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1. Introduction

Pairs trading is a statistical arbitrage which
tries to exploit market inefficiencies that lead
to over /underpricing of assets. Specifically, two
assets are selected if their movements are simi-
lar, with respect to some metric, during the pair
formation period: in the following period, the
trading one, the arbitrage waits for the two as-
sets price difference to deviate from the expected
trend. Once a profitable threshold is reached, the
strategy prescribes to bet on the mean-reversion
of the two assets spread, which is likely to hap-
pen due to their historical movement similarity,
achieving returns.

A state-of-the-art implementation for pairs trad-
ing is [7], which relies on the application of Princi-
pal Component Analysis (PCA) and clustering in
order to reduce the computational effort required
to identify suitable subsets of assets. Then, the
pair selection procedure would be run consid-
ering only pairs of assets that belonged to the
same subset. In order to optimise the hyperpa-
rameters of their pipeline, we apply an online
learning approach: in particular, we handle each
parametrization as an asset (called expert for the
rest of the document) and optimise our budget
distribution over them. Thus, we are in the con-

text of the online portfolio optimisation frame-
work: among the available algorithms, we will
apply Online Gradient Descent with Momentum
(OGDM, [8]), not only because of its theoret-
ical guarantees on both the regret bound and
the computational complexity, but also because
of its empirical results on dealing with transac-
tion costs. The experiments are performed both
with and without transaction costs, while also
measuring the impact of the rebalancing interval.
The remainder of the document is structured as
follows: in Section 2 we recall some mathemati-
cal background, followed by Section 3, where we
provide an in-depth description of 7] methodol-
ogy and elaborate on which hyperparameter is
worth the optimisation. In Section 4 we present
the details of the optimisation framework and
experiments performed, while in Section 5 an
overview of the related works can be found. Sec-
tion 6 reports the exploratory analysis of the
dataset we are dealing with and then, in Section
7, the performance of the OGDM optimisation is
shown: it achieves good results without consid-
ering transaction costs, while the pairs trading
itself seems to struggle when costs are factored in.
Finally, in Section 8 we draw the conclusions and
present possible directions for future research.



The present work is based upon the results of
the cooperation between Politecnico di Milano
and MDOTM.

2. Preliminaries

General Statistics.
Definition 2.1. (Integration and Co-integration)
We will call the time series Xy = [x1,...,27]
integrated of order 1 if the process X; — X¢_1 is
stationary and we will denote it as Xy ~ I(1).
Moreover, given another time series Yy ~ I(1),
we will call the pair co-integrated if there exists
a coefficient 8 such that their difference Uy =
— Xy is stationary, that is, Uy ~ I(0).
Notice that, when two time series are co-
integrated, not only their spread will have con-
stant mean, but it will also be a mean-reverting
process. Another interesting property of mean-
reverting processes is the Hurst exponent, here
reported in the generalized version (as suggested
in [1]).
Definition 2.2. (Generalized Hurst Exponent)
Given a time series Xy = [x1,...,x7], consider
the statistic Kq(T) defined as

Z | T4 r —l‘t!q (1)
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which can be interpreted as the q-order moment
of the distribution of the increments with T lag.
We will call generalized Hurst exponent H(q) the
one which approzimate K, (1) ~ et the best.
In particular, we will refer to H(2) = H as the
Hurst exponent, since its estimate is comparable
to the original one.

Notice that this parameter gives insight on the
evolution of the process: in fact, H € [0,0.5)
suggest a mean-reverting trend, while it is likely
to be divergent when H > 0.5. Finally, values
around 0.5 suggest a Brownian motion.

Definition 2.3. (Mean-Reversion Half-Life)
Given an Ornstein- Uhlenbeck process defined as

dXt = a(,U,—Xt)dt‘f'O'th, (2)

where a > 0 and Wy is the Wiener process, we
will call the time needed (on average) to halve
the distance from its historical mean as mean-
reversion half-life ¢,/,5. Such a quantity can be
obtained starting from the ordinary differential

equation derived from the process equation & =
l0g2

a(p —x), yielding ty /5 = <&

Online Portfolio Optimisation. We will
deal with online portfolio optimisation (OPO)
framework: given a set of N tradable assets
(stocks, in our case, to which we will also re-
fer as tickers), we will call the sequence ry =
[T1ts-..,7Nt) price relatives at time ¢, where
r =" ;“trl and p; ; is the price of asset ¢ at time
step t. Then, the objective of the OPO frame-
work is to allocate its resources as the vector
Ty = [Z14,..., TN, trying to maximise the total
wealth obtained, called cumulative wealth and

defined as

T
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where (-, ) is the inner product. In order to face
a simpler problem, we can rewrite the objective
function as a convex loss function: following [§],
the chosen one for our setting is

fe(ar) = —log((ws, 7)), (4)

and our new objective will be its minimisation.

2.1. Pairs Trading

Pairs trading is a market neutral trading strategy
composed of two-steps:

1. firstly, a pair of assets is selected, according
to some criteria, so that they are strongly
correlated during a window that is called
pair formation period;

2. secondly, the pair is traded during the pair
trading period, speculating on the fact that
the price spread between the two assets will
converge to its historical mean.

The technique is thus based on the assumption
that the two assets in a selected pair are struc-
turally related to each other: their difference in
price will be stable over time and the profits will
come from the exploitation of market inefficien-
cies.

Effectively, these inefficiencies come in the form
of an overpriced asset and an underpriced asset:
the strategy then prescribes to sell short the
former and to buy the latter one. Thresholds
are usually defined (statically or dynamically)
in order to decide when to open and close the
position (long-short or vice versa).



Although many metrics can be used to select
related pairs, as reported in [6], we will focus
on the cointegration relationship (see Definition
2.1), which has both econometric foundations
(the spread is expected to reverse to the mean)
and empirical good results.

3. Sarmento&Horta Pair Selec-
tion Pipeline

The main idea of the authors was to deploy
an unsupervised learning algorithm in order to
reduce the computational effort of an exhaustive
pairs search: by grouping the assets in clusters,
the possible generated pairs drop considerably,
with a largely effective reduction in the compu-
tational costs. Unfortunately, this comes with
an issue: clustering techniques are well-known
to struggle when applied to high dimensional
data (namely, our assets price series).

Principal Component Analysis (PCA).
To overcome the aforementioned issue, the au-
thors applied PCA to the normalized return series
rit, that is:

Dit ' pz,t—l. <5>
Pit—1

In particular, the authors chose to keep the 5
most explicative features: thus, assuming that
there are N assets with T' prices each, the dataset
got restricted from N x T to N x 5 in their
experiments.

Let us notice that the number of features was
selected empirically in [7], quoting: “We adopt
5 dimensions since we find adequate to settle
the ETFs’ representation in a lower dimension
provided that there is no evidence favouring
higher dimensions".

Tit =

Clustering: OPTICS. OPTICS is a cluster-
ing algorithm which was created to fix some of
the weaknesses of DBSCAN: in particular, the
latter searches the data space for areas where
data points are more dense. However, having
a fixed concept of density (defined as having at
least MinPts points in an e-radius area) it fails
in dataset with different densities. To overcome
this issue, OPTICS dynamically selects € inside
the feature space, so that sparser regions have a
broader concept of core points (that is, the main
data points of a cluster).

Once transformed with PCA, data are fed to
OPTICS which, in turn, outputs the asset
labels, including the possibility to mark as
noise. Among the pairs within the same cluster,
the candidates for trading are then selected
according to a set of hand-crafted rules.

Selection Rules.

1. first of all, pairs should be cointegrated: the
authors propose the Engle-Granger test, due
to its simplicity;

2. since the mean-reversion property of the
spread series is of crucial importance, pairs
should also have a Hurst exponent H < 0.5;

3. mean-reversion half-life is also taken into
consideration: since we would like to gener-
ate profit in a reasonable time lapse, pairs
with mean-reversion half-life less than a day
and more than a year are discarded;

4. finally, to assure that there are enough profit
opportunities, the spread process of each
pair should have crossed its mean at least 12
times each year in the pair formation period.

3.1. Optimising the Pipeline

As explained in the previous sections, the frame-

work from [7] has several hyperparameters that

could possibly be tweaked to achieve better per-

formance. In particular, the list boils down to:
1. length of the pair formation period;

number of features selected by PCA;
MinPts OPTICS parameter;

p-value threshold for the Engle-Granger test;
Hurst exponent upper bound,;

mean-reversion half-life bounds;

N Otk W

minimum number of average mean-crossing
per year.

To understand whether the impact of such hy-
perparameters were worth the optimisation, we
performed a grid search exploration, paying at-
tention to the sensitivity of an objective function.
In the following, the main steps are reported:

e for each parametrization x in the grid, the
feedback function f(x) is defined as the
mean daily return of the selected pairs over
a two year rolling window, that is

20 daily returng

1
fa) = 720 Z n_selected _pairs;’

t=1

(6)



e in order to consider only the most promis-
ing parametrizations, the analysis is then
reduced on

fmaa; + fmin
fmaz 2 Jminy - (7)

where fq: and fi;, are the maximum and
minimum, respectively, of function f(x);

X ={z € X|f(z) >

e as far as one dimension of x, said h, is con-
sidered (i.e. a single hyperparameter), the
goal is to assess how narrow is the range in
which the best feedback values are found:
hence, for each tuple of values (hy, ho) avail-
able in the grid, we define the range feedback
g(h1, ho) as

g(hl, hQ) = E[f(:c)|ar: € X, $h € [hl, th,
(8)

where " is the value of hyperparameter A in
parametrization x. g(hy, he) represents the
average of function f(x) among parametriza-
tions that have " in the considered range.

By plotting the range [h1, ho] that attains the
maximum over ¢(-,-) and studying how it varies,
we can get a deeper understanding of how much
tuning the parameter may influence the final
result: narrower intervals suggest high sensi-
tivity (selecting the correct value is crucial to
achieve almost-optimal performance), while, in
turn, wider ones suggest low sensitivity (being in
a neighbourhood of the optimal value is already
enough).

The dataset is the S&P 500 daily data from 1st
January 2010 to 12th June 2021 and in Section 6
you can find an in-depth analysis of the clusters
identified during the pair formation step with
the parametrization suggested in [7].

We found that we could divide the hyperparame-
ters into two categories:

e the first one, including the hyperparameters
whose plot is reported in Figure 1, is quite
promising; in fact, optimal areas are usually
narrow and, moreover, their included values
change over the considered period;

e on the other hand, the other ones are charac-
terized by wide areas, generally the whole set
of tested values, suggesting that the exact
value is of little importance to the overall
final result; being them and their plot of
little information, they are here omitted.

Therefore, the hyperparameters grid that will be
considered during the rest of the document is the
one presented in Table 1.
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Figure 1: Hyperparameters optimal areas.

4. Online Optimisation Frame-
work

In order to both have a good feedback frequency
and keep the trading period of optimal length,
we would like to be able to receive feedback as
the positions are opened/closed: in this way, an
expert learning algorithm could find the best
allocation of the available budget to each one of



Hyperparameter Values

name
formation period 360,400,500,600,700,
length (in days) 800,1080

PCA selected fea- 1,2,4,10,14,20

tures

OPTICS MinPts
p-value threshold

2,4,6,8,10,12,16,20
0.03,0.05,0.08

Table 1: Final hyperparameters optimisation
grid.

the considered parametrizations (i.e. the experts)
of the underlying pairs trading strategy. However,
such an idea comes with an obstacle: we have to
keep track of the pairs selected by each expert,
since they will be inherited by the same one in
the next time step. Indeed, such a solution would
bound together the performance of an expert to
its choices in previous time steps, which is outside
of the expert learning setting, where prediction
and evaluation are somewhat independent.

Instead, the online portfolio optimisation frame-
work looks more appropriate: here, we represent
each expert as an asset, with its price variation
due to the performance achieved by the trading
strategy. Even though the presence of transac-
tions costs still bounds an expert to its previous
choices, the effect is here mitigated by comput-
ing the fees in an aggregated way: in fact, where
moved money are only a matter of internal com-
putation (i.e. a position is now managed by
expert A instead of expert B), no fees are payed.
Hence, we are improving with respect to the
expert learning setting without introducing the
complexity of a reinforcement learning approach.

4.1. Dealing with Transaction Costs:

OGDM

In order to keep the transaction costs low, we
chose Online Gradient Descent with Momen-
tum (OGDM, [8]) as the optimisation algorithm,
which provides also some interesting properties:
e it provides good guarantees on the regret,
that is, the difference of log(Wr(-,-)), w.r.t.

the best constantly rebalanced portfolio: it
scales, both theoretically and empirically, as

O(VT);

e it is computationally efficient, scaling well
both on the time horizon and on the size of
the portfolio, with a per-iteration complexity
of ©(N) number of assets.

Moreover, the only assumption needed by the
algorithm is the following basic one:

e there exist two finite constants ¢, €, € RT
such that r;; € [e,€,] with 0 < ¢ <€, <
+o0, Vi € [1,N], Vt € [1,T].

The algorithm is described in the following:

Algorithm 1 OGDM(H,A)

1: input: learning rate sequence H =
{m,...,nr}, momentum parameter se-
quence A = {A1,...,A\r}

2: Initialize zop <« (0,...
(70 %)

,0) and =1 <«

3: fortel,..., T do

4:  Receive r; from the market

5. Store the obtained wealth (z, )

6:  Compute the new bud-
get distribution: Ti+1 —
[ay_, (o0 +mpiy = ¥ (@ — )

7. foriel,...,N do

8: Update expert ¢ pairs portfolio K 141

9: Distribute budget z; ;41 evenly among

the pairs belonging to K; 141
10:  end for
11: end for

Let us notice that [y (y) = arginf ||y — z||3 is
reX

the standard projection of the vector y onto X
and hyperparameter sequences H, A will be con-
stant and optimized through a validation period:
see Section 4.3 for more details.

Indeed, the trickiest part of the algorithm is the
computation of r;, which is reported next:

1
rig =1+ 7 Z Gkt (9)
O kel

where K; ; is the set of the K ; tradable pairs for
expert ¢ at time step ¢ and gy is the percentage
gain on pair k at time step ¢; hence, g;; = 0 if
the amount of money did not change once the
position was closed or the pair was not opened
in the first place.

Notice that we do not force any position to close
before rebalancing, although we do compute g; 1. ¢
with the actual available money (thus, in a cer-
tain sense, as we closed the position just before



rebalancing). Another thing to notice is that
each expert ¢ will distribute its budget x;; uni-
formly over its pairs: this procedure is performed
at rebalance time and may be needed even when
x;t = Tj+1. Finally, in order to keep the compu-
tation straightforward, the update of the budget
distribution provided by OGDM is synchronized
with the update of the pairs in each expert port-
folio.

It is also worth mentioning that the transaction
computation will be slightly different from [8];
namely, here we perform a transaction only if:

e a position is opened/closed;

e the OGDM update involves moving money
from or to an expert which has still open
positions: in fact, upon receiving a budget
increase, the amount received is immediately
invested in open positions; similarly, it may
happen that experts that see their budget
decreased have to partially close open posi-
tions.

4.2. Pairs Portfolio Management and
Trading Strategy

Pairs Portfolio Management. Each ex-
pert has its own portfolio of tradable pairs ob-
tained incrementally from the various pair selec-
tion steps. Specifically, the common policy for
inserting /removing pairs is given in the following:

e at each rebalancing step, the pairs selection
algorithm is run, but only 5 pairs can be
added to the expert portfolio: namely, the
top 5 pairs in order of cointegration p-value
significance (the lower, the better);

e we will call the number of pairs that are
dropped in favor of new pairs turnover and
will cap it at 5;

e the maximum portfolio size is 30 and they
are dropped in order of returns: thus, in the
case of a complete turnover, the dropped
pairs would be those that have generated
the lowest return.

Trading Strategy. The main steps of the
trading strategy are:
1. for each pair, extract the spread time series
of the pairs selection period, that is

Sy = Xy — BY;, (10)

where X; and Y; are the two assets series,
while 3 is the cointegration coefficient;

2. compute its mean p and its standard devia-
tion o;

3. during the trading period, monitor the value
of the spread s;: a position is opened (in-
vesting an equal amount of money on the
two assets) when [s; — p| > 20, while it is
closed when [s; — p| < 3.

Additionally, the strategy employs a stop-loss
threshold: when a pair return goes below —7%,
it is closed and dropped from the expert portfolio.

4.3. Experimental Framework

We will now summarise the main features of
the framework adopted, along with some useful
details:

1. about the generation of the experts: due
to computational issues, not all the possi-
ble combinations of hyperparameters have
been considered; nonetheless, 428/1008 ex-
perts already give an idea of the range of
optimisation;

2. for each expert, the pair selection step
is the one from [7] with the expert own
parametrization, while the trading strategy
is common to all of them, as it is described
in the previous Section;

3. since the time interval between OGDM up-
dates influences not only the frequency of
the OGDM feedback but the whole prob-
lem too, we decided to test different val-
ues for it; specifically, the rebalancing in-
tervals, in days, were selected in the set
{7,14,21, 42,63}, which roughly translate to
a week, three weeks, a month, two months,
three months respectively (due to the ab-
sence of Saturdays and Sundays in the
dataset).

One of the baselines that will be used to assess the
performance of OGDM is the one of independent
experts: it is obtained by splitting the initial
budget to each expert as in OGDM, but here
they trade without the possibility to move money
from one to another. Given this definition, the
experiments run are of two types:

1. for each rebalancing interval, we perform
a validation-test split (25% — 75%) in or-
der to extract the best values for H and
A among [0,0.05,0.1,0.5,1,5,10,20] : then,
the performance of OGDM with the result-
ing parameters is compared with the average
performance of independent experts and the



performance of the two most similar avail-
able experts to the parametrization of |7];
notice that here we do not account for trans-
action costs;

2. we repeat the experiments to assess the im-
pact of considering them: in particular, we
kept the optimal values for H and A found
previously and run the experiments on the
whole dataset; this time, the benchmark is
just the average performance of independent
experts, transaction costs included.

For both of them, we considered the same dataset
as in 3.1, but from 3rd January 2000 to 31st
December 2021.

5. Related Works

The documents available in literature can be
roughly divided into two categories: those apply-
ing machine learning to pairs selection and those
applying it to the trading phase. Starting from
the former, we have the already cited [5], where
machine learning models try to predict whether
an asset will perform better or worse than the
market: then, assets are ranked and pairs are
generated by associating the k-th asset with the
(n-k)-th (thus, the expected best with the worst
and so on). Instead, the concept of cointegration
is expanded in [2] with the introduction of Par-
tial Co-Integration (PCI), a similar relationship
which takes also into consideration a random
walk component in the spread series.

The machine learning applications to the trading
phase include trying to predict the asset trends
(as already reported in, e.g., [5]), dynamically
decide the opening/closing/stop-loss thresholds,
as in [4], or directly the actions to be performed,
as in [9].

6. Exploratory Analysis

Before running the experiments described in Sec-
tion 4.3, some more exploratory analysis have
been conducted. Specifically, we considered the
same 1st January 2010 - 12th June 2021 period
as in Section 3.1 and extracted some statistics
about the clusters and pairs selected by the [7]
pipeline.

6.1. General Aspects

For what general statistics are concerned, the
average number of clusters in each pairs selec-
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Figure 2: Cluster size frequencies across periods:
the majority of the clusters has 2 or 3 elements,
exponentially decreasing as the size increases.
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Figure 3: Two examples of percentage of clusters
w.r.t. maximum number of elements with same

GICS code.

tion period is around 100, while their average
size is stable at around 2.7 elements per cluster.
Moreover, the number of noise points in each
period (i.e. the points that were not identified as
belonging to any cluster) was almost half of the
dataset, namely around 200 elements per period.
We can further explore the size of the clusters by
plotting the distribution of the sizes, an example
of which can be seen in Figure 2: the most promi-
nent column is the one for size 2, representing
almost half of all the clusters, while the distribu-
tion steadily decreases as the size increases.

6.2. Consistency Analysis

In order to assess the consistency of the clusters,
the first and most trivial analysis is related to
the GICS classification: it is an industry taxon-
omy to classify companies on the basis of their
sector, that is, same GICS code means same in-
dustry group. Hence, in Figure 3 we can see two
meaningful examples of the percentage of clus-
ters w.r.t. their maximum number of elements
with the same GICS code inside them.

What we find out is that bigger clusters tend to
be more consistent with the GICS classification,
having the highest bars in the right part of the
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graph, so more elements with a common GICS
code. On the other hand, smaller clusters have
a more uniform-like distribution.

Since OPTICS identified small clusters, the dif-
ference between a cluster and the pairs gener-
ated from it is narrow, at least most of the time.
Therefore, we thought about looking for tickers
(i.e. stock identification codes) that were in the
same cluster most of the times. That is, if clus-
tering actually helps and the relationships found
are not spurious, it should consistently group
together similar tickers. Thus, some definitions
will be useful going forward:
e pair strength: number of times two assets
were clustered together;

e cluster time: number of times an asset be-
long to a cluster (with at least two elements);

e consistent pair: (z,y) is a consistent pair
from x’s point of view if

PairStrength(x,x)
2 Y

(11)

where x and y are two assets; this means
that we consider z and y consistent w.r.t.
x if at least half of the time x belongs to a
cluster, also y is in the same cluster: thus it

is not a symmetric relationship;

PairStrength(x,y) >

e symmetric (consistent) pair: when both
(x,y) and (y,x) are consistent pairs.

For example, assets #266 and #597 are in a sym-
metric pair, since their pair strength is greater
than both their 0.5-ClusterTime, as can be seen
from Figure 4.

Let us acknowledge that such a measure of con-
sistency is subject to outliers: the most trivial
example is when an asset is clustered just a single
time. In order to take care of such possible source
of noise, we took a look at the pair strength dis-
tribution for consistent pairs: in Figure ba we
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Figure 5: Consistent vs Symmetric consistent
pairs strength distributions.
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can see that these “outliers” are actually a third
of the total. Moreover, we can notice that the dis-
tribution is decreasing until 8, but then it starts a
singular behaviour. Plotting the same graph but
for symmetric pairs, which can be seen in Figure
5b, we understand that a lot of them are in the
[8,16] interval: thus, they generate the unusual
growth seen in the previous graph. Notice that
we were exactly looking for these pairs: assets
that are not only frequently clustered, but also
often with the same neighbour (at least one).
Therefore, the next question arises naturally: are
symmetric consistent pairs (which should be the
most similar pairs from a structural point of view,
as suggested by the clustering) also the selected
pairs? Unfortunately, they were not, as can be
seen at the end of Section 6.3.

6.3. Selected pairs Analysis

In Figure 6a the pairs strength frequencies for se-
lected pairs is shown: it is a similar distribution
to the one shown in Figure 5a, although we miss
the anomalous region after 8, since symmetric
pairs are almost never selected. Therefore, it
seems that clustering helps in reducing the com-
putational effort required to search for promising
pairs, indeed, but the cointegration test, along
with the other rules, are still crucial to obtain
robust mean-reverting spread series.
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Figure 7: Total wealth obtained in the test set by
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ancing interval and compared w.r.t. the indepen-
dent experts and the two most similar experts
to the suggested parameters of [7].

7. Experimental Results

7.1. Transaction Costs-Free

In Figure 7 we show the cumulative wealth ob-
tained by OGDM on the test set, with the
parameters selected on the validation dataset,
along with two baselines: the first one is the
sample mean obtained from the independent ex-
perts from the grid, while the second one are
the two closest available experts to the trad-
ing scenario proposed in [7]. For what con-
cerns the latter, the suggested parametrization of
[p-value,PCA features,MinPts,formation period]
would be [0.05,4,2,520]: in order to provide a
fair comparison with respect to OGDM, we will
consider expert 48 with [0.03,4,2,500] and ex-
pert 374 with [0.05,4, 4,400] as approximations,
since they are the most similar ones inside the set
of experts considered for OGDM application. Let
us observe that the algorithm was not initialized
again once the test started, in order to stick to a
realistic scenario.

Notably, as depicted in Figure 7, performance

(a) 7 days OGDM
best params: [1, 5]

(b) 14 days OGDM
best params: [0.05, 10]
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Figure 8: Total wealth in the validation set.

varies significantly on the rebalancing interval ba-
sis: in fact, while good optimization was achiev-
able for 7-14-63 days, 21 and 42 yielded almost
no improvement over the independent approach.
One of the reasons is that, along with the rebal-
ancing interval, the underlying problem changes
too: indeed, allowing pairs to be traded for
a longer period of time may allow for greater
gains/losses, while diminishing the frequency of
the OGDM updates may result in missing trading
opportunities. These two facts are in a trade-off,
thus exploring the rebalancing interval impact
was one of the purposes of this research.

Even though [7] parameters performed poorly
during the test set, they would have been a strong
choice during the validation period: as we can see
from Figure 8, expert 48 yields the best results,
except for (a) where it is still the best baseline.
This fact remarks the importance of a dynamic
strategy: the best pairs trading parametrization
changes over time, as already reported in Sec-
tion 3.1, thus trying to adapt as information is
available yields better long-term gains.

7.2. Budget Distribution Analysis

Another interesting quantity that can be ex-
tracted form OGDM results is the budget distri-
bution, that is, how money is distributed among
experts during the considered time span. In order



. 268

402
1.0

0.0
o

0.2 n}’m\“w '\‘0
0.0
10 'I,Q\’q

Q
3@ \9’3\“‘a 3\01 \3\0 WO i

A
,5\0\'\ \‘\,33\09\3\0"\ \Q("\ \0’5

(a) 21 days interval. (b) 63 days interval.

Figure 9: Budget distribution for the transaction
costs-free experiments (top 10 heaviest experts).
Notice how (b) oscillates between two experts
after the first time steps.

to provide a useful visualization, since plotting
the budget line of each expert would be unfeasi-
ble, we decided to show only the 10 experts with
the largest weights (approximately 2.5% of the
total) at each time step. In Figure 9, we show
the main two kinds of behaviour:

e the expected, chaotic distribution shown in
Figure 9a, where we chose not to report the
legend due to its dimension: in fact, a lot
of different experts enter and exit the top
10, suggesting that the algorithm is rapidly
adapting to the environment feedback; how-
ever, the overall distribution is still quite
uniform, thus the gains are similar to the
independent baseline;

e the other rebalancing intervals tell a different
story: for example, in Figure 9b we report
the results for 63, where OGDM is able to
converge to a specific set of well-performing
experts. However, the budget allocation de-
generates to an oscillatory behaviour, result-
ing in moving the whole budget alternatively
from an expert to another one.

In order to better understand such a swinging
behaviour, in Figure 10 we report the cumulative
wealth of OGDM alongside the main experts
where the budget was allocated. Then, we can
understand that the budget was generally split
among two experts: one that performed way
better than the average and one that is subject
to less variance but is actually below average.

Hence, we are likely facing some kind of over-
fitting: in fact, the three configurations share a
high value of the momentum parameter, result-
ing in weighing the first updates way more than
the following ones. Despite this undesired phe-
nomenon, the performance on unseen data were
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Figure 10: Total test wealth obtained by OGDM
with best parameters and 63 days of rebalancing
interval, compared with the average of indepen-
dent experts and the main experts involved.

good, with all three parametrizations performing
quite better than both the average and the [7]
suggested parameters.

7.3. Experiments with Transaction

Costs

In the following tests, parameter v took the
values [0.001,0.005,0.01], which approximately
translate to low, medium and high transaction
costs environments.

The cumulative wealths from the experiments
with transaction costs are reported in Figure
11: as we can see, both the naive independent
implementation and the OGDM implementation
would suffer in a real world scenario. Due to com-
putational issues, it was not possible to obtain
the curves of the experts similar to |7]: still, we
can safely assume that introducing transaction
costs would not improve the performance with
respect to the independent average.

Despite the difficulties when dealing with trans-
action costs, let us remark the good performance
of OGDM in Figure 11le: despite the additional
price of the optimisation (i.e. more transactions)
there is a clear improvement in the profit when
transaction costs are low.

8. Conclusions

We provided an extension to the work of [7] by
analyzing which hyperparameters could be suit-
able for optimisation in a daily stock market con-
text, namely, the S&P 500 one. Furthermore, we
analysed the clusters obtained by the default [7]
parameters, discovering that selected pairs were
not consistent with the clustering. Then, we ac-
tually performed the optimisation of the most
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Figure 11: Total wealth obtained on the whole
dataset by OGDM with best parameters, divided
by rebalancing interval, for different costs of
transaction and compared w.r.t.
of independent experts.

the average

suitable parameters through the OPO framework
and the OGDM algorithm: the suggested param-
eters from |7] showed to be suboptimal for each
one of the rebalancing intervals tested, while
OGDM managed to outperform both the sug-
gested parameters and the average independent
expert when transaction costs were not involved.

Moving on to the experiments that included
transaction costs, we found that the whole strat-
egy suffers: despite OGDM had the worst perfor-
mance lines, possibly due to its increased transac-
tion rate, the results obtained with independent
experts are far from generating profit too.

Many different directions could extend the pre-
sented work: starting from the expert gener-
ation, some metric of similarity could be em-
ployed to apply OGDM on a restricted selection
of parametrization, possibly discarding similar
ones in terms of both performance and hyper-
parameters used. The underlying data play a
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leading role too: allowing pairs to be more com-
plex than two assets (e.g. an asset vs the other
components of its cluster) may identify more
stable relationships. A similar idea was already
proposed in [3], thus applying our framework on
top of their procedure may yield good results.
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