participant 1
Data processing by 

researchers

Cost functions, 
statistics, etc.

Update report with 
processed data

Provide updated 
report to 

collaborators

Transfer and archive 
the spreadsheets 
with AWEurope

Figure 9.1: Procedure for the collection of the economic data and update of the economic report.
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CHAPTER10
Conclusions

In this thesis, the conceptual design problem of windplanes is investigated. The main
conclusions are summarized in this chapter.

10.1 Given a wingspan, which design maximizes power?

To study the optimal design problem, the windplane is idealized as a point mass flying
circular crosswind trajectories. If gravity is removed from the model, the dynamic
problem is axial symmetric and the solution is steady. In this idealized case, the power
balance involves only the aerodynamic power and the turbine’s thrust power. The power
balance can be conveniently expressed in non-dimensional form by normalizing it with
the wind power passing through a disk with radius the wingspan. This normalization
leads to the definition of the power and the thrust coefficients for windplanes, which is
used throughout the thesis. Since the reference area is taken to be a function of just the
wingspan, looking for the design which maximizes this power coefficient is equivalent
to posing the question "Given a wingspan, which design maximizes power?".

The optimal designs are obtained by operating the wing at the maximum lift-to-drag
of the airfoil. Airfoils designed for high lift-to-drag ratio are used for wind turbines and
shall also be used for windplanes.

The aspect ratio for windplanes has a similar physical meaning to the solidity for
wind turbines. The optimal aspect ratio is finite, as the optimal solidity for wind tur-
bines, and has a low value.

If gravity is included in the model, the gravitational potential energy is being ex-
changed with the kinetic energy, the aerodynamic energy and the electric energy over
one revolution. Since this exchange comes with an associated efficiency, the plane
mass and the related trajectory are designed to reduce the potential energy fluctuating
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over the loop. Reducing the potential energy means reducing the turning radius and
the mass. However, for decreasing turning radii, the available wind power decreases
because the windplane sweeps a lower area. For these two conflicting reasons, the op-
timal mass is finite. Depending on the independent variables, extremely light designs
might then be not required.

The windplane makes work on the wind by slowing it down of the induced velocity.
It is optimal to have a constant induction over the loop to maximize the raw wind
power to be harvested. Therefore, the optimal lift coefficient changes according to
the windplane velocity to ensure a constant intensity of the wing circulation, which
translates in a constant induction.

10.2 Can windplanes fly stable orbits?

Modeling the flight dynamics of airplanes and the aero-structural dynamics of wind
turbines as linear time invariant systems has played a fundamental role in the under-
standing of the two technologies. The first step on the way to modeling the windplane
as a linear time invariant system is to understand about which point to linearize the
dynamics. To understand this, the optimal trajectories should be studied first.

To properly model the rigid-body dynamics, a nonlinear aerodynamic model and
the nonlinear equations of motion are needed because the exchange of potential energy
is a nonlinear process. Analytical aerodynamic derivatives are taken to formulate a
linear aerodynamic model about non-linear operating points. The nonlinear equations
of motion are solved with a harmonic balance method to look for periodic solutions.

If the gravity is removed from the model, the problem has a steady solution. The
windplane is trimmed in the circular crosswind trajectory which maximizes the swept
area. The vertical stabilizer pushes outwards, to compensate the yaw moment induced
by the centrifugal force.

If the gravity is included in the model, the simplest control strategy is to trim the
horizontal stabilizer, the vertical stabilizer and the turbine thrust coefficient to constant
values, to actuate the ailerons cyclically and to control the vertical stabilizer in closed
loop. The cyclic control of the ailerons rolls the plane and redirects the lift to com-
pensate gravity and to stay airborne. The vertical stabilizer is controlled in closed loop
to increase directional stability and damp the precession mode. A moderate reduction
in power coefficient between the steady case and the dynamic case with this simple
control is found at low wind speed.

The windplane dynamics is then modeled as a linear time invariant system about the
trimmed steady solution obtained without gravity. Ten non-null eigenmodes character-
izes the dynamics. The roll subsidence, the short period and the dutch-roll are typical
modes of airplanes modified by the presence of the tether and the turning maneuver.
The Loyd mode is an exponentially stable mode. The pendulum mode is a lightly
damped slow oscillating mode. A large wing dihedral angle is beneficial for increasing
its damping. The precession mode is a slow oscillating mode which in open-loop has
basically no damping. A yaw stability augmentation system is designed to increase the
damping of this mode. This stability analysis however does not guarantee stability for
nonlinear periodic systems and more rigorous methods should be used in the future.
Even if the aerodynamic model has been preliminary validated, the analyses of this
second part need to be thoroughly validated.

106



10.2. Can windplanes fly stable orbits?

For a successful diffusion of airborne wind energy systems in the energy sector,
modeling the economics in a realistic way is a crucial step. The development of a
reference economic model has been initiated with the collaboration of the companies
operating in the airborne wind energy field and will be finalized in the near future.
However, this effort needs to be repeated periodically with the technology developing
further.
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CHAPTER11
Nomenclature

11.1 Main latin symbols

a Aerodynamic induction
af Aerodynamic induction due to the far wake
an Aerodynamic induction due to the near wake
at Onboard turbines aerodynamic induction
A Wing area

AR Wing aspect ratio
b Wing span

Ca Aerodynamic power coefficient
Cd Wing profile drag coefficient
Cd,0 Parameter describing the wing profile drag coefficient at zero lift
Cd,te Tether section drag coefficient
CD Windplane drag coefficient including the near wake induced drag coefficient
Cn
Di Induced drag coefficient due to the near wake

CD,p Parasite drag coefficient
CD,te Equivalent tether drag coefficient
Cg Gravitational power coefficient
CL Lift coefficient
CP Power coefficient
CT Thrust coefficient
Cτ Aerodynamic dissipative power coefficient
D Drag force
Dte Tether diameter
dte Dte/(b/2) Nondimensional tether diameter
e Oswald factor
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Ek Kinetic energy
ek Nondimensional kinetic energy

FB Body coordinate system
FG Ground coordinate system
FR Rotating coordinate system
FS Stability coordinate system
FTe Tether coordinate system
kd Parameter of the quadratic wing profile drag coefficient part
L Lift force
Lte Tether length
lte Lte/(b/2) Nondimensional tether length
m Windplane mass
P Electric generated power
R0 Trajectory radius (In Chap. 6 it is the instantaneous turning radius)
Tt Turbines thrust force
u0 Longitudinal reference velocity
va Apparent wind speed
vw Wind speed

11.2 Main greek symbols

ξt Rt/(b/2) Nondimensional onboard wind turbine radius
Γ Dihedral angle of the main wing, or bound circulation in Chapt. 3
µ m/(ρb3) Nondimensional mass
Λ Sweep angle
λ u/vr: wing speed ratio
Φ Opening angle of the cone swept by the tether during one loop
Ψ Azimuth angle
κ0 b/(2R0): inverse turning ratio
ρ Air density
T Main period
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APPENDIXA
Rotational matrices notation

The rotational matrix, expressed in FA, which rotates from FA to FB is denoted with
RA
A→B = RA

AB. Note that RA
AB = RB

AB. The rotational matrix RA
AB can be used to

rotate a vector aA, expressed in FA into a vector bA, expressed in the same coordinate
system

bA = RA
ABa

A. (A.1)

Since this operation is a rotation: bB = aA. It follows that

bA = RA
ABb

B, (A.2)

and

bB = RAT
ABb

A = RA
BAb

A. (A.3)

To change the basis of a rotation tensor T, rotational matrices are to be applied

TA = RA
ABT

BRAT
AB. (A.4)

To compose rotations, rotational matrices expressed in the same basis need to be
applied in a sequential order

RA
A→C = RA

B→CR
A
A→B. (A.5)

To express rotations as a composition of planar rotations, the basis of the rotation
matrix need to be expressed in the basis where the rotation happens. The rotation matrix
RA
A→C can be therefore be written as
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Appendix A. Rotational matrices notation

RA
A→C = RA

B→CR
A
A→B = (RA

A→BR
B
B→CR

AT
A→B)R

A
A→B = RA

A→BR
B
B→C . (A.6)

The following planar rotational matrices are defined

Rx(α) =

 1 0 0

0 cosα − sinα

0 sinα cosα

 , Ry(α) =

 cosα 0 sinα

0 1 0

− sinα 0 cosα

 ,
Rz(α) =

 cosα − sinα 0

sinα cosα 0

0 0 1

 .
(A.7)

120



APPENDIXB
Aerodynamics of the main wing

B.1 Arm matrices derivations

The following integrals are defined to have the dimensions of areas

Iη =
Iy
R0

=
1

R0

∫ b/2

−b/2
c(y)y

y

|y|
dy =

2

R0

∫ b/2

0

c(y)ydy =
2

3π
A
b

R0

,

Iηη =
Iyy
R2

0

=
1

R2
0

∫ b/2

−b/2
c(y)y2dy =

1

16
A
b2

R2
0

,

Iηηη =
Iyyy
R3

0

=
1

R3
0

∫ b/2

−b/2
c(y)y3

y

|y|
dy =

2

R3
0

∫ b/2

0

c(y)y3dy =
1

15π
A
b3

R3
0

.

(B.1)

The aerodynamic forces are applied at 1/4 chord, but the velocity is evaluated at
3/4 chord (collocation points), to be consistent with vortex lattice methods. So that the
following integrals are also derived

Ic2 =

∫ b/2

−b/2
c(y)2dy =

32

3

A2

π2

1

b
,

Iηc2 =
1

R0

∫ b/2

−b/2
c(y)2y

y

|y|
dy = 2

A2

π2

1

R0

,

Iηηc2 =
1

R2
0

∫ b/2

−b/2
c(y)2y2dy =

8

15

A2

π2

b

R2
0

.

(B.2)
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Appendix B. Aerodynamics of the main wing

B.1.1 Even arm matrices

The even arm matrix P is defined as function of P1 and P2

P = S−1

Çñ
1

[twx, 0, twz]
×

ô
+ η

η

|η|

ñ
0

(ds×[0, R0, 0]
T )×

ôå
= P1 + η

η

|η|
P2.

(B.3)
The even arm integral matrices are derived as follows

PA =
1

A

∫ b/2

−b/2
c(y)Pdy =

1

A

∫ b/2

−b/2
c(y)

Å
P1 + η

η

|η|
P2

ã
dy = P1 +

Iη
A
P2, (B.4)

Pc2 =
1

A

∫ b/2

−b/2
c(y)2Pdy =

1

A

∫ b/2

−b/2
c(y)2

Å
P1 + η

η

|η|
P2

ã
dy =

Ic2
A

P1 +
Iηc2
A

P2,

(B.5)

Pη =
1

A

∫ b/2

−b/2
c(y)

η2

|η|
Pdy =

Iη
A
P1 +

Iηη
A

P2, (B.6)

Pηc2 =
1

A

∫ b/2

−b/2
c(y)

η2

|η|
Pdy =

Iηc2
A

P1 +
Iηηc2
A

P2, (B.7)

Pηη =
1

A

∫ b/2

−b/2
c(y)η2Pdy =

Iηη
A

P1 +
Iηηη
A

P2. (B.8)

Considering x and z as the collocation points position at 3/4 chord (twS(y) −
c(y)/2, where twS is given in Eq. (6.20)), the even arm matrices needed for the esti-
mation of the derivatives with respect to angular rates are

PA,x =
1

A

∫ b/2

−b/2
c(y)Px dy =

1

A

∫ b/2

−b/2
c(y)P

Å
twx −

y

R0

R0
η

|η|
Λ− c(y)

2

ã
dy

= twxPA −R0ΛPη −
Pc2

2
,

(B.9)

and

PA,z =
1

A

∫ b/2

−b/2
c(y)Pz dy =

1

A

∫ b/2

−b/2
c(y)P

Å
twz +

y

R0

R0
η

|η|
Γ

ã
dy

= twzPA +R0ΓPη.

(B.10)

Similarly, Pη,x is

Pη,x =
1

A

∫ b/2

−b/2
c(y)

η

|η|
ηPxdy =

1

A

∫ b/2

−b/2
c(y)P

η

|η|
η

Å
twx −

y

R0

R0
η

|η|
Γ− c(y)

2

ã
dy

= twxPη −R0ΛPηη −
Pηc2

2
,

(B.11)
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B.1. Arm matrices derivations

and Pη,z

Pη,z =
1

A

∫ b/2

−b/2
c(y)

η

|η|
ηP z dy =

1

A

∫ b/2

−b/2
c(y)P

η

|η|
η

Å
twz +

y

R0

R0
η

|η|
Γ

ã
dy

= twzPη +R0ΓPηη.
(B.12)

B.1.2 Odd arm matrices

The odd arm matrix D is defined as function of D1 and D2

D = S−1

ñ
0

[0, R0, 0]
×

ô
+

1

|η|
S−1

ñ
ds×

[twx, 0, twz]
×ds×

ô
= D1 +

1

|η|
D2. (B.13)

The odd arm integral matrices for the derivatives computations are derived as fol-
lows

Dη =
1

A

∫ b/2

−b/2
c(y)η

η

|η|
Ddy =

1

A

∫ b/2

−b/2
c(y)

Å
η
η

|η|
D1 +D2

ã
dy =

Iη
A
D1 +D2,

(B.14)

Dηc2 =
1

A

∫ b/2

−b/2
c(y)2η

η

|η|
Ddy =

1

A

∫ b/2

−b/2
c(y)2

Å
η
η

|η|
D1 +D2

ã
dy =

Iηc2
A

D1 +
Ic2
A

D2,

(B.15)

Dηη =
1

A

∫ b/2

−b/2
c(y)η2Ddy =

Å
Iηη
A

D1 +
Iη
A
D2

ã
. (B.16)

Considering x and z as the collocation points position at 3/4 chord, the odd arm
matrices needed for the estimation of the derivatives with respect to angular rates are

Dη,x =
1

A

∫ b/2

−b/2
c(y)η

η

|η|
xDdy =

1

A

∫ b/2

−b/2
c(y)D

η

|η|
η

Å
twx −

y

R0

R0
η

|η|
Γ− c(y)

2

ã
dy

= twxDη −R0ΛDηη −
Dηc2

2
,

(B.17)

Dη,z =
1

A

∫ b/2

−b/2
c(y)η

η

|η|
zDdy =

1

A

∫ b/2

−b/2
c(y)D

η

|η|
η

Å
twz +

y

R0

R0
η

|η|
Γ

ã
dy

= twzDη +R0ΓDηη.
(B.18)

Similarly, Dηη,x and Dηη,z can be derived

Dηη,x =
1

A

∫ b/2

−b/2
c(y)η2xDdy =

1

A

∫ b/2

−b/2
c(y)Dη2

Å
twx −

y

R0

R0
η

|η|
Λ− c(y)

2

ã
dy

= twxDηη −R0ΛDηηη −
Dηηc2

2
,

(B.19)
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Dηη,z =
1

A

∫ b/2

−b/2
c(y)η2zDdy =

1

A

∫ b/2

−b/2
c(y)Dη2

Å
twz +

y

R0

R0
η

|η|
Γ

ã
dy

= twzDηη +R0ΓDηηη.

(B.20)

B.2 Procedure for the evaluation of derivatives

The derivative of forces and moments with respect to a generic variable ỹj , using Eq.
(6.26), (6.36) and (6.37), can be formalized as follows

∂f

∂ỹj
=

1

Au20

∫ b/2

−b/2
c(y)(P+ ηD)

Å
∂C

∂ỹj
v2a,0 +C0

∂v2a
∂ỹj

ã
dy

=
1

Au20

∫ b/2

−b/2
c(y)(P+ ηD)

Å
(Cη − 2ηCLα)

∂γn
∂ỹj

u20(1 + η)2 +

Å
CR0 − η

Cη

λn

ã
∂v2a
∂ỹj

ã
dy,

(B.21)
where ∂γn

∂ỹj
and ∂v2a

∂ỹj
in the latter expression can be found by applying recursively the

chain rule.
Equations (6.22) and (6.23) express the apparent velocity squared and the inflow

angle for a wing profile. The contributions of the straight wing, dihedral angle and
sweep can be analyzed individually as they appear in different terms. Consequently,
the derivatives of γn and v2a with respect to U , V and W for the straight wing can be
provided separately, and are given in Table B.1.

γn v2a
U − 1

λnu0(1+η)2
2u0(1 + η)

V 0 0
W 1

u0(1+η)
2u0

λn

Table B.1: Derivatives of γn and v2a with respect to U , V and W for the straight wing.

The derivatives of γn and v2a with respect to U , V and W for the terms depending on
sweep and dihedral are instead given in Table B.2.

γn v2a
U ≈ 0 ≈ 0

V −Γ η
|η|

1
u0(1+η)

− Λ η
|η|

1
λnu0(1+η)2

−2Γ η
|η|

u0

λn
+ 2Λ η

|η|u0(1 + η)

W ≈ 0 ≈ 0

Table B.2: Derivatives of γn and v2a with respect to U , V and W due to dihedral and sweep angle.

The chain rule, using the results in Table B.3, can be finally applied to find the
analytic expression of the derivatives.

The derivatives of the aerodynamic inflow quantities γn or v2a, which we will indicate
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B.3. Straight wing derivatives

U V W
u 1 0 0
v 0 1 0
w 0 0 1
p 0 −z y
q z 0 −x
r −y x 0
ϕ 0 u0

λn
0

θ − u0

λn
0 0

ψ 0 0 0

Table B.3: Derivatives of U ,V,W (Eq. (6.14)) with respect to dimensional state variables.

as qa,j , with respect to p̃ can be written as

∂qa,j
∂p̃

=
∂qa,j

∂
Ä
p b
2u0

ä =
2u0
b

Å
∂qa,j
∂W

∂W
∂p

+
∂qa,j
∂V

∂V
∂p

ã
=

2u

b

Å
y
∂qa,j
∂W

− z
∂qa,j
∂V

ã
=

2y

b

∂qa,j
∂w̃

− 2z

b

∂qa,j
∂ṽ

.

(B.22)
The derivatives with respect to q̃ can be written as

∂qa,j
∂q̃

=
∂qa,j

∂
Ä
q c
2u0

ä =
2u0
c

Å
∂qa,j
∂U

∂U
∂q

+
∂qa,j
∂W

∂W
∂q

ã
=

2z

c

∂qa,j
∂ũ

− 2x

c

∂qa,j
∂w̃

. (B.23)

The derivatives with respect to r̃ can be written as

∂qa,j
∂r̃

=
∂qa,j

∂
Ä
r b
2u0

ä =
2u0
b

Å
∂qa,j
∂U

∂U
∂r

+
∂qa,j
∂V

∂V
∂r

ã
= −2y

b

∂qa,j
∂ũ

+
2x

b

∂qa,j
∂ṽ

. (B.24)

The derivative with respect to the roll angle ϕ is

∂qa,j
∂ϕ

=
∂qa,j
∂V

∂V
∂ϕ

=
1

λn

∂qa,j
∂ṽ

=
1

λn

∂qa,j
∂ṽ

, (B.25)

The derivative with respect to the pitch angle θ

∂qa,j
∂θ

=
∂qa,j
∂U

∂U
∂θ

= − 1

λn

∂qa,j
∂ũ

. (B.26)

The derivative with respect to the yaw angle ψ of the aerodynamic force generated by
the main wing is always null.

B.3 Straight wing derivatives

Table 6.1 summarizes all the non-null derivatives for the case of a straight wing.

B.3.1 Derivatives with respect to ũ

To find the derivative of the aerodynamic force with respect to the non-dimensional
longitudinal velocity ∂f

∂ũ
, the two terms, necessary for the evaluating the derivatives
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(Eq. (B.21)), are

∂C

∂ũ
v2a,0 = (Cη − 2ηCLα)

Å
− 1

λnu0(1 + η)2

ã (
u20(1 + η)2

)
u0 =

Å
−Cη

λn
+ 2η

CLα

λn

ã
u20,

C0
∂v2a
∂ũ

=

Å
CR0 − η

Cη

λn

ã
(2u0(1 + η))u0 = 2

Å
CR0 + ηCR0 − η

Cη

λn

ã
u20,

(B.27)
where ∂γn

∂U and ∂v2a
∂U are found in Table B.1 and ∂U

∂ũ
= 1 is given in Table B.3.

Performing an integral along the wingspan in order to find the aerodynamic deriva-
tive with respect to ũ, Eq. (B.21), considering Eq. (B.27), takes the form

∂f

∂ũ
=

1

A

∫ b/2

−b/2
c(y)(P+ ηD)

ï
− Cη

λn
+ 2η

CLα

λn
+ 2CR0 + 2η

Å
CR0 −

Cη

λn

ãò
dy

= PA

Å
2CR0 −

Cη

λn

ã
+ 2Dηη

Å
CR0 −

Cη

λn
+

CLα

λn

ã
.

(B.28)

B.3.2 Derivatives with respect to w̃

We follow here the same procedure as in Sect. B.3.1 to find the derivative with respect
to w̃.
∂C

∂w̃
v2a,0 = (Cη − 2ηCLα)

Å
1

u0 (1 + η)

ã (
u20(1 + η)2

)
u0 ≈ (Cη + η(Cη − 2CLα))u

2
0,

C0
∂v2a
∂w̃

= C0

Å
2
u0
λn

ã
≈
Å
2
CR0

λn
− 2η

Cη

λ2n

ã
u20.

(B.29)

∂f

∂w̃
=

1

A

∫ b/2

−b/2
c(y)(P+ ηD)

ï
Cη + η(Cη − 2CLα) + 2

CR0

λn
− 2η

Cη

λ2n

ò
dy. (B.30)

B.3.3 Derivatives with respect to p̃

Making use of the partial derivatives in Sect. B.3.1, the derivative with respect to p̃ is

∂f

∂p̃
=

1

A

2R0

b

∫ b/2

−b/2
c(y)η(P+ ηD)

ï
Cη + ηCη − 2ηCLα + 2

CR0

λn
− 2η

Cη

λ2n

ò
dy.

(B.31)

B.3.4 Derivatives with respect to q̃

Making use of the partial derivatives in Sect. B.3.1, the derivative with respect to q̃ is

∂f

∂q̃
=

1

A

∫ b/2

−b/2
c(y)(P+ ηD)

2z

c

ï
− Cη

λn
+ 2η

CLα

λn
+ 2CR0 + 2η

Å
CR0 −

Cη

λn

ãò
dy

− 1

A

∫ b/2

−b/2
c(y)(P+ ηD)

2x

c

ï
Cη + η(Cη − 2CLα) + 2

CR0

λn
− 2η

Cη

λ2n

ò
dy.

(B.32)
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B.4. Derivatives due to dihedral and sweep angles

B.3.5 Derivatives with respect to r̃

Making use of the partial derivatives in Sect. B.3.1, the derivative with respect to r̃ is

∂f

∂r̃
= − 1

A

2R0

b

∫ b/2

−b/2
c(y)η(P+ ηD)

ï
− Cη

λn
+ 2η

CLα

λn
+ 2CR0 + 2ηCR0 − 2η

Cη

λn

ò
dy.

(B.33)

B.3.6 Derivatives with respect to θ

Making use of the partial derivatives in Sect. B.3.1, the derivative with respect to θ is

∂f

∂θ
=

1

A

∫ b/2

−b/2
c(y)(P+ ηD) (Cη + 2η (Cη −CLα)) dy. (B.34)

B.4 Derivatives due to dihedral and sweep angles

Table 6.2 summarizes the non-null derivatives due to dihedral and sweep.

Derivatives due to dihedral

To find the derivative of the aerodynamic force with respect to the non-dimensional
lateral velocity ∂f

∂ṽ
due to the dihedral angle, the two terms, necessary for the evaluating

the derivatives (Eq. (B.21)), are

∂C

∂ṽ
v2a,0 = (Cη − 2ηCLα)

Å
−Γ

η

|η|
1

u0(1 + η)

ã (
u20(1 + η)2

)
u0

= −Γ
η

|η|
(Cη + ηCη − 2ηCLα)u

2
0,

C0
∂v2a
∂ṽ

= −Γ
η

|η|

Å
2
CR0

λn
− 2η

Cη

λ2n

ã
u20.

(B.35)

where ∂γn
∂V and ∂v2a

∂V are found in Table B.2 and ∂V
∂ṽ

= 1 is given in Table B.3.
Performing an integral along the wingspan in order to find the aerodynamic deriva-

tive with respect to ṽ, Eq. (B.21) takes the form

∂f

∂ṽ
= − 1

A
Γ

∫ b/2

−b/2
c(y)

η

|η|
(P+ ηD)

Å
Cη + ηCη − 2ηCLα + 2

CR0

λn
− 2η

Cη

λ2n

ã
dy

= −Γ

ï
Pη (Cη − 2CLα) +Dη

Å
Cη + 2

CR0

λn

ãò
.

(B.36)

Derivatives due to sweep

To find the derivative of the aerodynamic force with respect to the non-dimensional
lateral velocity ∂f

∂ṽ
due to the sweep angle, the two terms, necessary for the evaluating
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the derivatives (Eq. (B.21)), are

∂C

∂ṽ
v2a,0 = (Cη − 2ηCLα)

Å
−Λ

η

|η|
1

λnu0(1 + η)2

ã (
u20(1 + η)2

)
u0

= −Λ
η

|η|

Å
Cη

λn
− 2η

CLα

λn

ã
u20,

C0
∂v2a
∂ṽ

= C0

Å
2Λ

η

|η|
u0(1 + η)

ã
u0 = 2Λ

η

|η|

Å
CR0 + η

Å
CR0 −

Cη

λn

ãã
u20.

(B.37)

where ∂γn
∂V and ∂v2a

∂V are found in Table B.2 and ∂V
∂ṽ

= 1 is given in Table B.3.
Performing an integral along the wingspan in order to find the aerodynamic deriva-

tive with respect to ṽ, Eq. (B.21) takes the form

∂f

∂ṽ
=

1

A
Λ

∫ b/2

−b/2
c(y)

η

|η|
(P+ ηD)

Å
−Cη

λn
+ 2η

CLα

λn
+ 2CR0 + 2η

Å
CR0 −

Cη

λn

ãã
dy

= Λ

ï
2Pη

Å
CR0 −

Cη

λn
+

CLα

λn

ã
+Dη

Å
2CR0 −

Cη

λn

ãò
(B.38)
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APPENDIXC
Inertia estimation

C.1 Lifting body structural design

All the lifting surfaces (main wing, horizontal and vertical tail) are assumed to be de-
signed with the procedure presented here.

A generic elliptic lift distribution is

l (η) =
4

π

L

b

√
1− η2 (C.1)

where L = 1
2
ρ b

2

A
CLu

2 and η = y
b/2

. CL is taken as the design lift coefficient and u is a
fixed value.

The aerodynamic bending moment at a generic wing section η > 0 is

M =
b2

4

∫ 1

η

(η∗ − η)l (η∗) dη∗ =
Lb

π

ñ
η

4
(2 arcsin η − π) +

(η2 + 2)
√

(1− η2)

6

ô
(C.2)

The wing mass is assumed to be proportional to the spar caps mass, which are de-
signed according to the aerodynamic bending moment M . The sparcaps flap-wise dis-
tance wf is assumed proportional to the airfoil thickness and consequently to the chord

wf (η) = fwfc(η) = fwf
4

π
bA
√

1− η2, (C.3)

where an elliptic planform is assumed. The sparcap thickness tsc is to be designed.
The sparcap area wetsc, with we being the sparcaps edge-wise width is assumed to be
concentrated at wf

2
. The section inertia I can be approximated with

I ≈ 1

2
wetscw

2
f . (C.4)
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Being the stress in the sparcap equal to σ =
M

wf
2

I
, the section thickness can be

designed based on a given material strength σ

tsc(η) =
M(η)

σwe(η)wf (η)
. (C.5)

The wing mass is the integral of the sparcaps liner density 2ρwetsc over the span

m ≈ 2

∫ b/2

0

2ρwetscdy ≈ b

∫ 1

0

2ρwetscdη = 2b
ρ

σ

∫ 1

0

M(η)

wf (η)
dη (C.6)

where ρ is the material density.
The total mass of the lifting body mlb can then be written as

mlb ≈ 2b
ρ

σ

Lb

π

π

fwf4bA

∫ 1

0

η(2 arcsin η − π)

4
√

1− η2
+
η2 + 2

6
dη︸ ︷︷ ︸∫ 1

0 sm(η)dη≈0.1

= 0.1ρ
ρ

σ

u2

4fwf︸ ︷︷ ︸
fm

CL
A2

b3,

(C.7)
where fm is a constant value dependent of the design methodology.

C.2 Windplane mass and inertia

The non dimensional mass parameter µ is an input to the model and can be expressed
as function of a structural design constant fm and geometrical and aerodynamic char-
acteristics of the wing, horizontal and vertical stabilizer.

µ =
m

ρb3
≈ 0.1fm

Ç
CL
A2

+
b3h
b3
C̃L,h
A2

h

+
b3v
b3
C̃L,v
A2

v

å
, (C.8)

where in this thesis, to estimate the inertia, it is assumed CL = CL,h = CL,v = 1. Since
µ and the quantities inside the bracket are inputs to the model, the factor fm can be
found and used to find the center of mass and the moments of inertia.

The moment of inertia of the main wing with respect to an axis perpendicular to the
wing axis (e1,b and e3,b) is

I⊥,w ≈ ρfm
CL
A2

b5

4

∫ 1

0

η2sm(η)dη︸ ︷︷ ︸
≈0.01

≈ 0.025mb2 (C.9)

Modeling the horizontal and vertical stabilizer as concentrated masses in the same
location (ts) and in the symmetry plane of the plane (ts2 = 0), the windplane moments
of inertia are

Ixx = I⊥,w

Iyy = tw2
1mw + ts21(mh +mv)

Izz = tw2
1mw + ts21(mh +mv) + I⊥,w.

(C.10)
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