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Abstract

To counter the constantly increasing number of banking frauds, banks and financial in-
stitutions develop Data-Driven Fraud Detection Systems, which are advanced protection
systems based on Machine Learning (ML) algorithms. Although automated Fraud Detec-
tion Systems have demonstrated excellent results, it has been proven that they can be de-
ceived and corrupted through the use of Adversarial Machine Learning (AML) techniques,
that aim to trick Artificial Intelligence (AI) models by providing deceptive and corrosive
inputs. In particular, previous works have shown the FDSs vulnerabilities against evasion
attacks, which interact with the test set of the Machine Learning model, and poisoning
attacks, that manipulate the training set of the algorithm.

In this work, we extend and improve the application of poisoning attacks applied to the
banking fraud domain. We present a novel approach to generating fraudulent samples
based on the statistical analysis of past victims’ transactions and we introduce ensem-
bling techniques to create a reliable Oracle, i.e., a Machine Learning tool which validates
the adversary’s frauds. According to specific metrics, we evaluate the impact of poison-
ing attacks on eight models, i.e., Random Forest, XGBoost, Light Gradient Boosting,
CatBoost, Support Vector Machine, Artificial Neural Networks, Logistic Regression, and
Active Learning. We conduct our experiments in three different scenarios, that identify
the attacker’s knowledge about the target FDS: White Box (perfect knowledge), Grey Box
(partial knowledge), and Black Box (no knowledge). The attacker can mount poisoning
attacks by following three distinct strategies: poisoning the amount, poisoning the count,
i.e., the number of transactions per iteration, or poisoning both. Each strategy presents
a conservative and a greedy version, and it is evaluated for both weekly and bi-weekly
update policy, i.e., how often the detectors are retrained in order to include new samples.
Moreover, we provide a deep analysis of the feature regeneration process, that allows the
adversary to change the features of the transactions during an attack.

Our experiments prove that our Oracle is extremely reliable, even in the Black Box sce-
nario, where it is trained with just 50 features. Our Oracle allows the adversary to mount
poisoning attacks without being noticed in different cases. In particular, we are able to
keep the attack detection rate very low, sometimes zero, even with foreign frauds, which
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have a higher suspicion level. Moreover, we show that poisoning only the amount is bene-
ficial, especially against foreign users and detectors trained according a bi-weekly update
policy. On the other hand, we point out how poisoning the count is more complicated
and less cautious. In conclusion, our approach allows the attacker to steal a considerable
amount of money even when he or she has no knowledge about the target system.

Keywords: Fraud Detection System, Poisoning Attacks, Adversarial Machine Learning
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Abstract in lingua italiana

Per contrastare il costante incremento del numero di frodi bancarie, le banche e le isti-
tuzioni finanziarie sviluppano avanzati sistemi di rilevamento delle frodi, basati sul al-
goritmi di Machine Learning (ML). Sebbene i sistemi automatici di rilevamento di frodi
abbiano ottenuto risultati eccellenti, è stato dimostrato che possono essere raggirati e cor-
rotti tramite tecniche di Adversarial Machine Learning (ADL), che mirano a ingannare
i modelli di intelligenza artificiale fornendo particolari input corrosivi. In particolare,
precedenti lavori hanno dimostrato le vulnerabilità dei sistemi di rilevamento delle frodi
bancarie contro attacchi di evasione e attacchi che mirano alla corruzione del sistema (i.e.,
poisoning attacks).

In questa tesi, estendiamo e ottimiziamo l’applicazione degli attacchi di poisoning ap-
plicati nel campo delle frodi bancarie. Presentiamo un nuovo approccio per generare
transazioni fraudolente, basato su l’analisi statistica delle passate transazioni della vit-
tima, e introduciamo tecniche di ensembling per creare un Oracolo affidabile (i.e., un
sistema di Machine Learning che filtra le frodi di un attaccante). Secondo metriche speci-
fiche, valutiamo l’impatto degli attacchi di poisoning su otto modelli, i.e., Random Forest,
XGBoost, Light Gradient Boosting, CatBoost, Support Vector Machine, Artificial Neu-
ral Networks, Logistic Regression, and Active Learning. Conduciamo gli esperimenti in
tre diversi scenari, che identificano la conoscenza dell’avversario riguardo al modello da
attaccare: White Box (conoscenza perfetta), Grey Box (conoscenza parziale), e Black
Box (conoscenza nulla). L’attaccante monta attacchi di poisoning seguendo tre distinte
strategie: corruzione dell’importo, corruzione del numero di transazioni o corruzione di
entrambi. Ogni strategia presenta una versione conservative e una piu’ aggressiva, ed è
valutata secondo le due diverse policy di aggiornamento, settimanale e bi-settimanale, che
permettono ai sistemi antifrode di includere nei loro dataset nuove transazioni. Inoltre,
forniamo un’analisi approfondita del processo di rigenerazione delle frodi, che permette
all’avversario di cambiare gli attributi delle transazioni durante l’attacco.

I nostri esperimenti dimostrano che il nostro Oracolo è estremamente affidabile, anche in
uno scenario Black Box, dove l’Oracolo è addestrato con solamente 50 attributi. Il nostro
Oracolo permette all’avversario di creare attacchi di poisoning senza essere notato in di-



versi casi. In particolare, l’attaccante è in grado di mantenere tasso di rilevamento degli
attacchi molto basso, talvolta zero, anche con frodi straniere, che hanno un piu’ alto liv-
ello di sospetto. Inoltre, mostriamo che corrompere solamente l’importo delle transazioni
è piu’ conveniente, specialmente contro vittime straniere e sistemi di rilevamento adde-
strati secondo una policy di aggiornamento bi-settimanale. Contrariamente, sottolineamo
come corrompere il numero di transazioni per iterazione è piu’ complicato e meno cauto.
In conclusione, il nostro approccio permette all’attaccante di rubare un importo consid-
erevolmente alto anche quando non ha conoscenza riguardo al sistema bancario.

Parole chiave: Sistemi Antifrode, Attacchi di Poisoning, Adversarial Machine Learn-
ing



v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 Background and Related Works 7
1.1 Banking Fraud Detection Systems . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Adversarial Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Poisoning attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Goal and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Threat Model 15
2.1 Adversary’s goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Adversary’s knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Adversary’s capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Dataset Analysis and Engineering 19
3.1 Dataset Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Fraud Generation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Customers Categorization . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Synthetic Fraud Generation . . . . . . . . . . . . . . . . . . . . . . 25

4 Fraud Detection Systems: Tuning, Training, and Evaluation 29
4.1 Selected Fraud Detection Systems . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Feature Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Proportional Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



vi | Contents

4.5 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6 Concept Drift and Update Policy . . . . . . . . . . . . . . . . . . . . . . . 37
4.7 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Poisoning Attack 45
5.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Attack Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Scenario and Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.2 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Victim Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5 Retrieval and Crafting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5.1 Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5.2 Crafting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5.3 Timestamp Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.4 Amount Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.5 Count Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5.6 Other Features Selection . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.7 Regeneration Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Implementation Details 59
6.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Run-Time Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Hardware and Software Architecture . . . . . . . . . . . . . . . . . . . . . 62

7 Experimental Evaulation 65
7.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2 Oracle Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.3 Poisoning Process Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.3.1 White Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3.2 Grey Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.3.3 Black Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.4 Regeneration Process Results . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.4.1 White Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.4.2 Grey Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.4.3 Black Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



8 Limitations and Future Works 93
8.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9 Conclusions 95

Bibliography 97

List of Figures 101

List of Tables 103

List of Algorithms 105





1

Introduction

The progressive digitalization of banking and financial institutions has led to the phe-
nomenon of Home Banking, also known as Online Banking. It consists of an electronic
payment system by which the customers can perform banking operations such as wire
transfers and online payments. Although Italy is among the countries with the lowest
adoption of e-banking, in the last years there was a consistent approach in that direction
[1].

Consequently, banking and financial institutions must deal more and more with an in-
creasing number of frauds; in addition, due to the wake of COVID-19, cybercriminals
took advantage of the opportunity to profit from our dependence on technology. These
criminals use phishing, spoofing, extortion, and various types of Internet-enabled fraud to
target the most vulnerable part of society. In particular, the Internet Crime Complaint
Center (IC3) has published a report which reveals that banking frauds are one of the most
popular crime types and has shown that the trend is upward [2]. In the UK, the annual
value of online banking fraud losses reaches a value of approximately 159.7 million British
pounds in 2020, while in Italy the Financial Information Unit received 113.187 suspicious
transaction reports, 7.9 percent more than in the previous year [3, 4].

In order to defend against fraudsters, banks and financial institutions had to develop
advanced protection systems: in particular, Data-Driven Fraud Detection Systems have
been preferred in opposition to Expert-based ones, thanks to their increasing detection
power and cost efficiency. Most organizations still use rule-based systems as their primary
tool to detect frauds, which are powerful against known patterns. However, rules are
expensive to build, require continuous management, and can be easily bypassed by smart
attackers who constantly update their strategies. This is why fraud analytics, based on
machine learning, becomes necessary for fraud prevention and detection.

Although automated Fraud Detection Systems have demonstrated excellent results, it has
been proven that machine learning algorithms can be deceived and corrupted. In order
to compromise the correct functioning of these systems, Adversarial Machine Learning
(AML) techniques are effectively used. Three different attacks can be performed against
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Fraud Detection Systems. The first ones are evasion attacks, that violate the model
integrity by crafting adversarial samples to deceive the target algorithm [5]. Then, we
have poisoning attacks, that violate the correct functioning of the model and the goal is
injecting malicious samples to corrupt the training set of the algorithm [6]. Finally, there
are model extraction attacks, that violate confidentiality and aim to replicate the model
without the need for the training set [7].

Banking detectors are periodically trained according to a specific update policy. After a
certain amount of time, their training sets are updated in order to include more recent
examples. In this way, they can continuously learn and then detect new patterns. FDSs
which are constantly re-trained involve a consistent computational effort, while rare up-
dates lead to underperforming. However, adversaries can exploit the re-training process
in order to perform poisoning attacks. They craft fraudulent transactions which, if con-
sidered legitimate, are included in the training set that will be used for the learning task.
Hence, an attacker can modify a user’s spending pattern and mislead detectors into believ-
ing in a behavior change from the customer. It’s an iterative process: the fraudster tries
to increase at each iteration, based on the update policy, the amount, and the number of
transactions, by crafting deceptive frauds. If they are evaluated as legit by the detector,
they are included in the training set, and then, when re-training occurs, these malicious
transactions are included in the detector’s model. The attacker’s final goal is to steal as
much money as possible. Moreover, he or she tries to do that by adopting different strate-
gies. The adversary can poison the transactions’ amount, stealing money in a shorter
time window and without the worry to be detected; alternatively, he or she can focus on
the number of transactions performed at each iteration, being more cautious and decreas-
ing the probability of being noted. Finally, he or she can adopt a standard approach,
less stealthy but more effective, which consists of poisoning both amount and count. In
order to mount poisoning attacks, the fraudster, based on his or her knowledge, studies
the victim’s spending profile, and tries to mimic it, creating misleading transactions that
could have been executed by the customer himself or herself. Moreover, the adversary can
control almost all the features that characterize a transaction, so that he or she can well
replicate the user’s spending behavior. In fact, the attacker makes use of phishing web-
sites, in order to steal victims’ sensitive information, or exploits Trojan Horses, which are
malware that infect web browsers by changing web page contents without being noticed.

In this work, we focus on poisoning attacks against detection systems in the electronic
banking fraud domain. In particular, we improve the results obtained by Monti [27],
which is the first work in the context of poisoning attacks applied to FDSs. Our approach
considers different degrees of knowledge about the target system. For instance, he or
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she can ignore the algorithm, the update policy, and the training set. We present three
scenarios, depending on the level of knowledge: White Box (perfect knowledge), Grey
Box (partial knowledge), and Black Box (no knowledge). If the attacker doesn’t know
the target algorithm, he or she has to create an Oracle, a surrogate model that tries to
reliably replicate the FDS and which validates crafted transactions. The Oracle states
if a transaction could be submitted to the FDS or needs to be regenerated. The fraud
regeneration process consists of changing some features’ value, such as the amount or
the IP address, until the fraud is accepted by the Oracle. If this happens, the crafted
transactions are then subjected to the target FDS and, if it considers them legitimate,
they are included in its updated training set. We present poisoning attacks against the
most spread state-of-art banking fraud detection solutions: Random Forest, XGBoost,
LightGB, CatBoost, Support Vector Machine, Artificial Neural Networks, Logistic Re-
gression, and Active Learning. These detectors are trained according to two different
update policies: weekly and biweekly, which suit our purposes and our datasets’ length.
We evaluate each model according to several performance indices, including a custom
one that gives more importance to false negative examples than false positive ones. We
impersonate an attacker, mount poisoning attacks against all the proposed systems, for
each scenario, strategy, and update policy, and we study the results according to specific
rates. Each attack is executed against 15 pseudo-random victims, which satisfy certain
criteria, and it lasts up to eight weeks. Users are divided into two categories: national,
which perform transactions towards Italy, and foreign, which execute more suspicious wire
transfers to a foreign country.

Depending on the update policy, the attacker’s knowledge, and the strategy, we achieve
very heterogeneous results, which are evaluated according to specific metrics that assess
the effectiveness of the attacks. In the White Box scenario, by exploiting a conservative
strategy, the adversary can steal from about 975,000€ to more than 2,500,000€ with
national frauds, while between 70,000€ and 175,000€ circa with foreign ones, against
target machines with a bi-weekly policy update. In the same attack setting, Monti’s
frauds [27], targeting 30 victims, were able to steal up to 750,000€ from national users
and up to 220,000€ from foreign ones. In the Grey Box scenario, where the attacker has
partial knowledge about the banking FDS, the attacker is able to steal a great amount
of money and keep at the same time the detection rate between 0% and 50% for both
national and foreign frauds. It is an important improvement if we consider that in this
scenario, in Monti’s work [27], the frauds present a detection rate which is always higher
than 58%. In the Black Box scenario, the fraudster achieves even better results, because
he or she builds an Oracle according to a weekly update policy, to speed up the poisoning
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process. Even if the attacks are less cautious, the adversary is able to mask himself or
herself for more than 30 days (which is half of the attack time) for national frauds and
between 3 and 30 days for foreign ones, since the detectors show a very heterogeneous
behavior. Monti [27] decided to be more careful and trained the Oracle with a bi-weekly
update policy, but the attacks were still detected in a very short time window, up to 30
days in the best case.

We summarize our contributions:

• We evaluate eight different fraud detection models and we assess their performances;

• We present a novel method for crafting fraudulent transactions, which is able to
control a larger number of features with respect to [27];

• We show a novel approach to building a reliable Oracle, by combining multiple
learners with an ensemble method. We study different ensembling solutions, we
evaluate them and we explain which is the most suitable and why.

• We use a new transaction process, by which the adversary can generate several
features during the attack and we deeply analyze which features are convenient to
modify at runtime.

• We mount poisoning attacks against all the proposed models, for each scenario,
strategy, and update policy. Then, we study models’ behavior and how they react
through specific rates.

We organize this work as follows:

• In Chapter 2 we explore Fraud Detection Systems applied to the banking fraud
domain in previous works; then, we analyze generic Adversarial Machine Learning
methods. Finally, we focus on the formal definition of poisoning attacks and we
explain state-of-art poisoning approaches.

• In Chapter 3 we identify the threat model. We explain which are the adversary’s
goal, knowledge, and capabilities.

• In Chapter 4 we analyze our datasets, their relevant characteristics, and features.
Then, we concentrate on the fraud generation process.

• In Chapter 5 we present the Fraud Detection Systems considered in this work and
how they have been trained according to the concept drift and update policy.

• In Chapter 6 we give an explanation of the attack approach, by deeply inspecting
all the steps composing the poisoning process.
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• In Chapter 7, first we provide the implementation details of our work, showing
the system and the run-time architecture. Then, we list all the tools, libraries,
and programming languages used, and we explain the hardware setting where the
experiments have been conducted.

• In Chapter 8 we list our final results and we accurately discuss them, according to
specific metrics and considerations.

• In Chapter 9 we argue the limitations of our work and the possible focus of future
works.

• In Chapter 10 we give the conclusions, by summarizing and analyzing the end point
of our work.
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1| Background and Related

Works

In this chapter, we provide an overview of the main concepts of Fraud Detection Systems
and Adversarial Machine Learning. In particular, we focus on poisoning attacks: we
explain how they work and their application in previous works.

1.1. Banking Fraud Detection Systems

In order to counter the constant increase of banking frauds, cybersecurity experts have
developed Fraud Detection Systems based on Machine Learning algorithms. The purpose
of these systems is to recognize which transactions are fraudulent, separating them from
the legitimate ones. The interaction between a customer and a banking Fraud Detection
System works as follows: a user performs a transaction, which is first aggregated and then
standardized by the bank system. At this point, it is submitted to the FDS and, based on
the outcome, the transaction is either executed or rejected. Figure 1.1 shows the typical
flow of the transaction within a banking FDS.

Figure 1.1: Transaction Flow
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We can distinguish different approaches to face this challenge: unsupervised, supervised,
and semi-supervised learning.

Descriptive model analytics (or unsupervised) aims at finding out frauds as elements that
deviate from the normal behavior built on the historical transactions and they don’t need
label datasets.

David Weston et al [8] have proposed an unsupervised technique based on peer group
analysis to detect banking transactions that deviate strongly from the norm.

Bolton et al [9] have shown how break point analysis works, an intra-account fraud de-
tection method that compares with a t-test the spending pattern of a single user before
and after the break point.

Sanchez et al [10] exploited association rule analysis intending to identify frequent rela-
tionships between transactions in order to define the norm of the data.

Vaishali [11] and Olszewski [12] focused on hierarchical clustering approaches applied to
credit card fraud detection, respectively k-means, which deal with the distance between
points and centroids, and self-organizing maps, which allow to visualize and automatically
cluster high dimensional data on a low-dimensional space.

On the other hand, several supervised algorithms have been used in the banking fraud
detection context: Random Forest [13], eXtreme Gradient Boosting [14, 15], Support
Vector Machine [16, 17], Artificial Neural Network [17, 20] Catboost [18], Light Gradient
Boosting [19] and Logistic Regression [20].

Finally, accredited works dealing with semi-supervised learning have achieved excellent
results in the considered domain.

Amaretto [21] implements an active learning system combining both supervised and un-
supervised learning since descriptive analytics allows to detect unknown patterns, while
predictive analytics can automatically detect those patterns in the future.

FraudBuster [22] is an effective tool to detect frauds based on accurate modeling of the
user’s temporal profile: first, it builds the profiles, and then it computes the deviation of
new transactions from the learned model.

Banksealer [23] ranks new transactions that deviate from the learned profiles, with an
output that has an easily understandable and immediate statistical meaning.

FUZZGY [24] is a system that outputs an anomaly degree that explains how the new
transaction is abnormal in comparison with the historical transactions pattern.
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Jain et al [25] proposed a hybrid solution that consists of a preprocessing part using Rough
sets theory in order to reduce data complexity, and then a J48 decision tree is trained for
the classification task.

1.2. Adversarial Machine Learning

Adversarial Machine Learning (AML) is a machine learning method that aims to trick
AI models by providing deceptive and corrosive input. Since Machine Learning have
been widely explored in many areas, the spread and the study of Adversarial Machine
Learning techniques have become really intense. In particular, more in-depth studies
have been conducted in the image recognition area, where the goal is to modify the image
in order to cause mispredictions of the classifier. However, it’s known that Adversarial
Machine Learning can be applied also in the banking fraud detection context [27–29]. In
the literature, you can find popular adversarial attack methods, whose goal is to address
all the weakness of Machine Learning models, trying to undermine and corrupt them.

Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) is an algorithm discovered
by Nocedal [30] for finding local extrema of functions, which are based on Newton’s
method of finding stationary points of functions. It uses less memory in comparison to
the traditional BFGS and it was used in the Adversarial Machine Learning domain in
order to attack power systems [31].

FastGradient Sign method (FGSM) is a gradient-based method that aims to generate
adversarial examples. Introduced by Goodfellow et al [32], it exploits the gradients of a
neural network to build an adversarial image.

Jacobian-based Saliency Map Attack (JSMA) tries to uses feature selection to minimize
the number of features modified while causing miss-classification. It is computationally
less convenient with respect to FGSM but it affects only a restricted number of features.
Due to it’s semplicity, it’s really popular and it was used in different areas [31, 34, 35].

1.3. Poisoning attacks

Poisoning attacks aim to pollute the model’s training data. Compared to evasion attacks,
which interact only with the test set, poisoning ones try to tamper with the training set
in order to decrease the accuracy of the target model. By slowly introducing malicious
examples, they can impact the model’s capacity to output correct predictions.

We can formally define poisoning attacks as a simple optimization problem [71]:
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argmax
Dp

(D,Θp) s.t. Θp ∈ argmin
Θ

L(D ∪Dp,Θ)

The attacker can add poisoned points to the training set and his or her objective is
to maximize the training loss. On the other hand, the corrupted model Θp is learned
by minimizing the loss function over both training and poisoned data. In order words,
the adversary has to find the best set of malicious examples that, added to the training
set, corrupt as much as possible the correct functioning of the model (i.e., maximizing the
training loss). This definition suits the case in which the attacker has full knowledge of the
training data D. In a more realistic scenario, this doesn’t happen and D is approximated
with a surrogate dataset D′. Therefore, the overall poisoning process is a challenging
problem because the adversary has control over the objective which is implicit, and it is
a bi-level optimization process, NP-hard in the general case.

The optimization-based approach is a popular solution to this optimization task. The
idea is to start with a set of initial points and then run gradient descent on these points,
which is just a greedy optimization approach consisting in iteratively updating each point
in the direction that most improves the attacker objective [71].

It’s important to consider a graphical evaluation of the poisoning process. In Figure 1.2
and Figure 1.3, we explain how a poison sample can compromise the output prediction
of a machine learning model which deals with classification. In particular, we train a
Support Vector Machine on a very small dataset with just two features.

Figure 1.2: Trained SVM for a Classification Problem

In Figure 1.2, you see a trained SVM in which we specify the decision boundary between
red and green classes and the margins. The model works well and it has not been com-
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Figure 1.3: Compromised SVM after Injecting a Poison Sample

promised. If we add a test sample (in orange), it is correctly classified as a red point. In
Figure 1.3, instead, you can notice that the introduction of a poison sample (in purple)
shifts the decision boundaries, corrupting the functioning of the model which will predict
the test point as a green one.

However, these concepts cannot really be applied to the fraud detection domain. The
reason is that the adversary, in realistic scenarios, has not the full knowledge of the target
system. He or she doesn’t know either the algorithm or the training set. The interaction is
indirect and the attacker can control only a reduced set of features. Hence, the fraudster
needs to rely on a diverse approach, which consists of building an Oracle that tries to
replicate the target model. It specifies if a crafted example can be submitted to the FDS
or needs to be regenerated because too suspicious. The literature proposes different and
effective solutions which deal with poisoning processes applied to different contexts.

Biggio et al [6] exploited a gradient ascent strategy to craft malicious examples and
predict the change of the Support Vector Machine decision function. More specifically,
the attacker aims at maximizing the test error by finding the optimal point (xc; yc):

max
xc

L(xc) =
m∑
k=1

(1− yk ∗ fxc(xk))

L(xc) is a non-convex objective function, therefore it’s possible to optimize it thanks
to a gradient ascent approach. Starting from an initial point x

(0)
c , it is then updated

as x
(p)
c = x

(p−1)
c ∗ tu, where p is the current iteration, t the step size and u the attack

direction. By solving this optimization process, they were able to reduce SVM accuracy.
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While [6] was about a specific machine learning model, Mozaffari-Kermani et al [72]
propose a generic and algorithm-independent attack scheme. They add N ′ malicious
instances to the original training set to create a manipulated dataset D′ composed of
N +N ′ examples. In order to select the poisoned instances, they make use of an auxiliary
algorithm that computes and studies statistics for each feature over the training set. This
approach is very similar to the one that we propose in this work, because it’s completely
generic and works against any target machine learning model.

Suciu et al [39] introduced "StingRay", an attack that achieves poisoning but preserves
overall classification performances. It consists of the following steps:

• The adversary selects a benign sample as the base instance;

• StingRay alters a not too suspicious subset of features, so that the model will classify
it as legitimate;

• It filters crafted instances based on their negative impact, ensuring that their indi-
vidual effect on the target prediction is negligible;

• The procedure is repeated until a specific test example is misclassified.

This approach achieves excellent results in four different classification tasks: image recog-
nition, malware detection, Twitter-based exploit prediction, and data breach prediction.
Moreover, three specific models were used: Convolutional Neural Network, linear Support
Vector Machine, and Random Forest.

Chen et al [73] proposed "KuafuDet", an approach that tries to undermine poisoning
attacks in the mobile malware context. First,they show how traditional machine learning
models are weak against them, then they suggest a novel solution, which is divided into
two learning phases. The first includes an offline training step that selects and extracts
features from the training set, while the second one, the online detection phase, classifies
large sets of online applications into two different categories, benign and malicious, with
the help of three different models: Random Forest, Support Vector Machine and K-Nearest
Neighbours. Finally, they make use of a Self-adaptive Learning scheme that discovers new
information from both the identified malware and the filtered suspicious false negatives
detected by a detector called "Camouflage Detector".

Monti’s work [27] is the first one that really deals with poisoning attacks in the banking
fraud detection domain. The author faced poisoning attacks with a novel approach to
crafting malicious transactions and suggested the help of an Oracle during the process.
He evaluated several ML-based fraud detection systems’ reactions against this type of
attack, for different strategies and scenarios.
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1.4. Goal and Motivation

In this work, we aim to improve the results obtained by Monti [27], which is a strong
reference point in the considered domain. More specifically, we enhance the approach to
the Oracle, by involving simultaneously different models through ensembling methods.
In addition, we evaluate more powerful poisoning attacks, because in our procedure the
adversary has the possibility to manipulate a larger set of features. We also deepen the
regeneration process performed by the Oracle, because we analyze for each model which
are the attributes that the attacker needs to change more frequently in order to decrease
the suspicion level. We propose different poisoning strategies, which separately focus on
amount and count, the two features that the fraudster wants to poison most to steal more
money. We analyze the differences and their impact on both national and foreign frauds,
which show very diverse behaviors.
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2| Threat Model

In order to have a comprehensive understanding of this work, it’s necessary to precisely
define the threat model. This is why we rely on the attack taxonomy proposed in the
literature [36–38].

2.1. Adversary’s goal

The adversary has several goals depending on what he or she is looking for. Since we are
in a poisoning scenario, the main objective is to corrupt the target algorithm. By injecting
malicious samples into the training set, the attacker wants to modify the functioning of the
model and, consequently, steal money from the users. However, the attack can go in two
different directions: the adversary may want to steal much money as possible in a short
window of time, without worrying about the model detection, or focus on crafting frauds
in a way that the attack lasts as much as you can. In the first case, the fraudster tries to
poison the amount of the victims’ transactions while in the second he or she concentrates
on poisoning the count of victims’ spending pattern (i.e., the number of transactions per
week). Finally, we propose a third strategy in which the adversary combines the previous
directions, worrying only about maximizing the profit.

From a point of view of security properties, the attacker violates integrity, because he
or she has to deceive the target model, and availability, as the correct functioning of the
algorithm is compromised. In this work, we present a generic attack, because the victims
are selected randomly among those that have specific requirements (i.e., a certain number
of transactions). However, in a realistic scenario, an attacker can damage specific users or
steal the information needed in a generic way. Finally, since we are in a fraud detection
scenario, the attacker’s aim is to poison the target model in order to consider fraudulent
transactions legitimate.
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2.2. Adversary’s knowledge

The adversary’s knowledge is a crucial point in banking fraud detection since in a realistic
scenario the attacker can have different degrees of knowledge and this strongly impacts
his or her final results. In order to deal with the adversary’s knowledge, we rely on
[27, 28, 39], which propose a setting that really suits our scope, by slightly modifying the
representation of [37]. We list all the terms that represent the attacker’s knowledge:

• Training Data ∆: training data on which the target model is trained;

• Features Set Φ: the set of features used to build the target algorithm;

• Target Algorithm A: the algorithm used to create the fraud detection system;

• Hyper-Parameters P: hyper-parameters used to train the machine learning model;

• Past User Transactions T: past users transactions to identify the user spending
pattern;

• Update Policy Π: update policy of the target model (i.e., weekly or biweekly)

In conclusion, the adversary knowledge can be easily modeled with the following tuple:
Θ = (∆, Φ, A, P, T, Π).

Given these premises, we can identify three possible scenarios in which the attacks will
be performed:

• White Box: the adversary has full knowledge about the detector and the victim’s
past transactions. Although it is the least realistic situation, it is introduced for two
reasons: the attacks can be done by a bank’s employee, which has the possibility
to access the more reserved information and, moreover, it’s interesting to study the
poisoning process in the best case scenario for the attacker.

Θwb = (∆, Φ, A, P, T, Π)

• Grey Box: the adversary has partial knowledge about the detector and the victim’s
past transactions. He or she knows only the features set and the update policy and
uses a surrogate dataset to build the oracle; furthermore, the attacker has all the
victim’s transactions executed in the month before the attack.

Θgb = (δ, Φ, α, ρ, τ , Π)

• Black Box: the adversary doesn’t know anything about the detector and has partial
knowledge of the victim’s past transactions. He or she ignores the features set,
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the update policy, and the target algorithm and relies on one month user’s past
transactions history.

Θbb = (δ, ϕ, α, ρ, τ , π)

2.3. Adversary’s capabilities

In [28] the authors focus on evasion or exploratory attacks which craft adversarial samples
in order to avoid the detection of the target model. In that scenario, the aim of the attacker
is to manipulate the test set executing transactions on behalf of the user. In this work,
we study causative or poisoning attacks, where the attacker tries to manipulate both the
training and the test set. In fact, he or she wants to inject malicious examples into the
training set so that the target model will be trained on a corrupted set of samples. In the
beginning, the attacker, relying upon his or her knowledge, tries to mimic the spending
pattern of the victim. Then, he or she poisons the amount and/or the count of the victim
by incrementally raising the value and the number of transactions per week. In this
way, the machine learning model, which is periodically updated, will assimilate the new
fake spending pattern forged by the attacker, by considering the incoming transactions as
legitimate. In order to access customers’ sensitive data, an adversary can install malware
on employees’ devices or exploit phishing techniques in order to extract information, such
as credentials and One Time Password (OTP), from the victims’ bank accounts. In
this way, an attacker can easily perform transactions on behalf of the user. Then, the
features of the transaction are aggregated and standardized. In this work, the fraudster
can manipulate only a set of features, that is larger than the one used in previous work
[27, 28]. Obviously, the attacker can partially control the aggregation of the features,
which also depend on past users’ transactions.
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3| Dataset Analysis and

Engineering

This chapter aims to analyze our datasets. In particular, we present the features that are
relevant in the banking fraud detection context and we study the trend of the count and the
amount during different time windows. Finally, we introduce our fraud generation process,
which is necessary since our proposed detectors rely on supervised learning algorithms,
that require labeled data.

3.1. Dataset Analysis

Thanks to a collaboration with a major bank, we have the possibility to work on two
datasets composed of real European executed transactions. The first dataset presents
transactions from 2012 to 2013, and the second one is composed of banking operations
from 2014 to 2015. Both datasets contain many features that are preventable, this is
why we select a subset that really interests us, so that we can work on a light and concise
amount of data. Moreover, for privacy reasons and to protect personal users’ information,
some features are hashed: obviously, this compromises in no way our study. We list the
considered relevant features:

• IP: hashed IP address of the connection associated with the transaction;

• IDSession: hashed unique value associated with a single session;

• Timestamp: date and time in which the transaction is executed;

• Amount: amount related to the transaction (€);

• UserID: hashed unique value identifying the user;

• IBAN: hashed value of the destination bank account of the transaction;

• ConfirmSMS: binary value which specifies if the transaction has been executed with
a confirmation SMS or not;
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• IBAN_CC: the Country Code of the beneficiary IBAN;

• CC_ASN: The Country Code and the Autonomous System Number from which the
connection comes.

Once identified the fundamental features, we can reduce and clean the datasets. We have
eliminated the duplicate transactions and we have kept all the transactions with invalid
CC_ASN (i.e., ’n.d, n.d’). This is because CC_ASN is not a core feature as the amount
or the timestamp, and it’s an alphanumerical string whose value is not important, and
an invalid CC_ASN is considered equal for each user. In Table 3.1, we present a general
overview of the two datasets.

Dataset Time Window Users Transactions Mean (€) Max-Min(€)

2012-13 01/12/12-10/09/13 53764 567550 1786.38 0.01-50000
2014-15 22/10/14-23/02/15 58507 471766 1778.99 0.01-50000

Table 3.1: General Information about the Datasets

The two datasets are really similar. The older one covers a larger time window and it
has more transactions, but it has a smaller number of users. The amount mean is almost
equal while the possible maximum and minimum amount is between 0.01€ and 50000€
for both datasets.

We show some plots in order to explain how the amount and the transactions are dis-
tributed over time periods. In order to understand our datasets, it’s fundamental to
clearly visualize the trends of the amount and the count with respect to the timestamp.
We refer to the 2012-13 dataset, which is really similar to the more recent one, but it is
composed of a greater number of transactions. In Figure 3.1 and Figure 3.2, we report
the course of the count and the average transaction amount, grouped by days.
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Figure 3.1: Mean Transaction Amount Per Day

Figure 3.2: Count Per Day



22 3| Dataset Analysis and Engineering

In Figure 3.1, we notice that the average amount of the transactions is really unstable,
but it presents the same pattern for all the dataset length. However, we have a peak
in correspondence to February month. On the other hand, in Figure 3.2, the count plot
allows us to understand that most of the transactions are executed during the summer and
in February, where we register an average amount increase, we have instead the minimum
number of operations.

In Figure 3.3 and Figure 3.4, we plot the users spending pattern during the weekdays.

Figure 3.3: Mean Amount per Weekday Figure 3.4: Count per Weekday

Figure 3.3 and Figure 3.4 state that users perform more transactions with a higher amount
during the week, from Monday to Friday. On the weekend, we have a decrease in both
count and amount. This aspect is very important for an attacker, because transfers
executed Saturday or Sunday have a larger suspicious level and when crafting frauds, he
or she will take into account it.

Finally, in Figure 3.5 and Figure 3.6, we provide histograms concerning the timestamp
hours in which transactions are executed.
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Figure 3.5: Mean Amount per Hour Figure 3.6: Count per Hour

Figure 3.6 shows that most of the transactions are executed during the day hours, from
7 am to 7 pm. When the attacker needs to choose an hour for creating a fraud, he or she
selects this range, in order to deceive the detectors. Figure 3.5 illustrates that the average
amount per transaction is constant during the day and it is about 2000€. However, we
can observe an interesting peak registered at 4 am, where the average amounts to almost
6000€. On the other hand, from Figure 3.6, we understand that those transactions are
very few. These examples could be considered outliers because they behave very differently
from the norm. Usually, fraudulent transactions are executed during the night and they
have a significant amount. These transactions follow exactly a fraudulent pattern, but
they are legitimate, they are valid observations. These extreme but legitimate values that
are very diverse from the rest of the population make the fraud detection task even more
difficult, because effective detectors need to distinguish between particular but legitimate
behaviors and very similar fraudulent ones.

3.2. Fraud Generation Process

The dataset 2012-13 has been completely cleaned from frauds, while the banking group
made available a list of fraud reports concerning the dataset 2014-15. In particular, we
have 606 frauds, corresponding to 0.128% of the entire dataset, the amount mean is
21,320€ and the victims’ number is 96. Since we are in a supervised learning setting,
in order to avoid bias toward the legitimate class, we need to craft fraud samples to
effectively face the classification task for both datasets. We replicate fraudulent patterns
and malicious behaviors and we need to rely on the available reports and previous works.
More specifically, we can distinguish two fraudulent schemes: information stealing and
transaction hijacking [23, 28]. In the information stealing scheme, the attacker, either
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from data breaches or directly from the cardholders (e.g., via phishing websites or scam
text messages) [40], is able to steal confidential data such as credentials and one time
passwords (OTP) related to the targeted bank account. In this way, he or she has the
necessary information to execute transactions on behalf of the victim. In the transaction
hijacking pattern, which is less spread, adversaries install Trojans (e.g., ZeuS or Citadel)
on bank customers’ devices that are able to divert the transactions executed by the victim
to a recipient IBAN at will [24].

In addition, in the banking fraud detection task, we need to deal with imbalanced datasets.
The number of legitimate transactions is much greater that the number of fraudulent ones.
According to the literature [43, 44], frauds usually constitute between 0.1% and 1% of
the total transactions. In particular, we generate a frauds percentage which is close to
1% for both datasets, as Monti [27] and Carminati et al. [28] did. In order to synthesize
fraudulent wire transfers, we exploit the same strategy used by Monti [27], with minor
modifications.

3.2.1. Customers Categorization

The first phase in generating fraudulent transactions is to identify the victims. We divide
the users into nine categories, more than Monti’s work [27] because we want to involve
all different types of users. A customer category is given by the transactions’ amount and
the number of transactions during the time window considered by the dataset.

Category Amount Mean (€) Count Percentage

1 > 1500 4 < · < 20 64%
2 1500 < · < 3000 4 < · < 20 9.97%
3 > 3000 4 < · < 20 7.72%
4 > 1500 20 < · < 51 7.96%
5 1500 < · < 3000 20 < · < 51 3.54%
6 > 3000 20 < · < 51 1.9%
7 > 1500 > 51 2.19%
8 1500 < · < 3000 > 51 1.6%
9 > 3000 > 51 1.12%

Table 3.2: Users’ Category for 2014-15 Dataset

With this subdivision, we are able to cover all the possible spending patterns. In fact,
in the real world, all people can be targeted by attackers, regardless of their spending
behavior. The most consistent category is the one with the smallest amount mean and
few transactions. On the other hand, users which perform many heavy wire transfers
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represent a small set. In this work, we select around 1000 random victims for both
datasets, based on the percentage shown in Table 4.2. Even if we have 606 reports for the
more recent one, we apply the same generation strategy for both datasets. In addition,
82% victims are scammed according to information stealing pattern, while the remaining
18% refers to transaction hijacking scheme.

3.2.2. Synthetic Fraud Generation

In the banking fraud domain, information stealing is the most common scenario and the
majority of victims are hit under this pattern. The adversary, with a phishing campaign
or social engineering, retrieves the necessary information to impersonate the customer and
execute transactions at will. In this way, the transfers are authorized by the attacker’s de-
vice. This is why all the information related to the connection from which the transaction
is performed, is related to the attacker. On the other hand, in a transaction hijacking sce-
nario, the attacker exploits specific malware in order to hijack the operations performed
by the user. All the data related to the transfer are associated with the victim. Table 3.3
provides a summary of how the features are chosen in the two different scenarios.

Scheme IP SessionID IBAN ConfirmSMS IBAN_CC CC_ASN
Information Random Random Random Dataset Real Dataset

Stealing Distribution Distribution Distribution
Transaction Victim Victim Random Victim Real Victim
Hijacking Distribution

Table 3.3: Features Values for Frauds Crafting

In the information stealing scheme, the IP address, the ID session, and the IBAN are
random hashed strings, that depend on the attacker. The confirmation SMS is chosen
according to its distribution in the dataset (85% 1 and 15% 0), as the CC_ASN, which
the attacker can easily spoof using a VPN. For what concerns the IBAN Country Code,
the Italian Ministry of Economy and Finance [45] stated that in 2020, the intensity of
the foreign fraud phenomenon focused primarily on the United Kingdom, France, Spain,
Germany, and Romania. Ergo, we assign the IBAN_CC with 40% of probability to these
countries, the 40% to Italy, and the remaining 20% to all the other European countries
present in our datasets. This probability distribution is very different from dataset one,
and this is why foreign frauds represent a real challenge for fraudsters in the banking
fraud detection world. In the hijacking transaction scheme, the only features that are
changed by the attacker are the IBAN and the IBAN_CC, because the transaction itself
(i.e., IP, SessionID, ConfirmSMS, CC_ASN) is executed by the victim.
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Once we have introduced the general setting in which attackers usually act, we can address
the different strategies that adversaries adopt in order to commit frauds. An attacker may
want to execute a few fraudulent transactions, in a limited time window, but with a very
high amount. On the contrary, he or she makes the attack last as long as possible, by
stealing a small or medium amount of money. Alternatively, the adversary can observe
a victim’s behavior and study his or her spending pattern in order to deceive the fraud
detection system. Finally, one can commit single frauds, performed just once against
one specific user, with a high amount. However, the goal is always the same: stealing
as much money as possible and remaining undetected. Therefore, we replicate these
four strategies, for both information stealing and transaction hijacking scheme. For this
purpose, we consider three variables that the attacker can directly control: number of
frauds, amount of the transactions, and total duration of the attack (i.e., time window
from the first to the last fraud), in which the frauds are equally distributed. Table 3.4
explains for each scenario the strategies and the fraudulent transactions implemented by
potential adversaries.

Scheme Typology Percentage Count Amount Duration Distribution
(K €) (days)

Short-lived 10 1 35-50 - Uniform

Short-lived 8 1-5 10-25 14 Uniform

Short-lived 10 1-5 10-25 7 Uniform

Short-lived 2 24 1-10 1 Gaussian

Short-lived 2 20-35 1-3 7 Uniform

One-fraud 15 1 2-10 - -

Custom 15 1 max(5 ∗ µ, µ+ 2 ∗ σ) - 7 Uniform

max(7.5 ∗ µ, µ+ 2.5 ∗ σ)

Information Custom 3 5 ∗ count µ− 7 Custom

Stealing max(1.5 ∗ µ, µ+ 0.5 ∗ σ)

Custom 3 5 ∗ count µ− 14 Custom

max(1.5 ∗ µ, µ+ 0.5 ∗ σ)

Custom 6 3 ∗ count max(2 ∗ µ, µ+ σ) - 14 Custom

max(4 ∗ µ, µ+ 2 ∗ σ)

Long-lived 1 5-30 0.05-0.1 30 Uniform

Long-lived 2 5-30 0.1-0.2 30 Uniform

Long-lived 5 5-30 0.2-0.5 30 Uniform

Short-lived 4 1 35-50 - Uniform

Short-lived 3 1-5 10-20 - Uniform

Transaction Short-lived 1 15-25 2-5 - Uniform

Hijacking Short-lived 2 - 2-5 14 Uniform

One-fraud 5 1 1-10 - -

Long-lived 2 10-20 0.2-0.5 - Uniform

Long-lived 1 - 0.2-0.5 30 Uniform

Table 3.4: Generated Frauds
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We have the four typologies introduced before: one-fraud, short-lived, long-lived, and
custom. "Percentage" means the portion of the victims scammed by that typology. Under
the heading "Count" and "Amount", we find the possible intervals in which the values
are chosen. The duration, in days, indicates how long the attacks take. In particular, we
name "short-lived" the frauds that last less than 30 days, while we use "long-lived" for
attacks that last 30 days (i.e., the maximum possible time window). On the contrary, "one-
fraud" stands for attacks that present just one fraud. Instead, "Distribution" suggests the
statistical distribution according to which the amount between the intervals is selected.
Notice that in one case, we have a Gaussian, hence the attacker performs a series of
transactions following a normal distribution with the final goal to steal a certain amount
of money. Regarding the custom attacks, it’s important to underline that the count and
the amount depend on the user’s spending pattern and some parameters, different for
each attack. Finally, in the transaction hijacking scheme, you see that an attacker can
divert a certain number of transactions or hijack the transactions executed by the victim
within a specific time window. Table 3.5 summarizes the results of the fraud generation
process.

Dataset IS frauds TH frauds Reported frauds Total frauds Frauds percentage

2012-13 3982 808 0 4790 0.85%

2014-25 4534 759 606 4899 1.15%

Table 3.5: Generation Frauds Results
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4| Fraud Detection Systems:
Tuning, Training, and
Evaluation

In this chapter, we prepare our data by applying all the common machine learning tech-
niques that need to be faced before performing training and assessing the detectors’ per-
formance. After introducing the algorithms used to train our detectors, we focus on
features aggregation, the procedure which allows us to contextualize each row transaction
by adding information about historical information. Then, we apply hyperparameter op-
timization to find a set of hyperparameters that maximize the performance of our models
and we perform the feature selection task to reduce the set of features that characterize
each transaction. Moreover, we explain important concepts about how models are evalu-
ated and about concept drift and update policy. Finally, we proceed with the periodical
training of our proposed models and their evaluation according to a specific set of metrics.

4.1. Selected Fraud Detection Systems

In our work, we present 8 different models, all of which have been used in the banking
fraud detection context.

The first algorithm for random forests (RF) was created in 1995 by Tin Kam Ho [46],
but then it was extended in different versions [47]: it is an ensemble learning method for
classification or regression, which creates a forest of decision trees. In classification tasks,
the output is the one stated by most trees. Regarding the fraud detection domain, it was
used by Xuan et al [13], which obtained important results by comparing two different
random forest versions on a real dataset coming from an e-commerce company based in
China.

EXtreme Gradient Boosting (XGB), designed by Chen [48], is an open-source library that
provides an efficient and effective implementation of the gradient boosting algorithm,
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which gives a prediction model in the form of an ensemble of weak prediction models,
which are decision trees. Meng et al and Zhang et al proposed a fraud detection system
based on XGBoost and evaluated carefully its performance on very imbalanced datasets
[14, 15].

Light Gradient Boosting machine (LGB) is a gradient boosting machine learning frame-
work that has been developed by Microsoft [49]. It is based on decision trees and its
strong points are its speed in fitting, its low memory usage, performance, and scalability.
This is why it has been applied to credit card detection systems by Taha et al [19], which
demonstrated how LightGBM outperforms the other approaches in terms of accuracy.

Catboost (CB) is an efficient gradient boosting algorithm based on decision trees [51],
proposed by Yandex experts, in order to deal with recommendation systems, self-driving
cars, and weather predictions. Introducing a novel gradient boosting scheme, it is char-
acterized by fast training and prediction, categorical features support, and overfitting
reduction [52]. Yunlong [18] et al studied the Catboost model in the transaction fraud
detection context and showed that their solution achieved an excellent ROC score.

Support Vector Machines (SVM) are one of the most popular and old supervised learning
models, applied to both regression and classification. Introduced by Vapnik in 1995 [53],
SVM tries to map each training example to one class, maximizing the gap between the
two categories. Exploiting the well-known kernel trick, SVMs can efficiently perform a
non-linear classification even in multidimensional feature spaces. Gyamfi et al [16] used
the SVM model with Spark (SVM-S) in order to build normal and abnormal customer
behaviors and to test the validity of incoming transactions, while Asha et al [17] deepened
the study of SVM by comparing its performance to K-Nearest Neighbour (KNN) and
Artificial Neural Networks in the occurrence of credit card frauds.

Artificial Neural Networks (ANN) are black-box methodologies that allow to model com-
plex patterns and decision boundaries in your data. McCulloch et al [54] opened the
subject by creating a computational model for neural networks but the first functional
networks with many layers were introduced by Ivakhnenko et al [55]. ANNs are based
on the concept of neurons: they take in input the data and multiply it by a weight, then
they put it into a nonlinear transformation function (logistic regression). They are just a
generalization of existing mathematical and statistical approaches. This machine learning
technique was used by Asha et al [17] and Sahin et al [20] in order to develop effective
anomaly detection systems.

Logistic regression (LR) is a statistical model which has been used since 1970 in many
different research areas, such as medical and social contexts. It consists of an approach
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that exploits the sigmoidal function in order to model the conditional probability of a
class given one input. In [20], logistic regression was applied to a real banking dataset,
but it has been outperformed by Artificial Neural Networks, in terms of frauds detected.

An active learning (AL) system combines both unsupervised and supervised techniques.
First, a traditional anomaly detection model is trained in order to output the examples
with higher anomaly scores. Then, these transactions are used to train a supervised model;
in this way, we minimize the manual investigation process and we train the supervised
model only on relevant examples, with the aim to minimize the false positives. Carminati
et al [21] implemented an active learning system for Anti-Money Laundering (AML) in
order to extract the strengths of unsupervised and supervised learning and proved that the
proposed hybrid method worked better than other state-of-art solutions. In particular,
to develop an effective active learning system, we make use of Isolation Forest (IF) as an
anomaly detection model and CatBoost as the supervised one.

4.2. Feature Aggregation

Our datasets contain transactions described by precise characteristics, i.e., features. The
attributes that we discussed in Section 3.1 are called direct because they individually
contextualize the single-row transaction. In order to create a powerful model, we need
to train the machine learning algorithms on a dataset that collects as much relevant
information as possible. This is why direct features are not enough: we need to aggregate
them in order to capture the user’s spending pattern and his or her behavior in a certain
time period. Aggregating the features allows us to summarize them into logical groups
using statistical methods and help to define in a precise way user’s profile since his or her
past transactions history is analyzed. Moreover, among our features, we have categorical
features (i.e IP, IBAN, IBAN_CC, CC_ASN) that cannot be aggregated. We need to
move to the frequency domain: in practice, we transform categorical variables into "bins
of a histogram". For instance, you keep track of how many times, in a certain amount
of time, a user commits transactions from that specific IP address, and, in this way, the
feature has become a number. In order to carry out the aggregation task, we rely on [28].

The directly derivable features are:

• Amount: the value of the transaction in euro (€), without any type of transforma-
tion;

• Time_x, Time_y: these two features are obtained directly from the Timestamp.
Since time is cyclical and we have to deal with time differences, we need to encode
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and transform it into a variable of two dimensions, using sine e cosine. t = tsh ∗
3600 + tsmin ∗ 60 + tssec, Time_x = cos t∗2π

86400
, Time_y = sin t∗2π

86400
;

• isInternationalTx: binary value which specifies if the transaction is international
(i.e., if the Country Code is different from the IBAN_CC)

• isNationalIban: binary feature which states if the recipient IBAN is national (i.e.,
if IBAN_CC = ’IT’);

• isNationalASN: binary value that indicates if the connection of the incoming trans-
actions comes from a national IP address (i.e., CC_ASN contains ’IT’);

• confirmSMS: binary value which means if the One Time Password was needed for
the transaction;

The aggregated features are:

• group_function_time: an aggregation function is computed certain grouping user’s
transaction by group over a certain period of time.

– The groups are: IP, IBAN, IBAN_CC, IDSession, CC_ASN, or Amount, if
we want to consider all the transactions performed by a user;

– The functions are:

1. Sum: it computes the sum of the transactions amounts in the considered
time window;

2. Count: It counts the number of transactions in the considered time win-
dow;

3. Mean: it computes the mean of the transactions amounts in the considered
time window;

4. Std: it computes the standard deviation of the transactions’ amounts in
the considered time window.

– The time windows are: 1 hour, 1 day, 7 days, 14 days, 30 days, and 365 days
if we want to consider all the transactions present in the dataset performed by
that user.

• time_since_last_group: it specifies the time elapsed, in hours, since the last trans-
action among those obtained by grouping the transactions by user and by group;

• distance_from_mean_group_time: it represents the distance between the current
transaction and the amount mean obtained grouping the user’s past transactions by
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group over a certain time period;

• is_new_IP: binary value which states if the IP address related to the transaction
is used for the first time by the user

• is_new_IBAN: binary value which indicates if it’s the first time that the user sends
money to that IBAN;

• is_new_IBAN_CC: binary value which specifies if it’s the first transaction per-
formed by the user towards that IBAN Country Code;

• is_new_CC_ASN: binary value which says if it’s the first transaction performed
by the user from that country.

Thanks to this aggregation strategy, we are able to extract 196 numerical features, which
capture the users’ spending profile and allow the model to contextualize every single
transaction.

It’s essential to underline that now the features’ values need to be standardized. In fact,
the difference between two points that are characterized by not standardized dimensions
will be biased by the feature with a higher value. This is a mandatory requirement in
order to build effective machine learning models.

4.3. Proportional Accuracy

Banking datasets are known to be heavily imbalanced. The percentage of frauds with
respect to all the transactions is usually from 0.1 to 1%. With our generation process,
we have generated about 5000 malicious transfers for every dataset: still, the two target
classes are consistently unbalanced. You may notice that in this scenario, we get poor
results regarding the prediction of new observations, especially for the small class. Usually,
experts which deal with this challenge make use of some helpful techniques, such as
oversampling and undersampling. The former consists of the generation of additional
cases, and copies of the minority class to increase their effect on the classifier while
the latter is about decreasing the presence of samples belonging to the majority class.
However, these strategies can lead to overfitting our training data, and that is something
you need to avoid in machine learning contexts. On the other hand, we could use the
Synthetic Minority Oversampling Technique (SMOTE), which creates new elements of
the minority class by generating convex combinations of neighboring instances. However,
SMOTE has different limitations: sample overlapping, noise interference, and blindness
of neighbor selection [62]. In addition, we don’t want to create unrealistic samples which
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corrupt our data. For these reasons, we adopt another strategy in order to overcome this
limitation, and we rely on a custom score, proposed by Monti [27], which assigns different
weights to false positives and false negatives and which is able to avoid the drawbacks of
common performance metrics, such as the accuracy. In fact, a poor model could classify
every transaction as legitimate, by achieving an accuracy of about 99%. In financial
institutions, false negatives have a greater cost with respect to false positives. However,
false positives make the customer lose confidence in the banking institution; an article by
Forbes [63], states that 40% of consumers in Europe left their banking institution which
declined a transaction even if it was legitimate. In addition to the loss of customers, the
reputation is irreparably damaged. On the contrary, false negatives translate directly into
loss of money: a fraudulent transaction ranked as legitimate involves a waste of finances
and a bank image ruining. Hence, we decided to give more importance to false negatives
and train our models in a way that the number of these mispredictions is minimized. This
is why we introduce a custom miss-classification cost metric:

miss_prediction_cost = FP + k ∗ FN

With this equation, we are stating that a false negative weighs k times more than a false
positive. However, the challenge is estimating the value of k: it depends on how much
the two miss-predictions can cause damage to the bank. It should be really specific to
each bank. We try to be much general as possible, by evaluating k according to our
datasets. In particular, we model k as the ratio between the total legit transactions and
the fraudulent ones, obtaining k equal to about 100. In conclusion, we can write the final
equation of our proportional accuracy:

proportional_accuracy = 1− miss_prediction_cost

FP+TN+k∗(TP+FN)

The proposed metric is considered our yardstick. Models with high proportional accuracy
have a medium amount of false positives but a few one of false negatives. We compare
machine learning algorithms with each other based on this metric and we consider better
the models which have higher proportional accuracy.

4.4. Feature Selection

At this point, it’s necessary to introduce an essential step in the machine learning domain:
feature selection. This task consists of extracting from the entire set of features, those
which best fit each specific model. In particular, feature selection brings different benefits
[64]:

1. Complexity reduction: making our model less complex implies a probability decrease
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of overfitting our data;

2. Computational advantages: having fewer features means shorter training times;

3. Model simplification: simpler models are easier to be interpreted and studied by
experts and researchers.

A key point to well understanding feature selection is that there are features that are
irrelevant or redundant. More specifically, we can have features that are strongly corre-
lated to one another and can be removed [65]. There are different approaches to face the
feature selection task: embedded, filter, and wrapper methods.

Embedded approaches are represented by algorithms that automatically perform feature
selection when trained (i.e., Lasso Regression).

Filter methods consist of looking at one feature per time, trying to assess how much that
feature can be predictive and can be correlated with respect to your target.

Wrapper solutions are more general: instead of applying an exhaustive search, comparing
all the possible feature combinations, that would be the ideal solution, these methods
try to reduce the complexity of the search, by using simple greedy algorithms, backward
stepwise and forward stepwise selection.

In our work, we deal with a dataset made up of many transactions, each one characterized
by a lot of features. Wrapper methods would be too computationally expensive. On the
contrary, we can exploit filter solutions, by inspecting how much every feature impacts the
true label. Since we are studying each feature individually, we are not able to capture the
correlation between them, but at least we are sure to include features that are relevant
to the target. In order to implement our strategy, we divide our dataset into training
and test set. We train the model on the first one using one feature at a time and we
analyze the performance on the test set, focusing on our proportional score. Then, we
remove the features whose score is less than the average and we keep all the others. We
repeat this process for every model so that each one has its own specific set of features.
With this approach, we are able to decrease the feature number from 196 to about 80
for each algorithm, apart from Artificial Neural Networks, where we can exclude only 36
features. If we inspect the performances, we notice that on average we lose 0.05% of our
proportional accuracy, an acceptable percentage. Moreover, we realize that by reducing
the feature set, the models tend to increase the number of miss-predictions in terms of
false positives, not of false negatives. This is an important observation, which suits our
work because despite having a certain cost, false positives make the attacks still more
difficult. In Table 4.1 we provide first the set of the features which are shared by all the
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models, then we list the features which are specific to each one.

Model Features
IBAN_std_14d, Amount, distance_from_mean_IBAN_30d, IBAN_sum_365d, IP_sum_7d, isInternationalTX,

CC_ASN_mean_30d, IBAN_mean_1h, IBAN_CC_mean_30d, IDSession_mean_1h, CC_ASN_sum_7d, IP_mean_30d,
IBAN_CC_mean_365d, IBAN_mean_14d, IBAN_std_30d, IBAN_CC_mean_1h, IP_mean_1d, IBAN_CC_count_7d,

IBAN_CC_mean_7d, IBAN_mean_1d, IBAN_count_1d, Amount_count_14d, CC_ASN_count_7d, time_since_last_tx_global,
Shared IBAN_count_30d, CC_ASN_mean_7d, IBAN_CC_mean_1d, time_since_last_IBAN_CC, IBAN_CC_sum_1d, IBAN_sum_1d,

Amount_mean_7d, IBAN_sum_1h, CC_ASN_mean_1d, IBAN_mean_30d, CC_ASN_mean_1h, Amount_sum_7d,
Amount_mean_1d, IBAN_mean_365d, IBAN_std_1d, IBAN_CC_sum_7d, IBAN_CC_mean_14d, Amount_count_7d,

Amount_sum_1d, IBAN_count_14d, IP_sum_1d, IBAN_count_7d, IP_mean_14d, IP_mean_7d,
IBAN_count_365d, CC_ASN_mean_14d, IBAN_mean_7d, IBAN_sum_30d, time_since_last_CC_ASN, IP_mean_365d,

IBAN_std_7d, IBAN_sum_14d, Amount_mean_14d, IDSessione_sum_1h, IBAN_sum_7d, IP_mean_1h, CC_ASN_sum_1d
Amount_mean_1h, Amount_std_7d, IP_std_7d, IP_std_14d, IP_std_30d,

IP_sum_14d, IP_count_7d, IP_count_365d, IBAN_std_365d, IBAN_CC_std_7d, IBAN_CC_std_14d,
Light Gradient CC_ASN_mean_365d, CC_ASN_std_7d, CC_ASN_count_14d,

Boosting distance_from_mean_Amount_7d, distance_from_mean_Amount_14d, distance_from_mean_Amount_30d,
distance_from_mean_IP_7d, distance_from_mean_IBAN_1d, distance_from_mean_IBAN_7d,

distance_from_mean_IBAN_14d, distance_from_mean_IBAN_365d, distance_from_mean_IBAN_CC_7d,
distance_from_mean_CC_ASN_7d, time_since_last_IP, time_since_last_IBAN, Time_x, isNationalIban

Amount_mean_1h, Amount_std_7d, Amount_sum_14d, IP_std_7d, IP_std_14d,
IP_sum_14d, IP_count_7d, IBAN_std_365d, IBAN_CC_std_7d, IBAN_CC_std_14d, CC_ASN_std_7d,

CatBoost CC_ASN_std_14d, distance_from_mean_Amount_7d, distance_from_mean_Amount_14d,
distance_from_mean_Amount_30d, distance_from_mean_IP_7d, distance_from_mean_IBAN_1d,

distance_from_mean_IBAN_7d, distance_from_mean_IBAN_14d, distance_from_mean_IBAN_365d,
distance_from_mean_CC_ASN_7d, time_since_last_IP, time_since_last_IBAN, Time_x, isNationalIban

Amount_mean_1h, Amount_std_7d, IP_std_7d, IP_std_14d, IP_sum_14d,
IP_sum_365d, IP_count_7d, IBAN_std_365d, IBAN_CC_std_7d, CC_ASN_std_7d, CC_ASN_std_14d,

EXtreme Gradient distance_from_mean_Amount_7d, distance_from_mean_Amount_14d, distance_from_mean_IP_7d,
Boosting distance_from_mean_IP_14d, distance_from_mean_IBAN_1d, distance_from_mean_IBAN_7d,

distance_from_mean_IBAN_14d, distance_from_mean_IBAN_365d, distance_from_mean_IBAN_CC_7d,
distance_from_mean_CC_ASN_7d, time_since_last_IP, time_since_last_IBAN, Time_x, isNationalIban

Amount_mean_30d, Amount_sum_1h, Amount_sum_14d, Amount_sum_30d, IP_sum_1h,
IP_sum_14d, IP_count_7d, IP_count_14d, IBAN_std_1h, IBAN_count_1h, IBAN_CC_sum_1h,

Logistic IBAN_CC_sum_14d, IBAN_CC_count_14d, IBAN_CC_count_365d, CC_ASN_mean_365d, CC_ASN_sum_1h, CC_ASN_sum_14d,
Regression CC_ASN_sum_30d, CC_ASN_count_14d, CC_ASN_count_365d,

distance_from_mean_Amount_30d, distance_from_mean_Amount_365d, distance_from_mean_IBAN_365d,
time_since_last_IDSessione, Time_x, isNationalIban

Amount_mean_1h, Amount_std_7d, Amount_sum_14d, IP_std_7d, IP_std_14d,
IP_sum_14d, IP_sum_365d, IP_count_7d, IP_count_14d, IP_count_365d, IBAN_std_365d,

Random IBAN_CC_std_7d, IBAN_CC_count_14d, CC_ASN_std_7d,
Forest CC_ASN_count_14d, distance_from_mean_Amount_7d, distance_from_mean_IP_7d,

distance_from_mean_IBAN_1d, distance_from_mean_IBAN_7d, distance_from_mean_IBAN_14d,
distance_from_mean_IBAN_365d, distance_from_mean_CC_ASN_7d, time_since_last_IP,

time_since_last_IBAN, isNationalIban
Amount_mean_1h, Amount_mean_30d, Amount_mean_365d, Amount_sum_1h, Amount_sum_14d,

Support Amount_count_365d, IP_sum_1h, IP_sum_14d, IP_count_365d, IBAN_std_1h, IBAN_count_1h,
Vector IBAN_CC_sum_1h, IBAN_CC_sum_14d, IBAN_CC_count_14d, IBAN_CC_count_365d, CC_ASN_mean_365d, CC_ASN_sum_1h,

Machine CC_ASN_sum_14d, CC_ASN_count_14d, CC_ASN_count_365d,
distance_from_mean_Amount_365d, distance_from_mean_IBAN_7d, distance_from_mean_IBAN_14d,

distance_from_mean_IBAN_CC_365d, distance_from_mean_CC_ASN_365d, time_since_last_IP, Time_x
Amount_mean_1h, Amount_mean_30d, Amount_mean_365d, Amount_std_1h,

Amount_std_1d, Amount_std_7d, Amount_std_14d, Amount_std_30d, Amount_std_365d, Amount_sum_1h,
Amount_sum_14d, Amount_sum_30d, Amount_sum_365d, Amount_count_1h, Amount_count_1d, Amount_count_30d,

Amount_count_365d, IP_std_1h, IP_std_1d, IP_std_7d, IP_std_14d, IP_std_30d,
IP_std_365d, IP_sum_1h, IP_sum_30d, IP_sum_365d, IP_count_1h, IP_count_1d,

IP_count_7d, IP_count_14d, IP_count_30d, IP_count_365d, IDSession_std_1h, IDSession_count_1h,
IBAN_std_1h, IBAN_std_365d, IBAN_CC_std_1h, IBAN_CC_std_1d, IBAN_CC_std_7d, IBAN_CC_std_14d,

IBAN_CC_std_30d, IBAN_CC_std_365d, IBAN_CC_sum_1h, IBAN_CC_sum_14d, IBAN_CC_sum_30d, IBAN_CC_sum_365d,
Artificial IBAN_CC_count_1h, IBAN_CC_count_1d, IBAN_CC_count_14d, IBAN_CC_count_30d,
Neural IBAN_CC_count_365d, CC_ASN_mean_365d, CC_ASN_std_1h, CC_ASN_std_1d, CC_ASN_std_7d,

Networks CC_ASN_std_14d, CC_ASN_std_30d, CC_ASN_std_365d,
CC_ASN_sum_1h, CC_ASN_sum_14d, CC_ASN_sum_30d, CC_ASN_sum_365d, CC_ASN_count_1h, CC_ASN_count_1d,

CC_ASN_count_14d, CC_ASN_count_30d, CC_ASN_count_365d,
distance_from_mean_Amount_7d, distance_from_mean_Amount_14d, distance_from_mean_Amount_30d,

distance_from_mean_Amount_365d, distance_from_mean_IP_7d, distance_from_mean_IP_14d,
distance_from_mean_IP_365d, distance_from_mean_IBAN_1h, distance_from_mean_IBAN_1d,

distance_from_mean_IBAN_7d, distance_from_mean_IBAN_14d, distance_from_mean_IBAN_365d,
distance_from_mean_IBAN_CC_1d, distance_from_mean_IBAN_CC_7d, distance_from_mean_IBAN_CC_14d,

distance_from_mean_IBAN_CC_30d, distance_from_mean_IBAN_CC_365d, distance_from_mean_CC_ASN_1d,
distance_from_mean_CC_ASN_14d, time_since_last_IP, time_since_last_IDSessione,

time_since_last_IBAN, Time_x, Time_y, isNationalIban, isNationalASN, is_new_CC_ASN,
is_new_IBAN, is_new_IBAN_CC, is_new_IP, ConfirmSMS

Table 4.1: Features Selected

4.5. Hyperparameter Tuning

In the machine learning domain, hyperparameter optimization, or tuning, is a key task
whose purpose is to find the best set of hyperparameters for the current algorithm. They
have a very strong impact on the learning process and its performance. While parameters
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are intrinsic to the model, hyperparameters are external and cannot be estimated from the
trained data. The goal of hyperparameter tuning is to find a tuple that entails the model
to reduce the loss function on the available data. The literature proposes several solutions
to face this task, which is crucial due to the impossibility of estimating the best set of
hyperparameters in advance. The most popular approach is called Grid Search, which is an
exhaustive search through a manually specified subset of the hyperparameter space. The
cross-validation technique is used in order to assess the analysis. On the other hand, we
can have a Random Grid Search, which avoids inspecting every possible hyperparameter
set by studying only a specified number of randomly selected combinations [57]. Moreover,
in the hyperparameter tuning field, it’s has been introduced the Bayesian optimization,
which is a global optimization method for black-box algorithms based on a probabilistic
model that incrementally evaluates and updates the hyperparameter configuration. This
solution works well only in a few cases with specific learning algorithms [58]. Finally,
you may exploit the gradient descent in order to optimize the hyperparameters setting.
However, also this approach can be applied to a reduced number of models, such as Neural
Networks [59], Support Vector Machine [60] and Logistic Regression [61].

Since we present very different models, based on very different concepts, we use a Grid
Search strategy for each one, in order to tune at best the hyperparameters. In particular,
since we need to explore a hyperparameters space that in some cases is very large, we
adopt a Random Grid Search solution, according to which 30 different combinations of
hyperparameters are evaluated with a k-fold cross-validation strategy. Larger values for k
results in higher variance and higher running time, as training folds will be closer to the
total dataset. Since we deal with very large datasets and we look for a model which gives
the most accurate predictions on incoming transactions (i.e., we want a test error as small
as possible), we choose k equal to 3. During the hyperparameter tuning task, for each
model, we keep the hyperparameter set that performs best on our datasets, according to
a proportional accuracy that we introduced in Section 4.3. We execute this task twice:
first, with all the 196 features, then with the features specific to each model. In fact,
after having reduced the number of features by more than 50% on average, the optimal
hyperparameter set could be different from the previous one.

4.6. Concept Drift and Update Policy

Before evaluating the final performance indices of our detectors, we need to introduce
some important concepts related to the banking fraud detection world.

In predictive analytics, the statistical properties of the target variable can change over
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Model Hyperparameter Value

reg_lambda 200
reg_alpha 1
objective binary

Light Gradient Boosting num_leaves 10
n_estimators 200
max_depth 32

learning_rate 0.05
boosting_type gbdt
learning_rate 0.1

CatBoost l2_leaf_reg 1
iterations 250

depth 4
reg_lambda 0.4
reg_alpha 200

n_estimators 300
EXtreme Gradient Boosting max_depth 12

learning_rate 0.1
gamma 100
booster gbtree

tol 0.0001
solver saga

Logistic Regression penalty l2
max_iter 2500

class_weight balanced
C 1

n_estimators 800
min_samples_split 2
min_samples_leaf 4

Random Forest max_features auto
max_depth 10

criterion gini
class_weight balanced

bootstrap true
tol 0.001

penalty l2
Support Vector Machine max_iter 5000

loss hinge
C 0.1

sl_neurons 64
fl_neurons 128

Artificial Neural Networks epochs 80
dropout_rate 0.1
batch_size 1024

activation_funct relu

Table 4.2: Hyperparameters Selected
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time, and models which assume a static relationship between input and output can result
in poor performance. This concept is known as concept drift, and in fraud detection
applications it’s very critical. Many aspects that can influence the customers’ spending
pattern in the short or the long term, such as holiday periods, the purchase of a car,
or the birth of a child. These are all details to which a powerful detector has to pay
attention. To deal with concept drift, past works adopted some countermeasures [23].
In this thesis, during the training, we assign different weights to the examples based on
when they happened: more recent transactions contribute more than old ones. More
specifically, we make use of a decreasing exponential function, which assigns more weight
to newer examples:

weights = e−
t
k

The term "t" specifies the time, in hours, between the training and the transactions, while
the term "k" models how fast the weight decreases among them. With this solution, our
detection systems give more importance to the latest spending behavior with respect to
the older one. Given that our datasets last about half a year, we estimate the value of
"k" at 4380, which represents the hours’ number contained in six months.

The update policy is a key concept of our work. Bank institutions need to update their
detectors to assimilate new users spending behaviors. In this way, they are always up-
dated and capable to learn new patterns. Detection systems incrementally increase their
knowledge and their skill to predict incoming transactions. On the other hand, systems
updates are very crucial because allow attackers to perform poisoning attacks: by inject-
ing malicious transactions, fraudsters corrupt training processes and systems knowledge.
Since the training phase is computationally demanding and the time period covered by
our datasets, we assume two possible update policies, weekly and biweekly.

In conclusion, as Figure 4.1 explains, we train our models in a periodical way. We split
the dataset into two equal parts. Each model is trained on the first one, while the second
represents the test set. However, the predictions of the test set are made incrementally
according to the update policy. In other words, the trained models predict one-week
transactions (or two weeks), then, after saving the results, they include in their training
set these just predicted transactions and repeat the same process until the dataset ends.
Finally, we combine all the obtained results.
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Figure 4.1: Training Process Flow

4.7. Model Evaluation

Once trained the models, we need to evaluate them. We exploit traditional performance
metrics and, as explained in Section 4.3, a custom one, which suits our purposes. We
report here the scores used:

• Precision (or positive predictive value): it is the fraction between the true positive
examples among the positive ones.

Precision = TP
TP+FP

• Recall (or sensitivity): it is the fraction between the true positive examples and the
true ones.

Recall = TP
TP+FN

• F1-Score: it is the weighted average of Precision and Recall.

F1-Score = 2 ∗ 2TP
2TP+FP+FN

• F2-Score: it is the weighted average of Precision and Recall, with more weight
assigned to Recall.

F2-Score = TP
TP+0.2∗FP+0.8∗FN

• False Positive Rate (or fall-out): it is the probability of falsely rejecting the null
hypothesis, i.e., the ratio between the false positive examples and the total number
of actual negative ones.
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FPR = FP
FP+TN

• Matthews Correlation Coefficient (MCC): it is a quality measure of binary classifica-
tions. It takes into account true and false positives and negatives. It is a coefficient
between -1 and +1, where +1 represents a perfect prediction, 0 an average random
prediction, and -1 an inverse prediction. In this work, we use a weighted Matthews
correlation coefficient since the strong unbalancing of our datasets.

Weighted MCC = w1∗TP∗w0TN−w0FP∗w1FN√
(w1TP+w0FP )∗w1(TP+FN)w0∗(TN+FP )∗(w0TN+w1FN)

,

w0 = TP+FN
TP+FN+FP+TN

, w1 = TN+FP
TP+FN+FP+TN

• Area Under the Curve of Receiver Operator Characteristic: it is a probability curve
that plots the Recall against the False Positive Rate at various threshold values.
If it’s 1, then the classifier is able to perfectly distinguish between all the positive
and the negative class examples, while if it’s 0, the classifier would be predicting all
negatives as positives and all positives as negatives.

ROC-AUC =
∫ 1

0
Recall
FPR(x)

dx

• Area Under the Curve of Precision-Recall Curve: it is a probability curve that plots
the Precision against the Recall at various threshold values.

PRC-AUC =
∫ 1

0
Precision
Recall(x)

dx

In Table 4.3, we report performance metrics of detectors trained according to a weekly
update. We omit results following a biweekly update policy because are very similar, but
slightly poorer because the learning process is slower.

Model P-acc Precision Recall F1 F2 FPR W-MCC ROC-AUC PRC-AUC

LightGB 97.99 23.96 97.89 38.50 60.53 1.91 95.98 99.84 60.32
CatBoost 98.78 32.36 98.84 48.75 70.05 1.27 97.56 99.92 64.99
XGBoost 98.52 28.31 98.58 43.99 65.88 1.54 97.04 99.90 62.84

AL 99.27 39.65 99.48 56.70 76.42 0.93 98.55 99.96 68.95
LR 95.97 21.42 94.06 34.89 56.04 2.13 91.99 99.22 57.14
RF 97.74 28.44 96.99 43.98 65.44 1.50 95.49 99.81 62.10

SVM 88.74 3.2 95.18 6.2 14.13 17.70 78.12 94.27 48.59
ANN 93.64 94.92 87.31 90.96 88.74 0.04 80.15 96.31 52.11

Table 4.3: Fraud Detection Systems Metrics, Weekly Update

The first consideration is that Active Learning performs better than the others, achieving
99.27% in proportional accuracy. Then, we have CatBoost, XGBoost, LightGB, Random
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Forest, Logistic Regression, Artificial Neural Networks, and finally Support Vector Ma-
chine. In general, our custom metric is above 93.64%, except for SVM, which is the less
powerful detector. In fact, SVMs results present a lot of false positives. This is why all the
metrics are in general so low, in particular the Precision and the F1-Score. This is not an
important issue in this work, because detectors with many false positives will hinder the
poisoning attacks more effectively. On the other hand, ANN model achieves the opposite
result, because it presents a balance between false positives and false negatives and hence
it shows a good performance for each considered metric.

The precision is very low in general and the reason is that models tend to have a large
number of false positives, trying to minimize the negative ones. They have been trained
according to our Proportional Accuracy, which gives more importance to false negatives.
Hence, it’s obvious that the precisions are low.

The Recall is very high for all models. Since we try to avoid false negatives, we have
that the percentage ratio is large. On average, the Recall is 95.67%, meaning that 95
fraudulent transactions out of 100 are detected.

F1-Score is a very important metric because it is really useful when you have an uneven
class distribution and a different cost between false positives and false negatives. On
the other hand, F2-Score works as F1, but it weights Recall higher than Precision and
this makes it more suitable in certain applications where it’s more important to classify
correctly as many positive samples as possible, rather than maximizing the number of
correct classifications. This is why F2 scores are higher than F1 ones.

The False Positive Rate represents the probability that false alerts will be raised; it is
very low in general and it is higher for the models with more false positives, such as SVM.

The Matthews Correlation Coefficient (MCC) is a reliable statistical rate that takes into
account all four confusion matrix categories. It has been shown that MCC is more infor-
mative and truthful than F1−Score and Accuracy in binary classification problems [77].
Since our datasets are very imbalanced, we use a weighted MCC. Its value is between
78.12% and 98.55%.

The Area Under the Curve of Receiver Operator Characteristic explains how much the
model is capable to distinguish between classes. It is very high, at about 99%, for all the
detectors.

The Area Under the Curve of Precision-Recall Curve combines Precision and Recall in a
single visualization. On average, it is about 59.63%.

Now we provide a visual overview of the performance of the detector which performs best,
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Active Learning.

Figure 4.2: Confusion Matrix, Active Learning, Weekly Update

Figure 4.3: AUC-ROC, Active Learning,
Weekly Update

Figure 4.4: AUC-PRC, Active Learning,
Weekly Update

In Figure 4.2, we can observe the confusion matrix, related to the weekly update. We test
379,113 transactions, 376,790 are legitimate and 2,323 fraudulent. The Active Learning
detector is violated only by 12 frauds, while 2,311 are correctly detected. On the other
hand, it raises 3,518 false alarms, which is acceptable in a banking context.

Figure 4.3 and Figure 4.4 shows the Receiver Operator Characteristic curve and the
Precision- Recall curve. ROC allows us to understand the relation between TPR and
FPR at different classification thresholds: the closer the graph is to the top and left-hand
borders, the more accurate is the model. On the other hand, the closer the graph to the
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diagonal, the less accurate is the model. A perfect curve would go straight from zero up
to the top-left corner and then straight across the horizontal. As you may notice, our
AUC is very similar to a perfect curve. PRC specifies the precision against the recall at
various thresholds: the perfect curve will have a PRC that passes through the upper right
corner (corresponding to 100% precision and 100% recall). In our case, also this curve is
very similar to the best case possible, meaning that our detector is effective.
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This chapter aims to deeply explain which is the attack setting, which is the attacker’s
approach and how the adversary carries on his or her strategy to mount poisoning attacks.
We explore attacks against every detector, for each scenario, and for each update policy.

5.1. Assumptions

First of all, it’s necessary to contextualize the setting and the main assumptions on which
our poisoning attacks are based. As we already said, there are three possible scenarios:
White Box, Grey Box, and Black Box. Every scenario specifies the attacker’s degree of
knowledge about the target systems. Moreover, they are independent of each other and
they are studied separately. The main assumptions on which our work is based are:

• The attacker has at his or her disposal an older dataset of banking transactions that
can exploit in order to train the oracle;

• The attacker can retrieve legit past victim’s transactions executed in the month
before the beginning of the attack;

• The target Fraud Detection Systems have an update policy (i.e., weekly or biweekly),
according to which they update their training set;

• The attacker can perform transactions on behalf of the victim, according to the
transaction hijacking pattern, or by his or her devices, after stealing the victim’s
credentials;

• The attacker can manipulate all attributes which characterize a single transaction,
except the IBAN_CC;

• An attack can last at most 8 weeks, when the most recent dataset finishes. Moreover,
if a transaction is labeled as fraudulent by the target machine, the attack against
that victim ends immediately;

• The attacker can adopt different strategies depending on his or her goal and the
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current scenario;

• The attacks are executed on the more recent dataset;

• The victims are chosen according to specific criteria which allow us to study poi-
soning attacks.

5.2. Attack Approach Overview

In this section, we want to clarify the approach that the attacker uses to execute poisoning
attacks. The attack is divided into different phases, each of which has its characteristics
and needs to be adequately explored.

The first step is understanding the scenario with which the adversary has to deal. The
fraudster has to figure out what he or she knows about the target system and which
instruments have at his or her disposal. In other words, he or she needs to understand
which is the scenario among White Box, Grey Box, and Black Box. Then, the adversary
selects the victims to attack. In more detail, he or she targets customers affected by previ-
ous scams, such that phishing campaigns or Trojan malware, which allow the attacker to
steal the necessary information to carry out the attack. In this work, the fraudster selects
15 victims, an empirical number that allows attacking customers with different spending
patterns and guarantees an acceptable computational effort. The next step consists of
retrieving the past transactions executed by the chosen victims, with the goal to collect all
the information necessary to build users spending profiles and, consequently, to craft eva-
sive frauds which partially replicate victims’ behaviors. At this point, the attacker creates
fraudulent transactions trying to mimic the spending habits of the victim. More specifi-
cally, he or she selects through specific algorithms the features which can be controlled,
based on the information previously retrieved. After crafting frauds, the adversary builds
and trains the Oracle, i.e., the model which takes care of validating and regenerating the
malicious transactions. It strictly depends on the scenario and the attacker’s knowledge.
Once the fraudster has aggregated and standardized the transactions and has extracted
the features in the best possible way, he or she submits the crafted frauds to the Oracle.
If the Oracle classifies them as legitimate, they are subjected to the target system; other-
wise, they are regenerated (or deleted, in the worst case) and submitted again, until they
overcome the Oracle checks. If the proposed transactions are considered legit also by the
target detector, another attack, after some days, depending on the update policy, will be
performed. At this point, the bank machine learning model is now trained on data that
contain the transactions crafted by the attacker. Consequently, the FDS training set is
corrupted and poisoned. This is why the next attacks against the same victim will consist
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Figure 5.1: Attack Flow Graph

of more transactions with a higher amount, according to the attacker’s goal and strategy.
On the other hand, if the target system detects at least one fraud among those subjected,
the attack against that victim ends and the adversary will affect another customer. The
attack against one user lasts as long as the dataset ends (i.e., 8 weeks after the start of
the attack) or when a fraud is detected. We repeat this process for 15 victims selected.

Figure 5.1 illustrates the flow graph from the attacker’s point of view. Firstly, the attacker
tries to capture the scenario where he or she is, and how he or she knows about the target
system. Moreover, the adversary chooses a strategy, based on his or her goal. Then, he
or she starts the attack against the 15 victims selected, one at a time. He or she retrieves
the user’s past transactions history, in order to craft the malicious transactions which are
submitted to the Oracle, after having trained it according to the scenario. If the Oracle
rejects some transactions, they are regenerated, modifying specific features, until they are
accepted. The transactions deemed legitimate are subjected to the target FDS; if they
are accepted, they are injected into the system training set and new frauds for the next
week, or two weeks, depending on the update policy, are crafted, otherwise the attack
against the victim stops and the adversary carries on with another victim. The process
ends when the attacker has performed poisoning attacks against all 15 victims.
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5.3. Scenario and Strategy

5.3.1. Scenario

When executing an attack, the fraudster can be in three different situations, that depend
on the knowledge about the target Fraud Detection System.

In the White Box scenario, the attacker knows everything. He or she is able to replicate
a perfect Oracle which is identical to the bank machine learning model. In particular,
the adversary has the target training set, the system update policy, the algorithm, and
its hyper-parameters. Moreover, he or she knows all the features used, both direct and
aggregated, and has a perfect knowledge of the victim’s past transactions. This scenario
represents the best possible case: although it is an unrealistic situation, the attacker might
be internal to the bank, in a way that he or she knows every aspect to perform an attack.

In the Grey Box scenario, the adversary only knows the features set and the update policy
which are used in order to train the target model. In this way, the attacker cannot build
an Oracle which is perfectly equivalent to the FDS: in fact, he or she doesn’t know the
algorithm, the hyper-parameters, and the training set. This is why he or she makes use
of a surrogate dataset and a particular strategy to create the Oracle. This is an essential
point: the Oracle must be reliable, it has to validate and regenerate the crafted frauds
correctly, otherwise the FDS will detect them. As we already said, the attacker doesn’t
know the algorithm, so he or she has to rely on a particular approach based on ensembling
methods.

In the Black Box scenario, the attacker doesn’t even know the feature set: he or she tries
to aggregate them in the best possible way, by selecting just 50 features according to a
filter approach. This is a consistent improvement with respect to [27], in which the Oracle
was built using 70 features. Moreover, as in Grey Box, the adversary has the victim’s
transactions executed in the month before the beginning of the attack, which will be used
to create a reliable user spending profile.

5.3.2. Strategy

Another relevant aspect when performing an attack is to select a strategy that suits the ad-
versary’s goals. More specifically, we present three different directions: poisoning amount,
poisoning count, and poisoning both. In the first one, the attacker tries to steal money
in the smallest possible time window, without worrying about being detected. He or she
focuses on poisoning the transactions’ amount, increasing it consistently every iteration.
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On the other hand, the number of transactions per week (or two weeks, depending on the
update policy) is kept almost coherent with respect to that before the attack. Poisoning
count is the opposite approach: the adversary tries to poison the count of transactions
per week, crafting frauds that have an amount similar to the mean of legit transactions
executed by the victim. According to Monti [27], increasing the count is more cautious
than focusing on the amount and with this strategy, the adversary minimizes the attack
detection. The last approach is a hybrid one that combines the first two: in particu-
lar, the attacker’s goal is to steal as much money as possible, poisoning both count and
amount, without caring about the detection. Every strategy presents a conservative and
an aggressive version.

Strategy Increase Count (%) Increase Amount (%) Min-Max Increase (€) Max Std (%)
Percentage Deletion (%) Confidence, Nat/For (%)

Cons. 0 0.8 25-5000 0.75
Amount 0.5 0.900/0.675
Cons. 0.3 0.2 25-2500 0.75
Count 1 0.950/0.750
Cons. 0.3 0.75 25-2500 0.75
Both 0.6 0.925/0.850

Greedy 0 1.2 25-5000 0.75
Amount 0.4 0.900/0.675
Greedy. 0.7 0.4 25-2500 0.75
Count 1 0.950/0.750
Greedy. 0.7 0.9 25-5000 0.75
Both 0.6 0.925/0.850

Table 5.1: Strategy Parameters

Table 5.1 specifies the values assigned to each parameter which composes the strategy:

• Increase Count: increment percentage of the transactions number with respect to
the previous iteration one;

• Increase Amount: increment percentage of the transactions’ amount mean with
respect to the previous iteration one;

• Min-Max Increase: minimum and maximum possible amount increase between one
iteration and the other;

• Max Std: percentage standard deviation which limits the amount increase;

• Percentage Deletion: parameters that state when a transaction has to be deleted
(i.e., we delete transactions with an amount equal to "Percentage Deletion" * k,
where k is the minimum amount selected in the previous iteration);
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• Confidence: it specifies how we trust the Oracle (i.e., we accept frauds that are
considered legitimate by the Oracle with a percentage higher than "Confidence").
We provide two possibilities for this parameter, one refers to national frauds and
the other to foreign ones. The reason is that our Oracle is very strict against foreign
frauds: hence, we cannot use high confidence, otherwise, our Oracle will reject each
of them. Moreover, while poisoning the count, we are much more cautious than
when poisoning the amount, because we want to minimize the attack detection.

5.4. Victim Selection

As we explained in section 3.2.1, we have divided the users into nine categories, with the
aim to deal with all the possible spending patterns present in our dataset. Users with
few transactions with small amount are more than users with many costly transactions.
Moreover, customers with a little number of banking operations are more difficult to
poison, because their incremental spending pattern change will be more consistent and
then more suspicious. As Carminati et al [28] did, we consider victims which have at
least four transactions in the month before the attack. In this way, we are able to collect
8710 suitable victims, which can be chosen by the adversary. In addition, we want to
separate national customers from foreign ones, because international transactions are
harder to poison. We consider ’foreign’ users who, in the time window analyzed, have
sent money more often to foreign countries (i.e., transactions with IBAN_CC different
from ’IT’), while we define ’national’ all the others. During a single attack, the fraudster
selects 15 victims, of which 4 are foreign, trying to replicate the spending categories
and the international customers’ distribution of our dataset. Table 5.2 summarizes the
information about the 15 victims selected.
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Category National Foreign

1 3 1
2 1 1
3 1 1
4 1 1
5 1 0
6 1 0
7 1 0
8 1 0
9 1 0

Table 5.2: Victims Selection

5.5. Retrieval and Crafting

5.5.1. Retrieval

One important step during the attack is the user’s past transactions retrieval. The ad-
versary collects information about the operations history performed by the victim: then,
he or she studies them. The goal of this step is trying to replicate the spending behav-
ior of the victim, in order to deceive the FDS. Hence, the attacker can compute some
important statistics, such as the amount mean, the average count per week, and more
recent and more frequent IP addresses or CC_ASN. Finally, once he or she has explored
each feature, the adversary can create transactions that could be performed by the victim
itself. Moreover, in the White Box scenario, the attacker has all the previous transactions
belonging to the victim, while in Grey Box and Black Box has partial knowledge (i.e.,
one month’s transactions history). In the former, he or she is able to compute a perfect
victim spending profile; in the latter case, the adversary tries to approximate it through
the available information.

5.5.2. Crafting

At this point, the attacker has all the necessary instruments to craft misleading transac-
tions. In this work, we assume that the attacker can directly control almost every feature
to create raw transactions. In [27], the author considered as controllable features only the
amount, the timestamp, and the count (i.e., the number of transactions per iteration).
However, it is a very restricted set of features. We can assume that the attacker can also
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manipulate the IP address, the CC_ASN identifier, the IBAN, and the confirmation SMS.
This is a realistic assumption because the IP and the CC_ASN could be easily spoofed
and replicated. In addition, we assume, as already said, that the adversary can execute
transactions on behalf of the victim. On the other hand, the IBAN addresses, which is al-
ways different from the ones used by the victim, can be used multiple times and at will by
the attacker. Also, the confirmation SMS is controlled by the attacker, who can arbitrar-
ily choose if a specific transaction is associated with an OTP (i.e., One Time Password).
Finally, we assume that the Country Code related to the IBAN is partially manipulated
by the adversary. This could be a counter-intuitive assumption, but the reason is that
foreign transactions have a higher level of suspicion with respect to national ones. All
the fraud detection systems behave in two very different ways when facing transactions
toward Italy and other European Countries; this is why it’s really interesting to analyze
the differences and compare the results.

5.5.3. Timestamp Selection

The timestamp associated with one transaction is a core feature in the fraud detection
domain and it specifies precisely when the operation is executed. The attacker has to
properly and carefully manage this characteristic because it is crucial for the FDS final
output and it influences most of the aggregated features. In order to craft deceptive
transactions, the adversary studies the spending profile previously created and try to
mimic as best he or she can the victim’s behavior. To do that, he or she looks at the most
frequent weekdays and hours. For instance, if a victim usually performs many transactions
during the night hours on the weekend, the attacker will try to replicate this pattern.

We design a novel algorithm that selects the most frequent weekday on which the user
usually performs transactions. Then, the adversary selects that weekday as many times
as the maximum number of operations executed in one day by the victim. Finally, he or
she repeats the process with the second most frequent weekday, until the total number
of frauds specified by the strategy is crafted. Regarding the hours’ selection, the same
approach is applied. We show the pseudo-code of the algorithm in Algorithm 5.1.

5.5.4. Amount Selection

The amount is the most important feature in this context: everything revolves around
the transactions’ amount since adversaries will try to steal as much money as possible.
Wire transfers with higher amounts will attract more attention from the target models,
which tend to consider consistent transactions as outliers in users’ spending norm. On
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Algorithm 5.1 Timestamp Selection Algorithm

Input: df_user: Dataframe containing past user’s transactions, ts: Starting timestamp,
n: Number of transactions to perform
Output: Attack timestamps list
SelectTimestamp (df_user, ts, n):
timestamps← listUserT imestamps(df_user) Get past user’s timestamps
moreFrequentWeekdays← getMoreFrequentWeekdays(timestamps)

moreFrequentHours← getMoreFrequentHours(timestamps)

maxInDay ← getMaxInDay(timestamps)

maxInHour ← getMaxInHour(timestamps)

days← []
i← 0
j ← 0

while n > 0 do
while i < 7 do
weekday ← moreFrequentWeekdays[i]
while j < maxInDay do
day ← ts+ weekday
days.append(day)
j ← j + 1
n← n− 1

end while
i← i+ 1

end while
end while

daysWithHours← selectHours(days,moreFrequentHours,maxInHour)
sortedList← sorted(daysWithHours)

return sortedList

the other hand, the amount feature is targeted by the attacker, who wants to increase its
value at each iteration, in order to carry on the poisoning task. Hence, on one hand, the
adversary wants to craft frauds with a significant amount, on the other he or she has to
be cautious in order to deceive the FDS.

We present an algorithm that consists of selecting an amount that depends on statistics
concerning past user transactions and the attacker strategy. The key idea is to increase
the amount value by adding to the user mean a certain parameter which depends on
the standard deviation of the victim’s transactions history and the increment percentage
stated by the strategy. In this case, we intend a weighted mean and standard devia-
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tion: in fact, we want that the attacker is cautious and give more importance to more
recent transactions. Since we want to focus on poisoning attacks, which involve iterative
approaches, the increment amount chosen will be never less than that of the previous
iteration. Finally, we use the Gaussian function which generates a floating number ac-
cording to a Normal distribution, in order to have some unpredictability. We present the
pseudo-code of the algorithm in Algorithm 5.2

Algorithm 5.2 Amount Selection Algorithm

Input: df_user: Dataframe containing past user’s transactions, strategy: Dictionary
containing information strategy, ts: Actual Timestamp, previousMax: Max amount
selected of previous iteration
Output: Candidate Amount
SelectAmount (df_user, strategy, ts, previousMax):
minIncrease← strategy[′min_increase′]
maxIncrease← strategy[′max_increase′]
stdMax← strategy[′std_max′]
incrementPercentage← strategy[′increment_percentage′]

stastics← computeStatistics(dfUser, ts)
mean← stastics[′mean′]
std← statistics[′std′]

if mean < previousMax then
mean← previousMax

end if
increase← incrementPercentage ∗mean

if increase < minIncrease then
increase← minIncrease

else
if increase > stdMax ∗ std then
increase← stdMax ∗ std

end if
end if
if increase > maxIncrease then
increase← maxIncrease

end if
µ← mean+ increase
σ ← 0.05 ∗ µ
finalAmount← random.gauss(µ, σ)
return round(finalAmount, 2)
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5.5.5. Count Selection

The count represents the number of transactions executed during an iteration. Together
with the amount, it is another feature that the attacker may poison. However, the count
affects only a restricted set of aggregated features. Poisoning this attribute is less risky
with respect to the amount. From the attacker’s point of view, increasing the number of
victim’s transactions is more stealthy. This is why we decided to focus on a particular
attack dedicated to poisoning exclusively the count. More specifically, the direction of
this strategy aims at increasing the number of transactions more aggressively with respect
to the one which focuses on the amount. If we want to poison the amount, we always
add just one to the legit count of the victim, otherwise, we increment it according to our
strategy. The legit count of the victim is extracted by computing the average transactions’
number considering the available time window before the attack.

The algorithm we propose is pretty linear, and it depends on the strategy selected and
on the count of the previous iteration. We show the pseudo-code of the algorithm in
Algorithm 5.3.

Algorithm 5.3 Count Selection Algorithm

Input: df_user: Dataframe containing past user’s transactions, strategy: Dictionary
containing information strategy, ts: Actual Timestamp, previousCount: Count used in
the previous iteration
Output: Selected Count
SelectCount (df_user, strategy, ts, previousCount):
increaseCount← strategy[′increase_count′]
if (strategy[′objective′] ==′ poison_amount′) then
prevCount← selectF irstCount(df_user, ts) + 1

else
newCount← int(prevCount ∗ (1 + increaseCount))

end if
if newCount == prevCount then
newCount← newCount+ 1

end if
return newCount

5.5.6. Other Features Selection

The attacker can control also the IP, the CC_ASN, the SMS confirmation and the IBAN.
The IP and the CC_ASN are crafted by looking at the most recent and the most frequent
used by the victim, exploiting an approach similar to that applied for the Timestamp. In
addition, the IP and the CC_ASN can be changed at "runtime", thanks to the help of the
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Oracle. I submit a specific fraud with a certain IP and CC_ASN and, for each feature,
the Oracle told me if I should change or keep it (i.e., if the probability of classifying it
as legitimate increases). Regarding the SMS confirmation, the attacker simply replicates
the distribution occurred in the victim’s past transactions. Finally, the IBAN and the
IBAN_CC are tightly coupled. Obviously, the adversary uses specific personal IBAN.
However, we assume that he or she cannot completely control the IBAN_CC, because
for the purpose of our work, it’s important to study separately foreign and national
transactions. Hence, the IBAN_CC are selected according to the previous ones used
by the victim: if a user is classified as foreign (i.e. he or she has more international
transactions than national ones), the adversary selects European Country Codes (i.e.,
different from ’IT’) which are equal to those used previously by the victim. For each
different IBAN_CC, the attacker has a specific IBAN, that can exploit multiple times at
will. Moreover, as the IP and the CC_ASN, he or she can regenerate it at runtime, if the
Oracle suggests it.

We report the algorithm which selects the initial IP addresses, really similar to the one
that deals with CC_ASN. First, it extracts the most recent IP addresses; then, it adds
to the final list each of them according to its frequency. We provide the pseudo-code in
Algorithm 5.4.

Algorithm 5.4 IPs Selection Algorithm

Input: df_user: Dataframe containing past user’s transactions, n: Number of
transactions to perform
Output: Selected IPs
SelectIPs (df_user, n):
moreFrequentIPs← getMoreFrequentIPs(df_user)
moreRecentIPs← getMoreRecentIPs(df_user)
IP_list← []
k ← 0
i← 0
while i > len(moreRecent) do
frequence← getFrequence(moreRecentIPs[k],moreFrequentIPs)
while frequence > 0 do
IP_list.append(moreRecentIPs[k]
frequence← frequence− 1

end while
k ← k + 1

end while
IP_list← IP_list[: n]
return IP_list
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5.6. Oracle

The Oracle is the machine learning model which is built by the attacker to have a reliable
imitation of the target Fraud Detection System. It’s a key point in Adversarial Machine
Learning applied in the fraud detection domain because a poor Oracle leads to bad results
from the adversary’s point of view. The goal of the fraudster is to create a model, with
the available instruments, which is close to the bank FDS. However, this is very hard in
practice. In fact, the attacker may create the Oracle with different algorithms, trained
on a different dataset, with different features. In [27] and [28], the authors propose to
overcome this problem by using the best algorithm found, respectively XGBoost and
Random Forest. However, trying to create a replica of an unknown model with just
another model cannot really solve the problem. Instead, the scope of this work is to
propose and show an alternative method, based on ensembling learning, which allows
to create a very strong Oracle, that is reliable and closer to the target machine. After
having explored and compared different ensembling solutions, we can conclude that the
most powerful Oracle found is based on the Light Gradient Boosting algorithm, improved
by Bagging with 20 bootstraps.

5.7. Regeneration Process

Features’ regeneration is a key task during the poisoning process. The attacker, in each
scenario, builds an Oracle which validates the fraudulent transactions. Based on the
outcome of the Oracle, he or she either submits them to the target FDS or regenerates
them by changing the value of a subset of features: IP address, IBAN, CC_ASN, and
amount. As we stated in section 5.5, the attacker crafts frauds based on attributes
related to the victim’s previous transactions: hence, he or she uses IP address, IBAN
and CC_ASN already adopted by the victim or by prior attacks. With regeneration, the
fraudster substitutes these values with random ones. The adversary crafts the malicious
transactions based on the information at your disposal, then filters each of them through
the Oracle: if the Oracle rejects a transaction, the fraudster changes the features until the
Oracle accepts it. First, he or she regenerates the IP, followed by the IBAN, CC_ASN,
and finally the amount: the attacker wants to steal as much money as possible and this is
why he or she first changes the categorical features and only at the end, if needed, he or she
cares about the amount. In this work, we deeply study which features the adversary needs
to change more frequently. The results are really interesting, especially in the White Box
scenario, where the attacker has a perfect replica of the target machine. The regeneration
process strictly depends on the features on which the models are trained. Concerning the
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Grey and Black Box scenarios, we analyze which features our Oracle pushes the attacker
to modify. In other words, in this task, the attacker’s goal is to end up with an evasive
transaction with the highest possible amount.

Figure 5.2: Regeneration Flow

In Figure 5.2, we provide a visual explanation of the regeneration process: the attacker
submits the transaction to the Oracle, and if it’s rejected, he or she modifies the IP address.
Then, it submits again the regenerated transaction, and if it’s refused by the Oracle, he
or she changes the IBAN and validates the new transaction. The adversary performs
the same task for the CC_ASN. At this point, if the Oracle rejects the transaction with
regenerated IP, IBAN, and CC_ASN, the adversary needs to lower the amount, until the
operation is accepted.
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This chapter aims to provide a full explanation of the design of our system. We discuss its
static view and its dynamic run-time view. Moreover, we present all the software tools,
libraries, programming languages, and hardware settings that we exploited in order to
conduct our experiments.

6.1. System Architecture

We explain our software architecture through a system UML diagram, presented in Figure
6.1, which gives an idea of the static view concerning the implementation of our work.
Our approach is composed of seven modules, which interact with each other. The attack
module is used to start the poisoning attack. In order to do that, it exploits the Victim
block, which is in charge to select the victims. The Oracle module has the task to create
and fit the model, which is different according to the scenario. The attack utils block
is composed of auxiliary functions: for instance, it is used to aggregate and standardize
the data. Moreover, it is exploited for crafting the frauds and this is why it uses the
Feature module, which is in charge to select the features to compose each fraud. Finally,
the attack evaluation block has to evaluate the frauds, compute the metrics introduced
in Section 7.1, and save the results.
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Figure 6.1: System UML Diagram

6.2. Run-Time Architecture

The goal of this section is to provide a dynamic run-time view of our work, in order
to have a visual explanation of the attack process. In Figure 6.2, we present a UML
sequence diagram that aims to give an idea of the functions and the components involved
in a simulation.

The process starts by selecting a scenario, a target FDS, a strategy, and an update policy.
Then, we select 15 victims from a pool that contains users with at least four transactions
performed one month before the attack. After that, the adversary trains the Oracle using
the old dataset, which will be used in order to filter the fraudulent transactions. At this
point, for each victim selected, the adversary first retrieves the past user’s transactions
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and then, thanks to this information, decides an initial count and amount, which depends
on the strategy. Subsequently, the attacker starts the poisoning process, which begins
on 22/12/2014 and ends, in the best case, on 22/02/2015. Now, the adversary crafts the
frauds, by relying on the spending pattern of the victim and on the strategy, and then he or
she validates and regenerates them through the use of the Oracle previously trained. The
Oracle, after the filtering, returns the new fraudulent transactions. These transactions are
submitted to the target FDS, thanks to the truePredictions function, which is in charge to
aggregate and standardize the transactions. Then, the FDS predicts the incoming samples
and updates the banking dataset. If a fraud is detected, the poisoning process against the
current victim is stopped and the adversary starts the same attack against another user.
Otherwise, he or she increments the timestamp and creates a dictionary, which will be
used in the next iteration in order to keep track of the previous transactions successfully
injected. Once all 15 victims are defrauded, the frauds are saved and evaluated.

Figure 6.2: UML Sequence Diagram



62 6| Implementation Details

6.3. Hardware and Software Architecture

In this section, we discuss the tools, libraries, and hardware settings that we have exploited
in order to perform our experiments and achieve our results.

The main programming language used is Python 3.8.12, and we used PyCharm 2021.2.3
as IDE for the development. We store our data and our results into Comma Separated
Values (CSV) files, while we use JSON files in order to save information such as features
and hyperparameters.

We list the most important libraries exploited during our work:

• numpy 1.23.0 is a library that allows performing complex mathematical operations
on very large data structures.

• pandas 1.3.4 is a fast and powerful data analysis and manipulation tool, that is
useful to manage our large datasets composed of transactions.

• scikit-learn 1.0.1 is a software machine learning library for the Python programming
language which features various classification algorithms including support vector
machine, random forest, logistic regression, and isolation forest. Moreover, it gives
the opportunity to implement ensembling techniques such as Bagging and Boosting.

• catboost 0.24.1 and lightgbm 3.3.2 allows us to implement respectively CatBoost
and LightGB model.

• xgboost 1.6.1 is a library that is used in order to create and fit XGBoost models.

• tensorflow 2.9.0 and keras 2.9.0 are exploited to implement Artificial Neural Net-
works.

• matplotlib 3.5.0 is a software library that gives the possibility to plot data in order
to have a graphical overview of our results.

In order to conduct our experiments, we used two different machines.

In particular, the frauds generation process, the aggregation, the feature selection, the hy-
perparameter tuning, and the training tasks were executed on a laptop with the following
specifications:

• OS: Windows 10 Home

• Model: ASUS Zenbook 14 UX431F

• Processor: Intel® Core™ i7-8565U Processor 1.8 GHz
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• Graphics: Intel® UHD Graphics 620, NVIDIA® GeForce® MX150, 2 GB GDDR5

• Memory: 16 GB LPDDR3

• Storage: 256 GB

On the other hand, the simulations concerning the poisoning attacks are performed on
remote machines, which have the following specifications:

• OS: Ubuntu LTS 16.04

• Processor: Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz, 4 Cores, x86_64 archi-
tecture.

• Memory: 16 GB

• Storage: 250 GB
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In this chapter, we explain the metrics that we adopt in order to evaluate poisoning
attacks. Then, we provide the experiments that allow us to select a reliable Oracle. We
show our poisoning attacks’ results, for each scenario, for each strategy, and update policy.
Finally, we comment on the results and provide an overview of the regeneration process
task.

7.1. Metrics

To evaluate and analyze the poisoning processes against the Fraud Detection Systems,
we need to rely on specific metrics, which allow understanding the effectiveness of the
attacks from different points of view. Before introducing them, we explain the meaning
of the terms that we will use: V is the set of the victims, R is the set of regenerated
frauds, L represents the frauds considered legitimate by the Oracle, F all the fraudulent
transactions proposed by the attacker, A the frauds accepted by the target machine, D
the detected ones, Td is the difference between the attack start time and the detection
time of the transaction, Sw,v is the amount of money stolen from victim v in week w. We
present five metrics:

• Injection Rate:

IR = |L|
|F |

The injection rate (IR) is a metric that specifies how much an attacker needs to
regenerate the submitted transactions. A high injection rate means that the adver-
sary has to modify at least one feature among the IP address, IBAN, CC_ASN, and
amount. On the contrary, we have a low injection rate when the Oracle considers
most of our crafted frauds as legitimate.

• Evasion Rate:

ER = |A|
|F |

The evasion rate (ER) represents the fraction between the number of frauds eval-
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uated legitimate by the target machine and the number of transactions submitted
to the FDS. It specifies the percentage of the crafted frauds which are accepted by
the banking system. An attack with ER = 100% means that every fraud has been
successfully submitted without being detected.

• Detection Rate:

DR = |D|
|V |

The detection rate (DR) plays a key role in this work: it represents the percentage
of how many attacks against the total number of victims have been detected. An
adversary mounts poisoning attacks affecting 15 victims: if the attacks against 4
victims are detected the DR is equal to (4/15) ∗ 100 = 26%

• Average Detection Time:

ADT =
∑

D Td

|D|

The average detection time (ADT) shows after how many days, on average, an
attack is detected: an attack that hasn’t been noticed by the target machine is not
considered for the computation of the metric. An ADT equal to 40 means that, on
average, a FDS takes 40 days in order to detect a poisoning attack.

• Money Stolen:

MS =
∑
i

amount(Ai)

The Money Stolen metric(MS) indicates the amount of money that the adversary
is able to steal against a specific target system by considering all 15 victims.

• Average Weekly Increase:

AWI = 1
n_weeks

∗
n_weeks−1∑

w=0

Sw+1,v

Sw,v

The Average Weekly Increase (AWI) allows to understand how fast is the poisoning
process. It is the average increase of one iteration with respect to the previous one.
An AWI equal to 150% means that, on average, the attacker is able to steal 150%
more from the previous iteration.

7.2. Oracle Results

In Section 5.6 we explained how to improve the approach to the Oracle. We exploit
ensembling learning techniques in order to create an Oracle as reliable as possible. In this
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section, we explore different ensembling solutions, compare them, and we select the best
one.

Ensembling methods exploit multiple learning algorithms and combine their predictions
in order to classify new incoming examples [66]. The objective is trying to extract every
single advantage of the considered models. This is why, theoretically, ensembling tends
to perform best when there is a consistent difference among them [67]. In general, en-
sembling methods always outperform single models, but they require a more demanding
computational effort. There are different approaches when dealing with ensembling, each
of them has its peculiarity and is useful in a specific context. The most popular are
bagging, boosting, stacking, and majority voting.

Bagging, or bootstrap aggregating, consists of dividing the entire dataset into n boot-
strapped datasets. For every smaller dataset, you train one model, building a single
classifier for each bootstrap. Finally, you average all the n models, obtaining a more reli-
able one. This process has different benefits: first of all, from a theoretical point of view,
if we assume that datasets are independent, we get a final model which has a variance
equal to 1

n
of the total one. Hence, bagging helps to reduce the overfitting risk, by dealing

with models with high variance. Moreover, bagging is really useful when working with
unstable learners and when the data present a lot of noise.

Boosting, instead, aims at reducing the bias. Its goal is to transform a set of weak
learners in a strong one [68]. It consists of assigning weights on data examples, starting
from random uniform weights, and then you iteratively re-weight the data according to the
classification error (miss-classified cases get higher weights). By doing this you focus on
difficult observations because they will get higher importance. The final ensemble model
is then a weighted combination of all the individual models. Although it’s extremely easy
to implement, this method tends to overfit, because you focus on outliers that are really
specific to your dataset, and by assigning them more weight, you risk considering also the
noise of the data.

Stacking, or stacked generalization, is a powerful ensembling method that has important
differences with respect to both Bagging and Boosting. Although the goal is always the
same (i.e., increasing the performance by involving the predictions of multiple machine
learning models), its architecture is composed of two layers: a set of base or level-0 models,
and a meta-model, or level-1 model. The base models are trained on the training set and
their predictions are analyzed by the meta-model, which combines the output of the level-
0 models. In this way, the meta-model is trained on the predictions of the base models,
which are usually different and fitted on the same dataset. Moreover, the training set
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used for the meta-model is prepared through k-fold cross-validation for the level-0 models
[74].

Majority voting is the most simple and spread ensembling method. It consists of consid-
ering the predictions of the involved models and output the class with the most votes.
However, in classification, there are two possibilities: hard and soft voting. Hard voting
means that you predict the class with the largest sum of votes, while with soft voting
you predict the class with the largest summed probability from models [76]. However, the
majority voting approach has several drawbacks. There are situations where an individual
model can outperform a group of models which can wrongly nullify the correct prediction
since they represent the majority. Voting is beneficial only when the models perform in a
similar way.

In the fraud detection world, all the presented approaches have been studied, demonstrat-
ing to achieve optimum performance.

Zareapoor et al [69] explained how applying bagging on the best fraud detection model
found in their research, the decision tree, helps to improve the accuracy.

On the other hand, Randhawa et al [70] proposed a hybrid approach that consists of
exploiting AdaBoost, one of the most common boosting methods, in combination with a
majority voting between different models.

Finally, Soleymanzadeh et al [75] made use of an ensemble staking method to effectively
detect credit card frauds and they tested the FDS on a real banking dataset.

Since different ensembling methods have obtained excellent results in the fraud detection
domain, we decide to test every single approach on our dataset, in order to find a reliable
and powerful Oracle from the attacker’s point of view. In particular, we propose and
compare three methods:

1. Bagging and Majority Voting: we select three different models. We perform bagging
for each model by dividing our dataset into 10 or 20 equal parts. Finally, we execute
a soft majority voting between the final models.

2. Boosting and Majority Voting: we select three different models. We exploit Ad-
aBoost for each model with 10 or 20 estimators. Then, we execute a soft majority
voting between the final models.

3. Stacking: we choose three models as base models and one as a meta-model.

It’s difficult to estimate a priori which are the best models to choose for creating an
effective ensemble: hence, we need to explore at least a portion of the entire set of com-
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binations. We study the ensembling of the methods that perform best and, for computa-
tional reasons, we decide to conduct these experiments with one-quarter of our dataset,
a consistent reduction but enough to understand which solution outperforms the others.
Moreover, we choose the parameters, such as the bootstrap and estimators number, ac-
cording to our dataset length and our computational requirements. We can evaluate each
solution according to our custom score because the adversary may want to be cautious
and an Oracle with a higher amount of false positives but a small one of false negatives.
On the other hand, the attacker may want to avoid also false positives, in order to avoid
regenerating unnecessarily a fraud. This is why we evaluate our results according to
Recall, F1-Score, and FPR.

In Table 7.1, 7.2 and Table 7.3 we show our results concerning Bagging and Boosting used
in conjunction with Majority Voting, and Stacking:

Oracle Models Bootstraps Recall F1 P-acc FPR

Bagging + XGBoost
Majority LightGB 10 93.76% 59.1% 96.34% 1.09%
Voting CatBoost

Bagging + Random Forest
Majority XGBoost 10 91.37% 64.49% 95.31% 0.73%
Voting CatBoost

Bagging + Random Forest
Majority LightGB 10 91.13% 68.28% 95.23% 0.67%
Voting CatBoost

Bagging + Random Forest
Majority XGBoost 10 92.57% 55.58% 95.66% 1.24%
Voting Logistic Regression

Bagging + Random Forest
Majority LightGB 10 92.81% 59.36% 95.87% 1.06%
Voting Logistic Regression

Bagging + Random Forest
Majority CatBoost 10 92.57% 69.86% 95.96% 0.64%
Voting Logistic Regression

Bagging + XGBoost
Majority LightGB 10 94.00% 50.65% 96.22% 1.57%
Voting Logistic Regression

Bagging + XGBoost
Majority CatBoost 10 94.24% 58.27% 96.55% 1.14%
Voting Logistic Regression

Bagging + Random Forest
Majority XGBoost 10 93.29% 57.33% 96.06% 1.17%
Voting LightXGBoost

Table 7.1: Bagging and Majority Voting Oracle Performance
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Oracle Models Estimators Recall F1 P-acc FPR

AdaBoost + XGBoost
Majority LightGB 10 79.6% 85.9% 89.78% 0.04%
Voting CatBoost

AdaBoost + Random Forest
Majority XGBoost 10 82.09% 84.08% 90.99% 0.04%
Voting CatBoost

AdaBoost + Random Forest
Majority LightGB 10 80.6% 85.26% 90.26% 0.07%
Voting CatBoost

AdaBoost + Random Forest
Majority XGBoost 10 84.55% 86.13% 92.22% 0.09%
Voting Logistic Regression

AdaBoost + Random Forest
Majority LightGB 10 72.25% 83.13% 86.12% 0.01%
Voting Logistic Regression

AdaBoost + Random Forest
Majority CatBoost 10 84.82% 86.98% 92.37% 0.08%
Voting Logistic Regression

AdaBoost + XGBoost
Majority LightGB 10 1.31% 2.36% 50.61% 0.08%
Voting Logistic Regression

Table 7.2: AdaBoost and Majority Voting Oracle Performance

Oracle Base Models Meta Model Recall F1 P-acc FPR

XGBoost
Stacking LightGB Logistic Regression 97.00% 23.49% 95.83% 5.33%

CatBoost

XGBoost
Stacking Logistic Regression LightGB 96.00% 31.54% 96.25% 3.5%

CatBoost

Logitstic Regression
Stacking LightGB XGBoost 96.00% 34.63% 96.48% 3.04%

CatBoost

XGBoost
Stacking Logistic Regression CatBoost 94.00% 38.17% 95.73% 2.53%

LightGB

Table 7.3: Stacking Oracle Performance

We notice that Bagging combined with majority voting results in high proportional accu-
racy, low False Positive Rate and F1-Score, and a medium Recall. This happens because
this approach helps to keep small the number of false negatives, at the expense of false
positives. On the contrary, with Boosting we achieve a very low percentage of false alerts
and a higher F1 Score. However, we have a lower Recall and Proportional Accuracy. This
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aspect reflects what we said before: Boosting tends to overfit our data, it has a restricted
training error but a more consistent test error, while Bagging in general tries to reduce
the variance. Finally, the Stacking approach guarantees good Proportional Accuracy, and
excellent Recall, but unacceptable F1 score and False Positive Rate. In conclusion, af-
ter analyzing every single oracle, we can state that the best approach is Bagging with
majority voting between XGBoost, CatBoost and Logistic Regression.

At this point, we verify if using Majority Voting with Bagging is really beneficial. As
mentioned before, Majority Voting could be useless or even counterproductive, when a
larger group of models miss-predict a transaction correctly classified by another one.
This is why we decided to perform one step more and inspect what happens if we exploit
Bagging with just one model. Moreover, since we do not use Majority Voting which is
computationally expensive, we can increase the number of bootstraps to 20. In Table 7.4
we report the results for all the best models.

Oracle Model Bootstraps Recall F1 P-acc FPR

Bagging CatBoost 20 93.36% 74.17% 96.44% 0.49%

Bagging Active Learning 20 93.76% 59.10% 96.32% 1.09%

Bagging LightGB 20 94.89% 53.71% 96.79% 1.31%

Bagging XGBoost 20 93.87% 47.24% 96.10% 1.70%

Bagging Random Forest 20 82.14% 64.08% 90.76% 0.62%

Bagging Logistic Regression 20 92.60% 39.33% 95.14% 2.31%

Table 7.4: Bagging Oracle Performance

We can state that Bagging without Majority Voting works better. Another essential
consideration is that Bagging influences in different ways the models. In Section 4.7 we
have demonstrated that Active Learning (Isolation Forest and CatBoost) achieves the
best results. On the other hand, if we observe the performance indexes in Table, 7.4, we
notice that the models which gain more from Bagging are Light GrBoosting and CatBoost.
In particular, CatBoost has a higher F1-Score and a lower FPR, whereas LightGB has
higher proportional accuracy and a higher Recall. We have decided to use LightGB as our
Oracle because we prefer a model which is more stealthy, that maybe arises false alarms,
but minimizes the false negatives.

After all these considerations, in order to create our Oracle, we decided to adopt a Light
Gradient Boosting model, which is improved by Bagging with 20 bootstraps.
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7.3. Poisoning Process Results

In this section, we show our numerical results. Our poisoning attacks affect 15 victims,
chosen according to their spending pattern and their nationality (national or foreign).
We provide results for each scenario (White Box, Grey Box, Black Box), for each update
policy (weekly or bi-weekly), and for each strategy (poisoning both, poisoning amount,
and poisoning count). In order to decrease the bias associated with the victims, we
performed each iteration twice, and then we averaged the results.

White Box
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Metric User RF XGB LGB CB SVM ANN LR AL

Injection Rate (%) Nat 42.65 31.73 53.3 42.76 26.51 45.51 74.9 64.08
For 21.1 20.24 17.54 21.26 23.77 22.43 43.9 21.76

Evasion Rate (%) Nat 100 100 100 100 100 100 100 100
For 100 100 100 100 100 100 100 100

Detection Rate (%) Nat - - - - - - - -
For - - - - - - - -

Detection Time (days) Nat - - - - - - - -
For - - - - - - - -

Money Stolen (€) Nat 8,733,248 6,333,868 8,891,680 8,718,549 5,554,781 8,124,589 11,258,042 10,550,761
For 518,874 260,121 200,569 268,075 301,606 201,439 31,323 351,496

Weekly Increase (%) Nat 280 254 281 278 239 272 293 289
For 321 283 272 285 290 273 101 295
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y

Injection Rate (%) Nat 28.51 22.48 38.45 36.61 28.74 35.56 65.31 45.48
For 15.6 14.8 11.2 15.78 21.03 16.77 33.32 19.8

Evasion Rate (%) Nat 100 100 100 100 100 100 100 100
For 100 100 100 100 100 100 100 100

Detection Rate (%) Nat - - - - - - - -
For - - - - - - - -

Detection Time (days) Nat - - - - - - - -
For - - - - - - - -

Money Stolen (€) Nat 35,420,881 29,201,213 33,455,720 38,101,708 22,588,411 31,681,320 45,465,321 38,602,552
For 1,908,249 979,405 801,789 1,122,012 888,772 787,239 65,588 1,230,801

Weekly Increase (%) Nat 421 399 418 427 382 415 472 429
For 475 411 402 464 407 399 109 466
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Metric User RF XGB LGB CB SVM ANN LR AL

Injection Rate (%) Nat 38.59 34.89 51.61 42.76 37.36 50.76 80.06 51.77
For 26.43 25.71 23.44 21.26 31.82 25.78 40.0 26.43

Evasion Rate (%) Nat 100 100 100 100 100 100 100 100
For 100 100 100 100 100 100 100 100

Detection Rate (%) Nat - - - - - - - -
For - - - - - - - -

Detection Time (days) Nat - - - - - - - -
For - - - - - - - -

Money Stolen (€) Nat 2,073,919 1,675,701 2,191,912 1,987,482 974,924 2,089,803 2,674,183 2,143,119
For 175,240 103,973 95,677 84,006 120,677 97,764 69,246 93,702

Weekly Increase (%) Nat 223 216 225 220 209 224 232 226
For 272 258 255 249 265 257 230 253
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Injection Rate (%) Nat 42.51 29.63 55.43 47.81 33.92 53.29 78.92 54.84
For 21.08 22.59 16.67 18.25 26.51 18.72 32.51 18.71

Evasion Rate (%) Nat 100 100 100 100 100 100 100 100
For 100 100 100 100 100 100 100 100

Detection Rate (%) Nat - - - - - - - -
For - - - - - - - -

Detection Time (days) Nat - - - - - - - -
For - - - - - - - -

Money Stolen (€) Nat 9,780,892 5,701,339 7,640,858 11,547,893 1,660,824 9,541,390 13,434,301 12,450,311
For 190,541 89,853 75,515 150,777 158,571 91,512 65,223 121,565

Weekly Increase (%) Nat 277 249 272 287 217 275 295 291
For 281 247 248 269 272 250 226 262

Table 7.5: White Box Attacks
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Grey Box
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Metric User RF XGB LGB CB SVM ANN LR AL

Injection Rate (%)
Nat 6.55 7.24 9 5.52 7.71 6.01 6.78 6.8
For 3.29 3.67 4.55 1.83 2.29 5.12 5.81 3.21

Evasion Rate (%)
Nat 100 99.59 98.75 99.64 98.11 98.70 99.63 99.19
For 100 100 93.94 100 98.71 100 97.1 100

Detection Rate (%)
Nat - 27.27 63.64 27.27 72.72 63.64 27.27 54.55
For - - 50 - 50 - 50 -

Detection Time (days)
Nat - 47 43 46.47 38.5 52 45 51.5
For - - 15.5 - 16 - 33.5 -

Money Stolen (€)
Nat 2,178,902 1,935,610 1,219,945 1,981,969 968,439 1,311,237 2,286,037 1,952,087
For 41,572 30,218 23,290 38,560 35,915 27,450 29,779 33,756

Weekly Increase (%)
Nat 161 152 152 153 142 155 156 149
For 112 116 92 121 107 95 90 140
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Injection Rate (%)
Nat 1.45 1.37 1.57 2.15 1.79 1.54 1.22 1.23
For 2.29 2.41 2.12 2.95 2.12 2.01 2.83 2.94

Evasion Rate (%)
Nat 99.47 99.72 98.54 98.89 99.35 99.62 98.52 99.71
For 99.28 99.57 98.11 99.54 98.54 99.83 98.58 99.55

Detection Rate (%)
Nat 18.18 63.64 72.73 36.36 100 72.73 36.36 72.73
For 25 50 75 25 75 50 100 25

Detection Time (days)
Nat 52 51 45.52 50 32.63 48.5 39.52 47.12
For 18 57.5 23.48 47.5 29.95 52 12.58 49

Money Stolen (€)
Nat 5,933,201 4,509,971 3,235,211 6,762,501 1,279,401 3,510,475 8,784,333 4,051,305
For 622,391 606,454 470,349 650,671 201,711 451,532 59,421 180,184

Weekly Increase (%)
Nat 186 182 175 189 147 177 195 179
For 189 186 180 191 159 178 102 161
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Metric User RF XGB LGB CB SVM ANN LR AL

Injection Rate (%)
Nat 16.22 17.53 17.81 17.36 17.01 17.12 17.27 16.45
For 10.91 11.43 8.51 9.29 9.92 8.02 13.95 8.57

Evasion Rate (%)
Nat 99.85 99.82 98.99 99.82 98.75 99.95 100 100
For 100 100 96.88 100 99.75 100 95.96 100

Detection Rate (%)
Nat 9.09 9.09 45.45 9.09 54.54 9.09 - -
For - - 25 - 25 - 50 -

Detection Time (days)
Nat 60 16 50 58 46 59 - -
For - - 56 - 50 - 30.5 -

Money Stolen (€)
Nat 1,525,357 1,016,85 972,268 1,316,138 996,755 1,002,137 1,420,298 1,386,852
For 49,571 45,036 40,676 44,993 47,392 46,543 31,491 47,843

Weekly Increase (%)
Nat 141 138 136 141 138 139 136 136
For 149 115 98 111 114 115 133 113

G
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ed
y

Injection Rate (%)
Nat 9.54 9.86 9.72 10.42 9.32 9.33 9.02 9.14
For 10 9.5 10.31 10 10.22 10.42 9.95 10.5

Evasion Rate (%)
Nat 99.26 99.46 99.31 99.6 98.68 99.54 100 100
For 100 100 99.45 100 100 100 99.33 100

Detection Rate (%)
Nat 54.55 36.36 54.55 27.27 63.64 27.27 - -
For - - 25 - - - 75 -

Detection Time (days)
Nat 53.83 42.25 47.65 39.67 38.5 42.58 - -
For - - 50 - - - 22 -

Money Stolen (€)
Nat 1,642,965 1,722,892 1,121,364 1,695,882 1,012,141 1,598,774 2,015,773 1,913,449
For 37,778 36,547 35,554 36,870 51,290 35,421 29,452 40,396

Weekly Increase (%)
Nat 148 135 141 145 144 132 142 133
For 111 132 107 144 152 110 115 153

Table 7.6: Grey Box Attacks: Poisoning Both



74 7| Experimental Evaulation
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Metric User RF XGB LGB CB SVM ANN LR AL

Injection Rate (%)
Nat 22.64 24.19 23.68 22.03 24.54 22.22 23.46 22.31
For 10.23 15.12 9.52 10.23 14.77 11.73 13.85 9.2

Evasion Rate (%)
Nat 99.75 98.72 97.88 99.75 97.25 98.81 100 99.15
For 100 98.53 100 100 100 98.51 97.87 100

Detection Rate (%)
Nat 9.09 45.45 72.73 9.09 63.64 27.27 - 27.27
For - - 50 - - 25 25 -

Detection Time (days)
Nat 57 43.4 57.5 59 33.71 42.5 - 39
For - - 33.5 - - 7 10 -

Money Stolen (€)
Nat 1,923,720 1,584,052 1,788,769 1,938,419 960,885 1,114,234 2,014,528 1,612,753
For 43,628 43,745 39,175 48,188 59,955 42,178 35,903 32,113

Weekly Increase (%)
Nat 147 140 147 147 117 140 148 136
For 114 142 120 115 123 112 108 107

G
re

ed
y

A
m

ou
nt

Injection Rate (%)
Nat 22.41 23.39 22.45 21.55 24.9 23.25 21.47 23.52
For 10.23 9.25 9.72 9.43 9.38 9.56 9.23 9.81

Evasion Rate (%)
Nat 100 98.32 96.28 98.52 96.6 97.79 100 98.5
For 100 98.75 98.43 100 96.77 98.82 97.12 100

Detection Rate (%)
Nat - 54.54 90.9 18.18 72.73 36.36 - 36.36
For - 25 75 - 25 50 75 -

Detection Time (days)
Nat - 45.6 42 52.5 31.38 40 - 43.5
For - - 21.5 - 10 22.5 8.5 -

Money Stolen (€)
Nat 2,300,756 1,890,820 1,472,882 2,170,199 880,418 1,230,331 2,983,612 1,992,422
For 46,009 39,442 31,527 59,671 43,726 45,521 29,492 41,348

Weekly Increase (%)
Nat 152 149 141 150 104 111 153 141
For 115 135 113 127 121 125 102 118
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Metric User RF XGB LGB CB SVM ANN LR AL

Injection Rate (%)
Nat 28.76 28.77 28.92 27.41 27.49 27.78 27.66 27.91
For 27.91 20.73 18 26.14 25 25.51 21.95 15.85

Evasion Rate (%)
Nat 100 100 99.39 100 99.7 100 100 99.74
For 100 100 96.67 100 95 100 100 100

Detection Rate (%)
Nat - - 18.18 - 9.09 - - 9.09
For - - 25 - 50 - - -

Detection Time (days)
Nat - - 45.45 - 3 - - 60
For - - 44 - 30 - - -

Money Stolen (€)
Nat 1,119,353 1,025,160 864,941 1,174,870 910,211 1,023,341 1,188,937 1,147,223
For 45,535 53,909 41,117 40,368 40,181 49,512 52,872 49,021

Weekly Increase (%)
Nat 129 128 117 130 116 120 131 130
For 117 118 112 116 105 116 113 115

G
re

ed
y

A
m

ou
nt

Injection Rate (%)
Nat 28.12 27.44 28.11 29.12 26.19 29.15 27.41 26.54
For 27.27 22.89 23.91 25.45 20.73 24.72 24.39 23.21

Evasion Rate (%)
Nat 100 99.58 98.37 100 99.4 99.37 100 99.31
For 100 100 96.78 100 100 100 100 100

Detection Rate (%)
Nat - 9.09 27.27 - 18.18 9.09 - 27.27
For - - 25 - - - - -

Detection Time (days)
Nat - 51 49 - 31 45 - 35.5
For - - 56 - - - - -

Money Stolen (€)
Nat 1,266,827 1,226,634 1,013,129 1,543,260 1,100,688 1,264,692 1,346,367 1,401,320
For 57,949 60,041 46,595 47,887 54,070 54,771 58,924 55,541

Weekly Increase (%)
Nat 132 131 119 133 115 125 134 136
For 122 125 114 119 114 131 119 121

Table 7.7: Grey Box attacks: Poisoning Amount
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Grey Box
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Metric User RF XGB LGB CB SVM ANN LR AL

Injection Rate (%)
Nat 6.12 5.83 5.55 5.85 7.72 5.98 6.81 6.19
For 10.76 11.47 9.83 7.34 15.62 10.66 11.9 8.26

Evasion Rate (%)
Nat 100 99.77 99.14 99.53 98.68 99.69 99.63 99.89
For 100 100 98.26 100 88 97.5 96.23 100

Detection Rate (%)
Nat - 18.18 54.54 36.36 72.73 36.36 27.27 9.09
For - - 50 - 75 25 50 -

Detection Time (days)
Nat - 25.5 45.25 47.75 42.25 52.22 43.33 49
For - - 38 - 18.67 21.5 42.5 -

Money Stolen (€)
Nat 1,250,611 1,172,173 1,150,799 1,231,771 851,342 921,433 1,170,488 1,186,580
For 20,322 17,114 11,506 14,571 9,556 10,782 14,016 13,464

Weekly Increase (%)
Nat 165 160 149 155 136 138 172 171
For 115 109 85 96 73 82 89 112
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Injection Rate (%)
Nat 4.21 4.75 5.41 3.92 4.14 4.56 3.99 5.25
For 9.72 8.59 9.32 9.44 9.73 8.78 8.89 9.11

Evasion Rate (%)
Nat 99.13 99.11 98.72 99.23 96.55 98.76 99.65 99.45
For 99.15 98.98 98.72 99.13 95.18 98.52 98.29 99.22

Detection Rate (%)
Nat 18.18 54.54 72.73 54.54 54.54 72.73 54.54 45.45
For 25 25 75 25 100 75 100 25

Detection Time (days)
Nat 42 36.6 39.5 52.25 35.45 56 48.42 51.5
For 35 41 29.5 45 13 25.75 19.28 32

Money Stolen (€)
Nat 1,092,782 1,000,252 997,343 1,356,420 672,311 1,058,879 1,207,546 1,181,620
For 16,721 11,221 7,213 12,998 3,222 6,402 4,103 8,158

Weekly Increase (%)
Nat 150 147 132 161 115 141 165 168
For 111 95 89 103 75 86 82 92
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Metric User RF XGB LGB CB SVM ANN LR AL

Injection Rate (%)
Nat 15.94 16.84 16.37 16.28 15.61 16.34 16.67 16.28
For 18.51 17.86 21.45 19.29 30.56 20.15 20.18 20

Evasion Rate (%)
Nat 100 99.83 99.45 100 99.42 100 99.83 100
For 100 100 99.32 100 87.88 100 98.75 100

Detection Rate (%)
Nat - 9.09 9-09 - 27.27 - 9.09 -
For - - 25 - 100 - 25 -

Detection Time (days)
Nat - 48 43 - 21.33 - 60 -
For - - 12 - 26.5 - 30 -

Money Stolen (€)
Nat 728,472 752,212 709,332 713,060 714,761 752,890 765,419 755,390
For 25,498 24,372 21,107 26,482 14,122 16,433 22,069 22,698

Weekly Increase (%)
Nat 144 131 129 143 96 129 132 152
For 136 129 123 137 89 101 122 141
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Injection Rate (%)
Nat 8.07 7.91 7.82 8.92 7.98 8.52 8.22 8.13
For 18.73 21.5 19.89 19.1 19.26 18.88 18.67 19.13

Evasion Rate (%)
Nat 100 99.9 99.38 100 98.31 98.88 99.93 99.87
For 100 100 99.63 100 100 100 100 100

Detection Rate (%)
Nat - 9.09 36.36 90.9 27.27 18.18 9.09
For - - 50 - 100 50 100 -

Detection Time (days)
Nat - 43 47.5 - 31.5 50.75 57.5 41
For - - 28 - 14.25 22.5 27.5 -

Money Stolen (€)
Nat 1,102,997 1,096,883 687,302 998,730 482,773 885,421 995,708 1,045,779
For 31,792 29,373 16,551 32,452 6,520 13,702 7,158 26,891

Weekly Increase (%)
Nat 163 152 113 156 102 133 150 151
For 119 117 107 119 81 95 84 115

Table 7.8: Grey Box Attacks: Poisoning Count
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Black Box
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Metric User RF XGB LGB CB SVM ANN LR AL

Injection Rate (%)
Nat 13.1 15.54 14.16 13.55 13.48 14.33 14.01 14.32
For 7.12 6.9 5.88 9.59 0 7.21 0 5.91

Evasion Rate (%)
Nat 100 99.12 98.32 99 98.16 98.42 99.27 98.64
For 100 90 88.24 100 89.5 100 0 98.25

Detection Rate (%)
Nat - 27.27 45.45 36.36 36.36 36.36 27.28 54.55
For - 50 50 - 100 50 100 25

Detection Time (days)
Nat - 30.67 42.4 49 13.75 52.24 35.33 57.17
For - 10 16.5 - 0 25 0 31

Money Stolen (€)
Nat 1,658,038 1,022,444 849,368 1,428,393 491,297 1,005,478 1,592,290 1,526,330
For 51,326 29,419 26,435 56,737 0 27.720 0 21,505

Weekly Increase (%)
Nat 163 156 141 162 89 145 172 163
For 156 143 132 158 0 133 0 129

G
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Injection Rate (%)
Nat 13.75 12.45 12.54 19.02 15.71 14.44 11.84 18.37
For 5.7 7.14 8.51 6.54 0 6.76 0 6.33

Evasion Rate (%)
Nat 99.27 98.39 98.17 99.3 97.6 98.42 98.92 99.62
For 100 80 91.3 99.03 0 92.57 0 100

Detection Rate (%)
Nat 36.36 63.64 54.55 27.27 72.72 54.55 45.45 18.18
For - 75 50 25 100 50 100 -

Detection Time (days)
Nat 49.25 40.14 31.83 35 18.75 34.48 43.8 49.5
For - 12 16.5 59 0 21 0 -

Money Stolen (€)
Nat 3,260,425 1,595,950 914,065 3,180,277 661,509 1,111,708 1,978,910 4,054,445
For 97,670 21,575 30,332 79,798 0 30,998 0 101.055

Weekly Increase (%)
Nat 191 150 145 190 125 147 182 199
For 208 137 138 266 0 139 0 212
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Metric User RF XGB LGB CB SVM ANN LR AL

Injection Rate (%)
Nat 13.63 15 19.05 14.35 14.27 16.39 13.29 13.38
For 11.86 8.93 11.11 8.64 0 9.51 0.1 5.77

Evasion Rate (%)
Nat 99.32 98.66 96.93 99.05 98.21 98.58 99.54 99.1
For 100 90 92 96.67 0 92.57 20 98.55

Detection Rate (%)
Nat 27.27 45.45 81.82 36.36 54.55 36.36 18.18 36.36
For - 50 50 50 100 50 100 25

Detection Time (days)
Nat 51 33.8 37.22 41.5 25.5 54.65 23.5 52.5
For - 6.5 16 26 0 31 3.5 44

Money Stolen (€)
Nat 1,530,935 1,212,172 733,666 1,497,813 505,888 1,170,102 1,658,829 1,530,502
For 50,763 54,100 50,150 31,821 0 30,402 201 23,472

Weekly Increase (%)
Nat 152 151 150 167 95 147 141 159
For 155 202 310 257 0 135 93 231

G
re

ed
y

Injection Rate (%)
Nat 18.22 10.54 13.68 15.04 10.97 11.15 10.31 13.16
For 3.8 7.35 9.52 4.43 0 5.41 6 5.38

Evasion Rate (%)
Nat 99.21 97.53 96.44 98 96.82 97.62 99.06 98.99
For 100 90.48 87.5 100 0 87.8 20 98.81

Detection Rate (%)
Nat 45.45 90.91 90.91 90.91 90.91 90.91 45.45 54.55
For - 50 75 - 100 75 100 25

Detection Time (days)
Nat 49.6 36.4 32 45.1 31.3 38.5 38 47.33
For - 10 25.33 - - 27.5 3.5 42

Money Stolen (€)
Nat 4,810,805 1,321,238 552,270 2,616,346 828,549 1,451,413 2,138,938 3,293,494
For 43,663 70,406 50,955 68,894 0 52,671 1,115 60,797

Weekly Increase (%)
Nat 189 146 164 180 121 148 154 182
For 248 222 182 350 0 183 26 209

Table 7.9: Black Box Attacks: Poisoning Both
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Black Box
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Metric User RF XGB LGB CB SVM ANN LR AL

Injection Rate (%)
Nat 22.16 24.44 24.89 24.91 23,95 24.56 22.21 24.17
For 10.26 15.62 14.29 11.54 12.44 13.71 12.19 11.62

Evasion Rate (%)
Nat 99.37 97.39 96.1 98.21 97.17 98.12 98.72 98.81
For 100 85 91.3 100 100 98.67 98.54 98.71

Detection Rate (%)
Nat 18.18 63.64 81.82 45.45 72.73 36.36 18.18 36.36
For - 75 50 - - 25 25 25

Detection Time (days)
Nat 60 46.29 40.44 60 30.31 38.82 21 37.5
For - 16.67 23.5 - - 51.5 15 50

Money Stolen (€)
Nat 1,544,023 1,061,736 769,669 1,566,890 781,309 997,552 1,762,124 1,409,019
For 65,805 53,278 42,939 82,181 62,507 48,920 32,331 40,915

Weekly Increase (%)
Nat 202 170 161 210 142 168 209 200
For 285 186 142 289 283 178 139 151
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Injection Rate (%)
Nat 21.88 23.75 27.35 22.65 23.43 25.62 23.57 25.81
For 11.54 19.44 7.69 13.85 10.92 11.44 0 13.33

Evasion Rate (%)
Nat 98.12 97.87 97.72 98.36 100 100 98.18 99.34
For 100 88 95.83 98.18 98.12 98.52 0 96.43

Detection Rate (%)
Nat 54.55 45.45 45.45 45.45 100 36.36 45.45 18.18
For - 75 25 25 50 25 100 25

Detection Time (days)
Nat 57.33 36.4 37 48 41.55 35.5 39.2 45.5
For - 21.33 17 16 17.5 45.5 0 3

Money Stolen (€)
Nat 1,991,366 950,310 854,180 1,919,513 701,434 1,102,598 1,484,658 1,914,712
For 81,520 53,529 72,848 41,822 48,872 52,533 0 86,116

Weekly Increase (%)
Nat 179 162 173 221 122 169 217 231
For 290 191 160 180 195 171 0 137
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Metric User RF XGB LGB CB SVM ANN LR AL

Injection Rate (%)
Nat 22.5 23.83 26.2 22.76 21.74 25.74 23.36 21.91
For 11.54 13.89 16.67 11.76 0 12.93 0 13.79

Evasion Rate (%)
Nat 97.76 97.6 96.04 98.68 96.41 97.12 98.65 98.59
For 100 88.89 93.75 97.83 0 98.17 0 97.5

Detection Rate (%)
Nat 63.64 54.55 81.82 36.36 72.73 54.55 36.36 36.36
For - 50 50 25 100 25 100 25

Detection Time (days)
Nat 56.71 36 38.89 38.25 33.62 40.5 37.5 34.75
For - 3 24 38 0 58 0 24

Money Stolen (€)
Nat 1,586,556 1,007,285 739,457 1,767,987 880,111 1,110,561 1,511,972 1,568,341
For 67,588 77,720 80,946 114,075 0 69,744 0 92,788

Weekly Increase (%)
Nat 166 138 137 147 113 144 149 142
For 201 159 212 239 0 195 0 221
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Injection Rate (%)
Nat 24.52 26.34 25.42 23.4 23.26 22.45 25.85 22.61
For 14.1 16.67 17.5 18.37 0 17.49 0 15.77

Evasion Rate (%)
Nat 97.4 96.86 96.14 98.02 96.63 100 98.62 98.38
For 100 83.33 85.71 95 0 100 0 97.56

Detection Rate (%)
Nat 72.73 63.64 81.82 54.55 63.64 63.64 36.36 45.45
For - 75 100 50 100 50 100 25

Detection Time (days)
Nat 55.62 32.29 41.42 48 29 33.57 36.5 49.8
For - 14.33 33.75 16.5 0 27.5 0 3

Money Stolen (€)
Nat 1,776,255 788,202 832,362 1,839,186 829,795 966,204 1,785,961 1,948,416
For 101,213 54,426 84,465 40,134 0 74,721 0 82,625

Weekly Increase (%)
Nat 173 144 148 163 122 134 154 173
For 272 157 180 184 0 174 0 258

Table 7.10: Black Box Attacks: Poisoning Amount
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Black Box
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Metric User RF XGB LGB CB SVM ANN LR AL

Injection Rate (%)
Nat 14.53 15.54 17.05 16.27 16.12 17.31 14.92 15.84
For 16.1 20 13.79 18.42 21.15 18.62 21.12 17.29

Evasion Rate (%)
Nat 100 99.5 98.73 99.29 98.12 98.85 99.94 99.32
For 100 100 86.21 99.12 86.11 97.65 82 99.16

Detection Rate (%)
Nat - 18.18 45.45 27.27 72.73 45.45 36.36 27.27
For - - 100 25 100 50 100 25

Detection Time (days)
Nat - 31.5 41.4 43.33 35.78 37.15 56.42 51.25
For - - 22.75 57 11.75 14 6.75 56.55

Money Stolen (€)
Nat 967,459 778,842 751,995 881,094 501,391 772,422 1,011,842 927,458
For 12,673 6,660 9,053 12,860 2,511 8,972 1,512 12,681

Weekly Increase (%)
Nat 111 120 112 131 99 116 145 138
For 87 70 90 94 39 91 21 96
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Injection Rate (%)
Nat 9.97 9.47 11.99 10.96 9.56 10.13 11.94 10.86
For 15.51 18.75 12.5 8.96 0 13.59 0 8.05

Evasion Rate (%)
Nat 99.68 98.74 97.95 98.9 97.11 98.66 98.83 99.39
For 99.31 81.25 83.33 97.01 0 82.29 0 96.55

Detection Rate (%)
Nat 9.09 54.55 63.64 45.45 100 54.55 45.45 27.27
For 25 75 100 50 100 75 100 75

Detection Time (days)
Nat 57 46.67 31.14 49.8 35.51 41.19 37 54.67
For 42 12 19.75 43.5 0 14.75 - 42.33

Money Stolen (€)
Nat 1,211,532 1,048,271 602,258 1,024,305 412,814 815,992 1,081,316 1,139,537
For 14,678 6,939 6,258 10,989 0 6,351 0 11,219

Weekly Increase (%)
Nat 125 122 101 140 98 113 133 130
For 101 75 82 90 0 78 0 99
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Metric User RF XGB LGB CB SVM ANN LR AL

Injection Rate (%)
Nat 14.29 15.75 17.91 16.3 16.97 16.83 15.19 16.19
For 16.1 18.75 16.67 16.1 0 17.92 0 17.33

Evasion Rate (%)
Nat 99.57 98.16 98.21 99.03 97.83 98.82 99.3 98.92
For 100 75.0 86.67 100 0 97.44 0 98.91

Detection Rate (%)
Nat 18.18 63.64 54.55 36.36 54.55 45.45 27.27 45.45
For - 100 100 - 100 50 100 50

Detection Time (days)
Nat 57 40.14 33.5 38.75 16.17 33.8 28.67 44.35
For - 12.75 24.5 - 0 13.5 0 54.5

Money Stolen (€)
Nat 967,569 793,717 495,650 841,898 469,120 712,847 963,389 709,443
For 12,402 7,845 8,986 12,097 0 8,873 0 10,782

Weekly Increase (%)
Nat 132 124 107 141 104 112 129 110
For 112 67 109 112 0 90 0 111
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Injection Rate (%)
Nat 12.45 10.48 13.01 9.62 11.54 11.03 11.23 10.14
For 16.34 18.75 17.24 6.54 0 15.24 60 10.26

Evasion Rate (%)
Nat 98.76 98.19 97.29 98 97.03 98.12 98.27 98.44
For 100 75.0 86.21 97.2 0 95.41 20 96.15

Detection Rate (%)
Nat 54.54 81.82 90.91 90.91 90.91 81.82 72.73 72.73
For 50 100 100 75 100 100 100 75

Detection Time (days)
Nat 41.66 42.56 38.7 44.2 29.1 35.44 37.88 45.62
For 37.54 12.75 22.75 47.33 - 25.25 3.5 38.33

Money Stolen (€)
Nat 1,271,530 1,130,181 612,214 1,260,724 482,488 750,666 1,077,267 1,298,233
For 15,978 7,322 8,673 11,818 0 8,502 986 10,478

Weekly Increase (%)
Nat 193 193 198 191 106 188 139 167
For 189 100 149 182 0 151 24 183

Table 7.11: Black Box Attacks: Poisoning Count
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7.3.1. White Box

In this scenario, the adversary has complete knowledge of the target system. Even if
these kinds of attacks are really rare, they are helpful in understanding and analyzing
the best case possible. White Box results will be the reference point for Grey and Black
scenarios. The goal of the attacker is, despite his or her partial or no knowledge, to
get as close as possible to the best possible situation. Since the adversary has complete
knowledge, we list only the results related to the strategy in which he or she poisons
both amount and count. In general, weekly attacks perform better than bi-weekly ones,
because the poisoning process is faster. In the conservative strategy with the weekly
update, the attacker can steal up to 10,550,761€ against an Active Learning detector.
As we stated in Section 4.7, Active Learning is the most powerful model among those
proposed. It means that there are no direct consequences between the accuracy of the
FDSs and their reaction to poisoning attacks. XGBoost is the detector that counters best
the national frauds, while Light Gradient Boosting works well against foreign malicious
transactions. However, you can notice that for the bi-weekly update we get different
results. In fact, in the conservative strategy, the best model against national fraud is still
XGBoost, but Logistic Regression, which is the worst against them, outperforms other
models regarding foreign ones. The amount of money stolen is higher in weekly update
cases. Since the adversary is able to build a perfect replica of the target system, the evasion
rate is always 100% while the detection rate is 0% for all models. The injection rates
are always between 31.73%, achieved by XGBoost, and 80%, from Logistic Regression. It
means that XGBoost pushes the attacker to regenerate the proposed frauds while Logistic
Regression is weaker and doesn’t detect them.

In Figure 7.1 and Figure 7.2, we provide a graphical overview of the trend related to the
average amount of malicious transactions during the attack of a CatBoost system.
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Figure 7.1: CatBoost, Weekly Policy, Con-
servative Strategy

Figure 7.2: CatBoost, Bi-weekly Policy,
Conservative Strategy

Figure 7.1 and Figure 7.2 show the poisoning process through the average amount per
transaction. You may notice that the process is faster for a weekly update policy while
it is more irregular when adopting a bi-weekly one. At the end of a weekly poisoning
attack, the adversary can steal on average 10,000€ per transaction, just 5,000€ in a bi-
weekly scenario. In addition, it’s evident how national and foreign attacks behave very
differently. It’s easier to incrementally raise the average amount of national transactions,
whereas it’s more problematic for foreign ones. As we expected, for both national and
foreign transactions, in the biweekly policy the attacker is able to steal on average 50%
of what he or she can steal adopting a weekly policy.

7.3.2. Grey Box

Grey Box attacks are mounted by an adversary which has partial knowledge of the target
system. For what concerns the standard (i.e., which poisons both count and amount)
strategy against a machine with a weekly update, we obtain the following results: the
detection rates are between 27% and 63% for national users and between 0% and 50%
for foreign ones, the detection time is reasonably high (from 43 to 51.5 days) and the
amount of stolen money is almost 0.25 with respect to the White Box scenario. The very
important result is about the bi-weekly policy: in the conservative version of the strategy,
the results of national users are very similar to those related to the White Box scenario.
For instance, against the CatBoost target system, an adversary, with the conservative
strategy, is able to steal 1,361,132€ over 2,071,482€ which are stolen in the White Box
scenario. This means that our Oracle is extremely reliable. The greedy approach, if we
look at the national frauds, allows the adversary to steal more money at the expense of a
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higher detection rate. This result is even more evident against weekly updated detectors.
On the other hand, an aggressive strategy is beneficial against foreign users in the weekly
update, while it’s counterproductive with bi-weekly updated systems. This is why foreign
users are more difficult to attack and they are affected by a faster poisoning process.
Again, we can state that Logistic Regression is the less powerful with national frauds, but
the best against foreign ones. In addition, CatBoost and Active Learning are the detectors
that perform worst with foreign malicious transactions. Another important aspect is that
our Oracle is more restrictive about foreign transactions and, at least in conservative
strategies, allows the attacker to be undetected in some cases, such as XGBoost and
CatBoost. In general, the injection rates are really low (between 1.83% and 17.61%),
because the Oracle pushes the adversary to regenerate the features very frequently.

Moreover, we analyze strategies that allow us to study the poisoning process related to the
count and to the amount independently. If we focus on the conservative strategy which
poisons only the amount feature, we notice that the attacker is able to steal a similar
amount of money, slightly lower with respect to a standard strategy, but he or she is
capable to decrease the attack detection rate in a consistent way. For example, against a
Logistic Regression detector with a weekly policy, the fraudster steals 2,315,816€ with a
conservative standard strategy while 2,050,431€ with a conservative amount one; however,
in the first case 5 over the 15 attacks are detected, whereas in the second one only one
is noticed. Poisoning just one feature makes the attacks more evasive and effective. In
addition, we found out that for foreign transactions, this strategy is much more powerful,
because you are able to increase the amount stolen and decrease the detection rate. This
is true for every target system, for each strategy, and for each update policy. In the
bi-weekly update, this is more evident: an attacker is able to steal 53,909€ from foreign
users against XGBoost, which is more than the standard conservative strategy against
XGBoost trained according to a weekly policy (30,218€). In this sense, bi-weekly attacks
outperform weekly ones.

We also provide a strategy that consists of poisoning only the count, that is the number
of transactions executed by a customer in one iteration. In this context, the adversary
poisons only this aspect: he or she increments the number of banking operations performed
by the victim during one or two weeks. The average amount of these transactions is
replicated according to the victim’s spending pattern. By looking at the results, we notice
that this strategy doesn’t bring any advantages to the fraudster. In fact, the amount of
money stolen is always less with respect to the two previous strategies, especially for the
weekly update and foreign transactions. However, this type of attack allows the attacker
to decrease the detection rate in some cases: for example, considering a conservative
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strategy against XGBoost trained according to a weekly policy, the adversary decreases
the detection rate to 18.18%, which is less than 45.45% registered with the conservative
amount strategy and 27.27%, associated to the standard strategy. On the contrary, that’s
not true for CatBoost, which presents an attack detection rate that is higher, 36.36%. This
happens because the detectors are trained on different features, according to the feature
selection task performed in Section 4.4. Figure 7.3, Figure 7.4 and Figure 7.5 present
some plots about the mean amount stolen at each iteration, referring to the XGBoost
detector trained according a bi-weekly policy.

Figure 7.3: XGBoost, Bi-weekly Policy,
Greedy Strategy

Figure 7.4: XGBoost, Bi-weekly Policy,
Greedy Strategy Amount

Figure 7.5: XGBoost, Bi-weekly Policy, Greedy Strategy Count

The adversary, exploiting a standard strategy, is able to steal, in a single iteration, more
than 50,000€ from national users. However, a strategy that focuses on the amount, is
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able to increase the stolen mean in a fast way. As we stated before, the count strategy
is not helpful from this point of view. The presented plots show the trend of the mean
before the attack and after the attack, which starts at week 10.

7.3.3. Black Box

In the Black Box scenario, the adversary doesn’t know anything about the target systems.
He or she trains an Oracle with a surrogate dataset in order to validate the frauds. Since
he or she doesn’t know the feature set, a subset of features is used. Moreover, differently
from Grey Box, the attacker doesn’t know the update policy of the banking detector.
This is why the adversary chooses a weekly policy to update the Oracle, in order to make
the poisoning process faster and steal as much money as possible.

Concerning the standard strategy and detectors with a weekly update policy, we can state
that, in general, the results are worse than those of the Grey Box. This is why the attacker
has a weaker Oracle and he or she adopts a weekly policy that makes him or her more
suspicious. In fact, the attack detection rates are higher. However, the update policy
used by the adversary is beneficial for foreign frauds crafted against some detectors: for
example, considering a CatBoost detector, a standard conservative strategy allows to steal
56,737€ from foreign users in the Black Box scenario, while only 38,560€ in the Grey Box
one. Notice that this doesn’t apply to standard greedy strategies, which are much more
effective in the Grey Box. We can observe that Support Vector Machine and Logistic
Regression are completely resistant to foreign frauds. The attacker is not able to poison
these two detectors, which don’t accept even one foreign fraud. This result confirms
what we stated in Section 7.3.2: SVM and LR are the most powerful models against
not national frauds. Moreover, Support Vector Machine is the model from which the
adversary steals the minimum amount of money. This happens because SVM presents
a lot of false positives and this aspect makes it the most difficult detector to poison.
We obtain better results with models trained with a bi-weekly update policy since the
learning process is slower and so detectors are weaker. The adversary is able to steal
more money with respect to the Grey Box scenario, with both conservative and greedy
strategies. This is not true for Light Gradient Boosting, from which an attacker steals less
money, 733,666€ against 972,268€ with a conservative approach. However, the attack
detection rates are higher, since the adversary adopts a weekly update policy: Random
Forest model detects 45.45% of national frauds crafted according to a greedy strategy,
whereas 36.36% when trained with a weekly update policy. Regarding foreign fraudulent
transactions, detectors behave very differently. Some models perform better if trained
with a weekly update policy, such as Logistic Regression and XGBoost, others work well
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with a bi-weekly update policy, such as CatBoost.

The poisoning amount strategy is very interesting in this scenario. Regarding national
frauds, we don’t have consistent advantages from this approach. The amount of stolen
money is lower and the attack detection rate is higher with respect to the standard
strategy. However, we obtain a significant result for foreign frauds. As we stated in the
previous Section 7.3.2, focusing only on poisoning the amount is very beneficial against
foreign victims. In this scenario, since the adversary makes use of a weekly update policy,
this result is even more pronounced. For instance, in the Black Box scenario, considering
a CatBoost detector, an attacker using a conservative amount strategy steals 114,075€
from foreign users, while in White Box just 84,006€. White Box attacks represent the
best case possible, but with this approach, the attacker is able to overcome them. Notice
that it’s not true with a greedy strategy, through which the fraudster steals only 40,134%.
In some cases, the attacker has benefits when adopting a more aggressive approach, such
as when we attack Light Gradient Boosting or Random Forest; on the contrary, it’s better
to use a more cautious strategy when facing CatBoost or XGBoost detectors. In Figure
7.6, Figure 7.7 and Figure 7.8 we provide a visual overview of the attack detection rate
trend in three different scenarios where the banking algorithm is Light Gradient Boosting.

Figure 7.6: LightGB, Weekly Policy, Con-
servative Strategy

Figure 7.7: LightGB, Weekly Policy, Con-
servative Strategy Amount
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Figure 7.8: LightGB, Weekly Policy, Conservative Strategy Count

There are no cases in which all the attacks are detected. The attack detection rate, in
these three combination, is never 100%. Regarding national attacks, they are detected at
most 40% of the time. Instead, looking at the standard strategy and the amount strategy,
foreign ones are detected on average 25% of the time while we get 50% if the adversary
makes use of a count strategy. An important consideration is that foreign frauds are
usually detected in the first 30 days, and then remain unnoticed.

7.4. Regeneration Process Results

In this section, we study and comment on the results of the regeneration process, by
analyzing which are the features that the Oracle suggests to change. In the White Box
scenario, the adversary has a perfect replica of the target FDS, while in the Grey and
Black scenarios, he or she relies on an Oracle which is based on Bagging techniques. This
is why we show the complete regeneration results for each detector in the White Box
scenario, while we report the average values for the other two scenarios since the Oracle
doesn’t change because the adversary has no knowledge about the target machine learning
algorithm. In Table 7.12 you can see the results regarding the regeneration task: for each
of the 4 features that an adversary can change during the attack, we report the fraction
between how many times a specific feature has been regenerated and the total number of
frauds.
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White Box
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Feature User RF XGB LGB CB SVM ANN LR AL

IP (%)
Nat 57,24 67.34 46.38 48.57 55.31 47.76 24.49 30.91
For 77.98 79.16 81.87 77.77 67.27 80.79 56.01 75.64

IBAN (%)
Nat 17.14 42.85 33.71 22.04 5.30 35.72 6.73 11.43
For 72.47 70.23 73.09 74.39 10.02 72.13 43.9 66.32

CC_ASN (%)
Nat 44.18 67.34 43.98 46.02 61.90 44.46 25.10 28.77
For 78.44 79.16 81.87 77.29 68.18 80.34 56.09 75.64

Amount (%)
Nat 57.34 68.26 46.70 57.24 62.63 51.17 25.10 35.92
For 78.89 79.26 82.45 78.74 68.18 81.16 56.09 78.24

G
re

ed
y

IP (%)
Nat 55.24 68.73 39.27 50.16 57.38 41.56 26.15 29.12
For 78.09 81.19 72.44 79.90 71.15 81.27 58.43 77.78

IBAN (%)
Nat 16.59 46.92 33.28 25.53 6.48 32.92 7.11 13.56
For 74.50 71.18 70.37 75.59 12.40 74.15 47.22 64.48

CC_ASN (%)
Nat 46.97 64.11 38.85 45.74 63.82 42.41 23.23 28.96
For 81.14 76.85 72.44 80.82 69.15 78.81 57.68 78.94

Amount (%)
Nat 58.46 70.47 39.46 58.39 63.44 54.77 24.08 38.55
For 72.71 82.24 72.44 79.91 71.43 78.46 58.88 79.71
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Feature User RF XGB LGB CB SVM ANN LR AL

IP (%)
Nat 61,25 61.57 46.46 52.25 57.27 46.82 19.93 39.54
For 70.71 74.28 75.78 75.38 62.27 78.12 60 72.14

IBAN (%)
Nat 11.73 29.26 20.73 14.63 4.76 27.63 2.89 10.93
For 67.14 69.28 67.96 70.76 12.49 69.15 55 72.14

CC_ASN (%)
Nat 54.82 64.30 44.05 49.19 63.82 41.56 19.77 35.04
For 71.42 73.57 75.78 75.38 69.11 76.43 60 73.57

Amount (%)
Nat 61.41 65.11 48.39 63.02 64.89 49.94 19.93 48.23
For 73.57 74.28 76.56 76.15 72.13 78.51 60 73.57
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y

IP (%)
Nat 66.31 68.44 43.29 51.43 59.46 48.85 25.63 47.12
For 75.23 77.14 82.75 77.73 65.10 79.56 71.15 73.81

IBAN (%)
Nat 15.29 37.48 22.32 18.24 7.82 29.18 8.98 15.25
For 70.12 78.45 75.86 75.67 14.55 72.54 61.33 76.14

CC_ASN (%)
Nat 55.23 67.55 42.44 52.08 67.66 43.87 25.46 41.65
For 79.21 81.46 82.75 79.91 71.99 78.21 65.12 77.22

Amount (%)
Nat 62.72 68.29 44.56 65.19 68.11 52.49 23.04 54.18
For 81.86 86.17 83.33 79.91 81.17 80.34 73.98 77.12

Table 7.12: White Box Regeneration Results
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Grey Box
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IP (%)
Nat 87.98

IP (%)
Nat 71.97

IP (%)
Nat 91.49

For 82.56 For 54.65 For 74.77

IBAN (%)
Nat 81.13

IBAN (%)
Nat 73.45

IBAN (%)
Nat 85.43

For 63.76 For 45.44 For 67.88

CC_ASN (%)
Nat 5.38

CC_ASN (%)
Nat 4.11

CC_ASN (%)
Nat 7.09

For 16.51 For 12.79 For 4.13

Amount (%)
Nat 83.72

Amount (%)
Nat 61.06

Amount (%)
Nat 81.93

For 96.33 For 84.88 For 88.53
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IP (%)
Nat 96.68
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IP (%)
Nat 69.79
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IP (%)
Nat 93.75

For 91.83 For 52.30 For 80.11

IBAN (%)
Nat 92.30

IBAN (%)
Nat 71.02

IBAN (%)
Nat 87.14

For 88.35 For 40 For 71.54

CC_ASN (%)
Nat 10.12

CC_ASN (%)
Nat 6.12

CC_ASN (%)
Nat 8.24

For 15.89 For 13.84 For 11.50

Amount (%)
Nat 94.83

Amount (%)
Nat 53.46

Amount (%)
Nat 89.97

For 95.85 For 92.30 For 91.18
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Feature User Detectors
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IP (%)
Nat 76.20

IP (%)
Nat 56.98

IP (%)
Nat 78.64

For 66.42 For 35.36 For 62.85

IBAN (%)
Nat 79.06

IBAN (%)
Nat 69.31

IBAN (%)
Nat 80.73

For 66.42 For 43.90 For 62.14

CC_ASN (%)
Nat 2.38

CC_ASN (%)
Nat 1.16

CC_ASN (%)
Nat 2.11

For 17.14 For 9.31 For 5.7

Amount (%)
Nat 63.68

Amount (%)
Nat 42.19

Amount (%)
Nat 60.93

For 88.57 For 79.26 For 82.14
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IP (%)
Nat 85.54
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IP (%)
Nat 63.09
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IP (%)
Nat 87.88

For 76.50 For 42.68 For 65.13

IBAN (%)
Nat 85.01

IBAN (%)
Nat 71.72

IBAN (%)
Nat 85.31

For 69 For 48.78 For 60.21

CC_ASN (%)
Nat 7.41

CC_ASN (%)
Nat 2.24

CC_ASN (%)
Nat 5.54

For 21.34 For 5.7 For 10.52

Amount (%)
Nat 78.97

Amount (%)
Nat 46.42

Amount (%)
Nat 77.61

For 90.5 For 79.76 For 76.45

Table 7.13: Grey Box Regeneration Results
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Black Box
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Feature User Detectors
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Feature User Detectors

IP (%)
Nat 74.78

IP (%)
Nat 63.70

IP (%)
Nat 78.19

For 62.06 For 34.38 For 27.27

IBAN (%)
Nat 74.48

IBAN (%)
Nat 69.26

IBAN (%)
Nat 79.20

For 62.06 For 40.63 For 26.25

CC_ASN (%)
Nat 0

CC_ASN (%)
Nat 0

CC_ASN (%)
Nat 0

For 0 For 0 For 0

Amount (%)
Nat 62.27

Amount (%)
Nat 47.40

Amount (%)
Nat 49.87

For 93.10 For 84.37 For 80.32
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Nat 79.25
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Nat 64.58
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IP (%)
Nat 83.15

For 57.14 For 36.11 For 37.61

IBAN (%)
Nat 74.23

IBAN (%)
Nat 65.41

IBAN (%)
Nat 79.16

For 45.53 For 38.88 For 25.53

CC_ASN (%)
Nat 0

CC_ASN (%)
Nat 0

CC_ASN (%)
Nat 0

For 0 For 0 For 0

Amount (%)
Nat 72.70

Amount (%)
Nat 54.16

Amount (%)
Nat 69.89

For 92.85 For 80.55 For 81.25
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IP (%)
Nat 73.42

IP (%)
Nat 60.94

IP (%)
Nat 77.16

For 55.35 For 30.55 For 31.25

IBAN (%)
Nat 74.47

IBAN (%)
Nat 66.79

IBAN (%)
Nat 77.42

For 50.02 For 36.11 For 18.75

CC_ASN (%)
Nat 0

CC_ASN (%)
Nat 0

CC_ASN (%)
Nat 0

For 0 For 0 For 0

Amount (%)
Nat 65.52

Amount (%)
Nat 44.53

Amount (%)
Nat 54.06

For 91.07 For 86.11 For 81.25
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Nat 61.60

G
re

ed
y

C
ou

nt

IP (%)
Nat 81.04

For 61.76 For 33.31 For 39.2

IBAN (%)
Nat 77.20

IBAN (%)
Nat 67.41

IBAN (%)
Nat 80.24

For 48.53 For 33.34 For 31.98

CC_ASN (%)
Nat 0

CC_ASN (%)
Nat 0

CC_ASN (%)
Nat 0

For 0 For 0 For 0

Amount (%)
Nat 75.13

Amount (%)
Nat 45.98

Amount (%)
Nat 70.16

For 92.64 For 80.29 For 75.18

Table 7.14: Black Box Regeneration Results

7.4.1. White Box

In Table 7.12, we observe for each detector which features the attacker needs to change
in order to craft an evasive fraud. Since the detectors are trained on different subsets
of features, each detector shows a particular behavior. For instance, regarding the con-
servative strategy with a weekly update, Random Forest requires the regeneration of the
IBAN only 17.14% of the total number of national frauds, while we notice a 72.47% when
dealing with foreign ones. This happens because Random Forest, like the other models,
gives more importance to the IBAN when evaluating foreign transactions. This concept
can be also applied to the other features: foreign frauds are always more suspicious, so
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the adversary needs to regenerate the features more frequently, including, if necessary,
the amount. Logistic Regression model, which is the less resistant to poisoning attacks,
as we stated in section 7.3.1, in the conservative strategy with bi-weekly update pushes
the attacker to change the features less frequently: only the 20% of the national frauds
has a regenerated IP, 2.8% has a new IBAN and 19.93% has a lower amount.

In Figure 7.9 and Figure 7.10 we report two scatter plots that emphasize the relationship
between direct frauds (i.e., not regenerated) and regenerated frauds.

Figure 7.9: Logistic Regression, Bi-weekly
Policy, Conservative Strategy

Figure 7.10: Active Learning, Bi-weekly
Policy, Conservative Strategy

In Figure 7.9 we notice that in Logistic Regression, very few transactions are regenerated.
Moreover, it’s evident that the most frequently regenerated transactions are those that
present lower amount: frauds with higher amount deceive the FDS more easily. On the
other hand, as Figure 7.10 reports, an Active Learning detector is stronger and forces the
attacker to regenerate the transactions.

7.4.2. Grey Box

In the Grey Box scenario, the attacker creates an Oracle trained on a similar dataset using
all the features at his or her disposal. The Oracle is always the same, independently of
the target system algorithm, which the attacker doesn’t know. According to the results
reported in Table 7.13, we can state that our Oracle suggests more often changing IP
and IBAN for national frauds, while hints to regenerate the CC_ASN and the amount
for foreign ones. We can notice that for each feature, the percentage of regenerated
transactions is higher than that of the White Box: the reason is that our Oracle is a
powerful model, which tries to filter transactions so that they could be less suspicious as
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possible. In this way, an attacker can mount durable poisoning attacks, but he or she
is forced to lower the amount even when that’s not necessary. For instance, in a greedy
approach against detectors trained according to a weekly policy, the adversary has to
reduce the amount for 94.83% of national frauds and 95.85% of foreign ones.

When adopting an amount strategy, the fraudster tries to regenerate the transactions less
frequently, as Table 7.13 reports, since he or she wants to consistently increase the average
transactions’ amount of the victim. On the contrary, in the count strategy, the Oracle
suggests of change almost always the IP and the IBAN features: in some cases, such as
the greedy count strategy in a weekly update context, out of 100 transactions, we change
the IP more than 93 times.

In Figure 7.11, 7.12 and 7.13 we report scatter plots that provide a visual explanation of
how much our Oracle regenerate the frauds for the three different strategies.

Figure 7.11: Oracle, Weekly update, Greedy
strategy

Figure 7.12: Oracle, Weekly Update,
Greedy Strategy Amount
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Figure 7.13: Oracle, Weekly Update, Greedy Strategy Count

We can state that in all three cases, the Oracle regenerates most of the transactions.
Our Oracle is really powerful, it’s difficult to deceive it: this is why we are able to get
very low attack detection rates, as explained in Section 7.3.2. Regarding the amount
strategy, the Oracle needs to be more flexible, because the adversary wants to poison the
victim’s spending pattern in a consistent way. In fact, in Figure 7.12, you can see that
the regeneration task happens less frequently. In the count strategy, it’s easy to notice
that most of the transactions have a similar amount and they are often regenerated.

7.4.3. Black Box

In the Black Box scenario, the attacker builds the Oracle relying on just 50 features.
Hence, we have an Oracle which is less powerful with respect to the Grey Box scenario.
In fact, we have no features related to the Country Code, this is why the attacker never
regenerates it, as Table 7.14 states. For what concerns the other features, we can apply
the same reasoning of the previous Section 7.4.2.
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8| Limitations and Future Works

In this chapter, we explore the major limitations of our work and we discuss possible
future works which could improve our results.

8.1. Limitations

One of the main limitations of our work is that we have dealt with not labeled datasets.
Apart from some reports related to the more recent dataset, we need to create many
fraudulent transactions which replicate possible attack patterns. This is an important
limitation because the fraud generation process really influences our results. If we had
adopted another fraud generation strategy, probably we would have ended up with very
diverse results.

The most recent dataset, which is the dataset that the attacker targets, lasts only 4
months. Hence, our attacks last only 8 weeks. We have shown that there are attacks
that are not detected by the FDS at all. It would be interesting to study and analyze
poisoning processes that last more, in order to verify if they can be carried on for a long
time.

Moreover, we were able to improve foreign transactions, because we build a reliable Oracle
that in most cases allows us to achieve a zero detection rate. However, the poisoning
process results really hard in some scenarios such as when we have a target Logistic
Regression, which is the model that behaves best with foreign users, not allowing even a
malicious transaction.

Another limitation derives directly from computational reasons. In general, the banking
FDSs are powerful, but we could create more accurate systems, by using techniques that
require much more computational power. In the hyperparameter tuning task, we used a
random grid search, exploring just 30 combinations. Moreover, in the feature selection
process, we adopt a filter approach, which slightly affects the detectors’ performance. We
could have exploited wrapper solutions in order to get more powerful machine learning
models.
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8.2. Future works

All models that we worked with are system-centric fraud detection systems, which means
that they classify incoming transactions based on the whole dataset. Moreover, they are
time-insensitive, and they do not keep into account time relationships between transac-
tions. Future works could deal with user-centric FDSs, which focus on the individual user,
and time-sensitive detectors, such as time series analysis models.

In addition, we show how an attacker can build a reliable Oracle by exploiting ensembling
methods. It could be interesting to analyze the proposed attack approach against FDSs
which apply ensembling too. In fact, as the attacker, a financial institution could use
Bagging techniques in order to improve the performance of its model.

A future work could also deal with national and foreign users independently. We have
seen how it’s more difficult to perform foreign frauds, but we have also shown how it’s
possible to overcome this limitation by poisoning only the amount. An attacker could
exploit a strategy to defraud national users and another one to steal money from foreign
victims.
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9| Conclusions

In this dissertation, we have shown how the most popular state-of-art banking detec-
tors behave when dealing with poisoning attacks. We impersonated an attacker and we
mounted poisoning attacks against the banking detectors previously trained. More specif-
ically, we proposed a novel approach according to which an adversary can build a very
reliable oracle and manipulate smartly a specific set of transaction features. We provided
results for each update policy, each strategy, and each scenario.

With our approach, we are able to steal a consistent amount of money in every scenario.
In Monti’s work [27], in a partial knowledge scenario the adversary was capable to steal
up to 551,236€ and in a no knowledge scenario up to 394,239€, by attacking 30 victims.
In this thesis, we are able to perform malicious transactions that amount to more than 4
million euros in a Grey Box attack and more than 3 in a Black Box one, by defrauding
15 customers. Moreover, our detection rates are all low, for both national and foreign
users, sometimes even zero. We found out that poisoning the amount is less cautious and
more effective than poisoning the count, especially for foreign users. The detection time
is often very high, it goes from 30 to 60 days. On the contrary, Monti’s attacks lasted
on average, between two weeks and a month. Beyond the poisoning attacks results, we
have deeply analyzed the feature regeneration process and we have studied which are the
features that the adversary has to change more frequently at each iteration.
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