
Executive Summary of the Thesis

Advanced Deep Learning Methods for Anomaly Detection in Point
Clouds

Laurea Magistrale in Mathematical Engineering - Ingegneria Matematica

Author: Stefano Bruno Gusmeroli

Advisor: Prof. Giacomo Boracchi

Co-advisor: Luca Frittoli

Academic year: 2021-2022

1. Introduction
A point cloud is a compact and convenient
way to represent a 3D object, aspect that has
favoured the diffusion of such type of data over
the last few years. Concomitantly, a literature
of deep learning methods aimed to process them
has flourished. Nonetheless, to our concern, we
have noticed that anomaly detection has been
much less regarded in such field of study. Moti-
vated to explore this research area, in our work
we present two novel methods to address unsu-
pervised anomaly detection in point clouds.

2. Problem Formulation
We define a point cloud P as a pair P = (P, φ),
where P = {xi}i is an unordered set of points
in a Euclidean space Rd and φ : Rd → RI is a
function that associates to each point x ∈ Rd

some features φ(x) ∈ RI . Here we focus on 3D
anomaly detection and we employ a point cloud
to depict the surface of an object, hence d = 3.
Our objective is to develop a method that, when
it is presented with an element P, is able to dis-
criminate on whether it belongs to the normal
class or not. The output of the method is an
anomaly score AS(P) ∈ R such that high val-
ues of it indicate that P is anomalous, whereas

low values signify that P belongs to the normal
class. Formally, the function AS(·) takes the
name of anomaly score function.
We consider the framework of unsupervised
anomaly detection, which means that the train-
ing samples are not labelled and that the model
is trained using solely instances belonging to the
normal class, as in [5], [2], [4], [3], [6].

3. Related Works
The points of the set P are unordered, from
which it follows that every method that operates
on point clouds is required to be invariant to the
order of how the points are presented to it. To
this end, PointNet uses an MLP to process ev-
ery point and then aggregates all the extracted
information by means of a symmetric function,
such as a Max Pooling operator. ConvPoint in-
troduces a point convolutional layer, which re-
sembles the ones used in image processing. Simi-
larly, [2] presents a novel point convolutional op-
eration, used to implement the composite layers.
A composite layer is made of a spatial function
s : Rd → RK , deputed to extract information
from the coordinates P , and of a semantic func-
tion f that combines the learnt information by
s with the features φ. s is modelled by a Radial
Basis Function Network of M centers cm ∈ Rd.

1

Executive summary Stefano Bruno Gusmeroli

The convolutional operation is defined as:

ψj(y) =
∑
x∈Xy

I∑
i=1

φi(x)

K∑
k=1

wijksk(x− y)

with ψ(y) ∈ RJ being the new features of y.
The convolutional window Xy is a set of points
and it is defined by nearest neighbours.
Unsupervised anomaly detection. Recon-
struction models [5] embed the input in a lower
dimensional space and subsequently attempt to
reconstruct it. The model is optimised to re-
construct uniquely normal instances and ideally
shall fail to do so for anomalies. DeepSVDD
aims to map all the normal instances inside a
minimal enclosing hyper-sphere in a deep man-
ner. Related to it, in DROCC [4] the elements
are deemed to be anomalous if they lie outside
the union of a collection of hyper-spheres cen-
tred at some typical training points. A different
approach is based on applying a set of geometric
transformations to the input and training a dis-
criminator to predict which one had been used
[3]. The discriminator, in order to distinguish
between the transformed versions, is required
to capture salient geometrical features, some of
which are characteristic of the normal class. The
drawback of this method is having to manually
define the transformations a priori. In this line
of work, NeuTraL [6] circumvents such limita-
tion by learning directly the transformations by
means of neural networks and by introducing
the novel Deterministic Contrastive Loss.

4. Proposed Solutions
We propose two different methods to address
the anomaly detection task on point clouds. The
first one is an extension of the Deep Robust One
Class Classification approach that is originally
applied to images and tabular data in [4]. The
second takes inspiration from [6], as it proved to
be effective on tabular data and time series.

4.1. DROCC for point clouds
The underlying hypothesis of DROCC is that
“the set of typical normal elements lies on a low
dimensional locally linear manifold that is well
sampled” [4]. We retain this assumption to be
true also in the case of point clouds and, to guar-
antee the quality of the sampling, we consider
normal classes made of thousands of elements.
The learning process relies on the discrimination

between normal instances P and synthetically
generated anomalies P̃. To this end, we have
adapted the original loss to the case of point
clouds. Specifically, given a set of point clouds
{Pm}Mm=1, the loss function is defined as:

LDROCC = λ∥ θ ∥2 +
M∑

m=1

[
ℓ(ϕθ(Pm), 0)+

+µ max
P̃m∈Nm(r)

ℓ(ϕθ(P̃m), 1)
] (1)

where ∥ θ ∥2 is the L2-regularisation term, λ, µ
are hyper-parameters and ℓ(·) is the binary
cross-entropy loss. The function ϕθ processes
a point cloud P and returns its anomaly score
ϕθ(P). The normal class is identified by the la-
bel "0", whereas anomalies by "1", therefore the
aim of ℓ is to classify the normal instances P as
belonging to the normal class and the adversar-
ially generated examples P̃ as anomalies.

4.1.1 Anomalies’ generation
One of the pillars of DROCC is the generation
of synthetic anomalous examples P̃ by a gradi-
ent ascent phase during training. The anomaly
generation problem can be defined as:

max
P̃∈N(r)

ℓ
(
ϕθ(P̃), 1

)
(2)

which translates into maximising the agreement
between the prediction ϕθ(P̃) of the network
and the label "1" according to the function ℓ.
Since a point cloud P = (P, φ) is made of two
components, P might be deemed to be anoma-
lous based on the coordinates P , on the features
φ or on both. However, since both the datasets
that we use in our experiments contain constant
features (φ ≡ 1), we perform the adversarial
search of anomalies solely in the space of coor-
dinates. Thus, given P , the most adversarial
element P̃ is sought after within the set:

N(r) :=
{
r ≤ ∥ P̃ − P ∥2 ≤ γ · r

}
(3)

where r is the radius and γ is an upper bound
which helps in stabilising the training process.
N(r) contains elements at least at distance r
from P , which are therefore regarded as anoma-
lous in accordance with the manifold hypothesis.
Given a set of coordinates P , we first add to each
component a zero-mean Gaussian noise of stan-
dard deviation σ and we indicate the resulting
set by P + h0. After that, we optimise (2) for
s = 1, ..., S iterations. To do so we compute the
gradient of ℓ(ϕθ((P + hs−1, φ)) w.r.t. hs−1 and

2

Executive summary Stefano Bruno Gusmeroli

we make a step of length η in that direction:

hs = hs−1 + η
∇h, s−1ℓ(hs−1)

∥∇h, s−1ℓ(hs−1) ∥
(4)

Following [4], we project hs (4) into the set N(r)
(3) by computing the scalar multiplication:

hs = α · hs where

α =

γ · r/∥hs ∥ if ∥hs ∥ ≥ γ · r
r/∥hs ∥ if ∥hs ∥ ≤ r

1 otherwise

(5)

Ultimately, we set P̃ := (P+hS , φ). The outline
of the DROCC algorithm is presented in Alg.1.

Algorithm 1 DROCC for Point Cloud Anomaly
Detection (One epoch)
Input:

{
Pj

}
j

1: for each batch Bb, b = 1, ..., B do
2: for each point cloud Pm ∈ Bb do
3: Sample h0 ∼ N (0, σ2 · I)
4: for each step s = 1, ..., S do
5: ℓ

(
hs−1

)
:= ℓ

[
ϕθ(P + hs−1, φ), 1

]
6: hs = hs−1 + η

∇h, s−1ℓ(hs−1)
∥∇h, s−1ℓ(hs−1) ∥

7: hs = α · hs (5)
8: end for
9: P̃m := (P + hS , φ)

10: end for
11: L =

∑
Pm∈Bb

[
ℓ(ϕθ(Pm), 0) +

µmaxP̃m∈Nm(r) ℓ(ϕθ(P̃m), 1)
]
+ λ∥ θ ∥2

12: θ = θ −Gradient_step{L}
13: end for

Table 1: Architecture of ADCompositeNet3; J is
the number of output features, |Xy| the cardinality
of neighbourhoods and |Q| of the output points. BN
stands for Batch Normalisation

Layer type J |Xy| |Q|
Composite+BN+ReLU 16 32 256
Composite+BN+ReLU 48 16 64
Composite+BN+ReLU 96 16 1

Fully Connected 1 - -

4.1.2 Architecture of ϕθ
We have designed various architectures primar-
ily based on the composite layers [2], with an eye
to investigating their effectiveness in this con-
text. An example is reported in Tab.1. In addi-
tion, we have also tested other types of networks
such as a ConvPoint and a PointNet.

4.2. NeuTraL for point cloud AD
The second method that we have developed
takes inspiration from [6] and it is made of three

components: a pre-trained feature extractor, a
set of learnable transformations and an encoder.
The feature extractor ϕPC processes a point
cloud P and it returns a global vector descriptor
ϕPC(P) ∈ RJ̄ . For this role, we have employed
a CompositeNet [2] made of five convolutional
layers, whose architecture is in Tab.2.

Table 2: Feature extractor architecture
Layer type J |Xy| |Q|

Composite+BN+ReLU 64 32 1024
Composite+BN+ReLU 128 32 256
Composite+BN+ReLU 256 24 64
Composite+BN+ReLU 512 16 16

Composite 1024 16 1

The set of learnable transformations T =
{T1, ..., TK } is constituted by K functions Tk :
RJ̄ → RJ̄ , whose parameters are denoted by ϑk.
Each transformation takes as input a global de-
scriptor vector ϕPC(P) and it returns a vector in
RJ̄ of the same dimension. To model each trans-
formation we have used an MLP made of 3 fully
connected layers of input and output dimension
equal to 1024. A ReLU activation function is
employed after every layer but the last one.
Ultimately, the encoder ϕenc maps the trans-
formed versions of a same element into a lower
dimensional space where ideally they are more
easily distinguishable [6]. The encoder is there-
fore a function ϕenc : RJ̄ → RL. The same en-
coder is used to map all the transformed versions
and we have modelled it with a simple MLP:
FC1(1024, 640) → ReLU → FC2(640, 256)

The key aspect of this method is the loss func-
tion that is minimised, namely the Determinis-
tic Contrastive Loss (DCL) [6]. Let us first de-
fine pk = Tk(ϕPC(P)), pl = Tl(ϕPC(P)) and:
h(Pk, Pl) := exp

{
sim

[
ϕenc(pk), ϕenc(pl)

]
/τ

}
where τ is a temperature hyper-parameter and
sim[· , ·] is the cosine similarity function. The
DCL function can be therefore written as:

L := EP∼D

[
−

K∑
k=1

log
h(Pk, P)

h(Pk, P) +
∑

l ̸=k h(Pk, Pl)

]
When L is minimised, the numerator pushes
the embedding of each transformed version
Tk(ϕPC(P)) close to the one of the original ele-
ment ϕPC(P), fact that incentives the transfor-
mations to retain relevant semantic information.
On the other side, the denominator encourages
the transformed versions to be dissimilar from
each other by pulling away the relative embed-

3

Executive summary Stefano Bruno Gusmeroli

dings. At evaluation time, as anomaly score it
is employed:

AS(P) = −
K∑
k=1

log
h(Pk, P)

h(Pk, P) +
∑

l ̸=k h(Pk, Pl)

5. Experiments
In order to assess the anomaly detection capabil-
ities of our methods, we have conducted several
experiments on two datasets: ShapeNet7C and
ModelNet40. The setup that we have adopted
is the 1 Vs. All, which means that we regard
one class at the time as "normal" and all the
others as anomalies. Each time we train our
model solely on the normal class and this pro-
cess is repeated for each class of the dataset.
ShapeNet7C is a subset made of the 7 most nu-
merous classes of ShapeNet; it contains 24417
training and 6100 test samples. ModelNet40 is
made of 40 classes of every-day object, for a to-
tal of 12311 instances, 9843 of which are used
for training. The objects of both datasets are
synthetically generated, hence they are not oc-
cluded and they have a uniform density. In our
experiments we always use 1024 points and, for
NeuTraL, K = 15 learnable transformations.
We employ the AUC as evaluation metric, which
measures how well a model is able to separate
the data into two classes. The AUC ranges from
0 to 1 and a random guesser makes register an
AUC of 0.5. Thus, values below 0.5 indicate that
the model performs worse than one without any
knowledge of the data.
To the best of our knowledge, the only works
that address our problem in a similar way to
how we intend to, are [5], [1] and [2]. VAE
[5] proposes a Variational Autoencoder trained
to compress and subsequently reconstruct point
clouds. IFOR [2] is an isolation forest on the
handcrafted Global Orthographic Object De-
scriptors. DeepSVDD [1] is an extension of
the original DeepSVDD. Self-Sup [2] is an ap-
plication to point clouds of [3]. In this case, 8
rotations along a horizontal axis have been em-
ployed as set of transformations.

5.1. DROCC results
To test the effectiveness of the composite layers
[2] we have constructed different architectures
based on them. In addition to the convolutional
ADCompositeNet3 (Conv3) in Tab.1, we have
created a network with the same architecture
using the aggregate layers (Aggr3). Further-

more, we have analysed an ADCompositeNet5
(Conv5) network that is composed of five con-
volutional layers and is similar to [2]. Finally, we
have considered ADCompositeNet3b (Conv3b),
a slight variation of ADCompositeNet3 that
uses two fully connected layers instead of one,
with the first having output dimension 32.

Table 3: DROCC: Results (AUC) for different archi-
tectures based on the composite layers

Class Conv5 Conv3 Conv3b Aggr3
0 Airplane 0,7925 0,7909 0,8182 0,7709
1 Car 0,6936 0,6370 0,6479 0,6311
2 Chair 0,5871 0,7336 0,7315 0,7266
3 Lamp 0,6426 0,6821 0,5942 0,5895
4 Table 0,5864 0,7816 0,7524 0,8198
5 Sofa 0,7564 0,6935 0,6999 0,6420
6 Rifle 0,8537 0,8515 0,8847 0,9015
Average AUC 0,7018 0,7386 0,7327 0,7259
Average rank 2,57 2,29 2,29 2,86

As we can see from Tab.3, there is not a clearly
predominant architecture. Nevertheless, we can
notice that ADCompositeNet5 tends to perform
worse than the others, fact that can be explained
by its more complex architecture. Moreover it
seems that the convolutional composite layers
yield slightly better results than their aggre-
gate counterpart, probably thanks to their sim-
pler structure. On this basis, we speculate that
our DROCC method reaches better results when
simple architectures are used in the role of ϕθ.

Table 4: DROCC: Results in terms of AUC when
different networks are employed

Class ConvPt3 PointNet Composite3
0 Airplane 0,6738 0,8067 0,7909
1 Car 0,5218 0,7635 0,6370
2 Chair 0,6374 0,6024 0,7336
3 Lamp 0,4829 0,6734 0,6821
4 Table 0,6973 0,6522 0,7816
5 Sofa 0,5465 0,6711 0,6935
6 Rifle 0,7440 0,8612 0,8515
Average AUC 0,6148 0,7186 0,7386
Average rank 2,71 1,86 1,43

A second group of experiments explores the per-
formance of our DROCC method when different
types of networks are adopted. Besides AD-
CompositeNet3 (Tab.1), we consider a Conv-
Point network of same architecture, choice that
is done to make the confront as fair as possible.
Nevertheless, due to their different structures,
ConvPoint3 counts 457601 learnable parame-
ters, whereas ADCompositeNet3 just 140423.
For the comparison, we consider also a more tra-

4

Executive summary Stefano Bruno Gusmeroli

Table 5: Results in terms of AUC of point cloud anomaly detection methods on ShapeNet7C
Class IFOR [2] VAE [5] DeepSVDD [1] DROCC (Ours) Self-Sup. [2] NeuTraL (Ours)

0 Airplane 0,912 0,747 0,6898 0,7909 0,9700 0,9988
1 Car 0,712 0,757 0,6217 0,6370 0,9720 0,9984
2 Chair 0,571 0,931 0,6758 0,7336 0,9410 0,9573
3 Lamp 0,962 0,907 0,6410 0,6821 0,4210 0,9627
4 Table 0,883 0,839 0,6585 0,7816 0,8540 0,9916
5 Sofa 0,986 0,777 0,5834 0,6935 0,9440 0,9882
6 Rifle 0,475 0,382 0,7422 0,8515 0,9770 0,9984
Average AUC 0,7859 0,7629 0,6589 0,7386 0,8684 0,9851
Average rank 3,43 4,00 5,43 4,29 2,86 1,00

ditional PointNet, which, in spite of the rather
simple architecture, has 736641 parameters.
From Tab.4 we can see that, despite the similar
structure, on average ADCompositeNet3 out-
performs ConvPoint3 of around 10 % of AUC.
As we have alluded to before, this is probably
due to the higher complexity of the latter. How-
ever, the results of PointNet are on par with the
ones of ADCompositeNet3, in spite of the high-
est number of parameters.
Collecting the above observations, we advocate
that the optimisation process of the method we
developed can be quite insidious, hence we rec-
ommend employing networks with a simple de-
sign in the role of ϕθ(·) and eventually prefer a
low number of parameters. Sophisticated archi-
tectures that count millions of parameters tend
to be not well suited to our DROCC method for
anomaly detection on point clouds.
Ultimately, from the confront in Tab.5, we can
see that our DROCC method performs better
than the DeepSVDD from [1], the most similar
method among the ones considered. Moreover,
it is almost on par with VAE [5], which however
uses 2048 points. Generally speaking, DROCC
for point clouds does not prove to be extremely
effective overall, as it is outperformed on several
classes by the baseline IFOR [2]. Nevertheless,
among these four methods, it does not emerge
that one consistently performs better than the
others on every class, as they all have their
shortcomings. Indeed, apart from DeepSVDD
and DROCC, all the others make register val-
ues of AUC below the 0.5 threshold on certain
classes, hence performing worse than a random
guesser which has no knowledge of the data.

5.2. NeuTraL on ShapeNet7C
The NeuTraL model that we employ for point
cloud anomaly detection on ShapeNet7C makes
use of a feature extractor pre-trained on Mod-
elNet40. At this regard, we have adapted the

architecture in Tab.2 by adding a final fully con-
nected layer and we have optimised the result-
ing network to perform the classification task
on a subset of ModelNet40. More precisely, we
have removed 8 classes of objects similar to the
ones of ShapeNet7C in order not to expose the
ϕPC to such categories during pre-training. The
resulting dataset ModelNet32 counts 6645 sam-
ples divided into 32 classes. After pre-training,
we remove the added classification head and we
employ ϕPC to process the input point clouds.
We have trained each model five times in order
to make the results less subject to variability
and in Tab.5 we report the mean AUC obtained.
As we can see, our Neural Transformation
Learning method for point cloud anomaly de-
tection achieves impressive performance. In
fact, on four out of the seven classes (namely
"airplane", "car", "table" and "rifle") of
ShapeNet7C, it reaches values of AUC greater
than 0.99. From this comparison, it emerges
that our NeuTraL method is the best performing
one on the ShapeNet7C dataset, by making reg-
ister the highest AUC on every class of it. Our
model outperforms the shallow baseline IFOR
[2], VAE [5], DeepSVDD [1] and DROCC by a
very large margin and, in so doing, it sets the
new state of the art. More precisely, it achieves
an average AUC of 0.9851, which improves the
previous best result of more than 10% and it
approaches the perfect value of 1.

5.3. NeuTraL with few samples
To further explore the performance of our Neu-
TraL method, we have inverted the roles of the
aforementioned datasets by pre-training ϕPC on
ShapeNet7C and performing anomaly detection
on ModelNet32. We believe that this scenario
is much more challenging for two reasons. The
first is because ϕPC is pre-trained on a dataset
containing fewer classes, hence it is exposed to
a more limited selection of objects and conse-

5

Executive summary Stefano Bruno Gusmeroli

quently of features. The second motivation is
that the anomaly detection model is trained on
much smaller normal classes, with some of them
counting less than ninety samples. We train
each model five times as previously in Sec.5.2.

Table 6: NeuTraL on ModelNet32. AUC averaged
over 5 runs and Std. dev refers to their standard
deviation. We report the number of training samples
and the original label of each class in ModelNet40

Class AUC Std. dev. #Train
1 bathtub 0,9672 0,004525 106
2 bed 0,9939 0,000570 515
3 bench 0,9259 0,003129 173
4 bookshelf 0,9817 0,001611 572
5 bottle 0,9949 0,000367 335
6 bowl 0,9753 0,003333 64
9 cone 0,9787 0,000870 167
10 cup 0,9255 0,000609 79
11 curtain 0,9788 0,001358 138
13 door 0,9659 0,003784 109
14 dresser 0,9680 0,001279 200
15 flower pot 0,8536 0,007559 149
16 glass box 0,9690 0,000302 171
17 guitar 0,9940 0,001005 155
18 keyboard 0,9990 0,000512 145
20 laptop 0,9997 0,000068 149
21 mantel 0,9481 0,003124 284
22 monitor 0,9951 0,000453 465
23 night stand 0,9503 0,000966 200
24 person 0,9704 0,001575 88
25 piano 0,9073 0,000879 231
26 plant 0,9556 0,002248 240
27 radio 0,7835 0,006306 104
28 range hood 0,9641 0,004160 115
29 sink 0,8296 0,008381 128
31 stairs 0,8106 0,020754 124
34 tent 0,9713 0,001122 163
35 toilet 0,9947 0,000683 344
36 tv stand 0,9575 0,000800 267
37 vase 0,9397 0,001043 475
38 wardrobe 0,9188 0,009396 87
39 xbox 0,8923 0,008521 103
Average AUC 0,9456 0,001429 6645

As we can see from Tab.6, our NeuTraL method
for point cloud anomaly detection achieves ex-
cellent results also in this scenario, as the mean
AUC over the 32 classes is of 0.9456. On top of
it, our model reaches values of AUC above 0.99
on several classes. More remarkably, on "key-
board" it makes register an AUC of 0.999 and
on "laptop" of even 0.9997, values astoundingly
close to the perfect score of 1. Notably, these
two classes count less than 150 training sam-
ples. The lowest value of AUC is recorded on
"radio", on which it obtains a value of AUC of

“only” 0.7835. We speculate that such behaviour
is related to the low cardinality of said class and
with the high variability within the class.
We hypothesise that these outstanding results
are also thanks to the pre-trained feature ex-
tractor ϕPC(·). This said, the main criticism
may concern the additional data required. At
this regard, our model proved to excel in both
the considered scenarios, albeit being very dif-
ferent. On this ground, we speculate that the
amount of pre-training data and the number of
different categories used are not so fundamental
to the good success of our anomaly detection
method, as long as the extracted features gen-
eralise well. On the other side, the pre-training
procedure demonstrated to be a very effective
strategy in the context of anomaly detection.

6. Conclusion
In this work we have introduced two methods
that address anomaly detection in point clouds.
Our DROCC method has proved to be on par
with some similar ones. Besides, our Neu-
TraL model, by leveraging a pre-trained feature
extractor, has demonstrated impressive perfor-
mance. It has outperformed every other method
considered, making register values of AUC as-
toundingly close to 1 and hence approaching the
perfect classifier.

References
[1] A. Floris. Composite convolution for 3d point

clouds, 2021. M.Sc.Thesis, Politecnico di Milano.
[2] A. Floris, L. Frittoli, D. Carrera, and G. Borac-

chi. Composite layers for deep anomaly detection
on 3d point clouds. arXiv:2209.11796, 2022.

[3] I. Golan and R. El-Yaniv. Deep anomaly detec-
tion using geometric transformations. NeurIPS,
31, 2018.

[4] S. Goyal, A. Raghunathan, M. Jain, H. V.
Simhadri, and P. Jain. Drocc: Deep robust one-
class classification. In International Conference
on Machine Learning (ICML), pages 3711–3721.
PMLR, 2020.

[5] M. Masuda, R. Hachiuma, R. Fujii, H. Saito,
and Y. Sekikawa. Toward unsupervised 3d point
cloud anomaly detection using variational au-
toencoder. In International Conference on Image
Processing, pages 3118–3122. IEEE, 2021.

[6] C. Qiu, T. Pfrommer, M. Kloft, S. Mandt, and
M. Rudolph. Neural transformation learning
for deep anomaly detection beyond images. In
ICML, pages 8703–8714. PMLR, 2021.

6

	Introduction
	Problem Formulation
	Related Works
	Proposed Solutions
	DROCC for point clouds
	Anomalies' generation
	Architecture of

	NeuTraL for point cloud AD

	Experiments
	DROCC results
	NeuTraL on ShapeNet7C
	NeuTraL with few samples

	Conclusion

