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Abstract 
 

Point cloud 3D models are becoming more and more popular thanks to the 

diffusion of scanning systems employed in many fields, like autonomous vehicles 

and robotics. When used in rendering, point clouds are usually displayed with 

their original color acquired at scan-time without taking into consideration the 

lighting condition of the scene where the model is placed. This leads to a lack of 

realism in many contexts, especially in case of animated point clouds where it 

would be desired to have the model reacting to incoming light and integrating with 

the environment. 

This thesis proposes to apply the rendering technique known as Physically Based 

Rendering, widely used in Computer Graphics applications, to animated point 

cloud models to give them a photorealistic and physically accurate look under any 

lighting condition. An available animated point cloud model will be imported in 

Unity and rendered with a developed shader implementing Physically Based 

Rendering. Then, the point cloud using Physically Based Rendering will be 

compared to the same point cloud rendered with the standard, commonly used 

shader when placed in different environments characterized by different lighting 

conditions and it will be shown how, with Physically Based Rendering, a point 

cloud better integrates to the surrounding environment with respect to the 

counterpart using a basic, unlit shader. Moreover, it will be shown that with this 

rendering technique it is possible to render different kind of materials, by 

exploiting the features of Physically Based Rendering to use the point cloud as a 

perfect mirror reflecting the environment. 
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Sommario 
 

Le nuvole di punti 3D stanno diventando sempre più popolari grazie alla 

diffusione dei sistemi di scansione utilizzati in vari settori, come nei veicoli 

autonomi e nella robotica. Quando vengono usate nel rendering, le nuvole di punti 

vengono solitamente visualizzate con il loro colore originale ottenuto durante la 

scansione senza tenere in considerazione le condizioni di illuminazione della scena 

in cui il modello viene collocato. Ciò risulta in una mancanza di realismo in molti 

contesti, soprattutto nel caso di nuvole di punti animate dove sarebbe desiderabile 

che il modello reagisca alla luce incidente e si integri con l’ambiente. 

Questa tesi propone di utilizzare la tecnica di rendering nota come Physically 

Based Rendering, ampiamente utilizzata in applicazioni di Computer Grafica, sui 

modelli di nuvole di punti per conferire loro un aspetto fotorealistico e fisicamente 

accurato sotto qualsiasi condizione di illuminazione. Un modello di nuvola di 

punti animata verrà importato in Unity e renderizzato con uno shader che 

implementa il Physically Based Rendering. Successivamente, la nuvola di punti 

che utilizza il Physically Based Rendering verrà collocata in diversi ambienti 

caratterizzati da varie condizioni di illuminazione e confrontata con la stessa 

nuvola di punti renderizzata con lo standard shader tipicamente utilizzato, 

all’interno dello stesso ambiente. Verrà dimostrato come, utilizzando il Physically 

Based Rendering, una nuvola di punti si integra meglio con l’ambiente circostante 

rispetto alla controparte che utilizza uno shader base e non illuminato. Inoltre, 

verrà mostrato che con questa tecnica di rendering è possibile creare diversi tipi 

di materiali, sfruttando le caratteristiche del Physically Based Rendering per 

utilizzare la nuvola di punti come uno specchio perfetto che riflette l’ambiente 

circostante. 
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1 Introduction 
 

Rendering is a key concept in the Computer Graphics field since its very first 

years. Many different techniques have been developed through the years, going 

from simple algorithms generating 8-bit “pixelated” colors to the most recent 

ones, showing realistic lighting effects. Physically Based Rendering is a technique 

born in the ‘80s aiming to achieve photorealistic lighting and is currently widely 

used in many applications such as videogames, design and many other fields 

involving the creation of digital images.  

Historically, Computer Graphics pipelines have been optimized to work with 

polygonal meshes, which are 3D models represented by a collection of vertices, 

edges connecting such vertices and polygonal faces (in most cases triangles) 

obtained by closed sets of connected edges. Meshes are still the most widely used 

3D models in rendering, as hardware and accelerators have been highly optimized 

to work with such primitives in a fast way. 

In recent years, however, with the spread of scanning systems using radar or laser 

scanners employed on autonomous cars, drones or mounted on air vehicles to 

acquire aerial scans, have led to the diffusion of a different kind of 3D model using 

only point primitives, which have been called point clouds. Point clouds have 

several advantages over polygonal meshes, for example the fact that they can be 

automatically acquired in a rapid way, saving long and tedious work of designers, 

having to model and check meshes by hand. Another advantage is that since a 

point cloud has no connectivity information, points can be stored and transmitted 

in any order, as long as the whole set is considered. This suggests that point clouds 

could be heavily used in Computer Graphics applications by substituting 

polygonal meshes, although there is still no optimized hardware to work with 

them. 
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At present day most applications using point clouds use simple rendering 

techniques to display only the color of the model acquired during scanning. In 

some cases this is fine, since there is no practical advantage in using complicated 

rendering techniques to visualize the model and the original color is all what is 

needed. An example is a point cloud acquired by an autonomous car, which 

doesn’t need to be rendered in a photorealistic way but just needs colors to 

distinguish obstacles on its path (semaphores, crosswalks, other cars etc.). 

However there exist other applications involving animations where the point cloud 

needs to be better contextualized within an environment and we would like to 

obtain from the model a photorealistic look, as in movies, immersive experiences 

in 360 degrees Virtual Reality such as virtual tours and games, or a mix between 

traditional 3D models and VR. In such scenarios the basic rendering technique is 

not enough, and we could use, instead, Physically Based Rendering to give the 

animated point cloud a photorealistic look under any external lighting condition, 

allowing to relocate it in any environment and still maintaining the feel that the 

model belongs to it. 

In this work we will show how Physically Based Rendering can be applied to 

animated point clouds as to polygonal meshes to obtain a photorealistic 

appearance of the model under various lighting conditions. The document at 

hands follows this structure: 

➢ In Chapter 2 the main concepts and topics subject of this study are analyzed 

in detail, starting from point cloud acquisition techniques, the ongoing 

standardization efforts on point cloud compression addressed by the 

MPEG group and ending with a brief analysis of trending rendering 

techniques, with focus on Physically Based Rendering. 

➢ Chapter 3 is the core of this document. It contains all the steps followed to 

import a point cloud animation sequence into the engine used for 

rendering and the development of a shader implementing Physically Based 

Rendering which is then applied to the point cloud. Then a series of 
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different scenes is presented, which aim to recreate various environments 

to study how the point cloud rendered with the PBR technique behaves 

compared to the point cloud rendered by just displaying the original color, 

and some of the features provided by PBR are explored. 

➢ In Chapter 4 a short overview on potential applications of (animated) point 

clouds with the support of Physically Based Rendering is presented. 

➢ Chapter 5 contains some final considerations about the obtained results 

and discusses the limitations of the study, leaving space for future 

developments on the subject. 
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2 State of the Art 
 

2.1 Point Clouds 

As the name suggests, point clouds are a set of high-density individual points used 

to represent volumetric visual data, which can be computer-generated or directly 

captured from the real world. All these points carry various attributes about the 

properties of the object they are representing, like the basic position in the space 

(x, y, z coordinates) and eventually its color, surface normal, etc. [1]. They can be 

seen as an alternative to polygonal meshes when representing 3D models, with the 

advantage that they can be directly sampled from the real world with cameras 

without the need of reconstructing the surface and they can be processed in real 

time. 

Usually, the 3D coordinates of points are represented by floating-point values, but 

they can also be quantized into integer values by creating a grid in 3D space and 

mapping each point residing within a sub-grid volume to the sub-grid center, 

referred to as voxel. The process is hence called voxelization. Voxels are often seen 

as a 3D extension of pixels and are very accurate 3D building blocks allowing 

simulation techniques that wouldn’t be possible with other modelling methods. 

However, current computer hardware is optimized for rendering polygons and 

Figure 2.1 - A point cloud example of a monkey 
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specialized hardware to render high-resolution voxels is not available yet [2]. Also, 

the space precision may affect the perceived quality of the voxelized point cloud 

[3]. 

Since point clouds lack information about vertices connectivity, more points are 

needed both to “fill” the model (which otherwise may result in having holes) and 

to get a better level of detail that would be lost when removing the information 

about faces from the polygonal mesh, but having too many points might also result 

in adding details not present in the original model. However, since there is no 

connectivity information, storage and transmission of point clouds are simpler, as 

points can be acquired, stored and transmitted in any order as long as the whole 

set of points is considered, while a polygonal mesh needs to preserve the order of 

points to ensure that the connectivity of vertices is kept unaltered during 

compression and transmission [4]. Even though polygonal meshes are still widely 

used in Computer Graphics applications due to their integration with graphics 

pipelines and surface representations, point clouds are getting more and more 

popular in applications like virtual and mixed reality (AR/VR/MR) thanks to their 

flexibility [1]. As point clouds also provide immediate depth information, they also 

find use in applications like self-driving cars and, in general, autonomous 

Figure 2.2 - A point cloud of Washington, DC captured by a LiDAR with height 

information 
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machines, helping to detect objects and allowing navigation and localization [5], 

and also in the construction industry, to reconstruct an original 3D model of a 

building from its point cloud representation, for geometry quality inspection tasks 

and as an help to repair and maintain cultural heritage buildings [6]. 

 

2.1.1  Point cloud acquisition technologies 

There are a few ways in which a point cloud can be generated from the real world. 

The most common solutions are LiDAR-based scanning and photogrammetry, 

but other alternatives are possible, for example videogrammetry, RGB-D cameras 

and stereo cameras. A short overview will be given for each. 

2.1.1.1 Laser Scanning with LiDAR 

Laser scanners measure the distance from an object by emitting laser beams and 

detecting the reflected beam from the object. The distance is then evaluated with 

the Time-of-Flight principle or Phase-Shift of the wave. Scanners using the Time-

of-Flight principle have a higher maximum range of measurement than the 

counterpart, while Phase-Shift gives higher ranging accuracy and measurement 

speed. Different solutions exist on the market, going from very expensive 

mechanical LiDARs (up to $100,000) to cheaper solid-state LiDARs (less than 

$1,000). For example, the iPhone12 Pro is equipped with a solid-state LiDAR with 

short sensing range [5, 7]. 

Laser scanners can be furtherly divided into three categories [8]: 

➢ Terrestrial Laser Scanner (TLS), also known as ground LiDAR, which is 

mounted on tripods placed on the ground. Since during operation it is still, 

this is the solution with highest accuracy and used for surveying and 

monitoring buildings and infrastructures. 

➢ Airborne Laser Scanner (ALS), also known as aerial laser scanner, which is 

mounted on aircrafts during flight. Its main advantage is the high mobility 



8 

 

and is mainly used to capture point clouds of terrains without the need of 

being very accurate. 

➢ Mobile Laser Scanner (MLS), which is mounted on ground mobile 

platforms, such as vehicles. They are mostly adopted for 3D city mapping 

and as sensing systems of autonomous cars. 

Examples of LiDARs are available in Figure 2.3. With multiple LiDAR scans it is 

possible to create very detailed and accurate measurements, with millions of 

measurements at each laser pulse [9]. 

2.1.1.2 Photogrammetry 

Photogrammetry is defined as the art, science and technology of obtaining reliable 

information about physical objects and the environment through the process of 

recording, measuring and interpreting photographic images and patterns of 

electromagnetic radiant imagery and other phenomena. So, photogrammetry gets 

data from photographs instead of light rays. Many photos must be taken from 

different angles and overlapped to capture the geometry of the object to represent 

as a point cloud. These photos can be captured even with simple cameras, making 

the approach more affordable in terms of availability and costs, but is less accurate 

than 3D scanners and it can be difficult if a multi-camera setup is not available. 

However, the advantage is the straightforward capability of photogrammetry to 

represent objects with full color, directly taken from photos [9]. 

2.1.1.3 Videogrammetry 

Videogrammetry can be seen as an extension of photogrammetry, taking as input 

a video stream instead of a collection of images. With videogrammetry it is 

possible to progressively reconstruct a point cloud by stacking the information 

obtained from a video frame to the previous frames, and gradually increasing the 

accuracy and detail of the model. Also, the need of human intervention is limited 

since the reconstruction process can search for points by tracking features from 

consecutive frames [8]. 
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2.1.1.4 RGB-D cameras 

An RGB-D camera consists of an RGB camera (red, green, blue) plus a depth 

sensor. Images taken by this camera are normal RGB images augmented with 

depth information at pixel level. Colored 3D point clouds can be generated by just 

mapping the image to the depth. A very popular RGB-D camera is the Microsoft 

Kinect (Figure 2.4), released firstly in 2009 and widely used in many applications 

such as robotics and computer vision. 

A study made by [10] proposes an architecture for an automated indoor scanning 

system that uses multiple RGB-D cameras facing different directions with a 

slightly overlapping field of view and mounted on a rotating support. This solution 

doesn’t need human support, such as manually moving the sensors in the room, 

for scanning indoor environments. 

Figure 2.3 - Three types of LiDAR according to their working platform. From [8] 
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2.1.1.5 Stereo cameras 

A stereo camera has two or more lenses and an image sensor. Knowing the relative 

position and orientation of lenses, it is possible to obtain 3D point clouds from the 

acquired 2D images, after a previous fully automated calibration process based on 

the same images. 

 

2.1.2  The MPEG-PCC standard 

The first standardization activity for Point Cloud Compression was initiated in 

2014 by the Moving Picture Experts Group (MPEG), known for other 

standardizations in the field of multimedia technologies. In 2017 they came up, 

through a Call for Proposals (CfP), with three different technologies for three 

targeted categories: 

➢ LiDAR Point Cloud Compression (L-PCC) for dynamically acquired data. 

➢ Surface Point Cloud Compression (S-PCC) for static point cloud data. 

➢ Video-based Point Cloud Compression (V-PCC) for dynamic content. 

The final standard came out in 2020 and consists of two approaches: 

➢ Video-based, appropriate for point clouds with a uniform distribution of 

points. 

Figure 2.4 - Microsoft Kinect v2, an RGB-D camera 
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➢ Geometry-based, equivalent to the combination of L-PCC and S-PCC, 

appropriate for sparser distributions. 

2.1.3  Video-based Point Cloud Compression 

The idea behind V-PCC comes from the great success of 2D video compression 

that is widely used thanks to the spread of video coding standards. To take 

advantage of such technologies, PCC may convert a point cloud from 3D to 2D 

and then code it with 2D video encoders [3]. The proposal was to divide the point 

cloud into connected regions named 3D patches (clusters) and then project each 

of them independently into a 2D patch with orthogonal projections, which are 

then packed into images that can be compressed with any existing or future video 

codec (for example, MPEG-4 or AVI). The approach also helps to reduce self-

occlusions and distortions that may be present in the original point cloud. The 

objective of creating patches is to obtain a temporally coherent, low-distortion, 

injective mapping, which would assign each point of the 3D point cloud to a cell 

of a 2D grid [11]. The mapping between the point cloud and the 2D regular grid 

is then created by packing the projected patches, with a strategy that can be 

different from encoder to encoder. The compression efficiency can be improved 

by mapping patches with similar content to similar positions [3]. 

After the patch-packing process is completed, other images are generated: 

Figure 2.5 - Generation of 3D patches from the point cloud. From [3] 
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➢ A geometry image containing the depth information of the point cloud 

(distance between each point’s position and the projection plane). Since a 

patch may have different points being projected to the same pixel, the 

standard allows the encoder to use more layers ordered from lowest to 

highest depth value to store overlapping points. 

➢ A binary image called occupancy map signaling whether a pixel is occupied 

by a valid 3D projected point or not. 

➢ Other attribute images containing information like the texture (color) of 

each point, the material or user-defined attributes. 

The occupancy map is used to disambiguate pixels used for 3D reconstruction of 

the point cloud from pixels that, instead, are unused and inserted by the padding 

procedure. Both lossless and lossy coding are possible for occupancy maps. The 

padding function is applied to geometry images to fill the spaces between patches 

and obtain a piecewise smooth image, improving the video compression efficiency 

furtherly. 

The V-PCC bitstream is finally created by concatenating into a single stream all 

the encoded information. 

The decoding process is split into two different phases: information decoding and 

point cloud reconstruction. The first phase generates the 2D video frames 

together with patches information associated to each frame from the encoded 

Figure 2.6 - An example of occupancy map (left), geometry (middle) and texture (right) image. 
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information, while the second phase recreates the 3D point cloud from the video 

frames. However, while the decoding result is generally bit-exact, the 

reconstruction can lead to a slightly different geometry with respect to the original 

one, introducing artifacts due to quantization errors. Studies to remove such 

artifacts are ongoing. For example, in [12] a solution using deep learning based 

on a U-Net architecture is presented.  

Since the reconstructed geometry might be different from the original one, the 

information about color is transferred from the original point cloud to the decoded 

point cloud and these new colors are used for transmission [3]. 

Since the first Call for Proposals evaluation, the performance of V-PCC has been 

constantly improving. In Figure 2.7 the progress is shown in terms of coding 

performance, based on the D1 geometry distortion, with also the originally 

proposed technology added as reference [13]. 

 

Figure 2.7 - Progress of V-PCC performance since CfP based on D1 geometry distortion. From [13] 
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Figure 2.8 – An overview of the V-PCC encoder. 



15 

 

2.1.4  Geometry-based Point Cloud Compression 

The first difference between V-PCC and G-PCC is that while video-based 

compression uses video coding formats to project a 3D point cloud into a 2D 

representation, geometry-based encoding instead directly encodes the model in 

3D by using a data structure called octree describing a point localization in 3D 

space. Also, the approach makes no assumption on the coordinate representation 

used by the input point cloud and points have an internal integer-based 

representation obtained with a conversion from a floating-point representation. 

The conversion is conceptually like voxelization [3]. 

G-PCC also allows for parallel coding functionalities using slices and tiles. A slice 

is a set of points, with geometry and attribute information, that can be 

independently encoded and decoded, while a tile is a group of slices with bounding 

box information. Tiles may overlap with each other, and specific slices may be 

accessed to decode a specific area of the point cloud only. 

An overview of the core modules of the G-PCC encoder is shown in Figure 2.9. 

The first thing to be noted is that geometry and attributes are encoded separately, 

but since attribute encoding depends on geometry encoding, geometry is encoded 

first [14]. 

Figure 2.9 - An overview of the G-PCC encoder. From [14]. 
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The first operation made in both geometry and attribute encoding is a conversion 

into a different representation: point positions are converted from floating-point 

values into integers with a coordinate transformation followed by voxelization, 

while colors are converted from RGB to YUV color space, which is more 

compression friendly. In fact, it is shown in [15] that compressing an image in 

YUV format leads to a reduction of the root mean squared error to 78.65% of the 

same image with RGB coding. 

The following step is the geometry analysis of the octree. Two schemes are 

possible: 

➢ Octree coding: assuming that the quantized volume occupied by the 

point cloud is 𝐷 × 𝐷 × 𝐷 voxels, this is initially horizontally and vertically 

partitioned into eight sub-cubes of 
𝐷

2
×
𝐷

2
×
𝐷

2
 voxels. The process is 

recursively applied to occupied sub-cubes until 𝐷 becomes equal to 1. 

Occupied blocks are marked by a 1 while empty ones are marked by a 0. 

The generated octets at each step represent an occupancy state stored in 

one-byte words. The first two steps of the process can be visualized in 

Figure 2.10. 

➢ Trisoup surface approximation: the geometry is represented by a 

pruned octree constructed until a chosen level where leaves represent sub-

cubes with a higher dimension than a voxel. The object surface is then 

approximated by a series of triangles without any connectivity information 

between each other (a “triangle soup”, or trisoup, giving the name to the 

approach). 

Figure 2.10 - The first two iterations of octree generation. From [3] 
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In general, only 1% of voxels are occupied and this makes the octree 

representation very convenient. Since more points can be mapped to the same 

sub-cube, the number of points for each sub-cube is also arithmetically encoded 

[16]. 

The reconstructed geometry is then used to transfer attributes in order to 

minimize distortions between the input and reconstructed point cloud. Three 

different methods are available for attribute coding: 

➢ Region-Adaptive Hierarchical Transform (RAHT): use the attribute 

value in a lower octree level to predict the value of the next level, starting 

from leaves and heading up to the root. For more details about the 

transform see [3]. 

➢ Predicting Transform: a distance-based prediction scheme relying 

on a Level of Detail (LoD) representation distributing points in sets of 

different refinement levels based on a deterministic Euclidean distance. 

Attributes are encoded following the prediction determined by the LoD 

order. 

➢ Lifting Transform: built on top of the Predicting Transform, it adds 

an update operator and an influence weight to each point. Since points in 

lower LoDs are used more often in prediction, they have a higher impact 

on the process. 

 

 

 

Figure 2.11 - Level of Detail (LoD) generation process 
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For a more detailed overview on G-PCC standard the reader can refer to [17]. 

Although G-PCC can achieve remarkable performances, it might still lead to 

serious artifact issues during the attribute compression task, especially in low 

bitrate scenarios. A first study was made in [18] where a solution using a Multi-

Scale Graph Attention Network is used to remove artifacts on compressed 

attributes. Experiments showed that on average the proposed solution reaches a 

9.28% BD-rate reduction (a measure of rate-distortion performance). 

 

2.1.5  Other studies 

In this section a short overview of other studies carried out independently from 

the MPEG standardization effort is given. In particular, attention will be given to 

an end-to-end framework based on a deep neural network to efficiently compress 

a point cloud geometry [19] and a point-to-plane metric to measure geometric 

distortions of point clouds [20]. 

2.1.5.1 End-To-End Learned lossy compression 

The idea to try to use a deep learning approach to compress point clouds’ 

geometry comes from the emerging of analogous applications in 2D compression 

of images and videos. Since redundancy in 2D images can be exploited by stacked 

2D convolutions, the idea was to try to use 3D convolutions to have a compact 

representation of a point cloud. The proposed framework consists in three main 

operations: 

1. The point cloud firstly goes through a pre-processing pipeline, where it is 

voxelized and partitioned into non-overlapping cubes, to reduce the 

computational cost that would be required to process the entire point cloud 

at a time. The position of occupied cubes is specified with an octree 

decomposition and the number of occupied voxels in each cube is also 
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transmitted to allow later point cloud reconstruction. Each cube is 

processed independently, allowing massive parallelism of the task. 

2. The obtained volumetric point cloud is then fed into a Variational 

AutoEncoder (VAE) architecture composed by a stack of three consecutive 

3D convolutions with integrated downsampling to generate hyperpriors 

and have a compact representation. Convolutions are interleaved by a 

Voxception-ResNet (VRN) to capture the essential information of the 

representation. The hyperpriors are later used to increase the conditional 

probabilities of latent features. To train the network, a Weighted Binary 

Cross-Entropy loss function has been used to optimize distortion, where 

the non-occupied voxels are weighted more than the occupied ones. The 

reconstruction task is treated as a classification problem, where the target 

is a voxel to be classified as occupied or not occupied. 

3. A final post-processing phase, where voxels classification and extraction are 

made. Decoded voxels coming from the neural network are floating-point 

numbers in the interval [0, 1] and need to be classified as occupied or not 

occupied. At inference time the used threshold is not fixed, but an adaptive 

threshold is used based on the number of occupied points belonging to the 

original cube fed to the network (information contained in each cube as 

metadata). Finally, voxelization is reverted and points are extracted from 

the volumetric representation. 

The study showed that this method outperforms the G-PCC standard with a good 

margin of at least 60% BD-Rate. The results also qualitatively look better, as can 

be noted in Figure 2.12. For further details about the framework the reader can 

refer to [19]. 

2.1.5.2 Geometric distortion measure for PCC 

Classic metrics used by the MPEG standard to measure geometry distortion are 

based on point-to-point or point-to-surface distances. Regarding the point-to-

point framework, firstly for each point of the original point cloud a corresponding 
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point in the compressed point cloud is identified. Then the average or maximum 

Euclidean distance between such couple of points is used as basis to measure 

distortion. However, the approach fails to consider that points in a point cloud 

often represent surfaces, so a point-to-surface approach has ben developed. In this 

second approach a mesh is constructed from the original point cloud and then the 

distances between the compressed point cloud and the corresponding mesh are 

computed. The framework, however, strongly depends on the algorithm used to 

obtain the mesh from a point cloud and is difficult to use. 

The proposed approach uses a point-to-plane measure, that resides between the 

point-to-point and point-to-surface approaches [20]. 

Firstly, for each point of the reference point cloud the corresponding point in the 

compressed one is identified. Such corresponding point is determined as the 

nearest neighbor of the point itself. Then the unit normal vector of the reference 

point is considered if available or, if not, estimated on the fly. The point-to-point 

error is then computed by connecting the two considered points. The final, 

Figure 2.12 - Visual comparison of "soldier" between different compression schemes. From [19] 
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proposed point-to-plane error is obtained by projecting the point-to-point error 

onto the normal vector of the reference point. 

For point clouds in which surfaces are represented, the proposed point-to-plane 

error is better aligned to the perceived quality of the point cloud with respect to 

the point-to-point metric. In addition, instead of considering the mean square 

error (MSE), the values are converted into Peak Signal-to-Noise Ratio (PSNR) 

numbers to normalize the metrics with respect to a peak value, which is chosen as 

the intrinsic resolution of the input point cloud. 

The point-to-plane metric requires lightweight computation and is demonstrated 

to better track visual qualities of a compressed point cloud than the classic point-

to-point metric. 

 

2.2  Rendering 

Rendering is a key concept in Computer Graphics. It is the process of 

automatically creating a 2D or 3D image from a scene defined by a series of 

objects. It involves many information, such like object geometry, textures, 

shading, lighting, shadows, materials, reflectance, transparency and so on. 

Rendering is, in general, a very expensive task in terms of calculation and time. 

The key is to find a good balance between image quality and rendering speed 

determining how many frames can be processed in a certain period of time [21]. 

The higher is the quality of the image we expect from rendering, the more time 

will be required to compute it. A good choice is to use algorithms that produce 

images with an acceptable perceived quality for the specific application we intend 

to use them for and don’t require too much time to be computed. 

Through the years many different techniques have been developed to try to 

provide an approximate solution to the rendering equation and give a realistic look 
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to scenes (an exact computation is still infeasible since it would be needed to 

follow the path of every single ray of light in the scene, which are infinite). Some 

examples of photo-realistic lighting models are: 

 

➢ The Phong lighting model [22], that considers three lighting components: 

ambient, diffuse and specular lighting. Ambient lighting is a constant term 

that always gives the scene some color to simulate the fact that objects are 

never completely dark; diffuse lighting simulate the directional impact of 

light hitting an object, the more a face is aligned with the light the brighter 

it becomes; specular lighting is based on the reflection properties of 

surfaces and the view direction. It simulates the bright spot of a light 

appearing on shiny objects. In Figure 2.14 an overview of all the lighting 

Figure 2.13 - The Rendering Equation 

Figure 2.14 - The Phong shading model with all its components. From [22] 
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terms and how they combine together is available. Obviously, all  terms can 

also be represented by textures rather than just raw colors. The model 

however suffers from an issue about specular light when the angle between 

the reflected light vector and the viewing direction is greater than 90 

degrees, which is solved by the Blinn-Phong lighting model, that 

introduces a halfway vector. For details, see [23]. 

➢ The radiosity method, which is an alternative to the Phong model that tries 

to better approximate the interaction of diffuse surfaces [24]. It is a view 

independent algorithm that simulates indirect illumination effects by 

considering light rays leaving a light source and reflected some number of 

times on surfaces before reaching the eye. All objects in the scene are 

divided into patches with a single unknown per patch, which is the radiosity 

of the object (the “amount” of light hitting the object). Light sources 

instead are implemented as patches emitting radiosity. The rendering 

Figure 2.15 - Specular lighting of Phong and Blinn-Phong reflection models. From [23] 

Figure 2.16 - Different iterations of the radiosity algorithm. Patches are visible as squares on walls and floor. 
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equation is transformed into a very large system of linear equations which 

can be solved with an iterative approach. The method is well suited for 

indoor scenes due to its capability to mimic real-world phenomena of light 

reflection, as can be seen in Figure 2.17. However, a major limitation of the 

method is that it was designed to simulate purely diffuse environments and 

lighting effects such as specularity of materials like glass and metal can’t be 

rendered properly and need to be considered in some way by extending the 

solution provided by standard radiosity.  

➢ Monte Carlo techniques which use simulation and sampling to approximate 

the solution of the rendering equation. Many algorithms exist using this 

technique, an example is path tracing which integrates over all the 

illuminance hitting a specific point on a surface, for every point. The 

Figure 2.17 - Difference between standard direct illumination and radiosity 

Figure 2.18 - An image rendered with Monte Carlo path tracing 
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algorithm can give a very realistic appearance to images and naturally 

simulates effects like soft shadows, ambient occlusion and depth of field, 

but it is rather inefficient. A lot of rays need to be followed to have a high-

quality result and without noise artifacts, which are a constant issue of all 

methods based on Monte Carlo simulation. 

 

2.2.1  Physically Based Rendering 

Physically Based Rendering, or PBR, is an interesting and currently widely used 

collection of rendering techniques used in real time rendering. It tries to mimic 

how light interacts with surfaces in a physically plausible way, making the result 

more photorealistic with respect to other shading models [25]. Another advantage 

is that it is possible to create different materials by changing physical parameters 

and making them look correctly under any lighting condition without the need to 

resort to coding hacks. 

Figure 2.19 - Path tracing with increasing number of light ray samples per pixel 
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To be considered as physically based, a lighting model must fulfill three 

conditions: 

1. Be based on the microfacet surface theory, according to which any surface 

can be described at a microscopic scale by very small perfectly reflective 

mirrors called microfacets. The rougher a surface is, the more dispersive 

will be the scattering of light when bouncing on it, generating widespread 

specular reflections, while a smooth surface will reflect light approximately 

in the same direction. The roughness of the material is one of the physical 

parameters that can be tweaked to obtain different behaviors on the surface 

(Figure 2.20). 

2. Satisfy the energy conserving principle, which states that the light energy 

leaving a surface never exceeds the incoming light energy (except for 

emissive surfaces). A distinction must be made between diffuse and 

specular light: when hitting a surface, light splits in a refracted and a 

reflected part. Refracted light is absorbed by the surface and scatter, 

producing diffuse lighting, while reflected light does not enter the surface 

and produce specular lighting. The conclusion is that reflection and 

diffusion are mutually exclusive: reflected light will be no longer available 

to get absorbed by the surface. A consequence is that highly reflective 

surfaces will show little to no diffuse light, as well as surfaces with strong 

diffusion won’t be much reflective [26]. A note must be made on metallic 

materials: when light hits a metallic surface, all refracted light is directly 

absorbed without scattering, meaning that no diffuse light is shown. 

Figure 2.20 - A material with increasing value of roughness 
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Metalness is another parameter that can be tweaked in a material to obtain 

different behaviors. 

3. Use a physically based Bidirectional Reflective Distribution Function 

(BRDF). The BRDF is a function that approximates how a material reflects 

and refracts incoming light, based on the microfacet theory. To be 

physically based, the BRDF must adhere to the energy conservation 

principle. Blinn-Phong, which is also a BRDF, is not physically based since 

it is not energy conserving. Most of the real-time rendering pipelines based 

on PBR use the Cook-Torrance BRDF. 

PBR is often used in combination with Image Based Lighting to produce even 

more realistic and physically accurate results [27]. This is usually done by 

transforming the environment into a cubemap that can be used in the lighting 

equations as a big light source. In this way it is possible to capture the 

environment’s global illumination. The lighting equation solved by PBR (which is 

a more specialized version of the rendering equation, called reflectance equation) 

considers diffuse and specular lighting separately as they are independent from 

each other. Such equation is available in Figure 2.22 where the Cook-Torrance 

BRDF appears explicitly. 

Figure 2.21 - Diffusion and specularity mutual exclusion. Specular materials show less diffuse color 

Figure 2.22 - The reflectance equation solved by PBR split in diffuse part (left integral) and specular part (right integral) 
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Diffuse integral 

As the first term is constant with respect to the integral variables (c is the color, kd 

is the refraction ratio, the whole term is known as the diffuse Lambert term), it is 

moved outside the integral, which now depends only on the direction 𝜔𝑖 of the 

incoming radiance, assuming p being the center of the environment map. From 

the integral, a new cubemap is pre-computed, storing at each texel 𝜔0 the result 

of the diffuse integral obtained by convolution. The convolution operation is done 

by sampling a high number of incoming directions 𝜔𝑖 over the hemisphere Ω and 

computing the average radiance. The hemisphere is oriented towards the 

direction 𝜔0 over which the convolution is being computed (Figure 2.23). The 

resulting cubemap is known as irradiance map (Figure 2.25) and allows to directly 

sample the pre-computed irradiance from any direction 𝜔0. 

  

Specular integral 

The specular integral is more complicated to deal with, since it does not depend 

only on the incoming light direction, but also on the view direction [28]. To solve 

it, an approximation called split-sum is used to pre-convolute the specular part 

into two separate components that can be later recombined in real-time PBR. The 

split-sum approximation splits the specular integral into two integrals (Figure 

2.24). The first integral is a pre-filtered environment map, which is similar to the 

Figure 2.23 - Overview of the convolution operation of the diffuse integral. From [27] 
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irradiance map, but it takes into consideration also roughness. The environment 

map is convoluted with more scattered vectors for increasing roughness, 

generating blurred reflections. For each level of roughness, a smaller environment 

map is stored as mipmap level (Figure 2.26). 

 

 

 

Figure 2.25 - An environment cubemap (left) with the resulting irradiance cubemap obtained by convolution (right) 

Figure 2.24 - The split-sum approximation of the specular integral 

Figure 2.26 - Pre-filtered environment maps of 5 levels of increasing roughness. 
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The second integral of the split sum approximation represents the BRDF of the 

surface. By pretending that 𝐿(𝑝, 𝑥) = 1.0 (white radiance for every direction) it is 

possible to pre-calculate the BRDF’s response given an input roughness and an 

input angle between the surface normal and the incoming light direction  𝑛 ⋅ 𝜔𝑖. A 

2D lookup texture known as BRDF integration map is pre-computed, containing 

the BRDF’s response to each normal and light direction combination, with varying 

roughness. The texture is available in Figure 2.27 with the horizontal axis being 

the input angle 𝑛 ⋅  𝜔𝑖 and the vertical axis being the input roughness. 

 

 

2.3  Conclusion 

In this chapter an overview on the current trends about point clouds and rendering 

was given. When it comes to applications, most of the times point clouds are 

simply rendered as they were scanned, meaning that they look exactly as if they 

were under the same lighting conditions as during scan-time and the used shaders 

in rendering do not take into consideration incoming light at all. In many cases 

this is fine since there is no need to have a realistic look of the point cloud under 

different lighting conditions, however for other applications, for example related 

Figure 2.27 - The BRDF's integration map. The colors represent the scale (red) 

and the bias (green) with respect to the Fresnel response of the surface. From [28] 
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to Virtual, Augmented and Mixed Reality (VR/AR/MR) it could be needed to 

render a model in different lighting conditions as realistically as possible to have 

a good integration of the model inside the scene, both for static and animated 

models. PBR with IBL looks a good suit for this task. 

Some steps in this direction have already been made. The most notable studies 

have been carried out by Paul Debevec, researcher and professor at the University 

of Southern California’s Institute for Creative Technologies [29], who developed 

with his team a scanning technology called LightStage which is able to scan human 

faces when lit from any possible lighting direction and render them faithfully in 

different realistic virtual conditions, obtaining quite impressive results (Figure 

2.28). LightStage was launched in 2008 for commercial use and has been widely 

adopted in blockbusters films and triple-A game titles and allows the creation of 

photorealistic digital images as they would appear in any lighting condition [30, 

31]. The goal of this paper is to extend the use of advanced rendering techniques 

in any lighting conditions to any model, not only to human faces subject of studies 

by Debevec’s team. 

 

Figure 2.28 - A human face digitally rendered in three different lighting conditions with LightStage. From [30] 
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3 Physically Based Rendering of 

Animated Point Clouds 
 

This chapter will provide a detailed description of the process used to visualize 

animated point clouds rendered with PBR and a comparison of the obtained 

results with classical, unlit point clouds. To conduct the experiments an animated 

point cloud will be used, where each frame is stored in a different file, to better 

study the impact of lighting on a non-static model. The specific models which are 

going to be used as reference come from the basketball_player sequence provided 

by [32], which is a collection of 600 files stored in .ply format acquired at 30 

frames per second, thus resulting in an animation of 20 seconds. The software 

used for the experiments are: 

➢ MeshLab and PyMeshLab 2021.10 for point cloud manipulation and fixing 

of normal vectors. 

➢ Unity3D with the Long-Term Support version 2020.3.22f1 as the engine 

to render the scenes and compare results. 

 

3.1 Point cloud normals check 

The first step is to make sure that all the available point clouds come out with 

correctly estimated normals. Depending on the approach used to acquire and 

compress the point cloud, normals could have already been estimated or not. For 

example, in the case of V-PCC normal estimation happens during patch 

generation (as can be seen in Figure 2.5) and they can be saved and transmitted 

in that circumstance. Another approach is to estimate them right after scan-time 

in some way. An example can be found in [33] where normals are estimated from 

images acquired with the Time-of-Flight principle by depth cameras. 
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To make this check the software MeshLab is used, which allows to visualize the 

whole point cloud and the normals associated to its points. Also, it provides many 

filters that can be applied to any 3D model among which the one called “compute 

normals for point sets”, which tries to estimate the normal vector of each point in 

models without information about triangle connectivity, which is exactly what is 

needed for the purpose of this work. 

Considering the basketball_player sequence it turns out that many frames of the 

animation are decorated with correct normal vectors but, in some frames, these 

have been erroneously estimated and are oriented inward the model, as can be 

seen in Figure 3.2. For these frames it is necessary to re-compute the normals to 

make them look correctly. However, since estimated normals for “correct” frames 

still make the models look a bit rough and “squared” (see as example Figure 3.1), 

all frames have been subjected to normal vectors re-computation, to make the 

models look as smooth as possible. 

Figure 3.1 - A frame of the basketball_player sequence visualized with MeshLab 
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The operation is performed with the already cited filter called “compute normals 

for point sets” available in MeshLab. The steps followed by the filter can be 

synthetized as: 

1. kNN computation: For each point of the point cloud, get its k nearest 

neighbors, where k is an input parameter of the procedure chosen before 

launching the filter. 

2. Normal estimation: Estimate the plane tangent to the model surface using 

the neighborhood of the query point and compute its normal. This can be 

easily done through Principal Component Analysis (PCA). 

3. Orientation disambiguation: Pick a random point, choose an orientation 

(inside/outside) and propagate it to nearby points. 

The last step is critical since generally there is no easy way to disambiguate normal 

orientation in an automatic way. If we had a single viewpoint to observe the model 

from, the problem would not arise since all normals would be consistently oriented 

towards the viewpoint itself. This solution is not suited for this application as the 

goal is being able to cast light on the model from any possible direction.  

Regarding the choice of the parameter 𝑘 defining the size of the neighborhood to 

fit the tangent plane, low values are usually suggested to better capture the local 

curvature of the model. If 𝑘 is too large, points from different surfaces might be 

Figure 3.2 - Different frames of the basketball_player sequence with correct (left) and erroneous (right) normal estimation 
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included in the neighborhood, resulting in distortion of the plane and badly 

estimated normals, especially around corners. MeshLab puts as default 𝑘 = 10 and 

suggests values between 10 and 30 for a good estimation. 

For this work, the suggested values for 𝑘 worked fine. Also, some smoothing 

iterations have been performed to obtain better results. To be more precise, a 

number of smoothing iterations between 10 and 15 have been used, giving the 

model a smoother appearance (Figure 3.5). 

 

Figure 3.3 - MeshLab filter to compute vertex normals of faceless models 

Figure 3.4 - The same models as Figure 3.2 after normal re-computation 
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At the end of this step all frames from the basketball_player sequence have correct 

normal vectors associated to their points and are stored as .ply files ready to be 

imported in Unity and rendered in a scene. 

 

3.2 Importing models into Unity 

As previously mentioned, the point clouds are stored in .ply binary format, which 

has as advantage a relatively small requirement in terms of storage occupancy. 

However, Unity has no native package allowing to import and directly use in a 

project a .ply asset, so it is necessary to use a custom importer to load the point 

clouds into the project. For this purpose, a package available on GitHub called Pcx 

[34] developed by the user Keijiro has been added to the project and used to 

import the models. 

The package provides useful tools to work with .ply files and, more specifically, 

point clouds inside Unity. The importer reads a binary little endian .ply file and 

parses its content into an object the engine can work with. After parsing, the 

model can be wrapped into three different containers provided by Unity: 

Figure 3.5 – A model with normals computed without smoothing (left) and with 15 iterations of smoothing (right) 

with k = 10 
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➢ A Mesh: the point cloud is treated as a standard 3D mesh with just vertices 

and colors (no faces) and can be rendered with a standard MeshRenderer 

component with any shader. 

➢ A ComputeBuffer: a buffer for data mostly used with compute shaders, 

which are a special kind of shaders used to compute arbitrary information 

not directly related to rendering. 

➢ A Texture: points are baked into 2D textures (a position map and a color 

map) that can be used as attribute maps for visual effects. 

For the purpose of this work the most suited container to wrap point clouds in and 

which is going to be used is the Mesh. The other two containers will not be 

considered any further. 

The package also provides scripts to manage imported meshes from the inspector 

window in Unity and two basic shaders to render point clouds. A first basic scene 

with an imported frame placed on a simple planar surface and rendered with the 

basic shader is available in Figure 3.6. 

The first thing that can be noted is that the shader provided in the imported 

package does not draw any kind of shadow of the model on the plane, since the 

work of the author was meant just to visualize point clouds as they were scanned 

without integrating them in a different environment.  

Figure 3.6 - Basic scene consisting of a single frame placed on a surface in Unity 
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Therefore, to have a slightly better baseline to allow a better visual understanding 

of the lighting conditions and to compare the PBR shader that will be developed 

later with, another shader has been created and used that behaves exactly as the 

one provided in the Pcx package with the addition of shadows.  

To speed up the writing process of shaders and have an easier control over various 

rendering parameters, the Universal Render Pipeline (URP) with Shader Graph 

support has been enabled. In Figure 3.7 the two shaders are applied to the same 

Figure 3.7 - A frame rendered with the basic shader (left) and the new shader with hard 

shadows (right) 

Figure 3.8 – Basic unlit shader allowing hard shadow casting 
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frame to highlight the difference when rendered, while the shader graph can be 

viewed in Figure 3.8. 

The Colorspace Conversion node is necessary since URP is being used instead of 

the standard Unity built-in pipeline. While the built-in render pipeline uses a 

linear color space with sRGB light intensity, URP applies linear light intensity and 

since vertex colors stored in the used models are RGB their look results very bright 

and need to be corrected with the conversion to linear space. The difference 

between the two color spaces is shown in Figure 3.9. 

 

3.3 Towards PBR 

Having set a reference baseline to compare the final results with, from now on the 

focus will be on developing a PBR material to render the model in a physically 

plausible way in a scene. 

Vertex normals are a key element to implement the technique correctly, so in order 

to make sure that these are imported and used as expected by the engine, another 

shader is built first to generate a normal map of the model. To visualize a smoother 

Figure 3.9 - A frame rendered with (left) and without (right) color space conversion to linear 

space 
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color transition, instead of using pure normals as vertex color, a normalization is 

applied to transform all normal components in the [0, 1] interval as following: 

𝑁(𝑥, 𝑦, 𝑧) =

{
 
 

 
 𝑛𝑥
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𝑛𝑥 + 1

2
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 As reference model a sphere will be used, which when rendered with the normal 

map shader looks as in Figure 3.10. 

Unfortunately, when the shader is applied to the point cloud model, the behavior 

is not the desired one, but the shape comes out with a plain, fixed blueish color 

(Figure 3.11). This means that normal vectors are not correctly acquired or 

imported. The issue was not evident before since, when using an unlit shader, the 

model is rendered by just taking into consideration the color of vertices without 

taking into any consideration light and view directions and, consequently, normal 

vectors. Before proceeding to develop a correct PBR shader, this issue must be 

inspected and solved. 

The issue most likely arises when the model is imported into Unity, since in 

MeshLab it was possible to render on screen all normal vectors stored on the point 

cloud vertices as done in Figure 3.3 and Figure 3.4. As a double-check, one of the 

frames has been imported again into MeshLab and saved in ASCII format instead 

Figure 3.10 - Normal map shader applied to a sphere in front (left) and back (right) view 
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of binary and manually inspected, confirming that normal vectors are stored as 

expected. Therefore, the problem is due to the .ply importer not parsing normal 

vectors information and thus it needs to be extended to be able to save and use 

them in Unity. 

In its original version, the importer is built to process just vertices position 

coordinates (x, y, z) and RGBA color (red, green, blue, alpha), whereas all 

properties not corresponding to the mentioned ones are marked as invalid and 

skipped. The parser has been modified to recognize the presence of normal 

vectors information from the file header and parse the values associated to normal 

components, storing them in a list of 3D vectors later assigned to the Mesh object, 

coherently with respect to how the author dealt with positions and colors. Since 

the work focuses on the use of meshes only, this is the only container to which the 

modification has been made, while ComputeBuffers and Textures have been 

ignored. 

After having adapted the importer, the point clouds must be imported again to 

allow Unity to store normals together with position and color information and use 

them for rendering. By reapplying the normal mapping shader to the reimported 

models, the behavior is now the expected one, as Figure 3.12 demonstrates. 

Figure 3.11 - Normal map applied to the imported model with the reference sphere. 

Normals are not correctly imported. 
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Having fixed the issue about normal vectors, it is now possible to proceed with the 

development of a PBR shader and apply it to the material assigned to the 

basketball player model for photorealistic rendering. 

A new lit shader graph is hence created. The fragment stage node for a lit shader 

contains all the standard parameters cited during the discussion about PBR 

rendering in Section 2.2.1: 

➢ The base color parameter, which is the albedo of the material, also present 

in unlit shaders (Figure 3.8).  

➢ The normal vectors of the material set as default in tangent space, but they 

can also be represented in object or world space. 

➢ A metalness parameter defining how much metallic the surface of the 

material is. As default it is represented by a floating-point value between 0 

and 1, but it can also be sampled from a texture to render more complex 

objects with points of varying metalness along the surface. 

➢ A smoothness parameter, which is the inverse of roughness, defining how 

smooth the surface is. As for metalness it is by default defined by a floating-

point value between 0 and 1 but can also be sampled from a texture. 

➢ An ambient occlusion parameter measuring how obscured the object is 

from light by other objects in the scene. Again, it can be represented by a 

floating-point value or a texture. 

Figure 3.12 - Normal map shader applied to models with the modified importer in front(left) and back(right) view, view the 

reference sphere 
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➢ An emission parameter defining the emitted light color by the material. It 

takes as input an HDR color with intensity. For non emissive materials, a 

black color is used as emission. For complex objects having different 

emitted colors, textures can be used. 

Regarding the shader used for this work, the parameters have been set as follow: 

➢ The albedo is set the same as for the previously built unlit shader, with the 

color given by vertices and colorspace conversion to linear space. 

➢ The fragment normal space is set in Object space. 

➢ Metalness and smoothness are set as properties to allow easier and faster 

customization from the Unity inspector and linked to a Clamp node to limit 

the values in the [0, 1] interval. As default both values have been put to 0, 

which is quite reasonable to realistically render the available basketball 

player model. 

➢ There is no interest in showing an emissive color from the used model, so 

the emission color is put to full black. 

Figure 3.13 - Default lit shader in Shader Graph 
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➢ Ambient occlusion is also set as a property and will be tweaked accordingly 

to the scene in which the model is placed to better simulate the lighting 

intensity. 

The final PBR shader, which is rather simple but fully complies with our needs, is 

shown in Figure 3.14. The point cloud rendered with a material using such shader 

is available in Figure 3.15. Even in a simple scene like the one used for this very 

first example, a notable increase in realism can be appreciated, with many little 

shadows occurring on the whole model. Also, many small details that were less 

evident with the standard unlit shader previously used can now more easily 

distinguished, like the folds of the player’s t-shirt seen from the back view. Most 

importantly, the model now looks different with respect to the incoming light 

direction and intensity, as opposed to the previous one which instead looks exactly 

the same under any lighting condition (Figure 3.16). 

 

Figure 3.14 - Graph of the PBR shader that will be used to render the basketball player model in a physically 

plausible way 
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In the next sections the focus will be on trying to fit the PBR shaded point cloud 

in different scenes and backgrounds with various kind of lighting conditions and 

demonstrate how the model rendered with this technique integrates better with 

respect to a standard unlit shader normally used for point clouds. 

 

 

Figure 3.15 - Model rendered with the PBR shader seen from different viewpoints under the same lighting condition 

Figure 3.16 - Comparison between PBR and unlit shaded point clouds under different lighting conditions 



47 

 

3.4 Test scene: background 360° video of an indoor 

basketball court 

In this first test scene the objective is to try to better contextualize the point cloud 

model by inserting it into an environment it might be found in. The background 

choice fell on a 360 degrees video uploaded on YouTube by the Columbia 

International University representing an indoor basketball court with some people 

playing around [35]. The main goal is to check if it is possible to achieve realism 

for an application like Virtual Reality by placing the lit point cloud in a pre-

recorded environment with the possibility to observe the model from any 

viewpoint. 

The video comes up in the equirectangular format, so it can be easily rendered on 

the scene’s skybox using a Render Texture and the built-in Skybox/Panoramic 

shader. By creating a new material using this shader and applying it to the skybox, 

the video can be played by a video player component placed in the scene and 

visualized in 360 degrees as in a Virtual Reality setting. 

The next step is to create a script that takes the frames of the model and generates 

the point cloud animation at runtime. Since each frame of the animation is stored 

in a different mesh container, the easiest solution to create the animation is to load 

all meshes in a list data structure and update at each frame the mesh used by the 

Figure 3.17 - A snapshot of the indoor basketball court video in equirectangular format 
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MeshFilter component in Unity to change the mesh drawn on the screen and use 

a variable to store the current index of the mesh used in the list. This results in 

changing the rendered model at each frame, thus recreating the animation. 

Now that the background and animation are set, it is possible to take the animated 

point cloud with PBR shader and insert it into the environment to check how it 

fits. 

A few issues in the rendered scene can be spotted related to the integration of the 

point cloud with the video: 

➢ Although the figures belonging to the background video slightly show some 

weak shadows, regarding the point cloud no shadow at all is visible. 

Figure 3.18 – PBR Point cloud model placed in a scene with the indoor 360 video rendered on the 

skybox 

Figure 3.19 - Background depth issue: figures in background don't follow the point 

cloud behavior 
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➢ When the camera is moved towards or away from the point cloud, there is 

no sense of depth coming from the video: while the point cloud correctly 

becomes smaller or bigger accordingly to the camera movement, the 

background remains exactly the same (Figure 3.19). 

➢ Another issue related to camera movement, if the viewpoint is rotated 

around the point cloud to see the animation from a different angle there is 

no feeling of the model being on a fixed spot but there is an illusion of 

fluctuation of the figure over the court. The issue can already be observed 

in Figure 3.19 where the camera is just moved forward but it is more 

evident by rotating the camera as in Figure 3.20. 

Figure 3.20 - Fluctuation issue: when rotating the camera it looks like the player fluctuates over 

the court 

Figure 3.21 - Depth issue: the point cloud is rendered on top of a character that should be in 

front of it 
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➢ Another issue related to depth, being the video rendered on the skybox its 

content will always be drawn behind the 3D models placed in the scene. So, 

if one of the characters in the video walks “in front” of the point cloud, the 

point cloud will still be rendered in the foreground (Figure 3.21). 

The shadows related issue could be solved by putting other 3D models in the 

scene, like a plane, where the shadow would be projected on. This would, however, 

break the realism of the scene since the newly added models would be rendered 

on top of the background, resulting in a very strange look (see Figure 3.22 as an 

example). For the same reason, in this setting nothing can be done to solve the 

other issues as well. The Unity’s skybox represents the content of the scene placed 

on an infinite distance from the camera and it will always be rendered behind any 

other model inserted in the scene. 

In conclusion, it is not possible to render a realistic scene by just using a 

background video on the skybox and a 3D point cloud with a dynamic camera with 

six degrees of freedom. The camera translation would break the realism of the 

scene, while a camera with only rotation enabled might still work in some 

circumstances. To produce realistic scenes, other 3D models need to be placed 

together with the point cloud, with the background having a content on a 

sufficient distance to prevent unrealistic behaviors when the images overlap. 

Figure 3.22 - The insertion of a plane in the scene covers the background video 
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3.5 Test scene: indoor room with different lights 

Before testing another scene with a background video, another scene is tested, 

with just 3D models besides the point cloud. By taking inspiration from the typical 

room used to test global illumination algorithms (like the one shown in Figure 

2.19), an indoor room is created by linking together some cubes. Then, three 

planes emitting light of different colors are used, which act as the only light 

sources in the scene. The goal is to demonstrate how the point cloud rendered 

with PBR is influenced by the light emitters while there is no effect on the unlit 

point cloud. An overview of the scene without the models is available in Figure 

3.23. 

In the figures on the next page it will be shown, by placing the two models in 

different positions of the room, how the PBR point cloud integrates well with the 

environment by showing a color tending to nearby lights whereas the other point 

cloud is not influenced by light and doesn’t look realistic. It is shown on the left of 

each figure the PBR point cloud while on the right the unlit point cloud. Also, to 

provide a better look to the scene, some post processing effects have been added, 

like Tonemapping and Bloom. 

As already shown in the very first scene used to compare PBR and unlit point 

clouds (Figure 3.15-16), the model rendered with PBR is effectively able to react 

Figure 3.23 - Representation of a room with three different light sources of different color 
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to environment lighting when placed nearby a light source, getting brighter or 

darker according to the distance from lights. 

In the next scenes more complex environments will be used, with a 3D model 

representing a full basketball court and background videos providing better 

context and global illumination. 

Figure 3.24 - Comparison between the visual look of the PBR and standard point clouds placed in 

different locations of the scene 
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3.6 Test scene: outdoor basketball court in a daylight 

environment 

As previously stated, to obtain a realistic scene a good context is needed to place 

the point cloud in. Since a background video alone is, as demonstrated in Section 

3.4, unusable due to the issues it introduces, other 3D models are needed to be 

placed in fore-midground to contextualize the point cloud model, while the 

background needs to contain subjects distant enough not to interfere with the 

models. 

Regarding the 3D model, the choice went to an outdoor basketball court created 

by the SketchFab user Klieg3D [36], and the same model will be used for all the 

next scenes. The model is interesting for a series of reasons, the most important 

being: 

➢ It is a basketball court, which is the natural environment in which the 

specific point cloud model in use would be found in. 

➢ It has been ideated as an outdoor court, which gives wider alternative 

choices about the background to use in the scene, being outdoor videos less 

likely to interfere with the animations (e.g. in closed environments it would 

be more likely to have people walking too “close” to the 3D models and 

overlap). 

➢ It is surrounded by a grate, which allows to produce interesting shadow 

patterns under some lighting conditions. 

➢ It has four lamps, which gives the opportunity to play with very different 

lighting conditions switching from daylight to artificial lighting provided 

by such lamps in a night setting. 

For this scene a daylight setting will be used and as background a 360 degrees 

video recorded on a beach in California with some beach volley fields has been 

chosen [37]. Like the previous video used in Section 3.4, this is also in 

equirectangular format and can be rendered in the skybox in the same way. 
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The lights and lighting settings of the scene are applied as follows: 

➢ Only a single, directional light is used as light source, except for ambient 

lighting given by the skybox. The light direction is oriented in a way to 

make it consistent with the position of the sun in the background video. 

Also, the environmental lighting intensity given by the skybox is increased 

to make the scene a little brighter and better simulate daylight. 

➢ The occlusion parameter of the lit point cloud material is increased to 0.45 

to make it a little brighter as well. 

➢ Post processing effects are applied to the scene, in particular:  

o Tonemapping with ACES mode. 

Figure 3.25 - 3D model of the outdoor basketball court with a directional light 

Figure 3.26 - Snapshot of the 360 degrees beach video in equirectangular format 
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o Bloom with an intensity of 10 to make the sunlight glow. 

o A low intensity vignette effect. 

o Some post exposure from the color adjustments effect, to furtherly 

increase the global brightness of the scene. 

With these settings, the point clouds with the two different materials subjects of 

comparison are finally inserted in the scene for visualization. In Figure 3.27 the 

point cloud with PBR material is placed on the left, while the one on the right is 

unlit. Although the unlit point cloud, being very bright, suits quite well the 

surrounding environment, it still is not as realistic as the point cloud rendered with 

PBR which shows a darker appearance due to occlusions and self-occlusions of the 

model, noticeable on the neck of the player, on the t-shirt and on the lower part 

of the ball. In the figures on the next page we also try to change viewpoint and 

zoom in the models to visualize and compare smaller details. As in the previous 

comparisons, the point cloud rendered with PBR is placed on the left while the 

unlit point cloud is on the right. 

As already pointed out in previous sections, when using PBR many smaller details 

become more distinguishable, like the t-shirt folds which due to the harder 

shadows produced by self-occlusion become more highlighted, for example 

regarding the upper part of the clothing in the first, second and fourth comparison. 

Figure 3.27 - First comparison between PBR and unlit point clouds in daylight condition 
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Figure 3.28 - Comparison between PBR and unlit point clouds from different viewpoints 
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In the first comparison it is also clear how, with PBR, the incoming light direction 

is projected on the model, being the left side of the player in shadow, while this is 

not happening on the unlit point cloud. The same happens in the third 

comparison, where the point cloud rendered with PBR appears darker as light hits 

the model from the opposite direction. Self-occlusions are also visible in other 

parts of the model rendered with PBR, for example in the second comparison 

where the player’s arm projects a shadow on the t-shirt, and in the fourth 

comparison where the player’s arm also projects a stronger shadow on the ball 

with respect to the model using the unlit shader. 

Additional comparisons can be made to check how the model reacts when it’s 

occluded by other objects in the scene. In Figure 3.29 two different comparisons 

are made. 

In the first one the model is placed under the basket support, trying to shield the 

player from light as much as possible. It can be clearly noted how the PBR model 

becomes darker due to the projected shadow except for small areas on the player’s 

hand and leg, while the behavior of the second model doesn’t correspond to what 

expected in this condition.  

The same happens in the second comparison, where the light direction is slightly 

modified to stretch the shadow produced by the grates surrounding the court and 

the overall ambient light intensity has been lowered to highlight the shadows even 

more. When placed in the shadowed zone produced by the grate, the PBR model 

produces an interesting shadow pattern which corresponds to what happens in a 

real setting, while the second model does not show the same behavior. 

In conclusion we can say that in a daylight environment the PBR point cloud is 

more suited to realistically reflect the external lighting condition with respect to a 

point cloud using a standard shader, both by exploiting self-occlusions to create 

photorealistic shadows and occlusions due to other objects in the scene. 
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3.7 Test scene: outdoor basketball court in a night 

environment 

In this new scene the lighting conditions and background are modified in order to 

recreate a night environment. Regarding the background, a video recorded in an 

empty city square at night is used [38]. However, this video is not stored in 

equirectangular format as the previous ones, but in a different one called 

equiangular format, which projects a 360 image on a cubemap instead of a sphere. 

Thus, the video cannot be rendered on the skybox as done in the previous cases, 

but it is necessary to unpack the cubemap and assign its faces in the correct 

positions to recreate the original 360 video during rendering. The actual shader 

implementation is taken from GitHub [39] with a minor change to render a 2D 

Figure 3.29 - Comparison between the models when occluded by the basket support and the grate 
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projection instead of 3D. By using a material associated to this shader, the 

background can now be rendered on the skybox as done in the previous scenes. 

The scene lights and settings are applied as follows: 

➢ No directional lights are used. Instead, we take advantage of the 3D court 

model structure and a spotlight is placed on each of the four lamps on the 

court sides. To illuminate the court in the best possible way, the spotlights 

are not completely oriented in the vertical direction, but they are slightly 

directed towards the center of the court. We also place a strong point light 

at the source position of each spotlight to better simulate the glowing effect 

of light emitted from lamps. 

➢  Ambient lighting intensity given by the background is set slightly higher 

than 1.0 to avoid having the areas not reached by light completely black. 

➢ The occlusion parameter of the PBR material is kept unaltered from the 

previous scene. 

➢ Post processing effects are applied: 

o Tonemapping with ACES mode. 

o Bloom with a higher intensity than in the previous scene (around 

50.0) 

o Vignette with the same parameters as the previous scene. 

o No post exposure is applied. 

Figure 3.30 - Frame of the night square video in equiangular format and its cubemap projection 
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After light baking the final look of the scene is shown in Figure 3.31. Everything 

is now set up and ready for the insertion of the models and make the usual 

comparisons. 

For the first comparison the two models are put on the center of the emission cone 

of one of the spotlights. It is immediately evident how the point cloud using the 

unlit shader does not really fit with the environment, being very bright, while with 

PBR the point cloud is highly influenced by the dark lighting condition, with 

strong shadows on the right side, where no direct lighting reaches the player from. 

If the orientation of the model is slightly modified to face the light, as expected 

the model using PBR becomes more evenly bright. 

Figure 3.31 - Basketball court under night lighting conditions 

Figure 3.32 - First comparison between PBR and unlit point clouds in night condition 
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Then the two models can be placed in different positions of the court to see how 

light fades out by moving away from light sources, until the PBR model gets almost 

black at the middle of the court, and then back illuminated on the other side. 

Figure 3.33 - Comparison between PBR and unlit point clouds when they face one of the spotlights 
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In conclusion we can say that also in a night environment a point cloud rendered 

with PBR is better integrated into the scene with respect to the same point cloud 

rendered with a standard shader, which results in being too bright and not 

following the expected behavior in such lighting conditions as opposed to PBR 

which, instead, does. 

  

Figure 3.34 - Point clouds placed in different locations of the court 
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3.8 Test scene: playing with metalness and 

smoothness parameters 

As mentioned in Section 2.2.1, one of the most powerful features provided by PBR 

is its capability of emulating metallic and glass-like materials, thanks to the 

microfacet theory and the energy-conserving principle. Until now we have been 

using a PBR point cloud with both metalness and smoothness parameters equal 

to zero, which is reasonable with respect to the nature of the represented model 

and the purpose of the previous scenes, which was trying to integrate a point cloud 

rendered with PBR in an environment to obtain a photorealistic result. 

In this scene the focus will not be on integrating a point cloud inside an 

environment but on demonstrating how point clouds, as meshes, can be used to 

render different type of materials, for example perfect mirrors. To do this, we will 

firstly reuse the daylight scene analyzed in Section 3.6 and then we will use as 

background various environment textures rendered on the skybox without the use 

of the basketball court model. The used environment textures are freely available 

on [40]. 

To set up the scene the following modifications are made: 

➢ To render a material representing a perfect mirror, the smoothness and 

metalness parameters are both modified to 1.0. 

➢ The occlusion parameter of the material is also increased to approximately 

0.7-0.8 to have a brighter model allowing to better distinguish the 

environment reflection. 

➢ A reflection probe is placed above the model in the scene, to capture the 

environment to be reflected by the point cloud. 

➢ Bloom is reduced in intensity to avoid annoying strong shining effects due 

to light reflection from the point cloud, which in turn prevent to easily 

distinguish the environment reflection. 
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In the next series of figures the point cloud reflecting the environment as a perfect 

mirror is shown for various environments. Note how the reflection is not perfect 

since the point cloud still uses its original color as albedo, so pixels that have a 

black color do not show any reflection, whereas white pixels well reflect the 

surroundings. Some imperfections are also due to the nature of the model, which 

is not a completely smooth surface as a sphere but represents a human figure with 

varying curvature which wears a t-shirt presenting many folds as analyzed in 

previous scenes. 

Also note how the effect of the directional light bouncing on the model changes 

with respect to the previous settings, due to the different nature of the point cloud 

material. Being the smoothness at its maximum, when light hits the object a shiny 

effect is produced which, in this case, is slightly amplified by the bloom effect, still 

used to a limited extent. In this scene we can also appreciate the power of Image 

Based Lighting, described in Section 2.2.1. It is evident how the point cloud, when 

placed in different environments showing different lighting dynamics, still looks 

physically accurate regardless of the specific environment. 
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Beware that it is not possible to zoom in too much the models to appreciate very 

small details. Remember that the model used for these scenes is still a point cloud, 

so if it is observed from too close it will result in being able to distinguish the 

distinct points the model is made of and see through the holes between them. This 

is valid in any application using point clouds, not just for this specific scene. 

 

Figure 3.35 - Point cloud rendered as a perfect mirror placed in different environments 
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4 Applications 
 

In this chapter a short overview of potential applications where animated point 

clouds coupled with PBR may come up handy is given. Although at present day 

their use might still not be very affordable in many circumstances due to the high 

cost, both economic and computational, of producing them which needs many 

scanners placed around the objects and many computation systems to parallelize 

the effort and produce the result in a fast way, there are many fields that could 

potentially benefit from a wide exploitation of such models. The focus will be 

mainly on three macro areas: learning, advertising and entertainment. 

 

4.1 Learning 

There are many areas where a point cloud might be used to teach something to a 

user, going from classic environments as school and academic settings to sports, 

where the learning target are specific movements or gestures. Some examples of 

applications where animated point clouds can be used in this field are: 

➢ Guided Tours: tours are constrained by the presence of physical guides 

which show and explain the particularities of the tour subject (which can 

be a museum, an archeological site or historical cities and events) in a 

certain order and under possible constraints like the time to reach a 

location or weather conditions. Guides can potentially be acquired as an 

animated point cloud with audio that can be rendered in Augmented 

Reality to allow higher flexibility on the tour and giving tourists the 

possibility to decide which items to visit and in which order with less 

constraints regarding time or otherwise. 

➢ Surgery simulations: to teach students how to conduct a particular surgery, 

a sample intervention can be acquired as an animated point cloud that can 



68 

 

be visualized on a digital screen of any kind and as many times as needed 

by each student to fully understand it. Moreover, it allows to see the 

intervention from different viewpoints around the operating bed, giving a 

deeper insight on what is going on without the possible issue of 

overcrowding caused by an in-presence demonstration of a teacher in front 

of several students that would constrain free mobility of students in the 

environment and keeping a good sight on the teacher’s movements. 

➢ Digital personal trainers: a lot of smartphone applications have been 

developed to allow users to practice gym exercises from home. A feature of 

these apps is the presence of a 3D model of a coach which shows the user 

the correct execution of the specific exercise under practice. The 3D model 

can be replaced with an animated point cloud which behaves exactly the 

same thing but represents a real coach doing the exercise and allows the 

user to rotate and zoom the viewpoint to check specific details of the correct 

position to assume during the exercise. 

➢ Other sports where specific movements need to be learnt, like martial arts, 

dance. The use of a point cloud representing a trainer of the discipline can 

be used to effectively study the movements to reproduce the target 

technique. Exercises from different sports can also be represented, for 

example the animated point cloud of the basketball player widely used in 

this document could be used to show how to execute a specific dribble drill 

in an effective way, or team schemes could also be scanned and proposed 

during training.  

Figure 4.1 - Digital coach showing how to execute an exercise 
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4.2 Advertising 

When a product is advertised, somehow it needs to be shown to customers to let 

them know what it is about. For some products there is no need to haven available 

360 view, but there are cases in which it could come up handy and point clouds 

can be effectively used in these scenarios. For example, possible use cases are: 

➢ Clothing advertisement: to sponsor clothing online, many pictures are 

usually needed to show the item as seen from different angulations to the 

potential customer. All these pictures can be substituted by a single point 

cloud which can be rotated and zoomed in different ways to satisfy the 

customer’s needs. As a further development, it could be possible to have an 

animated avatar wearing the item or, with the help of Augmented Reality, 

the customer itself who can see herself wearing the clothing at the mirror, 

showing how it fits. The concept can be applied to any kind of clothing 

item, including shoes and caps. 

➢ Any other product advertising that might benefit in showing the good from 

various viewpoints. Examples might be: 

o  Vehicles, which could be visualized in 360 degrees instead of a 

single slightly rotated picture. 

o  Furniture, to better see an item from any perspective and check if 

it would fit an apartment space. 

Figure 4.2 - Clothing advertising project from [41]. The Kinect sensor detects a user standing in front of the installation (a). The user 

interacts with the application, by Kinect or smart screen (b). The user can simulate the fitting of the dress concept created (c) 
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o Entire houses, allowing a potential customer to navigate inside the 

rooms from remote. 

 

4.3 Entertainment 

The entertainment field is probably the one which would most benefit from the 

use of point clouds due to the widespread use of digital media in many 

applications. The most suited uses would be in: 

➢ Videogames: probably the application which most drives the development 

of Computer Graphics, animated point clouds could be used to substitute 

3D meshes and save a lot of work needed to create animations by designers. 

➢ Movies: most modern movies make extensive use of Computer-Generated 

Imagery (CGI), and animated point clouds could be used in this context. 

They could also be used in the production process of animated films, by 

substituting 3D models which are currently used. 

➢ Immersive experiences: in such applications, users are typically inserted 

into an environment which is created in some way and visualized with the 

help of Extended Reality. The environment could be scanned from the real 

world and represented as an animated point cloud, allowing to render the 

whole background as a single model. 

 

4.4 Conclusion 

In this chapter a not exhaustive overview of how animated point clouds could be 

used in some fields. These models are very powerful, and they can potentially 

substitute other commonly used 3D models in any application thanks to the easier 

process of creation and acquisition. However, at present day, technology is still far 

from being suited for an extensive use of animated point clouds since they require 

a considerable computational effort to be acquired and processed in a fast way. 
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Also note that the use of PBR is not mandatory in any of the mentioned 

applications, but as shown above in this document by using point clouds with just 

their own color results in having a model disconnected from the environment in 

which is placed and gives a strange look to the scene. By using PBR, the point 

cloud fits better into the scene and gives a better overall appearance to the 

rendered image. 
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5 Conclusion & Future Works 
 

In this work the goal was to demonstrate how an animated point cloud rendered 

with PBR could achieve better realism during visualization with respect to a point 

cloud rendered with a basic unlit shader using just the original vertices colors of 

the model. We first had to make sure that all vertices belonging to the model were 

associated to the estimated surface normal vectors to allow a proper lighting 

behavior, then models were imported in Unity and, through a sequence of 

different scenes with different environments and lighting conditions we 

highlighted the differences between using PBR or not. 

It has been observed how with PBR a point cloud better integrates with the 

surrounding environment in any lighting condition, by casting shadows due to 

direct lighting and self-occlusions. It was also shown that it is possible, for a point 

cloud using PBR, to render different kind of materials as glass-like and mirrors in 

a physically plausible way. As point clouds are becoming more and more popular, 

using PBR to render them would be a benefit for many applications, going from 

simple model visualization to immersive experiences in Virtual or Mixed Reality. 

Using as an example the proposed scene in the night environment (Section 3.7), 

an immersive experience using an unlit shader would break the realism and 

immersivity of the entire scene by showing a very bright object in such a dark 

environment. With PBR the issue can be avoided, by providing realistic lighting 

in any condition. 

This work was intended to show the potential of using PBR to render point clouds 

but there are many areas and topics that were left uncovered and beyond its 

purpose, which can be subject of future developments for improvement: 

➢ The method we used to visualize the animation of the basketball player is 

rather inefficient. This is partially due to the fact that each frame of the 

animation was stored as a different mesh model, resulting in the necessity 
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to remove from the scene the previous model and draw the next one from 

scratch at each frame, which is a very expensive operation considering that 

each model of the basketball_player sequence comprises of about three 

million vertices with color and normal vectors information (about 80MBs 

per model). Although we have never imported and used all the 600 frames 

of the animation due to storage limitations, since at runtime the models 

are stored together in a list, even using just 20 frames of the animation 

results in occupying about 1.5 GBs of RAM. Consequently, by increasing 

the number of frames used, when the animation is played it results in being 

definitely slow. By using about 30 frames an average of 12 frames per 

seconds, touching a minimum of 5 frames per seconds, was estimated on 

the testing machine. Hence the efficiency of the process is a good area to 

explore for future works. 

➢ In this work we used pre-recorded videos or textures rendered on the 

skybox as background, however there might be the possibility to acquire 

other point clouds and use them as background as well. In this way the 

background would also be a 3D model and we could obtain a similar result 

to what we were trying to achieve in our first scene (Section 3.4) without 

the related discovered issues when the background was placed on the 

skybox. 

➢ The execution of the process in real-time, potentially useful for 

autonomous or remote-control devices, which would need intelligent 

cameras for a correct normal estimation on-the-fly to avoid the necessity 

of doing it by hand as a post-scan operation of the point cloud. 
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