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Abstract

Critical conjunctions in space are occurring at increasing frequency due to the
fast-growing and intensive use of space. Evidently, mitigating the consequent risk of
collisions is of utmost importance for a sustainable use of space. Prospectively, this
scenario is not expected to settle down in the near future, due to the recent plans
of large constellations deployment and to the trend of satellites miniaturisation.
For the above reasons, Collision Avoidance Manoeuvre (CAM) planning and
optimisation are becoming routine tasks of fundamental importance for a mission’s
success. The number of CAMs to be executed is expected to scale up in the
future. Consequently, it is paramount to promote the development of numerically
efficient methods for CAM design, possibly reaching on-board implementability.
A further challenge is posed in the field by the recent technological advances in
space propulsion. An increasing number of satellites are equipped with electric
thrusters to control their orbit through continuous low-thrust manoeuvres.

Within this framework, this thesis investigates the problems of designing both
impulsive and low-thrust optimal collision avoidance manoeuvres, with the aim
of developing robust and numerically efficient algorithms. To this purpose, the
conjunction dynamics is presented in Cartesian reference frame and then projected
onto the B-plane, centred at the secondary object. The optimal manoeuvres
are constrained in terms of Probability of Collision (PoC), Squared Mahalanobis
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Distance (SMD) and Miss Distance (MD) at the time of closest approach. Fully
analytical methods have been developed in the perspective of finding fast, reliable,
and iteration-free approaches to manoeuvre design.
In order to match operational requirements, starting from the analytical solution
of the unbounded control problem for low-thrust CAMs, a bang-bang structure is
achieved by applying a smoothing approach. Moreover, the investigation of purely
tangential manoeuvres is included.
The influence of environmental perturbations is also addressed and statistical analy-
ses using a large dataset of collisions are performed. Overall, the main assumptions
of the proposed methods are constant and uncorrelated covariances, short-term
encounters and spherical object approximation. The different approaches are
compared in terms of efficiency and robustness in a simulated scenario accounting
for orbital perturbations, which are shown to be negligible.
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Sommario

Le congiunzioni critiche tra satelliti in orbita si verificano con frequenza sempre
maggiore, a causa della rapida crescita e dell’intensività dell’uso dello spazio.
Mitigare il conseguente rischio di collisioni assume chiaramente la massima im-
portanza per un uso sostenibile dello spazio. Guardando al prossimo futuro,
non ci si aspetta che questo scenario si stabilizzi, a causa dei recenti progetti
di grandi costellazioni e della tendenza alla miniaturizzazione dei satelliti. Per
queste ragioni, la pianificazione e l’ottimizzazione delle manovre per evitare le
collisioni (CAM) sta diventando un compito di routine di fondamentale importanza
per il successo di una missione. Si prevede che il numero di CAM da eseguire
aumenterà in futuro. Di conseguenza, è fondamentale promuovere lo sviluppo di
metodi numericamente efficienti per la progettazione delle manovre, possibilmente
raggiungendo l’implementabilità a bordo. Un’ulteriore sfida nel campo è posta dai
recenti progressi tecnologici nella propulsione spaziale. Un numero crescente di
satelliti sono dotati di motori elettrici che permettono di controllare la loro orbita
attraverso manovre continue a bassa spinta.

Nel contesto presentato, questa tesi indaga il problema della progettazione di
manovre ottime sia impulsive sia a spinta continua, con l’obiettivo di sviluppare
algoritmi robusti e numericamente efficienti. A questo scopo, la dinamica di con-
giunzione dei due oggetti è presentata in un sistema di riferimento Cartesiano e poi
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proiettata sul B-plane, centrato sull’oggetto secondario. La manovre ottime sono
vincolate in termini di probabilità di collisione (PoC), di distanza di Mahalanobis
al quadrato (SMD) o di distanza Cartesiana (MD) al momento dell’incontro più
vicino tra i due oggetti. Sono stati sviluppati metodi completamente analitici
nella prospettiva di trovare approcci veloci, affidabili e privi di iterazioni per la
progettazione delle manovre.
Al fine di soddisfare i requisiti operativi, partendo dalla soluzione analitica del
problema di controllo senza restrizioni per manovre a spinta continua, è stato
inoltre ottenuto un profilo di accelerazione con struttura bang-bang applicando
un approccio di smoothing. In aggiunta sono state studiate soluzioni ottime per
manovre puramente tangenziali.
L’influenza delle perturbazioni orbitali è stata considerata e sono state effettuate
analisi statistiche utilizzando un ampio dataset di collisioni. Nel complesso, le
principali ipotesi dei metodi proposti sono: covarianze costanti e non correlate,
incontri di breve durata tra i corpi orbitanti e approssimazione sferica degli oggetti.
I diversi approcci sono stati confrontati in termini di efficienza e robustezza in uno
scenario simulato considerando le perturbazioni ambientali, verificandone quindi
la trascurabilità.
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CHAPTER1
Introduction

The motivation and the purpose of this dissertation are stated in this first
introductory chapter, starting from the presentation of the problems and the
limitations of the field of interest. Then, a brief description of the state of the art
of collision avoidance manoeuvres is provided. Finally, an outline of the thesis is
presented.

1.1 Space debris and collision avoidance manoeuvres

The ultimate purpose of providing efficient methods for CAM, which is the problem
tackled in this dissertation, is twofold: on the one hand to avoid damage to satellites,
and on the other to prevent the formation of space debris.
Space debris are all artificial objects orbiting the Earth, including fragments
resulting from previous collisions or parts of multistage launchers, other than a
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space vehicle that is active or liable to be used in another way, being in orbit.
Half of them is represented by entire objects (e.g. inactive satellites or launchers
upper stages), while the other half is composed by fragments of various shape and
size (resulting from explosions or collisions) or from objects lost during previous
missions (coverage, strap, etc.) [Mon19].

Figure 1.1: Distribution of space debris greater than 1 mm in orbit around Earth.
Source: [ESAc].

Figure 1.1 is a computer-generated image representing space debris as could be
seen from high Earth orbit. The two main debris fields are the ring of objects
in Geostationary Earth Orbit (GEO), at 36000 km of altitude, and the cloud of
objects in Low Earth Orbit (LEO), between 400 and 2000 km of altitude.
The number of debris objects estimated by statistical models to be in orbit is
reported:

• 34,000 objects greater than 10 cm;

• 900,000 objects from greater than 1 cm to 10 cm;

• 128 million objects from greater than 1 mm to 1 cm.

The total mass of all space objects in Earth orbit is more than 9,200 tonnes and
artificial pollution is now greater than the natural one due to meteorites. These
numbers are even more alarming considering that the total number of rocket
launches since the start of the space age in 1957 is just 6020 and given the large
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number of launches planned for the next period ([ESAc], information last updated
on January 8, 2021).

Figure 1.2: Evolution of number of objects in geocentric orbit by object class. Source:
[ESA20].

Table 1.1: Object Classifications.

Type Description

PL Payload
PF Payload Fragmentation Debris
PD Payload Debris
PM Payload Mission related Object
RB Rocket Body
RF Rocket Fragmentation Debris
RD Rocket Debris
RM Rocket Mission Related Object
UI Unidentified

As it can be seen from Figure 1.2 (legend in Table 1.1), the number of debris
objects has been steadily increasing since the beginning of the space age. This is
further fuelled by a large number of in-orbit break-ups of spacecraft and rocket
stages. The total area that space debris takes up is important as it is directly

3
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related to how many collisions we expect in the future. As things stand, collisions
between debris and working satellites are predicted to overtake explosions as the
dominant source of space junk.
Debris-creating events have become more common: on average over the last two
decades, 12 accidental fragmentations have occurred in space every year, and this
trend is unfortunately increasing. Fragmentation events are responsible for this
major issue and are created due to collisions, explosions, electrical problems and
even just the detachment of objects due to the harsh conditions in space.
The increasing number of resident space objects in orbit naturally leads to a
collision risk among satellites and/or debris. In addition to creating an enormous
amount of new fragments and incrementing the orbital pollution, such an impact
would damage the satellite, considering that space debris can reach speeds of
25,000 km/h, almost seven times faster than a bullet [NAS]. Figure 1.3 illustrates
the damage to the solar panels of the Hubble Space Telescope (HST).

Figure 1.3: Front view of penetration of HST solar array. Source: [ESAa].

The estimated total number of break-ups, explosions, collisions, or anomalous
events resulting in fragmentation tracked by Space Surveillance Networks since
the launch of the first Sputnik in 1957 is more than 560 [ESAc]. Figure 1.4 reveals
the causes of fragmentations events: although collisions are not the primary cause,
when they occur they do cause a huge amount of debris. Figure 1.5 depicts that a
large amount of junk was produced between 2005 and 2010; during this period a
serious collision happened between the Iridium 33 communications satellite and
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the derelict Russian Kosmos 2251 spacecraft, which resulted in the destruction of
both satellites.

Figure 1.4: Historical trend of fragmentation events per event cause. Source: [ESA20].

Figure 1.5: Historical trend of numbers of fragments produced by fragmentation events.
Source: [ESA20].

Existing international guidelines and standards clarify how a sustainable use of
space can be achieved:

• Design rockets and spacecraft to minimise the amount of shedding, material
becoming detached during launch and operation, due to the harsh conditions
of space.

5
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• Prevent explosions by releasing stored energy, “passivating” spacecraft once
at the end of their lives.

• Design end-of-life disposal of satellites, moving them out of the way of working
satellites.

• Prevent in-space impacts through careful choice of orbits and by performing
Collision Avoidance Manoeuvres.

This thesis focuses on the last measure, i.e., collision avoidance manoeuvre design.

1.2 State of the art

A collision avoidance manoeuvre is performed when, at the Time of Closest
Approach (TCA), a threshold on the miss distance (MD), or on the collision
probability (PoC), is exceeded.
Since 2009, Conjunction Messages have been sent by Joint Space Operations
Center (JSpOC) to all spacecraft owners and operators, concerning approximately
15000 objects listed in the Two-Line Element set (TLE) provided by US Strategic
Command (USSTRATCOM).
The information provided by the JSpOC consisted of a Conjunction Assessment
Report that contains information about a conjunction between a primary satellite
and another satellite or space object; it includes also the TCA, the miss distance,
relative position and velocity, observation statistics, the satellite covariance matrices
and the time of last acceptable observation. The standard format Conjunction
Summary Message (CSM)/Conjunction Data Message (CDM) is used for messages
being prepared by the Consultative Committee for Space Data Systems (CCSDS).
Detailed information about CDM can be found in [Spa13].

ESA has implemented the Space Situation Awareness (SSA) programme, which
aims to give Europe the necessary independence to acquire knowledge about
the situation in space. Indeed, Europe is currently dependent on non-European
information sources for its ability to monitor satellite sources of danger such
as natural phenomena, Near-Earth Object (NEO) and space debris. Providing
independent data and information, the SSA programme also enhances the reliability
and availability of space. The SSA programme focuses on Space Weather, NEOs,
and Space Surveillance and Tracking (SST). An overview of the programme can be
found in [Flo17]. SST refers to the capacity to detect, catalogue and predict the
movements of space objects orbiting the Earth. The European Union established
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in 2014 the Space Surveillance and Tracking Support Framework, also known as
the EU SST, with the Decision 541/2014/EU of the European Parliament and the
Council (SST Decision) [Pel20].

For a typical satellite in LEO, hundreds of alerts are issued every week. For most,
the risk of collision decreases as the week goes by and more orbital information is
gathered, but for some it is deemed high enough that further action is required.
As more satellites are launched into orbit, current “manual” methods for avoiding
in-space collisions, and the creation of debris, will not be enough.
Nowadays, CAMs are planned on-ground, with the support of specific tools. If
the pre-defined threshold on the probability or the miss distance is exceeded, a
manoeuvre is designed by mission planners. The Space Debris Office (SDO) is the
department of the European Space Agency (ESA) in charge of all the activities
concerning space debris; a complete description of the SDO current collision
avoidance service can be found in [Mer17].

From a rigorous standpoint, a collision avoidance manoeuvre is said to be optimal
when it reduces the collision probability of a satellite with one, or more, space
objects to a prescribed threshold while minimising a cost quantity.
Most research deals with optimising impulsive manoeuvres. In order to provide a
fast and efficient numerical scheme to plan last-minute and out of plane manoeuvres,
Bombardelli et al. in [Bom15], [Bom14a] and [Bom14b] studied closed-form analytic
expressions and presented an efficient numerical scheme to solve the optimisation
problem in its most general form. In [Bom14a] and [Bom14b], a formulation of
the relative dynamics model, valid for a generic collision geometry and arbitrary
eccentricity, is employed as a base for collision miss distance maximisation between
two colliding objects for a given magnitude of available ∆v. Then, in [Bom15],
the minimisation of collision probability is also presented in the case of direct and
non-direct impact.

The existing literature about continuous-thrust CAM optimisation is considerably
less extensive than for the impulsive case. A fuel-optimal manoeuvre is found
through the implementation of a genetic algorithm by Rasotto et al. in [Ras16].
Multi-objective particle swarm optimisers are employed by Morselli et al. [Mor14]
to design optimal CAMs. Research on low-thrust optimisation methods includes
the semi-analytical method developed by Reiter et al. [Rei18] for rapid collision
avoidance, based on the hypothesis that the optimal thrust is always radial.
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Salemme in [Sal20] employed an indirect formulation in Cartesian coordinates for
Fuel-Optimal control Problem (FOP) and Energy-Optimal control Problem (EOP)
solutions reaching a desired collision probability. The resulting six-dimensional
optimal control problem is not easy to deal with numerically, which motivated the
authors of the same paper to explore semi-analytical solutions. The dissertation
of Schiavo [Sch20] is the direct continuation of the previous study and proposes
computationally efficient methods (analytical and semi-analytical) for energy opti-
mal manoeuvres with PoC as final constraint. More semi-analytical methods were
proposed in [Gon19]; this approach is based on average dynamics and maximising
the miss distance with the assumption of continuous tangential thrust.

The very recent work by Bombardelli and Hernando-Ayuso [Her21] investigates the
problem of optimum low-thrust collision avoidance between two objects in circular
orbits; the thrust vector of the manoeuvred satellite, applied continuously for a
given time span, is held constant in magnitude the optimal control is written in
B-plane coordinates. The B-plane formulation allows to reduce significantly the
dimension of the resulting Two-Point Boundary Value Problem (TPBVP) to only
two and leads to a constant costate vector.

Another recent work by Martinez Chamarro et al. [Mar21] presents two approaches
to compute low-thrust CAM; the first is based on the EOP continuous solution,
and a bang-bang structure is achieved by applying a smoothing approach, in the
second method, the manoeuvre design is formulated as a convex optimisation
problem.

A further way of automating the collision avoidance process is to use Artificial
Intelligence. ESA is preparing to use machine learning to develop an automated
collision avoidance system capable to assess the risk and likelihood of collisions.
More than for the actual manoeuvre design phase, this method is currently very
interesting for improving decision making process on whether or not a manoeuvre
is needed [ESAb]. In an attempt to study this opportunity, the European Space
Agency released, in October 2019, a large curated dataset containing information
about close approach events, in the form of CDM, collected from 2015 to 2019.
This dataset was used in the Spacecraft Collision Avoidance Challenge [Uri20], a
machine learning competition where participants had to build models to predict
the final collision risk between orbiting objects.
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1.3 Dissertation overview

The purpose of this thesis is to provide robust and numerically efficient algorithms
for different types of manoeuvres ultimately aiming at on-board autonomous
implementability. For impulsive manoeuvres, the proposed analytical solutions
have been extended to several operational cases. Then the dissertation focuses
on low-thrust manoeuvres which have gained interest due to the recent progress
on electric propulsion technology. Starting from the semi-analytical solution for
the EOP proposed by Schiavo in [Sch20], a fully analytical formula is obtained;
given the collision conditions and quantities in CDM format, the solution allows
to design the optimal manoeuvre by substituting them directly into an analytical
equation. Moreover, the case with a path constraint on the maximum control
acceleration provided by the thrusters is analysed.

The thesis is divided into six chapters.

In Chapter 2, which follows here below, the underlying mathematical preliminaries
that are necessary to understand the methods proposed in this work are introduced.
In particular, the fundamentals of conjunction dynamics and the formulation in
B-plane coordinates are first of all reported. The definition of collision probability,
with a particular focus on the hypothesis of short-term encounter, is reported right
after. The foundations of optimal control theory, relative to the dynamical model
used to describe the motion of the satellites are then stated.

In Chapter 3 the analytical method for impulsive manoeuvres is described in detail,
considering the final constraint of the PoC/SMD or MD; a separate section is
dedicated to the purely tangential manoeuvre case.

Chapter 4 covers the derivation of the methods for low-thrust CAMs, both exploit-
ing the dynamics formulation in Earth-Centered Inertial (ECI) reference frame and
in B-plane (BP) coordinates. In order to match operational requirements, start-
ing from the continuous solution of an unbounded control problem, a bang-bang
structure is retrieved by applying a smoothing approach and purely tangential
manoeuvres are also studied.

In Chapter 5 the performance achieved by the methods presented in Chapter 3 and
Chapter 4 are analysed and compared. The algorithms are validated on a database
of 2,170 collisions extracted from the ESA Collision Avoidance Competition data
[ESAd]. In addition, a validation of the method in a high-fidelity dynamical
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simulator including environmental perturbation (aerodynamic and gravitational
effects) is provided, and comparisons in terms of computation time are shown at
the end of the chapter.

In Chapter 6, the results of the present work are summarised and some recommen-
dations for future research in this field are drawn.
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CHAPTER2
Mathematical formulation

This chapter introduces the underlying mathematical preliminaries that are
necessary to understand the methods proposed in this work. In particular, the
fundamentals of conjunction dynamics and the formulation in B-plane coordinates
are first of all reported. The definition of collision probability, with a particular
focus on the hypothesis of short-term encounter, is reported right after. The
foundations of optimal control theory, relative to the dynamical model used to
describe the motion of the satellites are then stated.

2.1 Conjunction analysis

Let us consider two objects experiencing a conjunction event with an expected
closest approach relative position re. The manoeuvrable object is called “primary”,
using the symbol Op, while the debris or uncooperative object is the “secondary”
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object, Os. The state vectors (position and velocity) of the centre of mass of the
primary and secondary objects respectively, expressed in a generic (inertial or a
local) r.f. <̂, are defined as xp = (rp,vp) and xs = (rs,vs). At a generic time t,
the two bodies are subjected to their own dynamics, defined respectively by the
vector fields fp and fs, thus the equations of motion are written as:

dvp(t)
dt

= fp(t,xp),

dvs(t)
dt

= fs(t,xs).
(2.1)

<̂

rs
rpvp

vs

Rs

Rp

OsOp

Figure 2.1: Encounter between two objects.

For any deterministic model adopted, let us suppose that, for certain initial
conditions, the solutions to Cauchy problems of Eq. 2.1 are unique.
In order to define the collision domain between objects, it is necessary to characterise
the related geometry, which is usually done by the Spherical geometry hypothesis:
Op and Os are modelled as spheres of radii Rp and Rs respectively, centred in their
centre of mass.
Figure 2.1 represents the space configuration of an encounter between two objects
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2.2. B-plane definition

modelled in such a way. The hypothesis over the geometry allows to neglect any
information related to the orientation of the involved objects; furthermore, it
remedies the lack of information related to secondary geometry and attitude and
on the possible constraints over Op. It leads to a simpler problem and to a more
conservative model.

2.2 B-plane definition

Let {x, y, z} represent an inertial reference frame (r.f.) centred at Op −Os impact
point and with axes directions defined as:

ux = vp
‖vp‖

, uz = vp × vs
‖vp × vs‖

, uy = uz × ux. (2.2)

x

y

Os

Op vp

vp

vs
vp − vs

vp − vs

ζ
η

∆y

∆x

B-plane

β

Figure 2.2: Encounter frame and B-plane: snapshot of Op −Os encounter geometry
(x− y plane) after the manoeuvre.

Within a small interval of time ∆t� 1 around the impact event, one can consider
the motion of both objects as uniform rectilinear with good approximation (hy-
pothesis of short-term encounter, Section 2.6).
In order to describe the collision avoidance dynamics using the B-plane, the formu-
lation of [Val03], centred at Os, is adopted. The B-plane, represented in Figure 2.2,
is the encounter plane of the two colliding objects; it is perpendicular to their
relative velocity vp − vs, and contains both of them at the moment of closest
approach. The position vector b3D = [ξ, η, ζ]> is introduced, expressed in B-plane
coordinates, defined as follows:

13
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• uξ = vs × vp
‖vs × vp‖

direction of the minimum orbit intersection distance (MOID)
orthogonal to the geocentric velocity vectors vp and vs;

• uη = vp − vs
‖vp − vs‖

direction of the velocity of Op relative to Os;

• uζ = uξ×uη direction opposite to the projection of the B-plane of the velocity
of Os.

The unit vectors define the rotation matrix from the inertial reference frame to
the B-plane

Rb,3D = [uξ, uη, uζ ]>, (2.3)

while the projection in the η-axis is achieved by

Rb,2D = [uξ, uζ ]>. (2.4)

At TCA, the orbital elements of Op are defined as: a0 semi-major axis, e0 eccen-
tricity, Rc radial orbital distance, θc true anomaly.

U

V

W
vp

vs

Ψ

Φ

Figure 2.3: Transformation from vp to vs.

Figure 2.3 shows the angles that describe how the velocity vector vs is related to
vp [Bom15]:
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• in-plane rotation, opposite to the orbit angular momentum direction of an
angle −π < φ < π around uh1 (normal of the Op orbital plane);

φ = atan2[(vp × vs) · uh1,vp · vs] (2.5)

• out-of-plane rotation of an angle −π
2 < φ < π

2 in the direction approaching
uh1;

ψ = tan−1
[

(vs · uh1) ‖vs × uh1‖
v2
s − (vs · uh1)2

]
(2.6)

• magnitude ratio χ = vs
vp
.

Additionally, for the ease of notation, the 2D position vector in the B-plane is
defined as b = [ξ, ζ]>, constructed from the first and third components of the b3D

vector.

2.3 Collision avoidance kinematics

In this section [Bom14a] and [Bom15] are considered as main references. As a
result of a collision avoidance manoeuvre, the position of Op at the impact event
will have shifted from the origin of r = [x, y, z]> to the point δr = [δx, δy, δz]>.
With reference to Figure 2.2 the image on the B-plane of δr obeys:

ξ = −δz

ζ = −δx sin β − δy cos β
(2.7)

where 0 < β ≤ π is the angle between the inertial velocity Op and the velocity of
Op relative to Os.
R is the 2D rotation matrix such that:

b = Rδr, (2.8)

R =
 0 0 −1
− sin β − cos β 0

 (2.9)
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where the angle β can be expressed as:

cos β = (vp − vs) · vp
‖vp‖ ‖vp − vs‖

= 1− χ cosψ cosφ√
1− 2χ cosψ cosφ+ χ2 (2.10)

sin β =
√

1− cos2 β. (2.11)

For the singular case corresponding to cosψ cosφ = ±1 the formulation can be
found in [Bom14a].
One now needs to relate δx, δy and δz to the characteristics of the perturbed
orbital motion of Op, deriving the kinematics matrix K that verifies the linear
relation:

δr = Kδx → b = RKδx (2.12)

where δx = [δt, δr, δw]> is the manoeuvre-induced time-position shift, whose
components are, respectively, the accumulated time delay, radial and out-of-plane
shift of the manoeuvred spacecraft at the collision true anomaly compared to its
“unmanoeuvred” trajectory.
δx can be found by summing up two separate contributions δx′ + δx′′, where the
δx′ refers to the time delay and the δy′ to the radial shift. Following the uniform
rectilinear motion approximation, the accumulated time delay δt will give rise to a
position shift along the velocity vector and its contribution can be written as:

δx′ = −vp
√
Rc

µ
δt (2.13)

where vp
√
Rc

µ
is the non-dimensional velocity of the object at CA when its distance

from the centre of the Earth is Rc, µ is the Earth gravitational parameter.
On the other hand, the variations δr and δw affect in general all three components
of the position shift as:

δx′′ = δr(ur · ux) + δw(uw · ux) (2.14)

δy = δr(ur · uy) + δw(uw · uy) (2.15)

δz = δr(ur · uz) + δw(uw · uz) (2.16)

where:
ur = [cos θc, sin θc, 0]> (2.17)
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uw = [0, 0, 1]>. (2.18)

By employing Eq. 2.2 and after some algebraic simplifications Eq. 2.14 yields:

δx′′ = sinαcδr (2.19)

δx = −v1

√
Rc

µ
δt+ sinαcδr. (2.20)

In a similar way one can derive δy and δz.

δy = − cosαc sinφ cosψ√
1− cos2 ψ cos2 φ

δr + sinψ√
1− cos2 ψ cos2 φ

δw (2.21)

δz = cosαc sinψ√
1− cos2 ψ cos2 φ

δr + sinφ cosψ√
1− cos2 ψ cos2 φ

δw (2.22)

where αc is the flight path angle of Op at TCA which obeys:

sinαc = e0 sin θc√
e2

0 + 2e0 cos θc + 1
, (2.23)

cosαc = 1 + e0 cos θc√
e2

0 + 2e0 cos θc + 1
. (2.24)

Grouping Eqs. 2.20, 2.21 and 2.22 together, one obtains the matrix K:

K =


−v1

√
Rc
µ

sinαc 0

0 − cosαc sinφ cosψ√
1− cos2 ψ cos2 φ

sinψ√
1− cos2 ψ cos2 φ

0 cosαc sinψ√
1− cos2 ψ cos2 φ

sinφ cosψ√
1− cos2 ψ cos2 φ

 . (2.25)

2.4 Collision avoidance dynamics

In order to generalise the formulation for continuous-thrust manoeuvre, assume
an impulsive CAM is carried out at each instant of time t, corresponding to
the orbital position (r, θ), with radial, transverse and out-of-plane (LVLH r.f.)
impulsive velocity variations ∆v = [∆vr,∆vθ,∆vh]>, respectively. Consider that
in low-thrust problem: ∆v = ac∆t, where the thrust acceleration vector is
ac = [ac,r, ac,θ, ac,h]>.
In order to have:

δx = D(t)∆v, (2.26)
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the dynamics matrix D reads:

D =
√
R3
c

µ


dtr dtθ 0
drr drθ 0
0 0 dwh

 (2.27)

where dtr, dtθ, drr, drθ and dwh are non-dimensional functions of time that can be
derived using the generalised Pelaez’ orbital elements (see [Pel07]) of the initial
Op orbit:

q10 = e0√
1 + e0 cos θc

, (2.28)

q30 = 1√
1 + e0 cos θc

. (2.29)

One can then express the resulting post-manoeuvre Pelaez’ orbital elements as:

q1 ∼ q10 +Q1r∆vr +Q1θ∆vθ, (2.30)
q2 ∼ Q2r∆vr +Q2θ∆vθ, (2.31)
q3 ∼ q30 +Q3θ∆vθ. (2.32)

The functions Qi can be obtained following from the variational equations of the
transverse (s) and radial (u) orbital velocity:

s = s0 + ∆vθ = q30 + q10 cos θ + ∆vθ, (2.33)
u = u0 + ∆vr = q10 sin θ + ∆vr, (2.34)

recalling that θ is the true anomaly of the manoeuvring point, and from the
relations between the orbital velocity components and Pelaez’ orbital elements
(see [Pel07]):

q3 = 1/rs, (2.35)
q1 = (s− q3) cos θ + u sin θ, (2.36)
q2 = (s− q3) sin θ − u cos θ, (2.37)

with:
r = 1/[q30(q30 + q10 cos θ)]. (2.38)
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By substituting Eqs. 2.35- 2.37 into Eqs. 2.30- 2.32, expanding in Taylor series
until first order and solving for Qi one finally obtains:

Q1θ(θ) = (2q30 + q10 cos θ) cos θ
q30 + q10 cos θ ,

Q1r(θ) = sin θ,

Q2θ(θ) = (2q30 + q10 cos θ) sin θ
q30 + q10 cos θ ,

Q2r(θ) = − cos θ,

Q3θ(θ) = − q30

q30 + q10 cos θ .

2.4.1 In-plane dynamics: radial shift

The orbit radius variation of Op at θc following the collision avoidance manoeuvre
obeys:

δr = 1
q3(q3 + q1 cos θc + q2 sin θc)

− 1
q30(q30 + q10 cos θc)

. (2.39)

By substituting the first-order expressions of qi derived above and expanding in
Taylor series until the first order one obtains:

δr = drr∆vr + drθ∆vθ, (2.40)

where the functions dri(θ) read:

drr = sin (θc − θ)
q30(q30 + q10 cos θc)2 , (2.41)

drθ = 2q30(1− cos((θc − θ)))− q10 sin θ sin (θc − θ)
q30(q30 + q10 cos θ)(q30 + q10 cos θc)2 . (2.42)

2.4.2 In-plane dynamics: phasing

The time elapsed along the arc [θ; θc] can be obtained by integrating the Sundman
transformation [Pel07]:

∆t =
∫ θc

θ

dθ

q3s2 (2.43)

where:
s = q3 + q1 cos θ + q2 sin θ. (2.44)
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Eq. 2.43 can be integrated and written in the form:

∆t = ∆t0 + δt, (2.45)

where ∆t0 is the elapsed time along the initial Keplerian orbit and ∆t is the time
delay caused by the impulsive ∆v manoeuvre.
The term ∆t0 follows Kepler’s equation and can be written in terms of the Pelaez’
element set as:

∆t0 = q30(Ec − E)− q10(sinEc)− sinE)
(q2

30 − q2
10)3/2 , (2.46)

where Ec and E are the eccentric anomalies corresponding to θc and θ respectively,
and accounting for multiple revolutions.
After making use of the Expressions 2.30- 2.32, transforming true anomalies (θc, θ)
into eccentric anomalies (Ec, E), and expanding in Taylor series for small (∆vr,∆vθ)
the time delay δt follows:

δt = dtr∆vr + dtθ∆vθ, (2.47)

with:

dtr = 1
q30(q2

30 − q2
10)2(q30 − q10 cosE) [er1(Ec − E) + er2(sinEc − sinE)+

+ er3(sin 2Ec − sin 2E) + er4(cosEc − cosE) + er5(cos 2Ec − cos 2E)], (2.48)

dtθ = 1
q30(q2

30 − q2
10)5/2(q30 − q10 cosE) [eθ1(Ec − E) + eθ2(sinEc − sinE)+

+ eθ3(sin 2Ec − sin 2E) + eθ4(cosEc − cosE) + eθ5(cos 2Ec − cos 2E)], (2.49)

where:

eθ1 = 3q30(q2
30 − q2

10), (2.50)

eθ2 = 1
2[3q3

10 − (2q2
30 − q2

10)(4q30 cosE − q10 cos 2E)], (2.51)

eθ3 = q10q30

4 [4q30 cosE − q10(3 + cos 2E)], (2.52)

eθ4 = q30[(4q2
30 − 2q2

10) sinE − q10q30 sin 2E], (2.53)

eθ5 = −q10

4 [(4q2
30 − 2q2

10) sinE − q10q30 sin 2E], (2.54)

er1 = 3q10q30 sinE, (2.55)
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er2 = −2(q2
30 + q2

10) sinE, (2.56)

er3 = q10q30

2 sinE, (2.57)

er4 = −2q30(q30 cosE − q10), (2.58)

er5 = q10

2 (q30 cosE − q10). (2.59)

2.4.3 Out-of-plane dynamics

The out of plane motion is decoupled from the planar one and can be described
with sufficient accuracy by linearising the gravitational acceleration (Lawden’s
Equations)

δw = dwhuhδt. (2.60)

A closed-form analytical solution of the out-of-plane Lawden’s equation can be
found by using the true anomaly as an independent variable as done in [Yam02].
From that reference, and indicating with p0 the initial orbital parameter, the
dimensional out-of-plane displacement can be written as:

δZ =

√√√√p3
0
µ

sin (θc − θ)
(1 + e0 cos θc)(1 + e0 cos θ)uhδt. (2.61)

After re-scaling the different quantities according to the present non-dimensionalisation
one obtains:

dwh =

√
q2

30 + q10q30 cos θc
q30 + q10 cos θ sin (θc − θ). (2.62)

2.5 CAM dynamics in B-plane coordinates

This section summarises the dynamics in B-plane coordinates after the derivations
reported in the previous sections, and specifies the equations of motion for both
the cases of impulsive manoeuvre and continuous-thrust CAM.

Impulsive manoeuvre

In case of direct impact, i.e., the position of the primary and secondary objects at
TCA coincides, combining Eqs. 2.8, 2.12 and 2.26 yeilds:

b = RKD∆v = M∆v, (2.63)

21



Chapter 2. Mathematical formulation

where R,K,D are matrices derived in the previous sections, hence M is function
of: φ, ψ, χ, e0, a0, θc, µ and θ.
Considering the general case of a non-direct impact (i.e., a conjunction whose
expected miss distance is not zero) where be is the relative position of the two
objects at TCA in B-plane r.f:

be = Rb,2Dre = Rb,2D(rp − rs). (2.64)

Hence the position b at a generic time after the impulsive manoeuvre can be
written as:

b = be + M∆v. (2.65)

Low-thrust manoeuvre

When the manoeuvrable spacecraft Op is equipped with a low-thrust propulsion
system, a realistic CAM scheme is to apply optimally oriented thrust acceleration
continuously over a thrust arc. In an infinitesimal time δt, the acceleration produces
the velocity variation

δv = acδt. (2.66)

This leads to a B-plane displacement δb = [δξ, δζ]> (see Section 2.4) :

δb = RKDacδt = Macδt. (2.67)

Approximating to the first order Eq. 2.67, it is obtained:

db
dt

= Mac (2.68)

and the dynamics of the system can be written as:
ḃ = Mac

IC : b(t0) = be = [ξe, ζe]>.
(2.69)

2.6 Collision probability and squared Mahalanobis distance

Assuming a spherical geometry, a collision is assumed to occur in a time interval I
if and only if a date t̄ ε I exists such that:

∥∥∥r(t̄)
∥∥∥ =

∥∥∥rp(t̄)− rs(t̄)
∥∥∥ ≤ Rp +Rs. (2.70)
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2.6. Collision probability and squared Mahalanobis distance

Under a relative position point of view, the collision assembly at an instant t̄ can
be replaced by a fictitious combined sphere of radius sA = Rp +Rs: it is the hard
body radius, shown in Figure 2.4.

Rp

Rs

sA

Figure 2.4: Combined body representation.

The Probability of Collision (PoC) can be written, in general terms, as the triple
integral of the probability distribution function fr(r) of the relative position of
primary object with respect to the second over the volume V swept by a sphere of
radius sA centred at secondary body:

PoC =
∫
V
fr(r)dr. (2.71)

When the Gaussian PDF of this relative position fr(r) is given by:

fr(r) = 1√
2π3det Cr

exp
[
−1

2(r− re)>C−1
r (r− re)

]
, (2.72)

where Cr is the covariance matrix of r, which corresponds to the sum of the indi-
vidual covariance matrices of the two bodies, expressed in the same orthonormal
base, when the two (Gaussian) quantities are statistically independent.
Considering the short-term encounter hypothesis, described in a dedicated para-
graph 2.6, one can consider the motion of the two objects as uniform rectilinear
with deterministically known velocities, and compute the collision probability as a
two-dimensional integral on the collision B-plane.
With such an approximation, the integration volume is reduced over a disk centred
in the origin (see [Mon19] for a detailed derivation), and Eq. 2.71 can be rewritten
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Chapter 2. Mathematical formulation

as a 2D integral:

PoC =
∫
A

1
2πσξσζ

√
1− ρ2

ξζ

exp
− 1

2(1− ρ2
ξζ)

ξ − ξe
σξ

2

+
ζ − ζe

σζ

2

+

− 2ρξζ

ξ − ξe
σξ

ζ − ζe
σζ

dξdζ, (2.73)

where re = [ξe, 0, ζe]> is the expected closest approach relative position in the
B-plane; A is a circular domain of radius sA; σξ, σζ , and ρξζ can be extracted from
the relative position covariance matrix in B-plane axes whose {ξ, ζ} submatrix
reads:

Cξζ =
 σ2

ξ ρξζσξσζ

ρξζσξσζ σ2
ζ

 . (2.74)

There are several methods for calculating the 2D collision probability, many of
which are collected and compared in [Mon19]. In this thesis, it has been chosen to
follow PoC definition by Chan in [Cha08] truncated at m = 3. The computation of
Eq. 2.73 can be made equivalent to integrating a properly scaled isotropic Gaussian
distribution function over an elliptical cross section. If the latter is approximated
as a circular cross section of equal area, the final computation of the collision
probability reduces to a Rician integral that can be computed with the convergent
series:

PoC(u, v) = e−
v
2

∞∑
m=0

vm

2mm!

1− e−u2
m∑
k=0

uk

2kk!

, (2.75)

where u is the ratio of the impact cross-sectional area to the area of the 1σ
covariance ellipse in the B-plane:

u = s2
A

σξσζ
√

1− ρ2
ξζ

, (2.76)

and v is the squared Mahalanobis distance (SMD):

v = SMD =
 ξe

σξ

2

+
 ζe
σζ

2

− 2ρ2
ξζ

ξeζe
σξσζ

/(1− ρ2
ξζ), (2.77)

= (rf − rs)>R>b,2DC−1Rb,2D(rf − rs), (2.78)
= b>f C−1bf . (2.79)
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2.6. Collision probability and squared Mahalanobis distance

Two functions for the computation of PoC and SMD, following Eqs. 2.75 and 2.78
are implemented: poc_chan(∆r,CDM), squared_mahalanobis_distance(∆r,CDM)
and the function poc2smd(PoC,CDM) allows to calculate the SMD corresponding
to a given value of PoC.

Isotropic approximation and miss distance

Retaining only the first term of the series (m = 0), the collision probability can be
expressed as:

PoCiso = e−
v
2 (1− e−u2 ). (2.80)

According to [Rei18], Eq. 2.80 can be written as:

PoCiso = exp
 ln

1− e−
s2
A

2σ2

− 1
2
d2

σ∗2

, (2.81)

where σ = √σξσζ , σ∗ = max{σξ, σζ} and d is the miss distance:

d =
√
ξ2
e + ζ2

e = ‖bf‖ = ‖Rb,2D(rf − rs)‖ . (2.82)

Short-term encounter approximation

In some encounters the temporal extent of the conjunction is small compared
with the orbit period of the objects; this configuration leads to pose additional
hypotheses, in order to define the so-called short-term encounter model. The
fundamental hypothesis is the rectilinear motion, based on the small curvature
of the trajectory in the closest approach. In such a frame, collision probability
admits a simplified expression, in the form of a 2D integral. A close encounter can
be regarded as short-term depending not only on the relative encounter velocity
but also on the size of the covariance ellipsoid.
Setting a reference conjunction duration tc required by the primary object to cross
the 1σ relative position uncertainty ellipsoid in the η direction:

tc = 2ση
‖vp − vs‖

, (2.83)

a short-term encounter is characterised by a time tc much smaller with respect to
its orbital period Tp:

ε = tc
Tp
� 1. (2.84)
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Chapter 2. Mathematical formulation

Based on numerical analyses conducted by other authors, one can consider ε <
1 · 10−3 as a safe reasonable limit for the short-term encounter hypothesis [Cha08].
Cases in which this condition is not verified are extremely unusual in LEO.

2.7 Optimal control theory

In the following section the general formulation of an Optimal Control Problem
(OCP) is introduced, considering [Bry75] as the main reference. OCP consists in
finding the function u(t) that minimise (or maximise) a performance index J . The
resolutive methods can be divided into two classes: indirect methods, exploiting
the analytical optimality conditions arising from the calculus of variations, and
direct methods, converting the continuous optimal control problem into a param-
eter optimisation problem. This dissertation deals extensively with the indirect
optimisation problem, where the objective function is expressed in the Bolza form.
Given the generic dynamic system:

ẋ = f(x(t),u(t), t)

x(t0) = x0,
(2.85)

the cost function J is expressed in the Bolza form:

J = Φ(x(tf ), tf ) +
∫ tf

t0
L(x(t),u(t), t) dt, (2.86)

where L is the performance index. Considering the Lagrange multiplier vector
λ(t), the Hamiltonian function H is defined as:

H = L+ λ>f . (2.87)

Adjoining the system of equations f(x(t),u(t), t) = ẋ to J with multipliers, one
obtains:

J = Φ(x(tf ), tf ) +
∫ tf

t0
{H(x(t),u(t), t)− λ>(t)ẋ(t)} dt, (2.88)

J = Φ(x(tf ), tf ) +
∫ tf

t0
{L(x(t),u(t), t) + λ>(t) [f(x(t),u(t), t)− ẋ(t)]} dt. (2.89)

In some problems, as in this thesis, it is of interest to constrain functions of the
terminal state to have prescribed values; that is:

Ψ(x(tf ), tf ) = 0. (2.90)
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2.7. Optimal control theory

Hence:
Φ(x(tf ), tf ) = φ(x(tf ), tf ) + ν>Ψ(x(tf ), tf ) (2.91)

adjoined to J by a multiplier vector ν, and the augmented performance index is:

J = φ(x(tf ), tf ) + ν>Ψ(x(tf ), tf ) +
∫ tf

t0
{L(x(t),u(t), t)+

+ λ>(t) [f(x(t),u(t), t)− ẋ(t)]} dt. (2.92)

Using the Pontryagin’s Maximum Principle, the so-called Hamiltonian system
associated with the optimal control problem can be written:

ẋ = f(x(t),u(t), t)

λ̇ = −
∂H
∂x

>

x(t0) = x0

λ(tf ) =
 ∂Φ
∂xf

>

u = arg minu H → ∂H
∂u = 0.

(2.93)

The Hamiltonian system can be then formulated as a Two-Point Boundary Value
Problem (TPBVP).

2.7.1 Restricted two-body problem

The motion of a massless particle (a particle with a mass infinitesimally small
with respect to the other bodies, for example a satellite) is studied through the
restricted n-body problem.
For n = 2 the problem is completely solved and even though for Earth satellites it
is not as representative of the actual dynamics as a three-body model, it is often
used for preliminary mission design stages. The equation of motion is:

r̈ = − µ
r3 r. (2.94)

When also the control acceleration ac of the spacecraft is taken into account,
the set of first-order differential equations that describe the controlled dynamics,
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Chapter 2. Mathematical formulation

accounting for mass variation is:

ṙ = v

v̇ = − µ
r3 r + ac

ṁ = − 1
ce
‖ac‖m

ICs :


r(t0) = r0

v(t0) = v0

m(t0) = m0

(2.95)

where ce is the effective exhaust velocity ce = Isp g0.

State Transition Matrix

The State Transition Matrix (STM) maps the variation of the state δx at an
arbitrary final time t with respect to δx0 at an arbitrary time t0. Considering:

x(x0 + δx0, t) = x(x0, t) + δx(t) ' x(x0, t) + ∂x
∂x0

δx0, (2.96)

STM is defined as the matrix Φ(t, t0) such that:

Φ(t, t0) = δx
δx0

. (2.97)

For time-varying systems, STM is found by integrating

Φ̇(t, t0) = A(t)Φ(t0, t0), Φ(t0, t0) = In×n, (2.98)

where A(t) is the state matrix of the linear system

ẋ(t) = A(t)x(t). (2.99)

In the non-linear problems of Chapter 4, the goal is to linearise the equations of
motion f(x, t) of the Energy-Optimal control Problem (EOP) around the nominal
trajectory represented by the state xn, hence:

A(t) = ∂f(x, t)
∂x

∣∣∣∣∣
xn

. (2.100)
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CHAPTER3

Impulsive collision avoidance manoeuvres

The analytical methods proposed for impulsive manoeuvres are described in
detail in this chapter, considering the final constraint on the PoC/SMD or MD. The
formulation proposed by Bombardelli and Hernando-Ayuso in [Bom15] has been
adopted. In literature, solutions for impulsive manoeuvres have been proposed in
order to optimise the probability of collision or the miss distance by imposing a
constraint on the maximum magnitude of the impulse ∆v. In this chapter the
problem is formulated with the aim of minimising the total cost of a manoeuvre
that does not exceed an enforced threshold of PoC, SMD or MD, and it is resolved
with a fully analytical solution. A separate section is dedicated to the analysis of
the problem with the further constraint of a purely tangential manoeuvre.



Chapter 3. Impulsive collision avoidance manoeuvres

3.1 Optimal impulsive manoeuvre with final constraint

The optimisation problem for the impulsive manoeuvre case is presented with
two types of final constraint: Squared Mahalanobis Distance and Miss Distance.
The first formulation subjected to a threshold in terms of SMD also includes the
possibility of setting a collision probability value, since one can translate the PoC
limit to the corresponding SMD.

Squared Mahalanobis distance constraint

The impulsive manoeuvre implemented in this section minimises the impulse
magnitude ∆v by prescribing the final PoC (corresponding to a SMD value).
The goal of the problem is to minimise the cost function defined as:

J =
∫ tf

t0
Ldt, L = ∆v>∆v, (3.1)

subjected to f(∆v) = 0:

f(∆v) = SMD(bf )− SMD −→ b>f C−1bf − SMD = 0, (3.2)

where the impulse vector ∆v is expressed in LVLH coordinates (radial, transverse,
out-of-plane) and SMD is the enforced value of the Squared Mahalanobis Distance
linked to the final position in B-plane coordinates bf = b(tf ).
Using Eq. 2.65:

bf = be + M∆v. (3.3)

Plugging Eq. 3.3 into Eq. 3.2:

f(∆v) = (be + M∆v)>C−1(be + M∆v)− SMD, (3.4)

f(∆v) = b>e C−1be + ∆v>A∆v + 2b>e C−1M∆v− SMD. (3.5)

where the matrix A is defined as:

A = M>C−1M. (3.6)

The Hamiltonian reads:

H(∆v, λ) = L− λf(∆v), (3.7)
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3.1. Optimal impulsive manoeuvre with final constraint

H = ∆v>∆v− λ(b>e C−1be + ∆v>A∆v + 2b>e C−1M∆v− SMD). (3.8)

The optimal impulsive manoeuvre can be obtained by solving the system:

∂H

∂∆v
= 0

∂H

∂λ
= 0


�2∆v− λ(�2A∆v + (�2b>e C−1M)>) = 0

b>e C−1be + ∆v>A∆v + 2b>e C−1M∆v− SMD = 0.

(3.9)

Through the following steps the solution is obtained in terms of ∆v and λ.
The first row of Eq. 3.9 can be written as:

∆v = λ(I3×3 − λA)−1(b>e C−1M)>. (3.10)

Let us define c = (b>e C−1M)>, then the system in Eq. 3.9 becomes:

∆v = λ(I− λA)−1c

b>e C−1be + λ2[(I− λA)−1c]>A(I− λA)−1c+

+2λc>(I− λA)−1c− SMD = 0.

(3.11)

Since:
(I− λA)−1 = 1

det(I− λA) [I− λdetA ·A−1], (3.12)

and defining also Ã = detA ·A−1:

(I− λA)−1 = 1
det(I− λA)(I− λÃ), (3.13)

the second row of Eq. 3.11 reads:

det2(I− λA)b>e C−1be + λ2[(I− λÃ)c]>A(I− λÃ)c+
+ 2λdet(I−A)c>(I− λÃ)c− det2(I− λA)SMD = 0. (3.14)

After some simple algebraic steps:

det2(I− λA)b>e C−1be + λ2[c> − λ(Ãc)>]A(c− λÃc)+
+ 2λdet(I− λA)c>(c− λÃc)− det2(I− λA)SMD = 0 (3.15)
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Chapter 3. Impulsive collision avoidance manoeuvres

det2(I− λA)b>e C−1be + λ2c>Ac− 2λ3c>AÃc + λ4c>Ã>AÃc+
+ 2λdet(I− λA)c>c− 2λ2det(I− λA)c>Ãc− det2(I− λA)SMD = 0. (3.16)

The problem is solved in a completely analytical way and the ∆v can be computed
by solving Eq. 3.16 in a closed-form for λ, and then plugging this value into
Eq. 3.10.
Equation 3.16 has six solutions, since the term with the quadratic determinant
contains λ at the sixth degree. Two of them are complex; the other four corresponds
to the two local minima and two local maxima in terms of ∆v.
The whole method is summarised in Algorithm 1, and all the mentioned functions
are explained in Nomenclature.

Algorithm 1 Optimal impulsive CAM

1: Input: CDM, SMD,∆θ_range
2: Output: rf , epoch_opt, ∆θ_opt, SMD, PoC,∆v_opt
3: for i = 1 : size(∆θ_range) do
4: ∆θ = ∆θ_range(i)
5: θm = θTCA −∆θ
6: T interval of time corresponding to ∆θ
7: tspan_backward = [T 0]
8: tspan_forward = [0 T]
9: [r0,v0] = keplerian_propagator([rTCA,vTCA], tspan_backward)

10: compute B-plane kinematics and dynamics (R,K,D→M)
11: compute ∆v(i) by means of Eq. 3.16
12: end for
13: ∆θ_opt = true anomaly corresponding to min(‖∆v‖)
14: epoch_opt= epoch corresponding to ∆θ_opt
15: ∆v_opt = ∆v(∆θ_opt)
16: [rf ,vf ] = keplerian_propagator([r0,v0], tspan_forward) → rf
17: ∆r = rf − rs
18: SMD = squared_mahalanobis_distance(∆r,CDM)
19: PoC = poc_chan(∆r,CDM)

Miss distance constraint

An approach similar to the one explained for constrained SMD can be used to
design a manoeuvre with a threshold on the final miss distance. The constraint
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3.1. Optimal impulsive manoeuvre with final constraint

functions f(∆v) = 0 becomes:

f(∆v) = b>f bf − d
2
, (3.17)

where d is the imposed value of MD. By means of Eq. 3.3:

f(∆v) = (be + M∆v)>(be + M∆v)− d2
, (3.18)

f(∆v) = b>e be + ∆v>M>M∆v + 2b>e M∆v− d2
. (3.19)

The Hamiltonian is:

H = ∆v>∆v− λ(b>e be + ∆v>M>M∆v + 2b>e M∆v− d2), (3.20)

and one can obtain the system:
∆v− λ(M>M∆v + (b>e M)>) = 0

b>e be + ∆v>M>M∆v + 2b>e M∆v− d2 = 0.
(3.21)

The first row of Eq. 3.21 can be written as:

∆v = λ(I3×3 − λM>M)−1(b>e M)>. (3.22)

Let us define
d = (b>e M)> and D = M>M, (3.23)

the system in Eq. 3.21 reads:
∆v = λ(I− λD)−1d

b>e be + λ2[(I− λD)−1d]>D(I− λD)−1d + 2λd>(I− λD)−1d− d2 = 0.
(3.24)

The second row of Eq. 3.24 becomes:

det2(I− λD)b>e be + λ2[(I− λD̃)d]>D(I− λD̃)d+
+ 2λdet(I−D)d>(I− λD̃)d− det2(I− λD)d2 = 0 (3.25)
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and through simple algebraic steps:

det2(I− λD)b>e be + λ2[d> − λ(D̃d)>]D(d− λD̃d)+
+ 2λdet(I− λD)d>(d− λD̃d)− det2(I− λD)d2 = 0 (3.26)

det2(I− λD)b>e be + λ2d>Dd− 2λ3d>DD̃d + λ4d>D̃>DD̃d+
+ 2λdet(I− λD)d>d− 2λ2det(I− λD)d>D̃d− det2(I− λD)d2 = 0. (3.27)

Similarly to the previous section, Eq. 3.27 can be solved in closed-form for the
multiplier λ and the optimal impulse is easily computed by means of Eq. 3.22
using the resulting value of λ.

3.2 Optimal tangential impulsive manoeuvre

As it will be confirmed from the results presented in the following section, the
optimum CAM orientation throughout the thrust arc is often not too far from
tangential. This suggests deriving the analytical solution of a (sub-optimal) fully
tangential manoeuvre, which can be preferred in some operational scenarios.
The problem is solved first for a SMD constraint, including the possibility of setting
a PoC threshold, and then for MD enforced value.

Squared Mahalanobis distance constraint

This section describes the tangential optimal impulsive manoeuvre to reach an
enforced final PoC (corresponding to a SMD value). The impulse vector, expressed
in LVLH r.f., is written as:

∆v = ‖∆v‖ t = ∆vt, (3.28)

where t = [0, 1, 0]> is the unit vector in the tangential direction. The performance
index of the optimal control problem is:

L = ∆v>∆v = ∆v2, (3.29)

and the problem is subjected to f(∆v) = 0:

f(∆v) = b>f C−1bf − SMD. (3.30)
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3.2. Optimal tangential impulsive manoeuvre

Given bf = be + M∆vt:

f(∆v) = b>e C−1be + ∆v2t>At + 2∆vb>e C−1Mt− SMD, (3.31)

where A is defined in Eq. 3.6.
The Hamiltonian is:

H = L− λf(∆v), (3.32)

H = ∆v2 − λ(b>e C−1be + ∆v2t>At + 2∆vb>e C−1Mt − SMD). (3.33)

Solving the system:

∂H

∂∆v = 0

∂H

∂λ
= 0


�2∆v − λ(�2∆vt>At + �2b>e C−1Mt) = 0

b>e C−1be + ∆v2t>At + 2∆vb>e C−1Mt− SMD = 0,

(3.34)

one can obtain the solution in terms of ∆v and λ. The second row of Eq. 3.34 is a
quadratic equation in ∆v that can be easily solved analytically:

∆v2t>At + 2∆vb>e C−1Mt + b>e C−1be − SMD = 0 (3.35)

∆v =
−b>e C−1Mt±

√
(b>e C−1Mt)2 − t>At(b>e C−1be − SMD)

t>At
(3.36)

λ = (∆vt>At + b>e C−1Mt)−1∆v. (3.37)

The impulse vector of the optimal manoeuvre is computed by means of the solution
of Eq. 3.36 and Eq. 3.28. The algorithm is analogous to Algorithm 1, substituting
Eq. 3.16 with Eqs. 3.36 and 3.28.

Miss distance constraint

Similarly to the manoeuvre without directional constraints, also for the tangential
case the formulation can be written starting from a condition on the final miss
distance. Given the constraint function f(∆v) = 0:

f(∆v) = b>f bf − d
2
, (3.38)

f(∆v) = b>e be + ∆v2t>Dt + 2∆vb>e Mt− d2
, (3.39)

35



Chapter 3. Impulsive collision avoidance manoeuvres

where D is defined in Eq. 3.23, the Hamiltonian reads:

H = ∆v2 − λ(b>e be + ∆v2t>Dt + 2∆vb>e Mt− d2). (3.40)

The values of ∆v and λ are obtained by solving the system:

∂H

∂∆v = 0

∂H

∂λ
= 0


∆v − λ(∆vt>Dt + b>e Mt) = 0

b>e be + ∆v2t>Dt + 2∆vb>e Mt− d2 = 0

(3.41)

where the second row of Eq. 3.41 is a quadratic equation in ∆v that is solved
analytically:

∆v2t>Dt + 2∆vb>e Mt + b>e be − d
2 = 0, (3.42)

∆v = −b>e Mt±
√

(b>e Mt)2 − t>Dt(b>e be − d
2)

t>Dt
, (3.43)

λ = (∆vt>Dt + b>e Mt)−1∆v. (3.44)

The ∆v of the optimal manoeuvre is computed from Eq. 3.43 and Eq. 3.28.

Input:
-CDM,
-manoeuvring anomaly range
-type of constraint: PoC, SMD
or MD
-desired value of final constraint
-Option: tangential manoeuvre

Optimal impul-
sive manoeuvre

Output:
-final position
-manoeuvre epoch
-final PoC/SMD/MD
-∆v

Figure 3.1: Architecture of optimal impulsive CAM tool.

The solutions of all the methods proposed have been used to create a tool sketched
in Figure 3.1. Given a possible impact, the function provides the user with
the optimal impulsive collision avoidance manoeuvre, in terms of final position,
manoeuvre epoch and total cost. The inputs are the Conjunction Data Message
(CDM) of the expected collision, the range of true anomaly of the manoeuvring
point and the desired final constraint value. The user can choose whether to set
the final constraint in terms of collision probability, squared Mahalanobis distance
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or miss distance, and optionally the manoeuvre can be optimised enforcing the
impulse to thrust only in the tangential direction.

3.3 Test case

Figure 3.2: Test case collision representation.

The methods presented so far are applied to a test case extracted from [Arm], in
which a database of 2,170 conjunction cases are taken from the ESA Collision
Avoidance Challenge [Uri20]. A representation of the collision can be found in
Figure 3.2. Table 3.1 reports the position and velocity vectors of the primary and
secondary spacecraft at conjunction in ECI frame, the collision probability PoC,
the squared Mahalanobis distance SMD and the miss distance d. The combined
cross-sectional radius of the spacecraft is sA = 29.7 m. The Keplerian elements of
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the two orbits are computed and displayed in Table 3.2.

Table 3.1: Test case conjunction data.

rp[km] [2.3305, -1103.7, 7105.9]>

rs[km] [2.3335, -1103.7, 7105.9]>

vp [km/s] [-7.4429, -6.1373e-04, 3.9514e-03]>

vs [km/s] [7.3537, -1.1428, -0.19825]>

PoC 1.3604e-01
SMD [km2] 0.87166
d [km] 0.0432

Table 3.2: Test case orbital elements, in order: semi-major axis, eccentricity,
inclination, Right Ascension of the Ascending Node (RAAN), argument of the

periapsis, true anomaly.

a e i Ω ω θ

Op 7186.7 km 0.00064 98.83 ◦ 0 ◦ 289.38 ◦ 160.60 ◦

Os 7190.2 km 0.0024 81.28 ◦ 170.93 ◦ 184.41 ◦ 266.99 ◦

The position covariance matrices of the two satellites, expressed in their respective
LVLH r.f., are:

Cp =


0.9317 −2.6234 0.2360
−2.6234 1778.0 −0.9331
0.2360 −0.9331 0.1917

 · 10−4 km2 (3.45)

Cs =


6.3466 −19.6229 0.7077
−19.6229 0.0820 11.3982

0.7077 11.3982 2.5103

 · 10−4 km2 (3.46)

The corresponding combined covariance matrix in B-plane coordinates is:

C =
7.21756 −0.7580
−0.7580 51.9201

 · 10−4 km2 (3.47)

In the following section, the methods are compared using a dynamical model which
only considers Keplerian motion, as expressed in Eq. 2.95.
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All the simulations presented in this dissertation are run on a Dell Inspiron 5593
with a processor 1.50 GHz Intel Core i7, 10th generation and 16 Gb Ram Memory.

3.4 Results

The optimal manoeuvre is computed for each manoeuvring point in a range of 100
equally spaced values of true anomaly starting from 2 orbits before the Time of
Closest Approach until the expected impact. The definition of true anomaly is
represented in Figure 3.3.

∆θ ∈ [0, 2 · 2π] (3.48)

1

𝑂𝑝 at initial 

manoeuvre point

𝑂𝑝 at Closest 

Approach (CA)

Earth

Δθ

Figure 3.3: True anomaly interval ∆θ between the initial manoeuvre point and the
closest approach.

Among the manoeuvres starting at each different point, the one with minimum
∆v is selected as the optimal, forward propagated until the TCA and the final
position in B-plane coordinates is shown in Figure 3.4.
Considering the different kind of constraints, the four categories of manoeuvre are
represented with stars of different shapes and colours:

• Optimal manoeuvre with squared Mahalanobis distance final constraint
translated into the corresponding Probability of Collision value (Optimal-
PoC)
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• Tangential manoeuvre with squared Mahalanobis distance/Probability of
Collision constraint (Tangential-PoC)

• Optimal manoeuvre with constrained miss distance (Optimal-MD)

• Tangential manoeuvre with constrained miss distance (Tangential-MD)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
1 [km]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

9
[k
m
]

Secondary @TCA
Primary @TCA
PoC = 2.4e-06
Miss distance = 0.3 km
Optimal-PoC
Tangential-PoC
Optimal-MD
Tangential-MD

Figure 3.4: Final position in B-plane r.f. reached after impulsive optimal CAMs for
different types of constraint.

The enforced value of SMD is translated into the corresponding PoC value by
means of Eq. 2.75 and the following thresholds are set:

SMD = 25 km2 → PoC = 2.4036 · 10−6, (3.49)

and
d = 0.3 km. (3.50)

The four solutions are shown in B-plane coordinates in Figure 3.4 and in detail in
Figure 3.5. The ellipse and the circle are respectively the loci of points with colli-
sion probability/miss distance equal to the enforced value, and the stars represent
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3.4. Results

the final position reached after the manoeuvre at the time of the expected impact.
The profile of PoC and MD depending on the manoeuvring point (true anomaly
∆θ before TCA) can be found in Figure 3.6 and Figure 3.7.
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Tangential-PoC

(a) Solutions with constrained PoC.
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0.248
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0.254

9
[k

m
]

Optimal-MD
Tangential-MD

(b) Solutions with constrained MD.

Figure 3.5: Details of Figure 3.4: enlarged areas of B-plane with final positions reached
after optimal impulsive manoeuvres.
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Figure 3.6: Profile of collision probability reached after the optimal impulsive CAM
with constrained PoC.
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Figure 3.7: Profile of miss distance reached after the optimal impulsive CAM with
constrained MD.

The maximum deviations from the enforced value for the four cases are reported
in Table 3.3: the orders of magnitude of the errors are much smaller than the
enforced values.

Table 3.3: Maximum deviation of PoC/MD from the enforced value.

Optimal PoC Tangential PoC

1.7368e-07 1.8385e-07

Optimal MD Tangential MD

2.2375e-04 km 3.2147e-04 km

All the outputs of the optimal impulsive manoeuvres, with both types of final
constraint and considering both the “generic” optimal manoeuvre without direc-
tional limits and the purely tangential manoeuvre are summarised in Table 3.4
and Table 3.5. It can be noticed that the optimum ∆v, even in the case without
directional constraints, has a much larger transverse component than the radial
and out-of-plane components.
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Table 3.4: Impulsive CAM results, constrained PoC.

Optimal PoC Tangential PoC

‖∆v‖ [m/s] 2.83e-02 2.83e-02

∆v [m/s]
LVLH r.f.


3.3890e− 04

−2.8267e− 02

−4.2089e− 05




0

−2.83e− 02

0


∆θ [deg] 544.56 544.56
epoch 2019 JAN 05 20:06:00.053635 2019 JAN 05 20:06:00.053635

rf [km]
ECI r.f.


1.55

−1.10e+ 03

7.11e+ 03




1.54

−1.10e+ 03

7.11e+ 03



Table 3.5: Impulsive CAM results, constrained MD.

Optimal MD Tangential MD

‖∆v‖ [m/s] 5.88e-02 5.88e-02

∆v [m/s]
LVLH r.f.


−1.39e− 03

−5.88e− 02

−5.58e− 04




0

−5.88e− 02

0


∆θ [deg] 544.5551 544.5551
epoch 2019 JAN 05 20:06:00.053635 2019 JAN 05 20:06:00.053635

rf [km]
ECI r.f.


6.90e− 01

−1.10e+ 03

7.11e+ 03




6.945e− 01

−1.10e+ 03

7.11e+ 03
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CHAPTER4
Low-thrust collision avoidance manoeuvres

This chapter covers the derivation of the methods for low-thrust CAMs, both
exploiting the dynamics formulation in Earth-Centered Inertial (ECI) reference
frame and in B-plane (BP) coordinates. Compared to the results obtained in
literature, this dissertation solves the optimal control problem in a fully analytical
way: a significant step towards on-board implementability of low-thrust collision
avoidance manoeuvre algorithms. In order to match operational requirements,
starting from the analytical solution of the unbounded control problem, a bang-
bang structure is achieved by applying a smoothing approach. Moreover, the
investigation of the optimal purely tangential manoeuvres is included.

Similarly to the impulsive manoeuvres case, a tool that solves the different types
of optimal low-thrust manoeuvres proposed within this chapter has been created,
and the architecture is outlined in Figure 4.1. The outputs are the final position
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reached after the manoeuvre at the time of the expected impact, the epoch of
the initial manoeuvring point, the control acceleration profile, the total cost and
the mass variation. The inputs are the CDM of the conjunction, the range of
true anomaly for the initial manoeuvring point with respect to the TCA and the
desired final constraint value. The optimal control problem can be solved both
in ECI coordinates or in BP coordinates. The user can choose whether to set
the final constraint in terms of Probability of Collision, Squared Mahalanobis
Distance (SMD) distance or Miss Distance (MD). Optionally the manoeuvre can
be optimised enforcing the control to thrust only towards the tangential direction,
and it is also possible to force the control into a bang-bang structure.

Input:
-CDM
-manoeuvring anomaly range
-define r.f.: ECI or BP,
-type of constraint: PoC, SMD
or MD
-desired value of final constraint
-Option: tangential manoeuvre
-Option: bang-bang profile

Optimal low-
thrust manoeuvre

Output:
-final position
-manoeuvre epoch
-final PoC/SMD/MD
-acceleration profile
-∆v
-mass variation

Figure 4.1: Architecture of optimal low-thrust CAM tool.

4.1 Energy-optimal control problem in ECI coordinates

Let us consider the controlled motion of the primary object around Earth, assuming
a restricted two-body problem as described in Section 2.7.1.
The state vector concatenates the position and the velocity of the satellite in ECI
coordinates {x, y, z}:

r
v

 =



rx

ry

rz

vx

vy

vz


. (4.1)
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4.1. Energy-optimal control problem in ECI coordinates

The control parameter is the acceleration vector:

ac =


ac,x

ac,y

ac,z

 . (4.2)

In this formulation, the mass is not included in the state variables as it was
presented in Eq. 2.95, since its equation is decoupled from the other. Thus, in
order to simplify the equations, it is treated separately:

ṙ = v

v̇ = − µ
r3 r + ac

ICs :


r(t0) = r0

v(t0) = v0

(4.3)

ṁ = − 1
ce
‖ac‖m IC : m(t0) = m0 (4.4)

In minimum-energy formulation, the cost function is defined as:

J =
∫ tf

t0
Ldt, L = 1

2a>c ac (4.5)

and the terminal function can be written in terms of Squared Mahalanobis Distance
(which includes also the Probability of Collision case, using Eq. 2.75) or Miss
Distance. These two cases are discussed separately in the following subsections.

Squared Mahalanobis distance constraint

The terminal function is written such that the SMD value corresponding to the
final position rf = r(tf ) matches with an enforced value SMD:

Ψ(x(tf ), tf ) = SMD (rf )− SMD. (4.6)

By means of Eq. 2.78, and using notation R2D = Rb,2D for simplicity, the SMD is
written as function of the position at final time of the manoeuvre rf :

SMD (rf ) = (rf − rs)>R>2DC−1R2D(rf − rs). (4.7)

The Hamiltonian is:

H = 1
2a>c ac + λ>r v + λ>v

(
− µ
r3 r + ac

)
(4.8)
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and the augmented performance index J reads:

J = ν
[
SMD (rf )− SMD

]
+
∫ tf

t0

{1
2a>c (t)ac(t) + λ>(t) [ẋ(t)− ẋ(t)]

}
dt. (4.9)

The equations of motion for the costate are derived using Eq. 2.93 and the
Hamiltonian system associated to the Energy-Optimal control Problem is:



ṙ = v

v̇ = − µ
r3 r + ac

λ̇r = µ

r3λv −
3µr · λv
r5 r

λ̇v = −λr



r(t0) = r0

v(t0) = v0

λr(tf ) = ν
∂SMD(rf )

∂rf
λv(tf ) = ν

∂SMD(vf )
∂vf

(4.10)

with the control acceleration law deriving from the Pontryagin’s minimum principle
which states that the optimal control is the one that minimises the Hamiltonian:

ac = −λv. (4.11)

The problem can be formulated as a Two-Point Boundary Value Problem (TPBVP),
known as Euler-Lagrange equations:

ṙ = v

v̇ = − µ
r3 r− λv

λ̇r = µ

r3λv −
3µr · λv
r5 r

λ̇v = −λv

BCs :



r(t0) = r0

v(t0) = v0

λr(tf ) = ν2R>2DC−1R2D(rf − rs)

λv(tf ) = 0
(4.12)

with a constraint on the final squared Mahalanobis distance:

SMD(rf )− SMD = 0. (4.13)

Several numerical techniques exist for solving TPBVPs; among them, the most
famous is probably the shooting method: the problem is translated in an Initial
Value Problem (IVP), where the Initial Conditions (ICs) are found by “shooting”
the trajectory until the tolerances on the Boundary Conditions (BCs) are respected.
Other methods are finite-difference methods and collocation methods, where the
latter are the selected algorithms by MATLAB® to solve TPBVPs.

48



4.1. Energy-optimal control problem in ECI coordinates

In this thesis the problem is solved in a completely analytical way avoiding
numerical methods, and the procedures is described in detail in the following
subsections. The final costates λr0, λv0 are found exploiting the State Transition
Matrix (STM) and the equation of the final constraint, hence the problem becomes
an Initial Value Problem (IVP).

ṙ = v

v̇ = − µ
r3 r− λv

λ̇r = µ

r3λv −
3µr · λv
r5 r

λ̇v = −λv

ICs :



r(t0) = r0

v(t0) = v0

λr(t0) = λr0

λv(t0) = λv0.

(4.14)

Once the IVP has been obtained, it can be solved for the state variables [r,v] and
the costates [λr,λv]. The control acceleration profile of the optimal manoeuvre
can be simply found by substituting the velocity costate into the control low in
Eq. 4.11.

4.1.1 State Transition Matrix

In order to find the initial costates for the IVP formulation, it is necessary to
linearise the deviations of the spacecraft from the nominal trajectory using the
STM. The nominal ballistic trajectory consists in the natural motion of the satellite
around the Earth (see Section 2.7.1).

ṙn = vn

v̇n = − µ
r3 r

λ̇rn = 0

λ̇vn = 0.

(4.15)

Therefore, the state matrix A

A(t) = ∂f(x, t)
∂x

∣∣∣∣∣
xn

, (4.16)
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results to be:

A =


03×3 I3×3 03×3 03×3

−A34 03×3 03×3 −I3×3

03×3 03×3 03×3 A34

03×3 03×3 −I3×3 03×3

 . (4.17)

In particular

A34 = µ

r3
n

I3×3 − 3 µ
r5
n


rn(1)2 rn(2)rn(1) rn(3)rn(1)

rn(1)rn(2) rn(2)2 rn(3)rn(2)
rn(1)rn(3) rn(2)rn(3) rn(3)2

 , (4.18)

where rn(1), rn(2) and rn(3) are the components of the position vector rn on the
nominal orbit, expressed in ECI r.f.
The State Transition Matrix Φ is thus computed by integrating Eq. 2.98:

Φ̇(t, t0) = A(t)Φ(t0, t0), Φ(t0, t0) = I12×12, (4.19)

and the variations of the initial state are mapped into variations of the final state:

δrf
δvf
δλrf

δλvf

 =


Φ11 Φ12 Φ13 Φ14

Φ21 Φ22 Φ23 Φ24

Φ31 Φ32 Φ33 Φ34

Φ41 Φ42 Φ43 Φ44




δr0

δv0

δλr0

δλv0

 . (4.20)

In this approach the initial state is fixed, and the costates are zero on the nominal
trajectory, therefore the following relations hold:

r0 = rm −→ δr0 = r0 − rm = 0, (4.21)
v0 = vm −→ δv0 = v0 − vm = 0, (4.22)
λrm = 0 −→ δλr0 = λr0, (4.23)
λvm = 0 −→ δλv0 = λv0, (4.24)
δrf = rf − rp, (4.25)
δvf = vf − vp, (4.26)
λrp = 0 −→ δλrf = λrf , (4.27)
λvp = 0 −→ δλvf = λvf , (4.28)
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where rm, vm, λrm, λvm are the state and costate at the initial manoeuvre point,
that is at the initial time t0; rp, vp, λrp, λvp are the state and costate at the time
of closest approach on the nominal trajectory, and rf , rf , λrf , λvm are the state
and costate at the moment of the encounter after the manoeuvre.

4.1.2 Analytical solution

The equations derived from the State Transition Matrix are now used to express
the initial costates λr0, λv0 as a functions of the final position rf .
Since the final velocity is free, the associated costate is zero: δλvf = λvf = 0.
Thus, from the fourth row of Eq. 4.20, it can be derived:

0 = Φ43δλr0 + Φ44δλv0 (4.29)

and from the third row of Eq. 4.20:

δλrf = Φ33δλr0 + Φ34δλv0

= (Φ33 −Φ34Φ−1
44 Φ43)δλr0

= Bδλr0
−→ λr0 = B−1δλrf .

(4.30)

Considering now the first row of Eq. 4.20:

δrf = Φ13δλr0 + Φ14δλv0

= (Φ13 −Φ14Φ−1
44 Φ43)δλr0

= Dδλr0
= DB−1δλrf

(4.31)

B = Φ33 −Φ34Φ−1
44 Φ43 (4.32)

D = Φ13 −Φ14Φ−1
44 Φ43. (4.33)

Recalling now that δλrf = λrf (Eq. 4.27):

δrf = DB−1λrf = DB−1ν
∂SMD(rf )

∂rf
(4.34)
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Hence the variation of the position vector can be written as the product of the
multiplier ν and a function g of the final position rf :

δrf = νg(rf ) (4.35)

where, computing the derivation of the squared Mahalanobis distance from Eq. 4.7:

g(rf ) = 2DB−1R>2DC−1R2D(rf − rs). (4.36)

A non-linear system in rf and ν is obtained form Eq. 4.35 and Eq. 4.13:
δrf = rf − rp = νg(rf )

SMD(rf ) = SMD.
(4.37)

A. Schiavo in [Sch20] solved the system in Eq. 4.37 numerically for ν and rf , using
Levenberg-Marquardt algorithm, implemented in MATLAB® built-in function
fsolve; in this thesis it is handled analytically, and the steps are here described.

By means of Eq. 4.7, Eq. 4.25 and Eq. 4.36, the non-linear system in Eq. 4.37 can
be rewritten as: 

rf − rp = 2νDB−1R>2DC−1R2D(rf − rs)

(rf − rs)>R>2DC−1R2D(rf − rs) = SMD,
(4.38)

recalling that rp, rs are respectively the position of the primary and the secondary
object at the Time of Closest Approach (TCA), C is the 2D combined covariance
matrix in BP coordinates and R2D is the rotation matrix from ECI r.f. to BP r.f.
The first equation of Eq. 4.38 is premultiplied (multiplied to the left) by R2D and
the second one is rewritten in terms of final position bf in B-plane (see Eq. 2.79):

R2D(rf − rp) = 2νR2DDB−1R>2DC−1R2D(rf − rs)

b>f C−1bf = SMD.
(4.39)

Focusing on the first equation of Eq. 4.39, recalling that a generic position b in
BP coordinates can be written as b = R2D(r− rs):

R2D(rf − rs − rp + rs) = 2νR2DDB−1R>2DC−1R2D(rf − rs) (4.40)

bf − bp = 2νR2DDB−1R>2DC−1bf . (4.41)
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Let us define the matrix E = 2R2DDB−1R>2DC−1. Eq. 4.41 becomes:

bf = (I2×2 − νE)−1bp. (4.42)

By substituting Eq. 4.42 into the second equation of Eq. 4.39, the latter can be
written as a scalar equation with unknown ν. Setting the matrix Q = C−1, it
reads:

[(I2×2 − νE)−1bp]>Q(I2×2 − νE)−1bp = SMD. (4.43)

Since:
(I− νE)−1 = 1

det(I− νE) [I− νdetE · (E)−1] (4.44)

Equation 4.43 becomes:

1
det2(I− νE)

[(I− νdetE · E−1)bp]>Q(I− νdetE · E−1)bp = SMD. (4.45)

Let us introduce also the matrix Ẽ = detE · E−1 in order to simplify the notation.
Equation 4.45 through simple algebraic steps is written as:

[(I− νẼ)bp]>Q(I− νẼ)bp = SMDdet2(I− νE) (4.46)

[b>p − ν(Ẽbp)>]Q[bp − νẼbp] = SMDdet2(I− νE) (4.47)

b>p Qbp − νb>p QẼbp − ν(Ẽbp)>Qbp + ν2(Ẽbp)>Q(Ẽbp) =
SMDdet2(I− νE). (4.48)

The analytical equation is finally written in the normal polynomial form and can
be solved in a closed-form for ν:

ν2(Ẽbp)>Q(Ẽbp)− ν[b>p QẼbp + (Ẽbp)>Qbp] =
SMDdet2(I− νE)− b>p Qbp. (4.49)

Equation 4.49 has four solutions, since the term with the quadratic determinant
contains ν at the fourth degree. The solutions corresponds to the two local minima
and two local maxima in terms of equivalent ∆v (as it is shown in the results
section, Figure 4.8).
The variation of the position reached after the manoeuvre δrf can be found by
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plugging the solution ν into Eq. 4.35. Once δrf is known, it is finally possible to
compute the initial costates λv0 and λv0 from Eqs. 4.29 and 4.31:

λr0 = D−1δrf , (4.50)
λv0 = −Φ−1

44 Φ43δr0. (4.51)

The IVP in Eq. 4.14, given all the initial conditions, can now be integrated.
The whole method presented so far is summarised in Algorithm 2.

Algorithm 2 EOP-ECI

1: Input: CDM, SMD,∆θ_range
2: Output (for each ∆θ): rf , SMD, PoC, ac, ∆v, ∆m
3: for i = 1 : size(∆θ_range) do
4: ∆θ = ∆θ_range(i)
5: θm = θTCA −∆θ
6: T interval of time corresponding to ∆θ
7: tspan_backward = [T 0]
8: tspan_forward = [0 T]
9: backard propagation:

10: [r0,v0] = keplerian_propagator([rTCA,vTCA], tspan_backward)
11: compute STM:
12: starting from x0 and propagating for tspan_forward
13: solve the non-linear system: (Eq. 4.37) for rf,es and ν
14: compute λr0,λv0 using rf,es and Φ (Eqs. 4.50, 4.51)
15: controlled forward propagation:
16: [rf ,vf ,λrf ,λvf ,mf ] = control_propagator([r0,v0,λr0,λv0,m0], tspan_-

forward)
17: ∆r = rf − rs
18: SMD = squared_mahalanobis_distance(∆r,CDM)
19: PoC = poc_chan(∆r,CDM)
20: ∆m = mf −m0
21: end for

Miss distance constraint

The EOP can be reformulated by constraining the final Miss Distance (MD) instead
of the final PoC/SMD. Remember that the miss distance d can be written as:
d =

√
ξ2
e + ζ2

e = ‖bf‖ = ‖R2D(rf − rs)‖.
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The non-linear system in Eq. 4.37 becomes:
δrf = 2νDB−1R>2DC−1R2D(rf − rs)

d(rf ) = d,
(4.52)


R2D(rf − rp) = 2νR2DDB−1R>2DC−1R2D(rf − rs)

‖R2D(rf − rs)‖ = d.
(4.53)

One can apply the same procedure of the previous paragraph (Eqs. 4.40 - 4.42),
and the first equation of Eq. 4.53 reads:

bf = (I2×2 − νE)−1bp. (4.54)

The second equation of Eq. 4.53 becomes:
∥∥∥(I− νE)−1bp

∥∥∥ = d, (4.55)

and similarly to Eqs. 4.44 - 4.46:∥∥∥∥∥ 1
det(I− νE)(I− νẼ)bp

∥∥∥∥∥ = d (4.56)

ν2(Ẽbp)>(Ẽbp)− νb>p (Ẽbp)− ν(Ẽbp)>bp = det (I− νE)2d
2 − b>p bp. (4.57)

In analogy to what has been explained for the squared Mahalanobis distance case,
Eq. 4.56 is algebraically manipulated and analytically solved for ν and used to
find the initial costates and integrate the Initial Value Problem.

4.1.3 Results

In order to illustrate the results of the proposed formulation and assess its accuracy,
the same test case of Section 3.3 has been considered. The true anomaly ranges
from 0 to 2 orbits before TCA, with 100 discretisation points: ∆θ ∈ [0, 4π]. The
enforced value of squared Mahalanobis distance and the corresponding collision
probability are:

SMD = 25 km2 → PoC = 2.4036 · 10−6. (4.58)

The method described in Algorithm 2 has been applied, and after the control
application the final position for each ∆θ is reported in BP r.f. in Figure 4.2.
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Figure 4.2: Final position in B-plane r.f. reached after the optimal manoeuvre, for 100
initial manoeuvring points from 2 orbits before TCA until the expected impact.

EOP with ECI dynamics and constrained SMD.
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Figure 4.3: Multiplier ν of the EOP with ECI dynamics and constrained SMD.
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4.1. Energy-optimal control problem in ECI coordinates

For completeness the values of the coefficient ν depending on ∆θ is shown in
Figure 4.3.
Figure 4.4 reports both the “estimated” and “real” collision probability profiles:
the former is computed directly after the resolution of the system in Eq. 4.37
with the value of rf resulting by Eq. 4.35; the latter is the PoC calculated with
the actual final position rf obtained after the integration of the manoeuvred
dynamics (Eq. 4.14). The estimated behaviour perfectly matches the enforced
value, accounting for numerical errors, and the real profile remains close to the
threshold without ever exceeding it. The result is absolutely acceptable since at
2 orbits before the CA the maximum deviation is 1.1729 · 10−8, two orders of
magnitude lower than the constraint value.
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Figure 4.4: Collision probability: estimated value (left) and real profile after the
dynamics propagation (right). EOP with ECI dynamics and constrained SMD.

After the resolution of the dynamics of the manoeuvre, the control acceleration
profile is found. For each ∆θ the equivalent cost in terms of ∆v has been calculated
by integrating the acceleration profile and the resulting values are reported at the
top of Figure 4.5. It can be noticed that the equivalent ∆v increases consistently
when the manoeuvre is performed close to the expected collision. The plot at
the bottom of the same figure displays the development of the maximum control
acceleration required, with components in LVLH r.f.. Starting from the furthest
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points from the TCA, the transverse component in the most significative, but
below a certain value of ∆θ close to CA the radial component becomes the largest:
it is necessary to manoeuvre the spacecraft as far as possible from the predicted
angle of collision.
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Figure 4.5: Equivalent impulse ∆v (top) and maximum control acceleration ac (bottom)
for each initial manoeuvring point. EOP with ECI dynamics and constrained SMD.

The profile of the control acceleration highly depends on which point is taken to
start the manoeuvre (value of ∆θ). The results considering a manoeuvre starting
1.99 orbits before TCA are shown in Figure 4.6. The manoeuvre is mostly per-
formed in the transverse direction.
The maximum thrust required by the spacecraft and the necessary fuel mass can
be seen in Figure 4.7. The initial mass of the satellite is set to m0 = 500 kg and
the specif impulse Isp = 220 s. As it can be noticed, the nearer to the collision
point (∆θ = 0) the highest the mass required to match the constraint imposed on
the collision probability.
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Figure 4.6: Control acceleration profile for a manoeuvre starting 1.99 orbits before
TCA. EOP with ECI dynamics and constrained SMD.
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Figure 4.7: Maximum thrust (left) development and mass variation (right) depending
on ∆θ for EOP with ECI dynamics and constrained SMD.

As previously discussed, Eq. 4.49 has four solutions. A confirmation that those are
two local maxima and two local minima in terms of total cost of the manoeuvre
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is achieved by the analysis of the objective function’s behaviour on each point of
the elliptical boundary. This analysis is done by sampling the ellipse with 300
points and solving optimal control problems where the final position is constrained
to each specific point. Figure 4.8 shows the results, where the stars indicates
the four solutions of the equation. The examined cases have similar objective
function structure, with the two minima located at the opposite side of the ellipse
and corresponding to thrust mainly aligned with either the tangential or the
anti-tangential direction.
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Figure 4.8: Solutions of EOP at 1.99 orbits before TCA compared with the ∆v profile
on the boundaries of the avoidance region.

Miss distance constraint

Considering miss distance constraint and setting d = 0.3 km, the final positions in
B-plane coordinates after the controlled propagation are reported in Figure 4.9.
The miss distance trend, both for the “estimated” values and the “real” miss
distance after the forward propagation, are displayed in Figure 4.10.
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Figure 4.9: Final position in B-plane r.f. reached after the optimal manoeuvre, for 100
manoeuvring points from 2 orbits before TCA until the expected impact. EOP with

ECI dynamics and constrained MD.
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Figure 4.10: Miss distance: estimated value (left) and real profile after the dynamics
propagation (right). EOP with ECI dynamics and constrained MD.
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Similar to the results in terms of collision probability, the estimated miss distance
perfectly matches the enforced value and the real one remains close to the threshold
without ever exceeding it, with a maximum deviation of 1.1687 · 10−4, three orders
of magnitude lower than the constraint value.

4.2 Energy-optimal control problem in B-plane coordinates

The EOP formulation can be projected onto B-Plane and the resulting approach
simplifies the problem by reducing the dimension of the dynamic system from six
to two. The detailed derivation of the conjunction dynamics expressed in B-plane
coordinated can be found in Section 2.4. The state vector in B-plane coordinates
{ξ, ζ} is:

b =
bξ
bζ

 .
The control parameter is the acceleration, expressed in ECI r.f.:

ac =


ac,x

ac,y

ac,z

 . (4.59)

The dynamic system can be written as:
ḃ = Mac

IC : b(t0) = b0.
(4.60)

recall the definition of the matrix M as the product of the three matrices that
describe the rotation, kinematics and dynamics from ECI r.f. to the B-plane:

M(t) = RKD(t). (4.61)

The performance index is:
L = 1

2a>c ac, (4.62)

and as in Cartesian coordinates, the terminal function can be written in terms of
Squared Mahalanobis Distance (which includes also the Probability of Collision
case) or Miss Distance.
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4.2. Energy-optimal control problem in B-plane coordinates

Squared Mahalanobis distance constraint

The problem is constrained such that the final SMD value matches with an enforced
value SMD. Thus the terminal function can be written as:

Ψ(x(tf ), tf ) = b>(tf )C−1b(tf )− SMD. (4.63)

The Hamiltonian is:
H = 1

2a>c ac + λ>Mac (4.64)

an the augmented cost function reads:

J = ν
[
b>(tf )C−1b(tf )− SMD

]
+

+
∫ tf

t0

{1
2a>c (t)ac(t) + λ>(t)

[
M(t)ac(t)− ḃ(t)

]}
dt. (4.65)

The Hamiltonian system associated to the EOP results to be:


ḃ = Mac

λ̇ = 0

b(t0) = b0

λ(tf ) = ν2C−1b(tf )

ac = −M>λ.

(4.66)

By substituting the resulting definition of the control acceleration ac as function
of the costate λ into the dynamics, the Two-Point Boundary Value Problem can
be written as:

ḃ = −M(t)M>(t)λ

λ̇ = 0
BCs :


b(t0) = b0

λ(tf ) = ν2C−1b(tf )
(4.67)

with the constraint on the final squared Mahalanobis distance

b>(tf )C−1b(tf )− SMD = 0. (4.68)

Since the Hamiltonian does not explicitly depend on the b vector coordinates, λ
remains constant in time:

λ(t0) = λ(t) = ν2C−1b(tf ), ∀t ∈ (t0, tf ) (4.69)
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As explained in Section 4.1, relative to the Cartesian formulation of the problem,
also in this case the TPBVP can be translated into a IVP after λ0 is known.
Equation 4.69 already links λ to the final position bf , thus bf needs to be
estimated using the STM and the constraint in Eq. 4.68 in order to formulate the
initial conditions for an Initial Value Problem:

ḃ = −M(t)M>(t)λ

λ̇ = 0
ICs :


b(t0) = b0

λ(t) = λ0.
(4.70)

4.2.1 State Transition Matrix

The natural motion of the satellite around the Earth expressed in B-plane dynamics
is expressed by means of Eq. 2.67:

ḃn = −MM>λn

λ̇n = 0.
(4.71)

The State Transition Matrix is computed by integrating:

Φ̇(t, t0) = A(t)Φ(t0, t0), Φ(t0, t0) = I4×4 (4.72)

where A(t) is the state matrix of the linear system

ẋ(t) = A(t)x(t). (4.73)

For this formulation of the problem it can be written as:

A =
02×2 −MM>

02×2 02×2

 , such that:
ḃ
λ̇

 = A

b
λ

 . (4.74)

Hence the STM turns out to be:δbf
δλf

 =
Φ11 Φ12

Φ21 Φ22

δb0

δλ0

 . (4.75)
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Rewriting Eqs. 4.21 - 4.28 and considering that in BP r.f. bm = bp = be, the
following conditions can be derived:

b0 = be −→ δb0 = b0 − be = 0, (4.76)
λe = 0 −→ δλ0 = λ0, (4.77)
δbf = bf − be, (4.78)
λe = 0 −→ δλf = λf . (4.79)

4.2.2 Analytical solution

The equations derived from the State Transition Matrix are now used to find
another expression to link the initial costate λ0 to the final position bf . From the
first row of Eq. 4.75, it can be derived:

δbf = Φ12δλ0 = Φ12λ0 (4.80)

and from Eq. 4.69:
λ0 = ν2C−1bf (4.81)

Hence Eq. 4.80 can be rewritten as:

δbf = νΦ122C−1bf , (4.82)

and exploiting the constraint on the squared Mahalanobis distance value (Eq. 4.68),
the non-linear system in ν and rf is obtained:

δbf = νΦ122C−1bf

SMD(bf ) = SMD


bf − bp = νΦ122C−1bf

b>f C−1bf = SMD.
(4.83)

Manipulating the first equation of Eq. 4.83

bf (I2×2 − νΦ122C−1) = bp, (4.84)

and plugging the expression for bf into the second equation, one obtains:
bf = (I− νΦ122C−1)−1bp

[(I− νΦ122C−1)−1bp]>C−1(I− νΦ122C−1)−1bp = SMD.
(4.85)
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Let us define F = 2Φ12C−1 in order to simplify the notation and recall the matrix
Q = C−1. The second equation of Eq. 4.85 becomes a scalar equation that can be
solved for ν:

[(I− νF)−1bp]>Q(I− νF)−1bp = SMD. (4.86)

Since:
(I− νF)−1 = 1

det(I− νF) [I− νdetF · (F)−1] → (4.87)

1
det2(I− νF)

[(I− νdetF · F−1)bp]>Q(I− νdetF · F−1)bp = SMD. (4.88)

Introducing also F̃ = detF · F−1, and manipulating the equation through simple
algebraic steps:

[(I− νF̃)bp]>Q(I− νF̃)bp = SMDdet2(I− νF) (4.89)

[b>p − ν(F̃bp)>]Q[bp − νF̃bp] = SMDdet2(I− νF) (4.90)

b>p Qbp − νb>p QF̃bp − ν(F̃bp)>Qbp + ν2(F̃bp)>Q(F̃bp) =
SMDdet2(I− νF) (4.91)

The analytical equation is finally written in the normal polynomial form and can
be solved in a closed-form for ν:

ν2(F̃bp)>Q(F̃bp)− ν[b>p QF̃bp + (F̃bp)>Qbp] =
SMDdet2(I− νF)− b>p Qbp. (4.92)

In analogy of the final formula obtained with Cartesian dynamics, Eq. 4.92 has
four solutions corresponding to the two local minima and two local maxima in
terms of equivalent ∆v.
The variation of the position reached after the manoeuvre in BP r.f. bf is found
by plugging the solution ν into the first equation of Eq. 4.85. Once bf is known,
it is possible to compute λ0 from Eq. 4.81 and the IVP in Eq. 4.70, given all the
initial conditions, can be integrated. The solution method for the EOP exploiting
B-plane dynamics is summarised in Algorithm 3.
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Algorithm 3 EOP-BP

1: Input: CDM, SMD,∆θ_range
2: Output (for each ∆θ): bf , SMD, PoC, ac, ∆v, ∆m
3: for i = 1 : size(∆θ_range) do
4: ∆θ = ∆θ_range(i)
5: θm = θTCA −∆θ
6: T interval of time corresponding to ∆θ
7: tspan_backward = [T 0]
8: tspan_forward = [0 T]
9: compute B-plane quantities for dynamics from CDM

10: b0 = keplerian_propagator([bTCA tspan_backward)
11: compute STM:
12: starting from b0 and propagating for tspan_forward
13: solve the non-linear system: (Eq. 4.37) for bf,es and ν
14: compute λ0 using bf,es and Φ (Eqs. 4.50, 4.51)
15: controlled forward propagation:
16: [bf ,λf ,mf ] = control_propagator([b0,λ0,m0], tspan_forward)
17: SMD = squared_mahalanobis_distance(bf ,CDM)
18: PoC = poc_chan(∆r,CDM)
19: ∆m = mf −m0
20: end for

Miss distance constraint

The EOP in B-plane coordinates can be reformulated by constraining the final
Miss Distance (MD) instead of the final PoC/SMD. Recalling the definition of
miss distance in BP coordinates d =

√
ξ2
e + ζ2

e = ‖bf‖, the non-linear system in
Eq. 4.83 becomes:

δbf = νΦ122C−1bf

d(bf ) = d


bf − bp = νΦ122C−1bf

‖bf‖ = d
(4.93)

Manipulating the first equation of Eq. 4.93 and plugging bf into the second one:
bf = (I2×2 − νΦ122C−1)−1bp

‖(I2×2 − νΦ122C−1)−1bp‖ = d.
(4.94)

and similarly to Eqs. 4.87 - 4.89:∥∥∥∥∥ 1
det(I− νF)(I− νF̃)bp

∥∥∥∥∥ = d. (4.95)
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In analogy to what has been explained for the squared Mahalanobis distance case,
Eq. 4.95 is algebraically manipulated and analytically solved for ν and used to
find the initial costate and integrate the Initial Value Problem in Eq. 4.70.

4.2.3 Results

The results relative to the EOP formulation in BP dynamics are here reported.
The same test case and the same constraint values of Section 4.1.3 have been
considered.
The method described in Algorithm 3 has been applied, and after the control
application the final position for each ∆θ ∈ [0, 4π] is reported in BP r.f. in
Figure 4.11. As expected, the results are almost indistinguishable from the ones
reached exploiting ECI dynamics (see Figure 4.2). The two solutions with ECI
and BP dynamics are shown together on the same enlarged area of the B-plane in
Figure 4.12 and a better understanding can be achieved from the comparison of
the trends of the final collision probability.
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Figure 4.11: Final position in B-plane r.f. reached after the optimal manoeuvre, for
100 initial manoeuvring points from 2 orbits before TCA until the expected impact.

EOP with BP dynamics and constrained SMD.
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comparison between EOP in ECI and BP coordinates, constrained SMD (detail of

Figure 4.2 and Figure 4.11).
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Figure 4.13: Collision probability profile after the dynamics propagation: comparison
between EOP in ECI and BP coordinates, constrained SMD.
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Figure 4.13 shows the differences between ECI and BP dynamics in terms of final
collision probability profile for each true anomaly of the initial manoeuvre point,
calculated with the actual final position rf/bf obtained after the integration of
the manoeuvred dynamics. Even though the ECI algorithm is more accurate and
it never exceeds the threshold, both of them are close to the enforced value: for
the B-plane algorithm the maximum deviation is 5.6354 · 10−8, still in the same
order of magnitude of the error with ECI coordinates, two order lower than the
boundary.

Miss distance constraint

The results of the EOP formulation with terminal function expressed in terms of
miss distance are shown hereafter. As for the PoC/SMD case, the final position is
nearly indistinguishable from the achieved with ECI dynamics formulation, and a
portion of B-plane (detail of Figure 4.9) is reported in Figure 4.14.
Figure 4.15 shows the final miss distance trend, computed through ECI and BP
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Figure 4.14: Final position in B-plane r.f. reached after the optimal manoeuvre:
comparison between EOP in ECI and BP coordinates, constrained MD (detail of

Figure 4.9).

algorithm. The maximum deviation in the BP behaviour, 3.3818 · 10−4 km, is
absolutely acceptable compared to the one in ECI r.f. of 1.1687 · 10−4 km, three
order of magnitude lower the imposed value d = 0.3 km.
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Figure 4.15: Miss distance profile after the dynamics propagation: comparison between
EOP in ECI and BP coordinates, constrained MD.

4.3 Scaled control acceleration

It is useful to rewrite the EOP considering a maximum affordable acceleration
value for the satellite thrusters. Within such an approach, the values of the velocity
costate λv represent exactly the fraction of amax that must be applied to perform
the manoeuvre.
Let us define the scaled control acceleration with respect to the maximum acceler-
ation, such that:

ac = amaxac,s, (4.96)

where ac,s is the scaled control acceleration vector. Following the optimal control
theory described in Section 2.7, the performance index and Hamiltonian read:

L = 1
2amaxa>c,sac,s, (4.97)

H = 1
2amaxa>c,sac,s + λ>r v + λ>v (− µ

r3 r + amaxac,s), (4.98)
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The control law, found through the Pontryagin’s minimum principle which states
that the optimal control is the one that minimise the Hamiltonian, is:

∂H

∂ac,s
= 0 → amaxac,s + amaxλv = 0 (4.99)

→ ac,s = −λv (4.100)

ac = −amaxλv. (4.101)

Having the modulus of λv related to the percentage of thrust with respect to its
maximum value (see Eq. 4.101) facilitates the transformation of the continuous
profile into the so called “bang-bang” profile that will be introduced in Section 4.4.
The Euler-Lagrange equations that describes the problem are:

ṙ = v

v̇ = − µ
r3 r− amaxλv

λ̇r = µ

r3λv −
3µr · λv
r5 r

λ̇v = −λv

BCs :



r(t0) = r0

v(t0) = v0

λr(tf ) = ν2R>2DC−1R2D(rf − rs)

λv(tf ) = 0
(4.102)

with a constraint on the final squared Mahalanobis distance or miss distance:

SMD(rf )− SMD = 0 or d(rf )− d = 0 (4.103)

The State transition matrix can be computed solving Eq. 2.98, with the following
state matrix A:

A =


03×3 I3×3 03×3 03×3

−A34 03×3 03×3 −amaxI3×3

03×3 03×3 03×3 A34

03×3 03×3 −I3×3 03×3

 (4.104)

where A34 is defined in Eq. 4.18. Then the procedure is analogous to the one
described in Algorithm. 2.
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B-plane dynamics

The EOP with scaled control acceleration is proposed exploiting BP dynamics as
well. In this case the Hamiltonian is written as:

H = 1
2amaxa>c,sac,s + amaxλ

>Nac,s. (4.105)

The Hamiltonian’s stationary point that defines the control law is:

∂H

∂ac,s
= 0 → amaxac,s + amaxM>λ = 0 (4.106)

→ ac,s = −M>λ, (4.107)

ac = −amaxM>λ, (4.108)

By substituting the resulting definition of the control acceleration ac as function
of the costate λ into the dynamics, the TPBVP can be written as:

ḃ = −amaxM(t)M>(t)λ

λ̇ = 0
BCs :


b(t0) = b0

λ(t) = ν2C−1b(tf )
(4.109)

with the constraint on the final squared Mahalanobis distance or miss distance:

b>(tf )C−1b(tf )− SMD = 0 or ‖b(tf )‖ − d = 0. (4.110)

The state matrix A reads:

A =
02×2 −amaxMM>

02×2 02×2

 . (4.111)

Then the procedure is analogous to the one described in Algorithm. 3.

4.3.1 Results

Considering the test case, the maximum acceleration available by the propulsion
system has been set to amax = 8 · 10−6 m/s2 for a manoeuvre starting 1.99 orbits
before TCA. By applying the EOP with scaled control, the velocity costate profile
represents the percentage of acceleration required compared to the maximum
available, and it is reported in Figure 4.16.
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Figure 4.16: Velocity costate λv scaled on amax = 8.0e-06 m/s2 at 1.99 orbits before
TCA.

4.4 Bang-Bang profile transformation

The control profile resulting from the solution of EOP consists in a continuous
unbounded acceleration profile, which can be difficult to implement by the propul-
sion system and is non-optimal from the propellant consumption standpoint. To
mitigate these issues, the continuous acceleration profile is turned into a bang-bang
one by a smoothing approach based on the adoption of a hyperbolic tangential
function. The resulting algorithm ensures more efficient manoeuvres than the
continuous minimum-energy solutions [Mar21]. The main drawback of bang-bang
solutions is that they introduce discontinuities in the motion equations. These
discontinuities usually lead to convergence problems for Newton type algorithms.
To remove this obstacle, a smooth representation of the bang-bang by an hyperbolic
tangential is used [Tah18].
The modified control acceleration ac vector is:

ac = −amaxpλv. (4.112)

with p defined as:
p = amin

λv + ε
p1 + p2p3 + amax

λv + ε
p4, (4.113)
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p1 = 1
2(1− tanh λv−ath,min

ρ
)

p2 = 1
2(1− tanh λv−ath,max

ρ
)

p3 = 1
2(1− tanh ath,min−λv

ρ
)

p4 = 1
2(1− tanh ath,max−λv

ρ
)

(4.114)

λv = ‖λv‖ , (4.115)

Where:

• amin and amax are the minimum and maximum values of the acceleration, to
be set according to the engine.

• ath,min and ath,max are the minimum and the maximum threshold acceleration.

• ρ and ε are respectively the smoothing parameter and a coefficient in order
to have non-zero denominators (ρ, ε� 1).

In order to obtain a pure bang-bang solution, the maximum and the minimum
threshold accelerations must have the same value, ath,min = ath,max = ath. The
selection of ath is a key element for ensuring the convergence for the EOP with
constrained bang-bang structure. The value of ath is selected with the following
procedure:

1. set ρ and ε;

2. calculate the total impulse of the manoeuvre ∆vtot by integration of the
acceleration profile;

3. compute an estimation of the burning time by t∗ON = ∆vtot
amax

;

4. calculate ath as the value with which the burning time obtained by capping
the continuous profile solution is equal to t∗ON (achieved with MATLAB®

built-in function fzero).

The resulting problem consists in a TPBVP characterize by the same dynamics of
Eq. 4.102 and the following Boundary Conditions:

λrf = λrTCA

λvf = λvTCA

SMD(rf ) = SMD.

(4.116)
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Solving this problem consists in finding the values of the 6 unknowns, λr(t0)
and λv(t0), that propagated until tf satisfy Eq. 4.116. The Levenberg-Marquardt
method implemented in MATLAB® built-in function fsolve is used with initial
guesses for λr0 and λv0 provided by the solution of the EOP Algorithm with the
continuous profile. The resulting algorithm is summarised in Algorithm 4.

Algorithm 4 EOP-BangBang

1: Input: CDM, SMD,∆θ_range, EOP solution, amax, ρ, ε
2: Output (for each ∆θ): rf , SMD, PoC, ac, ∆v, ∆m
3: for i = 1 : size(∆θ_range) do
4: given ∆vtot from EOP unbounded solution, compute t∗ON = ∆vtot/amax
5: calculate ath which provides t∗ON for the bang-bang manoeuvre with

MATLAB® built-in function fzero
6: Select λr0,λv0 and ν0 from EOP solution as initial guesses
7: Solve Eq. 4.116 for λr0,λv0 with the control acceleration in Eqs. 4.112, 4.113

and 4.114 with MATLAB® built-in function fsolve
8: controlled forward propagation:
9: [rf ,vf ,λrf ,λvf ,mf ] = control_propagator([r0,v0,λr0,λv0,m0], tspan_-

forward)
10: ∆r = rf − rs
11: SMD = squared_mahalanobis_distance(∆r,CDM)
12: PoC = poc_chan(∆r,CDM)
13: ∆m = mf −m0
14: end for

B-plane dynamics

As with the resolution of the unbounded EOP, the problem formulation in B-plane
coordinates is investigated also in the case of a bang-bang acceleration structure.
The modified control acceleration ac vector is:

ac = −amaxpu, u = M>λ (4.117)

with p defined as:
p = amin

u+ ε
p1 + p2p3 + amax

u+ ε
p4, (4.118)
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p1 = 1
2(1− tanh u−ath,min

ρ
)

p2 = 1
2(1− tanh u−ath,max

ρ
)

p3 = 1
2(1− tanh ath,min−u

ρ
)

p4 = 1
2(1− tanh ath,max−u

ρ
)

(4.119)

u = ‖u‖ (4.120)

The problem is then solved in an equivalent manner tot hat described in Algorithm 4,
referring to TPBVP with dynamics in B-plane r.f. in Eq. 4.109.

4.4.1 Results

The EOP algorithm with bang-bang acceleration structure is applied to the test
case, for a manoeuvre starting ∆θ = 1.99 orbits before TCA. The maximum
acceleration affordable by the thrusters is set amax = 8 · 10−6 m/s2. The selected
smoothing coefficients are: ρ = 10−11, ε = 10−20, and the corresponding accelera-
tion threshold is ath,max = 4.9956 · 10−6 m/s2. The bang-bang transformation of
the control acceleration, both in magnitude and in LVLH components, is shown in
Figure 4.17.
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Figure 4.17: Control acceleration profile as fraction of amax for unbounded solution
(dashed line) and after bang-bang transformation (continuous line) at 1.99 orbits

before TCA. Smoothing coefficient: ρ = 10−11.
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Figure 4.18 is reported with the intention of showing the effect of the variation
of the smoothing coefficient ρ: choosing a larger value (in this case ρ = 10−9)
the profile is much smoother then with ρ = 10−11 and tends towards unbounded
profile.
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Figure 4.18: Control acceleration profile as fraction of amax for unbounded solution
(dashed line) and after bang-bang transformation (continuous line) at 1.99 orbits

before TCA. Smoothing coefficient: ρ = 10−9.
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Figure 4.19: Velocity costate scaled on amax for bang-bang transformation.
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The velocity costate obtained represents the fraction of the unbounded ac with
respect to amax. The trend of λv vs. the true anomaly is reported in Fig 4.19. In
order to analyse the behaviour of the solution when the maximum acceleration
increases, the profiles obtained for different values of amax, with ρ = 10−11, are
reported in Figure 4.20 and the number of iterations required for convergence is
shown in Table 4.1.
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Figure 4.20: Velocity costate and control acceleration profiles obtained for different
values of amax, with ρ = 10−11 at ∆θ = 1.99 orbits before TCA.

Table 4.1: Number of iterations required for convergence increasing amax value.

amax [m/s2] 7e-06 1e-05 6e-05 6.75e-05

Number of iterations 7 8 12 33

Table 4.1 shows the growth of the number of iterations as amax increases: this
means that achieving convergence becomes more difficult. This result is expected
since enlarging the maximum acceleration implies that the low-thrust manoeuvre
tends towards an impulsive manoeuvre. For this particular initial manoeuvring
point, the equivalent costs of the manoeuvre respectively solving the unbounded
EOP and imposing a bang-bang structure, result to be:

• unbounded solution: ∆veq = 9.8278 · 10−4 m/s.

• bang-bang structure: ∆veq = 2.1497 · 10−4 m/s.
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The gain in terms of ∆veq provided by the bang-bang algorithm is confirmed by
plotting the behaviour of the equivalent cost is reported for 50 initial manoeuvring
point in Fig 4.21.
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Figure 4.21: Equivalent ∆v: comparison between the unbounded control problem and
the enforced bang-bang profile.

4.5 Energy optimal with tangential control

In some operational scenarios it may be preferable to implement a purely tangential
sub-optimal manoeuvre. The purpose of this section is to derive the procedure by
analysing this application case. The control acceleration is written as fraction ε of
the maximum acceleration affordable for the satellite thrusters amax, constrained
to have only tangential components, by means of the unit vector t in the velocity
direction:

ac = amaxεt, where t = v
v
. (4.121)

The dynamic system, assuming a restricted two-body problem, can be written as:
ṙ = v

v̇ = − µ
r3 r + amaxεt.

(4.122)
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The performance index L of the optimal control problem is:

L = 1
2amax(εt)>(εt) (4.123)

and the Hamiltonian reads:

H = 1
2amaxε

2 + λ>r v + λ>v (− µ
r3 r + amaxεt). (4.124)

The control law is obtained by means of the Pontryagin’s minimum principle,
finding the value of the control parameter ε that minimises the Hamiltonian:

∂H

∂ε
= 0 → amaxε+ amaxλv · t = 0, (4.125)

→ ε = −λv · t = −λv ·
v
v
. (4.126)

The Euler-Lagrange equations are obtained by substituting the specific problem
quantities into Eq. 2.93: 

ṙ = v

v̇ = − µ
r3 r− amax

λv · v
v

t

λ̇r = µ

r3λv −
3µr · λv
r5 r

λ̇v = −λv

(4.127)

and the control law is defined as:

ac = −amax

λv · v
v

t. (4.128)

The STM can be computed from the state matrix A:

A =


03×3 I3×3 03×3 03×3

−A34 03×3 03×3 A24

03×3 03×3 03×3 A34

03×3 03×3 −I3×3 03×3

 (4.129)

where in particular:

A24 = −amax

v
v

v
v

>. (4.130)
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and A34 is defined in Eq. 4.18. Then the procedure is analogous to the one
described in Algorithm. 2.

B-plane dynamics

The energy-optimal CAM in purely tangential direction can be also found by
projecting the problem onto B-plane. The dynamics of the tangential low-thrust
manoeuvre exploiting B-plane dynamics is:

ḃ = amaxεMt (4.131)

where t is the unit vector t in the velocity direction t = v/v, and in LVLH r.f.
t = [0; 1; 0]>. The Hamiltonian of the problem is:

H = 1
2amaxε

2 + amaxελ
>Mt. (4.132)

The Hamiltonian’s stationary points are found in order to apply the Pontryagin’s
minimum principle and obtain the control law:

∂H

∂ε
= 0 → amaxε+ amaxλ ·Mt = 0, (4.133)

→ ε = −λ ·Mt = −λ ·Mt. (4.134)

Thus the Euler-Lagrange equations are obtained:
ḃ = −amax (λ ·Mt) Mt

λ̇ = 0
(4.135)

with the control law:
ac = −amax (λ ·Mt) t (4.136)

The STM can be computed by integrating the state matrix A, following Eq. 2.98:

A =
02×2 A12

02×2 02×2

 (4.137)

A12 = −amax

M
v
v

M
v
v

>. (4.138)

Then the procedure is analogous to the one described in Algorithm. 3.
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4.5.1 Results

The results of the purely tangential manoeuvre considering the ECI dynamics
are presented in this section; the graphs relative to the formulation in B-plane
coordinates are not reported since they are very similar as for the manoeuvre
without directional limits. Similarly, the approach could also be applied to a final
constraint on the miss distance and the same considerations would still be valid.
For each initial manoeuvring point with ∆θ ∈ [0, 4π] the algorithm has been
applied and the final position achieved after the control application, projected onto
B-plane, can be found in Figure 4.22.
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Figure 4.22: Final position in B-plane r.f. reached after the optimal manoeuvre,
manoeuvres starting from 2 orbits before TCA until the expected impact. Tangential

EOP with ECI dynamics and constrained SMD.

Figure 4.23 reports both the “estimated” and “real” collision probability profile:
the former is computed directly after the resolution of the system in with the value
of rf estimated through the STM and the SMD constraint equation; the latter is
the PoC calculated with the actual final position rf obtained after the integration
of the manoeuvred dynamics. The estimated behaviour perfectly matches the
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enforced value, accounting for numerical errors and the real profile remains close
to the threshold without ever exceeding it. The result is absolutely acceptable
since 2 orbits before the CA the maximum deviation is 2.5068 · 10−8, two orders of
magnitude lower than the constraint.
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Figure 4.23: Collision probability: estimated value (left) and real profile after the
dynamics propagation (right). Tangential EOP with ECI dynamics and constrained

SMD.

After the resolution of the dynamics of the manoeuvre, the control acceleration
profile is found. For each ∆θ the equivalent cost in terms of ∆v has been cal-
culated and the resulting values are reported at the top of Figure 4.24. The
equivalent ∆v increases consistently when the manoeuvre is performed close to
the expected collision. At the bottom of the same figure the development of the
maximum control acceleration required can be found, with components in LVLH
r.f.. Starting from the furthest points from the TCA, the out-of-plane component
is practically null, and the transverse one is several orders of magnitude larger
than the radial component: the tangential constraint has been successfully satisfied.
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Figure 4.24: Equivalent impulse ∆v (top) and maximum control acceleration ac
(bottom) for each initial manoeuvring point. Tangential EOP with ECI dynamics

and constrained SMD.
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Figure 4.25: Control acceleration profile for a manoeuvre starting 1.99 orbits before
TCA. Tangential EOP with ECI dynamics and constrained SMD.

The profile of the control acceleration highly depends on which point is taken to
start the manoeuvre. The results considering an initial manoeuvre point with
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∆θ = 1.99 orbits before TCA are shown in Figure 4.25.It confirms that the ma-
noeuvre is performed in the direction of the satellite’s velocity.
The maximum thrust required by the spacecraft and the variation of mass are
plotted for each manoeuvre point and presented in Figure 4.26. Approaching the
small ∆θ the thrust increases until values that are not compatible with low-thrust
systems (order of 103 N).
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Figure 4.26: Tangential low-thrust manoeuvre with ECI dynamics with SMD
constraint: thrust and mass variations.

Figure 4.27 shows the differences between the tangential manoeuvre formulated in
ECI and BP r.f. in terms of final collision probability. The PoC profile for each true
anomaly of the initial manoeuvre point, calculated with the actual final position
rf/bf is obtained after the integration of the manoeuvred dynamics. Even though
the ECI algorithm is more accurate and it never exceeds the threshold, both of
them are close to the enforced value: for the B-plane algorithm the maximum
deviation is 8.3907 · 10−8, still in the same order of magnitude of the error in ECI
coordinates, 4.9582 · 10−8.
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Figure 4.27: Collision probability profile after the dynamics propagation: comparison
between Tangential EOP in ECI and BP coordinates, constrained SMD.
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CHAPTER5

Statistical analyses

In this chapter the algorithms presented in Chapter 3 and Chapter 4 are applied to
a large database of test cases derived from the ESA Collision Avoidance Challenge
[ESAd], then processed and collected in [Arm] by Roberto Armellin and available
for download. For the competition, ESA provided the teams with real conjunction
data extracted from 162, 634 CDMs, corresponding to 13, 154 unique events. These
data were filtered to consider conjunctions with d < 2 km and PoC < 10−6 resulting
in a new data file with 2, 170 conjunctions. All the conjunctions are relative to
objects in LEO with 90% of cases with relative conjunction speed ∈ [1.80; 14.98]
km/s. Further information about the database can be found in [Arm21].
In addition, a validation of the methods proposed in the previous chapter in a
dynamical framework including perturbations (drag and Earth’s gravitational
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harmonics) is provided. A comparison among all the different methods proposed
in terms of computational time is presented at the end of the chapter.

5.1 Statistical analysis on optimal impulsive manoeuvre

In this section, a statistical analysis on the optimal impulsive manoeuvre intro-
duced in Section 3.1 is performed, using a database of 2,170 collisions published
for the ESA Collision Avoidance Challenge.
The maximum and minimum values in magnitude of ∆v required for the optimal
impulsive manoeuvre are identified for each possible true anomaly ∆θ of the ma-
noeuvring point, with ∆θ ∈ [0, 4π]. The minimum and maximum lines are shown
together with the percentile values in Figure 5.1. The percentiles are computed at
each value val = [10%, 20%, ..., 90%].
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Figure 5.1: Magnitude of ∆v for impulsive manoeuvres using ESA Challenge database.

It can be noticed that, focusing on 90% of the collisions, ∆v does not exceed the
order of magnitude of mm/s until very small values of ∆θ (close to the time of the
expected impact), and even for the smallest value of true anomaly considered, the
maximum is 1.3 · 10−2 m/s.
The three components of the ∆v vector in LVLH r.f. are reported together in
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Figure 5.2 and then in separate plots with their percentiles in Figure 5.3.
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Figure 5.2: Components of the impulse ∆v for impulsive manoeuvres, ESA Challenge
database.
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Figure 5.3: ∆v components with percentiles for impulsive manoeuvres.
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Some observations can be made regarding the behaviour of the three components
of the impulse:

• the radial component, in 90% of the cases analysed, oscillates between 10−4

and 10−3 m/s with a maximum of ∼ 0.2 m/s;

• the transverse component is, in general, the largest and the most regular one,
with the 90% of cases around 10−3 m/s and a maximum of ∼ 0.06 m/s;

• the out-of-plane component is the most fluctuating, and in general the
smallest one, with minima at ∆θ = (2k+ 1)π and maxima at ∆θ = 2kπ, with
k = 0, 1, 2, ..., n. The 90% of cases analysed shows a ∆v that varies between
10−5 and 10−3 m/s with a maximum of ∼ 0.2 m/s.

5.2 Statistical analysis on optimal low-thrust manoeuvre

This section presents the results of the statistical analysis performed over the
2,170 collisions published for the ESA Collision Avoidance Challenge, applying the
energy-optimal algorithm for low-thrust manoeuvre derived in Section 4.1. For
each true anomaly ∆θ of the possibles initial manoeuvring point, the equivalent
∆v has been computed by integrating the control acceleration profile and the
minimum and maximum values over the collision database are shown in Figure 5.4
with the relative percentile values.
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Figure 5.4: Magnitude of ∆v for EOP algorithm, using ESA Challenge database.
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Figure 5.6: Components of the control acceleration in the three directions (LVLH r.f.)
with percentiles.

The 90% of cases remain in the order of 10−2 m/s with a maximum of ∼ 20 m/s
at the instant of time closest to the expected impact. The maximum value of the
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three components of the acceleration vector ac are reported together in Figure 5.5
and then in separate plots with their relative percentiles in Figure 5.6.
As already stated in Section 4.1.3, from Figure 5.5 it is proved that, except for
last-minute manoeuvres, the transverse component is indeed the dominant one and
the manoeuvre is mostly performed in tangential direction. Below a certain true
anomaly (∆θ ' 0.2 orbits) thrust with a substantial radial component is necessary
in order to avoid the collision. The out-of-plane component is confirmed to be the
smallest one, several orders of magnitude lower than the others.

5.3 Statistical analysis on low-thrust bang-bang solution

A statistical analysis on the collisions database has been performed also for the
bang-bang transformation profile algorithm and the convergence has been studied
for ten different values of the maximum control acceleration, ten values of the
true anomaly of the initial manoeuvring point and two values of the smoothing
coefficient:

• ten logarithmically equally spaced points between 10−6 and 10−2 m/s2 for
amax;

• ten linearly equally spaced points between 0.01 and 1.96 orbits before TCA
for ∆θ;

• ρ = 10−11 and ρ = 10−9.

The maximum number of iterations for the algorithm convergence has been set
to 400. For each amax, and at each ∆θ the percentage of convergence successes
considering ρ = 10−11, hence a sharp bang-bang profile, is reported in Table 5.1.
Only for convergent cases, the maximum number of iterations required to reach
convergence is reported in Figure 5.7.
Setting ρ = 10−9 the acceleration profile is much more smooth and tends to the
unbounded solution (see Figure 4.18). For this case, the percentage of convergent
cases and the maximum number of iterations needed are respectively shown in
Table 5.2 and Figure 5.8.
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Table 5.3: ∆θ limit below which the bang-bang solution does not converge (numeric)
and minimum ∆θ for low-thrust CAM, computed analytically by comparing the

burning time and the time to collision (analytic). Smoothing coefficient ρ = 10−11.

amax [m/s2] Numeric ∆θmin [orbits] Analytic ∆θmin [orbits]

1.00e-06 1.31 0.23
2.78e-06 0.44 0.23
7.74e-06 0.23 0.01
2.15e-05 0.23 0.01
5.99e-05 0.01 0.01
1.67e-04 0.01 0.01
4.64e-04 0.01 0.01
1.29e-03 0.01 0.01
3.49e-03 0.01 0.01
1.00e-02 0.01 0.01

It can be noticed that with ρ = 10−9 the convergence is achieved much easier, both
in terms of percentage of success cases and of number of iterations considering
only the convergent cases. It is also interesting to observe that, considering a
low-thrust manoeuvre starting just 0.01 orbits before the expected collision, the
algorithm is never converging, neither for ρ = 10−11 nor for a smoothed profile.
This is a consequence of the fact that, given a certain amax affordable for the
thrusters, the bang-bang solution would not converge below a certain ∆θ limit:
the problem cannot be solved with low-thrust propulsion, since the satellite would
be so close to the expected impact that even thrusting at the maximum possible
thrust continuously for the whole time to collision, the constraints would not be
satisfied.
It is also possible to relate ∆θmin to the equivalent total impulse ∆vtot calcu-
lated analytically: for each ∆θ, ∆vtot is computed by integrating the continuous
acceleration profile.

∆vtot =
∫ tCA

t0
acdt. (5.1)

Supposing to thrust until the conjunction with a certain amax, the resulting burning
time tb necessary to reach ∆vtot is computed as:

tb = ∆vtot

amax
. (5.2)
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If the burning time tb is higher than the time to collision tCA, the algorithm is
expected to fail: the convergence could be reached until tb ≤ tCA.
The test case presented in Section 3.3 has been considered for this analysis and the
minimum ∆θ for each value of amax is reported in Table 5.3, both considering the
numeric convergence of the bang-bang transformation algorithm and the analytic
results derived by comparing the burning time and the time to collision.
Even though the two values for ∆θmin do not always match, they are close and
it is confirmed that in both cases the minimum ∆θ decreases as amax increases.
Please notice that 0.01 is the minimum value considered for ∆θ.

5.4 Orbital perturbations effect

In order to test the accuracy of the EOP methods presented in Section 4.1, a
numerical propagation of the non-linear equations of motion is performed, using a
more accurate dynamical model including environmental perturbations.
The same test case considered in Chapter 3 and Chapter 4 is adopted for the
validation. Due to the fact that the collision occurs in LEO, the manoeuvre is
validated accounting for the following orbital disturbances:

• aerodynamic drag, setting the coefficient cD = 2.2 and considering an average
value of area-to-mass ratio equal to 0.3;

• Earth’s gravitational harmonics, accounting for the first 10 harmonics.

The algorithm presented in Section 4.1 is validated adjoining the perturbed dy-
namics: the problem in Eq. 4.14 is solved with the analytical solution, hence the
control profile is retrieved with restricted two-body problem dynamics and then it
is applied and validated with a propagation using the more complete model.
The final position reached after the propagation, for each initial point of the
manoeuvre with ∆θ ∈ [0, 4π], is reported in BP r.f. in Figure 5.9. The results are
almost indistinguishable from the ones reached exploiting the two-body problem
dynamics (see Figure 4.2).
The two solutions with Keplerian and perturbed dynamics are shown together on
the same enlarged area of the B-plane in Figure 5.10 and a better understanding
can be achieved from the comparison of the trends of the final collision probability.
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Figure 5.9: Final position in B-plane r.f. reached after the optimal manoeuvre
propagated with high fidelity model accounting for environmental perturbations;

EOP in ECI coordinates with constrained SMD.
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Figure 5.11 shows the differences between Keplerian and perturbed dynamics
in terms of final collision probability profile for each true anomaly of the initial
manoeuvre point, calculated with the actual final position rf obtained after the
integration of the respective dynamics.
Predictably, accounting for perturbations, the final collision probability deviates
more from the enforced value with respect to Keplerian dynamics propagation,
model in which the control is built. Nevertheless, the maximum deviation with
disturbances is 1.0531 · 10−7, a value that, compared to the two-body model error
1.1729·10−8, is acceptable and still one order of magnitude lower than the threshold.
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Figure 5.11: Collision probability development after the dynamics propagation:
comparison between Keplerian and perturbed dynamic model, EOP in ECI

coordinates with constrained SMD.

In conclusion, the variations introduced by atmospheric disturbances are minimal,
thus they can be considered negligible for the optimal control problem presented,
which turns out to be valid and accurate with the simple Keplerian orbit model.

101



Chapter 5. Statistical analyses

5.5 Computational time

In this section, the approaches described in Chapter 3 and Chapter 4 are compared
in terms of Computational Time (CT). The algorithms have been run on MATLAB®

2020a. Because the CT of the methods is of the order of fractions of second, in order
to have results independent of the specific simulation conditions, every simulation
is performed over 100 different collisions from ESA Challenge database and then
averaged.
The computational time is plotted in Figure 5.12 CT for impulsive manoeuvre,
both optimal and purely tangent, considering final constraint in terms of SMD (or
PoC) and MD. Considering the different kind of constraints, the four categories of
manoeuvre are represented with different colours:

• Optimal manoeuvre with squared Mahalanobis distance final constraint
translated into the corresponding Probability of Collision value (Optimal-
PoC)

• Optimal manoeuvre with constrained miss distance (Optimal-MD)

• Tangential manoeuvre with squared Mahalanobis distance/Probability of
Collision constraint (Tangential-PoC)

• Tangential manoeuvre with constrained miss distance (Tangential-MD)
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Figure 5.12: Computational time of optimal impulsive CAM methods.
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As it can be expected, the manoeuvre with directional constraint is computationally
more efficient than the unconstrained one, and the formulation in terms of miss
distance in the majority of cases is slightly faster in both cases with respect to
constrained collision probability. The trend of the computational time does not
depend on the true anomaly of the manoeuvre point: since the CAM is impulsive,
it is not affected by the longer orbital propagation times, required instead for
low-thrust manoeuvres.

Figure 5.13 shows the comparison between EOP for low-thrust CAMs solved
exploiting ECI or BP dynamics, with the two different types of constraint quantity,
PoC or MD. Consistently with the reduced dimension of the optimal control
problem (OCP in B-plane coordinates has dimension two instead of six), the
method with BP coordinates tends to be faster than the algorithm with ECI
dynamics.
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Figure 5.13: Computational time of optimal low-thrust CAM methods.

It can be noticed that the computational times obtained with MATLAB® are in
the order of magnitude of 10−3/10−4 seconds for impulsive manoeuvre and 10−1

seconds for low-thrust CAM: they promise good performances if implemented
on-board.

103





CHAPTER6
Conclusions and further developments

The results of the present work are summarised in this chapter and some
recommendations for future research in this field are drawn.

6.1 Methods and comparisons

The main contribution of this thesis is the development of several approaches to
design optimal collision avoidance manoeuvres, both for impulsive and low-thrust
propulsion, adaptable to the different operational requirements of the satellites.
The main conclusions are listed hereafter.

• Several impulsive and continuous-thrust manoeuvre designs have been pro-
posed and validated, considering both constraints in terms of final Miss
Distance and final Squared Mahalanobis Distance or Probability of Collision.



Chapter 6. Conclusions and further developments

• The Energy-Optimal control Problem formulation projected into B-plane
has been found to be accurate and computationally more efficient than the
algorithm in Cartesian coordinates, consistently with the reduction dimension
of the optimal control problem.

• In all cases investigated, the optimal manoeuvres proved to be not too far
from purely tangential manoeuvres in direction of the satellite’s velocity.
In some operating conditions, it may be better to have a purely tangential
manoeuvre than to optimise the energy and having radial and out-of-plane
components. For this reason, solutions for optimal manoeuvres satisfying the
constraint of a tangential thrust have been derived, showing that they are
computationally more efficient.

• For continuous-thrust cases a bang-bang profile transformation has been
performed and the convergence conditions have been studied, in order to
provide other alternatives suitable for operational implementation.

• It has been verified that environmental perturbations in LEO negligibly
affect the accuracy of the method, therefore the manoeuvre design using the
approximation of Keplerian dynamics seems to be sufficiently accurate.

• Finally, the computational times obtained with MATLAB® promise the
feasibility of on-board implementation or massive calculation of CAMs.

6.2 Future work

Few directions for future work are now provided; these could be useful steps in the
road map to space-borne implementation of an autonomous collision avoidance
system.

• One possible research activity could focus on deriving a more general PoC
methodology, in order to account for non-Gaussian uncertainties.

• Further developments in the description of manoeuvre dynamics can be made
considering more realistic models than the Keplerian one, for example, a
three-body model in order to design CAM in a cislunar environment.

• The best manoeuvre does not depend only on the studied aspects, but also
on mission constraints. To account for other requirements, multi-objective
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optimisation and further considerations on operational constraints can be set
up in future studies.

• In the minimum-energy formulation there is no bound on the mass consump-
tion, therefore a natural improvement could be to add an automatic check-in
to the algorithm. If the mass threshold is exceeded, another manoeuvre at
higher PoC with adequate mass consumption could be computed.

• The research in the Collision Avoidance Manoeuvre design field will almost
certainly benefit from artificial intelligence algorithms. In a supervised
machine learning framework, a model could be trained to perform PoC
computation and CAM design based on the mean state and covariance of
the objects and considering the control capability of the satellites.
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