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1. Introduction
In July 2021 the European Commission pre-
sented a new package of proposals called Fit for
55 highlighting updated strategies to reach the
ambitious goal of carbon neutrality by 2050.In
particular, the transport sector is at the core of
European policies as it accounts itself for 25% of
all green house gases emissions.
To reach this goal, the direct electrification of
road vehicles can contribute to curb GHG emis-
sions. Such paradigmatic change should be sup-
ported by the integration of transport and elec-
tricity sectors. Such sector coupling, by means
of smart charging strategies such as Vehicle to
Grid, can provide the energy systems with the
flexibility required by high variable renewable
energy penetration scenarios. In order to design
the most effective integrated solutions the plan-
ning phase is required. Such phase is supported
by energy system modelling tools that require
time resolved mobility and charging profiles to
allow a thorough integration between the de-
mand and supply sides. Yet, providing mobility
and charging profiles to energy system modelling
framework allows to investigate which strategies
or scenarios are more beneficial for the grid, al-
leviating the surge of electricity demand due to

transport electrification. The generation of mo-
bility and charging profiles usually requires em-
pirical data that is rarely available which reso-
lution and spatial coverage might be very lim-
ited. Simulation tools are suitable to generate a
wide variety of both mobility and charging pro-
files starting from publicly available datasets.
The goal of this work is to revise the major
tools available in the scientific literature and test
the effect of implementing a refined vehicle con-
sumption model on a selected framework output.
The tool will be tested on other structural im-
provements in order to increase its accuracy.

2. Literature review
A review of the state-of-art of mobility profile
generation tools is performed to assess and im-
prove the modelling detail of the consumption
estimation methods. Two kind of approaches
have been followed in developing mobility time-
series models: (i) processing large real-world
transport datasets to simulate user behaviour as
series of events; (ii) creating curves with bottom-
up stochastic simulators starting from aggre-
gated mobility data.
The first approach mostly uses processes based
on the Markov chain theory to replicate highly-
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resolved chains of events requiring abundance
of trip records, and generating output with
high time and geographical resolution. This
extremely data-rich procedure hinders scaling
adaptation, limiting the application to countries
for which datasets are not available. Fisher et
al. [2] adopted an inhomogeneous Markov chain
approach to model user daily travels. These
are derived from a German institution database
aiming to produce electric vehicle charging pro-
files. The same data source is the basis on which
Gaete-Morales et al. [3] built an open-source
tool for generating stochastic mobility profiles.
The model, called Emobpy, generates trips by
means of Monte Carlo simulations. The mod-
elling framework is able to estimate trip con-
sumption thanks to a vehicle dynamic simulator
applied to customised driving cycles that are, in
turn, derived from the World-wide harmonized
Light duty Test Cycle (WLTC).
The second approach focuses on reproducing
randomness of user habits, but losing the
activity-rich sequence of mobility events. Av-
erage trip features are randomized and allo-
cated to users according to general time habits.
Decoupling behavioural modelling from event
chains allows to extend the methodology to
countries with little data availability. RAMP-
mobility, introduced in Mangipinto et al. [4],
grounds on a stochastic core engine to gen-
erate Europe-wide mobility and charging pro-
files. Stochastic bottom-up generation of pro-
files starts from randomized average trip features
assigned to user-specific time windows, from
which consumption is estimated with an em-
pirical correlation. A thermal correction, func-
tion of the external temperature, is applied to
vehicle consumption, and charging profiles are
produced from mobility curves considering cus-
tomizable charging probabilities and strategies.
This model is selected for its wide applicabil-
ity, since it requires general mobility input data.
Moreover, it is released open-source and it has
been developed by SESAM group of Politecnico
di Milano. An in-depth analysis pointed out
some limitations in terms of vehicle consump-
tion representation and the sole applicability to
electric powertrains. In addition to that, some
amendments are applied to better characterize
the mobility patterns. Moreover, the validation
is extended to different case studies in order to

corroborate the validity of absolute value out-
puts going beyond the already validated dimen-
sionless profiles. Finally, the modelling frame-
work will be tested in terms of effects of increas-
ing the spatial resolution and the detail of vehi-
cle representation.
Existing vehicle dynamic models show similar-
ities in regard to the vehicle dynamics module,
differing mainly for the thermal load estimation.
The traction power required in each time-step
to perform a trip is computed considering equa-
tions accounting for aerodynamic losses, rolling
resistance, road grade and inertia forces. Vehicle
Consumption Assessment Module (VCAM) [5] is
the selected model to improve the technological
detail of RAMP-mobility and accurately char-
acterize its vehicle consumption representation.
VCAM is an open-source high quality model, de-
veloped by SESAM group of Politecnico di Mi-
lano. The framework is able to simulate both
electric vehicles and internal combustion engine
vehicles consumption, by considering input driv-
ing cycles. For this reason, the refinement of
trip-specific consumption in RAMP-mobility re-
quires the generation of customised driving cy-
cles (DCs) to describe the driving session, given
the input variables: trip duration and average
speed. These can be computed through the syn-
thesis of specific DCs from large trip recordings
using Markov chain methods, or starting from a
reference driving cycle and adapting its sections
to customised trips. This second methodology
is chosen to develop a new Driving Cycle Gen-
erator tool.

3. Methodology
3.1. Driving Cycles Generator
A specific tool to generate driving cycles (DCs)
is developed to create realistic driving patterns
given two input parameters: average speed and
trip duration. The methodology followed starts
from the World-wide harmonized Light duty
Test Cycle (WLTC) in Figure 1, and through
a cut and paste of the reference cycle sections
generates custom DCs. The produced profiles
are generated in one of the following driving
environments: Urban, Urban-ExtraUrban and
Urban-Highway. The different types are simu-
lated according to input velocity and average
speed of the reference urban section through
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Figure 1: WLTC reference driving cycle di-
vided into three sections: Urban, ExtraUrban
and Highway.

the Urban Share reported in Equation 1. An
overview of the methodology followed is reported
in Figure 2, highlighting the insertion of initial
and final urban in all DCs to simulate smooth
driving behaviors. Transitions are added to limit
deceleration values at the end of each section,
and profile rescaling is applied to match the in-
put average speed.

US =
v − vextraurban

vurban − vextraurban
(1)

Urban until total time

Urban-Extra Urban

Initial and final
 urban

Central extra urban
time

Transitions +
rescale

Central highway time

Average velocity

Comparison with
reference velocity

Initial and final urban

Total time

Urban-Highway Urban

Figure 2: Conceptual scheme of the Driving Cy-
cle Generator tool functioning.

Examples of the produced driving cycles are
reported in Figure 3 where the different Ur-
ban Shares affect the length of initial and fi-
nal sections. An exception is highlighted in the
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Figure 3: All possibilities of driving cycles gen-
erated.

last driving cycle where a different approach is
adopted for the central highway section to avoid
unrealistic start-and-stops. Velocity values are
selected according to a transition probability
matrix derived from the WLTC extra-high sec-
tion, and which contains, for each value of ve-
locity, the probability to have another value in
the following time step; this process recalls the
one used in Markov chains.
The generated driving cycles have features which
make them realistic. Firstly, they are character-
ized by soft starting and ending sections; sec-
ondly have final velocity always set to 0 km/h;
then the highway environment has never unreal-
istic start-and-stops, and lastly the acceleration
and deceleration are controlled and limited to 2
m/s2.

3.2. RAMP-mobility improvements
RAMP-mobility is composed of two modules:
mobility and charging. The examination of the
first one pointed out a simplified estimation of
vehicle consumption compared to the approach
found in the literature. This work is focused
on the implementation of a trip specific con-
sumption, and on the substitution of the em-
pirical correlation with a vehicle dynamic sim-
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ulator as consumption model. RAMP-mobility
defines trips in time domain, hence to apply the
trip specificity an average trip speed is associ-
ated through the introduction of empirical dis-
tributions, assessed from a trip records database.
Therefore, each trip is linked to a specific driving
cycle generated with the developed tool using
the same couple of key features: duration and
average speed. Once the trip modelling is im-
proved, the associated driving cycle is simulated
in VCAM, and an average consumption value
is obtained. The coding implementation is op-
timized adopting double-entry consumption ta-
bles, previously computed, from which RAMP-
mobility selects values of average power at given
couples of parameters.
Since minor inconsistencies were found in the
model, other two structural corrections are in-
troduced: functioning windows complementary
definition, and skipped distance recovery. Func-
tioning windows are time frames in which mo-
bility events occur, and are divided in Main and
Free Time to highlight daily main hours for trip
occurrence. Only Free Time windows extremes
are defined applying the input variability, while
Main windows are mirrored; this correction pre-
vents voids and overlapping periods. Distance
recovery is introduced to solve incoherence be-
tween average daily distance given as input and
simulated one. This is caused by the stochas-
tic occasional use variable, that models the con-
tingency of driving in a day. The mechanism
introduced reassigns not-driven distance of Free
Time windows to Main periods respecting the
total average distance.
For what concern charging module strong mod-
elling uncertainties, hard to be tackled, are de-
tected in the implementation of charging prob-
abilities, which aim to model the infrastruc-
ture availability and the user plug-in decision.
The infrastructure availability is modelled with
a piecewise function, which is improved in this
work adding weekend specific time parame-
ters. An additional output is added in RAMP-
mobility charging module, to determine connec-
tion time-series, which are fundamental to ana-
lyze the potential of V2G technology.

4. Case studies
The impact of the improvements have been as-
sessed applying the model to two case studies:

Italy, for which the majority of mobility data
are updated, and The Netherlands, for which
default data are slightly adjusted. New regional
data sources from Istat are used to shape Italian
mobility. Most relevant upgrades are the lower
daily average distance and the six-segment ve-
hicle fleet representation. The processing of a
commuting trip register produces the duration-
velocity relationships used to link trip features;
this new input is also extended to other Eu-
ropean countries. Three steps are applied to
show the effect of each improvement: Mobility
behaviour in which functioning windows defini-
tion and distance recovery are introduced; Trip-
specific consumption that implements the trip
linkage with DC; and Vehicle consumption model
applying VCAM to each DC.

5. Results
The results for Italy, introducing the described
improvements, are compared in terms of aver-
age mobility profiles and transport energy de-
mand. In Figure 5, the impact on the demand
for each day type is reported highlighting an
overall increase of 30% with respect to Reference
case. This rise is caused by the distance recov-
ery mechanism and is mitigated by the new con-
sumption evaluation method, which is proved to
slightly reduce the power demand. The less evi-
dent effect on weekends, visible also on mobility
profiles in Figure 4, is a consequence of a lower
distance recovery, caused by different occasional
use values. The reduction of energy demand is
however compensated by higher profile peaks for
weekdays. The introduction of trip specificity
not coupled with an appropriate consumption
model, produces a further 60% increment, prov-
ing that transport demand is highly sensible to
the consumption evaluation method.
Analyzing the number of users simultaneously
connected to the grid derived from the improved
charging module, user charging behaviour is an
important limit for the V2G implementation re-
ducing the available storage, while the impact
of a varied infrastructure availability during the
day is less evident. However, infrastructure
availability has to be carefully modelled since it
causes charging coincidence and creates spikes
in the profiles. This analysis has been carried
out without changes of the Italian infrastructure
availability and of the behavioural function, thus
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Figure 4: Profile comparison of all the imple-
mented cases.

Figure 5: Comparing total transport demand of
all the implemented cases.

the accuracy of this conclusion is limited and
could be further investigated.

6. Model quality assessment
and sensitivity

The updated RAMP-mobility has been assessed
to evaluate its quality in both mobility and
charging modules.

6.1. Mobility module
Measured mobility profiles are not available
hence the accuracy of this output is assessed con-
sidering aggregated data. The first approach,
followed for European countries, refers to an-
nual vehicle kilometers derived from Eurostat
databases of passenger kilometers. A range of
distance is determined considering extreme val-
ues of car occupancy rate, and the results re-
ported in Figure 6 are in the selected range
for most countries. The second approach, used
for Italian mobility, adapts RAMP-mobility to
model conventional vehicles from which the an-
nual liters of petroleum consumed are computed.
This value is compared with measured one de-

Figure 6: RAMP-mobility annual vehicle kilo-
meters for selected countries and the Eurostat
minimum and maximum values.

rived from oil bulletins, and a good accuracy is
reached with national relative error of 12%.

6.2. Charging module
The charging module has been assessed with
ElaadNL measured data for The Netherlands,
collecting information regarding charging trans-
actions. The collected data have been pro-
cessed by Beltramo et al. [1] to generate the
yearly charging profile. RAMP-mobility input
data have been corrected accordingly, to simu-
late conditions similar to the context of empiri-
cal data. The quantitative parameters selected
to estimate the accuracy of the model are two
statistical values: the Normalized Root Mean
Square Error (NRMSE) and the average Load
Factor (LF), defined in Equations 2 and 3. The
NRMSE is used to evaluate the difference point
by point between simulated and measured data,
and is applied to both the charging time-series
and the load duration curve. The average LF
represent the variability inside the charging de-
mand between daily peak power consumption
and daily average one, highlighting the differ-
ences in profile shape. It is computed for both
profiles considering an hourly-resampled time-
series to smooth possible short steep peaks, and
the comparison is assessed in terms of relative
error.

NRMSE =

√∑Nt
x (Pmodel(x)−Pmeasured(x))2

Nt

Pmeasured,max − Pmeasured,min
(2)

LF =

365∑
d=1

Paverage(d)

Ppeak(d)
.
1

365
(3)

Different cases have been analyzed in relation
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Figure 7: Annual mobility energy for the simu-
lated cases for Italy.

to the charging probability parameters, intro-
ducing the improvement concerning the specific
Weekend function. These parameters have been
tuned to reach better results concerning the val-
idation metric, which have then been compared
with those reported by Mangipinto et al. [4],
finding similar NRMSE, and a 10% decrease of
the LF error. A sensitivity analysis is performed
using the same metric to assess the impact of
variability parameters. Only weekend occasional
use modify the profiles due to the incomplete
distance recovery.

7. Model testing
Further analysis aiming to test input data de-
pendence and modelling resolution are per-
formed to provide additional insights for future
works. The most impacting data is the driving
distance, that causes an important variation of
demand if changed. A six-segments vehicle fleet
characterization has been tested, and two con-
clusions have been drawn. Firstly, only two ref-
erence classes are needed to represent the whole
country fleet since consumption of different seg-
ments are clustered into two groups as displayed
in Figure 7. Secondly, with the actual vehicle
share the impact of larger vehicles is negligible
and the adoption of a single-segment fleet causes
marginal errors lower than 5% if a Medium ref-
erence vehicle is selected.
The availability of regional datasets is finally ex-
ploited to test the effect of a higher geographi-
cal resolution. Italian regions are simulated and
compared with annual regional petrol consump-
tion values; the same approach is followed dis-
tributing the demand of the country simulation
according to population weights. The single re-
gion approach leads to a higher error around
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Figure 8: Comparison of annual petrol consump-
tion.

19%, compared to 11% for the national simu-
lation, mainly due to Lombardia and Campania
as showed in Figure 8. In conclusion, the worst
overall accuracy and the higher computational
effort result in a limited utility of the regional
characterization.

8. Conclusions
The updated RAMP-mobility developed with
this work solves some inconsistencies of the orig-
inal framework as the definition of functioning
windows and the inconsistency between input
and output average daily distance. Therefore,
a more accurate and realistic model is created,
and the coupling with the consumption model
VCAM allows to increase its technological level
of detail. The global impact of these variations
produces an annual transport energy demand
30% higher than the Reference case, thus the
consumption estimation has to be carefully mod-
elled seen the influence on the aggregated mobil-
ity profiles.
Input data has been proven to have great lever-
age on RAMP-mobility output, thus finding re-
liable sources and refining their processing en-
riches the quality of the results. This could be
object of further investigation for other Euro-
pean countries, together with the charging mod-
ule as some limits have been found during its
analysis. Efforts to improve charging probabili-
ties are necessary in future works seen the high
level of uncertainty in their definition, and a
country detailing should be considered, adopting
a common method to determine these values.
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Abstract

In the context of decarbonization strategies, the electrification of the transport sector is
crucial to reach the announced European goals in the framework of the European Green
Deal. Sector coupling is considered a solution to reduce emissions and to provide the
flexibility required by an energy system characterized by high share of renewable energy
sources. To accurately consider the transport sector load, profiles describing its influence
on the energy system are needed. However, seen the limited accessibility of measured
data concerning electric vehicles load curves, simulated hourly demand profiles are cru-
cial. In particular, realistic curves with high temporal and spatial modelling resolution
are required to plan grid capacity expansion and to optimize the energy dispatching.
Therefore, the open-source RAMP-mobility model, which simulates mobility and charg-
ing profiles for 28 European countries, has been analyzed in detail and improvements have
been proposed to increase the technological detail of the modelling structure. The key en-
hancement introduced is the coupling with the vehicle dynamic simulator, VCAM, for the
estimation of trip-specific consumption. The development of a Driving Cycle Generator
tool is required to characterize trips with realistic driving patterns, obtained from WLTC
reference cycle. The updated RAMP-mobility model is compared with different set of
measured data to test both mobility and charging modules. A better degree of accuracy
is reached, with a higher precision of produced results with respect to the original model.
Modelling insights are deduced highlighting the importance of vehicle consumption es-
timation, which varies considerably the annual transport demand. Moreover, regional
characterization and vehicle fleet detailing do not affect the transport demand, hence to
an increased model complexity does not correspond variation of result. In conclusion, the
updated model produces a grid connection time-series which is used to assess the impact
of user behavior on Vehicle to Grid (V2G) technologies.

Keywords: Electric vehicles, Mobility time-series, Charging time-series, Energy system
modelling, Driving cycles, Vehicle consumption models.





Sommario

Nel contesto delle strategie di decarbonizzazione, l’elettrificazione del settore dei trasporti
è essenziale visti gli obbiettivi annunciati dall’Unione Europea con il Green Deal. L’ in-
terconnessione dei settori economici è considerata una soluzione per ridurre le emissioni e
creare la flessibilità richiesta in un settore energetico caratterizzato in ampia parte da rin-
novabili. Per poter considerare l’impatto dei trasporti è necessario determinare profili di
carico che ne descrivano l’interazione con il sistema energetico. Tuttavia, vista la limitata
disponibilità di dati empirici, è fondamentale avere modelli per simulare la domanda oraria
di un insieme di veicoli elettrici. In particolare sono necessari consumi realistici ad alta
risoluzione temporale per pianificare lo sviluppo della rete e ottimizzare la distribuzione
dell’energia. Pertanto il modello open-source RAMP-mobility, capace di simulare la do-
manda di mobilità e di ricarica di una flotta di veicoli elettrici in 28 paesi Europei, è stato
analizzato e migliorato per aumentarne il dettaglio tecnologico. L’avanzamento principale
introdotto in questa tesi è l’utilizzo di un modello di simulazione dinamica del veicolo,
VCAM, per stimare il consumo energetico di ogni spostamento. Per rappresentare realis-
ticamente gli spostamenti, è stato sviluppato uno strumento per la creazione di percorsi
di guida specifici a partire dal driving cycle di riferimento WLTC. La nuova versione di
RAMP-mobility è stata confrontata con dati empirici per valutarne le capacità di rap-
presentazione della domanda di mobilità e di ricarica. È stata raggiunta una migliore
accuratezza, e i risultati prodotti hanno dimostrato una maggior precisione rispetto alla
versione originale del modello. Conclusioni di tipo modellistico sono state tratte dalle
simulazioni effettuate evidenziando che il maggior dettaglio tecnologico di consumo ha
un impatto significativo sulla domanda di mobilità. Caratterizzare regionalmente il mod-
ello e rappresentare più nel dettaglio i veicoli di una nazione non variano la domanda di
mobilità, pertanto al modello più complesso non corrisponde una variazione dei risultati.
Infine è stato prodotto un ulteriore profilo che descrive le connessioni alla rete elettrica,
necessario per valutare l’impatto del comportamento degli utenti sulla tecnologia V2G.

Parole chiave: Veicoli elettrici, Profili di mobilità, Profili di ricarica, Modellazione di
sistemi energetici, Driving cycles, Modelli di consumo per veicoli.
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Introduction

The context of this work is the transport sector, in particular the electric mobility seen
its fast growing. Measured databases for European countries on electric vehicle mobility
demand are not available, as this technology is still in an early adoption phase. For this
reason, tools able to describe how the driving population behaves in different European
countries are of major importance.

With this thesis work the authors aim to improve the modelling accuracy of the transport
sector, allowing the estimation of more precise electric vehicles load profiles. The selected
open-source model is RAMP-mobility, which is characterized by high temporal detail for
28 European countries. It relies on traditional mobility data, time-related user habits,
population and vehicle fleet composition. The input data refers to traditional mobility,
since these are more representative of the whole drivers behaviour compared to electric
mobility data. Therefore, the electric vehicles drivers’ are assumed to behave similarly to
those of conventional ones. The produced output consists of mobility demand time-series,
simulating the power supplied to the EV battery, and the related charging demand based
on customizable parameters concerning the charging process.

Load curves describing electric vehicles charging demand are of major importance for en-
ergy system models to analyze the impact of transport on the power sector. The coupling
of transport sector to the one of energy is important to allow its decarbonization, as it ac-
counts for a large share of European greenhouse gases emissions. Additionally, significant
advantages could be derived from this integration in terms of further flexibility offered to
the grid through smart charging strategies and Vehicle to Grid (V2G) technologies. Grid
connection time-series is added as output of the charging process to assess the impact of
charging probabilities on grid flexibility operations.
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The structure of this work is here reported:

• Chapter 1 describes the European context focusing on the transport sector and its
coupling with the energy sector.

• Chapter 2 provides a literature review of electric vehicles load profiles modelling and
vehicle consumption models to assess how other works deal with vehicle consumption
estimation, and which improvements could be introduced in RAMP-mobility.

• Chapter 3 presents the methodology followed to upgrade RAMP-mobility structure
and to develop a new tool for real-world driving cycles generation necessary to
improve the technological detail of RAMP-mobility consumption model.

• Chapter 4 presents two case studies describing the data adopted to apply RAMP-
mobility simulating Italy and The Netherlands.

• Chapter 5 is dedicated to the presentation of the results. Firstly, examples of the
driving cycles generated with the tool are illustrated. Then, the step-by-step im-
plementation of the improvements to RAMP-mobility is showed for Italy and The
Netherlands, comparing steps in terms of mobility time-series and energy demand.
Finally the charging results for the grid connection analysis are reported.

• Chapter 6 presents the methodology and the results of the model quality assessment
of the updated RAMP-mobility, for both mobility and charging profiles.

• Chapter 7 assess the impact of input data changes on mobility profile and annual en-
ergy demand, with particular attention to the detail of the vehicle fleet composition,
and lastly the effect of increased geographical resolution is analyzed.

• Chapter 8 concludes the work highlighting the main outcomes and discussing the
possible future developments of the research.

An overview of the entire work is reported in Figure 1 highlighting the main steps followed.
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1| The Context

1.1. The transport sector in the European framework

In July 2021 the European Commission presented a new package of proposals called Fit for
55 containing the strategies to make the European Green Deal a reality and achieving the
goal of world’s first climate-neutral continent by 2050. During the presentation speech,
the President of the European Commission Ursula von der Leyen, as already declared
in 2019 with the Green Deal [7], stressed out the commitment to reach a decarbonized
economy:

“The fossil fuel economy has reached its limits. We want to leave the next generation a
healthy planet as well as good jobs and growth that does not hurt our nature. The
European Green Deal is our growth strategy that is moving towards a decarbonised

economy.” [8]

In particular, the transport sector is at the core of European policies since alone it accounts
for 25% of all EU greenhouse gasses (GHG) emissions, second only to power generation [6].
The Fit for 55 includes different measures to tackle directly the transport sector and its
rising emissions. In this package of proposal the introduction of a new emission trading
system specific for this sector is highlighted and the ambitious target of reducing the
emissions of new cars by 55% in 2030 and 100% by 2035, compared to 2021 values, is
set. Consequently, all new cars in 2035 will be zero-emission and electric mobility offers
a significant contribution in this direction. This radical change will require an important
expansion of the charging infrastructure in the coming years to ensure that electric vehicles
reach the same flexibility of use of fuel-powered ones. This expansion will bring huge
business opportunities, but also critical technical challenges. [8]

Focusing on passenger cars, they are responsible for about 12% of all GHG emissions in
the European Union, meaning that switching sales of new vehicles to fully electric ones
is crucial to meet the decarbonization targets for the transport sector. Looking at sales
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trends, EVs are gaining market shares faster than previously expected, reaching in Europe
the 10.5% of new sales and dropping the average CO2 emission of new cars by 12%. [34]
This soaring will allow car-makers to drop their production costs by exploiting scale
effects and developing dedicated platforms optimized for BEVs production. According
to a BloombergNEF study [4], all vehicle segments will reach price parity by 2026; even
considering the worst raw material price scenarios, the projections are shifted onward of
no more than two years, leading to an affordable electric mobility well before than policy
requirements. The economic driver is even more impacting if the total costs of ownership
are considered. EVs have indeed much lower operating costs, leading to benefits for drivers
with higher annual mileage, that can anticipate the forecasted transition based on price
parity considerations. In this context important car-makers such as Volvo, Ford Europe
and General Motors have already pledged to phase out internal combustion engines by
2035, followed by Volkswagen and Peugeot willing to end investments in conventional
vehicles and the development of new models. [35]

1.2. Transport sector coupling

Seen the major role of the transport sector in GHG emissions, its coupling is fundamental
to allow the reduction of pollutants. This means demand electrification and production
of clean alternative fuels, as green hydrogen or more generally e-fuels, connecting the
transport sector to renewable energy sources. Considering electric vehicles, the expected
increase of EVs market share in the coming years points out the need to satisfy the con-
sequent increase in electricity demand through renewable energy sources (RES) to reduce
the CO2 emissions, thus promoting the phase out of conventional power plants. However,
RES supply is affected by intermittent renewable resources which increase the difficulties
in managing grid stability and cause challenges in keeping the balance between electric-
ity demand and supply. Traditionally this equilibrium is controlled with a portfolio of
different power plants, which provide the required flexibility through frequency control
of electric machines, that is more complex to be managed with RES generators and not
economically viable. Therefore, with the increase of renewable share, new kind of flexi-
bility measures based on fast storage solutions are needed to avoid mismatches between
demand and supply and consequent blackouts. [23]

As mentioned, electric vehicles diffusion lead to the increase of electricity demand, but
can also be beneficial for the electric grid by providing a large storage capacity. This could
be used to increase the flexibility of the system enhancing the so-called Vehicle to Grid
(V2G) concept. Vehicles are parked most of their time for about 10 hours a day, while
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the charging window is limited to a much shorter time, hence offering significant elasticity
in decoupling the transport demand from the electricity one. Smart charging strategies
could exploit this flexibility maximizing the storage potential and providing services like
local energy balance, frequency control and reserve power to the Transmission System
Operator (TSO) that controls the grid. To take advantage of this technology suitable
equipments are necessary, as telemetry and two-way communications, together with a
massive number of aggregated users to achieve the required scale [23]. V2G technologies
allow for bi-directional energy exchange between vehicle batteries and the grid, which can
be managed in relation to renewable power generation, and significantly reduce the level
of curtailment [32]. Despite these advantages, V2G operations through fast charging and
discharging events could create degradation problems on EVs batteries, hence introducing
the need of a trade-off between flexibility services offered to the system and battery
lifetime. [37]

To understand how electric vehicles and the power grid could be coupled together through
V2G technology and smart charging strategies, an accurate representation of mobility
profiles and the related charging demand is required. Starting from real input data and
through a precise estimation of vehicles consumption, the mobility pattern of a user sample
can be modelled. Knowing the mobility demand it is possible to manage the charging
events for flexibility purposes providing the TSO with the services previously mentioned.
It is important to stress out the attention on the user travel pattern which has to be kept
independent from these operations, hence exploiting batteries flexibility without affecting
user behavior.

This thesis work fits in the context described above and aims to improve existing modelling
tools by increasing output accuracy and technical aspects. These tools consider user
habits and mobility statistics, to generate driving patterns from which grid connection
time-series, consumption profiles and charging demand are determined. These time-series
are fundamental inputs for energy system models, which are used for capacity planning
and operational optimization. Therefore, producing more detailed and realistic profiles of
EVs electricity demand could help in designing new infrastructure, as well as in evaluating
the potentialities of smart control technologies to define future strategies for the energy
sector.
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2| Literature Review

The overall objective of this work is to design a tool which considers human driving
habits to produce mobility and charging time-series with high technological detail and
with accurate vehicle consumption estimations. Therefore, through variation of input
parameters more accurate scenarios can be simulated. The selected starting model is
RAMP-mobility which includes all the required features, relies on easily accessible data,
is able to simulate 28 European countries, and has been developed by SESAM group of
Politecnico di Milano. A review of the models available in literature is performed to assess
strengths and weaknesses of the approaches used in other modelling works, and to find
possible improvements for the selected model. Firstly, models for electric vehicles mobility
profile are reviewed, with a focus on RAMP-mobility [25]. Secondly, vehicle consumption
models are analyzed with particular attention to Vehicle Consumption Assessment Model
(VCAM). As last step, the coupling of mobility profiles and vehicle consumption models
is assessed considering the methodologies found in the literature.

2.1. State of the art: mobility time series models

Various models can be found in the literature modelling the impact of electric vehicles
mobility and the related charging demand, mainly relying on stochastic processes able to
reproduce EVs users behaviour. In this section the review is focused on models producing
mobility time-series.

2.1.1. Overview of existing models

One of the first models elaborated back in 2013 by the Joint Research Center (JRC) [31],
aimed to build a database of load profiles for EVs in six European countries, taking data
from the behaviour of conventional car drivers. The driving patterns are collected through
sample travel surveys obtaining a 5-minute temporal interval series which describe the car
status: driving or parked. Another element taken from surveys is the average speed of
the trip associated to each driving period. The amount of electricity consumed during
driving periods is estimated as function of the EV type and the aforementioned travel
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speed. A speed-dependent quadratic function specific for three different vehicle types
classified as Small, Medium, and Large, is used to calculate the power consumption based
on the vehicle speed. The correlation between velocity and power elaborated by the JRC
is represented in Figure 2.1, where the different types of vehicles are highlighted. This
consumption model based on an empirical correlation is the same introduced in RAMP-
mobility described in Section 2.1.2.

Figure 2.1: Estimated quadratic speed-dependent energy consumption curves. [31]

Once the energy consumption is defined the electricity requested from the grid during
parking periods is estimated under certain assumptions. These are related to: home
charging always available, reduced recharge rate when close to the full capacity, and
minimum threshold of 30 minutes to identify parking periods in which charging is possible.

Another approach commonly used in literature is the Markov-chain. Fischer et al. [10] in
2018 implemented a stochastic bottom-up model to assess EVs load profiles with the inno-
vative consideration of socio-economical, technical and spatial factors which influence the
charging electricity demand and behaviour. The work has been developed starting from
the analysis of a large dataset on mobility behaviour in Germany, Mobilität in Deutsch-
land (MID) [28]. An in-homogeneous Markov chain is used to sample a series of car
trip destinations in relation to factors as the car driver occupation, the day of the week
and the time of the day. The travel destinations are classified as inside town, outside
town, workplace and home. The related trip distance, together with driving duration and
parking time, are estimated trough a probability distribution obtained from the huge MID
dataset which collects 70000 car trips. Socio-economic considerations are used to estimate
the number of cars per households, the first daily departure time and parking duration
when at workplace. Knowing trip kilometers, driving time and parking length, the pres-
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ence at a charger can be estimated and the related electricity demand is calculated. It is
important to highlight that high detail on demographic aspects is considered in this model
using a logistic function which introduces the driver sensitivity towards battery State of
Charge (SOC), reported in Figure 2.2.

Figure 2.2: User behaviour logistic function introduced by Fisher et al. [10].

Assessing the energy consumption of transportation in the United States of America
(USA) is the goal of Muratori et al. [29]. The method used to generate a realistic picture
of the transportation demand is based on a behavioural model, built following a Markov
chain approach applied to time use data from The American Time Use Survey (ATUS).
Starting from this dataset and focusing on three different states (home, work, away), the
transition probabilities have been assessed and used to model the Markov chain-based
activity pattern generator. Once driving diaries are obtained for each user, the mobility
patterns are divided between commuting to work and trips for leisure. To characterize
the home-work commuting trips, a distribution of typical mileage from a statistical data
report is used, while for leisure times the trip duration is estimated as a random fraction
of the away-state window length. The coupling of the time behavioural model and the
statistics about trips produces the driving pattern key parameters used to generate a
realistic velocity profile for each trip, named driving cycle. Trips are characterized either
by duration, for leisure purposes, either by distance, for work commuting, and a specific
driving cycle is generated for each trip. A vehicle dynamic simulator model computes
the consumption of the trips that occurs in the user driving diary. The population is
externally determined and differentiated between worker/non-worker, and male/female.

Two open-source python models focused on EVs energy consumption have been recently
published and regularly updated: Vehicle Energy Consumption in Python (VencoPy) and
Emobpy. They both assess charging profiles for EV fleets with assigned characteristics
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starting from national travel surveys and trips datasets. Their current versions are based
on the aforementioned German national survey MID. Starting from large amount of travel
data VencoPy filters and rearrange the collected trips to obtain person-specific travel
diaries, while Emobpy generates stochastic day tours applying Monte Carlo simulations
to the probability distributions obtained from the dataset. Their common feature is the
need of large amount of mobility-specific data to assess the transport demand, leading to
country specific applications.

The VencoPy tool presented in Wulff et al. [39] exploits the whole potential of highly
detailed mobility survey results, which can guarantee high temporal and geographical res-
olution. The mobility demand is assessed firstly with an analysis of the dataset, that filters
and cleans the information of each reported trip. Afterword, all the trips are reformat-
ted in hourly profiles and merged into personal daily travel diaries, according to distance
driven and trip purposes. The time between two trips is considered for the charging avail-
ability, while the SOC of the vehicle is computed assuming a constant kilometer-specific
electricity consumption. At the end of the mobility section two databases are generated
collecting the mileage travel diaries and the type of parking derived from the travel pur-
pose. The tool is further developed to address the estimation of the available flexibility
given by different charging strategies and scenarios. The main limit is the specificity of
the required trip dataset, which is hardly found for countries different from Germany.

The stochastic open-source model Emobpy [11] grounds on empirical mobility statistics
from MID, vehicle specifications and customizable assumptions as inputs. Inputs and
outputs for Emobpy, and the sequence of generated time series is reported in Figure 2.3.
The output results are four time series and major attention is given to the mobility
demand profile:

• Vehicle mobility contains the location of vehicles and the distance travelled at each
time step. This time series has a spatial characterization considering six different trip
destinations: workplace, home, shopping, leisure, errands and escort. Other data
related to trip departure hours, minimum and maximum time at a given location,
trips per day and trip characteristics are considered, all information specific for
driver types: commuter or non-commuter. To ensure variability of profiles, a Monte
Carlo approach is used.

• Driving electricity consumption time series provides information on the electricity
taken from the battery while driving. This requires inputs as vehicle specific char-
acteristics, ambient temperature and driving cycles, which are the main parameters
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used to describe drivers’ behaviour. This part will be analyzed more in detail in
Section 2.2 dealing with vehicle consumption models.

• The third time series is the grid availability which provides information whether a
vehicle is connected to the grid in a time step and with which power. Charging
power capacities and charging infrastructure are the main inputs and the variability
is obtained through a Monte Carlo approach.

• Grid electricity demand is the last time series containing the information on the
electricity needed from the grid at each time step. Different charging strategies can
be simulated or even customized by the user.

Figure 2.3: Inputs and outputs and the sequence of generating the four time-series. [11]

This model presents important improvements related to spatial characterization, detailed
user behaviour, accurate vehicle consumption, temperature effects on electricity consump-
tion profiles and the possibility of customization. However, limits can be found in its
validation, which is not clearly presented, and in the data used which are specific for
German mobility.

Both Emobpy and VencoPy require huge datasets describing the mobility to create the
chain of states which are country specific, hence limiting the use of the model in other
countries where specific data are hard to gather. For this reason, a different approach is
adopted in RAMP-mobility model relying on easily accessible data as population compo-
sition, vehicles share and aggregated mobility statistics.
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2.1.2. RAMP-mobility

RAMP-mobility [25] is an open-source model accessible at the following GitHub reposi-
tory: https://github.com/RAMP-project/RAMP-mobility. This model builds on a pre-
vious work for stochastic load simulations developed by the SESAM group, RAMP [22],
able to generate demand profiles based on simple time-of-use information specific for dif-
ferent user types in 28 European countries. In RAMP-mobility additional information
is considered as vehicle fleet composition and driving specific parameters. It is made of
two subsequent simulation models reported in Figure 2.4: the mobility pattern and the
charging profile. The mobility pattern generates profiles for each user with one-minute
resolution, which are used as input for the second simulation that produces the corre-
sponding charging demand. This is function of other parameters as the charging strategy
adopted and the information about the charging infrastructure.

Figure 2.4: Conceptual scheme of the overall model structure composed by two separated
modules. [25]

To obtain the mobility pattern simulation, different inputs are considered. The country-
specific population share divided into three users’ categories (Workers, Students, Inactive)
is used to split the 2500 representative total users simulated for each country. The indi-
viduals in each user class are then split into three electric vehicles segments, which differ
for the size (Small, Medium, Large), to represent the vehicle fleet of the country. To each
vehicle type a different battery capacity and driving consumption curve are associated
as presented in the JRC report [31]. Driving consumption parameters are used to com-
pute vehicles consumption as a function of the trip velocity, which is afterwords corrected
through a multiplication coefficient to consider outdoor temperature effects on heating
and cooling contributions.

A key input for time-series generation are the functioning windows, which are the time
frames in which mobility events can occur. Two types are defined for each user: Main
and Free Time functioning windows. In the first type main daily trips occurs, whereas

https://github.com/RAMP-project/ RAMP-mobility
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in the second one occasional trips are considered. Each user is characterized by these
two functioning windows. Students and Workers have two Main functioning windows,
to mirror morning and evening commuting to work or study place, and three Free Time
windows covering the remaining hours of the day. Inactive users have instead one Main
window since no time slot is preferred for the daily mobility, and two Free Time windows
in the early morning and late evening. Each user has associated two different Appliances
to model the different behaviour in main and free time hours. All these data are derived
from JRC mobility surveys [1] and Eurostat data series. As last step, user behaviour is
differentiated for day type Weekday, Saturday, Sunday, and festivity days which are mod-
elled as Sundays. On weekends and festivities Workers and Students behave as Inactive
users for what concern functioning windows definition and daily travel needs. Stochastic
randomization is associated to the total daily distance, the average velocity, functioning
windows start/end and the power consumption.

Considering travel specific data, the total daily distance specific for country and day is
given as input; it is then divided per type of functioning window through the percentage
usage computed from the typical hourly distribution of trips given as input. The average
trip velocity defined for user, day and country is used to compute the total daily time of
travel, which is the termination condition of RAMP-mobility’s algorithm. The average
velocity is a representative value obtained from the trip’s average distance and time,
used to shift the iteration limit into the time domain to be coherent with the original
structure of RAMP. New trips are simulated until the total travelled time for each user
is reached. Another parameter used to determine whether the user takes the car or not
in a functioning window, is the occasional use which simulates the probability of making
at least one trip in a day. The algorithm iterates for every user producing sequences of
trips until the termination condition is satisfied. At each time-step in which the trip is
simulated, an average value of power consumption is assigned in relation to the car size
through a simplified equation derived from JRC travel surveys [31]. The workflow of the
mobility pattern simulation module is represented in Figure 2.5 where the aforementioned
elements are highlighted.
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Figure 2.5: Conceptual scheme of the mobility module workflow. [25]
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Once the mobility demand time series is defined, the model allows for three different
charging strategies to compute the charging load demand:

• Uncontrolled charging. Users can charge as soon as possible and with no power
limits. As the trip ends and a charging point is available, the charging event begins.
The probability of finding a charging infrastructure has two different options: a con-
stant probability value of finding the infrastructure at each parking and a piecewise
probability function which reduces the probability in the main hours of the day.
If the infrastructure is available, the type of charging station is chosen according
to the probability distribution of the charging point type. The charging event lasts
until the maximum state of charge is reached which is set to 80% to preserve battery
lifetime.

• Night charging. Users prefer to charge during night hours to limit the overload
during day peaks. If a parking time is in the night-hours the vehicle is charged
otherwise this does not happen unless there is not enough energy for the following
trip. Moreover, the charging event does not occur at maximum power but at the
minimum value which allows to have the battery fully charged in the morning.

• VRES charging. Users charge when there is an excess of renewable energy pro-
duction hence shifting the charging event in the hours in which the residual load,
which is the difference between load demand and renewable generation, is negative.

Together with the charging probability function and charging points availability, which
can be customized by the user, optionally user behaviour function, showed in Figure 2.2,
can be activated to correlate the plug-in probability to the SOC of the car when parked
as presented by Fischer et al. [10]

2.2. State of the art: vehicle consumption models

In this section the review is focused on how different models estimate the vehicles con-
sumption. Most of vehicle dynamic simulators are similar since the fundamental equations
needed to compute the power required for a given driving cycle are determined by the
physical model of the vehicle. In the literature what makes the difference between the
models is the level of detail at which the analysis is performed. If and how the consump-
tion of auxiliaries, such as Heating Ventilation and Air Conditioning (HVAC) systems,
is included, and how the dependence on ambient variables, air temperature and density,
is considered which can have a major role especially for battery electric vehicles. Some
examples of these models are here briefly described.
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2.2.1. Overview of existing models

Muratori et al. [29] in the model developed to compute the transport energy consump-
tion in the USA, adopted a backward dynamic simulator built in Simulink-MATLAB
environment, to simulate the vehicle dynamics and compute the consumption associated
to specific driving cycles. The model is based on the computation of the instant power
required at the wheels to perform the driving pattern considering road grade, air drag
force and a rolling resistance coefficient linearly dependent on road inclination. The sim-
ulator can be operated with different types of vehicles (BEV, ICEV, HEV, PHEV) and
their main characteristics have been chosen as representative for each class. A specific op-
timization strategy is implemented to optimize the fuel consumption of HEV and PHEV.
For the models with an electric motor the regenerative breaking is also considered and
for BEVs a lower limit on SOC is imposed to 20%: if the SOC reaches this value the
vehicle is supposed to be stopped and cannot complete the driving cycle. The model
computes the instant consumption with a one-second resolution, for both gasoline and
electricity required to the vehicle for the imposed driving pattern.

A hybrid physical-empirical model is developed by Deschenes et al. [5] to estimate the
energy consumption of the EV fleet of a Canadian taxi company, and to optimize the
operation through precise predictions. The hybrid approach followed considers the specific
taxi driving constraints, that a pure physical model cannot grasp. The physical model
is based on the computation of the energy required to perform a trip with a simplified
equation that accounts for road grade, rolling resistance and aerodynamic losses. The
energy demand is then corrected by an empirical multi-linear regression model, which
was trained on the data of the taxi fleet. The correction factor is meant to introduce the
dependence on ambient temperature and auxiliaries’ consumption. Since a lot of different
kind of data were available for each vehicle, the authors also performed other regression
analysis to assess the possibility of improvements of the forecasts accuracy. The outcome
of the study reveals that adding linear regression on fleet data can improve up to 61%
the precision of the forecast comparing to the basic physical model, but it requires large
dataset for the analysis.

The approach followed by Gaete-Morales et al. [11] to estimate the driving electricity
consumption starts from the creation of custom driving cycles which simulate the user
driving pattern. How these driving cycles are obtained is the focus of Section 2.3.2.
Having the series of velocities for each trip, the energy consumed is computed considering
for each time step the power values at the battery level: it can provide energy to the
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vehicle as it discharges, or receive energy being charged through regenerative braking. To
compute the battery load, different contributions are considered: (i) motor input power
required to overcome the tractive effort which is determined considering rolling resistance,
climbing force, aerodynamic losses, and inertia force; (ii) generator output power which
represents the energy recovered through breaking; (iii) auxiliary power for accessories and
(iv) thermal power needed to keep the vehicle cabin temperature at a certain comfort
value. Focusing on the thermal component, it is computed through a heat balance model
which considers all the possible heat transfer mechanisms occurring in the cabin as the
sensible heat of passengers, the heat transfer through walls, the enthalpy of outside air and
the enthalpy of discharged air to outside. The result is the heat provided by the device
to keep the target temperature from which the cooling or heating power is obtained
considering the coefficient of performance (COP) of the device. This estimation of the
power to heat or cool the vehicle cabin through the heat balance is physically detailed
and represents the main difference with the model used in this work.

2.2.2. VCAM

The open-source python tool Vehicle Consumption Assessment Model (VCAM) [33], de-
veloped by SESAM group, is a lumped parameter model which assess the fuel consumption
of light-duty vehicles by implementing a physical model of the vehicle, and computing the
energy requirement to perform a given driving cycle. The tool can simulate three different
power-trains, ICEV, BEV and PHEV, and different types of vehicles can be modelled by
inserting some key performance parameters.

The model is split into three sections: vehicle longitudinal dynamics, power-train effi-
ciency and auxiliary systems. The first section is based on a power balance that computes
the traction power required in each time-step summing up four different contributions:
aerodynamic friction, rolling resistance, climbing resistance and mass inertia. The aux-
iliaries consumption includes a constant value for electrical appliances and an electric
consumption due to the HVAC system, which is computed as the ratio between the re-
quired thermal power and a coefficient of performance. The required thermal power is
computed depending on the external temperature following the function used by Lajunen
[21]. The COP depends on the ambient temperature and on the type of HVAC module
of the vehicle. Two different configurations have been modelled: Air Conditioning and
Positive Temperature Coefficient heater (AC+PTC), and Heat Pump with backup Pos-
itive Temperature Coefficient heater (HP+PTC). During heating condition, the thermal
load for ICEV and PHEV is assumed to be satisfied with waste heat recovery from the
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engine, and a minor additional power is considered only to run fans. An additional power
computed as function of the external temperature is included in the balance for BEVs
due to the consumption related to the Battery Thermal Management System (BTMS).

ICEV fuel consumption is computed considering an engine efficiency function of the load
and a constant fuel loss for the time spent in idling mode. For BEVs instead the electricity
discharged from the battery is computed considering a constant discharge efficiency and
including the regenerative breaking energy computed considering the maximum torque
limitation and the upper limit to the SOC of the battery. Operation of PHEV is mod-
elled as a combination of two different strategies and the choice depends on the state
of charge of the battery: charge depleting mode and charge sustaining mode. The first
strategy is adopted until the SOC reaches a minimum threshold and aims to maximize
the electric mode. The charge sustaining strategy instead drives the car mostly relying
on the conventional engine, using the battery only for recovery purposes and leading to
cyclic SOC behaviour. The model includes some standard reference driving cycles as well
as the input files for modelling some specific vehicles, a great advantage is the possibility
to custom driving cycles and simulate specific vehicles.

2.3. State of the art: driving cycles generation

In this section the driving cycles, fundamental to estimate the energy consumed by differ-
ent types of vehicles, are explored. DCs represent driving velocities patterns of car drivers
and are necessaries inputs for the model previously described.

There are different ways in which DCs can be obtained. The first approach is used when
large datasets on real-world driving behaviour are available and can be synthesized to get
reference driving cycles. These DCs are usually used to check the compliance of vehicle
pollutant emissions with respect to the applicable emissions limits, and to establish the
reference vehicle fuel consumption and CO2 performances. Reference driving cycles can be
found in different world areas and are specific for the drivers behaviour of that region. An
attempt to design a harmonized driving cycle representative of the worldwide light duty
vehicle driving behaviour, is the World-wide harmonized Light duty Test Cycle (WLTC)
obtained from data collected in Europe, Japan, India, Korea, and USA combined with
suitable weighting factors [36]. Markov chain approach is another method found in the
literature to produce DCs when huge datasets are available, by converting the real driving
data into Transition Probability Matrix (TPM) used in a Markovian process. The second
approach goes in the opposite direction and adapts standard DCs to parameters as velocity
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and time to obtain customized ones. The goal is to get realistic driving cycles for specific
trip parameters keeping the general features of a reference cycle.

2.3.1. Driving cycles creation through Markov chain

Customized DCs can be generated by Markovian stochastic tools based on historical data
as presented by Muratori et al. [29]. The driving profile generator described in the paper
creates a stochastic driving pattern starting from a single characterization parameter,
duration or distance, and adopting literature available TPM. A transition probability
matrix is a matrix of states defined by actual velocity, in which each cell contains the
probability of stepping from the actual value of velocity to another one. Adopting a
Monte Carlo method to pick random sequences of speed values leads to the buildup of the
random driving pattern for the desired duration. Firstly, the generator needs to link the
single parameter to a second one to fully characterize the trip, for this implementation a
duration-distance probability distribution is used. A single driving cycle is composed by
the three sections Urban, Highway, Urban, and their proportion is randomly estimated
according to the highway ratio, a parameter computed from the trip characteristics. Urban
and highway sections are generated from different TPMs that reflects the different driving
conditions and are derived from Gong et al. [13]. The model produces custom driving
cycles with shapes similar to the ones used to generate the TPMs, which are assumed by
the authors as realistic driving behaviours.

Markovian processes are also used by Yang et al. [40] as a tool to obtain representative
real-world driving cycles from huge drive patterns datasets. The authors performed data
analysis on a database of real driving patterns by clustering them and producing transition
probability matrices. Some candidate driving cycles with the desired length are then
generated with Monte Carlo simulations. Finally, the accuracy of the DCs is evaluated,
by identifying twelve assessment criteria to select the most representative for the starting
dataset.

2.3.2. Adapting standard driving cycle to reference parameters

When specific datasets are not available and the goal is to obtain a realistic driving cycle
with specific trip parameters, the method to be followed is the rearrangement of a reference
driving cycle to produce similar ones with the desired overall characteristics.

In the model developed by Gaete-Morales et al. [11], custom DC to compute the driving
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electricity consumption profiles are obtained from the WLTC. In this test cycle four sub-
classes are present each representative of different driving patterns (Low-speed, Medium-
speed, High-speed, Extra-High-speed), and all sub-classes can be characterized by an aver-
age velocity. Given the trip average velocity coming from the first time-series of the model,
the tool first selects the sub-class with the closest average velocity, and then the driving
cycle sub-class is rescaled to create a custom driving cycle with the average velocity of
the trip to be simulated. Since WLTC sub-sections have a finite duration, the custom
driving cycle is replicated until the total time of the trip is reached. However, this way of
proceeding produces driving cycles which are unlikely a realistic representation of driving
pattern. Firstly, acceleration and deceleration could reach values which are unfeasible
for most of the vehicles; secondly, the generated trip rarely ends with a 0 km/h velocity.
Lastly, the repetition of the same pattern for the entire driving cycle produces unrealistic
driving behaviours.

Another approach overcoming this problem is presented by Gruosso [14]. The starting
point is the ARTEMIS reference driving cycle [2], which includes three real world driving
cycles derived from European driving data: Urban, Rural and Motorway. Three funda-
mentals information of every car driver is considered: departure and arrival locations,
trip duration and trip distance. Knowing these variables a recombination of ARTEMIS
segments is made considering the trip locations. If start and end happen in a city, the
custom driving cycle is all urban, whereas if locations differ in typology, a mixture of
Urban and Rural or Urban and Motorway is made. To size the share assigned to urban
and rural/motorway, average speeds of ARTEMIS driving cycles are considered.
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In this chapter, the methodology followed to improve the technological detail of the
stochastic model RAMP-mobility, described in detail in Section 2.1.2, and to obtain more
accurate mobility and charging profiles, fundamental for energy system modelling, is pre-
sented. This is possible through the link with vehicle dynamic simulator, able to compute
physically based consumption estimations, and with other improvements introduced both
at the level of the stochastic process, which is the core of the model, and of the charging.
The goal of this work is to assess the impact of introducing a more accurate vehicle con-
sumption model and determine how the output is affected. To couple the simulator with
RAMP-mobility, driving cycles are required and a new specific tool is developed aiming to
solve some limits found in the reviewed models related to the characteristics of produced
driving cycles.

3.1. Driving Cycles generator

The first idea followed to improve the modelling of vehicle consumption, inspired by
the methodology adopted by Gaete-Morales et al. [11], is to link each generated trip
to a specific real-world driving cycle, thus increasing the technical resolution of RAMP-
mobility. To achieve this purpose a tool able to create realistic driving cycles from specific
trip features, as average speed and duration, is required. Different approaches are adopted
in literature, as described in Section 2.3, to create real-world driving cycles. The method
showed in Section 2.3.2, based on adapting a reference driving cycle to specific parameters
is chosen, since enough detailed for the scope of consumption modelling and no empirical
databases are available. The development of a new tool is required to overcome the limits
of the method adopted by Gaete-Morales et al. [11] highlighted in the previous chapter.
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3.1.1. Construction

Reference driving cycle

The World-wide harmonized Light duty Test Cycle (WLTC), which is the standard real-
world cycle for emission and consumption measurements, is selected as reference cycle to
create the Driving Cycle Generator tool.

Figure 3.1: World-wide harmonized Light duty Test Cycle (WLTC): reference driving
cycle for the generator tool.

Three sub-cycles have been identified from the reference WLTC cycle according to their
average speed; each section should replicate the driving mode respectively in Urban, Ex-
traUrban and Highway environments. Formally the WLTC is made of four parts, Low,
Medium, High, and Extra-High, which aim to model driving conditions at different speeds
[Figure 3.1]. Since the generator considers only three classes, the Medium and the High
sections have been considered together to represent the driving condition of extra-urban
non-highway roads, called ExtraUrban. The methodology used to obtain realistic velocity
profiles by combining these three sub-cycles is here exposed.

Urban Share definition

The custom driving cycles are generated from the WLTC through a recombination of its
sections depending on the given input parameters: the average speed and the duration.
Starting from the couple of values, the generator firstly assesses which of the three driving
environments is supposed to be driven, choosing between Urban, Urban-ExtraUrban or
Urban-Highway. In relation to the input values, one of the three options is selected
according to the Urban Share (US) variable. The US is function of the average target
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speed, the average Urban and ExtraUrban velocities as express in Equation 3.1.

US =
v − vextraurban

vurban − vextraurban
. (3.1)

This variable is used to size the share of DC in the urban environment with respect to
the extra-urban one. Two threshold values have been selected creating three different
situations:

• Urban Share higher than 0.9: the type of driving cycle is Urban (even if the given
average speed is higher than the Urban one, this to avoid too short ExtraUrban
sections which are not realistic)

• Urban Share between 0 and 0.9: the driving cycle is a mix of Urban and ExtraUrban

• Urban Share lower than 0: the driving cycle is in Urban-Highway conditions and
the US is updated considering the average speed of the Highway section instead of
the ExtraUrban one.

An urban section is present in all the possible cases to model the initial transition from the
start event to the cruise phase, and the ending transition before the trip ends. Once the
US is defined, the total urban time of the custom DC can be computed with a minimum
limit set to 220 seconds to always have a representative urban section. In the full Urban
case, this time will correspond to the total time of the driving cycle and the Urban section
of the WLTC is repeated until the total time is reached. For the other two cases instead,
the urban time computed is divided and allocated half at the beginning and half at the
end of the driving cycle to simulate a smooth start and end of the trip. The length of
the central part is determined in a complementary way to satisfy the input duration; this
section is reserved to ExtraUrban or Highway segments in relation to the target average
speed, and the WLTC reference section is repeated until the total non-urban time is
reached, as for the urban section.

Transition definition and rescaling

To connect the different sections and avoid time steps with strong decelerations, a soft
linkage is made thanks to transitions. These are seconds needed to bring the velocity
of the last time step down to zero with realistic values of deceleration. To compute the
transition time a conservative value of deceleration is set to 0.1g since from the analysis
of the WLTC maximum acceleration are around 0.17g, while deceleration are in the range
of −0.15g. Transitions are time steps added to sections in which the last velocity is
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higher than 0 km/h. Consequently, subsequent section’s time is reduced of the transition
duration. For what concern the last urban section, its transition time is removed from
the initial section since it has been verified that at the beginning enough values at 0
km/h are present and can be omitted if needed. In this way the custom driving cycle has
smooth passages between sections with controlled deceleration and the final speed value
will always be brought down to 0 km/h. As last step, since transitions are added and
average velocities of the different reference sections are changed, the final driving cycle is
rescaled to reach the input average speed through a scaling factor.

A final check is made on the scaling factor since, if the rescaling has a high value, the
acceleration or deceleration could be higher than 2 m/s2. This is considered the maximum
accepted value, since the WLTC values are just below this limit. If the scale factor thresh-
old value is reached the driving cycle is recomputed through the Probabilistic Highway
approach, presented in the following paragraph, and the initial and final urban sections
are eliminated. This is made when the average input velocity is too high to avoid sections
with low average velocities, as the Urban ones, which cause an increase in the scaling
factor to reach the target speed.

Probabilistic Highway

A particular situation is verified when the total input time allows to have more than one
WLTC Highway sections repeated. With the process illustrated above the custom driving
cycle will be composed by initial and final Urban and by a central Highway section which
is repeated, meaning that there would be stop instants and sharp velocity decrease during
the highway driving mode. This is considered as an unrealistic condition and overcame
with a different methodology. In this condition, where the number of Highway sections to
be inserted is more or equal to one, the creation of the driving cycle follows the procedure
of the Probabilistic Highway. A procedure inspired by the Markov chain technique, used in
literature to synthesize real-world driving cycle from empirical database [Section 2.3.1],
is implemented. Initial and final Urban are always present, while the central section
has starting and ending parts of the WLTC Highway until the speed of 81 km/h. The
remaining time required to satisfy the total input duration is filled with a probabilistic
section. A velocity sequence specific for the highway environment is generated from a
Transition Probability Matrix, which is an additional input required by the generator tool
and should be created analyzing a typical highway driving behaviour. A TPM represents
the probability, given a value of velocity, to have a certain other value in the following time
step. This has been obtained from the analysis of velocities states of the WLTC Extra-High
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section. This stochastic profile replicates the highway driving pattern avoiding unrealistic
stop-and-go events. Transition is present also in this case linking the last probabilistic
instant with the final section to avoid steep deceleration.

The developed Driving Cycle Generator tool is able to produce realistic driving cycles from
the couple of key trip features, average speed and duration, by defining probable driving
environments and associating to each section of the trip a characteristic repeated sub-
cycle, derived from the reference driving cycle. In addition to the trip parameters, the tool
requires as input the standard driving cycle WLTC and a TPM for the highway driving
profile. The entire process followed for the creation of driving cycles is deterministic with
the exception of long highway trips and is briefly presented in Figure 3.2. A database of
custom driving cycles with 1 km/h as velocity meshing gap, and 5 min as time one is
generated following the aforementioned methodology, and is used as input for the VCAM
model to estimate the power consumption associated to each couple of key parameters.
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Figure 3.2: Conceptual scheme of the Driving Cycle Generator tool functioning.
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3.1.2. Comparison with Emobpy generator

To evaluate the goodness of the driving cycle generator, a comparison with the driving
cycles generated with Emobpy methodology is performed. The method developed by
Gaete-Morales et al. [11] and described in Section 2.3.2, is similar to the one adopted in
this thesis, since they are both based on a recombination of the reference WLTC. However,
some critical issues have been found for specific values of speed, for which the Emobpy
generator requires large rescaling hence causing much higher accelerations compared to
the reference cycle. The solution developed in this work aims to limit this problem and
create more realistic driving patterns.

The comparison with Emobpy methodology is performed creating a set of critical driv-
ing cycle with both generators and evaluating their realism with a metric of significant
indicators. The DCs chosen are the ones with average speed closer to the limit of each
class, because these driving cycles are those that need to be rescaled more. Three limit
cases are considered for Emobpy, since the four WLTC sub-sections are used (Low-Speed,
Medium-Speed, High-Speed, Extra-High-Speed); and two for the generator of this thesis,
since three main types of cycles are created (Urban, Urban-ExtraUrban, Urban-Highway).
A standard value of time duration is used for all driving cycles since it does not affect the
metric. The chosen indicators are: maximum speed, maximum acceleration/deceleration
and driving share in accelerating, decelerating, and idling mode. The results are com-
pared between each other considering the WLTC parameters as reference and the relative
percentage error is used to evaluate the two driving cycles generators.

3.2. RAMP-mobility improvements

In this section, the methodology adopted to improve some modelling aspects of RAMP-
mobility, which emerged from the study of the model as weak points, is described. Two
main directions have been followed: (i) improving the stochastic process with some pro-
gresses concerning the internal coherence of the model itself and with more accurate
vehicle consumption estimations to simulate a more realistic demand; (ii) developing the
charging process through more specific charging probabilities and introducing the analysis
of connected vehicles.



30 3| Methodology

3.2.1. Structural mobility improvements

The limits found in the study of the original model structure are related to three different
aspects: the definition of mobility behaviour, the specificity of vehicle consumption, and
the vehicle consumption model adopted.

Mobility behaviour

This class of improvements aim to solve two limits found in the model analysis related to
functioning windows and simulated driving distance.

Complementary functioning windows

Functioning windows extremes definition is subject to an input random parameter which
is used to vary the start and end for each simulated Appliance. In the original model
independent stochasticity is applied to both types of windows, Main and Free Time, and
when defining input functioning windows a time frame is reserved between the end of
each Free Time and the start of each following Main to avoid possible overlaps related to
this variability. However, the independent variation cannot avoid empty time gaps and
possible overlaps, hence, to solve this problem, the solution here proposed allows to define
Main functioning windows as complementary to Free Time sections. In this way the
stochasticity is applied only to one type of functioning window, Free Time one, and the
Main is obtained from the remaining time gaps. In Figure 3.3 it is possible to understand
how the functioning windows for Worker and Inactive users are originally defined, and
how the just presented approach vary the windows extremes. To allow this definition
Appliance list, which is filled with firstly the one for Main windows and secondly the Free
Time ones, is reversed in the order to allow primarily the definition of Free Time duration
subject to input variability. The decision of starting from Free Time windows and not
from Main ones is a consequence of the following improvement introduced.
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Figure 3.3: Functioning windows definition: above the original overlapping approach,
below the complementary one.

Another change is introduced to improve the modelling of Free Time windows. A lower
probability of picking a night time-frame is added in the case of three Free Time windows,
to model the difference between this type of windows. A lower probability of early-morning
and late-night trips is set, compared to mid-day ones.

Distance recovery

The second important limit of the model is related to the coherence between input daily
distance, which describe the average distance per day specific for user type, and the
effective distance travelled by each user. Even if RAMP-mobility is not developed with
the goal of producing realistic driving trips, and for this reason it requires only few average
data, it is important to check that the overall mobility demand generated reproduce the
given input data. Analyzing the characteristics of the generated trips and computing the
total driving distance for each user, a lack of consistency was found since lower distances
with respect to input values were simulated. The cause of this problem is found in
the occasional use, which aims to model the possibility of not using at all the car in a
functioning window. This possibility lowers the average driving distance compared to the
input one, which is instead supposed to be the average distance of the overall population.

To solve this issue, without deleting the realism of the occasional use parameter, that is
crucial to shape the mobility profile, a solution based on the recovering of not-driven dis-
tance in the functioning windows affected by this variable is proposed. Since the occasional
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use parameter is intended to model the intermittency of usage mostly in leisure time, the
distance skipped by a user in a Free Time window is reassigned to its correspondent Main.
In this way the total user average distance remains the same given as input, while only
the proportion between kilometers driven in the two different windows may be different
from the input value. This solution works until no intermittency of usage is inserted in
Main windows, but this is not the case of weekends in which is considered a probability
of not using the car in peak hours. For this reason, and due to random variability on the
input distance, the average driving distance is not exactly the one inserted. The imple-
mentation of this correction requires some relevant modification in the stochastic process,
since the order in which the Appliances are run must be inverted, as anticipated in the
previous paragraph. Additionally, a local variable is introduced to temporarily memorize
the not-driven distance and reassign these kilometers to the following Appliance. For this
reason, a new attribute kind is inserted to describe the type of Appliance, necessary to
understand if the skipped distance needs to be recovered or not.

Trip specific consumption

After having solved some internal intrinsic limits of RAMP-mobility, the vehicle consump-
tion estimation has been analyzed. In its default version the model computes the average
consumption assigned to each time-step of the trips, using an average daily speed gener-
ated independently on the trips. The link between daily velocity and power consumption
is represented by the JRC equation, which characterizes the vehicle consumption for three
size of cars. Since the goal of this thesis work is to improve the accuracy of the output mo-
bility and charging profiles, a more realistic modelling of the consumption is introduced.
The first step in this direction is the adoption of an average value of consumption specific
for each trip instead of a daily average value. To reach this goal, a mean trip velocity is
required given the length of the trip, which can then be characterized by two parameters:
duration and speed. Consequently, an empirically generated probability distribution, to
link trip duration to a typical travel velocity, is necessary. Once the average parameters of
the trip are fixed, it can be linked to a driving cycle produced with the real-world Driving
Cycle Generator described in Section 3.1. A database of driving cycles has been created
with the generator for couples of duration and average speed, creating a matrix of speed
and duration classes, with step of 1 km/h and 5 min. Consequently, each simulated trip
is associated to the closest driving cycle in terms of these two key parameters. The aver-
age consumption value for each driving cycle is computed applying the JRC correlation,
described by Pasaoglu et al. [31], to each time-step, and an average of the time-series is
computed to represent the DC consumption.
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To simplify the implementation in RAMP-mobility, the consumption for each couple du-
ration and speed is pre-computed, and consumption tables, in which at a given couple of
speed and time a mean consumption values is linked, is inserted as input to the model.
These tables are generated for each set of parameters of the JRC equation, modelling
Small, Medium and Large vehicles. Additionally, an analysis to assess the dependence of
the average values of consumption on the trip parameters is performed, aiming to iden-
tify possible simplifications of the input tables; from the same analysis, the variability
on power values is estimated, and the input value is updated to 5%. A graphical illus-
tration of how the consumption tables are used in the stochastic process is presented in
Figure 3.4. A check is introduced to verify whether the driving cycle is feasible for the
simulated vehicle segment, otherwise the trip is discarded and the generation process is
repeated. A DC is labelled as Infeasible when the power required from the battery exceeds
the vehicle maximum for at least a time instant (see [33] for more details).

T-V distribution

V = trip average
velocity

Driving Cycle
definition (V,T)

App.Power

JRC consumption
tables

T = trip time

Infeasible?

NO

YES

Figure 3.4: Conceptual scheme of the trip specific consumption model implemented.

Vehicle consumption model

A step forward is made with the implementation of a new consumption model which
increases the accuracy of the estimation and improves the quality of the model. As in
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Section 3.2.1, the consumption is trip-specific requiring a correlation between trip duration
and velocity, and the Driving Cycle Generator is used to realistically describe the driving
pattern. The vehicle dynamic simulator VCAM is introduced to determine the average
consumption associated to specific driving cycles. This model has been selected since
it considers the effect of external temperature, simulates the consumption of different
types of power-trains, and its quality has been verified [33]. An analysis of the thermal
component has been carried out comparing this model with Emobpy framework, described
in the literature review (Chapter 2), to assess the possibility of thermal module refinement.
The results, reported in Appendix A, did not brought to significant improvements to
VCAM model, hence it is introduced in its original structure. This last step completes the
characterization of the trip-specific consumption model, exploiting the detailed description
of the travel as a driving cycle, and simulating the dynamic behaviour of a vehicle along
the generated path. The overall effect on RAMP-mobility is the shift from a duration-only
trip depiction and a daily simplified consumption, to a per second definition of driving
behaviour and a physically based consumption model.

As for the previous step, consumption tables are adopted using the VCAM model. Each
driving cycle has been simulated for all the vehicle segments, and the average consumption
for the selected trip has been stored in the tables. With this kind of implementation from
the computational point of view there is no difference between this step and the previous
one. An analysis on the produced tables similar to the one described in the previous step
is made to verify the dependence on the trip characteristic parameters. Similarly, the
variability on power is reduced from 10% to 5%.

Another minor change is required to properly model the thermal demand of the vehicle
HVAC system, highly dependent on the external temperature. RAMP-mobility already
models the variation of the load with the external temperature through a correction factor.
A similar method is adopted to reproduce VCAM thermal model: the consumption stored
in the tables does not include the thermal demand, which is added after the stochastic
process. This additional consumption is computed through a cubic function obtained
from the VCAM simulation of the thermal power demand with different values of exter-
nal temperature. The implemented function for BEVs assumes an Heating Ventilation
and Air Conditioning (HVAC) system composed of Heat Pump and Positive Temperature
Coefficient heater (HP+PTC), which is adopted for all the reference vehicles.
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Figure 3.5: Conceptual scheme of the trip specific consumption model implemented with
VCAM introduction.

A graphical illustration, as the one presented for the previous step, of how the newly intro-
duced consumption tables are used is illustrated in Figure 3.5. This way of implementing
VCAM allows to create a parallel version of RAMP-mobility for the simulation of gasoline
powered vehicles, which will be used in the model quality assessment in Chapter 6. The
only variations required are in the consumption tables, which are computed using VCAM
with ICEV, and in the thermal additional consumption function, which depends on the
type of drive-train.

3.2.2. Structural charging improvements

In this section the focus is moved from the mobility simulation to the charging process.
Once the mobility demand is generated, this profile is used as input to estimate the
charging curve. As already described in Section 2.1.2, three different charging strategy
could be used. In all of them, to model the charging infrastructure probability two options
are available: daily constant probability or a piecewise function used to differentiate the
possibility to find a charging point during the day. This second choice is implemented
since it is more likely to have free EVs chargers at home either as private or as public
point present in residential areas. However, seen the absence of spatial characterization in
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the model, to approximate this differentiation, an higher probability in the early morning
and in the late evening is considered. This is related to the higher probability of being at
home during these periods and the result is presented in Figure 3.6.

Figure 3.6: Piecewise probability function for charging infrastructure.

An improvement of this characterization is considered to better describe weekends charg-
ing events. A piecewise function specific for Saturdays and Sundays is introduced with the
lower mid-day probability of finding a charging point applied for a shorter time window.
This is used to describe the different charging behaviour which is expected on weekend
and for which more time is spent at home in the morning and in the evening. These two
functions will be fundamental in the validation of the charging profiles in Chapter 6 and
will be object of a sensitivity analysis seen their high level of uncertainty.

Additionally to the charging infrastructure probability, also the user behaviour decision
to charge could be activated in the default RAMP-mobility version. This is modelled
considering the user behaviour function, reported in Equation 3.2 and proposed by Fischer
et al. [10]. This equation correlates a probability of charging to the actual State of Charge,
and tries to model the user decision of plug-in.

Chprob = 1− 1

1 + e−K×(SOC−SOCper)
with K = 15, SOCper = 50% (3.2)

This probability function, together with the one describing the infrastructure availability,
are fundamental to understand the impact on V2G technologies and grid flexibility. For
this reason, an additional output is derived from the charging process to describe the
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vehicle connection time-series. Both user and battery capacity connection level are com-
puted, and the impact of the charging probabilities is assessed through their variation.
The analysis of the number of vehicles connected to the grid instant-by-instant is crucial
to estimate the potential of V2G technology, which is a powerful solution to reduce peak
power and offer flexibility services to the grid. This is important seen new challenges
in managing grid power dispatch created by the increasing number of Electric Vehicles,
which also open to new possibilities of storage.

The simulations performed to assess the impact of charging parameters on the time-series
of connected vehicles and of the aggregated battery capacity are now described. Two
infrastructure probability functions have been tested: a constant default value, and a
piecewise with different key parameters for weekdays and weekends. Four cases have
been set up to assess the possible combining effects of infrastructure availability and user
behaviour:

• Baseline: include the default infrastructure probability set at 80% for all time-steps;

• Case 1 : evaluates the impact of the user behaviour function keeping the default
infrastructure probability;

• Case 2 : includes the piecewise infrastructure function with the parameters assessed
in Chapter 6;

• Case 3 : combines the effects of both piecewise and user behaviour functions.

The Uncontrolled charging strategy has been adopted to avoid the influence of smart
charging management on the results. The simulations adopts the last developed version
of RAMP-mobility for Italy, including the integration of VCAM. Charging profiles, per-
centages of charging users, and percentages of connected ones will be compared for the
highlighted cases.
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In this chapter the improvements of RAMP-mobility methodologically described in Chap-
ter 3 are applied to two specific case studies: Italy and The Netherlands. Italian input
values are updated after a detailed analysis of specific regional databases to better char-
acterize the country and determine single trip features. For The Netherlands instead
a limited variation of input data is applied since no specific database has been consid-
ered. The step-by-step application of RAMP-mobility structural mobility improvements
is adopted for both countries, and the data used for each step are highlighted in the
following paragraphs.

4.1. Italy

4.1.1. Data analysis

In this section a description of the analysis performed to obtain accurate description of
Italy and to assess realistic trip features is provided. Regional databases from various
sources have been scanned, cleaned, and filtered to obtain the data required as input
to RAMP-mobility by aggregating regional data and weighting them according to the
population distribution. Three main investigations have been completed: (i) a study
of commuting trips records to address the peculiarities of typical travels; (ii) the car
fleet composition updated to 2019 [26] to classify the vehicle types and their shares;
(iii) exploration of different datasets to investigate aggregated mobility data in terms of
functioning windows and population share.

Commuting trip analysis

A large set of commuting trips records of around 29 million people, regionally specific and
released in 2011 is available from Istat [18]. Each collected trip is defined by origin, des-
tination, purpose (study or work), estimated number of individuals and class of duration.
The scope of this analysis is to examine the relation between duration and average speed
of journeys and determine typical values of trip characteristics.
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Records are filtered to consider only car movements and are coupled with a database
of distances and driving times [18] between municipalities to estimate trip lengths and
duration. Some assumptions have been introduced to compute non-available distances:
missing municipalities have been substituted with the closest available, and trips with
abroad destinations have been discarded. Features of trips driven inside the same town
have been estimated considering a fictitious city radius, computed from the square root
of the urban surface using a specific Istat database [19]. The driving time is determined
with a linear regression on a selection of other short trips for which the time and length
data were available. Figure 4.1 illustrates the first step of the data processing: trip time
and distance are added and the inserted duration is compared to the duration class of
the original database. A mark based on the difference between the two classes is assigned
and used as metric to evaluate the accuracy of the matching.

Figure 4.1: First step of the data processing.

The Istat database [18] from which distances have been obtained is accurate in estimating
the lengths since it is based on a Geographic Information System (GIS) software. However,
as stated in the metadata report [17], the estimation of driving time is made in ideal
conditions without considering traffic. For this reason having a rough estimation of trip
time divided in four-time classes of duration, a delay coefficient has been tuned to increase
the duration of trips and to improve the match between the estimated time and the time
class associated in the original Istat database [18]. The delay coefficient has been evaluated
for each region excluding some time classes if they already have good matching, as in the
case of the first class (time < 15min) or if they would create too long unrealistic trips, as
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in the fourth class (time > 60min). Once the coefficient is chosen, the delayed duration is
computed and the mark is updated; these steps are repeated until a satisfactory matching
is achieved. The iterative process to assess the effect of the delay coefficient is showed in
Figure 4.2. Having the delayed time which accounts for traffic conditions, for each trip a
value of average speed is computed as ratio of the distance and delayed time.

Figure 4.2: Second step of the data processing highlighting the delay coefficient.

The processed database is used to obtain three main outputs: values of average trip du-
ration, a distribution of typical speed values, and probability tables that links duration
classes and average speed classes. In Table 4.1 the average trip duration is showed for
each region together with the corresponding the aggregated value for Italy. In Table 4.2
the velocity distribution is described with its mean value and the values of percentage
variation. These are computed using the first and third quantile which are used to model
the stochastic variation of the average speed.

Average Trip Time

Abruzzo Basilicata Calabria Campania Emilia Friuli Lazio

14.4 16.3 15.6 14.8 18.2 14.6 23.0

Liguria Lombardia Marche Molise Piemonte Puglia Sardegna

16.5 17.1 14.3 14.5 16.1 19.1 14.9

Sicilia Toscana Trentino Umbria Valle d’Aosta Veneto Italia

16.2 18.2 14.5 18.8 14.1 16.4 17.8

Table 4.1: Average trip duration in minutes.
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Average Trip Speed

Abruzzo Basilicata Calabria Campania Emilia Friuli Lazio

vavg [km/h] 47.6 48.5 44.4 38.6 43.3 47.2 48.6

var[%] 14.4 13.3 22.9 25.3 15.4 12.6 15.5

var[%] -11.2 -8.8 -21.2 -21.4 -15.3 -8.1 -17.0

Liguria Lombardia Marche Molise Piemonte Puglia Sardegna

vavg [km/h] 42.3 40.2 44.9 41.1 44.4 40.4 53.3

var[%] 24.1 23.6 12.0 12.7 19.9 24.1 8.1

var[%] -20.5 -19.7 -8.5 -14.8 -17.6 -21.7 -7.8

Sicilia Toscana Trentino Umbria V. d’Aosta Veneto Italia

vavg [km/h] 43.6 40.9 48.3 50.0 42.4 42.2 43.2

var[%] 30.3 20.6 18.0 25.1 20.6 19.1 18.0

var[%] -25.2 -14.9 -15.3 -21.4 -20.8 -16.3 -21.0

Table 4.2: Trip average speed distribution in km/h.

As described in Section 3.2.1, to improve the consumption estimation an average speed
value is associated to each trip, to characterize both the duration and the average speed.
Since RAMP-mobility defines trips on a time-basis, the linkage between duration and
speed of real-world trips is investigated to find probability distributions to randomly select
an average speed. For this purpose, Time-Velocity tables (TV-tab) is built analyzing the
commuting trips database. Duration and speed are clustered and the probability to obtain
a certain average speed class is computed for each time class, considering the absolute
frequencies of trips with the same characteristics. The probability table used for Italy to
model the link between trip duration and average speed is reported in Figure 4.3. These
tables aims to introduce a realistic dependence between how much a trip last and its
average speed, and to improve the consumption estimation, since average speed is a key
parameter for its assessment.
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Figure 4.3: Graphical picture of the matrix linking trip duration and speed.

Vehicle fleet composition analysis

A further step is the analysis of the vehicle fleet for each Italian region to obtain an
accurate picture of the vehicle fleet. The dataset from Ministero delle Infrastrutture
e dei Trasporti (MIT) [26], containing region-specific information about road vehicles,
including both cars and motorcycles, is analyzed. Data are obtained from the national
vehicle registry and the last version of 2019 is considered. The raw dataset classifies all
vehicles according to different characteristics as vehicle type (car or motorcycle), intended
usage, brand, displacement, type of fuel, power, date of registration, Euro class and total
vehicle mass. The information used to classify the vehicles into six reference segments are
displacement, power, and total vehicle mass. Only internal combustion engine cars with
transport of people as intended usage are considered, all other details are not taken into
account.

As first step of the analysis the dataset is cleaned from vehicles with missing information
or too high values of mass and displacement, to delete those which are not properly pas-
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senger cars. The reference vehicles are selected according to the same three parameters
previously highlighted, and divided into six segments to represent all the types of cars
available on the market. These categories have been named: Utility, Small, Medium,
Station Wagon, Sport-Utility-Vehicle (SUV) and Executive. For each of them a reference
vehicle model is chosen among the ones available on the market. Additionally, reference
EVs models have been selected aiming to have the corresponding electric vehicle classi-
fication, necessary to implement in RAMP-mobility the vehicle share composition and
characteristics. The selected couple of vehicles for each segment is showed in Table 4.3,
highlighting the key parameters used for the classification of the ICEV database.

ICEV Power Mass ELECTRIC Battery Mass

MODEL [cc] [kW] [kg] MODEL [kWh] [kg]

Utility Fiat 500 1000 51 1300 Fiat 500e 24 1365

Small VW Polo 1000 85 1500 Peugeot 208e 50 1530

Medium VW Golf 1500 110 1700 VW ID3 58 1805

SW Audi A4 2000 140 2100 Tesla Model 3 79.5 1931

SUV Toyota RAV4 2500 160 2500 Audi E-Tron 95 3170

Executive Mercedes E class 3000 245 1830 Tesla Model S 100 2175

Table 4.3: Reference vehicle models for each segment.

For each vehicle a match with one of the reference models is searched considering all
the three single parameters. The reference class is assigned when at least two out-of-
three parameters match with the same segment. If this does not happen an average
of the matching classes is computed and attributed to the vehicle. To be noticed that
the order of the six classes depicts increasing values for the whole set of parameters,
except weight. The results obtained for each Italian region are showed in Figure 4.4, and
through the population share the national average is estimated. National vehicle fleet is
mostly composed by smaller segments, while Suv and Executive vehicles have only few
percentage points. Northern regions are characterized by lower values for Utility and
Small cars, whereas larger ones have shares higher than the Italian average.
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Figure 4.4: Vehicle breakdown into segments as assessed from MIT [26]. The deviation
between the real vehicle fleet mix and the represented one is evaluated through the com-
putation of the Mean Perecentage Error (MPE) displayed on the top of each bar.

To evaluate the validity of this classification, a mean percentage error is also returned
as average of the relative errors for mass, power and displacement. This to estimate the
inaccuracy of assignment of the vehicle to the selected segment. Looking at the values
reported in Figure 4.4, for all the regions the error is on average lower than 10% which
is considered acceptable seen the high number of vehicles. The analyzed vehicle fleet is
almost only composed by ICEV; however, it is assumed that in a nearly future there will
be BEV models in all car segments, and that the distribution will be very similar to the
one of conventionally-powered cars.

The higher level of detail in modelling the vehicle fleet is adopted to understand if the level
of accuracy of the framework could be improved. This is going to be tested in Chapter 7
for Italy since the processed database contains information only for the Italian country.

Kilometer analysis

The last step of this analysis is the kilometer characterization. The input of RAMP-
mobility that determines the total transport demand is the daily distance travelled by
each user type, which is subsequently split on the different functioning windows. The
region-specific annual kilometer from UnipolSai [38] is fixed as reference, and is used
as average of total annual kilometer for the given region. The dataset comes from the
analysis of black boxes installed on cars, and the values are showed in Figure 4.5. The
first column is associated to the country value obtained considering the population share.
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Figure 4.5: Vehicle yearly driving distance from UnipolSai. [38]

The daily driving distance specific for type of user (Worker, Student and Inactive) and
for day-type (Weekday or Weekend) is computed. The breakdown is obtained respecting
(i) the ratio between average distance of workers and students given by the analysis of
data from commuting trips records [18]; (ii) the regional population distribution in the
three user classes according to Istat [16]; (iii) and the ratio between weekday and weekend
kilometer fixed at 1.1 from the JRC survey [1]. This ratio is respected only for Inactive
users which are modelled considering the UnipolSai average annual value. Total distance
for the weekend is assumed constant and independent on the user. Considering the number
of weekdays and weekends the total annual values are divided accordingly, and the daily
driving distance for each user type and day of the week is computed. Results of the
division for a sample region (Valle d’Aosta) are reported for clarity in Table 4.4, and
the same process is followed for each of the other regions. The breakdown of population
into type of user required by RAMP-mobility is showed in Figure 4.6 and it is estimated
from Istat database [16] which splits the population into employed or non employed and
estimate percentages of students inside these two main groups.

Valle d’Aosta

Weekday Weekend Total

Worker 8470 3647 12117

Student 4875 3647 8522

Inactive 7985 3647 11632

Table 4.4: Valle d’Aosta - Yearly per user driving distance in km.
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Figure 4.6: Population breakdown into user classes.

The following step consist in the identification of the functioning windows necessary to
split the average daily distance during a day. Istat database has been used for this purpose
describing the share of people doing certain daily activities with a 10 min resolution [15].
From the database two different datasets with different level of aggregation have been
analyzed. The activity Finalized Trips is the one selected in both datasets, but some
differences are found in the aggregation level. The first one is region-specific and is used
for distributing the driving distance along the day; while the second one characterizes
different types of users as occupied or non-occupied, and is used to identify the functioning
windows. In common they both specify different distributions for Weekday, Saturday, and
Sunday. In this analysis workers are associated with occupied people in working days,
students with non-occupied people in working days, inactive as the total of weekends and
inactive during weekdays as those on Saturdays.

The first dataset with the percentage of people doing Finalized Trips every 10 min is
multiplied by the average kilometers for each user and day type to distribute the total
daily travelled distance. The fundamental assumption behind this characterization is that
kilometers’ division follows the same distributions of the percentage of travelling people.
From the second dataset functioning windows are obtained differentiating peak hours from
off-peak ones. Weekdays and Sundays are characterized by two peak functioning windows
(Main), one in early morning and the other one in evening hours; and three off-peak (Free
Time); Saturdays have instead one Main and two Free Time. With the arrangement of
users and day of the week four different combinations are identified: Worker and Student
in weekdays, Inactive for weekdays and Saturday, and lastly Inactive on Sundays. The
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assumption behind this reasoning is that all users behave as Inactive during the weekend,
and the Inactive users have the same behavior on weekdays and Saturdays, while specific
windows are chosen to model Sundays. A graphical representation of the four types of
windows is displayed in Figure 4.7, and a variability of 10% on Free Time duration is
considered as input random parameter in RAMP-mobility to introduce stochasticity on
functioning windows duration.

(a) (b)

(c) (d)

Figure 4.7: Functioning Windows compared with moving people profiles from Istat. [15]

Functioning windows are used to filter the daily kilometers and compute the average
distance in Main and Free Time for each user type and day of the week. This process is
followed considering data for each single region, and then aggregated using the regional
population as weights to obtain the Italian average. The results for the sample region
Valle d’Aosta and for the Italian average are summarized respectively in Table 4.5 and in
Table 4.6.
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Valle d’Aosta

Worker Student Inactive Saturday Sunday

Main 16.7 12.1 21.6 24.6 20.8

Free Time 15.3 6.3 8.5 8.6 12.3

Total 32.0 18.4 30.1 33.1 33.1

Table 4.5: Daily driving distance for each functioning window in km.

Italy

Worker Student Inactive Saturday Sunday

Main 16.7 11.9 22.2 25.0 22.2

Free Time 16.3 6.7 8.3 8.6 11.4

Total 33.0 18.6 30.6 33.7 33.6

Table 4.6: Daily driving distance for each functioning window in km.

After this detailed analysis a comparison with the national values currently used as inputs
in RAMP-mobility and coming from the JRC report [1] is presented in Table 4.7.

Italy - JRC

Worker Student Inactive Saturday Sunday

Main 16.9 16.9 36.1 46.4 46.4

Free Time 33.1 33.1 13.9 8.6 8.6

Total 50.0 50.0 50.0 55.0 55.0

Table 4.7: Daily driving distance for each functioning window in km according to original
RAMP-mobility dataset, based on JRC survey. [1]

Looking at the input data computed with the original RAMP-mobility source [1], it is
evident the lower overall driving distances produced with this analysis, and a greater frac-
tion of kilometers driven in Free Time functioning windows for weekdays and even higher
for weekends. Considering as comparison the data from Istituto Superiore di Formazione
e Ricerca per i Trasporti (ISFORT) [20] they are closer, as overall driving distance, to
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the results obtained with the data processing explained in this chapter. Indeed, ISFORT
surveys reported an average driving distance of about 28 km for weekdays and 34 km for
weekends, which are in line with the results reported in Table 4.6.

4.1.2. Mobility

The methodology illustrated in Section 3.2.1 concerning the introduction of structural
improvements to RAMP-mobility is here applied to Italy. The changes implemented are
those related to the mobility module, hence dealing with the functioning windows defi-
nition, the daily distance coherence, and the vehicle consumption estimation. Using the
updated data for Italy derived in Section 4.1.1, the structural mobility improvements are
introduced step-by-step to underline the effect of each single change on both mobility
profiles and energy consumption. An overview of these implementation is summarized in
Table 4.8.

Name Description

Reference
Updated input data:

Population and vehicle composition

Driving habits

Mobility Complementary functioning windows

behaviour Distance recovery

Trip specific Trip link to Driving Cycle

consumption Trip specific consumption

Vehicle consumption
VCAM introduction

model

Table 4.8: Overview of the changes implemented in RAMP-mobility applied to Italy.

Reference

Starting from RAMP-mobility in its original version for Italy, the Reference model is ob-
tained updating data about population breakdown, vehicle fleet composition, and driving
habits; derived from the aforementioned analysis of national data sources.
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Population breakdown and vehicle fleet

The breakdown of population into Worker, Student, and Inactive classes is updated us-
ing the aggregation of regional data. Similarly for the vehicle fleet composition, which
number of segments is increased up to six (Utility, Small, Medium, Station Wagon, SUV
and Executive) since this breakdown is considered more detailed, and able to depict the
whole variety of vehicle types powered with electric motors. The new fleet breakdown
is implemented adding new Appliances to the model and inserting new battery capacity
values, as in Table 4.3. Seen the new vehicles introduced, to use the JRC consumption
function the closest set of coefficients is assigned to each class since these are defined only
for the three original vehicle classes (Small, Medium, Large). Additionally, the Free Time
occasional use, which aims to model the possibility of not using at all the car in a Free
Time functioning window, is updated considering taking the car once a weekday hence
set to 20% instead of 15%, whereas the weekend value is fixed at 35%, keeping the original
difference between the two values.

Driving habits

New functioning windows derived from moving people profiles are implemented, and some
trip characteristics are changed according to the values found in the previous analysis.
The original model takes as input average trip duration and distance, using them to
compute an average randomized speed that is assumed to be the mean velocity of the car
for the whole day. This is then used to estimate the daily driving time and the average
consumption for each trip. A more direct approach is adopted for the new model version,
using data from the Italian analysis of commuting records described in Section 4.1.1. A
value of mean velocity empirically estimated is inserted with its variability as reported
in Table 4.2. Also the average trip time is updated according to the analyzed Italian
trip records. Variability on the average trip time of 20% is also inserted, since this is the
only input data without this characteristic in the original framework. As final input data
change, the average daily driving distance is updated with values derived from the regional
analysis of Section 4.1.1. These values are set for each user, day of the week and are already
divided into type of functioning window, hence pre-processing the daily kilometers. Since
the original RAMP-mobility instead splits inside the model the input total distance in
the different types of functioning windows, the percentage usage variable is removed. In
Figure 4.8 the original stochastic process and the updated one are showed, highlighting
the differences concerning variable name changes and new variability introduced.
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Figure 4.8: Synthesis of the modifications applied to the model variables in the first steps
related to input data variation.

Mobility behaviour

In this section methodological changes already described in Chapter 3 are introduced
aiming at improving the inconsistencies found in the study of the original model structure.
These variations affect the core of the mobility profile generation process.

Complementary functioning windows

The first change implemented is related to the definition of functioning windows extremes.
As already described in Section 3.2.1, a complementary approach for the definition of Main
windows is applied. Concerning the Free Time windows another change is implemented
to represent the lower probability of using the car in a night time-frame instead of the
mid-day hours. This is set for Appliances characterized by three Free Time functioning
windows as those on weekdays for Worker and Student, and on Sundays. The chosen
probabilities are 20% for early morning and late-night trips, whereas 60% is selected for
mid-day ones. This solution comes from considerations about the shapes of the pro-
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files used to define the functioning windows, which show a clear difference among trips
frequency between day peaks and time-frames before or after them.

Distance recovery

The variation here implemented is introduced to solve the incoherence between the input
daily distance and the one which is effectively simulated by RAMP-mobility. The imple-
mentation of this correction requires the inversion of the order in which the Appliances
are run. The application of this improvement to Italy do not require any additional input
and restore the coherence between input driving distance and simulated one.

Trip specific consumption

This step deals with the vehicle consumption estimation in particular with its specificity
which is moved to the trip level, avoiding the adoption of a daily average value. Firstly,
an empirically generated probability distribution, derived from the aforementioned Italian
analysis, is used to link the trip duration to a travel velocity. In this way each trip is
described by the couple duration and speed, and can be linked to one of the driving
cycles previously created using the Driving Cycle Generator, described in Section 3.1. As
explained in Section 3.2.1, the implementation of this trip-specific consumption, using
the original consumption model based on the JRC correlation [31], occurs through pre-
computed consumption tables. These additional inputs are not specific to the case study,
and a matching between the six-segment Italian vehicle fleet and the three types of vehicle
modelled by JRC equation is implemented. Utility and Small are modelled with Small
parameters, Medium and Station Wagon with Medium, while SUV and Executive with
Large.

Vehicle consumption model

A new consumption model is implemented using VCAM dynamic simulator to compute
the average power consumption associated to each driving cycle. This approach increases
the technological detail of the power estimations through a more accurate physical de-
scription of the vehicle dynamics. The same probability distribution used in the previous
paragraph, and obtain from data as explained in Section 4.1.1, is adopted to determine the
average trip speed and to link single generated trips to realistic driving cycles. The differ-
ence is in the adopted consumption tables which are computed using the VCAM model.
Six tables, one for each vehicle class, are created applying VCAM to each DC, and given
as input to RAMP-mobility. The model links average consumption values to trips ac-
cording to the key features duration and average speed. The vehicle types used to model
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each segment are the same adopted for the Italian vehicle fleet analysis in Section 4.1.1,
then no update of the tables is required. If a new vehicle fleet characterization would be
implemented using different reference cars, consumption tables need to be recomputed.

4.2. The Netherlands

4.2.1. Data analysis

For The Netherlands case study no specific update of the input dataset is planned, since
the focus of this work is on the effect of structural improvements. The application of
the upgraded RAMP-mobility structure to the original dataset, mainly based on JRC
source [1], provides insights on the output variations independently from an input data
refinement. However, the adaptation of the daily driving distance is required when coupled
with the distance recovery, thus a scale down of the original dataset is applied to each
European country. Indeed the distance estimated by JRC [1] seems to overestimate the
transport demand and given the similarity between the value obtained for Italy from data
processing, and the distance reported by Isfort [20], a rescaling coefficient is computed.
Average distances of JRC survey are reduced of about 40% dividing them by the ratio
between JRC value for Italy and Isfort one, which is around 1.7. The new distances
obtained are presented and compared with original ones in Table 4.9. Thereafter these
are used as inputs in RAMP-mobility to model the European countries, and in particular
applied to The Netherlands case study.

Original Rescaled

Country Weekday Weekend Weekday Weekend

FR 50 60 27 32

DE 55 55 32 32

IT 50 55 29 32

PL 80 80 47 47

ES 70 80 41 46

UK 40 40 23 23

Table 4.9: Daily driving distance for each country in km.

The correction of average distance is tested in Chapter 6 by computing the vehicle annual
kilometers and comparing them with an external source. The accurate estimation pro-
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vided by the model proves that the rescaling is necessary. Additionally, the trip duration-
velocity table is needed as new input, and since no trip database is analyzed for this
country the one obtained for Italy is extended.

4.2.2. Mobility

The step-by-step implementation described for Italy is applied to The Netherlands since
this country will be object of charging profile assessment in Chapter 6. Few data are varied
since no significant studies have been made specific for this country, hence the difference
between the two applications lies in the input data which have different sources: European
databases for The Netherlands, as in the default RAMP-mobility version, and national
databases for Italy.

Reference

The Italian analysis described at the beginning of this chapter allowed to determine spe-
cific characteristics for Italian trips. Given the similarity of computed average speed for
Italy to the one determined through JRC data, the value for all the other European coun-
tries is determined using the same values of distance and time of the original model, with
the difference of being pre-computed and given as inputs to the model. This method
is adopted since the differences in velocity limits in European countries and in driving
behaviour are significant, thus the daily average velocity computed for Italy cannot be
extended to other countries. The variability on this input velocity is instead updated
following the one introduced for Italy, which is set to 18% for the positive direction and
21% for the negative one. Concerning the average trip time it is kept as the initial value
of RAMP-mobility for the same reasoning above, but 20% variability is introduced on
it, since this is the only parameter without this feature in the original model. Seen the
incoherence revealed in the Italian analysis between computed daily distance and the
JRC data, given as input to RAMP-mobility, the distances for the other European coun-
tries have been rescaled. Input data have been updated as illustrated in Section 4.1.1.
Differently from Italy, the input distance is the daily average not divided in functioning
windows, thus the percentage usage variable is kept. Additionally, as for Italy Free Time
occasional use is updated to 20% for weekdays instead of 15%, while weekend value is
fixed to 35%.
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Mobility behaviour

The same approach used for Italy is introduced for The Netherlands to solve modelling
limits found in the analysis of the model. Complementary functioning windows and
driving distance coherence are then implemented.

Trip specific consumption

The necessary element to allow the coupling of trips generated with RAMP-mobility to
a driving cycle is the relation between trip duration and average speed. Time-velocity
probability distribution produced for Italy is assumed to be valid for all the other Euro-
pean countries since no specific national databases have been investigated. Consequently,
Italian distribution is extended to all the European countries and is used as input to
RAMP-mobility.

Vehicle consumption model

Also in this step the probability distribution derived for Italy is extended to The Nether-
lands to obtain average trip velocities corresponding to trip duration. VCAM is used to
estimate the vehicle consumption associated to each driving cycle. The only difference
with respect to Italy is in the tables used to find the consumption value associated to the
couple of trip parameters. Three out of six tables produced for Italy are chosen to model
the vehicle fleet, which is divided in only three segments (Small, Medium, Large) in the
original model version.

In Table 4.10 all the changes introduced are synthesized dividing them per type of action
implemented, whereas in Appendix B a more detailed description is presented.
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Table 4.10: Synthesis of the main improvements introduced in RAMP-mobility.
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In this chapter the results of the Driving Cycle Generator tool, together with the im-
provements introduced in the original RAMP-mobility for Italy and The Netherlands,
described in Chapter 4, are presented. Lastly, the results of user connection time-series
are displayed to assess the impact of charging probabilities.

5.1. Driving Cycles generator

For what concern the output of the Driving Cycles Generator, the results of the different
types of generated DCs are illustrated. Several values of average velocities are considered
to analyze how this parameter influence the shape of the driving cycle, and the input
time is chosen in relation to the driving cycle needed. Afterwards, the comparison with
Emobpy generator is carried on to assess the differences between the two tools.

5.1.1. Construction

Urban driving cycles

Starting with the Urban driving cycle, two cases are reported at 12 km/h and 22 km/h

both with 20 min as duration. The Urban WLTC section is repeated until the total
trip time is reached; in Figure 5.1 the two DCs are compared. In the fastest DC the
maximum velocity is higher than in the other one due to a higher scale factor needed to
rescale the reference section, and reach the input average speed. In the slowest one the
final transition can be noticed, which is added to bring the final value of velocity down
to zero and have a condition of stop at the end of the driving cycle.
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Figure 5.1: Urban driving cycles with different average velocities.

Urban-ExtraUrban driving cycles

The selected Urban-ExtraUrban driving cycles are characterized by average speeds of 30
km/h and 45 km/h with 40 min as duration. The longer time is selected to have more
than one section of reference ExtraUrban replicated, and to graphically notice the impact
of higher average speed on the Urban Share. A higher average speed, as in the case at
45 km/h, produces a reduction in the urban sections and more space is reserved for the
ExtraUrban WLTC section. Two sections with maximum speed at 100 km/h are replicated
in the upper plot of Figure 5.2, and less urban seconds are placed at the beginning and
at the end of the driving cycle.
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Figure 5.2: Urban-ExtraUrban driving cycles with different average velocities.

Urban-Highway driving cycles

In Figure 5.3 the simplest custom Urban-Highway driving cycle is presented with input
parameters of 50 km/h and 10 min. The short duration is chosen to represent the case
with less than one reference Highway section, hence avoiding the Probabilistic Highway
approach. At the border between central highway section and final urban an important
transition can be noticed, since the last value of velocity is around 120 km/h and the
following section starts from 0 km/h. The time reserved for this connection is computed
assuming a conservative constant deceleration of about 0.1g.

Figure 5.3: Urban-Highway driving cycles in its simplest configuration.
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Urban-Highway Probabilistic driving cycles

Before illustrating the Probabilistic Highway, the Transition Probability Matrix (TPM)
representing the velocities states is presented. As already mentioned in Section 4.1.1, the
TPM is used to create the driving pattern for central Highway DC, when more than one
WLTC highway sections should be repeated. Given an initial velocity, the following one
is defined with a random choice according to the probability distribution obtained from
the analysis of the reference WLTC Extra-High section. The TPM, defined by actual and
next velocity, is obtained clustering data with a 2 km/h gap. A graphical representation
of the matrix is reported in Figure 5.4.

Figure 5.4: Transition Probability Matrix (TPM) from which the Probabilistic Highway
is generated.

Probabilistic Highway approach is followed to avoid periodic start-and-stops in the central
highway part, which is considered an unrealistic driving pattern. Some sample cases of
Urban-Probabilistic Highway are reported with chosen input velocities of 50 km/h and
110 km/h. The custom DCs obtained are characterized by a central highway section,
depending on the path followed with the TPM, and by initial and final urban, which
length is computed from the Urban Share considering Highway reference average velocity.
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In the two selected cases the US varies significantly due to the different average speed,
and this is reflected in less time steps in urban driving environment (Figure 5.5).

Figure 5.5: Urban-Highway Probabilistic driving cycles.

Highway Probabilistic driving cycles

This case is a particular situation in which the input average speed is high, while the du-
ration is relatively short, hence large scaling factors are required to keep the desired input
velocity. Consequences of this rescaling are over-stressed acceleration and deceleration,
which cannot be followed by all types of cars. Two cases have been selected to clarify this
situation. Having 10 min as selected time with 70 km/h as velocity, the scale factor does
not represent a limit, hence initial and final urban sections are kept. Instead, with average
speed up to 90 km/h the scale factor reaches values higher than the threshold causing
accelerations above 2 m/s2, which is considered the acceptable limit. A new driving cycle
is consequently generated avoiding the urban sections, as in the lower chart in Figure 5.6.
This control feature allows to generate realistic driving cycles even for uncommon couple
of input values.
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Figure 5.6: Highway Probabilistic driving cycles in which urban sections are avoided to
limit the scale factor.

5.1.2. Comparison with Emobpy Driving Cycles generator

A comparison with Emobpy methodology is performed to evaluate the differences of these
two similar approaches. The selected driving cycles are the critical ones, meaning those
with average speed closer to the limit of each class for both the generator developed with
this thesis, named PeVi, and the one used in Emobpy. The input time is set at 15 min,
while the average velocity values for the five selected cases are illustrated in Table 5.1.

Speed [km/h]

Emobpy limits
Case 1 30.7

Case 2 49.1

Case 3 71.9

PeVi limits
Case 4 22.0

Case 5 48.6

Table 5.1: Cases analyzed to compare Emobpy and PeVi generator tools.
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For both approaches the five driving cycles are represented in Figure 5.7 and differences
can be identified. The first important aspect is the last time step velocity in Emobpy
DC which is often not at 0 km/h. This happens since the reference WLTC sections are
replicated until the total input time is reached, and this could be at any value of velocity,
hence representing an unrealistic driving pattern. In the PeVi generator this problem is
tackled and solved thanks to transitions reducing the last velocity value to reach always
a final stop condition.

Analyzing more in detail the different cases, Case 1 which is a Low-Speed driving cycle
for Emobpy, is instead an Urban-ExtraUrban in the PeVi generator. The same urban
pattern can be seen for the first 250 seconds in which the two DCs differ only for the
scale factor. Case 2 is in a Medium-Speed environment for Emobpy generator, while in
the PeVi approach the custom DC is obtained through the Probabilistic Highway. This is
also adopted in the following Case 3 but with a lower urban share and higher maximum
velocities. For what concern the other two limit cases, Case 4 is in urban conditions and
is very similar for both since this is the simplest option and the reference Low-Speed is
just replicated; the only difference is the handling of the last time-steps velocities. In Case
5 differences can be found in initial and final urban sections for the PeVi methodology,
which are instead not inserted in the Medium-Speed Emobpy driving cycle.
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Figure 5.7: Comparison between PeVi and Emobpy driving cycles generators.
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A numerical comparison between the generators is made according to significant indica-
tors which are: maximum speed, maximum acceleration/deceleration and driving share
in accelerating, decelerating and idling mode. The values for the WLTC are also reported
in Table 5.2.

vmax [km/h] accmax [m/s2] decmax [m/s2] idle% acc% dec%

WLTC 131.3 1.8 -1.5 17.1 42.4 40.6

Case 1 PeVi 78.8 1.6 -1.5 16.6 46.7 36.7

Case 1 Emobpy 84.6 2.4 -2.3 25.7 37.8 36.5

Case 2 PeVi 125.7 1.5 -1.4 14.5 45.6 39.9

Case 2 Emobpy 89.3 1.9 -1.8 6.7 52.3 41.1

Case 3 PeVi 120.5 1.3 -1.5 6.9 47.4 45.7

Case 3 Emobpy 123.0 2.2 -1.9 16.6 40.9 42.5

Case 4 PeVi 58.6 1.7 -1.6 23.4 37.8 36.5

Case 4 Emobpy 60.6 1.7 -1.6 25.7 37.8 36.5

Case 5 PeVi 115.4 2.1 -1.8 14.2 46.2 39.6

Case 5 Emobpy 88.4 1.9 -1.7 6.7 52.3 41.1

Table 5.2: Numerical comparison between PeVi and Emobpy driving cycles generators
according to selected indicators.

Considering the limit cases for Emobpy (Case 1, Case 2, Case 3 ), the maximum ac-
celeration and deceleration values are always higher than those of the WLTC due to a
strong rescaling effect, while PeVi corresponding driving cycles are closer to reference
values. The maximum velocities are slightly higher for Emobpy Case 1 and Case 3,
whereas Case 2 with PeVi approach pushes the velocity to 125 km/h. This is due to
the Probabilistic Highway, which is compared with a Medium-Speed driving cycle having
consequently lower speed. Looking at PeVi limit cases, the values of acceleration and
deceleration are much closer to reference WLTC and lower than Emobpy. In Case 5 the
maximum acceleration is above 2.0 m/s2, previously identified as threshold acceleration,
but this is a limit case with the highest rescaling factor not obtainable for other input
parameters. For what concern the percentages in idling, accelerating and decelerating
modes, PeVi driving cycles are always closer to the WLTC values, the only exception
is in Case 3 in which idle mode has a lower share. This is due to the large share of
Probabilistic Highway with respect to Urban which reduces the idling states, however this
is realistic considering trips mainly driven in highway conditions.
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5.2. RAMP-mobility improvements: mobility

The results of the improvements of RAMP-mobility applied to the two cases presented
in Chapter 4 are showed in these paragraphs. Firstly, the step-by-step implementation
of the improvements is presented for Italy and the intermediate steps are compared with
the Reference model in terms of mobility profile and energy demand. Secondly, the
step-by-step application is applied to The Netherlands, to show the effects of structural
improvements to a Reference case with limited data changes.

5.2.1. Italy

Before proceeding with the presentation of the results, the general data used to produce
the mobility profiles are explained. Italy is simulated considering 2500 users and repro-
ducing a series of the three day-types which are weekday, Saturday, and Sunday for 60
days, which means a total of 180 days simulated for each step. 2500 users have been esti-
mated by Mangipinto [24] as a good trad-off between required computational time and the
detail of the output. For the comparisons, the average of each day type is computed and
represented in all the figures reported in the following sections. This approach is chosen
to reduce the impact of stochastic parameters on the mobility profiles and highlight only
the differences of the introduced changes. Concerning the number of days, 180 days are
selected to catch the average yearly temperature oscillation by simulating almost half a
year. Default input data for the stochastic parameters are summarized in Table 5.3.

Stochastic Values

% %

Windows V ariability 20 Occasional use MainWeekday 100

AvgTime V ariability 20 Occasional use MainSaturday 60

Distance V ariability 30 Occasional use MainSunday 50

Speed PositiveV ariability 18 Occasional use FreeT imeWeekday 20

Speed NegativeV ariability 20 Occasional use FreeT imeWeekend 35

Table 5.3: Default values for input stochastic parameters adopted for the simulations.
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Reference

A general description of the input data updates considered in the Reference case is here
provided, comparing the new values, assessed in the Italian data analysis, with the original
ones of RAMP-mobility. The qualitative comparison aims to show the differences between
the two datasets, and for the impact assessment of this data changes on mobility profiles
and total energy demand, a dedicated section is added in Chapter 7.

Population breakdown and vehicle fleet

The Reference case considers an update of the population breakdown as reported in
Table 5.4 where only a minor shift between the percentages of Inactive and Student can
be observed. The vehicle fleet composition is also updated, including a more detailed
description of the breakdown with six segments instead of three. The comparison with
the original case, reported in Table 5.5, highlights a fleet composed of smaller cars. Indeed
almost a half is composed by the first two segments and larger cars, classified as Suv and
Executive segments, covers only 4% of the fleet.

Original Reference

Worker 46.10 % 46.48 %

Student 3.69 % 9.10 %

Inactive 50.20 % 44.42 %

Table 5.4: Population breakdown into user classes.

Battery Battery
Original Share

Capacity [kWh]
Reference Share

Capacity [kWh]

- - - Utility 24.16 % 24
Small 24.41 % 37 Small 25.95 % 50

Medium 68.62 % 60 Medium 19.70 % 58
- - - Sw 25.74 % 79.5

Large 6.97 % 100 Suv 2.59 % 95
- - - Executive 1.86 % 100

Table 5.5: Vehicle breakdown implemented after data analysis described in Section 4.1.1
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Driving habits

Reference case includes also some changes of mobility variables, which are related to the
update of input data, and to the introduction of formal changes which modifies only vari-
ability aspects, not structural ones. New functioning windows, assessed from the analysis
of moving people profiles described in Section 4.1.1, are implemented. An additional
variability is applied to the average trip length, which is the only variable not subjected
to stochastic oscillation in the default version. The percentage variability on the daily
average velocity, vmean, is split in positive and negative values (see Table 5.3), obtained
from the velocity distribution assessed in Section 4.1.1. The average trip features, speed
and duration, are updated considering the values assessed from the trip records analysis
performed. Lastly, the total daily distance travelled for each user is updated, and a sen-
sible reduction of about 40% is clearly displayed in Table 5.6. The reduction of driving
distance has great impact on the model since this variable is linearly related with the
total transport demand. The large difference is however grounded on the data processing,
and is linked to the structural improvement introduced afterwards in the Distance recov-
ery step. Without that structural change the real simulated distances are consistently
lower, as reported in Table 5.7, which shows the results of a post process analysis of the
simulated trips. Even if the input-output consistency is not respected, the output aver-
age distance of the Original simulation is similar in magnitude to the one used as input
for Reference case. Consequently, a balancing between distance reduction and distance
recovery is applied.

Day User Window Type Original Reference

weekday

worker
main 16.88 16.73

free time 33.12 16.27

student
main 16.88 11.91

free time 33.12 6.65

inactive
main 36.07 22.27

free time 13.93 8.34

saturday inactive
main 46.42 25.03

free time 8.58 8.64

sunday inactive
main 46.42 22.23

free time 8.58 11.45

Table 5.6: Comparison of daily driving distance per user, data in km.
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Original Input [daily km/user] Output [daily km/user]

Weekday 50 30

Weekend 55 39

Reference Input [daily km/user] Output [daily km/user]

Weekday 31 21

Weekend 34 23

Table 5.7: Difference between input driving distance and output simulated one.

Mobility behaviour

The first structural improvements, described in Section 3.2.1, require important changes to
the stochastic process and solve inconsistencies of the framework. A different procedure to
compute the functioning windows is applied and the coherence between input and output
distance is solved. The distance skipped during Free Time windows due to the stochastic
occasional use is recovered and the average daily driving distance is almost equal to the
input one, as reported in Table 5.8.

As it is possible to assess from Figure 5.9, the increase in the total simulated distance
causes a higher transport demand, concentrated in the Main windows, and significant
spikes in the profile during Weekdays about 300 kW higher than the Reference case. Less
important changes can be observed in Weekends since the Free Time occasional use pa-
rameter is higher and is present also for Main windows. Changing functioning windows
extremes has minor consequences both on profiles and total demand, because effects are
hidden when different user profiles are summed together. In Figure 5.8 also the Original
profile is highlighted to show that the coupling of new input distance and distance recov-
ery produces similar profiles in shapes, but concentrates the demand in peak hours for
Weekdays. Saturday and Sunday profiles are less increased by this modification since are
characterized by a higher probability of using the car in Free Time windows. Moreover,
the effect of having a probability of not taking the car even in Main windows do not allow
the full distance recovery. Looking at values in Figure 5.9 the overall energy demand
is close to the one obtain for Original, whereas the increase in demand with respect to
Reference is about 35% for each day type, and is completely related to the distance re-
covering mechanism.
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Mobility behaviour Input [daily km/user] Output [daily km/user]

Weekday 31 31

Weekend 34 33

Table 5.8: Similarity between input driving distance and output simulated one.

Figure 5.8: Profile comparison between Original, Reference and Mobility behaviour cases.

Figure 5.9: Comparing total transport demand of Original, Reference and Mobility be-
haviour cases.
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Trip specific consumption

Trip specific consumption is the key step to improve the technological detail of the con-
sumption modelling. It consists in associating each generated trip to a real-world driving
cycle, for which a specific value of consumption is computed. This methodological step
changes the parameter used to estimate the vehicle consumption, which in the original
model was the daily first guess average velocity. The new approach assigns a driving cycle
to each trip according to the couple of key parameters, average speed and duration, and
computes the average consumption through the JRC equation [31], applied to each point
of the DC.

Having a trip specific consumption causes an important increase in the consumption of
about 400 kW for the peaks, 200 kW for the valleys, and 300 kW for the Saturday profile.
This increase is reflected also in the total energy demand, as showed in Figure 5.11, with
an increase of around 35-40%. Looking at Figure 5.10 the trip specific consumption
affects more the shorter Main windows of Weekdays, which is caused by a higher average
power demand of shorter trips. This important change is a key intermediate step for the
implementation of the coupling with VCAM model; these results are displayed in the next
paragraph. The approach here presented overestimates the vehicles consumption, and the
adoption of this model as final solution should be carefully considered since it assumes
that the JRC equation can be applied on each instant of the driving cycle velocity profile.
In the next paragraph a more accurate solution is proposed since the trip-detailing of
consumption is computed with a vehicle dynamic simulator.



74 5| Results

Figure 5.10: Profile comparison between Reference, Mobility behaviour and Trip specific
consumption cases.

Figure 5.11: Comparing total transport demand of Reference, Mobility behaviour and
Trip specific consumption cases.

Vehicle consumption model

The results of the final version of the model, which includes the coupling with VCAM, are
showed in this paragraph. This last step refines the trip-specific consumption by applying
VCAM to the driving cycle associated to each couple speed-time. Looking at the curves in
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Figure 5.12, the new consumption model causes a scale down of the profile, which drops the
Weekday peaks of about 500 kW compared to previous step, without affecting the curve
shape. The implementation of a trip-specific vehicle dynamic consumption evaluation
creates demand curves similar to the ones of Mobility behaviour case, with a slight decrease
of about 50 kW corresponding to 5% of the peak power. This is also observed in the total
transport demand which decreases of 10%. This reduction is linked to the totally different
approach adopted to compute the average consumption, no more based on a literature
equation [31], but obtained applying the VCAM dynamic simulator to the driving cycle
associated to the trip. Looking at energy tables in Figure 5.13, a uniform drop of about
32% in all day-types is observed compared to Trip specific consumption values.

Figure 5.12: Profile comparison between Reference, Mobility behaviour, Trip specific con-
sumption and Vehicle consumption model cases.
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Figure 5.13: Comparing total transport demand of Reference, Mobility behaviour, Trip
specific consumption and Vehicle consumption model cases.

Comparing the Reference case with the last implementation of Vehicle consumption model,
the result is an uneven increase in the demand profile, of about 300 kW in weekday peaks
while of less than 100 kW during the larger Main window of Saturday. Looking at
Figure 5.13, the overall effect of the introduced improvements is an increase in the total
transport demand of around 30%. This rise is caused by the distance recovery mechanism
and is mitigated by the new consumption evaluation method, which is proved to reduce
the power demand. The less evident effect on weekends is a consequence of a lower
distance recovery, which is not complete due to lower occasional use in Main windows. The
introduction of a per second trip description not coupled with an appropriate consumption
model would produce a further 60% increment, proving that transport energy demand is
highly sensible to the refinement of the consumption evaluation method.

As described in the methodology in Section 3.2.1, the last two steps related to the vehicle
consumption are introduced through consumption tables. These are specific for each car
segment and represent the non-thermal power consumed in each driving cycle, meaning
for the couple speed and time. Thermal demand, which depends on external tempera-
ture, is added separately. Initially these tables were computed from 5 to 300 min with 5
minutes as time-step, and from 5 to 120 km/h for all velocity values. However, analyzing
the power values in relation to the two parameters characterizing the driving cycle, power
consumption highly depends on average speed, while a limited dependence from trip dura-
tion has been noticed. Variations with this parameter are significant only for short trips,
for this reason the tables have been reduced in dimension limiting the time variable to
100 min. This analysis is valid for all the vehicle types and for both the steps, hence all
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the tables have been modified. A graphical result of these considerations is reported for
different values of velocity in Figure 5.14, showing the limited variability after 100 min

of trip duration.

Figure 5.14: Percentage variation of vehicle consumption with respect to 100 min cycle,
for four speed classes and all values of trip duration.
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Figure 5.15: Power consumption variation with trip velocity for all the vehicle segments
and for a selected trip duration set to 50 min.

In Figure 5.15 the values of power consumption for all the vehicle segments and for a
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selected trip duration are reported, highlighting their variation with velocity. Values
increase with velocity, and vehicles with larger battery capacities are characterized by
higher consumption for the selected driving cycle. At higher speed two different trends
are evident, reducing the differences between vehicles.

As final analysis, to assess the impact of the introduced changes on the annual mobility
profiles, Reference, Mobility behaviour and Vehicle consumption model cases have been
compared in terms of energy demand as illustrated in Figure 5.16. An increase of 44%
is highlighted seen the introduction of distance recovery mechanism; this increase is mit-
igated with the vehicle consumption model, which limits the increase to 27%. Therefore,
the consumption estimation has to be carefully modelled seen the influence on the ag-
gregated mobility profiles. Additionally, the mobility curves for three selected weeks of
the year are represented in Figure 5.17, and the effects of temperatures and stochastic
variables can be understood.

Figure 5.16: Annual transport demand for cases: Reference, Mobility behaviour and Ve-
hicle consumption model.
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Figure 5.17: Three sample weeks to compare the mobility profiles of cases: Reference,
Mobility behaviour and Vehicle consumption model.
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5.2.2. The Netherlands

The step-by-step analysis of the application to The Netherlands is here described. As
for Italy, four cases are presented highlighting the starting model and the improvements
introduced in the stochastic process.

Reference

The input data changes are very limited for The Netherlands since no specific databases
have been analyzed to better characterize the country. The major change is related to the
reduction of the input daily distance, considering the incoherence noticed for Italian values
between computed data and original ones. Minor updates are related to the occasional
use variables, and to the variability introduced on velocity and average trip time derived
from Italy case.

Mobility behaviour

Focusing on structural improvements, complementary functioning windows and distance
recovery are implemented. The resulting profiles in Figure 5.19 highlight higher transport
demand concentrated in Main windows. Weekday peaks, which correspond to Main
windows, increase of around 400 kW , whereas less important changes can be observed
in Weekends with an increase of 100 kW . The Free Time occasional use parameter is
indeed higher, and it is also introduced for Main windows, hence reducing the distance
recovered. A similar conclusion is derived for the transport demand in Figure 5.18 which
increases as expected with higher differences on Weekdays.

Figure 5.18: Comparing total transport demand of Reference and Mobility behaviour cases
for the Netherlands.
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Figure 5.19: Profile comparison between Reference and Mobility behaviour cases for the
Netherlands.

Trip specific consumption & Vehicle consumption model

The impact of the last two steps on the mobility profile is similar to the ones showed
for Italy. In Figure 5.20 the change in the specificity of the vehicle consumption causes
higher profiles. This increment is around 200 kW for Weekday peaks, and about 100 kW

for Saturday; a strange behavior is noticed for Sunday profile, for which no significant
change is highlighted. The same relative increase can be observed in the total transport
demand showed in Figure 5.21. With the introduction of VCAM, the power values are
reduced of 400 kW for Weekday peaks, and of about 200 kW for Weekends. Similarly
the transport demand is affected with Weekday increase of around 40%, which instead
does not vary significantly during Saturday and Sunday, due to the lower distance recovery.
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Figure 5.20: Profile comparison between Reference, Mobility behaviour, Trip specific con-
sumption and Vehicle consumption model cases for The Netherlands.

Figure 5.21: Comparing total transport demand of Reference, Mobility behaviour, Trip
specific consumption and Vehicle consumption model cases for the Netherlands.

Computational time

To conclude the analysis of the step-by-step improvements for the applications to Italy
and The Netherlands, the impact in terms of computational time is here pointed out. The
values are reported in Table 5.9 and refer to simulations without the charging module,
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for 2500 users and 180 days. The device used to test the proposed solutions has M1 CPU
with 8 core and 8 GB of memory. The Mobility behaviour case, which introduces changes
in the stochastic process, has a low influence on computational time which remains stable
around 5 min. More significant impacts can be noticed for the last two cases: the time
for simulations increases of 63% for Italy and 52% for The Netherlands. This difference is
related to the lower average trip time used for Italy which generates a higher number of
trips. The general increase of computational time is clearly related to the new approach
introduced to estimate the vehicle consumption, which is associated to each generated
trip instead of computing an average consumption value for each Appliance. Even though
the computational time is higher, it is still acceptable seen the greater level of realism
introduced.

Reference Mobility Trip specific Vehicle

behaviour consumption consumption model

Italy 4min 57s 5min 15s 8min 30s 8min 15s

Netherlands 4min 56s 5min 2s 7min 40s 7min 30s

Table 5.9: Comparison of computational times for the two applications: Italy and the
Netherlands.

5.3. RAMP-mobility improvements: charging

The results of the user connections are here reported analyzing the effects of different
charging probabilities. The simulated fleet is composed of 2498 vehicles, which corre-
sponds to about 143 MWh of nominal battery capacity. The number of connected user
and the available battery capacity for each time-step have been determined, differentiat-
ing between charging and non-charging ones. The profiles generated for a sample week in
January are displayed adopting the updated RAMP-mobility version for all cases, using
the same mobility output and differing only for charging parameters. A first result evident
looking at Figure 5.22, is the similar trend between the number of connected users and
the amount of battery capacity available, both in percentage. The results of the two per-
spectives have no significant differences, because weighting each vehicle with its battery
capacity have limited effects on percentage results. Indeed the outcomes of the following
analysis showing the connected battery capacity, can be extended to the number of user
connections.
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Figure 5.22: Comparison between connected users and connected battery capacity in
percentages.

Two steps influence the plug-in events: (i) the infrastructure availability, meaning the
probability for the user to find an available charging point when parking; and (ii) the
user decision of recharging his vehicle, which highly depends on his behavior and is con-
sequently affected by uncertainty. The results of the four cases highlighted in Chapter 3
are showed in Figure 5.23 where different charging probabilities are implemented.
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Figure 5.23: Impact of different charging probability functions on the battery capacity
connected to the grid.
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The impact of the charging probability functions influence significantly the battery capac-
ity connected to the grid. In the Baseline case the total number of connected people do
not vary with time and its value is close to the constant default infrastructure probability
of 80%. The slight difference is present since the available battery capacity is defined
including even vehicles not moving in the day, while the 80% would be reached excluding
them. Considering the number of connected people which are charging in the Baseline
case, but also in all the others, this percentage is below 5% and the shape follows the one
of the charging profile. The adoption of the user behavior function in Case 1 lowers the
total amount of connected people, which drops to about 15%, without changing the shape
of the profile during the selected week. The introduction of the piecewise function in Case
2 to model the infrastructure availability, reduces the percentage of available battery ca-
pacity of about 20%, giving a characteristic shape to the profile which is complementary
to the charging demand. The lower probability of finding available charging points during
mid-day hours produces high peaks as soon as the probability value increases, since the
charging events are accumulated during the day due to the higher level of occupancy. The
combination of the two functions in Case 3 creates profiles of available battery capacity
that are quite similar to Case 1, underlining the higher influence of the user behavior
function, with only few time oscillations caused by the piecewise. Finally, looking at the
charging profiles the reduction of infrastructure availability (Case 2 ) creates higher spikes
in the profiles, while the behavioral choice is beneficial for lowering the peak power.

In conclusion, two findings can be derived: (i) the user behavior can be an important
limit for the V2G implementation reducing the available storage, while the impact of a
variable infrastructure probability during the day, meaning the reduced number of charg-
ing points due to higher occupancy, is less evident; (ii) infrastructure availability must be
carefully model since it causes charging coincidence, and rises the profile spikes; while the
introduction of the behavioral model lowers peak heights, hence representing a conserva-
tive way to estimate maximum charging demand. As final disclaimer this analysis has
been carried out without analyzing in detail the parameters for the Italian infrastructure
availability and for the behavioural function. This limits the accuracy of these conclusions
that, however, could be a starting point for further investigations.
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6| Model quality assessment and

sensitivity analysis

In this chapter the model quality of the final RAMP-mobility version is assessed. Two
different approaches have been followed in relation to the real-world data availability.
Firstly, the accuracy of the mobility demand is evaluated considering national statistics
and aggregated mobility information, and additionally through data about petrol con-
sumption. This approach is followed seen the absence of measured mobility time-series.
Secondly, a validation is carried on comparing the results of the charging demand with
measured profile available for the Netherlands. Both the methodology and the results for
mobility and charging assessment are presented in the following sections.

6.1. Mobility time-series

The comparison between the overall transport demand simulated by RAMP-mobility and
real-world mobility data is crucial to assess the modelling quality of the framework. The
restricted availability of data related to the energy demand of electric vehicles is a limit,
hence two methods are here presented to overcome the lack of specific databases.

Aggregated mobility data

Aggregated mobility statistics, as annual vehicle kilometers, are useful to validate the sim-
ulated transport demand and its fragmentation into single trips. These data are generally
available for different countries, since do not require to be specific for electric mobility.
The assumption relying behind this reasoning is the similarity of mobility behaviour in-
dependently on the type of car, hence user of conventional vehicles behave in the same
way of electric car drivers. It is important to highlight that this comparison do not assess
the accuracy of the consumption estimation, since it is independent from the total energy
computed.

Eight European countries have been selected for this purpose. Vehicle kilometers is the
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chosen variable, representing the average annual kilometers per car. This average value
is obtained from RAMP-mobility through the analysis of the collected trip information.
Mean distances for each user type and day of the week are produced as output from
the model, and, through the population share, the annual average distance per car is
computed. Billion passenger-kilometers, abbreviated as pkm, is instead the available data
from European Commission report [6] with a country specificity. A passenger-kilometer
is the unit of measurement representing the transport of one passenger by a defined mode
of transport over one kilometer. Data for passenger cars from 2018 are selected, since
this is the focus of RAMP-mobility. Together with this parameter, number of cars and
average passenger car occupancy rate for urban mobility [9] are considered to compute the
vehicle passenger kilometers and allow the comparison with RAMP-mobility results. The
car occupancy rate is the average number of people transported by each vehicle, and two
extreme values are used to determine minimum and maximum annual distances, hence
the model results should be in this range. This comparing approach is preferred instead
of choosing a single value of occupancy rate due to the high uncertainty of this parameter.
Occupancy rate for urban mobility is available for ten European countries and for some
nations is also divided in values considering people of all ages or only those in the range
15-84 years old; the Eurostat values [9] are reported in Figure 6.1.

Figure 6.1: Car occupancy rate from Eurostat database. [9]

The selected limit values for occupancy rate are 1.2 and 1.87 which are used to determine
the range of annual vehicle kilometers. The country total vehicles from Eurostat are used
afterwards to determine the average annual distance specific for vehicle, and characterized
in minimum and maximum annual value. The results for the selected eight countries
are summarized in Figure 6.2, proving a good estimation of the mobility demand with
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RAMP-mobility. The computed average annual distances are indeed in the range set
through Eurostat database for most of the analyzed countries.

Figure 6.2: RAMP-mobility annual vehicle kilometers for eight selected countries and the
corresponding Eurostat minimum and maximum values.

Petrol consumption estimation

An alternative approach to evaluate the quality of the simulated transport demand is the
measure of conventional mobility consumption in terms of petrol demand. This approach
requires the application to RAMP-mobility of consumption models able to simulate even
ICEV, as in the case of VCAM which can model different types of vehicles. This com-
parison is adopted to assess the model quality of Italy since specific databases have been
analyzed. Petrol consumption is a good source of information to estimate aggregated
mobility demand since petrol is mainly used for passenger car fueling, thus it is reason-
able to assume that the overall consumption is imputable only to this sector. However,
this method of quality assessment is limited in accuracy, since values depend on many
uncontrollable variables, and cannot grasp the precision of the EV power estimation.

Data of petrol consumption and number of petrol-powered vehicles are taken respectively
from the oil bulletins published by Ministero dello Sviluppo Economico (MISE) [27], and
from a car market analysis carried on by Unione Nazionale Rappresentanti Autoveicoli
Esteri (UNRAE) [30]. The same version of RAMP-mobility used for electric vehicles is
adopted, but consumption tables have been updated with values specific for ICEV ob-
tained through the corresponding VCAM tool. A change in the thermal demand function
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is needed to model the effect on ICEVs: a quadratic function is implemented for cooling,
while only a constant value of consumption is considered for fans in heating mode, since
the heat demand of conventional power-trains is fully satisfied by engine recovery. In
this way the mobility profile is estimated in liter of fuel per minute, instead of kW , and
the yearly total consumption for each user, corresponding to a single petrol car, is com-
puted. The vehicle-specific yearly consumption is compared with the one derived from the
amount of petrol sold in the distribution network and with the number of petrol vehicles.
Diesel vehicles are not considered since these do not account only for cars but include also
trucks, which are not modelled by RAMP-mobility. The result for the vehicle-specific
yearly petrol consumption is showed in Table 6.1 and the comparison is made according
to absolute error. Nationally a 12% error is estimated, highlighting the good accuracy of
the generated mobility demand for Italy.

Measured [l/vehicle/y] RAMP-mobility [l/vehicle/y] Relative error [%]

Italy 541.14 604.77 11.76

Table 6.1: Comparison of petrol specific consumption between measured data and RAMP-
mobility generated trips.

6.2. Charging time-series

6.2.1. Methodology

Differently from mobility time-series, charging ones can be directly measured, since are the
curves of power absorption from the grid. Nevertheless, few real-world data collected are
made accessible by charging infrastructure operators, hence this accurate model quality
assessment is limited by data accessibility. The measured data used for this comparison
comes from the dutch company ElaadNL. The comparison between real-world charging
profile and simulated one is assessed through normalized profiles, obtained dividing by the
total yearly energy demand. This is made since the empirical dataset and the simulated
profile do not consider the same number of users, and the collected records do not account
for all the charging events made by each user. For these reason, a dimensional comparison
is not possible, and the profiles are transformed into non-dimensional ones.
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Dataset

The validation dataset is composed by charging transactions metered in The Netherlands
between January 2012 and May 2016, and the year selected is 2015 since this is the most
recent and complete one. The database consists in user-specific charging transactions
covering around 1750 charging points and representing 16% of the whole public infras-
tructure available at the time of metering. The raw data are recorded based on an ID
code of the card used by the customers to start and end the charging transactions.

The database has been processed by Beltramo et al. [3] to obtain the charging time-
series. The initial dataset is filtered selecting only full electric vehicles, thus deleting
PHEV which are also recorded. Only frequent electric vehicles users with more than
ten recorded transactions are selected to include only habitual customers, which describe
better the typical charging pattern. In addition, transactions with values of maximum
charging power lower than 4 kW and maximum energy charged lower than 12 kWh,
representing the PHEV behavior, are disregarded. The resulting dataset is composed by
2215 users which are split in 40% with large vehicles and 60% with small ones. From the
data analysis the charging infrastructure results being composed by around 80% charging
points working at 3.7 kW , 15% charging in the range 8-12 kW and the remaining 5%
distributed on the other values.

Modelling in RAMP-mobility: alignment to ElaadNL dataset

To compare with this dataset and simulate conditions as similar as possible to the empir-
ical ones, RAMP-mobility default values for The Netherlands are updated to the specific
characteristics of ElaadNL population. A new vehicle share composed by 60% Small cars
and 40% Large ones is introduced together with updated values for the charging points
power distribution, with 80% of slower chargers, 15% for intermediate types and 5% for
faster ones.

Lastly, the probability to find a charging point (CP) is modelled to reflect the higher
availability of charging columns in night hours rather than central day ones. This occurs
through the piecewise function, described in Section 3.2.2, characterized by two probabil-
ity values in different day windows. Since the values for this function are highly uncertain,
a sensitivity analysis is performed. The charging strategy adopted for the simulations is
the uncontrolled one, meaning that users charge their vehicles at CP nominal power until
the maximum defined SOC is reached.
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Quantitative parameters

Concerning the quantitative parameters used to estimate the accuracy of the model, two
different statistical values are considered which are the Normalized Root Mean Square
Error (NRMSE) and the average Load Factor (LF), defined in Equations 6.1 and 6.2.

NRMSE =

√∑Nt
x (Pmodel(x)−Pmeasured(x))2

Nt

Pmeasured,max − Pmeasured,min

(6.1)

LF =
365∑
d=1

Paverage(d)

Ppeak(d)
.
1

365
(6.2)

The NRMSE is used to evaluate the difference point-by-point between simulated and
measured data, and is applied to both the charging time-series and the load duration
curve. In Equation 6.1, Pmodel(t) and Pmeasured(t) are respectively the charging power
estimated by the model and the one measured at time t ; Nt is the number of time-steps
in a year. The denominator is the difference between Pmeasured,max and Pmeasured,min, which
are the maximum and minimum values of the measured dataset. The load duration curves
are built from the time-series by ordering the power data and re-indexing them to delete
the effect of time shift on the curves, focusing only on the frequency of power values.
The NRMSE is computed between the load duration curves point-by-point in the same
way explained for the time-series.

Another way of evaluating the two profiles is represented by the average LF which repre-
sent the variability inside the charging demand between daily peak power consumption,
Ppeak(d), and daily average power consumption, Paverage(d). This is an indicator of the
profile shape and is highly influenced by the peak power. The average LF is computed for
both the simulated and measured profile, considering an hourly-resampled time-series to
smooth possible short steep peaks, and the comparison between the two values is made
in terms of relative error.

Piecewise sensitivity analysis

The piecewise function, describing the infrastructure availability, is a crucial aspect char-
acterized by high uncertainty. Consequently, its parameters are varied to understand
which values suits better to simulate conditions similar to the ones of the measured real-
world profile. The parameters subject to investigation are probability values, maximum



6| Model quality assessment and sensitivity analysis 93

and minimum, and the hours of the day for their switch. Ten cases are obtained by varying
singularly the parameters, and other five cases are identified combining the best changes
of the previous analysis. In Table 6.2 an overview of the methodology followed to vary the
default values is reported and in Figure 6.3 the directions followed in the sensitivity are
represented. As described in Section 3.2.2, a different piecewise is introduced for week-
ends with Case 1 since the charging profiles differ importantly from the empirical curve
during Saturdays and Sundays due to time shifting. Therefore six parameters are object
of sensitivity for all the new cases assuming that maximum and minimum probabilities are
the same for weekend and weekdays. Until Case 9 one parameter at the time is changed
(time-related parameters meaning start and end of both weekday and weekend windows
are changed together). From Case A the variations are combined to reach better values
for the validation metrics.

Case Case Case Case Case Case Case Case Case Case

Original 1 2 3 4 5 6 7 8 9

Maxprob 90% 90% ↓ ↑
Minprob 40% 40% ↑ ↓
StartWD 06:00 06:00 ↑ ↓
EndWD 19:00 19:00 ↑ ↓
StartWE - 09:00 ↑ ↓
EndWE - 15:00 ↑ ↓

Case Case Case Case Case Case Case

Original 1 A B C D E

Maxprob 90% 90% ↓
Minprob 40% 40% ↑
StartWD 06:00 06:00 ↓ ↑ ↓ ↓ ↓
EndWD 19:00 19:00 ↑ ↑ ↑ ↑ ↑
StartWE - 09:00 ↓ ↑ ↓ ↓ ↓
EndWE - 15:00 ↑ ↑ ↑ ↑ ↑

Table 6.2: Scheme of the cases tested in the piecewise sensitivity analysis.
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Figure 6.3: Graphical representation of the investigated parameters for the infrastructure
probability function.

Parametric uncertainty analysis

Given the high uncertainty of input variability analyzing the impact of these parameters
is of fundamental importance. All the input stochastic parameters need to be studied and
varied independently to assess their effects on the selected metric. Five types of occasional
use are defined in RAMP-mobility: three parameters are used for Main windows of each
day type and the last two are for Free Time, one during weekdays and one for weekends.
All the parameters are varied bidirectionally and the effect on NRMSE and LF error is
evaluated; additionally the load duration curves are analyzed and compared with reference
ones.

The variables under studies are the variability on functioning windows duration (rwindows),
on the average trip time (raverage time), on the daily average distance (rdistance) and on the
daily average velocity (rvelocity positive and rvelocity negative). Random on power is not object
of study since this value is obtained from the analysis of power consumption tables, hence
set to 5% and not varied. All the default randomicities have been studied independently,
except for those on the average velocity, since they refer to the same variable, varying
them bilaterally of 10%. An overview of the default values and of the applied variation is
reported in Table 6.3.
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Default values [%] Variation [%]

rwindows 20 ±10

raverage time 20 ±10

rdistance 30 ±10

rvelocity positive 18 ±10

rvelocity negative 20 ±10

Table 6.3: Default stochastic variables and applied variation for the sensitivity analysis.

Lastly the occasional use probability, which describes the probability of taking the car
at least once a day, is investigated. Five types of occasional use are defined in RAMP-
mobility: three parameters are used for Main windows of each day type, and the last
two are for Free Time, one during weekdays and one for weekends; the default values are
reported in Table 6.4. Since during weekdays the users are modelled considering to always
take the car during Main windows, only four values are object of variations. Firstly, the
two Main occasional use are changed together of 10%, and secondly the Free Time ones,
both couples in the same direction.

Weekday Saturday Sunday Weekday Weekend

Main Main Main Free Time Free Time

Occasional use [%] 100 60 50 20 35

Table 6.4: Occasional use default input values.

6.2.2. Results

In this section the quantitative results of the model evaluation are displayed, showing the
comparison with the ElaadNL charging profile. Firstly, the input data used to implement
in RAMP-mobility the same peculiar conditions of the real-life charging demand are
reported. The simulation cases, which differ for the parameters applied to the piecewise
charging probability function, are presented highlighting the two steps followed during the
analysis: varying independently each parameter, and combining different modifications.
The outcomes of the validation metrics on the different cases are reported and commented,
showing the reasoning behind the combination procedure and the choice of the best-case.
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Lastly, the other stochastic parameters are varied and the impact on the validation metric
is assessed.

Dataset

Two input data changes are required to adapt The Netherlands model to the measured
data coming from ElaadNL charging infrastructure. Firstly, the vehicle share is adapted
to the characteristics of the metered vehicle fleet which is assumed to be composed of only
Small and Large cars. Secondly, the charging infrastructure probability is updated with
values estimated from the analysis of the recorded charging transactions. These data are
summarized in Table 6.5.

Charging point type Nominal power [kW] Relative share [%]

Slow 3.7 60

Intermediate 11 30

Fast 120 10

Vehicle type Battery capacity [kWh] Relative share [%]

Small 37 60

Medium 60 0

Large 100 40

Table 6.5: ElaadNL dataset.

Piecewise sensitivity analysis

The default values for the piecewise charging probability function are considered as start-
ing point with the same time intervals for both weekdays and weekends. Case 1 is
considered as the baseline including a first guess modelling of the different time inter-
vals for weekends. This distinction between weekdays and weekends, already presented
in Section 3.2.2, is applied since the charging profiles differ importantly from the em-
pirical curve during Saturdays and Sundays, resulting in important Load Factor errors
and NRMSE. Consequently, an attempt to modify how the charging demand is computed
during weekends is introduced. The first set of cases, Case 1 to Case 9, is chosen to assess
the impact of every single parameter and to highlight the best directions of improvement.
Starting and ending time-steps of weekday and weekend are changed together since they
affect independently the time-series. The values adopted for each case are summarized in
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Table 6.6, while the quantitative results are presented in Table 6.7.

pmax pmin startweekday endweekday startweekend endweekend

Case Default 90% 40% 06:00 19:00 - -

Case 1 90% 40% 06:00 19:00 09:00 15:00

Case 2 90% 40% 06:00 20:00 09:00 16:00

Case 3 90% 40% 07:00 19:00 10:00 15:00

Case 4 90% 40% 06:00 18:00 09:00 14:00

Case 5 90% 40% 05:00 19:00 08:00 15:00

Case 6 90% 50% 06:00 19:00 09:00 15:00

Case 7 80% 40% 06:00 19:00 09:00 15:00

Case 8 90% 30% 06:00 19:00 09:00 15:00

Case 9 100% 40% 06:00 19:00 09:00 15:00

Table 6.6: First piecewise sensitivity analysis.

NRMSEtimeseries [%] NRMSELDC [%] LFerror [%]

Case Default 14.9 4.0 -20.6

Case 1 14.8 3.6 -16.5

Case 2 14.7 2.8 -1.5

Case 3 16.7 2.8 -13.5

Case 4 15.3 5.8 -18.3

Case 5 14.0 3.9 -18.3

Case 6 15.3 1.9 -11.0

Case 7 14.3 2.5 -10.3

Case 8 15.5 5.7 -21.7

Case 9 15.6 4.9 -21.4

Table 6.7: Impact of the first piecewise sensitivity analysis on the reference validation
metric.

Considering globally the values of the reference metric, the relative error between simu-
lated and measured data in terms of load factor, ranges from -22% and -10% for most
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of the sensitivity cases. This highlights that RAMP-mobility is generally characterized
by higher peaks compared to average power values. An exception is found in Case 2 in
which the LF error is set to -1.5%, meaning that delaying the end of the time windows
is beneficial. This change influence positively also the other parameters, therefore this
improvement is chosen as starting point for the combinations. NRMSE values for the
time-series range between 13.9% and 15.5%; while those on the load duration curve are
significantly lower, between 2.8% and 5.7%. This difference is related to the load duration
curve nature, since it does not compare power values for single time-steps which could dif-
fer importantly for many subsequent steps. Indeed thanks to its distributional approach
the variations of the two profiles can be reduced. A change of the beginning of the time
windows improves the time-series match if anticipated (Case 5 ), while it improves both
the load duration curve and the load factor error if delayed (Case 3 ). Maximum and min-
imum probabilities produce better results if respectively reduced (Case 7 ) and increased
(Case 6 ). They both affects the load duration curve improving the error, while reducing
the higher probability is also slightly beneficial for the time-series modelling. Seen these
considerations an attempt to reach even better values for the reference metric is made
through the combinations of the highlighted best directions of variations.

In Figure 6.4 a graphical comparison of the sensitivity cases is presented comparing the
load duration curves of all the ten simulations with the reference ElaadNL profile. A good
match is found in the central part of the curves for a large portion, while for highest and
lower values a higher difference is noticed. This is related to the higher peaks reached with
RAMP-mobility profiles which also explain the difference in the load factors previously
presented. The cases which align for larger portions to the reference curve are Case 2 and
Case 6, which are indeed characterized by lower NRMSE on the load duration curve.
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Figure 6.4: Load duration curve for Case 1 -Case 9.

The combination of the highlighted variations lead to the definition of other five cases
reported in table Table 6.8. Globally the selected validation metric reaches better results
in all the values with respect to the initial default case, with the highest improvements
in the load factor error (Table 6.9). The best combination is found in Case D where the
increase of the lower probability (Case 6 ), the anticipation of starting windows (Case 5 )
and the delay of ending values (Case 2 ) are implemented. Even considering the load
factor error without the hourly resampling, the error is limited to 16%. In Figure 6.5 the
load duration curves from Case A to Case E are reported, with highlighted in blue the
best case. Making a comparison with Figure 6.4, a better match can be found: the highest
values are reduced thanks to the new piecewise values and the curves are consequently
closer to the ElaadNL profile also in the lower values.

pmax pmin startweekday endweekday startweekend endweekend

Case A 90% 40% 05:00 20:00 08:00 16:00

Case B 90% 40% 07:00 20:00 10:00 16:00

Case C 90% 40% 05:30 20:30 08:30 16:30

Case D 90% 50% 05:00 20:00 08:00 16:00

Case E 80% 40% 05:00 20:00 08:00 16:00

Table 6.8: Second piecewise sensitivity analysis: combinations of selected variations.
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NRMSEtimeseries [%] NRMSELDC [%] LFerror [%]

Case A 13.6 2.6 -3.4

Case B 16.9 2.6 1.9

Case C 14.2 3.7 6.2

Case D 14.7 2.2 0.3

Case E 13.6 2.8 1.5

Table 6.9: Impact of the second piecewise sensitivity analysis on the reference validation
metric.

Figure 6.5: Load duration curve for Case A-Case E.

To assess the improvements with respect to the original RAMP-mobility, a comparison
with its validation is made. For both validations the selected real-world reference profile
is ElaadNL, and the input parameters introduced for the simulations are compared to
ensure the same representation of vehicle fleet composition and charging infrastructure.
Improvements can be noticed in the load factor error which was set to -9.9% [25] for
the best sensitivity case, and also in the NRMSE time-series which decreases of 1.1%.
In addition, the updated RAMP-mobility developed with this thesis work solves some
inconsistencies of the original framework as the definition of functioning windows and
the incoherence between input and output average daily distance. Thorough these ad-
vancements a more accurate and realistic model is created and the coupling with the
consumption model VCAM allows to increase its technological level of detail.
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Figure 6.5 shows the time-series cloud-plots for both groups of simulations in six typical
weeks of the year. The shape of the time-series is well replicated by the cloud even if
the variations from day-to-day are important. The choice of adding different piecewise
parameters for weekends is justified by looking at the ElaadNL profile that shows different
behavior during weekend days. Looking at the same week month by month for the two
set of cases, the high spikes at the end of the evening peak, which worsen the match with
ElaadNL curve during weekdays, are reduced with the combination of variations. The
measured curve has peaks ranging between 150 and 300 MW/TWh, with highest values
during weekdays caused by coincidence of movements imposed by working hours. For
the first group of cases the cloud plot has peaks up to 500 MW/TWh and up to 300
MW/TWh for the combinations. This last reduction is linked to a better distribution of
plug-in moments, which are constrained by the infrastructure availability.

During May and August there is a lowering of ElaadNL curve, while the cloud plots are
characterized by few seasonal variations mainly caused by temperature differences. The
drop of real-world charging demand during summer months is due to vacations, which
are instead not modelled with RAMP-mobility where only public holidays are considered.
The graphs show that the piecewise function can significantly influence the shape of the
charging profile, having a crucial role in decoupling mobility and charging profiles if no
specific charging strategies are adopted. This tuning process of the piecewise function
parameters is necessary since the real-world infrastructure is unknown a priori. However,
it requires that no charging strategy is implemented, otherwise it would not be possible to
distinguish between a load shift forced by the availability of plug-in points, and a smart
decoupling between mobility and charging demand.
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January

(a) Case 1 - Case 9 (b) Case A - Case E

March

(c) Case 1 - Case 9 (d) Case A - Case E

May

(e) Case 1 - Case 9 (f) Case A - Case E
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August

(g) Case 1 - Case 9 (h) Case A - Case E

October

(i) Case 1 - Case 9 (j) Case A - Case E

December

(k) Case 1 - Case 9 (l) Case A - Case E

Figure 6.5: Cloudplot of the profiles obtained with different values of piecewise parameters
for a selection of weeks.
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Parametric uncertainty analysis

Travel-related variables

A second analysis is carried on to assess the impact of input stochastic parameters on
the validation metrics. The first group of parameters analyzed are the ones related to
travel characteristics, which means the variability on the daily average travelled distance,
rdistance, on the average trip time, raverage time, and on the daily average trip velocity,
rvelocity positive and rvelocity negative. The parameters used in the seven cases are presented in
Table 6.10.

rdistance [%] raverage time [%] rvelocity positive [%] rvelocity negative [%]

Case Ref. 30 20 18 21

Case 1 20 20 18 21

Case 2 40 20 18 21

Case 3 30 10 18 21

Case 4 30 40 18 21

Case 5 30 20 8 11

Case 6 30 20 28 31

Table 6.10: Travel-related sensitivity cases.

To compare the results, the quantitative values of the validation metric for all the cases
are computed and summarized in Table 6.11. The impact of the implemented changes
cannot be appreciated, since the variation on both time-series error and on load duration
curve error have a difference of less than 0.5%. Only the load factor error varies more
significantly with a worsening in the order of 2%. A graphical representation of the load
duration curve is also shown in Figure 6.6 giving an overall overview of the yearly mobility
demand. All the cases are almost coincident showing the robustness of the model to these
stochastic parameters.
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NRMSEtimeseries [%] NRMSELDC [%] LFerror [%]

Case Ref. 14.7 2.2 0.3

Case 1 14.8 2.0 -1.6

Case 2 14.7 2.0 -1.5

Case 3 14.8 2.0 -1.8

Case 4 14.8 1.9 -2.0

Case 5 15.0 2.0 -1.7

Case 6 14.5 2.2 0.4

Table 6.11: Impact of the travel-related sensitivity cases on the reference validation metric.

Figure 6.6: Load duration curve for travel-related sensitivity cases.

Functioning windows

The second group of stochastic values is related to the functioning windows variability,
which is used to vary the starting and ending times. Seen the improvement introduced to
RAMP-mobility in which Main windows are defined complementary to Free Time ones,
this variability is applied only to the last-mentioned type. The simulated cases and the
obtained results are reported in Table 6.12. In these cases a more important variation
is highlighted for what concern the load factor error, which worsen of 6% with the de-
crease of the stochastic parameter. Looking globally at the results both the directions of
variation do not reach a local maximum for the time-series and the load duration curve,
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hence the optimal random value can be further improved. For completeness, also the load
duration curve is showed in Figure 6.7 with a slightly more evident difference between the
curves. Case 1, which is characterized by a better load duration curve error, is closer to
ElaadNL especially for the highest values of the curve.

rwindows [%] NRMSEtimeseries [%] NRMSELDC [%] LFerror [%]

Case Ref. 20 14.7 2.2 0.3

Case 1 10 15.1 1.7 -5.6

Case 2 30 14.5 2.3 2.1

Table 6.12: Impact of the functioning windows sensitivity cases on the reference validation
metric.

Figure 6.7: Load duration curve for functioning windows sensitivity cases.

Occasional use

The last group of parameters is represented by the occasional use for which the sensitiv-
ity analysis is applied to four values and an overview of the simulated cases is showed
in Table 6.13.
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Weekday Saturday Sunday Weekday Weekend

Main [%] Main [%] Main [%] Free Time [%] Free Time [%]

Case Ref. 100 60 50 20 35

Case 1 100 60 50 10 25

Case 2 100 60 50 30 45

Case 3 100 50 40 20 35

Case 4 100 70 60 20 35

Table 6.13: Occasional use sensitivity cases.

Looking at the results summarized in Table 6.14 and at the load duration curve in Fig-
ure 6.8, where all the cases are plotted, this parameter is the one mostly affecting the
results. Case 1 and Case 2, characterized by the variation of the occasional use in Free
Time, are those with the largest effects on the validation metrics, in particular on the load
factor error. This worsens in both cases, while the variation of the Main probability has
a more limited impact. Thus, attention should be used in varying the default occasional
use values, especially Free Time ones, seen the good degree of accuracy reached with the
inserted parameters and already validated.

NRMSEtimeseries [%] NRMSELDC [%] LFerror [%]

Case Ref. 14.7 2.2 0.3

Case 1 16.2 2.5 -7.6

Case 2 14.1 3.2 4.9

Case 3 15.2 2.1 -0.3

Case 4 15.3 2.1 -0.6

Table 6.14: Impact of the occasional use sensitivity cases on the reference validation
metric.
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Figure 6.8: Load duration curve for occasional use sensitivity cases.
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In this chapter RAMP-mobility is tested analyzing the impact of data changes, increased
vehicle fleet resolution, and enhanced geographical characterization on the mobility pro-
files. The first one is assessed to highlight the differences of the Reference case of Italy
with the Original model version, and determine how updating data affects the output.
The vehicle fleet definition is tested to determine the impact of a more detail charac-
terization, and lastly the differences between national and regional profiles for Italy are
analyzed.

7.1. Impact of new input data

This analysis is focused on analyzing the impact of data changes described in Section 5.2.1
which allowed to determine the Reference version of RAMP-mobility, used as baseline for
the introduced improvements.

General data

The first updated datasets are related to population breakdown, vehicle fleet and func-
tioning windows. The impact of these new input data is illustrated in Figure 7.1, where
different shapes of the profiles can be noticed since the functioning windows are changed.
This is particularly evident in the Sunday profile, which has peaks about 100 kW higher
than the Original profile, while on Saturday only a minor time-shift is observed. The
weekday profile of General data is characterized by a more evident two-peaks shape,
instead the morning peak cannot be seen in the Original model. The total transport
demand in each day, reported in Figure 7.1, decreases of about 7%, as a consequence of a
different vehicle distribution. Indeed the number of cars modelled as Small in the original
model, which includes both Small and Utility cars, doubles.
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Figure 7.1: Comparison between Original and General data cases.

Trip features

The changes of trip features are related to the variability of parameters, indeed a new
randomicity is applied to the average trip length. The percentage variability on the daily
average velocity, vmean, is split in positive and negative values (see Table 5.3), obtained
from the velocity distribution assessed for the Italian regions in Section 4.1.1. These
improvements cannot modify the shape of profiles, since affecting variability their effect
is cancelled when performing the average of the profile. Looking at Figure 7.2, the total
energy demand does not change, with variation of the daily energy around 1% caused by
the model stochasticity. Figure 7.2 shows overlapping profiles proving the goodness of
this comparison approach in deleting variability effects.
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Figure 7.2: Comparison between Original, General data and Trip features cases.

Daily driving distance

The last updates are related to the daily driving distance, creating the Reference case.
This new data source significantly affects the overall mobility demand, since the daily
distance driven by each user is lowered considerably, as displayed in Section 4.1.1. A
drop of about 35% in the mobility profile can be observed in Figure 7.3, showing an
almost linear dependence between the distance driven and the power required by the
mobility demand. The reduction of the profile affects unevenly the time-series depending
on the time window, with the Weekday profile having a different shape due to the unequal
reduction of driving distance in Main and in Free Time windows. As further consequence,
Weekday peaks of the Reference profile are lowered of only 20% and the morning peak
becomes almost as high as the evening one. Distance assigned to Main and Free Time
windows is treated differently not only for the time-frame in which is driven, but even for
the probability of being driven or not due to the occasional use effect. The total daily
transport demand is lowered of around 35% according to Figure 7.3.
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Figure 7.3: Comparison between Original, Reference and intermediate data change cases.

7.2. Vehicle fleet resolution

The first analysis of the model resolution is related to the vehicle fleet composition, given
as input to the model, to assess the impact of a more detailed vehicle characterization
on the output mobility profile, and to understand possible future scenarios in terms of
energy demand. A higher number of vehicle segments could improve the accuracy of the
estimated energy demand if a dynamic simulator, specific for different types of cars, is
used. The analysis of this approach and the detailed representation of the vehicle fleet
composition is here described.

In Chapter 4, a higher level of detail in modelling the Italian vehicle fleet is adopted, hence
this approach is here tested to understand the effect of this change on the output. The
vehicle fleet is composed of 24% Utility, 26% Small, 20% Medium, 26% Station Wagon,
and of only 2% for both Suv and Executive vehicles. Six extreme scenarios with 100% of
vehicles in the same vehicle segment are simulated to highlight the variations of the output
mobility. In Figure 7.4 the annual energy for the six cases, and the energy computed with
the Italian vehicle share are compared.

The increased characterization of cars with smaller sizes does not produce visible differ-
ences in the energy demand, hence this higher level of detail can be avoided. Instead
larger vehicles, as Suv and Executive, differ more significantly from the previous group.
Thereafter, detailing vehicles with battery capacities higher than 90 kWh is needed seen



7| Model Testing 113

the differences in the output. This characterization will be important if the vehicle fleet
composition will evolve towards larger cars, thus requiring a more specific distinction of
models. However, a level of detail as the one here presented is not needed and only two
reference cars, Small and Large, are sufficient as evident from the bar plot. In the today
situation where the vehicle mix is mainly composed by the first four classes with 96% of
the fleet, even a two-segments level of detail is not required. Indeed the relative error is
close to zero if a Medium vehicle is considered for modelling the whole fleet.
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Figure 7.4: Annual mobility energy for the simulated cases for Italy with higher detail of
the vehicle fleet composition.

The same analysis has been performed on four European countries, modelled with the
default dataset of RAMP-mobility which include a three-segment vehicle fleet represen-
tation. The European countries are characterized by Small, Medium and Large cars,
thus three extreme scenarios have been selected varying only these data entry: (i) 100%
Small cars, (ii) 100% Medium cars, and (iii) 100% Large ones. For this purpose four
countries, differing in the vehicle share distribution and in the geographic area, have been
selected. The values representing the vehicle fleet are reported in Table 7.1 highlighting
the differences. Italy is characterized by the highest share of vehicles in the Medium class
compared to the other countries, whereas Norway by the highest Large share; Portugal
Small and Medium values are close, while Germany is similar to Italy, but with a more
even distribution among the three classes.
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Vehicle Share

Small Medium Large

DE 34.9 50.0 15.0

IT 24.4 68.6 7.0

NO 17.9 61.4 20.6

PT 44.6 45.3 10.1

Table 7.1: Vehicle share of the selected European countries.

The simulations of the three cases, with vehicles all in one class, have been compared in
terms of total annual energy derived from the mobility profiles. In Figure 7.5 the results
are reported representing for each country the default vehicle share and the three extreme
cases. In addition, in Table 7.2 the relative errors in the annual energy demand, with re-
spect to the one computed for the default vehicle share, are reported. Limited differences
are visible between the only Small and Medium scenarios, instead for Large vehicles the
annual energy increases considerably. These differences on annual energy are similar to
those on power consumption reported in Figure 5.15.
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Figure 7.5: Annual mobility energy for the simulated cases in four selected European
countries.
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Relative Error

Small Medium Large

DE -6.6 -6.4 37.3

IT -2.4 -3.6 44.1

NO -8.7 -8.1 31.9

PT -4.6 -4.6 41.0

Table 7.2: Relative error in the annual mobility energy for the three extreme cases with
respect to the default values.

Two conclusions can be understood from Figure 7.5 and Table 7.2:

• A change of the vehicle share in the direction of Small or Medium vehicles does not
impact significantly on the annual energy demand since these are already the today
prevailing classes; whereas the Large class produces an increase of around 40% of
the mobility demand, slightly lower for Norway which is already characterized by
21% of Large vehicles.

• The detailed vehicle share divided into three groups produces a value of annual
energy which is less than 10% higher than the one of the only Small or Medium
scenario. This highlights the limited utility of characterizing in detail the vehicle
fleet of all the countries, as in the previous analysis for Italy with six reference
vehicles. One single medium reference vehicle could be considered as representative
of the most diffused class, accepting a low error. This is valid also for Norway
even though it is characterized by a higher Large share, thus only more important
percentages in this class have an impact on the annual energy.

7.3. Geographical resolution

The data used to update the modelling of Italy comes from regional databases, except for
functioning windows. This deeper geographical characterization has been previously set
aside, aggregating input data according to population share to model the whole country.
In this section this further detailing is tested, mobility demand for each Italian region
is computed verifying the quality of the modelling with aggregated mobility data. The
petrol consumption of single region simulations is additionally compared with the dis-
aggregation, on population basis, of the country output. Finally, a coherence check is
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added comparing the aggregation of inputs, used with Italy model, and the aggregation
of outputs, simulated with single region representation.

RAMP night share [%] UnipolSai night share [%]

Abruzzo 4.15 4.17

Basilicata 4.10 4.11

Calabria 4.01 3.66

Campania 4.06 4.56

Emilia 4.23 4.05

Friuli 4.18 3.14

Lazio 3.99 4.69

Liguria 4.17 4.10

Lombardia 4.25 4.19

Marche 4.04 4.42

Molise 4.15 3.83

Piemonte 4.21 4.55

Puglia 4.06 4.60

Sardegna 3.95 3.47

Sicilia 3.81 4.69

Toscana 4.03 4.12

Trentino 4.24 3.17

Umbria 3.99 4.35

Valle d’Aosta 4.23 3.75

Veneto 4.23 3.63

Table 7.3: Night share of driven kilometers: UnipolSai and RAMP-mobility percentages.

The generated mobility demand is firstly compared with data of UnipolSai [38] collected
through car black boxes and the percentage of night-driven distance, specific for each
region, is considered. RAMP-mobility simulated trips are collected in a trip report and
post-processed to estimate the travels starting in the time window 23pm - 6am; their
distance is compared with the simulated annual kilometers to determine the share of
night kilometers.

In Table 7.3 measured and simulated percentages are reported; RAMP-mobility shares
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aligning with the reference data, hence representing well the mobility demand of night
hours. Additionally, the same assessment used for Italian mobility in Section 6.1 through
petrol consumption is adopted to compare regional outputs with measured data. Regional
oil bulletins [27] and number of vehicles [30] are considered to determine the regional
yearly petrol consumption. For most of the regions differences are limited, with simulated
annual values close to measured ones; exceptions are found for Lombardia and Campania
for which significant gaps are highlighted in Figure 7.6.
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Figure 7.6: Comparison of annual petrol consumption between measured data, estimated
ones from regional RAMP-mobility simulations, and distributed national consumption.

Furthermore, the national value of consumed liters has been disaggregated on popula-
tion basis to compute regional consumption, and the results are showed in Figure 7.6 to-
gether with measured data, derived from oil bulletin, and simulated regional consumption.
Globally the two methods used to characterize regional mobility lead to similar values,
meaning that the allocation based on population weights does not affect the breakdown.
The approach here introduced produces regional results which are closer to the measured
consumption for some regions as Lombardia, while for others the regional simulations rep-
resent a better estimation. Globally the disaggregation leads to a lower relative error of
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about 12%, while the single region simulations has a higher total error of 19% mainly due
to Lombardia and Campania.

The regional values have been aggregated according to the Italian electricity market
zones [12] for both the estimation approaches. Six groups are identified and reported
in Table 7.4 comparing with measured data through relative percentage errors. Except
for Sud and Centro Sud, which have a consistent error around 40% with both approaches,
all the other zones are characterized by a more precise estimation allowing for errors lower
than 20%. Some zones are represented better by the redistributed values as for Nord and
Centro Nord, whereas regions simulations of Sud and Sicilia are closer to reference con-
sumption.

RAMP Error
Measured RAMP Error

Disaggregated Disaggregated

[∗106 liter] [∗106 liter] [%] [∗106 liter] [%]

Nord 5117 5827 13.9 5063 -1.1

Centro Nord 1108 1083 -2.0 1113 0.4

Centro Sud 1720 2493 45.0 2340 36.0

Sud 775 1079 39.3 1226 58.3

Sicilia 733 855 16.6 893 21.8

Sardegna 326 314 -3.6 295 -9.6

Table 7.4: Comparison of annual petrol consumption aggregated in electricity market
zones.

To determine the utility of regional simulations another comparison is carried on in terms
of annual transport energy demand. National value obtained with aggregated regional
inputs, and the one derived from aggregated regional outputs, considering population
weights, are reported in Table 7.5. Even though stochasticity could influence significantly
the differences of the results, no effect is highlighted with a relative error lower than
1%. Also the comparison based on the generated mobility time-series brings to the same
consideration.
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Energy [MWh] Weighted Energy [MWh]

Italy aggregated 3549.2

Italy 3518.9

Error [%] - 0.86

Table 7.5: Comparison between mobility demand of Italy and the weighted demand de-
rived from the regional characterization.

In conclusion, a limited utility of the regional characterization of RAMP-mobility to sim-
ulate mobility demand specific for each region is found. Considering national inputs
obtained from regional databases, and aggregating them to describe the whole Italian
population is enough detailed, and the mobility demand is as accurate as the aggre-
gated regional profiles, without requiring regional simulations. Higher differences could
be obtained considering region-specific temperatures instead of adopting the same ther-
mal demand for all of them. This aspect has not been analyzed since no region-specific
temperature time-series have been found to characterize the regions. However, the weight
of the thermal energy on the annual demand has been computed and the percentage is
lower than 8%, hence no major differences are expected.
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8| Conclusions and future work

This thesis makes a step forward in the realistic modelling of electric mobility, improving
the already existing RAMP-mobility framework with structural enhancements and resolu-
tion assessments. The result is a model able to produce mobility and charging time-series
with a physical detail of consumption, based on the vehicle dynamic simulator VCAM.
Moreover, important insights about the directions to be followed to improve modelling as-
pects of this framework have been provided. The refinement of the outputs of this model
is crucial in the context of energy system modelling to provide realistic demand curves,
which are necessary for reliable future scenarios. Since electric mobility is still in an early
adoption phase, profiles of EVs power demand are highly uncertain, but the rapid de-
velopment of this technology makes them essential for capacity planning and operational
optimization.

Aside of this main outcome, there is the successful development of a real-world Driving
Cycle Generator, able to produce realistic driving patterns from a standard reference cycle.
This tool goes beyond the modelling of electric mobility, is independent from RAMP-
mobility model, and is flexible in the choice of the reference cycle. The methodology
followed in its development could be applied to produce synthetic driving cycles from key
trip parameters for consumption estimations or even emission evaluations.

Conclusions

The research question that guided this thesis work is focused on the impact of a more
accurate vehicle consumption estimation specific for the single trip. It has been assessed
that introducing VCAM and solving RAMP-mobility inconsistencies, cause an increase
of the annual transport demand of 27% with respect to the selected Reference case. The
quality of the model is clearly increased by these enhancement, and the result highlights
the influence of vehicle consumption estimation on the output mobility time-series. Seen
the significant variation of simulated annual energy, the vehicle power consumption should
be carefully modelled. Since measured mobility profiles are not available, this approach
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can not be assessed compared to real-world time-series, but only with aggregated mobility
data. The improved RAMP-mobility is validated with a satisfying degree of accuracy
thanks to the introduction of different charging functions in relations to the day-type,
and to the tuning of their parameters. This is translated into mobility and charging
profiles which, given reliable input data, can replicate effectively the real-world profiles.

An additional analysis has been made to exploit the potentiality of the model in the
analysis of grid connection time-series. This additional output has great importance in the
assessment of Vehicle to Grid potentialities, since it gives an estimation of the connected
battery capacity exploitable for flexibility purposes. This future concept could become a
great opportunity in the context of energy transition, but energy models have to consider
V2G dependence from mobility behaviours to exploit its strengths. User behaviour has
been proven to highly affect the connections more than infrastructure availability, even
though the modelling of charging probability functions is covered by high uncertainty.
Infrastructure availability and charging user choices are a great challenge since these
aspects are not easily measurable. This work has highlighted the importance they have
in shaping the charging profiles, influencing the accuracy of the output, and making hard
to assess the quality of the model.

Another important conclusion is related to the model resolution and the impact of a more
detailed geographical characterization. The generated regional profiles represent well the
aggregated mobility demand, however the difference with the disaggregated national out-
put are not appreciable. For this reason, the country detail is a good trade-off between
output accuracy and the required characterization of input data. Concerning the detail
of the input data, in particular those of the vehicle fleet composition, an important mod-
elling insight is derived from its analysis. To the careful analysis of the vehicles in a
country, aiming to increase the number of reference segments, does not correspond an
equal increment of the output precision. Seen the actual vehicle share, which is mainly
composed by smaller and medium vehicles, describing a country with only one reference
medium vehicle does not produce significant differences, with errors lower than 5%. For
future vehicle fleets even if the share of larger vehicles will increase, two reference vehicles
will be enough, since the consumption of different segments can be clustered in only two
main groups.
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Future work

Different possible improvements can be introduced as future development of the model
described in this thesis. These are mainly related to the charging module as some limits
have been found during its analysis. Modelling the probability of finding a ready charg-
ing point when parking is at the same time complex and impactful; moreover it is not
implemented with a country specificity. Efforts to improve this feature would be cer-
tainly necessary in future works, and a country detailing should be considered adopting a
common method to determine these probabilities from empirical sources. Even the user
charging behaviour, proved to be incisive on connections and V2G applicability, has not
been largely investigated; the reduction of its uncertainty should be a priority in next
improvements. These probabilities strongly affects the quality assessment of charging
time-series, which is also limited by the lack of accessible data. Lastly, input dataset
has been proven to have great leverage on RAMP-mobility output, thus finding reliable
sources and refining their processing enriches the quality of the outputs.
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Thermal model comparison

The key improvement introduced in RAMP-mobility with this work is the coupling with
the vehicle dynamic simulator VCAM for the estimation of consumption values. In this
section a comparison between the thermal consumption module of VCAM and the one of
Emobpy [11] is presented. The literature analysis performed on both models in Section 2.2
inspired this comparison with the goal of selecting the most physically accurate. While
the dynamic module is similar in both models, the thermal load estimation follows differ-
ent approaches. VCAM uses external temperature functions determined by Lajunen [21],
instead Emobpy performs a heat balance to estimate heat transfer mechanisms between
the vehicle cabin and the environment. Emobpy implementation seems more complex
and potentially more precise seen the introduction of variables related to vehicle charac-
teristics, as the cabin volume, and driving cycle features, as the actual velocity for the
computation of heat transfer coefficients. A first assessment has been performed to inves-
tigate the effective impact of this two external variables which are reported in Figure A.1.

(a) Cabin volume dependence (b) Driving speed dependence

Figure A.1: Variables dependence of Emobpy thermal model.
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As showed in Figure A.1a the influence of the cabin volume on the thermal demand
required to the HVAC system is negligible in the range of possible vehicle dimensions, set
between 2 and 3.5 m3. Even the impact of driving cycles, displayed in Figure A.1b for
different speed profiles, increase the thermal demand of only small fractions in a range
of typical temperatures. Consumption are higher at larger average velocities due to the
enhanced thermal interaction with the environment, however the rise is significant only
for extreme values, uncommon for Italian temperature variations.

A comparison between the HVAC electric demand of the two models is reported in Fig-
ure A.2. It must be noticed that VCAM models the thermal dependence of the COP for
a Heat Pump and Positive Temperature Coefficient heater using a function proposed by
Lajunen [21], whereas Emobpy considers a constant value of COP set at 2.
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Figure A.2: Electric demand of HVAC system as function of external temperature.

The plot shows consistent differences between the two models: Emobpy estimates much
lower consumption for most of temperature values and is generally less sensible to temper-
ature variation than VCAM. Despite Emobpy model seems to have a more physically based
structure considering also dependencies on variables other then external temperature, its
final estimation is considered less accurate, since the thermal demand is underestimated
and no quality assessments have been reported in literature. Since the thermal consump-
tion represent only few percentage of the total annual energy demand, and the refinement
of the thermal model brought only marginal changes of the consumption values, the po-
tential improvement of the thermal module is neglected and the original VCAM structure
is adopted.
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In this Appendix the detailed description of the improvements introduced to RAMP-
mobility is reported. These are grouped considering the type of change, the assumptions
introduced and the section of the model in which they are implemented. In Data changes
the updated input variables and formal corrections are highlighted, whereas country input
file changes refers to new variables introduced in the country definition section. Model
changes instead deals with structural improvements which affect the core of the model.
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Figure B.1: Detailed explanation of the improvements introduced in RAMP-mobility for
each Italian step.
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Figure B.2: Detailed explanation of the improvements introduced in RAMP-mobility for
each Dutch step.




