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Abstract

Spacecraft navigation involves using measurements to ascertain the spacecraft’s current
and future position and attitude. The navigation task is crucial and it involves using
sensors, actuators, and dynamical models. In this thesis, the problem of relative naviga-
tion between a chaser and target spacecraft which are in close proximity to each other
is investigated. A number of applications including formation flying, On-Orbit Servicing
(O-O8S) of operational satellites, and Active Debris Removal (ADR) takes advantage of
models adopted for this problem. In such a scenario, the active satellite which is the chaser
would be required to estimate the relative state with high accuracy to meet the controller
requirements and to avoid the collision between the spacecrafts. The target spacecraft has
fiducial markers called ArUco and the camera on chaser is used to obtain the images of the
target. Prior to determining the target/chaser relative position and attitude, images are
acquired and analyzed to determine the pose using computer vision algorithms and this
pose estimate is then incorporated into the particle filter’s measurement equation. Rel-

ative position and attitude estimates were obtained with good accuracy using this method.

Keywords: Relative Navigation, ArUco, Particle Filter
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Abstract in lingua italiana

La navigazione del veicolo spaziale implica 'utilizzo di misurazioni per accertare la po-
sizione e I'atteggiamento attuali e futuri del veicolo spaziale. Il compito di navigazione &
cruciale e comporta 'utilizzo di sensori, attuatori e modelli dinamici. In questa tesi, viene
indagato il problema della navigazione relativa tra un inseguitore e un veicolo spaziale
bersaglio che sono in stretta vicinanza 1'uno all’altro. Numerose applicazioni tra cui il
volo in formazione, il servizio in orbita (O-OS) di satelliti operativi e la rimozione attiva
dei detriti (ADR) sfruttano i modelli adottati per questo problema. In tale scenario, il
satellite attivo che ¢ il cacciatore dovrebbe stimare lo stato relativo con elevata preci-
sione per soddisfare i requisiti del controllore ed evitare la collisione tra i veicoli spaziali.
Il veicolo spaziale bersaglio ha marcatori fiduciari chiamati ArUco e la telecamera sul
cacciatore viene utilizzato per ottenere le immagini del bersaglio. Prima di determinare
la posizione e atteggiamento relativi del bersaglio/inseguitore, le immagini vengono ac-
quisite e analizzate per determinare la posa utilizzando algoritmi di visione artificiale e
questa stima della posa viene quindi incorporata nell’equazione di misurazione del filtro
antiparticolato. Le stime relative di posizione e assetto sono state ottenute con buona

precisione utilizzando questo metodo.

Parole chiave: Navigazione relativa, ArUco, Filtro antiparticolato



]_ Introduction

Spacecraft navigation involves using measurements to ascertain the spacecraft’s current
and future position and attitude. The navigation task is crucial and it involves using
sensors, actuators, and dynamical models. Spacecraft absolute navigation refers to the
determination of location of spacecraft with respect to an inertial reference frame. Space-
craft relative navigation, or the challenge of determining the relative position and attitude
of two separate space objects’ reference frames, is the subject of this thesis. Furthermore,
big organizations like NASA have recognised the need to greatly increase spacecraft auton-
omy to support next-generation space missions|13|. In fact, spacecraft missions has to deal
with communication delays and no contact with ground stations and autonomy enables

to provide less dependency on ground support and more robustness to the mission|31, 41].

In this thesis, the problem of autonomous relative navigation between a chaser and tar-
get spacecraft which are in close proximity to each other is investigated. A number of
applications including formation flying|45], On-Orbit Servicing (O-OS)[11] of operational
satellites, and Active Debris Removal (ADR)[46| takes advantage of models adopted for
this problem. In such a scenario, the active satellite which is the chaser would be required
to estimate the relative state with high accuracy to meet the controller requirements and
to avoid the collision between the spacecrafts. Even though, there are very few missions
employing autonomy in space, due to its many benefits, the major space agencies are

becoming more interested in a progressive automation of space missions|36].

The target spacecraft can be categorised into cooperative and uncooperative space objects.
In case of cooperative target, it can be actively or passively interacting with the chaser
spacecraft. The actively cooperative target scenario involves a communication link between
the chaser and the target, who both have a vague understanding of their own states. This
method can be used in FF and O-OS settings where great precision is required because the
navigation performance in this instance is often quite high[29|. In other circumstances, the
target may also be collaborating passively by leaving artificial markers on the spacecraft
body that the chaser spacecraft can identify and follow[37]. Navigation may be done here

as well, and it will be extremely accurate.
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The lack of data given by the target spacecraft causes the navigation performance to
necessarily suffer when interacting with uncooperative targets. To generate a relative state
estimate in this case, complex software techniques must be used with passive or active
sensors. However, even a basic understanding of the geometry of the target spacecraft
(such a CAD model) can greatly enhance the relative state estimation|36]. The problem of
uncooperative targets, which are particularly challenging to approach, is also given special
consideration. In reality, the relative navigation problem is extremely challenging to solve
because there is no prior information of the target body and there is a lot of ambiguity
about its motions.As a result, cutting-edge, customized, technological, and algorithmic
solutions must be considered. Prior to determining the target /chaser relative position and
attitude, images are acquired and analyzed to determine the pose and this pose estimate

is then incorporated into the filter’'s measurement equation|36].

The need for orbital robotic missions has grown over the past few years for a variety of
reasons, including the need to extend the useful life of satellites, reuse special orbital slots,
and lower the risk of orbital collision. The satellite’s autonomous navigation capacity is a
crucial element in such robotic missions since it enables it to carry out relative navigation,
maintenance, and repair with little assistance from humans|39]. Relative pose estimation

plays a significant role in autonomous GNC for orbiting spacecraft.

1.1. Relative Navigation in Space

This section provides a quick overview of significant previous space missions that used
various relative navigation techniques. There have been a lot of technological demonstra-
tion missions as a result of the growing interest in autonomous proximity operations. At

first, cooperative target missions are examined followed by uncooperative space objects.

The Engineering Test Satellite ETS-7 launched in 1997 is a good example for autonomous
relative navigation in space. It was launched by the Japan Aerospace Exploration Agency
(JAXA) and was made up of a chaser (Hikoboshi) and a resident space target (Orihime).
The coordinated control of the robotic arm and satellite orientation, visual examination,
and satellite handling were effectively demonstrated|28]. A 2 meter long, 6 degrees of
freedom (DOF) manipulator arm placed on the spacecraft enabled it to conduct a variety
of fascinating orbital experiments. It was built and launched by the National Space
Development Agency of Japan (NASDA) in November 1997. The mission was divided
into two subtasks: performing robotic tests and autonomous rendezvous and docking. Its
primary goal was to test robotics technology and show its applicability for unmanned

orbital operation and servicing chores. Final stage steering was only accomplished along
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the V-bar of the Hill frame. Throughout the mission, several abnormalities led to safe
mode entry. A planned maneuver moved the chaser spacecraft 2.5 m away from its target

due to guidance and navigation failure[28|.

In 2005, NASA launched the XSS-11 spacecraft, which was designed to operate in close
proximity to its carrier, the second stage of the Minotaur I rocket. To intercept that stage

as well as other spent stages near to its orbit, the XSS-11 was outfitted with a camera
and a LiDAR|9].

In April 2005, NASA launched the DART spacecraft one week after XSS-11. It developed
a goal to show off the technology and software required for Automated Rendezvous and
Docking (ARVD) up to a few meters from the target in space. For attitude and transla-
tional control, the vehicle used a linear static gain feedback control law, and modulation
was accomplished using a pulse width approach. Anomalies and an on-orbit collision
were caused by using more fuel than necessary|[28|. The mission’s initial approach to the
target was unsuccessful. This was caused by a skew of almost 0.6 m/sec in the primary
Global Positioning System (GPS) receiver’s velocity measurement. Its navigation filter
diverged as a result, which led to inaccurate thruster firing. DART eventually impacted
the target due to ineffective collision avoidance. This shows categorically that ARVD is
not yet developed enough to be a secure technology. It also emphasizes how important it
is to create approach trajectories that assure collision avoidance for some typical failures

while also lowering the possibility of catastrophic failures|28|.

The DARPA Orbital Express Advanced Technology Demonstration project is an impor-
tant mission that is focused on ARVD and the use of robotic technology in space after
DART. The mission, which was launched in March 2007, was intended to support a vari-
ety of future commercial space initiatives and security needs for the United States. This
mission evaluated the viability of utilizing robotic, autonomous on-orbit refueling and
satellite reconfiguration. Critical technologies for OOS systems, such as servicing inter-
faces, autonomous GNC systems, close proximity operations were shown by the Orbital
Express mission|28]. Multiple docking scenarios of increasing difficulty were attempted
in order to test the system’s capacity for autonomous fault reaction. It has shown that
it is capable of approaching, relocating, autonomously capturing the target satellite, and
using robotics for subsequent servicing. This project encompasses important technologies
for robotic OOS of co-operatively built assets in the future, which are still considered
non-cooperative targets because they cannot be manoeuvred to speed up the berthing or
docking procedure. The incorporation of two distinct patterns on the target spacecraft
to estimate its pose is particularly noteworthy: one larger size pattern was used during

far approaches, and the other was specifically created to support visual navigation during
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proximity or close range operations when the chaser is within a range of 5 meters from
the target[28]. A DARPA project called the SUMO is intended to do OOS with various

client spacecraft without the need for servicing aids.

PRISMA, which was launched in 2010, is another significant mission exhibiting au-
tonomous spacecraft proximity operations. In order to demonstrate the viability of using
relative navigation techniques (such as GPS-based, RF, or vision-based to enable future

FF operations), the chaser made a variety of maneuvers and relative encounters around

the target spacecraft throughout the course of the mission[15, 36].

Figure 1: PRISMA Spacecraft[5]

Additionally, docking with the International Space Station (ISS) has grown in importance
as a challenge to be solved, and in 2009, the Canadian Space Agency and NASA proposed
a LiDAR-based solution. TriDAR (Triangulation and Light Detection and Ranging Auto-
mated Rendezvous and Docking) is a combined system that consists of a thermal imager

and a LiDAR for automated rendezvous and docking|38|. To recover crucial informa-
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tion like the relative range and location between the spacecraft and the ISS, up to 1
km distance, the shape of the target is presumed to be known and is compared to the
estimated one. This technology was used by the Cygnus spacecraft on three Space Shut-
tle missions|[10]. A comparable sensor component called DragonEye is also used by the
Dragon spacecraft. Up to 750 m, relative GPS navigation is employed; after that, LIDAR,
DragonEye, and thermal cameras are used to follow the ISS[16].

1.2. Relative Spacecraft Motion Estimation

Relative pose estimation for the spacecraft is used in problems of formation flying, docking
and close proximity operations and is becoming more important for such problems. If the
target is known and cooperative, the problem of estimating is much easier compared to
unknown and uncooperative space objects. In addition, this type of estimation requires
relative sensors such as light beacons, differential GPS receivers or artificial markers on
the target spacecraft[35]. In this thesis, we look at the problem that the target is known
and cooperative and that there are artificial markers on the target spacecraft which is
viewed by the camera on the chaser spacecraft. There is a lot of literature dealing with

the cooperative objects and it will be discussed briefly in the following section.

The rationale behind cooperative pose determination methods is that a small subset of
features that are retrieved from the acquired datasets can be used to estimate the relative
attitude and position of a target spacecraft body frame with respect to a chaser spacecraft
sensor reference frame. They specifically correspond to passive/active artificial markers
that are installed on the target surface and whose 3D position in target body frame is
known; these markers often produce more distinct echoes than natural features (such as
corners)|[33|. As a result, the pose determination procedure must incorporate methods

for appropriately matching the observed markers within a catalog that is maintained on

board.

The line of sight of the markers’ centroid in sensor frame is first extracted from monocular
pictures using processing techniques. This can be accomplished by employing fairly com-
mon image processing methods, which typically involve steps for feature detection and
image segmentation. Of course, the geometry and configuration of the markers will deter-
mine which strategy is best. The real markers are then matched to the extracted features
(by utilizing knowledge of either their shared geometry or individual shape), resulting in
a predetermined number (n) of 2D to 3D point correspondences[33]. The process of de-
termining the relative position and orientation of a camera with respect to the observed

scene (for example, the target), also known as extrinsic camera calibration[42], can be
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dealt with by solving the Perspective-n-Point (PnP) problem, provided that there are n
matches between real world and image points. Fischler and Bolles first proposed this task
to ascertain the 3D position of the image points in the sensor frame if their corresponding
3D position in a real-world coordinate system (for example, the target frame) is already
known|[22]. Recently, however, this task has taken on a more broad meaning within the

involved scientific community, i.e., it is equivalent to pose determination.

Strong attempts have been made recently to identify PnP-solutions that are concurrently
precise, quick, and robust to outliers.[21, 25, 30] This is crucial in order to eliminate
incorrect matches brought on by inaccurate marker detections. This might happen in the

space environment because of the strange visibility circumstances.

Monocular and 3D techniques both involve establishing the relative attitude and position
between two reference frames given a set of n 3D-to-3D point correspondences, so once
the markers’ 3D positions in sensor frame are known, there are no conceptual distinctions
between the two[33|. It goes without saying that in order to extract the cooperative mark-
ers and perform the matching function, 3D techniques still need to process the collected

3D data in advance.

If n is three, in the sensor and target frames, at least two directions (denoted by the
relative position vectors of the marker) can be computed|33|. By using TRIADI[40], a
deterministic method with numerous variations, this information can be used to recreate
the relative rotation matrix. Potentially higher unique unit vectors can be computed in
both reference frames if n is more than three. The QUEST algorithm|[40]|, which has
also undergone various improvements, is one probabilistic strategy that can be used to
take use of these multiple vector measurements for relative attitude determination. Given
the relative rotation matrix, it is possible to characterize a marker’s location in terms
of the target and sensor origins in the same reference frame, with the result that the
difference between the two represents an approximation of the relative translation. The
pose estimate method can be carried out directly utilizing the 3D position information of
the markers, it is important to note. In particular, the best transformation required to
line up two patterns of 3D points can be used to calculate the 6-DOF pose parameters|33|.
This can be accomplished by leveraging techniques like the Singular Value Decomposition
to minimize the cost function, which is commonly expressed as the sum of Euclidean
distances between corresponding points[14, 27, 43|. It is important to note that these
methods, which are widely used for a variety of robotic applications, are also appropriate
for non-cooperative pose determination tasks, for which point correspondences are less
accurate and the size of the 3D point pattern is much larger than for cooperative tasks.

However, in a more general scenario, the PnP can be viewed as a black box that, given
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the Markers’ 3D position in target frame and their line of sight in sensor frame, outputs

the relative position vector and rotation matrix directly|33].

1.3. Rendering in Space Applications

A quick overview of rendering softwares is given in this final part. Accurate space imaging
software is a crucial tool when working with visual relative navigation techniques; in fact,
because of its quick prototyping capabilities, it can be a beneficial instrument to deploy
in conjunction with an experimental GNC facility. It is also frequently highly efficient
to run rendering engines on such GPUs, which, when clustered in a server, may give
a significant amount of computational capacity, thanks to the ongoing advancements in

graphic processor technology|38].

There are currently some space imaging programs available, such as PANGU|6|, a program
developed by the University of Dundee in Scotland with assistance from the ESA. To
test vision-guided navigation, guidance, and landing systems, it may produce camera
and LiDAR images of various planetary bodies and spacecraft. Only ESA projects are

permitted to utilize the software, which is licensed and cost-free.

Airbus Defence and Space has created additional software that is comparable. Its name is
SurRender|8|, and it makes use of a ray-tracing engine to produce pictures specifically for
space scenes including planetary approach, landing, and in-orbit rendezvous. On request,
the software is available for free usage. Both programs quantitatively include different
effects brought on by the environment in which the camera is situated. Examples include
internal light scattering and lens distortion in cameras, motion blur, electronic sounds,
and rolling shutter|38|.

In this thesis, synthetic images of target spacecraft are created using Blender. In the
entertainment sector, Blender|[3|, a free and open source 3D creation suite, is widely used
for animation, film production, and 3D modeling. Even though Blender is a widely used
reference tool for 3D modeling of satellites and asteroids, to the author’s knowledge no

significant space-related tools have been built in it.

1.4. Thesis Outline

The aim of this thesis is the relative pose estimation of the target spacecraft with respect
to chaser spacecraft using the ArUco markers on the target spacecraft body. A particle
filter is designed to improve the estimated pose given the computer vision algorithms. In

Chapter 2, the reference frames used in the thesis is presented and the equations of motion
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for the chaser spacecraft and the relative dynamical models are described. The various
environment disturbances considered along with the models is also discussed. In Chapter
3, the observational model is presented and a detailed description of ArUco markers along
with the generation, detection and estimation of those markers is illustrated. Chapter 4
presents the filtering method employed in this thesis and the general theory with the
algorithm and the tool it is implemented in is described. The results are presented in

detail in Chapter 5 of this report.



2 ‘ Mathematical Model

In order to determine the relative motion of spacecrafts, accurate models are required. In
this thesis, the target and chaser are assumed to be in circular orbits and in close proximity.
Then the most famous relative dynamics model by Clohessy and Wiltshire[17] is used. In
case of chaser spacecraft dynamics, the environmental disturbances are considered and
Cowell’s method is used to integrate the equations of motion. Runge Kutta-4 method is

used to propagate the states.

2.1. Reference Frames

Standard reference frames are used in this thesis. Earth Centered Inertial frame is used to
denote the chaser position and the propagation of chaser states (translation and rotation)
is done in this frame. There are two spacecrafts considered: chaser and target. Chaser
spacecraft is the active one and target spacecraft is the passive one. The body frames
of both spacecrafts are considered to be Local Vertical - Local Horizontal (LVLH) frame.
The relative propagation is done in LVLH frame and it is input into Blender software. It
has a camera which has it’s own sensor frame and the openCV functions used in MatLab

has a different camera frame and those frames are also presented here for completeness.

- Earth Centered Inertial Reference frame (ECI): I directed from the center of the Earth
towards the vernal equinox, K is normal to the equatorial plane and towards the north

pole and J completes the right hand triad.

- Local Vertical - Local Horizontal frame (LVLH): The origin is the center of mass of
the spacecraft,  directed from the origin radially outward, 2 is normal to orbital plane
positive in the direction of angular momentum vector and ¢y completes the right hand

triad. For a circular orbit, ¢ aligns along the velocity vector.

-Blender camera frame: The camera looks along the -Z axis, Y oriented up and X com-

pletes the frame.

-OpenCV camera frame: Camera principal axis aligned with positive 7 axis , Y axis is

oriented downward and X axis completes the right-handed frame.
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Blender

Figure 4: Blender and OpenCV Frame|2]

2.2. Chaser Orbital Dynamics

Assuming there are only two objects in space and the gravitational field is the only

interaction between them, we get the following equation for keplerian orbits[18]:

. r
FTTHS

Any effect that makes the object to deviate from the Keplerian orbit is considered as a

perturbation and the perturbations usually considered are atmospheric drag, solar radia-

tion pressure, nonspherical central body and the above equation is modified as follows to

include the perturbations|18]:
. r
f=—p—+p
r

The vector p includes all other perturbations other than the spherical gravitational field
contribution. The above equation is integrated numerically to obtain the predicted posi-

tion r and velocity v given the initial conditions (rg,vp).

2.2.1. Gravitational Perturbations

Many of the spinning celestial bodies are not perfectly spherical in shape and can be con-
sidered as oblate spheroids. The gravitational field for such a planet varies with latitude

and radius because of the equatorial bulge. Spherical harmonics is used to derive the
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formula for the perturbing acceleration due to gravitational effects. J; is the largest zonal
harmonic and to simplify the model, the contribution due to .J; to the perturbing acceler-
ation is considered and others are ignored|18]. The perturbing gravitational acceleration

p due to J is given by:

3 J R2 2 R 2 R 2 .
p=oP T (52 )i+ Y (52 —1)j+ 2 (52 —3)k
2 7t r 72 r\ r? r\ r2

2.2.2. Atmospheric Drag

For Earth, altitude above 100 km is considered as outer space and the air density at this
altitude is still strong enough to alter the spacecraft motion. The drag will reduce the
velocity and altitude of the spacecraft and it can eventually crash to the Earth’s surface if
not burned up in the atmosphere. There are several models that describe the atmospheric
properties and a simple model is the US Standard Atmosphere 1976 and an exponential
interpolation is used to obtain the intermediate values|[18]. The perturbing acceleration

due to drag is given by:

2.3. Chaser Attitude Equations of Motion

The equations of rigid body motion can be used to study the attitude dynamics of space-
craft. In this section, we will discuss the disturbance torques acting on the spacecraft
and the sensors and actuators models used to control the angular velocity and attitude
of the chaser spacecraft. The disturbance torques considered are gravity gradient torque,
atmospheric drag torque and magnetic torque. Gyro and star sensors are used as sensors

and reaction wheels are used as actuators.

2.3.1. Disturbance Torques

Gravity Gradient Torque

The gravity gradient torque is caused by the gravitational force acting on the spacecraft
body. It’s impact on spacecraft with non-symmetric body is much higher. The gravity

gradient torque is given by|[26]:
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where R is the position vector of the spacecraft with respect to the Earth, I is moment

of inertia matrix and p is Earth’s gravitational constant.

Atmospheric Drag Torque

The aerodynamic drag torque is caused by the atmosphere around the spacecraft resisting
it’s motion. Atmospheric density and area of the spacecraft interacting with the atmo-
sphere influences the amount of torque generated. The magnitude of the torque increases
exponentially as the altitude decreases and hence is an important disturbance to be ac-
counted for low earth orbits. It acts in the opposite direction of the velocity for the

spacecraft|26]. The atmospheric drag torque is given by:

Naero = Fae’/‘o X Rcom

with ,
Foero = —§pODv2(N.\7)\7dA

where C'p is drag coefficient, p is density, v is velocity, dA is exposed area.

Magnetic Torque

The magnetic torque is generated by the interaction of Earth’s magnetic field with the
magnetic field produced within the spacecraft. The magnetic dipole of spacecraft structure

is the major contributor for this torque[26|. The magnetic torque is given by:
Ny =mx B

where m is the magnetic moment of spacecraft and B is the Earth’s magnetic field.

2.3.2. Sensors

Gyroscope

A rate gyroscope measures the angular velocity of the spacecraft in it’s body frame. These

measurements are affected by bias and white noise and the simple gyro model is given as:
w=w+b+mn,

where b is the bias and 7, is the Gaussian white noise.
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Star Sensor

Star sensors are one of the most accurate attitude determination sensors available and it

is modelled as a typical measurement as follows:
e=e+b+mn

where e is euler angles, b is the euler angle bias and 7, is the Gaussian white noise.

2.3.3. Actuators

Reaction Wheels

Reaction wheels affect the inertia of the body and must be modelled before the attitude
dynamics. Three reaction wheels with one on each axis and with it’s own angular velocity
wg; and angular acceleration ag; is implemented for the chaser spacecraft. The total
angular momentum of the chaser spacecraft is given by the following equation where &g/ ;
is the angular velocity of the chaser spacecraft|32].
3
Hs= IpWp)r + Z IR wrifigi

=1

where ng; denotes the reaction wheel’s rotation axis and 5, denotes the reaction wheel

nertia matrix.

A simple PD control is used and the desired torque to be placed on spacecraft can be
computed by:
Mdesired = _kp<€i - 6desired> - kd(wi - wdesired)
The above equation is equated to the equation of torque placed on spacecraft as:
NR
Miesirea = Mp = Z Ifapiig = Ja

i=1

The angular acceleration of the reaction wheel is then computed as follows:

a= (JTJ)_l JTMdesired
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2.3.4. Complimentary Filter
If q is the covariance of model noise and r is the covariance of the measurement noise,
then the filter is designed as|32]:

T=(1—-8)y+si”

where q~! =s and r' =1 — s and 7 is the apriori estimate.

When s = 1, the new and the previous estimate are the same and that the sensor cannot
be relied upon. When s = 0, the new estimate matches the sensor measurement and that
the model noise cannot be relied upon. It is a first order filter and can be used when the

knowledge of covariance is high.

2.3.5. Kinematic and Dynamic Model

The derivative of angular velocity can be found by using Euler’s equations of motion and

the reaction wheel are also included in that equation.
Gpyr =T N — (w x Tw)]

where N= N_.,,~-Ngw. N is the external disturbance torques acting on spacecraft and

Ngrw is the torque produced by the reaction wheel.

The attitude is propagated using the following equation and quaternion is used to repre-
sent the attitude.

do 0 —p —q —r qo
ol _Llip 0 7 —q| o
2 2 q —r 0 p q2
qs r q —p 0 qs

where ¢; are the quaternions and p, q, r are angular velocity vector in body frame.

2.4. Relative Spacecraft Motion Model

2.4.1. Relative Translational Model

The relative dynamics is described by Clohessy-Wiltshire equations and it holds for nearly
circular orbits and the relative distance between target and chaser less than the radius of
the orbit.
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& = 3n’z + 2ny
Y= —2nz
Z=-n"z
where x-axis is along radius vector, z-axis along angular momentum vector and y-axis
completes the frame. The closed form solution for these equations are given by:

sinnt 2 .
to + — (1 — cosnt)yo
n

x(t) = (4 — 3cosnt)xy +

2 4sinnt — 3nt
y(t) = 6(sinnt — nt)xo + yo — —(1 — cosnt)ig + MQO
n n
Z0 .
z(t) = zp cosnt + — sinnt
n
where
we JE
3

and a is the semi-major axis of the spacecraft.

2.4.2. Relative Rotational Model

The relative rotational dynamics is given in the chaser frame as follows|12]:
I[)U:J = IODIfl [Nl — DT((.U +CL)O) X [1DT((.U —f—(,&)o)] — [OWO X W — [NO — wp X [0(4)0]

where the subscript 0 represents the chaser spacecraft values, subscript subscript 1 rep-
resents target spacecraft values and D is the rotation matrix from target to the chaser.

The rotation matrix D(f3) is given below:

Bi% = B — Bs® + By 2(B182 — B3) 2(818s + B200)
D(B) = 2(8182 + B30o) —Bi* + 32" — Bs* + Bo” 2(B25 — 1)
2(B185 — B2/%) 2(B235 + B1o) —Bi* — Bo” + B3 + Bo”
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The relative quaternion can be propagated directly from the kinematic relation as follows:

5o 0 —w, —wy, —w,
51 1w 0 Wy  —Wwy
B B wy —w, 0 Wy
B3 Wy wy —w, 0

where w components are relative angular velocity values.
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3 ‘ Observation Model

3.1. Pinhole Camera Model

In computer vision, there are several models which explain the working of optical camera.
In this section, we describe the pinhole camera model which is a simple model for the
camera which gives accurate results. In this concept, any point in the environment can
send a single light ray into the pinhole. The size of the image in relation to the far-off
object is determined by just one camera parameter called focal length after this point is

"projected" onto an image plane that is always in focus|34].

P = (f\’u' ’ }"u'- Zu‘ )

/

optical
axis

A
A
\

principal
point
(Ca; Cy)

I

Figure 5: Pinhole Camera Model|7|

The focal length is determined by measuring the distance between the image plane and
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the pinhole camera aperture. Consequently, the following equations can be used to project

object points into image points:

Cc
u=—f—

Z.

Y.

Tz
The pinhole camera model can now be rearranged in an equivalent form that is simpler
mathematically. This can be done by switching the pinhole and picture plane, so that
the object now appears to be right side up. The center of projection now stands in for
the former pinhole point. Each ray that emanates from the object in this perspective
is pointed toward the center of projection and intersects the image plane. The primary
point is the location where the optical axis and the picture plane converge. The picture
of the distant object in this updated version of the pinhole camera model is the same size
as it was on the image plane in the original version. The item image is no longer upside

down, hence the negative sign has vanished|34].

The center of the imager chip must be included, and since it is not on the optical axis, two
new parameters, ¢, and c,, must be introduced to describe a potential displacement of
the center of coordinates on the image plane with respect to the optical axis. As a result,
the following equations may be used to create a very straightforward model in which a
point P in the real world with coordinates of (X, Yy, Z,) is projected onto the image

plane at some pixel location given by (u,v)[7, 34]:

Xe
u:fx7+cx

Ye
v:fy7+cy

Two distinct focal lengths f, and f,, have been introduced. Additionally, the focal length
f» (as well as f,) is actually the result of the physical focal length (typically measured in
millimeters units) of the lens used by the camera and the size (typically measured in pixels
per millimeter units) of the individual imager elements, meaning that f, unit is in pixels.
The size of the imager elements and the physical focal length cannot be determined directly
by any camera calibration technique; instead, only combinations of these parameters may

be derived without actually disassembling the camera and measuring its individual parts.

Projective transform refers to the relationship that converts a collection of points P in the

real world with coordinates (X, Y,,, Z,,) to points projected on the image with coordinates
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(u,v). It is practical to utilize the well-known homogeneous coordinates for this type of
change. With the additional restriction that any two points whose values are proportional
are actually comparable points, these coordinates associated with a point in a projective
space of dimension n are commonly written as a (n+1)-dimensional vector[34]. Since
the image plane in this application is the projective space, the two-dimensional image
coordinates are now represented by a three-dimensional vector, 7 = (u,v,w). By dividing
through by w, keeping in mind the additional limitation, the pixel coordinates can be
obtained. The camera-defining characteristics can be rearranged in a single 3 x 3 matrix
(A), also known as the camera intrinsic matrix, thanks to the homogeneous coordinates.
The following short form now describes how the item points in the real world are projected

onto the camera:

p= AP
Uu fr 0 ¢ Xu
where p= |v |, A=1|0 f, ¢,| and P= Y,

3.1.1. Camera Intrinsic Parameters

The camera’s intrinsic parameters are those that are most directly related to its physical
properties. Some of them, like the focal lengths (f, and f,) and the optic center (¢, ¢,),
which make up the camera intrinsic matrix A, have already been discussed by the pinhole
model. There are additional lens distortion-related characteristics which will be defined

but are not used in the model.

There are primarily two types of lens distortions: tangential distortion results from the
construction of the camera, while radial distortion results from the curvature of the lens.
The positioning of pixels close to the boundaries of the image plane is frequently distorted

by the lenses of real cameras. The "fisheye" effect is a result of this phenomena.

There are five parameters that correct lens distortion and these factors are typically com-
bined into a distortion vector, which makes it possible to convert the raw pixel coordinates
Q into the right coordinates that most closely match the 3D point with its image-plane
projection P[7, 34].

3.1.2. Camera Extrinsic Parameters

The relationship between the camera reference system and another arbitrary system is

covered by the extrinsic parameters. In actuality, there hasn’t been any discussion of the
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physical world’s object reference system up to this point. Since the preceding relationship
was established, P = (X, Y., Z,) corresponds to the projection’s center. The world
coordinate reference system is a distinct Euclidean coordinate frame that is typically
used to express points in space. Translation and a rotation are used to connect the two

coordinate frames considered.

T World
coordinate
syslem

Camera
coordinate

Figure 6: World and Camera Coordinate frame Relation|19]

The translation of the two systems causes the camera’s origin and the coordinate frame
for the object to coincide. In this application, it is the actual distance between the object
point and the camera’s center of projection. It stands for the offset between the two
origins. It enables a comparable representation of a point position in a different reference
frame when the angle is rotated. The rotation in the three-dimensional space needed for
these two systems can be broken down into three separate two-dimensional rotations, each

centered around one of the x, y, and z axes.
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3.1.3. Formulation and Solution

The homogeneous transformation represents the shift in basis from the world coordinate
system (w) to the camera coordinate system (c), and it is conveyed by the extrinsic
parameters R and t. In order to acquire the representation of the point P in the camera

coordinate system, P., given its representation in world coordinates, P,,, we use|7|:

R, a 3-by-3 rotation matrix, and t, a 3-by-1 translation vector, make up this homogeneous

transformation:
o T2 T3t
R t] |t T2 T3
0 1| |ra T T L
0 0 0 1
and therefore:
Xe rin riz 3 te| | Xu
Yol  rar 12 123 fy| | Y
Zol s ore ores o t| | Ze
1 0 0 0 1 1

Combining the equations for intrinsics and extrinsics, we can formulate

sp = A[R|t] P,
as
Xuw
u fo 0 cp| |1 rm2 Tzt v
S|v| = 0 fy Cy 21 T929 T23 ty Zw
1 0 0 1] [rar 73 133 L, 1w

3.2. ArUco Markers

A synthetic square marker known as an ArUco marker consists of a large black border
and an inside binary matrix that serves as the marker’s identifier (id). Additionally,
it is feasible to estimate the camera pose, which entails determining the position and
orientation of the camera in relation to the markers, if the camera has been calibrated,

meaning that its intrinsic properties are known.



3| Observation Model 23

Figure 7: Example of ArUco Marker

ArUco markers come in a variety of categories, each of which belongs to a dictionary. The
amount of markers and inner squares that encode the binary pattern varies amongst the

dictionaries.

The benefits of these markers, in addition to their quick and reliable identification, include
the fact that each one offers a 4-point vector (representing the image’s corners) and a
special ID that distinguishes them based on their pattern and the dictionary to which
they belong. The 4-point vector’s corner pixel coordinates are also arranged clockwise,
beginning with the upper-right corner. This information provides a marker with its related

reference system.

The detection procedure must produce a list of identified markers when given an image
with ArUco markers. Each found marker consists of: its four corners’ placement in the
picture (in their original order) and the marker’s identifier[1]. There are two basic steps

in the marker detecting process:

1. Finding potential marker candidates: This stage involves analyzing the image to
identify potential marker possibilities, such as square shapes. The markers are
first segmented using adaptive thresholding. Next, contours are recovered from the
thresholded image, and any that are not convex or roughly square in shape are

removed|1].

2. By examining their internal codification, it is crucial to ascertain whether the can-

didates found during candidate detection are in fact markers. The first stage in this
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process is to separate each marker’s marker bits. To do this, the marker’s canonical
form is first obtained by applying a perspective transformation. After that, Otsu
thresholding is used to separate the white and black bits in the original image. In
accordance with the size of the border and the markers, the image is divided into
several cells. Then, to establish if a cell contains a white or a black bit, the number
of black or white pixels in each cell is tallied. The bits are finally examined to
establish whether the marker belongs to the particular dictionary. Techniques for

correcting errors are used as necessary|1].

corner 0=(-5/2,5/2,0) corner 1=(s/2,5/2,0)
corner 3=(-s/2,-s/2,0) corner 2=(s/2,-5/2,0)

s= marker size

Figure 8: ArUco Relative Coordinate System|34|

After finding the markers, you’ll presumably want to get their camera position as your

next move.

You must be aware of your camera’s calibration parameters in order to do camera pose
estimation. These are the distortion coefficients and camera matrix. With ArUco mark-
ers, you can individually estimate each marker’s pose while estimating the pose. The
3D transformation from the marker coordinate system to the camera coordinate system
determines the camera pose in relation to a marker. Vectors for rotation and translation
define it. A function to estimate the postures of all the observed markers is offered by the
ArUco module[1].
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4: ‘ Estimation Methodology

4.1. Particle Filter

Particle filters are a widely prominent class of numerical approaches for the resolution
of optimal estimation problems in non-linear non-Gaussian settings since its inception
in 1993|23]. The main benefit of particle approaches over conventional approximation
techniques, such as the well-known Extended Kalman Filter, is that they don’t rely on any
local linearization methods or rudimentary functional approximations. These methods are
computationally expensive, thus there is a cost associated with this versatility. However,
similar techniques are already applied in real-time applications in a variety of domains,
including robotics, financial econometrics, computer vision, target tracking, and chemical

engineering, because of the availability of ever-increasing computational capacity.

At time n=1
e Sample X} ~ q(xq|1).

p( X1 )g( v lX7)

q( Xi|y1) and W} oc wi (X7).

e Compute the weights w; (X}) =

e Resample { W], X} to obtain N equally-weighted particles {%Ii} :
At time n = 2
e Sample X} ~ ql[ur:n|ynffi‘_1] and set X} (fim_l._ Xf!) :

.‘?(.'ul'n X:,Jf{'\::Jx:L lj
'?{X:ily-"'x:i I}

e Compute the weights o, (X} ) =

n=1:mn

and W} oc o (X2 4.,.) -

n=1mn

e Resample { W}, X} } to obtain N new equally-weighted particles {%Il }

l:m

Figure 9: General Algorithm of Particle Filter|20]
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All of the weights added together equal one. Without resampling, the particle filter
would instead result in a collection of distinct simulations, each with a unique weight or
probability. The so-called sample depletion would most likely take place. This indicates
that, in the absence of input from observation, all weights would go toward zero, save for
one that would be nearly equal to 1. The high value of weight just indicates that one
sequence in the collection of particles is more likely than the others, not that the predicted
state is nearer to the true one. The feedback from the observation is introduced through

resampling, which also ensures that the accurate state estimation does not vanish|36].

Like the UKF, the PF approach has no restrictions on the noise distribution and does
not rely on any local linearization techniques. Many instances where the EKF does not
perform well (involving highly non linearities) can benefit greatly from this flexibility. But
each of these benefits comes at a price. In actuality, the PF’s computational load is its
bottleneck|24].

Particle Filter function implemented in MatLab is used in this thesis. It requires to
provide two functions namely, State Transition Function and Measurement Likelihood

Function. The resampling policy can also defined in the particle filter object.
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5 ‘ Numerical Simulations

The chaser spacecraft states are propagated using Cowell’s method and the initial orbital
parameters are tabulated. The propagated position and velocity of the spacecraft for one

orbital period is shown in the figure.

Orbital Elements | Values
Orbital Height 600 km
Eccentricity 0.001
Inclination 15°
AOP 340°
RAAN 0°
TA 0°

Table 1: Chaser Initial Orbital Elements

6000

Figure 10: Chaser Orbit
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Reaction wheels are used to control the spacecraft and we can see that the reaction wheels
are working and the required attitude in euler angles [0 0 90°] and the required angular
velocity of [0 0 0.1]°/s is obtained.

4
X

35T e
z

Angular Velocity of RWs (rad/s)
o

3000 4000 5000 6000

Time (sec)

0 1000 2000

Figure 11: Angular Velocity of Reaction Wheels

Angular Velocity (rad/s)

Figure 12: Angular Velocity of Chaser
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Figure 13: Euler Angles of Chaser

5.1. Relative Orbit

Clohessy—Wiltshire equations are used to propagate the relative motion of spacecraft and
the initial conditions considered are [0 0 15| meters in relative position, [0 0 0.1]me-
ters/second in relative velocity, [0.006 0.006 0.12] deg/second in relative angular velocity
and relative quaternion is assumed as [1 0 0 0]. The plots obtained for the propagated

states are given below.
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Figure 14: Relative Position in LVLH Frame
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Figure 15: Relative Velocity in LVLH Frame
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Relative angular velocity (rad/s)

Relative quaternion
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Figure 16: Relative Angular Velocity
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5.2. Blender Setup

Blender is used to create the images that the chaser camera would view and used as the
measurement for the filter. Blender has a camera which is set as the origin to mimic the
chaser position. Then the relative parameters are given to the default cube in blender
which is the target and thus we have the similar geometry as in real environment. The
target spacecraft or ’‘Cube’ has ArUco markers on the faces and 6 different ArUco markers

were placed on all the faces of the cube.

Figure 18: Blender Setup

Modeling

User Perspective
(46) Collection | Cube

Figure 19: Target Spacecraft with ArUco markers
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Figure 20: Target Spacecraft in Camera perspective

5.3. Measurement Model Validation

In order to validate the measurement model, the images are taken in as input and openCV
functions in matlab are used to detect and estimate the position and orientation. This
is compared with the true values input into blender to check if they are accurate. The
blender and openCV camera reference frame is different and so rotation is required to be

able to compare them.

The ArUco images are generated using cv.drawMarkerAruco and the predefined dictionary

selected is 6 x 6(250). The generated ArUco markers are given below.

arucol aruco2 aruco3

arucod arucos arucob

Figure 21: Generated ArUco Markers
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The above ArUco markers are put on the sides of the cube. The cv.detectMarkers and
cv.drawDetectedMarkers are used to detect and identify the markers from the predefined

dictionaries. The identified image is given below:

Figure 22: Detected and Estimated ArUco Marker

The camera calibration matrix was obtained through blender and the camera matrix is

given by A. The focal length is considered as 250 mm and the units are in pixels for the

A matrix.
4444.4443359375 0 320
A= 0 4444.4443359375 240
0 0 1

The radial and tangential distortion as not considered and cv.estimatePoseSingle Markers
is used to estimate the pose. This function returns the rotation and translation parameters
and it is cross-checked with the true values. The position vector obtained through this
estimation is [-0.0068;-0.0513;30.4359] meters and the true value is [0;0;30] meters. For

the rotation, Blender camera was rotated [-180;0;0] to point at target and the obtained
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result is [-176.4404;-8.5880;0.0050]. This was multiplied by rotation matrix from opencv
to blender system to obtain [3.5596;8.5880;-0.0050] and the true value was [0;0;0]. This
validates to some extent the working of the measurement model and will require particle

filter to obtain more accurate results.

5.4. Filter Dynamical Model Validation

In order to validate the filter dynamical model separately, the code was designed to neglect
the measurements and take in only the predicted values. Hence there is no correction to
the states involved. Also, the errors are eliminated in the initial states of the filter so that
the errors don’t build up and deviate from the true state and hence it can be validated
if it matches with the true values. It can be seen from the plots that the true and the

particle filter estimates match since there are no measurements and no errors.

0 50 100 150 200 250 300 350 400 450 500

05 —

0 50 100 150 200 250 300 350 400 450 500

2
U e

] 50 100 150 200 250 300 350 400 450 500

Figure 23: Particle Filter Dynamical Model Validation for Relative Position
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Figure 24: Particle Filter Dynamical Model Validation for Relative Quaternion

5.5. Particle Filter Run

The particle filter is run including the measurements and the plots of the true and es-

timated values and the error values are given below and the duration of the run is 500

seconds.
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Figure 25: Particle Filter Estimate for Relative Position
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Figure 27: Particle Filter Estimate error for Relative Position
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q2 error

Figure 28:

Particle Filter Estimate error for Relative Quaternion
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6 ‘ Conclusions and future

developments

It is noted that the relative navigation is an important aspect for close proximity opera-
tions. Here, we have modelled the propagation of relative motion and used ArUco markers
to perform vision navigation. Then particle filter was used to improve those estimates. It

can be seen that the particle filter performs well to estimate those parameters.

Many further studies can be done related to this topic. Multiple cameras can be used
to perform vision navigation to get better results. The estimation methodology can be
changed to other filters or related to deep learning techniques. There are several other

fiducial markers available and their use can be tested for spacecraft relative navigation.
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A. ‘ Appendix A

A.1. Calibration Matrix from Blender

The following code is used to obtain the camera intrinsic matrix from Blender|[4].

scene = bpy.context.scene
f_in_mm = camd.lens

scale = scene.render.resolution_percentage / 100

resolution_x_in_px = scale * scene.render.resolution_x

resolution_y_in_px = scale * scene.render.resolution_y

sensor_size_in_mm =camd.sensor_width

pixel_aspect_ratio = scene.render.pixel_aspect_y / scene.render.pixel_aspect_x
view_fac_in_px = resolution_x_in_px

pixel_size_mm_per_px = sensor_size_in mm / f_in mm / view_fac_in_px

s_u =1/ pixel_size_mm_per_px
s_.v =1/ pixel_size_mm_per_px / pixel_aspect_ratio
u_0 = resolution_x_in_px / 2 - camd.shift_x * view_fac_in_px
v_0 = resolution_y_in_px / 2 + camd.shift_y * view_fac_in_px / pixel_aspect_ratio
skew = 0 # only use rectangular pixels
K = Matrix(
((s_u, skew, u_0),
¢ 0, s_v, v_0),
¢ o, 0, 1))
>>> K

Matrix(((7111.111328125, 0.0, 320.0),
(0.0, 7111.111328125, 240.0),
(0.0, 0.0, 1.0)))

A.2. Code to interface MatLab output to Blender

import bpy



A| Appendix A 45

import scipy.io
import numpy
import os
import glob
files=glob.glob(’/Users/Jim/Desktop/*’)
for £ in files:
os.remove (f)
mat = scipy.io.loadmat(’relativevaluestrue.mat’);
data=mat[’blenderout’];
Target_X=datal[:,0];
Target_Y=datal:,1];
Target_Z=datal:,2];
Eulerx=datal:,3];
Eulery=datal:,4];
Eulerz=datal[:,5];

rotation_steps=len(Eulerx);

def rotate_and_render(output_dir, output_file_pattern_string = ’render’d.jpg’,
rotation_steps=len(Eulerx), cube =bpy.context.editable_objects[0]):
import os
import math
cube.rotation_mode=’XYZ’;
original_rotation = cube.rotation_euler
original_location=cube.location
for step in range(0, rotation_steps):
cube.location.x=Target_X[step];
cube.location.y=Target_Y[step];

cube.location.z=Target_Z[step];

cube.rotation_euler.x = math.degrees(Eulerx[step]);

cube.rotation_euler.y = math.degrees(Eulery[step]);

cube.rotation_euler.z = math.degrees(Eulerz[step]);
bpy.context.scene.render.filepath = os.path.join(output_dir,
(output_file_pattern_string % step))
bpy.ops.render.render (write_still = True)
cube.rotation_euler = original_rotation
cube.location=original_location

rotate_and_render (’/Users/Jim/Desktop/Measurement_data’, ’render’d.jpg’)
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