

 SCHOOL OF INDUSTRIAL AND

INFORMATION ENGINEERING

Master of Science in Computer Science and Engineering

Physically Based Rendering of

Animated Point Clouds

Supervisor Candidate

Prof. Marco Gribaudo Matteo Pozzi

 Matr. 945685

i

Abstract

Point cloud 3D models are becoming more and more popular thanks to the

diffusion of scanning systems employed in many fields, like autonomous vehicles

and robotics. When used in rendering, point clouds are usually displayed with

their original color acquired at scan-time without taking into consideration the

lighting condition of the scene where the model is placed. This leads to a lack of

realism in many contexts, especially in case of animated point clouds where it

would be desired to have the model reacting to incoming light and integrating with

the environment.

This thesis proposes to apply the rendering technique known as Physically Based

Rendering, widely used in Computer Graphics applications, to animated point

cloud models to give them a photorealistic and physically accurate look under any

lighting condition. An available animated point cloud model will be imported in

Unity and rendered with a developed shader implementing Physically Based

Rendering. Then, the point cloud using Physically Based Rendering will be

compared to the same point cloud rendered with the standard, commonly used

shader when placed in different environments characterized by different lighting

conditions and it will be shown how, with Physically Based Rendering, a point

cloud better integrates to the surrounding environment with respect to the

counterpart using a basic, unlit shader. Moreover, it will be shown that with this

rendering technique it is possible to render different kind of materials, by

exploiting the features of Physically Based Rendering to use the point cloud as a

perfect mirror reflecting the environment.

ii

iii

Sommario

Le nuvole di punti 3D stanno diventando sempre più popolari grazie alla

diffusione dei sistemi di scansione utilizzati in vari settori, come nei veicoli

autonomi e nella robotica. Quando vengono usate nel rendering, le nuvole di punti

vengono solitamente visualizzate con il loro colore originale ottenuto durante la

scansione senza tenere in considerazione le condizioni di illuminazione della scena

in cui il modello viene collocato. Ciò risulta in una mancanza di realismo in molti

contesti, soprattutto nel caso di nuvole di punti animate dove sarebbe desiderabile

che il modello reagisca alla luce incidente e si integri con l’ambiente.

Questa tesi propone di utilizzare la tecnica di rendering nota come Physically

Based Rendering, ampiamente utilizzata in applicazioni di Computer Grafica, sui

modelli di nuvole di punti per conferire loro un aspetto fotorealistico e fisicamente

accurato sotto qualsiasi condizione di illuminazione. Un modello di nuvola di

punti animata verrà importato in Unity e renderizzato con uno shader che

implementa il Physically Based Rendering. Successivamente, la nuvola di punti

che utilizza il Physically Based Rendering verrà collocata in diversi ambienti

caratterizzati da varie condizioni di illuminazione e confrontata con la stessa

nuvola di punti renderizzata con lo standard shader tipicamente utilizzato,

all’interno dello stesso ambiente. Verrà dimostrato come, utilizzando il Physically

Based Rendering, una nuvola di punti si integra meglio con l’ambiente circostante

rispetto alla controparte che utilizza uno shader base e non illuminato. Inoltre,

verrà mostrato che con questa tecnica di rendering è possibile creare diversi tipi

di materiali, sfruttando le caratteristiche del Physically Based Rendering per

utilizzare la nuvola di punti come uno specchio perfetto che riflette l’ambiente

circostante.

iv

v

Acknowledgements

I would like to thank first my parents, whose unconditioned support allowed me

to overcome all the obstacles I encountered along the way to reach this important

milestone in my life. I will always be grateful to them, and I hope to be able to

repay them soon for all their support.

Other special thanks go to all my friends and loved ones for their constant

presence and their patience, always there ready to make me laugh, without whom

I would have gone mad a long way ago.

Thanks to all the colleagues I had the opportunity to work with, for the time spent

together on studying and sharing ideas during this journey, and for all their

support.

Another thank goes to Prof. Marco Gribaudo for his availability throughout the

whole development process of this work, being a guide in helping me to look

towards the right direction and dispelling my doubts in many circumstances

during our calls.

Finally, I would also like to thank all the professors I had during my journey at

PoliMi for all their teachings and methods that allowed me to become an engineer.

vi

Table of Contents
Abstract .. i

Sommario ... iii

Acknowledgements ... v

Table of Contents .. vi

List of Figures .. viii

List of Abbreviations .. xii

1 Introduction .. 1

2 State of the Art .. 5

2.1 Point Clouds ... 5

2.1.1 Point cloud acquisition technologies ... 7

2.1.1.1 Laser Scanning with LiDAR ... 7

2.1.1.2 Photogrammetry.. 8

2.1.1.3 Videogrammetry .. 8

2.1.1.4 RGB-D cameras .. 9

2.1.1.5 Stereo cameras ... 10

2.1.2 The MPEG-PCC standard ... 10

2.1.3 Video-based Point Cloud Compression .. 11

2.1.4 Geometry-based Point Cloud Compression 15

2.1.5 Other studies .. 18

2.1.5.1 End-To-End Learned lossy compression 18

2.1.5.2 Geometric distortion measure for PCC 19

2.2 Rendering .. 21

2.2.1 Physically Based Rendering ... 25

vii

2.3 Conclusion .. 30

3 Physically Based Rendering of Animated Point Clouds 33

3.1 Point cloud normals check .. 33

3.2 Importing models into Unity .. 37

3.3 Towards PBR .. 40

3.4 Test scene: background 360° video of an indoor basketball court 47

3.5 Test scene: indoor room with different lights .. 51

3.6 Test scene: outdoor basketball court in a daylight environment 53

3.7 Test scene: outdoor basketball court in a night environment 58

3.8 Test scene: playing with metalness and smoothness parameters 63

4 Applications .. 67

4.1 Learning .. 67

4.2 Advertising .. 69

4.3 Entertainment ... 70

4.4 Conclusion .. 70

5 Conclusion & Future Works ... 73

Bibliography ... 75

viii

List of Figures

FIGURE 2.1 - A POINT CLOUD EXAMPLE OF A MONKEY .. 5

FIGURE 2.2 - A POINT CLOUD OF WASHINGTON, DC CAPTURED BY A LIDAR WITH HEIGHT

INFORMATION .. 6

FIGURE 2.3 - THREE TYPES OF LIDAR ACCORDING TO THEIR WORKING PLATFORM. FROM [8] 9

FIGURE 2.4 - MICROSOFT KINECT V2, AN RGB-D CAMERA ... 10

FIGURE 2.5 - GENERATION OF 3D PATCHES FROM THE POINT CLOUD. FROM [3] 11

FIGURE 2.6 - AN EXAMPLE OF OCCUPANCY MAP (LEFT), GEOMETRY (MIDDLE) AND TEXTURE

(RIGHT) IMAGE. ... 12

FIGURE 2.7 - PROGRESS OF V-PCC PERFORMANCE SINCE CFP BASED ON D1 GEOMETRY

DISTORTION. FROM [13].. 13

FIGURE 2.8 – AN OVERVIEW OF THE V-PCC ENCODER. ... 14

FIGURE 2.9 - AN OVERVIEW OF THE G-PCC ENCODER. FROM [14]. .. 15

FIGURE 2.10 - THE FIRST TWO ITERATIONS OF OCTREE GENERATION. FROM [3] 16

FIGURE 2.11 - LEVEL OF DETAIL (LOD) GENERATION PROCESS .. 17

FIGURE 2.12 - VISUAL COMPARISON OF "SOLDIER" BETWEEN DIFFERENT COMPRESSION SCHEMES.

FROM [19] ... 20

FIGURE 2.13 - THE RENDERING EQUATION .. 22

FIGURE 2.14 - THE PHONG SHADING MODEL WITH ALL ITS COMPONENTS. FROM [22] 22

FIGURE 2.15 - SPECULAR LIGHTING OF PHONG AND BLINN-PHONG REFLECTION MODELS. FROM

[23] ... 23

FIGURE 2.16 - DIFFERENT ITERATIONS OF THE RADIOSITY ALGORITHM. PATCHES ARE VISIBLE AS

SQUARES ON WALLS AND FLOOR. .. 23

FIGURE 2.17 - DIFFERENCE BETWEEN STANDARD DIRECT ILLUMINATION AND RADIOSITY 24

FIGURE 2.18 - AN IMAGE RENDERED WITH MONTE CARLO PATH TRACING 24

FIGURE 2.19 - PATH TRACING WITH INCREASING NUMBER OF LIGHT RAY SAMPLES PER PIXEL 25

FIGURE 2.20 - A MATERIAL WITH INCREASING VALUE OF ROUGHNESS ... 26

FIGURE 2.21 - DIFFUSION AND SPECULARITY MUTUAL EXCLUSION. SPECULAR MATERIALS SHOW

LESS DIFFUSE COLOR .. 27

FIGURE 2.22 - THE REFLECTANCE EQUATION SOLVED BY PBR SPLIT IN DIFFUSE PART (LEFT

INTEGRAL) AND SPECULAR PART (RIGHT INTEGRAL) .. 27

FIGURE 2.23 - OVERVIEW OF THE CONVOLUTION OPERATION OF THE DIFFUSE INTEGRAL. FROM

[27] ... 28

https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196629
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196630
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196630
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196631
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196632
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196633
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196634
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196634
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196635
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196635
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196636
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196637
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196638
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196639
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196640
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196640
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196641
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196642
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196643
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196643
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196644
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196644
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196645
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196646
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196647
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196648
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196649
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196649
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196650
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196650
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196651
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196651

ix

FIGURE 2.24 - THE SPLIT-SUM APPROXIMATION OF THE SPECULAR INTEGRAL 29

FIGURE 2.25 - AN ENVIRONMENT CUBEMAP (LEFT) WITH THE RESULTING IRRADIANCE CUBEMAP

OBTAINED BY CONVOLUTION (RIGHT) ... 29

FIGURE 2.26 - PRE-FILTERED ENVIRONMENT MAPS OF 5 LEVELS OF INCREASING ROUGHNESS. 29

FIGURE 2.27 - THE BRDF'S INTEGRATION MAP. THE COLORS REPRESENT THE SCALE (RED) AND

THE BIAS (GREEN) WITH RESPECT TO THE FRESNEL RESPONSE OF THE SURFACE. FROM [28] 30

FIGURE 2.28 - A HUMAN FACE DIGITALLY RENDERED IN THREE DIFFERENT LIGHTING CONDITIONS

WITH LIGHTSTAGE. FROM [30] ... 31

FIGURE 3.1 - A FRAME OF THE BASKETBALL_PLAYER SEQUENCE VISUALIZED WITH MESHLAB 34

FIGURE 3.2 - DIFFERENT FRAMES OF THE BASKETBALL_PLAYER SEQUENCE WITH CORRECT (LEFT)

AND ERRONEOUS (RIGHT) NORMAL ESTIMATION.. 35

FIGURE 3.3 - MESHLAB FILTER TO COMPUTE VERTEX NORMALS OF FACELESS MODELS 36

FIGURE 3.4 - THE SAME MODELS AS FIGURE 3.2 AFTER NORMAL RE-COMPUTATION 36

FIGURE 3.5 – A MODEL WITH NORMALS COMPUTED WITHOUT SMOOTHING (LEFT) AND WITH 15

ITERATIONS OF SMOOTHING (RIGHT) WITH K = 10... 37

FIGURE 3.6 - BASIC SCENE CONSISTING OF A SINGLE FRAME PLACED ON A SURFACE IN UNITY 38

FIGURE 3.7 - A FRAME RENDERED WITH THE BASIC SHADER (LEFT) AND THE NEW SHADER WITH

HARD SHADOWS (RIGHT) ... 39

FIGURE 3.8 – BASIC UNLIT SHADER ALLOWING HARD SHADOW CASTING 39

FIGURE 3.9 - A FRAME RENDERED WITH (LEFT) AND WITHOUT (RIGHT) COLOR SPACE CONVERSION

TO LINEAR SPACE ... 40

FIGURE 3.10 - NORMAL MAP SHADER APPLIED TO A SPHERE IN FRONT (LEFT) AND BACK (RIGHT)

VIEW .. 41

FIGURE 3.11 - NORMAL MAP APPLIED TO THE IMPORTED MODEL WITH THE REFERENCE SPHERE.

NORMALS ARE NOT CORRECTLY IMPORTED. ... 42

FIGURE 3.12 - NORMAL MAP SHADER APPLIED TO MODELS WITH THE MODIFIED IMPORTER IN

FRONT(LEFT) AND BACK(RIGHT) VIEW, VIEW THE REFERENCE SPHERE 43

FIGURE 3.13 - DEFAULT LIT SHADER IN SHADER GRAPH ... 44

FIGURE 3.14 - GRAPH OF THE PBR SHADER THAT WILL BE USED TO RENDER THE BASKETBALL

PLAYER MODEL IN A PHYSICALLY PLAUSIBLE WAY ... 45

FIGURE 3.15 - MODEL RENDERED WITH THE PBR SHADER SEEN FROM DIFFERENT VIEWPOINTS

UNDER THE SAME LIGHTING CONDITION .. 46

FIGURE 3.16 - COMPARISON BETWEEN PBR AND UNLIT SHADED POINT CLOUDS UNDER DIFFERENT

LIGHTING CONDITIONS .. 46

FIGURE 3.17 - A SNAPSHOT OF THE INDOOR BASKETBALL COURT VIDEO IN EQUIRECTANGULAR

FORMAT ... 47

https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196652
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196653
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196653
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196654
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196655
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196655
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196656
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196656
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196657
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196658
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196658
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196659
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196660
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196661
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196661
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196662
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196663
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196663
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196664
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196665
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196665
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196666
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196666
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196667
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196667
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196668
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196668
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196669
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196670
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196670
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196671
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196671
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196672
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196672
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196673
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196673

x

FIGURE 3.18 – PBR POINT CLOUD MODEL PLACED IN A SCENE WITH THE INDOOR 360 VIDEO

RENDERED ON THE SKYBOX .. 48

FIGURE 3.19 - BACKGROUND DEPTH ISSUE: FIGURES IN BACKGROUND DON'T FOLLOW THE POINT

CLOUD BEHAVIOR .. 48

FIGURE 3.20 - FLUCTUATION ISSUE: WHEN ROTATING THE CAMERA IT LOOKS LIKE THE PLAYER

FLUCTUATES OVER THE COURT .. 49

FIGURE 3.21 - DEPTH ISSUE: THE POINT CLOUD IS RENDERED ON TOP OF A CHARACTER THAT

SHOULD BE IN FRONT OF IT .. 49

FIGURE 3.22 - THE INSERTION OF A PLANE IN THE SCENE COVERS THE BACKGROUND VIDEO 50

FIGURE 3.23 - REPRESENTATION OF A ROOM WITH THREE DIFFERENT LIGHT SOURCES OF

DIFFERENT COLOR ... 51

FIGURE 3.24 - COMPARISON BETWEEN THE VISUAL LOOK OF THE PBR AND STANDARD POINT

CLOUDS PLACED IN DIFFERENT LOCATIONS OF THE SCENE ... 52

FIGURE 3.25 - 3D MODEL OF THE OUTDOOR BASKETBALL COURT WITH A DIRECTIONAL LIGHT 54

FIGURE 3.26 - SNAPSHOT OF THE 360 DEGREES BEACH VIDEO IN EQUIRECTANGULAR FORMAT 54

FIGURE 3.27 - FIRST COMPARISON BETWEEN PBR AND UNLIT POINT CLOUDS IN DAYLIGHT

CONDITION .. 55

FIGURE 3.28 - COMPARISON BETWEEN PBR AND UNLIT POINT CLOUDS FROM DIFFERENT

VIEWPOINTS ... 56

FIGURE 3.29 - COMPARISON BETWEEN THE MODELS WHEN OCCLUDED BY THE BASKET SUPPORT

AND THE GRATE ... 58

FIGURE 3.30 - FRAME OF THE NIGHT SQUARE VIDEO IN EQUIANGULAR FORMAT AND ITS CUBEMAP

PROJECTION ... 59

FIGURE 3.31 - BASKETBALL COURT UNDER NIGHT LIGHTING CONDITIONS 60

FIGURE 3.32 - FIRST COMPARISON BETWEEN PBR AND UNLIT POINT CLOUDS IN NIGHT CONDITION

 .. 60

FIGURE 3.33 - COMPARISON BETWEEN PBR AND UNLIT POINT CLOUDS WHEN THEY FACE ONE OF

THE SPOTLIGHTS ... 61

FIGURE 3.34 - POINT CLOUDS PLACED IN DIFFERENT LOCATIONS OF THE COURT 62

FIGURE 3.35 - POINT CLOUD RENDERED AS A PERFECT MIRROR PLACED IN DIFFERENT

ENVIRONMENTS ... 65

FIGURE 4.1 - DIGITAL COACH SHOWING HOW TO EXECUTE AN EXERCISE....................................... 68

FIGURE 4.2 - CLOTHING ADVERTISING PROJECT FROM [41]. THE KINECT SENSOR DETECTS A USER

STANDING IN FRONT OF THE INSTALLATION (A). THE USER INTERACTS WITH THE

APPLICATION, BY KINECT OR SMART SCREEN (B). THE USER CAN SIMULATE THE FITTING OF

THE DRESS CONCEPT CREATED (C) ... 69

https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196674
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196674
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196675
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196675
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196676
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196676
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196677
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196677
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196678
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196679
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196679
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196680
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196680
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196681
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196682
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196683
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196683
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196684
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196684
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196685
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196685
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196686
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196686
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196687
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196688
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196688
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196689
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196689
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196690
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196691
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196691
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196692
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196693
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196693
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196693
https://polimi365-my.sharepoint.com/personal/10567021_polimi_it/Documents/Tesi/PozziMatteo_Thesis.docx#_Toc99196693

xi

xii

List of Abbreviations

LiDAR Light Detection and Ranging

MPEG Moving Pictures Experts Group

PCC Point Cloud Compression

L-PCC LIDAR Point-Cloud-Compression

S-PCC Surface Point Cloud Compression

V-PCC Video-based Point Cloud Compression

G-PCC Geometry-based Point Cloud Compression

sRGB Standard Red Green Blue color space

YUV Luminance-Bandwidth- Chrominance color space

BD-Rate Bjöntegaard Delta Rate

PBR Physically Based Rendering

BRDF Bidirectional Reflective Distribution Function

IBL Image Based Lighting

URP Universal Render Pipeline

1

1 Introduction

Rendering is a key concept in the Computer Graphics field since its very first

years. Many different techniques have been developed through the years, going

from simple algorithms generating 8-bit “pixelated” colors to the most recent

ones, showing realistic lighting effects. Physically Based Rendering is a technique

born in the ‘80s aiming to achieve photorealistic lighting and is currently widely

used in many applications such as videogames, design and many other fields

involving the creation of digital images.

Historically, Computer Graphics pipelines have been optimized to work with

polygonal meshes, which are 3D models represented by a collection of vertices,

edges connecting such vertices and polygonal faces (in most cases triangles)

obtained by closed sets of connected edges. Meshes are still the most widely used

3D models in rendering, as hardware and accelerators have been highly optimized

to work with such primitives in a fast way.

In recent years, however, with the spread of scanning systems using radar or laser

scanners employed on autonomous cars, drones or mounted on air vehicles to

acquire aerial scans, have led to the diffusion of a different kind of 3D model using

only point primitives, which have been called point clouds. Point clouds have

several advantages over polygonal meshes, for example the fact that they can be

automatically acquired in a rapid way, saving long and tedious work of designers,

having to model and check meshes by hand. Another advantage is that since a

point cloud has no connectivity information, points can be stored and transmitted

in any order, as long as the whole set is considered. This suggests that point clouds

could be heavily used in Computer Graphics applications by substituting

polygonal meshes, although there is still no optimized hardware to work with

them.

2

At present day most applications using point clouds use simple rendering

techniques to display only the color of the model acquired during scanning. In

some cases this is fine, since there is no practical advantage in using complicated

rendering techniques to visualize the model and the original color is all what is

needed. An example is a point cloud acquired by an autonomous car, which

doesn’t need to be rendered in a photorealistic way but just needs colors to

distinguish obstacles on its path (semaphores, crosswalks, other cars etc.).

However there exist other applications involving animations where the point cloud

needs to be better contextualized within an environment and we would like to

obtain from the model a photorealistic look, as in movies, immersive experiences

in 360 degrees Virtual Reality such as virtual tours and games, or a mix between

traditional 3D models and VR. In such scenarios the basic rendering technique is

not enough, and we could use, instead, Physically Based Rendering to give the

animated point cloud a photorealistic look under any external lighting condition,

allowing to relocate it in any environment and still maintaining the feel that the

model belongs to it.

In this work we will show how Physically Based Rendering can be applied to

animated point clouds as to polygonal meshes to obtain a photorealistic

appearance of the model under various lighting conditions. The document at

hands follows this structure:

➢ In Chapter 2 the main concepts and topics subject of this study are analyzed

in detail, starting from point cloud acquisition techniques, the ongoing

standardization efforts on point cloud compression addressed by the

MPEG group and ending with a brief analysis of trending rendering

techniques, with focus on Physically Based Rendering.

➢ Chapter 3 is the core of this document. It contains all the steps followed to

import a point cloud animation sequence into the engine used for

rendering and the development of a shader implementing Physically Based

Rendering which is then applied to the point cloud. Then a series of

3

different scenes is presented, which aim to recreate various environments

to study how the point cloud rendered with the PBR technique behaves

compared to the point cloud rendered by just displaying the original color,

and some of the features provided by PBR are explored.

➢ In Chapter 4 a short overview on potential applications of (animated) point

clouds with the support of Physically Based Rendering is presented.

➢ Chapter 5 contains some final considerations about the obtained results

and discusses the limitations of the study, leaving space for future

developments on the subject.

5

2 State of the Art

2.1 Point Clouds

As the name suggests, point clouds are a set of high-density individual points used

to represent volumetric visual data, which can be computer-generated or directly

captured from the real world. All these points carry various attributes about the

properties of the object they are representing, like the basic position in the space

(x, y, z coordinates) and eventually its color, surface normal, etc. [1]. They can be

seen as an alternative to polygonal meshes when representing 3D models, with the

advantage that they can be directly sampled from the real world with cameras

without the need of reconstructing the surface and they can be processed in real

time.

Usually, the 3D coordinates of points are represented by floating-point values, but

they can also be quantized into integer values by creating a grid in 3D space and

mapping each point residing within a sub-grid volume to the sub-grid center,

referred to as voxel. The process is hence called voxelization. Voxels are often seen

as a 3D extension of pixels and are very accurate 3D building blocks allowing

simulation techniques that wouldn’t be possible with other modelling methods.

However, current computer hardware is optimized for rendering polygons and

Figure 2.1 - A point cloud example of a monkey

6

specialized hardware to render high-resolution voxels is not available yet [2]. Also,

the space precision may affect the perceived quality of the voxelized point cloud

[3].

Since point clouds lack information about vertices connectivity, more points are

needed both to “fill” the model (which otherwise may result in having holes) and

to get a better level of detail that would be lost when removing the information

about faces from the polygonal mesh, but having too many points might also result

in adding details not present in the original model. However, since there is no

connectivity information, storage and transmission of point clouds are simpler, as

points can be acquired, stored and transmitted in any order as long as the whole

set of points is considered, while a polygonal mesh needs to preserve the order of

points to ensure that the connectivity of vertices is kept unaltered during

compression and transmission [4]. Even though polygonal meshes are still widely

used in Computer Graphics applications due to their integration with graphics

pipelines and surface representations, point clouds are getting more and more

popular in applications like virtual and mixed reality (AR/VR/MR) thanks to their

flexibility [1]. As point clouds also provide immediate depth information, they also

find use in applications like self-driving cars and, in general, autonomous

Figure 2.2 - A point cloud of Washington, DC captured by a LiDAR with height

information

7

machines, helping to detect objects and allowing navigation and localization [5],

and also in the construction industry, to reconstruct an original 3D model of a

building from its point cloud representation, for geometry quality inspection tasks

and as an help to repair and maintain cultural heritage buildings [6].

2.1.1 Point cloud acquisition technologies

There are a few ways in which a point cloud can be generated from the real world.

The most common solutions are LiDAR-based scanning and photogrammetry,

but other alternatives are possible, for example videogrammetry, RGB-D cameras

and stereo cameras. A short overview will be given for each.

2.1.1.1 Laser Scanning with LiDAR

Laser scanners measure the distance from an object by emitting laser beams and

detecting the reflected beam from the object. The distance is then evaluated with

the Time-of-Flight principle or Phase-Shift of the wave. Scanners using the Time-

of-Flight principle have a higher maximum range of measurement than the

counterpart, while Phase-Shift gives higher ranging accuracy and measurement

speed. Different solutions exist on the market, going from very expensive

mechanical LiDARs (up to $100,000) to cheaper solid-state LiDARs (less than

$1,000). For example, the iPhone12 Pro is equipped with a solid-state LiDAR with

short sensing range [5, 7].

Laser scanners can be furtherly divided into three categories [8]:

➢ Terrestrial Laser Scanner (TLS), also known as ground LiDAR, which is

mounted on tripods placed on the ground. Since during operation it is still,

this is the solution with highest accuracy and used for surveying and

monitoring buildings and infrastructures.

➢ Airborne Laser Scanner (ALS), also known as aerial laser scanner, which is

mounted on aircrafts during flight. Its main advantage is the high mobility

8

and is mainly used to capture point clouds of terrains without the need of

being very accurate.

➢ Mobile Laser Scanner (MLS), which is mounted on ground mobile

platforms, such as vehicles. They are mostly adopted for 3D city mapping

and as sensing systems of autonomous cars.

Examples of LiDARs are available in Figure 2.3. With multiple LiDAR scans it is

possible to create very detailed and accurate measurements, with millions of

measurements at each laser pulse [9].

2.1.1.2 Photogrammetry

Photogrammetry is defined as the art, science and technology of obtaining reliable

information about physical objects and the environment through the process of

recording, measuring and interpreting photographic images and patterns of

electromagnetic radiant imagery and other phenomena. So, photogrammetry gets

data from photographs instead of light rays. Many photos must be taken from

different angles and overlapped to capture the geometry of the object to represent

as a point cloud. These photos can be captured even with simple cameras, making

the approach more affordable in terms of availability and costs, but is less accurate

than 3D scanners and it can be difficult if a multi-camera setup is not available.

However, the advantage is the straightforward capability of photogrammetry to

represent objects with full color, directly taken from photos [9].

2.1.1.3 Videogrammetry

Videogrammetry can be seen as an extension of photogrammetry, taking as input

a video stream instead of a collection of images. With videogrammetry it is

possible to progressively reconstruct a point cloud by stacking the information

obtained from a video frame to the previous frames, and gradually increasing the

accuracy and detail of the model. Also, the need of human intervention is limited

since the reconstruction process can search for points by tracking features from

consecutive frames [8].

9

2.1.1.4 RGB-D cameras

An RGB-D camera consists of an RGB camera (red, green, blue) plus a depth

sensor. Images taken by this camera are normal RGB images augmented with

depth information at pixel level. Colored 3D point clouds can be generated by just

mapping the image to the depth. A very popular RGB-D camera is the Microsoft

Kinect (Figure 2.4), released firstly in 2009 and widely used in many applications

such as robotics and computer vision.

A study made by [10] proposes an architecture for an automated indoor scanning

system that uses multiple RGB-D cameras facing different directions with a

slightly overlapping field of view and mounted on a rotating support. This solution

doesn’t need human support, such as manually moving the sensors in the room,

for scanning indoor environments.

Figure 2.3 - Three types of LiDAR according to their working platform. From [8]

10

2.1.1.5 Stereo cameras

A stereo camera has two or more lenses and an image sensor. Knowing the relative

position and orientation of lenses, it is possible to obtain 3D point clouds from the

acquired 2D images, after a previous fully automated calibration process based on

the same images.

2.1.2 The MPEG-PCC standard

The first standardization activity for Point Cloud Compression was initiated in

2014 by the Moving Picture Experts Group (MPEG), known for other

standardizations in the field of multimedia technologies. In 2017 they came up,

through a Call for Proposals (CfP), with three different technologies for three

targeted categories:

➢ LiDAR Point Cloud Compression (L-PCC) for dynamically acquired data.

➢ Surface Point Cloud Compression (S-PCC) for static point cloud data.

➢ Video-based Point Cloud Compression (V-PCC) for dynamic content.

The final standard came out in 2020 and consists of two approaches:

➢ Video-based, appropriate for point clouds with a uniform distribution of

points.

Figure 2.4 - Microsoft Kinect v2, an RGB-D camera

11

➢ Geometry-based, equivalent to the combination of L-PCC and S-PCC,

appropriate for sparser distributions.

2.1.3 Video-based Point Cloud Compression

The idea behind V-PCC comes from the great success of 2D video compression

that is widely used thanks to the spread of video coding standards. To take

advantage of such technologies, PCC may convert a point cloud from 3D to 2D

and then code it with 2D video encoders [3]. The proposal was to divide the point

cloud into connected regions named 3D patches (clusters) and then project each

of them independently into a 2D patch with orthogonal projections, which are

then packed into images that can be compressed with any existing or future video

codec (for example, MPEG-4 or AVI). The approach also helps to reduce self-

occlusions and distortions that may be present in the original point cloud. The

objective of creating patches is to obtain a temporally coherent, low-distortion,

injective mapping, which would assign each point of the 3D point cloud to a cell

of a 2D grid [11]. The mapping between the point cloud and the 2D regular grid

is then created by packing the projected patches, with a strategy that can be

different from encoder to encoder. The compression efficiency can be improved

by mapping patches with similar content to similar positions [3].

After the patch-packing process is completed, other images are generated:

Figure 2.5 - Generation of 3D patches from the point cloud. From [3]

12

➢ A geometry image containing the depth information of the point cloud

(distance between each point’s position and the projection plane). Since a

patch may have different points being projected to the same pixel, the

standard allows the encoder to use more layers ordered from lowest to

highest depth value to store overlapping points.

➢ A binary image called occupancy map signaling whether a pixel is occupied

by a valid 3D projected point or not.

➢ Other attribute images containing information like the texture (color) of

each point, the material or user-defined attributes.

The occupancy map is used to disambiguate pixels used for 3D reconstruction of

the point cloud from pixels that, instead, are unused and inserted by the padding

procedure. Both lossless and lossy coding are possible for occupancy maps. The

padding function is applied to geometry images to fill the spaces between patches

and obtain a piecewise smooth image, improving the video compression efficiency

furtherly.

The V-PCC bitstream is finally created by concatenating into a single stream all

the encoded information.

The decoding process is split into two different phases: information decoding and

point cloud reconstruction. The first phase generates the 2D video frames

together with patches information associated to each frame from the encoded

Figure 2.6 - An example of occupancy map (left), geometry (middle) and texture (right) image.

13

information, while the second phase recreates the 3D point cloud from the video

frames. However, while the decoding result is generally bit-exact, the

reconstruction can lead to a slightly different geometry with respect to the original

one, introducing artifacts due to quantization errors. Studies to remove such

artifacts are ongoing. For example, in [12] a solution using deep learning based

on a U-Net architecture is presented.

Since the reconstructed geometry might be different from the original one, the

information about color is transferred from the original point cloud to the decoded

point cloud and these new colors are used for transmission [3].

Since the first Call for Proposals evaluation, the performance of V-PCC has been

constantly improving. In Figure 2.7 the progress is shown in terms of coding

performance, based on the D1 geometry distortion, with also the originally

proposed technology added as reference [13].

Figure 2.7 - Progress of V-PCC performance since CfP based on D1 geometry distortion. From [13]

14

Figure 2.8 – An overview of the V-PCC encoder.

15

2.1.4 Geometry-based Point Cloud Compression

The first difference between V-PCC and G-PCC is that while video-based

compression uses video coding formats to project a 3D point cloud into a 2D

representation, geometry-based encoding instead directly encodes the model in

3D by using a data structure called octree describing a point localization in 3D

space. Also, the approach makes no assumption on the coordinate representation

used by the input point cloud and points have an internal integer-based

representation obtained with a conversion from a floating-point representation.

The conversion is conceptually like voxelization [3].

G-PCC also allows for parallel coding functionalities using slices and tiles. A slice

is a set of points, with geometry and attribute information, that can be

independently encoded and decoded, while a tile is a group of slices with bounding

box information. Tiles may overlap with each other, and specific slices may be

accessed to decode a specific area of the point cloud only.

An overview of the core modules of the G-PCC encoder is shown in Figure 2.9.

The first thing to be noted is that geometry and attributes are encoded separately,

but since attribute encoding depends on geometry encoding, geometry is encoded

first [14].

Figure 2.9 - An overview of the G-PCC encoder. From [14].

16

The first operation made in both geometry and attribute encoding is a conversion

into a different representation: point positions are converted from floating-point

values into integers with a coordinate transformation followed by voxelization,

while colors are converted from RGB to YUV color space, which is more

compression friendly. In fact, it is shown in [15] that compressing an image in

YUV format leads to a reduction of the root mean squared error to 78.65% of the

same image with RGB coding.

The following step is the geometry analysis of the octree. Two schemes are

possible:

➢ Octree coding: assuming that the quantized volume occupied by the

point cloud is 𝐷 × 𝐷 × 𝐷 voxels, this is initially horizontally and vertically

partitioned into eight sub-cubes of
𝐷

2
×
𝐷

2
×
𝐷

2
 voxels. The process is

recursively applied to occupied sub-cubes until 𝐷 becomes equal to 1.

Occupied blocks are marked by a 1 while empty ones are marked by a 0.

The generated octets at each step represent an occupancy state stored in

one-byte words. The first two steps of the process can be visualized in

Figure 2.10.

➢ Trisoup surface approximation: the geometry is represented by a

pruned octree constructed until a chosen level where leaves represent sub-

cubes with a higher dimension than a voxel. The object surface is then

approximated by a series of triangles without any connectivity information

between each other (a “triangle soup”, or trisoup, giving the name to the

approach).

Figure 2.10 - The first two iterations of octree generation. From [3]

17

In general, only 1% of voxels are occupied and this makes the octree

representation very convenient. Since more points can be mapped to the same

sub-cube, the number of points for each sub-cube is also arithmetically encoded

[16].

The reconstructed geometry is then used to transfer attributes in order to

minimize distortions between the input and reconstructed point cloud. Three

different methods are available for attribute coding:

➢ Region-Adaptive Hierarchical Transform (RAHT): use the attribute

value in a lower octree level to predict the value of the next level, starting

from leaves and heading up to the root. For more details about the

transform see [3].

➢ Predicting Transform: a distance-based prediction scheme relying

on a Level of Detail (LoD) representation distributing points in sets of

different refinement levels based on a deterministic Euclidean distance.

Attributes are encoded following the prediction determined by the LoD

order.

➢ Lifting Transform: built on top of the Predicting Transform, it adds

an update operator and an influence weight to each point. Since points in

lower LoDs are used more often in prediction, they have a higher impact

on the process.

Figure 2.11 - Level of Detail (LoD) generation process

18

For a more detailed overview on G-PCC standard the reader can refer to [17].

Although G-PCC can achieve remarkable performances, it might still lead to

serious artifact issues during the attribute compression task, especially in low

bitrate scenarios. A first study was made in [18] where a solution using a Multi-

Scale Graph Attention Network is used to remove artifacts on compressed

attributes. Experiments showed that on average the proposed solution reaches a

9.28% BD-rate reduction (a measure of rate-distortion performance).

2.1.5 Other studies

In this section a short overview of other studies carried out independently from

the MPEG standardization effort is given. In particular, attention will be given to

an end-to-end framework based on a deep neural network to efficiently compress

a point cloud geometry [19] and a point-to-plane metric to measure geometric

distortions of point clouds [20].

2.1.5.1 End-To-End Learned lossy compression

The idea to try to use a deep learning approach to compress point clouds’

geometry comes from the emerging of analogous applications in 2D compression

of images and videos. Since redundancy in 2D images can be exploited by stacked

2D convolutions, the idea was to try to use 3D convolutions to have a compact

representation of a point cloud. The proposed framework consists in three main

operations:

1. The point cloud firstly goes through a pre-processing pipeline, where it is

voxelized and partitioned into non-overlapping cubes, to reduce the

computational cost that would be required to process the entire point cloud

at a time. The position of occupied cubes is specified with an octree

decomposition and the number of occupied voxels in each cube is also

19

transmitted to allow later point cloud reconstruction. Each cube is

processed independently, allowing massive parallelism of the task.

2. The obtained volumetric point cloud is then fed into a Variational

AutoEncoder (VAE) architecture composed by a stack of three consecutive

3D convolutions with integrated downsampling to generate hyperpriors

and have a compact representation. Convolutions are interleaved by a

Voxception-ResNet (VRN) to capture the essential information of the

representation. The hyperpriors are later used to increase the conditional

probabilities of latent features. To train the network, a Weighted Binary

Cross-Entropy loss function has been used to optimize distortion, where

the non-occupied voxels are weighted more than the occupied ones. The

reconstruction task is treated as a classification problem, where the target

is a voxel to be classified as occupied or not occupied.

3. A final post-processing phase, where voxels classification and extraction are

made. Decoded voxels coming from the neural network are floating-point

numbers in the interval [0, 1] and need to be classified as occupied or not

occupied. At inference time the used threshold is not fixed, but an adaptive

threshold is used based on the number of occupied points belonging to the

original cube fed to the network (information contained in each cube as

metadata). Finally, voxelization is reverted and points are extracted from

the volumetric representation.

The study showed that this method outperforms the G-PCC standard with a good

margin of at least 60% BD-Rate. The results also qualitatively look better, as can

be noted in Figure 2.12. For further details about the framework the reader can

refer to [19].

2.1.5.2 Geometric distortion measure for PCC

Classic metrics used by the MPEG standard to measure geometry distortion are

based on point-to-point or point-to-surface distances. Regarding the point-to-

point framework, firstly for each point of the original point cloud a corresponding

20

point in the compressed point cloud is identified. Then the average or maximum

Euclidean distance between such couple of points is used as basis to measure

distortion. However, the approach fails to consider that points in a point cloud

often represent surfaces, so a point-to-surface approach has ben developed. In this

second approach a mesh is constructed from the original point cloud and then the

distances between the compressed point cloud and the corresponding mesh are

computed. The framework, however, strongly depends on the algorithm used to

obtain the mesh from a point cloud and is difficult to use.

The proposed approach uses a point-to-plane measure, that resides between the

point-to-point and point-to-surface approaches [20].

Firstly, for each point of the reference point cloud the corresponding point in the

compressed one is identified. Such corresponding point is determined as the

nearest neighbor of the point itself. Then the unit normal vector of the reference

point is considered if available or, if not, estimated on the fly. The point-to-point

error is then computed by connecting the two considered points. The final,

Figure 2.12 - Visual comparison of "soldier" between different compression schemes. From [19]

21

proposed point-to-plane error is obtained by projecting the point-to-point error

onto the normal vector of the reference point.

For point clouds in which surfaces are represented, the proposed point-to-plane

error is better aligned to the perceived quality of the point cloud with respect to

the point-to-point metric. In addition, instead of considering the mean square

error (MSE), the values are converted into Peak Signal-to-Noise Ratio (PSNR)

numbers to normalize the metrics with respect to a peak value, which is chosen as

the intrinsic resolution of the input point cloud.

The point-to-plane metric requires lightweight computation and is demonstrated

to better track visual qualities of a compressed point cloud than the classic point-

to-point metric.

2.2 Rendering

Rendering is a key concept in Computer Graphics. It is the process of

automatically creating a 2D or 3D image from a scene defined by a series of

objects. It involves many information, such like object geometry, textures,

shading, lighting, shadows, materials, reflectance, transparency and so on.

Rendering is, in general, a very expensive task in terms of calculation and time.

The key is to find a good balance between image quality and rendering speed

determining how many frames can be processed in a certain period of time [21].

The higher is the quality of the image we expect from rendering, the more time

will be required to compute it. A good choice is to use algorithms that produce

images with an acceptable perceived quality for the specific application we intend

to use them for and don’t require too much time to be computed.

Through the years many different techniques have been developed to try to

provide an approximate solution to the rendering equation and give a realistic look

22

to scenes (an exact computation is still infeasible since it would be needed to

follow the path of every single ray of light in the scene, which are infinite). Some

examples of photo-realistic lighting models are:

➢ The Phong lighting model [22], that considers three lighting components:

ambient, diffuse and specular lighting. Ambient lighting is a constant term

that always gives the scene some color to simulate the fact that objects are

never completely dark; diffuse lighting simulate the directional impact of

light hitting an object, the more a face is aligned with the light the brighter

it becomes; specular lighting is based on the reflection properties of

surfaces and the view direction. It simulates the bright spot of a light

appearing on shiny objects. In Figure 2.14 an overview of all the lighting

Figure 2.13 - The Rendering Equation

Figure 2.14 - The Phong shading model with all its components. From [22]

23

terms and how they combine together is available. Obviously, all terms can

also be represented by textures rather than just raw colors. The model

however suffers from an issue about specular light when the angle between

the reflected light vector and the viewing direction is greater than 90

degrees, which is solved by the Blinn-Phong lighting model, that

introduces a halfway vector. For details, see [23].

➢ The radiosity method, which is an alternative to the Phong model that tries

to better approximate the interaction of diffuse surfaces [24]. It is a view

independent algorithm that simulates indirect illumination effects by

considering light rays leaving a light source and reflected some number of

times on surfaces before reaching the eye. All objects in the scene are

divided into patches with a single unknown per patch, which is the radiosity

of the object (the “amount” of light hitting the object). Light sources

instead are implemented as patches emitting radiosity. The rendering

Figure 2.15 - Specular lighting of Phong and Blinn-Phong reflection models. From [23]

Figure 2.16 - Different iterations of the radiosity algorithm. Patches are visible as squares on walls and floor.

24

equation is transformed into a very large system of linear equations which

can be solved with an iterative approach. The method is well suited for

indoor scenes due to its capability to mimic real-world phenomena of light

reflection, as can be seen in Figure 2.17. However, a major limitation of the

method is that it was designed to simulate purely diffuse environments and

lighting effects such as specularity of materials like glass and metal can’t be

rendered properly and need to be considered in some way by extending the

solution provided by standard radiosity.

➢ Monte Carlo techniques which use simulation and sampling to approximate

the solution of the rendering equation. Many algorithms exist using this

technique, an example is path tracing which integrates over all the

illuminance hitting a specific point on a surface, for every point. The

Figure 2.17 - Difference between standard direct illumination and radiosity

Figure 2.18 - An image rendered with Monte Carlo path tracing

25

algorithm can give a very realistic appearance to images and naturally

simulates effects like soft shadows, ambient occlusion and depth of field,

but it is rather inefficient. A lot of rays need to be followed to have a high-

quality result and without noise artifacts, which are a constant issue of all

methods based on Monte Carlo simulation.

2.2.1 Physically Based Rendering

Physically Based Rendering, or PBR, is an interesting and currently widely used

collection of rendering techniques used in real time rendering. It tries to mimic

how light interacts with surfaces in a physically plausible way, making the result

more photorealistic with respect to other shading models [25]. Another advantage

is that it is possible to create different materials by changing physical parameters

and making them look correctly under any lighting condition without the need to

resort to coding hacks.

Figure 2.19 - Path tracing with increasing number of light ray samples per pixel

26

To be considered as physically based, a lighting model must fulfill three

conditions:

1. Be based on the microfacet surface theory, according to which any surface

can be described at a microscopic scale by very small perfectly reflective

mirrors called microfacets. The rougher a surface is, the more dispersive

will be the scattering of light when bouncing on it, generating widespread

specular reflections, while a smooth surface will reflect light approximately

in the same direction. The roughness of the material is one of the physical

parameters that can be tweaked to obtain different behaviors on the surface

(Figure 2.20).

2. Satisfy the energy conserving principle, which states that the light energy

leaving a surface never exceeds the incoming light energy (except for

emissive surfaces). A distinction must be made between diffuse and

specular light: when hitting a surface, light splits in a refracted and a

reflected part. Refracted light is absorbed by the surface and scatter,

producing diffuse lighting, while reflected light does not enter the surface

and produce specular lighting. The conclusion is that reflection and

diffusion are mutually exclusive: reflected light will be no longer available

to get absorbed by the surface. A consequence is that highly reflective

surfaces will show little to no diffuse light, as well as surfaces with strong

diffusion won’t be much reflective [26]. A note must be made on metallic

materials: when light hits a metallic surface, all refracted light is directly

absorbed without scattering, meaning that no diffuse light is shown.

Figure 2.20 - A material with increasing value of roughness

27

Metalness is another parameter that can be tweaked in a material to obtain

different behaviors.

3. Use a physically based Bidirectional Reflective Distribution Function

(BRDF). The BRDF is a function that approximates how a material reflects

and refracts incoming light, based on the microfacet theory. To be

physically based, the BRDF must adhere to the energy conservation

principle. Blinn-Phong, which is also a BRDF, is not physically based since

it is not energy conserving. Most of the real-time rendering pipelines based

on PBR use the Cook-Torrance BRDF.

PBR is often used in combination with Image Based Lighting to produce even

more realistic and physically accurate results [27]. This is usually done by

transforming the environment into a cubemap that can be used in the lighting

equations as a big light source. In this way it is possible to capture the

environment’s global illumination. The lighting equation solved by PBR (which is

a more specialized version of the rendering equation, called reflectance equation)

considers diffuse and specular lighting separately as they are independent from

each other. Such equation is available in Figure 2.22 where the Cook-Torrance

BRDF appears explicitly.

Figure 2.21 - Diffusion and specularity mutual exclusion. Specular materials show less diffuse color

Figure 2.22 - The reflectance equation solved by PBR split in diffuse part (left integral) and specular part (right integral)

28

Diffuse integral

As the first term is constant with respect to the integral variables (c is the color, kd

is the refraction ratio, the whole term is known as the diffuse Lambert term), it is

moved outside the integral, which now depends only on the direction 𝜔𝑖 of the

incoming radiance, assuming p being the center of the environment map. From

the integral, a new cubemap is pre-computed, storing at each texel 𝜔0 the result

of the diffuse integral obtained by convolution. The convolution operation is done

by sampling a high number of incoming directions 𝜔𝑖 over the hemisphere Ω and

computing the average radiance. The hemisphere is oriented towards the

direction 𝜔0 over which the convolution is being computed (Figure 2.23). The

resulting cubemap is known as irradiance map (Figure 2.25) and allows to directly

sample the pre-computed irradiance from any direction 𝜔0.

Specular integral

The specular integral is more complicated to deal with, since it does not depend

only on the incoming light direction, but also on the view direction [28]. To solve

it, an approximation called split-sum is used to pre-convolute the specular part

into two separate components that can be later recombined in real-time PBR. The

split-sum approximation splits the specular integral into two integrals (Figure

2.24). The first integral is a pre-filtered environment map, which is similar to the

Figure 2.23 - Overview of the convolution operation of the diffuse integral. From [27]

29

irradiance map, but it takes into consideration also roughness. The environment

map is convoluted with more scattered vectors for increasing roughness,

generating blurred reflections. For each level of roughness, a smaller environment

map is stored as mipmap level (Figure 2.26).

Figure 2.25 - An environment cubemap (left) with the resulting irradiance cubemap obtained by convolution (right)

Figure 2.24 - The split-sum approximation of the specular integral

Figure 2.26 - Pre-filtered environment maps of 5 levels of increasing roughness.

30

The second integral of the split sum approximation represents the BRDF of the

surface. By pretending that 𝐿(𝑝, 𝑥) = 1.0 (white radiance for every direction) it is

possible to pre-calculate the BRDF’s response given an input roughness and an

input angle between the surface normal and the incoming light direction 𝑛 ⋅ 𝜔𝑖. A

2D lookup texture known as BRDF integration map is pre-computed, containing

the BRDF’s response to each normal and light direction combination, with varying

roughness. The texture is available in Figure 2.27 with the horizontal axis being

the input angle 𝑛 ⋅ 𝜔𝑖 and the vertical axis being the input roughness.

2.3 Conclusion

In this chapter an overview on the current trends about point clouds and rendering

was given. When it comes to applications, most of the times point clouds are

simply rendered as they were scanned, meaning that they look exactly as if they

were under the same lighting conditions as during scan-time and the used shaders

in rendering do not take into consideration incoming light at all. In many cases

this is fine since there is no need to have a realistic look of the point cloud under

different lighting conditions, however for other applications, for example related

Figure 2.27 - The BRDF's integration map. The colors represent the scale (red)

and the bias (green) with respect to the Fresnel response of the surface. From [28]

31

to Virtual, Augmented and Mixed Reality (VR/AR/MR) it could be needed to

render a model in different lighting conditions as realistically as possible to have

a good integration of the model inside the scene, both for static and animated

models. PBR with IBL looks a good suit for this task.

Some steps in this direction have already been made. The most notable studies

have been carried out by Paul Debevec, researcher and professor at the University

of Southern California’s Institute for Creative Technologies [29], who developed

with his team a scanning technology called LightStage which is able to scan human

faces when lit from any possible lighting direction and render them faithfully in

different realistic virtual conditions, obtaining quite impressive results (Figure

2.28). LightStage was launched in 2008 for commercial use and has been widely

adopted in blockbusters films and triple-A game titles and allows the creation of

photorealistic digital images as they would appear in any lighting condition [30,

31]. The goal of this paper is to extend the use of advanced rendering techniques

in any lighting conditions to any model, not only to human faces subject of studies

by Debevec’s team.

Figure 2.28 - A human face digitally rendered in three different lighting conditions with LightStage. From [30]

33

3 Physically Based Rendering of

Animated Point Clouds

This chapter will provide a detailed description of the process used to visualize

animated point clouds rendered with PBR and a comparison of the obtained

results with classical, unlit point clouds. To conduct the experiments an animated

point cloud will be used, where each frame is stored in a different file, to better

study the impact of lighting on a non-static model. The specific models which are

going to be used as reference come from the basketball_player sequence provided

by [32], which is a collection of 600 files stored in .ply format acquired at 30

frames per second, thus resulting in an animation of 20 seconds. The software

used for the experiments are:

➢ MeshLab and PyMeshLab 2021.10 for point cloud manipulation and fixing

of normal vectors.

➢ Unity3D with the Long-Term Support version 2020.3.22f1 as the engine

to render the scenes and compare results.

3.1 Point cloud normals check

The first step is to make sure that all the available point clouds come out with

correctly estimated normals. Depending on the approach used to acquire and

compress the point cloud, normals could have already been estimated or not. For

example, in the case of V-PCC normal estimation happens during patch

generation (as can be seen in Figure 2.5) and they can be saved and transmitted

in that circumstance. Another approach is to estimate them right after scan-time

in some way. An example can be found in [33] where normals are estimated from

images acquired with the Time-of-Flight principle by depth cameras.

34

To make this check the software MeshLab is used, which allows to visualize the

whole point cloud and the normals associated to its points. Also, it provides many

filters that can be applied to any 3D model among which the one called “compute

normals for point sets”, which tries to estimate the normal vector of each point in

models without information about triangle connectivity, which is exactly what is

needed for the purpose of this work.

Considering the basketball_player sequence it turns out that many frames of the

animation are decorated with correct normal vectors but, in some frames, these

have been erroneously estimated and are oriented inward the model, as can be

seen in Figure 3.2. For these frames it is necessary to re-compute the normals to

make them look correctly. However, since estimated normals for “correct” frames

still make the models look a bit rough and “squared” (see as example Figure 3.1),

all frames have been subjected to normal vectors re-computation, to make the

models look as smooth as possible.

Figure 3.1 - A frame of the basketball_player sequence visualized with MeshLab

35

The operation is performed with the already cited filter called “compute normals

for point sets” available in MeshLab. The steps followed by the filter can be

synthetized as:

1. kNN computation: For each point of the point cloud, get its k nearest

neighbors, where k is an input parameter of the procedure chosen before

launching the filter.

2. Normal estimation: Estimate the plane tangent to the model surface using

the neighborhood of the query point and compute its normal. This can be

easily done through Principal Component Analysis (PCA).

3. Orientation disambiguation: Pick a random point, choose an orientation

(inside/outside) and propagate it to nearby points.

The last step is critical since generally there is no easy way to disambiguate normal

orientation in an automatic way. If we had a single viewpoint to observe the model

from, the problem would not arise since all normals would be consistently oriented

towards the viewpoint itself. This solution is not suited for this application as the

goal is being able to cast light on the model from any possible direction.

Regarding the choice of the parameter 𝑘 defining the size of the neighborhood to

fit the tangent plane, low values are usually suggested to better capture the local

curvature of the model. If 𝑘 is too large, points from different surfaces might be

Figure 3.2 - Different frames of the basketball_player sequence with correct (left) and erroneous (right) normal estimation

36

included in the neighborhood, resulting in distortion of the plane and badly

estimated normals, especially around corners. MeshLab puts as default 𝑘 = 10 and

suggests values between 10 and 30 for a good estimation.

For this work, the suggested values for 𝑘 worked fine. Also, some smoothing

iterations have been performed to obtain better results. To be more precise, a

number of smoothing iterations between 10 and 15 have been used, giving the

model a smoother appearance (Figure 3.5).

Figure 3.3 - MeshLab filter to compute vertex normals of faceless models

Figure 3.4 - The same models as Figure 3.2 after normal re-computation

37

At the end of this step all frames from the basketball_player sequence have correct

normal vectors associated to their points and are stored as .ply files ready to be

imported in Unity and rendered in a scene.

3.2 Importing models into Unity

As previously mentioned, the point clouds are stored in .ply binary format, which

has as advantage a relatively small requirement in terms of storage occupancy.

However, Unity has no native package allowing to import and directly use in a

project a .ply asset, so it is necessary to use a custom importer to load the point

clouds into the project. For this purpose, a package available on GitHub called Pcx

[34] developed by the user Keijiro has been added to the project and used to

import the models.

The package provides useful tools to work with .ply files and, more specifically,

point clouds inside Unity. The importer reads a binary little endian .ply file and

parses its content into an object the engine can work with. After parsing, the

model can be wrapped into three different containers provided by Unity:

Figure 3.5 – A model with normals computed without smoothing (left) and with 15 iterations of smoothing (right)

with k = 10

38

➢ A Mesh: the point cloud is treated as a standard 3D mesh with just vertices

and colors (no faces) and can be rendered with a standard MeshRenderer

component with any shader.

➢ A ComputeBuffer: a buffer for data mostly used with compute shaders,

which are a special kind of shaders used to compute arbitrary information

not directly related to rendering.

➢ A Texture: points are baked into 2D textures (a position map and a color

map) that can be used as attribute maps for visual effects.

For the purpose of this work the most suited container to wrap point clouds in and

which is going to be used is the Mesh. The other two containers will not be

considered any further.

The package also provides scripts to manage imported meshes from the inspector

window in Unity and two basic shaders to render point clouds. A first basic scene

with an imported frame placed on a simple planar surface and rendered with the

basic shader is available in Figure 3.6.

The first thing that can be noted is that the shader provided in the imported

package does not draw any kind of shadow of the model on the plane, since the

work of the author was meant just to visualize point clouds as they were scanned

without integrating them in a different environment.

Figure 3.6 - Basic scene consisting of a single frame placed on a surface in Unity

39

Therefore, to have a slightly better baseline to allow a better visual understanding

of the lighting conditions and to compare the PBR shader that will be developed

later with, another shader has been created and used that behaves exactly as the

one provided in the Pcx package with the addition of shadows.

To speed up the writing process of shaders and have an easier control over various

rendering parameters, the Universal Render Pipeline (URP) with Shader Graph

support has been enabled. In Figure 3.7 the two shaders are applied to the same

Figure 3.7 - A frame rendered with the basic shader (left) and the new shader with hard

shadows (right)

Figure 3.8 – Basic unlit shader allowing hard shadow casting

40

frame to highlight the difference when rendered, while the shader graph can be

viewed in Figure 3.8.

The Colorspace Conversion node is necessary since URP is being used instead of

the standard Unity built-in pipeline. While the built-in render pipeline uses a

linear color space with sRGB light intensity, URP applies linear light intensity and

since vertex colors stored in the used models are RGB their look results very bright

and need to be corrected with the conversion to linear space. The difference

between the two color spaces is shown in Figure 3.9.

3.3 Towards PBR

Having set a reference baseline to compare the final results with, from now on the

focus will be on developing a PBR material to render the model in a physically

plausible way in a scene.

Vertex normals are a key element to implement the technique correctly, so in order

to make sure that these are imported and used as expected by the engine, another

shader is built first to generate a normal map of the model. To visualize a smoother

Figure 3.9 - A frame rendered with (left) and without (right) color space conversion to linear

space

41

color transition, instead of using pure normals as vertex color, a normalization is

applied to transform all normal components in the [0, 1] interval as following:

𝑁(𝑥, 𝑦, 𝑧) =

{

 𝑛𝑥

′ =
𝑛𝑥 + 1

2

𝑛𝑦
′ =

𝑛𝑦 + 1

2

𝑛𝑧
′ =

𝑛𝑧 + 1

2

 As reference model a sphere will be used, which when rendered with the normal

map shader looks as in Figure 3.10.

Unfortunately, when the shader is applied to the point cloud model, the behavior

is not the desired one, but the shape comes out with a plain, fixed blueish color

(Figure 3.11). This means that normal vectors are not correctly acquired or

imported. The issue was not evident before since, when using an unlit shader, the

model is rendered by just taking into consideration the color of vertices without

taking into any consideration light and view directions and, consequently, normal

vectors. Before proceeding to develop a correct PBR shader, this issue must be

inspected and solved.

The issue most likely arises when the model is imported into Unity, since in

MeshLab it was possible to render on screen all normal vectors stored on the point

cloud vertices as done in Figure 3.3 and Figure 3.4. As a double-check, one of the

frames has been imported again into MeshLab and saved in ASCII format instead

Figure 3.10 - Normal map shader applied to a sphere in front (left) and back (right) view

42

of binary and manually inspected, confirming that normal vectors are stored as

expected. Therefore, the problem is due to the .ply importer not parsing normal

vectors information and thus it needs to be extended to be able to save and use

them in Unity.

In its original version, the importer is built to process just vertices position

coordinates (x, y, z) and RGBA color (red, green, blue, alpha), whereas all

properties not corresponding to the mentioned ones are marked as invalid and

skipped. The parser has been modified to recognize the presence of normal

vectors information from the file header and parse the values associated to normal

components, storing them in a list of 3D vectors later assigned to the Mesh object,

coherently with respect to how the author dealt with positions and colors. Since

the work focuses on the use of meshes only, this is the only container to which the

modification has been made, while ComputeBuffers and Textures have been

ignored.

After having adapted the importer, the point clouds must be imported again to

allow Unity to store normals together with position and color information and use

them for rendering. By reapplying the normal mapping shader to the reimported

models, the behavior is now the expected one, as Figure 3.12 demonstrates.

Figure 3.11 - Normal map applied to the imported model with the reference sphere.

Normals are not correctly imported.

43

Having fixed the issue about normal vectors, it is now possible to proceed with the

development of a PBR shader and apply it to the material assigned to the

basketball player model for photorealistic rendering.

A new lit shader graph is hence created. The fragment stage node for a lit shader

contains all the standard parameters cited during the discussion about PBR

rendering in Section 2.2.1:

➢ The base color parameter, which is the albedo of the material, also present

in unlit shaders (Figure 3.8).

➢ The normal vectors of the material set as default in tangent space, but they

can also be represented in object or world space.

➢ A metalness parameter defining how much metallic the surface of the

material is. As default it is represented by a floating-point value between 0

and 1, but it can also be sampled from a texture to render more complex

objects with points of varying metalness along the surface.

➢ A smoothness parameter, which is the inverse of roughness, defining how

smooth the surface is. As for metalness it is by default defined by a floating-

point value between 0 and 1 but can also be sampled from a texture.

➢ An ambient occlusion parameter measuring how obscured the object is

from light by other objects in the scene. Again, it can be represented by a

floating-point value or a texture.

Figure 3.12 - Normal map shader applied to models with the modified importer in front(left) and back(right) view, view the

reference sphere

44

➢ An emission parameter defining the emitted light color by the material. It

takes as input an HDR color with intensity. For non emissive materials, a

black color is used as emission. For complex objects having different

emitted colors, textures can be used.

Regarding the shader used for this work, the parameters have been set as follow:

➢ The albedo is set the same as for the previously built unlit shader, with the

color given by vertices and colorspace conversion to linear space.

➢ The fragment normal space is set in Object space.

➢ Metalness and smoothness are set as properties to allow easier and faster

customization from the Unity inspector and linked to a Clamp node to limit

the values in the [0, 1] interval. As default both values have been put to 0,

which is quite reasonable to realistically render the available basketball

player model.

➢ There is no interest in showing an emissive color from the used model, so

the emission color is put to full black.

Figure 3.13 - Default lit shader in Shader Graph

45

➢ Ambient occlusion is also set as a property and will be tweaked accordingly

to the scene in which the model is placed to better simulate the lighting

intensity.

The final PBR shader, which is rather simple but fully complies with our needs, is

shown in Figure 3.14. The point cloud rendered with a material using such shader

is available in Figure 3.15. Even in a simple scene like the one used for this very

first example, a notable increase in realism can be appreciated, with many little

shadows occurring on the whole model. Also, many small details that were less

evident with the standard unlit shader previously used can now more easily

distinguished, like the folds of the player’s t-shirt seen from the back view. Most

importantly, the model now looks different with respect to the incoming light

direction and intensity, as opposed to the previous one which instead looks exactly

the same under any lighting condition (Figure 3.16).

Figure 3.14 - Graph of the PBR shader that will be used to render the basketball player model in a physically

plausible way

46

In the next sections the focus will be on trying to fit the PBR shaded point cloud

in different scenes and backgrounds with various kind of lighting conditions and

demonstrate how the model rendered with this technique integrates better with

respect to a standard unlit shader normally used for point clouds.

Figure 3.15 - Model rendered with the PBR shader seen from different viewpoints under the same lighting condition

Figure 3.16 - Comparison between PBR and unlit shaded point clouds under different lighting conditions

47

3.4 Test scene: background 360° video of an indoor

basketball court

In this first test scene the objective is to try to better contextualize the point cloud

model by inserting it into an environment it might be found in. The background

choice fell on a 360 degrees video uploaded on YouTube by the Columbia

International University representing an indoor basketball court with some people

playing around [35]. The main goal is to check if it is possible to achieve realism

for an application like Virtual Reality by placing the lit point cloud in a pre-

recorded environment with the possibility to observe the model from any

viewpoint.

The video comes up in the equirectangular format, so it can be easily rendered on

the scene’s skybox using a Render Texture and the built-in Skybox/Panoramic

shader. By creating a new material using this shader and applying it to the skybox,

the video can be played by a video player component placed in the scene and

visualized in 360 degrees as in a Virtual Reality setting.

The next step is to create a script that takes the frames of the model and generates

the point cloud animation at runtime. Since each frame of the animation is stored

in a different mesh container, the easiest solution to create the animation is to load

all meshes in a list data structure and update at each frame the mesh used by the

Figure 3.17 - A snapshot of the indoor basketball court video in equirectangular format

48

MeshFilter component in Unity to change the mesh drawn on the screen and use

a variable to store the current index of the mesh used in the list. This results in

changing the rendered model at each frame, thus recreating the animation.

Now that the background and animation are set, it is possible to take the animated

point cloud with PBR shader and insert it into the environment to check how it

fits.

A few issues in the rendered scene can be spotted related to the integration of the

point cloud with the video:

➢ Although the figures belonging to the background video slightly show some

weak shadows, regarding the point cloud no shadow at all is visible.

Figure 3.18 – PBR Point cloud model placed in a scene with the indoor 360 video rendered on the

skybox

Figure 3.19 - Background depth issue: figures in background don't follow the point

cloud behavior

49

➢ When the camera is moved towards or away from the point cloud, there is

no sense of depth coming from the video: while the point cloud correctly

becomes smaller or bigger accordingly to the camera movement, the

background remains exactly the same (Figure 3.19).

➢ Another issue related to camera movement, if the viewpoint is rotated

around the point cloud to see the animation from a different angle there is

no feeling of the model being on a fixed spot but there is an illusion of

fluctuation of the figure over the court. The issue can already be observed

in Figure 3.19 where the camera is just moved forward but it is more

evident by rotating the camera as in Figure 3.20.

Figure 3.20 - Fluctuation issue: when rotating the camera it looks like the player fluctuates over

the court

Figure 3.21 - Depth issue: the point cloud is rendered on top of a character that should be in

front of it

50

➢ Another issue related to depth, being the video rendered on the skybox its

content will always be drawn behind the 3D models placed in the scene. So,

if one of the characters in the video walks “in front” of the point cloud, the

point cloud will still be rendered in the foreground (Figure 3.21).

The shadows related issue could be solved by putting other 3D models in the

scene, like a plane, where the shadow would be projected on. This would, however,

break the realism of the scene since the newly added models would be rendered

on top of the background, resulting in a very strange look (see Figure 3.22 as an

example). For the same reason, in this setting nothing can be done to solve the

other issues as well. The Unity’s skybox represents the content of the scene placed

on an infinite distance from the camera and it will always be rendered behind any

other model inserted in the scene.

In conclusion, it is not possible to render a realistic scene by just using a

background video on the skybox and a 3D point cloud with a dynamic camera with

six degrees of freedom. The camera translation would break the realism of the

scene, while a camera with only rotation enabled might still work in some

circumstances. To produce realistic scenes, other 3D models need to be placed

together with the point cloud, with the background having a content on a

sufficient distance to prevent unrealistic behaviors when the images overlap.

Figure 3.22 - The insertion of a plane in the scene covers the background video

51

3.5 Test scene: indoor room with different lights

Before testing another scene with a background video, another scene is tested,

with just 3D models besides the point cloud. By taking inspiration from the typical

room used to test global illumination algorithms (like the one shown in Figure

2.19), an indoor room is created by linking together some cubes. Then, three

planes emitting light of different colors are used, which act as the only light

sources in the scene. The goal is to demonstrate how the point cloud rendered

with PBR is influenced by the light emitters while there is no effect on the unlit

point cloud. An overview of the scene without the models is available in Figure

3.23.

In the figures on the next page it will be shown, by placing the two models in

different positions of the room, how the PBR point cloud integrates well with the

environment by showing a color tending to nearby lights whereas the other point

cloud is not influenced by light and doesn’t look realistic. It is shown on the left of

each figure the PBR point cloud while on the right the unlit point cloud. Also, to

provide a better look to the scene, some post processing effects have been added,

like Tonemapping and Bloom.

As already shown in the very first scene used to compare PBR and unlit point

clouds (Figure 3.15-16), the model rendered with PBR is effectively able to react

Figure 3.23 - Representation of a room with three different light sources of different color

52

to environment lighting when placed nearby a light source, getting brighter or

darker according to the distance from lights.

In the next scenes more complex environments will be used, with a 3D model

representing a full basketball court and background videos providing better

context and global illumination.

Figure 3.24 - Comparison between the visual look of the PBR and standard point clouds placed in

different locations of the scene

53

3.6 Test scene: outdoor basketball court in a daylight

environment

As previously stated, to obtain a realistic scene a good context is needed to place

the point cloud in. Since a background video alone is, as demonstrated in Section

3.4, unusable due to the issues it introduces, other 3D models are needed to be

placed in fore-midground to contextualize the point cloud model, while the

background needs to contain subjects distant enough not to interfere with the

models.

Regarding the 3D model, the choice went to an outdoor basketball court created

by the SketchFab user Klieg3D [36], and the same model will be used for all the

next scenes. The model is interesting for a series of reasons, the most important

being:

➢ It is a basketball court, which is the natural environment in which the

specific point cloud model in use would be found in.

➢ It has been ideated as an outdoor court, which gives wider alternative

choices about the background to use in the scene, being outdoor videos less

likely to interfere with the animations (e.g. in closed environments it would

be more likely to have people walking too “close” to the 3D models and

overlap).

➢ It is surrounded by a grate, which allows to produce interesting shadow

patterns under some lighting conditions.

➢ It has four lamps, which gives the opportunity to play with very different

lighting conditions switching from daylight to artificial lighting provided

by such lamps in a night setting.

For this scene a daylight setting will be used and as background a 360 degrees

video recorded on a beach in California with some beach volley fields has been

chosen [37]. Like the previous video used in Section 3.4, this is also in

equirectangular format and can be rendered in the skybox in the same way.

54

The lights and lighting settings of the scene are applied as follows:

➢ Only a single, directional light is used as light source, except for ambient

lighting given by the skybox. The light direction is oriented in a way to

make it consistent with the position of the sun in the background video.

Also, the environmental lighting intensity given by the skybox is increased

to make the scene a little brighter and better simulate daylight.

➢ The occlusion parameter of the lit point cloud material is increased to 0.45

to make it a little brighter as well.

➢ Post processing effects are applied to the scene, in particular:

o Tonemapping with ACES mode.

Figure 3.25 - 3D model of the outdoor basketball court with a directional light

Figure 3.26 - Snapshot of the 360 degrees beach video in equirectangular format

55

o Bloom with an intensity of 10 to make the sunlight glow.

o A low intensity vignette effect.

o Some post exposure from the color adjustments effect, to furtherly

increase the global brightness of the scene.

With these settings, the point clouds with the two different materials subjects of

comparison are finally inserted in the scene for visualization. In Figure 3.27 the

point cloud with PBR material is placed on the left, while the one on the right is

unlit. Although the unlit point cloud, being very bright, suits quite well the

surrounding environment, it still is not as realistic as the point cloud rendered with

PBR which shows a darker appearance due to occlusions and self-occlusions of the

model, noticeable on the neck of the player, on the t-shirt and on the lower part

of the ball. In the figures on the next page we also try to change viewpoint and

zoom in the models to visualize and compare smaller details. As in the previous

comparisons, the point cloud rendered with PBR is placed on the left while the

unlit point cloud is on the right.

As already pointed out in previous sections, when using PBR many smaller details

become more distinguishable, like the t-shirt folds which due to the harder

shadows produced by self-occlusion become more highlighted, for example

regarding the upper part of the clothing in the first, second and fourth comparison.

Figure 3.27 - First comparison between PBR and unlit point clouds in daylight condition

56

Figure 3.28 - Comparison between PBR and unlit point clouds from different viewpoints

57

In the first comparison it is also clear how, with PBR, the incoming light direction

is projected on the model, being the left side of the player in shadow, while this is

not happening on the unlit point cloud. The same happens in the third

comparison, where the point cloud rendered with PBR appears darker as light hits

the model from the opposite direction. Self-occlusions are also visible in other

parts of the model rendered with PBR, for example in the second comparison

where the player’s arm projects a shadow on the t-shirt, and in the fourth

comparison where the player’s arm also projects a stronger shadow on the ball

with respect to the model using the unlit shader.

Additional comparisons can be made to check how the model reacts when it’s

occluded by other objects in the scene. In Figure 3.29 two different comparisons

are made.

In the first one the model is placed under the basket support, trying to shield the

player from light as much as possible. It can be clearly noted how the PBR model

becomes darker due to the projected shadow except for small areas on the player’s

hand and leg, while the behavior of the second model doesn’t correspond to what

expected in this condition.

The same happens in the second comparison, where the light direction is slightly

modified to stretch the shadow produced by the grates surrounding the court and

the overall ambient light intensity has been lowered to highlight the shadows even

more. When placed in the shadowed zone produced by the grate, the PBR model

produces an interesting shadow pattern which corresponds to what happens in a

real setting, while the second model does not show the same behavior.

In conclusion we can say that in a daylight environment the PBR point cloud is

more suited to realistically reflect the external lighting condition with respect to a

point cloud using a standard shader, both by exploiting self-occlusions to create

photorealistic shadows and occlusions due to other objects in the scene.

58

3.7 Test scene: outdoor basketball court in a night

environment

In this new scene the lighting conditions and background are modified in order to

recreate a night environment. Regarding the background, a video recorded in an

empty city square at night is used [38]. However, this video is not stored in

equirectangular format as the previous ones, but in a different one called

equiangular format, which projects a 360 image on a cubemap instead of a sphere.

Thus, the video cannot be rendered on the skybox as done in the previous cases,

but it is necessary to unpack the cubemap and assign its faces in the correct

positions to recreate the original 360 video during rendering. The actual shader

implementation is taken from GitHub [39] with a minor change to render a 2D

Figure 3.29 - Comparison between the models when occluded by the basket support and the grate

59

projection instead of 3D. By using a material associated to this shader, the

background can now be rendered on the skybox as done in the previous scenes.

The scene lights and settings are applied as follows:

➢ No directional lights are used. Instead, we take advantage of the 3D court

model structure and a spotlight is placed on each of the four lamps on the

court sides. To illuminate the court in the best possible way, the spotlights

are not completely oriented in the vertical direction, but they are slightly

directed towards the center of the court. We also place a strong point light

at the source position of each spotlight to better simulate the glowing effect

of light emitted from lamps.

➢ Ambient lighting intensity given by the background is set slightly higher

than 1.0 to avoid having the areas not reached by light completely black.

➢ The occlusion parameter of the PBR material is kept unaltered from the

previous scene.

➢ Post processing effects are applied:

o Tonemapping with ACES mode.

o Bloom with a higher intensity than in the previous scene (around

50.0)

o Vignette with the same parameters as the previous scene.

o No post exposure is applied.

Figure 3.30 - Frame of the night square video in equiangular format and its cubemap projection

60

After light baking the final look of the scene is shown in Figure 3.31. Everything

is now set up and ready for the insertion of the models and make the usual

comparisons.

For the first comparison the two models are put on the center of the emission cone

of one of the spotlights. It is immediately evident how the point cloud using the

unlit shader does not really fit with the environment, being very bright, while with

PBR the point cloud is highly influenced by the dark lighting condition, with

strong shadows on the right side, where no direct lighting reaches the player from.

If the orientation of the model is slightly modified to face the light, as expected

the model using PBR becomes more evenly bright.

Figure 3.31 - Basketball court under night lighting conditions

Figure 3.32 - First comparison between PBR and unlit point clouds in night condition

61

Then the two models can be placed in different positions of the court to see how

light fades out by moving away from light sources, until the PBR model gets almost

black at the middle of the court, and then back illuminated on the other side.

Figure 3.33 - Comparison between PBR and unlit point clouds when they face one of the spotlights

62

In conclusion we can say that also in a night environment a point cloud rendered

with PBR is better integrated into the scene with respect to the same point cloud

rendered with a standard shader, which results in being too bright and not

following the expected behavior in such lighting conditions as opposed to PBR

which, instead, does.

Figure 3.34 - Point clouds placed in different locations of the court

63

3.8 Test scene: playing with metalness and

smoothness parameters

As mentioned in Section 2.2.1, one of the most powerful features provided by PBR

is its capability of emulating metallic and glass-like materials, thanks to the

microfacet theory and the energy-conserving principle. Until now we have been

using a PBR point cloud with both metalness and smoothness parameters equal

to zero, which is reasonable with respect to the nature of the represented model

and the purpose of the previous scenes, which was trying to integrate a point cloud

rendered with PBR in an environment to obtain a photorealistic result.

In this scene the focus will not be on integrating a point cloud inside an

environment but on demonstrating how point clouds, as meshes, can be used to

render different type of materials, for example perfect mirrors. To do this, we will

firstly reuse the daylight scene analyzed in Section 3.6 and then we will use as

background various environment textures rendered on the skybox without the use

of the basketball court model. The used environment textures are freely available

on [40].

To set up the scene the following modifications are made:

➢ To render a material representing a perfect mirror, the smoothness and

metalness parameters are both modified to 1.0.

➢ The occlusion parameter of the material is also increased to approximately

0.7-0.8 to have a brighter model allowing to better distinguish the

environment reflection.

➢ A reflection probe is placed above the model in the scene, to capture the

environment to be reflected by the point cloud.

➢ Bloom is reduced in intensity to avoid annoying strong shining effects due

to light reflection from the point cloud, which in turn prevent to easily

distinguish the environment reflection.

64

In the next series of figures the point cloud reflecting the environment as a perfect

mirror is shown for various environments. Note how the reflection is not perfect

since the point cloud still uses its original color as albedo, so pixels that have a

black color do not show any reflection, whereas white pixels well reflect the

surroundings. Some imperfections are also due to the nature of the model, which

is not a completely smooth surface as a sphere but represents a human figure with

varying curvature which wears a t-shirt presenting many folds as analyzed in

previous scenes.

Also note how the effect of the directional light bouncing on the model changes

with respect to the previous settings, due to the different nature of the point cloud

material. Being the smoothness at its maximum, when light hits the object a shiny

effect is produced which, in this case, is slightly amplified by the bloom effect, still

used to a limited extent. In this scene we can also appreciate the power of Image

Based Lighting, described in Section 2.2.1. It is evident how the point cloud, when

placed in different environments showing different lighting dynamics, still looks

physically accurate regardless of the specific environment.

65

Beware that it is not possible to zoom in too much the models to appreciate very

small details. Remember that the model used for these scenes is still a point cloud,

so if it is observed from too close it will result in being able to distinguish the

distinct points the model is made of and see through the holes between them. This

is valid in any application using point clouds, not just for this specific scene.

Figure 3.35 - Point cloud rendered as a perfect mirror placed in different environments

67

4 Applications

In this chapter a short overview of potential applications where animated point

clouds coupled with PBR may come up handy is given. Although at present day

their use might still not be very affordable in many circumstances due to the high

cost, both economic and computational, of producing them which needs many

scanners placed around the objects and many computation systems to parallelize

the effort and produce the result in a fast way, there are many fields that could

potentially benefit from a wide exploitation of such models. The focus will be

mainly on three macro areas: learning, advertising and entertainment.

4.1 Learning

There are many areas where a point cloud might be used to teach something to a

user, going from classic environments as school and academic settings to sports,

where the learning target are specific movements or gestures. Some examples of

applications where animated point clouds can be used in this field are:

➢ Guided Tours: tours are constrained by the presence of physical guides

which show and explain the particularities of the tour subject (which can

be a museum, an archeological site or historical cities and events) in a

certain order and under possible constraints like the time to reach a

location or weather conditions. Guides can potentially be acquired as an

animated point cloud with audio that can be rendered in Augmented

Reality to allow higher flexibility on the tour and giving tourists the

possibility to decide which items to visit and in which order with less

constraints regarding time or otherwise.

➢ Surgery simulations: to teach students how to conduct a particular surgery,

a sample intervention can be acquired as an animated point cloud that can

68

be visualized on a digital screen of any kind and as many times as needed

by each student to fully understand it. Moreover, it allows to see the

intervention from different viewpoints around the operating bed, giving a

deeper insight on what is going on without the possible issue of

overcrowding caused by an in-presence demonstration of a teacher in front

of several students that would constrain free mobility of students in the

environment and keeping a good sight on the teacher’s movements.

➢ Digital personal trainers: a lot of smartphone applications have been

developed to allow users to practice gym exercises from home. A feature of

these apps is the presence of a 3D model of a coach which shows the user

the correct execution of the specific exercise under practice. The 3D model

can be replaced with an animated point cloud which behaves exactly the

same thing but represents a real coach doing the exercise and allows the

user to rotate and zoom the viewpoint to check specific details of the correct

position to assume during the exercise.

➢ Other sports where specific movements need to be learnt, like martial arts,

dance. The use of a point cloud representing a trainer of the discipline can

be used to effectively study the movements to reproduce the target

technique. Exercises from different sports can also be represented, for

example the animated point cloud of the basketball player widely used in

this document could be used to show how to execute a specific dribble drill

in an effective way, or team schemes could also be scanned and proposed

during training.

Figure 4.1 - Digital coach showing how to execute an exercise

69

4.2 Advertising

When a product is advertised, somehow it needs to be shown to customers to let

them know what it is about. For some products there is no need to haven available

360 view, but there are cases in which it could come up handy and point clouds

can be effectively used in these scenarios. For example, possible use cases are:

➢ Clothing advertisement: to sponsor clothing online, many pictures are

usually needed to show the item as seen from different angulations to the

potential customer. All these pictures can be substituted by a single point

cloud which can be rotated and zoomed in different ways to satisfy the

customer’s needs. As a further development, it could be possible to have an

animated avatar wearing the item or, with the help of Augmented Reality,

the customer itself who can see herself wearing the clothing at the mirror,

showing how it fits. The concept can be applied to any kind of clothing

item, including shoes and caps.

➢ Any other product advertising that might benefit in showing the good from

various viewpoints. Examples might be:

o Vehicles, which could be visualized in 360 degrees instead of a

single slightly rotated picture.

o Furniture, to better see an item from any perspective and check if

it would fit an apartment space.

Figure 4.2 - Clothing advertising project from [41]. The Kinect sensor detects a user standing in front of the installation (a). The user

interacts with the application, by Kinect or smart screen (b). The user can simulate the fitting of the dress concept created (c)

70

o Entire houses, allowing a potential customer to navigate inside the

rooms from remote.

4.3 Entertainment

The entertainment field is probably the one which would most benefit from the

use of point clouds due to the widespread use of digital media in many

applications. The most suited uses would be in:

➢ Videogames: probably the application which most drives the development

of Computer Graphics, animated point clouds could be used to substitute

3D meshes and save a lot of work needed to create animations by designers.

➢ Movies: most modern movies make extensive use of Computer-Generated

Imagery (CGI), and animated point clouds could be used in this context.

They could also be used in the production process of animated films, by

substituting 3D models which are currently used.

➢ Immersive experiences: in such applications, users are typically inserted

into an environment which is created in some way and visualized with the

help of Extended Reality. The environment could be scanned from the real

world and represented as an animated point cloud, allowing to render the

whole background as a single model.

4.4 Conclusion

In this chapter a not exhaustive overview of how animated point clouds could be

used in some fields. These models are very powerful, and they can potentially

substitute other commonly used 3D models in any application thanks to the easier

process of creation and acquisition. However, at present day, technology is still far

from being suited for an extensive use of animated point clouds since they require

a considerable computational effort to be acquired and processed in a fast way.

71

Also note that the use of PBR is not mandatory in any of the mentioned

applications, but as shown above in this document by using point clouds with just

their own color results in having a model disconnected from the environment in

which is placed and gives a strange look to the scene. By using PBR, the point

cloud fits better into the scene and gives a better overall appearance to the

rendered image.

73

5 Conclusion & Future Works

In this work the goal was to demonstrate how an animated point cloud rendered

with PBR could achieve better realism during visualization with respect to a point

cloud rendered with a basic unlit shader using just the original vertices colors of

the model. We first had to make sure that all vertices belonging to the model were

associated to the estimated surface normal vectors to allow a proper lighting

behavior, then models were imported in Unity and, through a sequence of

different scenes with different environments and lighting conditions we

highlighted the differences between using PBR or not.

It has been observed how with PBR a point cloud better integrates with the

surrounding environment in any lighting condition, by casting shadows due to

direct lighting and self-occlusions. It was also shown that it is possible, for a point

cloud using PBR, to render different kind of materials as glass-like and mirrors in

a physically plausible way. As point clouds are becoming more and more popular,

using PBR to render them would be a benefit for many applications, going from

simple model visualization to immersive experiences in Virtual or Mixed Reality.

Using as an example the proposed scene in the night environment (Section 3.7),

an immersive experience using an unlit shader would break the realism and

immersivity of the entire scene by showing a very bright object in such a dark

environment. With PBR the issue can be avoided, by providing realistic lighting

in any condition.

This work was intended to show the potential of using PBR to render point clouds

but there are many areas and topics that were left uncovered and beyond its

purpose, which can be subject of future developments for improvement:

➢ The method we used to visualize the animation of the basketball player is

rather inefficient. This is partially due to the fact that each frame of the

animation was stored as a different mesh model, resulting in the necessity

74

to remove from the scene the previous model and draw the next one from

scratch at each frame, which is a very expensive operation considering that

each model of the basketball_player sequence comprises of about three

million vertices with color and normal vectors information (about 80MBs

per model). Although we have never imported and used all the 600 frames

of the animation due to storage limitations, since at runtime the models

are stored together in a list, even using just 20 frames of the animation

results in occupying about 1.5 GBs of RAM. Consequently, by increasing

the number of frames used, when the animation is played it results in being

definitely slow. By using about 30 frames an average of 12 frames per

seconds, touching a minimum of 5 frames per seconds, was estimated on

the testing machine. Hence the efficiency of the process is a good area to

explore for future works.

➢ In this work we used pre-recorded videos or textures rendered on the

skybox as background, however there might be the possibility to acquire

other point clouds and use them as background as well. In this way the

background would also be a 3D model and we could obtain a similar result

to what we were trying to achieve in our first scene (Section 3.4) without

the related discovered issues when the background was placed on the

skybox.

➢ The execution of the process in real-time, potentially useful for

autonomous or remote-control devices, which would need intelligent

cameras for a correct normal estimation on-the-fly to avoid the necessity

of doing it by hand as a post-scan operation of the point cloud.

75

Bibliography

[1] MPEG-PCC, "Introduction to the MPEG-PCC project," 2019. [Online].

Available: https://mpeg-pcc.org/.

[2] F. Poux, "How to Automate Voxel Modelling of 3D Point Cloud with

Python," 13 Dec 2021. [Online]. Available:

https://towardsdatascience.com/how-to-automate-voxel-modelling-of-3d-

point-cloud-with-python-459f4d43a227.

[3] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki and A.

Tabatabai, "An overview of ongoing point cloud compression

standardization activities: video-based (V-PCC) and geometry-based (G-

PCC)," APSIPA Transactions on Signal and Information Processing, vol. 9,

p. e13, 2020.

[4] E. Zerman, C. Ozcinar, P. Gao and A. Smolic, "Textured Mesh vs Coloured

Point Cloud: A Subjective Study for Volumetric Video Compression," in

Twelfth International Conference on Quality of Multimedia Experience

(QoMEX), Athlone, Ireland, 2020.

[5] Y. Zhu and H. Rushmeier, "Point Clouds are Eating the World, One

Application at a Time," 5 January 2021. [Online]. Available:

https://www.sigarch.org/point-clouds-are-eating-the-world/.

[6] Q. Wang and M.-K. Kim, "Applications of 3D point cloud data in the

construction industry: A fifteen-year review from 2004 to 2018," Advanced

Engineering Informatics, vol. 39, pp. 306-319, 2019.

[7] M. Wilson, "What is a LiDAR scanner, the iPhone 12 Pro's camera upgrade,

anyway?," TechRadar, 15 Jul 2021. [Online]. Available:

76

https://www.techradar.com/news/what-is-a-lidar-scanner-the-iphone-12-

pros-rumored-camera-upgrade-anyway. [Accessed 19 Jan 2022].

[8] Q. Wang, Y. Tan and Z. Mei, "Computational Methods of Acquisition and

Processing of 3D Point Cloud Data for Construction Applications,"

Archives of Computational Methods in Engineering volume, vol. 27, pp.

479-499, 2020.

[9] C. Thomson, "Reality capture 101: point clouds, photogrammetry and

LiDAR," Vercator, 19 Nov 2019. [Online]. Available:

https://info.vercator.com/blog/reality-capture-101-point-clouds-

photogrammetry-and-lidar. [Accessed 19 Jan 2022].

[10] D. Medda, Y. M. Anoffo, C. Perra and D. Giusto, "Automated point cloud

acquisition systemusing multiple RGB-D cameras," in Proc. SPIE 11353,

Optics, Photonics and Digital Technologies for Imaging Applications VI,

2020.

[11] E. S. Jang, M. Preda, K. Mammou, A. M. Tourapis, J. Kim, D. Graziosi, S.

Rhyu and M. Budagavi, "Video-Based Point-Cloud-Compression Standard

in MPEG:," IEEE Signal Processing Magazine, vol. 36, no. 3, pp. 118-123,

May 2019.

[12] A. Akhtar, W. Gao, L. Li, Z. Li, W. Jia and S. Liu, "Video-based Point Cloud

Compression Artifact Removal," IEEE Transactions on Multimedia, 2021.

[13] S. Schwarz, N. Sheikhipur, V. Fakour Sevom and M. M. Hannuksela, "Video

coding of dynamic 3D point cloud data," APSIPA Transactions on Signal

and Information Processing, vol. 8, Dec 2019.

[14] C. Cao, M. Preda and T. Zaharia, "What’s new in Point Cloud

Compression?," Global Journal of Engineering Sciences, vol. 4, no. 5, 2020.

77

[15] H. Nobuhara and K. Hirota, "Color Image Compression/Reconstruction by

YUV," in IEEE Annual Meeting of the Fuzzy Information, Banff, AB,

Canada, 2004.

[16] S. Schwarz and al, "Emerging MPEG Standards for Point Cloud

Compression," IEEE Journal on Emerging and Selected Topics in Circuits

and Systems, vol. 9, 2019.

[17] M. Preda, "G-PCC codec description," WG 7, MPEG 3D Graphics Coding,

2021.

[18] X. Sheng, L. Li, D. Liu and Z. Xiong, "Attribute Artifacts Removal for

Geometry-based Point Cloud Compression," 1 Dec 2021. [Online].

Available: https://arxiv.org/pdf/2112.00560.pdf.

[19] J. Wang, H. Zhu, H. Liu and Z. Ma, "Lossy Point Cloud Geometry

Compression via End-to-End Learning," IEEE Transactions on Circuits and

Systems for Video Technology, vol. 31, no. 12, pp. 4909 - 4923, 2021.

[20] D. Tian, H. Ochimizu, C. Feng, R. Cohen and A. Vetro, "Geometric

distortion metrics for point cloud compression," in 2017 IEEE International

Conference on Image Processing (ICIP), Beijing, China, 2017.

[21] Autodesk, "Introduction to rendering," Autodesk, 09 Sep 2014. [Online].

Available: https://knowledge.autodesk.com/support/maya/learn-

explore/caas/CloudHelp/cloudhelp/2015/ENU/Maya/files/About-

rendering-and-renderers-Introduction-to-rendering-htm.html. [Accessed

21 Jan 2022].

[22] "Basic lighting", LearnOpenGL, [Online]. Available:

https://learnopengl.com/Lighting/Basic-Lighting. [Accessed 21 Jan 2022].

78

[23] "Advanced Lighting", LearnOpenGL, [Online]. Available:

https://learnopengl.com/Advanced-Lighting/Advanced-Lighting.

[Accessed 21 Jan 2022].

[24] A. Martin, "Radiosity," Worcester Polytechnic Institute, 1999. [Online].

Available:

https://web.cs.wpi.edu/~matt/courses/cs563/talks/radiosity.html.

[Accessed 23 Jan 2022].

[25] "PBR Theory", "LearnOpenGL," [Online]. Available:

https://learnopengl.com/PBR/Theory. [Accessed 24 Jan 2022].

[26] J. Russell, "Basic Theory of Physically-Based Rendering," Marmoset, 5 Nov

2020. [Online]. Available: https://marmoset.co/posts/basic-theory-of-

physically-based-rendering/. [Accessed 25 Jan 2022].

[27] "Diffuse Irradiance", "LearnOpenGL," [Online]. Available:

https://learnopengl.com/PBR/IBL/Diffuse-irradiance. [Accessed 26 Jan

2022].

[28] "Specular IBL", "LearnOpenGL," [Online]. Available:

https://learnopengl.com/PBR/IBL/Specular-IBL. [Accessed 26 Jan 2022].

[29] P. Debevec, "Paul Debevec Home Page," [Online]. Available:

https://www.pauldebevec.com. [Accessed 27 Jan 2022].

[30] Otoy, "LightStage," Otoy, [Online]. Available:

https://home.otoy.com/capture/lightstage/overview. [Accessed 27 Jan

2022].

[31] T. Sun, Z. Xu, X. Zhang, S. Fanello, C. Rhemann, P. Debevec, J. T. Barron,

Y.-T. Tsai and R. Ramamoorthi, "Light Stage Super-Resolution:

79

Continuous High-Frequency Relighting," ACM Transactions on Graphics

(TOG), vol. 39, no. 6, pp. 1-12, 2020.

[32] Y. Xu, Y. Lu and Z. Wen, "Owlii Dynamic human mesh sequence dataset,"

in ISO/IEC JTC1/SC29/WG11 m41658, 120th MPEG Meeting, Macau,

2017.

[33] S. Molnar, B. Kelenyi and L. Tamas, "ToFNest: Efficient normal estimation

for time-of-flight depth cameras," in 2021 IEEE/CVF International

Conference on Computer Vision Workshops (ICCVW), Montreal, BC,

Canada, 2021.

[34] Keijiro, "Pcx," GitHub Repository, 2021. [Online]. Available:

https://github.com/keijiro/Pcx.

[35] Columbia International University, "YouTube," 16 Aug 2021. [Online].

Available: https://www.youtube.com/watch?v=0NSAKO-YQak.

[36] Klieg3D, "SketchFab," 30 Aug 2020. [Online]. Available:

https://sketchfab.com/3d-models/basketball-court-

d2ea5bc76e094f1a9e6aa15891bd6885.

[37] FluentEsl, "YouTube," 16 Dec 2020. [Online]. Available:

https://www.youtube.com/watch?v=u7GPUqT3E_c.

[38] LuckyKid88, "YouTube," 23 Jan 2018. [Online]. Available:

https://www.youtube.com/watch?v=0KXDZd6rF58.

[39] Hakanai, "EACSkyboxShader," GitHub Repository, 31 May 2018. [Online].

Available: https://github.com/hakanai/EACSkyboxShader.

[40] Texturify, "Environment Panoramas," [Online]. Available:

https://texturify.com/category/environment-panoramas.html.

80

[41] P. Cremonesi, F. G. M. Garzotto and P. I. M. Piazzolla, "Toward a New

Fashion Concepts Design Tool: The vMannequin Framework," in

Workshop on Business Models and ICT Technologies for the Fashion

Supply Chain, 2017.

