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1. Introduction
Network Function Virtualization (NFV) has
dramatically increased the flexibility in the de-
ployment of network services, but the virtual-
ization of functions on compute nodes can hin-
der their performance compared to that of the
middleboxes they try to replace. This problem
has found a solution with the advent of Pro-
grammable Data Planes, consisting in the devel-
opment of forwarding devices with ASIC perfor-
mance but whose behavior can be defined with
the high level and target independent P4 lan-
guage [1]. Using P4, sections of Virtual Network
Functions can be offloaded to programmable
network hardware to achieve significantly higher
throughput [4]. An application of this approach,
based on the use of heterogeneous Service Func-
tion Chains, has been studied by Moro et al.
[3]. This thesis proposes a framework for the de-
ployment such SFCs, defined as a combination
of functions for regular compute hosts as Docker
containers and for programmable switches using
the P4 language. Programmable data planes are
also exploited to perform real time monitoring of
the services through In-band Network Telemetry
(INT) [2] to guarantee requested levels of per-
formance by redeploying and rerouting sections

that are affected by adverse conditions, allow-
ing applications with critical requirements to be
deployed as SFCs.

2. System model
The proposed framework is designed to work
on a network built with programmable switches
that can be targeted by a P4 compiler. The
ONOS SDN controller is used to manage the for-
warding of packets, and hosts are compute nodes
that remotely expose a Docker engine with a
configuration that is compatible with the frame-
work.
Such a system can be used for the deployment
of network services in the form of heterogeneous
Service Function Chains, composed by two types
of functions:
General purpose functions: designed to run
on compute nodes, provided them in the form of
Docker containers.
P4 functions: intended to be built and run
on P4 compatible switch, provided as P4 files in
which a control block with a compatible signa-
ture is defined.
In the current prototype of CHIMA, each func-
tion of this chain supports one successor at most.
The service is only a description of the desired
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behavior and gives no indication with regard to
the physical location of its components. Figure
1 shows an abstract representation of an SFC
and how it can be deployed on available devices.

FUNCTION

1
FUNCTION

3
FUNCTION

2 Endpoint

Service Function Chain

Figure 1: Logical view of a Service Function
Chain and how it can be mapped to a physi-
cal topology

3. The CHIMA framework
CHIMA is a framework for CHain Installation,
Monitoring and Adjustment. This section will
give an overview of its implementation.

3.1. Framework components
The CHIMA framework consists of multiple
components, distributed over a supported net-
work as shown in Figure 2.

Northbound APIs

CHIMA

CHIMAclient
Pipeline

CHIMAstub

: REST API
: P4Runtime gRPC
: Communication

Figure 2: Logical placement of the framework’s
components in the network and their interac-
tions

CHIMAstub: The Stub is an ONOS applica-
tion. It exposes topology information and events
to CHIMA, and allows interaction with the net-
work’s devices through an extension of ONOS
REST APIs.
CHIMAclient: This process is placed on hosts

to apply header stacks for the correct routing of
packets of managed services.
P4 pipeline: Installed on all switches. On top
of providing basic forwarding, it supports In-
band Network Telemetry according to the INT
v1.0 specification. This pipeline is be used as a
base for the inclusion of user provided P4 func-
tions at runtime.
CHIMA: The CHIMA process is the core of the
system. It manages all other modules through
different means of communication. Its tasks are
to:
• Construct and maintain an internal repre-

sentation of the network topology.
• Collect INT data from the reports delivered

by switches.
• Compute a deployment strategy based on

the available topology information.
• Perform the deployments of functions and

manage their routing.

3.2. Template pipeline
The solution adopted to allow the integration
of user provided functions is the creation of a
pipeline with an extensible section, in which the
execution of additional controls can be injected,
and only happens if the packet is part of a
specific service.

The processing sections of the pipeline are the
following.
Forwarding: Since this pipeline is based on
the basic.p4 pipeline included in ONOS, the
mechanism it uses forwarding is inherited. If
the packet doesn’t match any rules in the for-
warding table, it is sent to the controller with a
packet out operation. ONOS will determine its
treatment and install additional rules.
Routing: The routing of packets between func-
tions of a service managed by CHIMA is han-
dled separately, and bypasses usual forwarding,
as explained in Section 3.3.
INT: The implementation of In-band Network
Telemetry is inherited from the ONOS int.p4
pipeline. The control plane logic for this part of
the pipeline is the inbandtelemetry ONOS ap-
plication, which translates INT intents into the
rules to be installed.
User functions: At this point, the template
pipeline has no instructions. Instead, tokens are
placed to signal the spot where user provided
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code can be inserted. When CHIMA determines
one or more P4 functions of a service have to be
deployed on a switch, their code can be injected
and managed with conditional blocks.

3.2.1 Setting up the pipeline

The framework compiles the resulting P4 pro-
gram using a Docker image of the p4c com-
piler. The installation of a pipeline at run-
time can be achieved with the SetForwarding-
PipelineConfig RPC call of P4Runtime. Its
implementation in ONOS is exploited by creat-
ing a Pipeconf with the pipeline files that is then
bound to the device in ONOS’s distributed map.
In addition to this, the installation process in-
volves the reconciliation of rules installed in the
device’s tables.
In general, reconfiguration of the pipeline may
cause significant downtime, but platform specific
features like Tofino Fast Refresh, can greatly ac-
celerate this process.

3.3. Routing
After all the functions have been installed, the
correct routing of packets between them has to
be configured along the prescribed path.

3.3.1 Segment Routing over MPLS

As defined by RFC8660, in SR-MPLS SIDs are
represented as MPLS labels.
CHIMA’s implementation of SR-MPLS uses no
SR Global Blocks and three SR Local Blocks,
within which only single-label SIDs are defined.

• 0x40000 - 0x7FFFF: used for the execution
of user defined P4 functions that have been
deployed on the switch.

• 0x80000 - 0xBFFFF: used for packet for-
warding. These segments can be classified
as Adjacency SIDs according to RFC8402.

• 0xC0000 - 0xFFFFF: used to implement
the custom extension of INT for the mea-
surement of the delay introduced by gen-
eral purpose functions, explained in Section
3.4.2.

Keeping in mind that MPLS labels are 20 bits
long, their first two bits are used to identify their
SRLB, while the remaining 18 can be interpreted
as an argument for the action to be performed.
The evaluation of segments on a switch contin-
ues until the bottom of the stack is reached or

an Adjacency SID is found, for which a Penul-
timate Hop Popping approach is used. Figure 3
shows an example of how MPLS label stacks are
used by the framework to perform routing.
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F1

Forward to S2
Execute F1

Forward to S4
Forward to H1

IPv4
...

Eth
Execute F1

Forward to H1
IPv4

...

Forward to S4

Eth
Forward to H1

IPv4
...MPLS

stack

Eth
IPv4

...

Figure 3: Example of the framework’s use of
segment routing

3.3.2 Encapsulation and segment distri-
bution

In CHIMA, the MPLS encapsulation of packets
belonging to managed services is performed by
CHIMAclient. At the heart of CHIMAclient is
an eBPF filter that inspects the packets egress-
ing the host. Services are identified using the
tuple of source and destination IPv4 addresses.
If the tuple is known, it means the filter has a
label stack that represent the series of segments
used to implement its precomputed path. In this
case, the stack of MPLS label headers is inserted
between the Ethernet and IPv4 headers. During
this process, the EtherType field of the Ethernet
header is set to 0x8847 to allow proper parsing.
These stacks are computed by the CHIMA pro-
cess based on the result of an optimization
model, and then installed on the CHIMAclient of
specific hosts by contacting their REST APIs.

3.4. In-band Network Telemetry
As anticipated, the INT implementation used
by the framework is derived from the int.p4
pipeline included in ONOS, which is designed
to be managed by the inbandtelemetry appli-
cation, with which CHIMA interfaces through
CHIMAstub. This implementation is based on
the INT v1.0 specification, and uses embed-
ded metadata with headers located over TCP
or UDP.

3.4.1 Collection of INT data

The CHIMA process includes an INT collector
as one of its modules, which is implemented as

3



Executive summary Elia Battiston

an eBPF filter. The source of the obtained val-
ues is identified by the pair of IDs of the switches
at the two ends of a link. Every collected value
is also exposed to a server of the Prometheus
monitoring system.
The values that the collector provides to the
framework are an Exponentially Weighted Mov-
ing Average (EWMA) of the raw ones, updated
at each time step.

ewma0 = value0

ewmat = (1− α) ewmat−1 + α · valuet
(1)
(2)

The parameter α acts as a smoothing factor,
and can be modified by the user when running
CHIMA to tune the framework’s response to
transient variations of the metrics.

3.4.2 Measurement of general purpose
function times

To enforce an upper bound on values such as
the time for a packet to reach a particular func-
tion, it is essential to consider the execution time
of all previous functions in the chain. While
P4 functions are guaranteed to run in constant
time, general purpose functions cannot assure
the same level of stability.
The current state of the project focuses on the
measurement of UDP functions in which each
packet contains a single execution request. This
allows to correlate the time needed by the packet
to traverse the function’s host and the time of
execution of the function itself.
The measurement is performed by altering the
forwarding behavior of INT packets to hosts
with Segment ID 0xC0000. INT data will be
left in the packet, and new INT transit headers
will be added before the packet’s egress. The
egress timestamp included in these headers will
be considered the start of the function’s execu-
tion. This requires the function to be aware of
this data and leave it untouched. The resulting
packet will include previous INT data and the
function’s modified payload. The ingress times-
tamp embedded by the next switch will mark
the end of the function’s execution, enabling the
computation of its extent. The attribution to
the correct function is achieved with a dedicated
Segment ID that will be added by CHIMAclient,
as shown in Figure 4b.

INT
Report

Previous INT

... ...S1 F1

(a) Regular processing of an INT packet when
forwarded to a host

Previous INT

...

...

MPLS: 0xC0000

Previous INT

...

S1 INT

S1 F1

Previous INT

...

S1 INT

...

MPLS: 0xC0001

Previous INT

...

S1 INT

F1|S1 INT

(b) Additional measurement of the function’s
time using Segment IDs

Figure 4: Comparison of the content of packets
and the forwarding behavior with regular INT
and with CHIMA’s extension

4. Results
4.1. Methodology
To evaluate the detection and redeployment per-
formance, the framework has been instrumented
to record the timestamps of relevant events. All
measurements have been performed on a bare-
metal installation of Ubuntu 20.04 LTS, running
on an Intel Core i7-6700 CPU with 64GB of
RAM.

4.1.1 Detection delay

The first set of measurements have the objec-
tive of determining how much time is needed by
the framework to detect the introduction of a
perturbation, depending on the values of user-
configurable parameters.
The detection delay is computed as the time
CHIMA takes to detect an exceeded require-
ment after the first packet of a perturbed
application is sent. Assuming the properties
of topology and service to be constant, we can
consider the detection delay to be a function of
the polling interval and the EWMA coefficient.

Polling interval
This is the rate at which the userspace com-
ponent of the eBPF INT collector polls new
EWMA values. These measurements have been
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performed with a value of α = 2−3 for the
EWMA.
Each data point presented in Figure 5 has been
obtained as the mean value of 30 samples. In
the same figure, the time taken by a request to
traverse the function chain end-to-end is plotted
in red for reference.
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Figure 5: Delay in the detection of an ex-
ceeded requirement with different intervals for
the polling of new measurements from the INT
collector. 95% CI.

As expected, the results present a clear linear
trend, directly proportional to p.
A constant contribute is represented by the time
needed for the EWMA of the affected measure-
ment to surpass requirements, while the slope of
the curve is due to the lower polling frequency.
The expected value of the introduced delay will
be equal to

p

2
for a polling interval of p.

These measurements reveal that to achieve
minimal detection times, the lowest value of p
that doesn’t cause excessive system load should
be used.

EWMA coefficient
The second parameter is the coefficient for
the computation of the Exponentially Weighted
Moving Average, explained in Section 3.4.1.
While running these tests, the Polling interval
has been set to 0.1s. Since the computation of
EWMA is performed in an eBPF filter, it is im-
plemented with bit-shift operators, and only al-
lows users to configure exponent k ∈ N where
α = 2−k.
Greater α values result in more weight given to
recent data rather than the old average. This is
clearly shown by Figure 6, in which smaller coef-
ficients cause the time needed for convergence to
the new measured values to grow exponentially.
This data confirms the effectiveness of α to tune
the response of the framework in case of short-
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Figure 6: Delay in the detection of an exceeded
requirement with different coefficients for the
computation of the EWMA on link measure-
ments. 95% CI.

lived congestion events. Therefore, the optimal
value for this parameter should be determined
based on the intended application.

4.2. Redeployment time
Another crucial measurement to outline the
framework’s performance is the time needed to
complete a redeployment. Table 1 presents a
comparison of the relevant characteristics be-
tween the test cases for which redeployment
times have been measured.

Topology Switches Containers P4 func.

mesh 7 3 (1) 0 (0)

datacenter 6 2 (0) 1 (1)

unbalanced 4 4 (1) 2 (1)

minimal 5 2 (2) 2 (2)

medium 7 3 (3) 3 (3)

large 9 4 (4) 4 (4)

Table 1: Characteristics of the presented test
cases. The number of functions that will be
moved in each case is stated in parenthesis.

The results presented in Figure 7 show the total
redeployment times for these cases, along with
the most significant contributing factors. Ad-
ditionally, all recorded contributes are detailed
in Table 2. Since the redeployment of different
components is executed in parallel, the recorded
times will be equal to the delay caused by the
slowest one.
The installation of P4 functions proves to be
the dominant factor if present, causing the total
time to be in the order of seconds. The two con-
tributions to this delay are the reconfiguration
of the switch’s pipeline and the reinstallation of
the correct set of rules in the pipeline’s tables.
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Topology P4[s] Containers[s] Paths[ms] Metadata[ms]

mesh - 1.13 [1.09,1.17] 54.23 [49.16,59.31] 2.68 [2.55,2.81]

datacenter 5.20 [5.17,5.23] - 288.60 [283.30,293.90] 2.79 [2.63,2.95]

unbalanced 5.19 [5.16,5.21] 0.97 [0.96,0.98] 60.57 [58.09,63.04] 2.81 [2.64,2.97]

minimal 6.06 [6.02,6.10] 1.50 [1.48,1.51] 48.79 [43.78,53.81] 3.50 [3.31,3.69]

medium 6.93 [6.90,6.97] 2.12 [2.09,2.14] 125.89 [107.94,143.84] 4.81 [3.84,5.78]

large 8.28 [8.19,8.36] 2.54 [2.46,2.63] 477.55 [387.49,567.62] 6.10 [4.84,7.35]

Table 2: Breakout of redeployment times for different topologies. 95% CI.

While the former is due to the use bmv2 switches
and could be reduced to tens of milliseconds
with vendor specific features, the latter is caused
by ONOS’s management of programmable data
planes, which is not structured for time sensi-
tive pipeline changes. Improvements to target
this specific use case could drastically decrease
delays.
Times for path distribution and metadata ad-
justment, which can be entirely attributed to the
framework’s logic, are much less significant than
previous ones, adding minimal overhead.
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Figure 7: Time for the complete redeployment
of a service, along with the contributes of P4 and
Container redeployment, in different test cases.
95% CI.

5. Conclusions
In this thesis, a framework for the deployment,
monitoring and realtime readjustment of het-
erogeneous SFCs has been proposed. The pos-
sibility to define performance requirements for
functions and services, enabled by the the accu-
rate telemetry powered by programmable data
planes, opens the opportunity for application
with critical performance demands to use exist-
ing networks. The extension of measurements
to the execution time of functions allows the

constraints to reflect real delays experienced by
packets, and not just ones caused by the net-
work.
A prototype has been developed and tested
through simulations on the FOP4 platform with
bmv2 switches, to show that the detection of
exceeded requirements happens in the order of
hundreds of milliseconds, and can be tuned by
the user to achieve the desired level of respon-
siveness. Analysis of the redeployment process
showed that the overhead introduced by the sys-
tem is negligible compared to the time needed
for the startup of functions, and real time relo-
cation of VNFs to achieve desired levels of per-
formance is feasible.
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Abstract

Network Function Virtualization (NFV) has dramatically increased the flexibility
in the deployment of network services, but the virtualization of functions on com-
pute nodes can hinder their performance compared to that of the middleboxes they
try to replace. The use of programmable network hardware to perform part of the
processing at line rate can drastically increase throughput. This thesis proposes a
framework for the deployment of heterogeneous Service Function Chains (SFCs),
defined as a combination of functions for regular compute hosts as Docker contain-
ers and for programmable switches using the P4 language. Programmable data
planes are also exploited to perform real time monitoring of the services through
In-band Network Telemetry (INT) to guarantee requested levels of performance by
redeploying and rerouting sections that are affected by adverse conditions, allowing
applications with critical requirements to be deployed as SFCs. The solution has
been tested by simulating various topologies and services on the FOP4 platform
with bmv2 switches. This analysis showed that the system is capable of detecting
faults in the order of hundreds of milliseconds, and the overhead it causes in the
process of redeployments is negligible compared to the startup time of functions.
Measurements also revealed that the current bottleneck for the runtime relocation
of heterogeneous functions is the deployment of P4 programs.

Keywords: Network Functions Virtualization, Service Function Chains, Software-
Defined Networking, Programmable Data Planes, In-band Network Telemetry, In-
Network Computing
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Abstract in lingua italiana

La Network Function Virtualization (NFV) ha notevolmente esteso la flessibilità
della messa in campo di servizi di rete, ma la virtualizzazione delle funzioni su ser-
ver può ridurre le loro prestazioni rispetto a quelle delle middlebox che cercano di
rimpiazzare. L’esecuzione di una parte dell’elaborazione a line rate, grazie all’uso di
hardware di rete programmabile, può aumentare considerevolmente il throughput.
Questa tesi propone un framework per l’installazione di Service Functions Chains
(SFCs) eterogenee, definite come combinazione di funzioni sotto forma di container
Docker per tradizionali host di calcolo e di funzioni in linguaggio P4 per switch
programmabili. I Programmable Data Planes vengono sfruttati anche per esegui-
re monitoraggio in tempo reale dei servizi grazie alla In-band Network Telemetry
(INT), la quale permette di garantire i livelli di prestazione richiesti attraverso la
rilocazione ed il reinstradamento delle sezioni influenzate da condizioni avverse. Ciò
permette la realizzazione di applicazioni con requisiti critici sotto forma di SFC. La
soluzione è stata testata simulando varie topologie e servizi sulla piattaforma FOP4
con switch bmv2. Questa analisi ha dimostrato che il sistema è in grado di rile-
vare guasti nell’ordine di centinaia di millisecondi e che l’overhead causato durante
il processo di rilocazione è trascurabile rispetto al tempo di avvio delle funzioni.
Le misurazioni hanno inoltre mostrato che nel processo di trasferimento di funzio-
ni eterogenee durante la loro esecuzione, l’attuale collo di bottiglia è rappresentato
dall’installazione di programmi P4.

Parole chiave: Network Functions Virtualization, Service Function Chains, Software-
Defined Networking, Programmable Data Planes, In-band Network Telemetry, In-
Network Computing
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1

Introduction

Nowadays the forwarding of packets is only one of the many features offered by
networks. The high volume of traffic operators have to manage every day has to
be processed multiple times during its routing. Functions such as firewalls, NATs,
DPIs, proxies and caches have to be traversed by packets along their journey. Each
of them has different goals, but can be thought as part of an overarching service.
The creation of services based on the composition of functions across the network
made communication between them a fundamental component of their definition,
which led to the standardization of this concept with the abstraction of Service
Function Chaining [26].

Originally, network functions have been implemented in specialized and proprietary
hardware middleboxes. These solutions caused elevated costs for operators, and left
them very small room to flexibly manage the network. To increase throughput,
new devices had to be bought and installed where needed, constraining the possible
paths of affected traffic. Upgrading their functionality would involve the replacement
of already deployed equipment. These processes are not only expensive, but also
require time spans that are orders of magnitude larger than the speed at which
networks can grow and change.

The trend of Network Function Virtualization (NFV) [30][58] aims to provide a
solution to these limitation, removing hardware middleboxes from networks in favor
of virtualized services that provide equivalent functionalities. These services, in the
form of VMs or containers, can be deployed on common compute resources that
may already be available, or can be put in place with limited costs thanks to their
widespread use.
Virtual Network Functions (VNFs) dramatically increased the ease of management
for computations in the network. For example, they can be spawned at the edge of
the network, where they are needed most, minimizing latency. They can be deployed
in load balanced clusters to support high loads, which can be scaled up in periods of
intense traffic or scaled down when they are not needed, freeing resources for other
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functions. These actions can be performed in seconds, enabling a level of elasticity
in their administration that optimizes both performance and power consumption.
Moreover, the set of functions to be deployed can be changed with no alteration
to the underlying hardware, lowering the costs and inertia that previously affected
innovation.

This paradigm shift has brought many advantages, but there are also downsides
to consider. Spreading computation over multiple locations introduces reliability
concerns that are foreign to monolithic deployments [36]. Routes that are shared
between services can become congested, loose packets and introduce significant de-
lays. Interfaces can break, causing faults and disrupting whole applications. These
issues can limit the possibility of using NFV and SFCs for critical applications if
not handled carefully. Furthermore, the implementation of functions on Virtual
Machines introduces a new set of challenges. The performance of programs run-
ning on general purpose hardware is often lacking compared to that implemented
in hardware, requiring the use of a higher number of instances to manage the same
throughput. The process of VM scheduling can also cause latency fluctuations that
negatively affect some classes of services.
Some of these issues can find their solution in another approach that was embraced
by network operators in recent years: Software-Defined Networking.

SDN was born as the concept of separating the control plane from the data plane
of network devices, much like the abstraction introduced by NFV. In this scenario,
the control plane logic is centralized in an SDN controller, that has visibility on
the state of the whole network. The collected information can be used to deter-
mine how the traffic should be managed without the need for decentralized routing
protocols such as RIP, OSPF or BGP. Switches, that only have the role of “dumb”
forwarders, expose their internal structure as a series of match-action tables, that
can be controlled with the installation of rules through a standardized interface. The
most successful protocol for this task is OpenFlow [40], whose paper introduced the
whole concept of SDN. The virtualization of the control plane enables operators to
develop tailored solutions for traffic management, but the use of forwarding devices
that only support a fixed set of fields and protocols represents the limit of what can
be accomplished with this technology by itself.

To change this situation, the natural extension of Software-Defined Networking has
been in the direction of Programmable Data Planes. Data plane programmability
consists in the creation of forwarding devices that can provide the same level of
performance obtained by commonly used switches, but whose behavior can be easily
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modified by the operator. With programmable network hardware, the support for
newer or completely custom protocols can be directly implemented, without the
need to wait for vendors to support them. At the same time, features that are not
needed can be discarded to reduce complexity and attack surfaces. The mechanism
to define such pipelines is the P4 language (Programming Protocol-independent
Packet Processors) [12], through which the same high level definition can be compiled
and installed onto programmable switches from different vendors and with different
features or amounts of resources. Elements of its design, such as the absence of
pointers or loops, reflect the rigid structure of the devices it is supported by, but
ensures all computations to be executed at line rate.

The ability to freely program devices that can achieve such throughput and can be
located as close as possible to sources of information, has led many researchers to
try exploiting data planes for more than just forwarding. In-network computation
[51] [28] is the recent trend stemming from this concept, and involves the offloading
of sections of an application to programmable switches that, even if constrained in
the variety of operations they can perform, can do so at ASIC speeds. Examples
of this practice include implementations of load balancers [42], consensus protocols
[18], processing of neural networks [50] and key-value stores [54]. This approach
has also been shown to be a viable way to reduce power consumption compared to
host-based solutions at high loads [55].

This realization has been applied to the field of NFV too, where many of the func-
tions to be executed naturally fit in the shape of a packet-processing pipeline. Whole
functions or parts of them can be accelerated in the data plane, as shown by Moro et
al. [44]. The result is the creation of heterogeneous SFCs, in which P4 and common
compute resources work together to provide a high performance service.

Another valuable application of the concept of in-network computation has been
the introduction of In-band Network Telemetry [33] [52]. INT proposes the use of
programmable switches to bring the monitoring of telecommunications to a greater
level of detail compared to what was possible before. The information exposed by
P4 pipelines can be used to start treating the network as a white box, collecting
hop-by-hop data about every packet. This allows measurements to be fine grained,
less noisy and near real time.

The objective of this work is to combine the technologies described above to give an
answer to the performance problems of distributed computation with Service Func-
tion Chains. First, a framework to ease and automate the deployment of "mixed"
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SFCs is proposed. The use of functions of different types gives users the possibility
to define portions of logic with the P4 language alongside tasks for general purpose
compute resources, enabling substantial performance improvements. Then, In-band
Network Telemetry is employed to monitor the communication between functions.
The user is given the possibility to define performance requirements for the service,
whose satisfaction can be supervised thanks to the accuracy of the collected met-
rics. Additionally, the flexibility of programmable data planes is employed to route
traffic between functions, along paths that allow the service to achieve sufficient
performance. The detachment from physical placement, characteristic of Virtual
Network Functions, can be leveraged to correct degradation when it is detected,
by moving part of the chain’s components to different devices and re-routing their
communication.

This thesis is organized as follows:

• Chapter 1 provides short descriptions of the key concepts and technologies on
which the presented work is based.

• Chapter 2 gives an overview of the related literature for the studied subjects.

• Chapter 3 describes the system and context for which the framework has been
designed.

• Chapter 4 explains the design of the proposed solution and the implementation
details of the developed prototype, which has been released on GitHub [3].

• Chapter 5 describes how the performance of the framework was evaluated, and
gives an overview of the obtained results.

• Finally, Chapter 6 sums up the contributions of this thesis and presents pos-
sible future work on the subject.

Use cases

In this section, some examples of applications that could benefit from the features
of the CHIMA framework will be presented.

Control of industrial robots

A very broad class of applications in which the ability to request a guaranteed delay
in the execution of a function can become crucial is the implementation of safety
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procedures. As an example, we can consider the remote control of the movements
of an industrial robot.

The communication between robots and their controllers is usually performed on
specialized and standardized network devices, and with ad-hoc protocols. A config-
uration in which both the actors of the exchange and the communication channel
comply with safety standards such as IEC 61508 is called White channel communica-
tion. A different approach, that involves the use common networking equipment to
construct a communication channel between certified devices, is called Black channel
communication [17]. With proper care about the reliability of its links, an existing
network could be used for this purpose. In such conditions, the framework could be
used to deploy the control logic of a robot as a service function chain.

The exchange of information that takes place on the channel would involve the
transmission of actuator and sensor data from the robot to the controller service.
The latter has to process the received data to construct a representation of the
current state of the robot, and send a command across the same channel to instruct
the robot on the next action it has to perform. We can assume the presence of one
or more sensors dedicated to safety, whose job is to detect the presence of obstacles
in the work space of the robot. While the delayed delivery of a regular command
could decrease the performance of its operation, a late response to the measurement
of these sensors can be critical, as interaction of the machine with such objects could
damage the equipment, or even cause harm to operators.

To minimize this risk, the controller service could be structured as follows.

• The first function of the service chain can be implemented in P4, enabling its
deployment to be as close as possible to the robot. Since P4 is not suitable for
the development of complex logic, it would only check the content of packets
coming from the machine to detect the presence of threshold violations, like
the measurement from a particular set of sensors. In case this check is positive,
a packet to halt operations could be sent immediately.
In the definition of this function as part of a CHIMA deployment, the require-
ment for its maximum latency can be set to a predetermined value, depending
on the characteristics of the specific equipment.

• The second function can be more complex, and represent the complete logic
that the robot has to follow. This function can be implemented with any tech-
nology and packaged as a collection of Docker containers. As anticipated, the
task of this function would be to collect incoming information and use it to
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determine successive commands. Even if this procedure is less critical than the
previous, requirements to request a limit to the end-to-end delay of its com-
munication can be set in the framework to guarantee adequate performance,
also taking into consideration the time needed by the procedure itself.

A similar scenario has been recently proposed and studied by Cesen et al. [13],
showing the correlation between the experienced delay and the error in the stopping
position of the robot.

With this configuration, empowered by the capabilities of programmable data planes,
the framework can assure that safety-related data will be processed in time to take
action.

Precision agriculture

Another possible use case for this system can be found in the field of precision
agriculture. Precision agriculture [59] consists in the aggregation of measurements
from various sources (such as multispectral images acquired with drones or satellites,
sensors, weather monitoring, etc. [46]) to determine the optimal amount of resources
to administer to sections of a field in order to maximize its yield, while minimizing
waste. A very precise prediction of the amount of water, fertilizer and chemicals to
apply in a spot can increase efficiency, but also requires precise enough equipment
to follow these instructions.

This operation can be automated with remotely controlled tractors. This kind of
vehicle would mount a GPS sensor in order to determine its location [19]. This in-
formation can be sent to a service deployed with an edge or fog computing approach.
By consulting the collected information about the area, it would be able to deter-
mine the maneuvers to execute and the precise amount of resources to dispense. The
results can be sent as commands to the tractor. Of course the profitability of this
process also depends on the speed at which the whole field can be treated, which
requires the machinery to sustain certain speeds. In this situation, commands about
the rate of distribution must reach the tractor before the spot they refer to has be
surpassed.

The deployment of the remote service with the CHIMA framework could be used
to guarantee adequate performance. Requirements on the communication can be
used to ensure that commands will reach their destination within a predetermined
delay based on the granularity of the predictions and the speed of the tractor. In
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case adverse conditions cause the service to be less responsive than needed, its
components can be moved to unaffected sections of the managed network.
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1| Background

1.1. Service Function Chains

The implementation of end-to-end network services usually involves communication
to be incrementally processed by various functions, such as Firewalls, NATs, DPIs,
etc. With the increasing trend in the virtualization of these kinds of network func-
tions, also called Network Function Virtualization or NFV, their deployment has
become more and more flexible and dynamic, introducing the need for a consistent
description of the interactions between them. Service Function Chains are the ab-
straction of these concept, and have been standardized with RFC7665 [26]. The
most basic definition of a SFC includes two endpoints, which represent the source
and sink of packets, and a set of functions. Each of the functions performs some
computation on received packets, and forwards them to its successor. The order of
execution of functions may or may not be defined, depending on the application.
This high level description of the desired behavior can then be mapped on a physical
topology, by determining and enforcing paths that traffic of a particular service has
to follow to be correctly processed.

1.2. Segment Routing

Segment Routing (RFC8402 [20]) is the concept of determining the routing of a
packet based on a set of instructions called segments that are assigned to it. This
technique enables extreme flexibility in traffic engineering, allowing the definition
of different treatments for each packet by embedding the segments to implement
it in the packet itself. Segments can instruct devices that process the packet on
any type of operation, both related to the topology (e.g. forwarding) and to other
services available in the network. When they are embedded in packets, segments are
represented by their Segment IDs or SIDs which, depending on the data plane used
for the implementation of SR, can be represented in different ways. For example,
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SR-MPLS uses the values of MPLS labels, while SRv6 (Segment Routing over IPv6)
uses the dedicated IPv6 extension header called Segment Routing Header (SRH). A
section of network composed of devices that cooperate for the execution of Segment
Routing is called an SR domain. The semantic of SIDs can be defined in SRGBs
(SR Global Blocks), or SRLBs (SR Local Blocks). While the interpretation of the
former is the same across the whole SR domain, the latter can be interpreted in
different ways depending on the device that executes them.

1.3. Software-Defined Networking

Software-Defined Networking is an approach to network management whose goal
is to enable experimentation and innovation in the management of traffic. It con-
sists in the decoupling of control plane logic from network devices, which becomes
centralized in the form of an SDN controller. ONOS, Open-Daylight and Ryu are
examples of successful SDN controllers currently used in the industry. The central-
ization of the control plane eliminates the need for distributed routing protocols,
that were originally executed by switches themselves. The amount of information
that each device could obtain by collaborating with peers was limited, while the
SDN controller maintains a representation of the state of the network as a whole.
This allows the development of more advanced routing techniques, or simpler ones
that are optimized for specific topologies. In this configuration, network devices
only perform the forwarding of incoming packets based on the instructions provided
by the controller. To do so, they expose an abstraction of their capabilities based on
match-action tables, which can be populated by the control plane. One of the most
successful protocols used for the interaction between the controller and switches is
OpenFlow [40], whose original paper introduced the concept of SDN. When switches
encounter a packet for which no forwarding rules are defined, it is sent to the con-
troller. According to its programmable logic, the controller will determine how
similar packets must be handled. To enforce this behavior, it installs rules in the ta-
bles of forwarding devices, that will then execute them for every packet that matches
a predefined set of conditions. The greatest limit of SDN is represented by the fixed
set of fields and protocols supported by the hardware of OpenFlow switches, solved
with the advent of Programmable Data Planes.
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1.4. P4: Programming Protocol-Independent

Packet Processors

P4 [12] is a high level language for the definition of custom pipelines to be installed on
switches with a programmable data plane. Data plane programmability is a natural
extension of the customization in network management enabled by Software-Defined
Networking. P4 defines an abstract forwarding model in which a packet is parsed,
processed with multiple stages of match-action tables, and deparsed. Parsing is
defined with a finite state machine, in which each state can extract headers with
a predefined structure from the received packet. Depending on the values of the
extracted fields, such as the EtherType for an Ethernet header, the correct state
transitions can be performed until all headers have been correctly parsed. At this
point, various operations can be executed on the packet. Depending on metadata,
such as the ingress port, or on the content of headers, an egress port can be set. The
values of some fields can be modified, like the TTL field of an IPv4 header. Entire
headers can be added or removed, for example in the implementation of the encap-
sulation for tunneling protocols. In the end, the modified headers will be deparsed
in the order defined by the developer and joined with the packet’s payload to be
forwarded to its intended destination.
The syntax to define these operations is close to that of languages like C, but with
some important differences that will ensure its execution to terminate in limited
time, to achieve line rate performance. For example, no loops or pointers are sup-
ported. The combination of these features allows developers to define packet pro-
cessing functionality independently from the target hardware, on which a compiler
with a suitable backend can map the instructions using the available resources. Tar-
get specific features can be exposed by hardware manufacturers with externs in
their architecture model. These are interfaces that can be used by P4 developers to
exploit hardware accelerated features like the computation of checksums.

1.5. In-band Network Telemetry

In-band Network Telemetry [33] is a monitoring technique born from the ability of
programmable switches to query their internal state during the processing of packets.
Information such an identifier of the switch, ingress and egress times, queues and
buffers occupancy can be recorded each time a new packet is processed. Different
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ways to collect this data have been proposed, among which an embedded mode that
consists in adding the information to the transiting packet, or postcard mode, in
which another packet with such information is generated each time. The aggregation
of the data provided by INT can help debug a network at a very low level, changing
the assumption of it being a black box. For example, the exact route followed by
a packet and the level of congestion and latency experienced by it while travelling
can be known with hop-by-hop granularity.
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2| Related work

The problem of placing VNFs of a Service Function Chain in a network while deter-
mining the optimal path for their communication is a heavily studied topic. Due to
the amount of research in this field, CHIMA does not address this aspect. Instead, it
is complementary to it, focusing on the execution and monitoring of the deployment
that would follow this optimization step.
On this subject, [8] considers the joint problem of placement and chaining of the
VNFs, and proposes a mixed integer linear programming model for its optimiza-
tion. Bounds on the end-to-end latency are also considered, making the solution
suitable for the requirements that can be set with CHIMA. [32] also focuses on the
optimization of latency and costs in the placing of SFCs, but does so with heuristic-
based algorithms. A similar goal to the one of this thesis is pursued by [41], which
studies the use of these kinds of algorithms by an orchestration framework that
actually performs the deployment of SFCs, interacting with a variety of SDN con-
trollers. The researchers’ work also takes monitoring of the deployed service into
consideration but, compared to this thesis, does not propose solutions to guarantee
performance with runtime readjustment or the measurement of function execution
times. However, all of the above only take into consideration SFCs composed by
VNFs that target common compute architectures. CHIMA supports the deploy-
ment of heterogeneous SFCs that take advantage of programmable data planes, and
can significantly increase the achievable throughput. The concept of decomposed
VNFs is first explored by [49], but the use of implementations that take advantage
of programmable network hardware is introduced by [45], which takes into consider-
ation the different type of hardware that the network exposes and its compatibility
with the requested functions, proposing both an optimization model and a heuristic
algorithm for their placement.

The deployment of user functions on programmable data planes as performed by
CHIMA is heavily inspired by the approach of [45], which also uses an extensible
template pipeline to allow the simultaneous installation of multiple functions on the
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same switch while providing basic forwarding functionalities. The execution of such
functions on specific packets is then requested with a Segment Routing approach
implemented over IPv6 by following the SRv6 RFC. CHIMA does the same while
using SR-MPLS, which allows the use of Segment Routing on an IPv4 network layer.
This was done because, besides routing, the template pipeline used by this thesis
also provides monitoring by expanding the int.p4 pipeline of the ONOS SDN con-
troller. Other approaches have been proposed for the composition of P4 functions.
Some examples are Hyper4 [27], which defines a P4 program that is able to emu-
late other P4 programs provided at runtime by the control plane, and P4Visor [60]
which suggests a technique to merge multiple P4 programs into a single one, while
retaining the functionality of all of them.
In a similar fashion, DPPx [48] also enables the installation of data plane programs
on P4 switches for the enhancements of NFVs. An alternative take on the accel-
eration of SFCs with programmable data planes is explored with P4sc [14] and
[34], both of which consider the implementation of whole function chains on single
switches, lacking the possibility of combining components for different technologies
or exploiting the flexibility granted by the distributed nature of VNFs.

This thesis also proposes the relocation of the components of chains at runtime as
a solution to performance degradation. The optimization for this kind of readjust-
ment has been explored in [15], proposing an algorithm for the real-time migration
of VNFs and demonstrating the possibility of lowering latency with it. The dy-
namic adjustment of SFCs has also been treated by [37], which however focuses on
the amount of available resources when new services are introduced in the network,
with integer linear programming and column generation heuristic approaches.
To understand when redeployments must be executed, CHIMA uses In-band Net-
work Telemetry for the monitoring of the deployed SFCs communications. A similar
approach is studied with IntOpt [11], that aims to optimize the overhead introduced
while achieving optimal measurements of a deployment, but lacks the measurement
of the execution time of functions, preventing the calculation of end-to-end metrics
as experienced by packets. The same is done by IntSight [39], which has a simi-
lar goal to CHIMA in trying to detect requirement compliance. Instead, [16] also
proposes the use of INT to heal the performance of services at runtime, but only
considering the alteration of traffic flows between fixed endpoints to do so.

The relocation of P4 VNFs at runtime is studied in depth by P4NFV [29], which
also enables the migration of stateful functions while preserving their consistency.
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3.1. Network and resources

The proposed system is designed to work on a network, represented in Figure 3.1,
with the following characteristics.

Figure 3.1: Example of a network architecture on which the project could be in-
stantiated

Switches

The use of programmable data planes for both the routing of managed services pack-
ets and monitoring of communication through In-band Network Telemetry requires
the use of switches that can be targeted by a P4 compiler. This requirement can
be satisfied by physical and virtual switches [5] too. The main representative of the
second category is the bmv2 [1] software switch, extensively used for P4 prototyping
and during the development of the CHIMA framework.
However, execution of P4 programs at line rate and in constant time, which is one
of the core features of programmable data planes and drove the recent interest in
in-network computing [51], can only be achieved by physical switches that execute
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pipelines with dedicated hardware components. Thus, the most effective uses of
this system, that involve the deployment of performance dependent P4 functions,
require hardware switches to be part of the network.

SDN Controller

The framework makes use of the ONOS SDN controller for many of its main func-
tions as will be explained in detail in the following chapters. For example, ONOS
is used to construct an internal representation of the network topology, to detect
topology-changing events, to set up In-band Network Telemetry and to install P4
programs on switches at runtime.
In addition, ONOS performs the regular duties of a controller, such as providing
switches with rules to allow correct forwarding of packets that are not managed by
the framework’s routing. These include communication between the CHIMA process
and ONOS itself, or the Docker daemon exposed by hosts.

Hosts

The ability of the system to deploy functions for general purpose architectures is
achieved through the deployment of Docker images on properly configured hosts.
For this reason, servers to be used for this purpose have to run the Docker daemon,
and remotely expose it to accept deployment requests from the framework.
The current prototype of the framework only supports communication with remote
Docker daemons on the standard TCP port for this service (2375), but could be
trivially extended to support connection through SSH. The latter case would prevent
the security concern of unauthorized deployment on the hosts by third parties, and
would require proper configuration of private keys between each of the hosts and
the machine running the framework.

3.2. Service Function Chains

The system described above can be used for the deployment of network services in
the form of Service Function Chains. The class of SFCs that have been taken into
consideration is defined by their components and structure, as follows.
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3.2.1. Functions

Functions are the smallest components of a deployment. They consist of user pro-
vided code that performs arbitrary computation on an incoming packet and returns
another (likely modified) packet.
The framework supports two types of functions, which are directly dependent on
the available components in the networks of Section 3.1.

General purpose functions

This type of function is designed to run on compute nodes powered by processors
of common architectures such as x86 or x64. These functions may be implemented
with many different technologies, and require particular environments to be run.
Since the framework needs to deploy them as atomic units, the user has to provide
them in the form of Docker containers, to ensure they can be run without additional
configuration.

P4 functions

This type of function is intended to be built and run on P4 compatible switch. The
structure of this kind of hardware ensure its execution will happen in constant time,
enabling processing of the packets at line rate. The user has to provide them as P4
files in which a control block with a compatible signature is defined.

3.2.2. Services

In CHIMA, the concept of service can be defined as a chain of connected functions
that perform subsequent computations on packets sent by a client. Each function of
this chain has at most one successor, to which it forwards packets after its execution
completes. The only function without a successor is the last component of the
chain, that will send its packets to the endpoint of the service. While the common
definitions of SFCs present communication between two endpoints, the current state
of CHIMA only allows for the second endpoint to coincide with the client.

The service is only a description of the behavior that should be obtained by the
system, and gives no indication with regard to do with the physical location of its
components. Figure 3.2 shows an abstract representation of this chain of functions
and how it can be deployed on available devices.
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Figure 3.2: Logical view of a Service Function Chain and how it can be mapped to
a physical topology

3.3. Objectives

SFCs detach the logic of an application from the concept of its deployment. This
allows the orchestrator of such services to act in very flexible ways, determining a
placement of functions according to factors such as the condition of the network or
the amount of available compute resources. This fact can be exploited in various
ways, including the possibility of changing the arrangement of functions after the
initial deployment to avoid faulty or congested sections of the network.

The objective of the proposed system is to use the resources of the network (with a
particular focus on programmable data planes), combined with the adjustability of
SFCs, to design services with resilient communication for which a requested level of
performance can be guaranteed. To succeed in this goal, the system should be able
to:

• Allow the definition of performance requirements for a service.

• Tightly monitor the communications of services.
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• Enable users to inspect the collected telemetry data.

• Detect the perturbations that cause the service to exceed its requirements,
with minimal delay.

• If there is a way to satisfy requirements after a perturbation is introduced,
move all or some of the components of the perturbed service to bring it back
to a compliant state, minimizing overhead on the spin-up time of functions.
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4| The CHIMA framework

CHIMA is a framework for CHain Installation, Monitoring and Adjustment.

This chapter will be used to explain how this proposed solution can be used to
meet the objectives set in Section 3.3. At first, the components of the system are
listed, and a brief explanation of their role is given. Then, different aspects of its
implementation are incrementally taken into consideration. The definition of services
and functions will be tackled first, moving then to the process of deciding their
placement and how their deployment is carried out on the determined devices. Next,
the way in which communication is set up between them and how its performance
is measured will be illustrated. Finally, the execution of the redeployment process
is explained.

4.1. Framework components

The CHIMA framework consists of multiple components, distributed over a sup-
ported network as shown in Figure 4.1.

CHIMAstub

The Stub is an ONOS application. Once installed and activated on the controller,
it can perform several operations by interacting with ONOS’s northbound API and
core services. It allows the CHIMA process to access information regarding the
network, and interact with its devices.
Its features can be accessed through an extension of ONOS REST APIs.

CHIMAclient

CHIMAclient is a process that has to be placed on hosts to make them available to
the framework for the deployment of "general purpose architecture" functions. Its
job is to detect if a packet is part of a managed service and, in that case, it applies
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Northbound APIs

CHIMA

CHIMAclient
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: P4Runtime gRPC
: Communication

Figure 4.1: Logical placement of the framework’s components in the network and
their interactions

needed headers to ensure that routing and the execution of functions are correct.
The information used to distinguish packets is provided by CHIMA through a REST
API when the deployment of a service is created or modified.
In cases where the clients of services deployed by this framework belong to a class
of devices that are not suitable for the installation of such a component, the same
functionality could be moved to the P4 pipeline, albeit with significant engineering
effort.

P4 pipeline

The P4 pipeline used by the framework has to be installed on every switch of the
network. On top of providing basic forwarding capabilities, this pipeline supports
In-band Network Telemetry as described by the INT v1.0 specification document
[24]. The control plane components of both of these functions are part of the ONOS
controller, that instructs the pipeline by adding and removing rules to its tables.
In addition, this pipeline can be used as a base for the construction of extended
pipelines, that are created and installed at runtime by the CHIMA process. A more
detailed overview can be found in Section 4.4.1. The extended pipelines include P4
functions written by the user, which can be executed on a packet when signaled with
the addition of a label in the header applied by CHIMAclient. Other kinds of labels
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in the same header may also instruct the pipeline on how to forward the packet and
how to manage INT data, as will be explained in Section 4.6.3.

CHIMA

The CHIMA process is the core of the system. It manages all other modules through
different means of communication, in order to achieve the desired state. The task it
performs are:

• Construct and maintain an internal representation of the network topology,
including the presence of hosts that are correctly configured for a deployment.
This is achieved by registering itself to CHIMAstub, that starts to forward
relevant events to the framework’s own REST API.

• Collect INT data coming from switches, that forward reports to this process.
This data will be used for the computation of function placement and to detect
if any user requirement is exceeded.

• Compute a deployment strategy based on the available topology information,
the collected telemetry data and the requirements of the user requested service.
The current version of the project does not perform this computation and
assumes the best deployment to be known, since routing optimization is an
extensively treated problem in telecommunication literature. The placement
of the components of service function chains in particular, has been studied
both for the case of dynamic [37] and latency-aware [53] deployments. For
this reason, it was chosen to focus development efforts on other aspects of this
system.

• Perform deployments that require:

– Creation and installation of P4 pipelines that are extended through the
embedding of user functions.

– Management of user functions on general purpose architecture hosts.

– Delivery of routes to the CHIMAclient component on each of the involved
hosts.
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4.2. Service Definition

The services managed by CHIMA are those following the description given in Section
3.2.

Services are the units that the user provides to the framework to perform a deploy-
ment. To completely describe a service in a way that the framework can handle, the
needed information is:

• A list of the functions that make it up

• How the functions communicate between each other

• The location of the client that will use the service

In addition to their basic structure, additional demands can be set during their
request.

4.2.1. Requirements

The most prominent feature of CHIMA is to allow its user to define requirements on
the performance of the communication between functions. These requirements are
used to detect when the communications of a service experience a level of degrada-
tion that impair its effectiveness, and some of the functions need to be relocated in
the network to keep performance above their threshold. The process of relocating
components of the service is called redeployment and is described in Section 4.8.

The supported requirements are inspired by the ones specified by the Determin-
istic Networking (RFC8655 [22]) project, whose objective is similar to the one of the
framework in trying to achieve bounded latencies on unicast data flows.
RFC9016 [56] defines various requirements for a data flow, of which the ones sup-
ported by CHIMA are a subset. The limits of what is supported strongly depends
on the capabilities of the In-band Network Telemetry that the framework uses for
measurements.

For example, requirements on packet loss are not supported, since INT works by
embedding its telemetry data in the packet itself, which won’t be delivered if the
packet is lost. Requirements on bandwidth are not supported by the framework since
INT only provides information regarding single packets and not the link’s bandwidth
in its entirety. Requirements on packet misordering are not supported since CHIMA
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forces all the packets of a service to follow a single predetermined path, as explained
in 4.6, preventing the misordering of packets of the same communication.

The supported requirements are:

• The maximum latency experienced by a packet of the flow from its departure
to its destination. The maximum latency is specified as an integer number of
nanoseconds.
This requirement is supported, since the latency of packets can be directly
computed with ingress and egress timestamps provided by INT, with a res-
olution of nanoseconds. It is checked against the the sum of the latency on
the affected links and the time of execution of functions, which are obtained
through an extension of INT that will be explained in Section 4.7.6.

• The jitter, an instantaneous measurement of the latency variation experienced
by different packets on the same path.
This requirement is checked against the difference between the last and second-
last recorded values of latency for the considered path.

• The maximum latency variation, which is the difference between the minimum
and the maximum latency on a path, and can be used to capture the drift of
the latency values experienced by the service since the beginning of its opera-
tion.
This requirement is checked against the difference between the maximum and
minimum recorded on a path since the deployment of the service. It is ex-
pressed in nanoseconds.

Each of these requirements can be specified for single functions or for the service in
its entirety.

• When requirements are set for a function, they refer to the path used by
packets to reach the function, starting from the client. This definition enables
users to express constraints on the state of the network as seen by the function
itself, instead of relying on the incremental definition of limits for the segments
of the path..

• When a requirement is set for the whole service, the measurements consider
the full end-to-end path. This means the whole route from the client to the
last function and back is used in the computation of latency, jitter and latency
variation.

Figure 4.2 shows the extent of the paths on which requirements would be computed
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on a service chain of 3 functions. For example, the total latency considered for
requirements set on function 2 would include: the latency on the links between the
client and function 1, the execution time of function 1, and the latency on the links
between function 1 and function 2.

FUNCTION

1
FUNCTION

3
FUNCTION

2 Endpoint

Global requirement path

F1 path
F2 path

F3 path

Figure 4.2: Visual representation of the section of path that is considered in the
computation of different requirements

Details on the computation of the path-wise metrics can be found in Section 4.7.7.

4.2.2. Definition format

CHIMA accepts service specifications through a YAML file. The following is an
example of its structure.

1 ---
2 service:
3 client: 10.0.0.200
4 port: 12345
5 latency: 150000
6 jitter: 1000
7 variation: 10000
8 functions:
9 changettl:

10 type: switch
11 file: $HOME/measurements/switches/functions/changettl.p4
12 control: changettl_control
13 next: toupper
14 toupper:
15 type: container
16 latency: 5000
17 jitter: 500
18 variation: 1000
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19 file: $HOME/measurements/switches/toupper.yaml
20 next: echo
21 echo:
22 type: container
23 file: $HOME/measurements/switches/echo.yaml

Service

The service object on line 2 includes information on the communication that the
service performs.

• client defines the IPv4 address of the device that is supposed to contact the
service. The CHIMAclient component has to be installed on this device.

• port defines the UDP port used by the application functions to communicate.
Only UDP applications are currently supported for the reasons explained in
Section 4.7.6. This information is used to target the application’s packets
when setting up INT rules on the switches.

• latency, jitter and variation allow the definition of requirements on the
end-to-end communication of the whole service

Functions

The functions object at line 8 defines the functions that compose the service chain.
Each function is uniquely identified by its name, and has the following attributes:

• type: the type of function, that expresses the kind of device on which it will
be installed. Allowed values for this attribute are switch and container, and
it determines the rest of the functions object attributes. This attribute is
mandatory.

• latency, jitter and variation are optional attributes that can be used
to define a requirement on the corresponding telemetry data of the function.
They are expressed in nanoseconds, and represent the maximum value the
corresponding measure can reach before triggering a redeployment of the ser-
vice. At the time of deployment, the framework creates a trigger that will be
checked against INT data every time it is updated.

• next: this attribute can be used to define the order of execution of the func-
tions in the service. Its value has to be the name of another function defined
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in the same file. Only one function is allowed to lack a next attribute, and it
will be treated as the end of the chain.

The remaining attributes, that depend on the value of type, provide the location of
the actual code that implements the function.

• For container types, only the file attribute is needed. It is a path to the
Compose file [4] that defines the set of containers that constitute the function.
The deployment of this kind of files will be explained in detail in Section 4.5.

• For switch types, both a file and control attributes are needed. The former
is the path to a P4 file that contains one or more P4 controls with a known
signature. The latter is the name of the control that represent this specific
function.
The way in which the control is integrated in the template program of a switch
and installed on it will be explained in detail in Section 4.4

4.3. Topology graph

After the user has properly defined and submitted a service to be deployed, CHIMA
has to map its components on the physical network. It goes without saying that a
crucial step towards this objective is to locally construct a precise representation of
the network, on which the best placement of components can be computed. The
ONOS SDN controller, that the framework already exploits to control programmable
switches (Section 4.4), maintains detailed topology information that can be queried
through its northbound APIs.

The data needed for the optimization of functions placement is:

• The set of switches in the network, referred to as devices by ONOS

• The links between devices’ ports

• The set of hosts, the devices they are linked to, and their IP addresses. The
addresses will be used to determine whether they are correctly configured for
function deployment and to actually perform it.

Of course networks are subject to frequent changes, and a snapshot of their topology
is not enough for correct management. The framework has to keep up to date with
the current state of the system and react accordingly. For this reason, topology
information is obtained through the use of CHIMAstub.
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4.3.1. Events detection

Polling ONOS’s APIs at regular intervals to detect changes would result in a waste
of resources and introduce delays in the response, depending on the polling rate.
Instead, the creation of a publish/subscribe system for topology events has been
implemented in CHIMAstub.

The stub extends ONOS’s REST API with methods to subscribe or unsubscribe
from the distribution of events. The framework, instead, exposes another REST
API through an internal web server, with methods that can be called by the stub to
publish an event. When CHIMA is started, it tries to register to the stub with the
information needed to contact its own API as an argument. At the time of a new
subscription, the stub collects topology data through ONOS’s northbound and sends
it to the subscriber as a series of events. At the end of this process, the framework
has received all the information needed to construct an internal representation of
the current state of the network.

After this setup phase, the stub can use the same APIs to push events to the
framework when needed, and allow their processing as soon as they are detected
by the controller. This is achieved through the implementation of listeners for the
relevant classes of events.

4.3.2. Initial telemetry

Before the service is deployed, CHIMA performs a period of measurements on the
communications of the whole network, by specifying its subnet in an INT intent.
This allows a baseline evaluation of latency and jitter for each of the links. With
this information, an optimization problem can be solved to determine a mapping
of functions to devices, and a path that allows them to communicate in a way that
satisfies each of their requirements. Assuming such a configuration exists in the
observed state of the network, the deployment of functions is executed as instructed
by the model.

4.4. P4 functions deployment

The process of deploying arbitrary P4 functions on switches that have to simultane-
ously perform forwarding and In-band Network Telemetry is not trivial. Since P4
switches only support the execution of a single program, the framework needs to
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merge the basic functionalities and the custom ones to create a single pipeline.

4.4.1. Template pipeline

The solution adopted to allow the integration of user provided functions is the cre-
ation of a pipeline with an extensible section, in which the execution of additional
controls can be plugged in. Using a template system, user code can be injected in
sections whose execution is controlled by the framework, and only happens if the
packet is part of a specific service.

Parser Packet processing Deparser

INT report

Ethernet

MPLS

IPv4

TCP/UDP

INT data

Eth

IPv4

TCP UDP

INT

MPLS

Forwarding Routing INT User
Functions
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Figure 4.3: Stages of the template pipeline

Forwarding

The most basic function of a data plane program is the forwarding of packets. Since
this pipeline is based on the basic.p4 pipeline included in ONOS, the mechanism
it uses forwarding is inherited. When a new packet begins ingress processing, it
is checked against a tables of known rules that determine its egress port. If this
process results in a table hit, the egress port is set. Otherwise, the packet is sent to
ONOS, that determines the correct egress port to reach the destination using the
ReactiveForwarding application, and installs the corresponding rule on the switch.

Routing

The routing of packets between functions of a service managed by CHIMA is handled
separately, and bypasses usual forwarding. The way it works is explained in Section
4.6
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INT

The implementation of In-band Network Telemetry is inherited from the ONOS
int.p4 pipeline. This program closely follows the one suggested in the INT v1.0
specification [24]. The control plane entity that maneuvers this part of the pipeline
is the inbandtelemetry ONOS application, which is able to translate INT intents
into the rules to be installed in the tables of switches. More details on the use of
INT can be found in Section 1.5.

User functions

At this point, the template pipeline has no instructions. Instead, tokens that are
well known to the framework are placed to signal the spot where user provided code
can be inserted. The tokens are a series of characters that do not constitute valid
P4 code, and thus should not be found anywhere else in a valid program, nullifying
the possibility of clashes. The use of a token for the injection of code instead of
a hard-coded offset makes it possible to change the basic functionality of switches
without altering the framework.

When a new switch is added to the network, the template pipeline with all of its
tokens substituted by blanks is used to initialize it. At a later time, when CHIMA
determines one or more P4 functions of a service have to be deployed on a switch,
a merged pipeline that include all their code is created.

The insertion of user-provided code is divided in three sections:

• Insertion of the p4 files for each of the functions, using the #include prepro-
cessor directive.

• Instantiation of the corresponding controls, which according to the P4 speci-
fication [7] is needed to invoke the services from another control (the one that
manages the execution of functions, in this case).
The identifier used for their instantiation is composed by the original name
of the control and a number that uniquely identifies it. This way, the same
control can be submitted by the user as two different functions without the
risk of name clashes.

• Creation of a series of conditional function calls, that will allow the execution
of the controls for packets that belong to the correct service.
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4.4.2. Setting up the pipeline

Once the merged pipeline is ready, it has to be compiled and installed on the right
switch.

Building

The framework compiles the resulting P4 program using a Docker image of the p4c
compiler. At the moment, the bmv2 software switch is the only one supported by
the framework, but it could easily be extended to any other hardware that provides
a p4c backend.

This process generates two files:

• A json file, which represents the pipeline itself and can be installed on the
switch to alter its behavior.

• A p4info.txt file, which describes the tables defined in the pipeline, and is
used by the control plane to understand how to interface with the running
program.

CHIMA uses the identifier of the destination device as an output name for the files,
so that new versions of a pipeline that target the same device will overwrite older
ones. This happens when the set of functions it has to execute changes. At this
point, the compiled pipeline can be installed on the switch.

Installing

P4Runtime [6] is an API through which control plane entities can change or interact
with the components of a programmable data plane defined with a P4 program. This
API consists of a set of RPCs (Remote Procedure Calls) defined in the format used
by the open-source gRPC framework. Unlike platform specific APIs (such as Thrift
in the case of bmv2), P4Runtime is compatible with all P4 programmable devices,
ensuring this solution is portable to devices that are not currently supported by the
framework.

The installation of a pipeline at runtime can be achieved with the SetForwarding-

PipelineConfig RPC call. Rather than directly executing the procedure, CHIMA
carries it out by exploiting its implementation in ONOS, which is the same used
for the initial configuration of switches. Since it already relies on ONOS for the
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management of tables of forwarding and INT, like it was explained in Section 4.4.1,
letting ONOS perform the installation of the new pipeline ensures that the correct
handling of those functions is maintained after the substitution.

The process to perform the substitution involves the following steps.

• The framework fires a request to the REST API of the ONOS Stub, providing
the ID of the target device, and the paths of the json and p4info.txt files
obtained in the building step.

• ONOS does not work with pipelines directly, but uses data structures that
integrate the P4 program with classes, called Behaviours, that instruct the
controller on how high level intents can be mapped to the pipeline’s tables.
These aggregates are called Pipeconfs.
The Stub creates a Pipeconf with the pipeline files and the necessary Be-
haviours, assigning it an ID that is unique to the device it will be installed
on.

• The Pipeconf is bound to the device in ONOS’s distributed map, and the
SetForwardingPipelineConfig call is executed. In addition to this, the in-
stallation process involves the reconciliation of the set of rules installed in the
device’s tables, which is performed asynchronously.

• In the meantime, the framework polls the Stub’s REST API at regular intervals
to monitor the state of the installation. When the response finally becomes
positive, the process is complete and the switch can be considered ready. The
user provided functions in its pipeline can now be used as part of a service
deployment.

Downtime

In general, the time it takes for devices to reconfigure their pipeline may cause
significant downtime. However, platform specific features, especially for hardware
switches, can greatly accelerate this process. For example, Barefoot Tofino pro-
grammable switches provide a feature called Tofino Fast Refresh [9] that grant the
substitution of arbitrarily complex P4 programs in less than 50ms.
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4.5. General purpose functions deployment

For the reasons outlined in Section 3.2.1, general purpose functions must be provided
by the user in the form of Docker containers. However, a single Docker file may not
be enough to completely define how a container should be run. For example, the
user may need to define custom bindings for the exposed ports, or run an additional
containers that provide a software components used by the main one.
The definition of these settings could have been accomplished with a custom seri-
alization schema, and executed by the framework using the Docker Engine SDK to
maximize the control on how the deployment process is carried out. Instead, it was
chosen to use Docker Compose, a tool for running multi-container application de-
fined with Compose files [4]. This way to define deployments is already well known
to Docker users and widely adopted by the industry. On top of its convenience, it
provides every features that the framework would need from a custom solution:

• In the definition of containers, it exposes all the options that would be available
to the user through the docker run command.

• Supports both images from the Docker Hub repository and ones that have to
be built from a Docker file at the time of deployment.

• It can perform deployments on remotely exposed Docker Engines, and auto-
matically manages the transfer of the local files needed to build containers on
other hosts.

Therefore, a general purpose function can be considered completely defined by a
Compose file.

4.5.1. CHIMA network

To ensure that packets sent and received by general purpose functions are prop-
erly routed by CHIMA, Compose files are processed by the framework before their
deployment to add network related configuration. As will be specified in Section
4.6, each function of the same service will be assigned an IPv4 address belonging
to a common subnet. This is implemented by injecting the definition of a Docker
network with such subnet in the Compose file, and the addition of the address to
the section that describes containers.
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4.5.2. Preloading

Loading the containers that implement a function is a very time consuming oper-
ation. If images from Docker Hub are used and they are not locally available on
the target host, they have to be downloaded. Of course this process depends on the
size of the image and the bandwidth available to the host. Furthermore, the time
to build user defined containers has to be taken into consideration.

If this process had to be executed when performance degradation is detected, it
would dramatically increase the time to accomplish a redeployment. For these rea-
sons, CHIMA performs a preloading of the functions on all hosts before the service
is deployed. This way, at the time of redeployment, the only delay is the one caused
by the spin up of already accessible containers. This operation is carried out with
the docker-compose build command.

4.5.3. Running

After the containers have been preloaded, at the time of first deployment or rede-
ployment of the service, CHIMA can start the function on the predetermined host
by running a docker-compose up command as a subprocess. To target the correct
device, the DOCKER_HOST environment variable is set to the address of its Docker
Engine.

4.6. Routing

After all the functions have been handled, the correct routing of packets between
them has to be configured along the prescribed path.

4.6.1. Addressing functions

For the service to be specified as the destination of a client’s requests, it needs to
be assigned an address. In the same way, general purpose functions must be able to
refer to each other in order to exchange packets. The address of an application, in
regular settings, is the one of the device on which it is statically deployed. However,
in our case, the components of a service can be moved on different hosts at any time
to satisfy requirements.

For this reason, CHIMA assigns an IP address belonging to an overlay subnet to
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each one of the general purpose functions. The same address is kept by the function
independently from its physical location, allowing other components of the same ser-
vice to communicate with it for its whole lifespan. To reach the service, the client
uses the IP address of the first function of the chain, and subsequent requests are
forwarded between pairs of functions. This problem does not affect P4 functions, as
they are transparently executed on switches along the path of the communication
used by general purpose components.

4.6.2. Routing solutions

The objective of the framework’s routing is to enforce the communication path
selected by the optimization model. Two solutions could be considered to achieve
this purpose.

Tunneling

Tunneling protocols are commonly used to allow the transport of packets on sections
of networks that may not support their network layer, or to secure the subject of
communication with encryption. Examples of tunneling protocols are GRE [35],
VXLAN [38] and GENEVE [23]. Their operating principle is based on the en-
capsulation of the original packet as the payload of the protocol’s header, that is
then regularly forwarded between two endpoints. As the name implies, the stream
of packets among endpoints creates the illusion of a "tunnel" that an application
can use to communicate with the other side, and that masks the complexity of the
underlying network.

A possible solution to the framework’s routing problem would be the encapsulation
of packets sent between functions of a service. This could be accomplished with
the creation of a tunnel whose overlay network is represented by the subnet of
the service’s functions, while the underlay is the physical network interconnecting
devices. The endpoints of the tunnel, in the underlay network, would be the two
devices that currently host the communicating functions.

In an ordinary setting, the control plane would autonomously determine how packets
are routed to reach their destination by populating IP tables, even splitting packets
between different routes if multipath routing algorithms are used. For this reason, to
ensure that the precomputed paths are followed, CHIMA would need to manipulate
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the forwarding tables of each device.

This would mean working against the strengths of tunneling, that is the possibility
to specify endpoints and letting the existing network layer handle routing. On top
of that, this approach presents two issues:

• Enforcing the use of a particular path based on the destination device would
force regular packets transiting the network to follow it as well. On top of the
fact that the route is chosen according to the service’s requirements and may
not be the best path in general, the inclusion of other traffic on the same links
may impact the measurement we are trying to comply with.

• In case two functions that belong to different services are be deployed on the
same device, they may be assigned different prescribed paths depending on
the expressed requirements. This cannot be enforced by using the destination
alone to select a path at the time of forwarding.

Both of these problems could be solved with the addition of parameters to IP rout-
ing tables to discriminate between regular traffic and managed service traffic, and
between the traffic of different services. However, this makes the solution even less
practical.

Segment routing

Segment routing (SR), defined in RFC8402 [20], is a routing technique based on the
source routing paradigm. In segment routing, the treatment that a packet receives
from a switch is determined by a set of instructions called segments, which can
be embedded in the packet at its source. Segments are referred to by a Segment
Identifier or SID, a value whose semantic is known by both the entity that attaches
it to packets and the switches that have to execute them.

Using SR it is possible to directly instruct devices on the forwarding to perform for
each packet with a proper sequence of SIDs, allowing those belonging to a service to
be routed on the predetermined path. It goes without saying that the granularity
of control granted by SR enables the use of different paths for packets of different
services even when their destination is the same, unlike the case of tunneling.

Since segments can represent any type of instruction, they can be leveraged to
perform other tasks other than routing. For example, three types of segments with
their own semantic are defined by the framework and are explained in detail in
Section 4.6.3.
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SR can be implemented on various data planes, but its specification refers to two
possibilities in particular:

• SR over an MPLS data plane, also called SR-MPLS (RFC8660 [10])

• SR over an IPv6 data plane, also called SRv6 (RFC8986 [21])

Since the template P4 pipeline used by CHIMA (Section 4.4.1) is based on existing
pipelines included with ONOS, and their implementation assumes the use of an IPv4
network layer, supporting SRv6 would have required to discard significant parts of
them. Instead, it was chosen to develop support for SR-MPLS in order to keep
the available code that interacts with components such as the inbandtelementry

ONOS application, that are fundamental to the framework.

4.6.3. SR-MPLS

As defined by RFC8660 [10], in SR-MPLS SIDs are represented as MPLS labels.
Apart from MPLS’s reserved label values (0-15), SIDs can be arbitrarily mapped
to the remaining values by defining Segment Routing Global Blocks (SRGB) and
Segment Routing Local Blocks (SRLB). The former are SIDs whose semantic is the
same across the whole segment routing domain, and have a scope that can span
multiple devices. The latter, instead, are blocks of SIDs whose semantic is specific
to the device that executes them.

CHIMA’s implementation of SR-MPLS uses no SRGB and three SRLBs, within
which only single-label SIDs are defined. Keeping in mind that MPLS labels are 20
bits long, their first two bits are used to identify their SRLB, while the remaining
18 can be interpreted as an argument for the action to be performed.

• The first local block is defined from 0x40000 to 0x7FFFF, and is used for the
execution of user defined P4 functions that have been deployed on the switch.
The last 18 bits of these labels are interpreted as the unique identifier of the
function to be executed.

• The second local block is defined from 0x80000 to 0xBFFFF, and is used for
packet forwarding instructions. The last 18 bits of these labels are interpreted
as an identifier of the interface on which the packet has to be forwarded. These
segments can be classified as Adjacency SIDs according to RFC8402 [20].

• The third and last local block is defined from 0xC0000 to 0xFFFFF, and is
used to implement a custom extension of INT for the measurement of the
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delay introduced by general purpose functions. This feature will be explained
in Section 4.7.6. The last 18 bits of these labels are interpreted as the ID of
the function that has just been executed, and to which the measured time is
assigned.

The procedure used by the template pipeline to evaluate segments is the following.

• The top-of-stack label is evaluated, and the instruction associated with its SID
is determined based on the SRLB it belongs to.

• The segment is executed with the last 18 bits of the label used as an argument.

• The Segment Routing NEXT operation [10] is executed by popping the eval-
uated label from the MPLS stack. This also happens for Adjacency SIDs,
implementing a Penultimate Hop Popping approach.

The evaluation of segments on a switch continues until new labels are available or an
Adjacency SID is found. The execution of those segments ends with the forwarding
of the packet to another device, which is the intended destination of the remaining
labels of the stack.

Example

Figure 4.4 shows how MPLS label stacks are used by the framework to perform rout-
ing. In the beginning, the stack includes instructions for all the switches along the
path. When the packet reaches switch S1, the label at the top of the stack (located
next to the Ethernet header) is evaluated. Its value is a Segment ID belonging to
the second local block, and is interpreted as a requests for the forwarding of the
packet to an adjacent switch, that in this case is S2. For example, the value of this
label could be 0x80002. After setting the correct egress port, the label is popped
from the stack, and evaluation is stopped. The next labels on the stack are intended
for the following switches on the path.

At S2, the first evaluated SID belongs to the first local block, and is interpreted as
the request for the execution of function 1 on the packet. An example of this label’s
value could be 0x40001. Since the execution of the segment does not prescribe the
forwarding of the packet, after this label is removed, the next one will be evaluated.
The following SID instructs on the forwarding to S4. Analogously to what happened
in S1, the egress port is set and the evaluation of further labels stops.

In S4, only a forwarding label to H1 remains. This is the Bottom Of Stack (BOS)
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label, and after its execution and removal, no MPLS header will be left. At this
point, the EtherType field of the Ethernet header is set to IPv4 (0x0800), and the
packet received by host H1 won’t need any special treatment.

S1

S2

S3

S4

H1
Eth

F1

Forward to S2
Execute F1

Forward to S4
Forward to H1

IPv4
...

Eth
Execute F1

Forward to H1
IPv4

...

Forward to S4

Eth
Forward to H1

IPv4
...MPLS

stack

Eth
IPv4

...

Figure 4.4: Example of the framework’s use of segment routing

4.6.4. Encapsulation and segment distribution

In CHIMA, the MPLS encapsulation of packets belonging to managed services is
performed by a software component installed on each of the hosts. This component
is called CHIMAclient. At the heart of CHIMAclient is an eBPF filter that inspects
the packets egressing the host. Packets of a particular service are identified using
the tuple of source and destination IPv4 addresses. If the tuple is known, it means
the filter has a label stack that represent the series of segments used to implement
the precomputed path. In this case, it inserts the stack of MPLS label headers
between the Ethernet and IPv4 headers. During this process, the EtherType field of
the Ethernet header is set to 0x8847 to allow proper parsing of the following MPLS
headers.

These stacks are computed by the CHIMA process based on the result of the op-
timization model, and then installed on the CHIMAclient of specific hosts by con-
tacting their REST API. The API exposes methods to bind a label stack to a new
source/destination tuple, change an existing one (in case of a redeployment) or re-
move a label stack entirely when the service is decommissioned.
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4.7. In-band Network Telemetry

Accurately measuring the latency experienced by packets is fundamental for the
objective of the framework. This is made possible by In-band Network Telemetry.
This section explains how it is employed by CHIMA.

As anticipated in Section 4.4.1, the INT implementation used by the framework
is derived from the int.p4 pipeline included in ONOS, which is designed to be
managed by the inbandtelemetry application. This implementation is based on
the reference program from the INT v1.0 specification [24], and uses embedded
metadata with headers located over TCP and UDP. The layout of INT data used
by the framework is shown in Figure 4.5.
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Payload

Eth
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Payload
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INT metadata
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S2 transit data

Figure 4.5: Structure of INT data embedded in transiting packets by the base
pipeline. Switch S1 acts as the source, initializing shim and metadata headers.

4.7.1. Telemetry commissioning

Measurement of certain flows can be requested by the framework in two situations.

• Before the deployment of a service, to obtain measurements on the whole
network. This information will be used by the optimization model to compute
paths and function placements.

• After a service is deployed, to keep monitoring its performance and detect
degradation.

Once the parameters of the flows are determined, CHIMA can demand the start of
their measurement by contacting CHIMAstub through a REST API. The parameters
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of this request are source and destination IPv4 subnets, level 4 port and protocol.
INT will be performed only for packets that match these specifications.

CHIMAstub creates an IntIntent with the mentioned information, and installs
it through inbandtelemetry. Intents created by the stub always request embed-
ded or “Hop-by-Hop” INT to be used, and the following metadata fields to be
recorded: SWITCH_ID, INGRESS_TIMESTAMP, EGRESS_TIMESTAMP. These are the only
fields needed to compute the metrics used by the framework.

At this point, the application will determine the rules to install on switches through-
out the network to obtain the desired result, and starts their distribution. Switches
will start adding metadata headers at each hop of the affected packages, and sending
INT reports to the collector when the packet reaches an host.

4.7.2. Collection of INT data

The CHIMA process includes an INT collector, implemented as an eBPF filter, as
one of its modules. When a report is received by the filter, the packet is parsed
and measurements are computed. These values are made available to the userspace
component of the collector by adding them to a hash map, that can be accessed
with the helper methods of the bcc package. The source of the obtained values is
identified by the pair of IDs of the switches at the two ends of a link.

All values collected by CHIMA are exposed to a server of the Prometheus monitoring
system. This allows users to directly inspect the performance of the network and
set up alerts and notifications if needed.

4.7.3. Computation of link measurements

Measurements are computed when an INT report is received by the collector, and
the measurements for a particular link is updated when the report includes data
regarding that link. For this reason, we can consider the series of measurements
of a link to be updated in discrete time steps t ≥ 0 with t ∈ N, where t = 0 is
the first time data for the link was included in an INT report. The values that the
collector provides to the framework are not those directly computed from the report,
as they can be subject to high variability. Instead, an Exponentially Weighted
Moving Average (EWMA) of the raw values is updated at each time step. This is
the measurement that is exposed to other modules of the system. The parameter α,
which acts as a smoothing factor, can be modified by the user when running CHIMA
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and will greatly influence the framework’s response to variations of the metrics. This
point will be discussed in Chapter 5.

Latency

The latency of a link l (that connects switches a and b) at time t, is computed as the
difference between the egress timestamp of the source and the ingress timestamp of
the destination.

latencylt = latencya→b
t = ingressbt − egressat (4.1)

The obtained latency value has a resolution of nanoseconds, just like the timestamps
provided by the P4 pipeline. Of course the obtained value can be considered relevant
only if the clocks of the two devices are synchronized. This aspect will be treated
in 4.7.4.

Defining the average latency value for link l at time t as latency_ewmalt, the com-
putation of the new average value is performed in the following way.

latency_ewmal0 = latencyl0

latency_ewmalt = (1− α) latency_ewmalt−1 + α · latencylt

(4.2)

(4.3)

Jitter

A value of jitter for single links is also computed by the collector. The raw jitter for
link l at time t is obtained as the difference between the latency of the link at the
current time step and the last available one.

jitterlt = latencylt − latencylt−1
(4.4)

Even though jitter is usually considered as the absolute value of this amount, the
sign is retained to allow the computation of a path-wise jitter by summing the jitter
of single links, as shown in Section 4.7.7.

Defining the average jitter value for link l at time t as jitter_ewmalt, its value is
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computed as follows.

jitter_ewmal0 = 0

jitter_ewmalt = (1− α) jitter_ewmalt−1 + α · jitterlt

(4.5)

(4.6)

4.7.4. Switches synchronization

Synchronization of clocks between separate devices is a well known problem, and the
computation of latency performed by the collector directly depends on the ability
of the switches to overcome it.

As stated in Section 3, the project was tested using bmv2 software switches, for
which this concern is mentioned in the provided documentation [2]. The internal
clock of these switches is initialized at 0 at their startup, making their timestamps
represent the number of elapsed nanoseconds from the moment they started running.
Of course this values cannot be used to collect relevant data. Instead, as suggested
by the documentation, a patch to use the system clock as initial value for the switch’s
clock was introduced to the bmv2 switches used to test the project. Naturally, this
approach is made possible by the fact that the instances of bmv2 used for testing
run on a single machine, whose system clock acts as a global clock. In case the
switches were deployed on different machines, or in the much more relevant case of
hardware switches, this would not be possible.

The synchronization of real switches, instead, can be achieved with multiple proto-
cols that are commonly used in the industry. The most notable mentions are NTP
(Network Time Protocol) and PTP (Precision Time Protocol) [47]. However, while
NTP is capable of a synchronization accuracy of ∼ 1 to 100ms, the nanosecond
resolution of INT timestamps would require the higher accuracy provided by PTP
(∼ 100ns to 1µs) [57]. Synchronization protocols that directly exploit programmable
data planes and run on P4 switches such as those required by the framework have
also been designed, and could achieve an accuracy in the order of tens of nanoseconds
[31].

4.7.5. MTU concerns

The addition of INT headers at each hop (12 bytes in the case of metadata used by
the framework) could cause the packet size to exceed the allowed MTU in situations
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where the number of hops in the path is large or the original packet size is already
close to the limit. The only measure taken by the current version of the project
to mitigate this problem is to avoid initializing or adding telemetry data in case its
length would cause the packet size to become greater than the MTU. This solution is
not optimal, since it would cause the framework to lose the measurements associated
with packets affected by this conditions.

However, multiple solution could be adopted in a real setting.

• Instead of the INT v1.0 specification, that stores telemetry data in the packet
itself until a report is created, the modes defined in newer versions of the
specification could be used. An example is the INT-XD or “Postcard” mode
defined in the INT v2.1 specification [25]. The behavior of this mode is to
directly send new telemetry data to the collector with a report packet, without
the need for any modification of the monitored packet.

• In case the interfaces of the devices in the network support them, Ethernet
jumbo frames could be enabled, making the transmission of much bigger pack-
ets possible.

4.7.6. Measurement of general purpose function times

One of this project’s targets is to enable its users to enforce an upper bound on values
such as the time it takes for a packet of a request to reach a particular function. The
latency of links is not enough to evaluate this amount of time, since a significant
part of it is due to the time needed by all previous functions to complete their
execution. While P4 functions are guaranteed to run in constant time thanks to the
peculiar features of the hardware they are installed on, general purpose functions
cannot assure the same level of stability. Therefore, a technique to measure the time
of their execution had to be designed.

The time of execution of a general purpose function can be defined as the difference
between the time at which the function starts managing a request and the time at
which the request is completed. By this definition, applications where a request can
span multiple packets would make it necessary to determine which packets belong
to the same sequence and to evaluate them as a whole, introducing issues such as
their buffering. This is especially true for TCP applications, where packets represent
sections of a communication stream. For this reason, the current state of the project
focuses on the measurement of UDP functions in which each packet contains a single



46 4| The CHIMA framework

execution request. This means that we can correlate the time needed by the packet
to traverse the function’s host and the time of execution of the function itself.

INT extension

CHIMA reaches this goal by extending the INT pipeline. The third Segment Rout-
ing Local Block defined in Section 4.6.3, with label values between 0xC0000 and
0xFFFFF, is used to implement this feature.

Usually, when the pipeline is about to forward a packet with embedded INT data to
a host, the data is removed and an INT report is created and sent to the collector, as
shown in Figure 4.6a. This operation makes the packet received by regular devices
identical to the one that was sent by its source, allowing the use of In-band Network
Telemetry to be transparent from their point of view. This behavior can be altered
with SID 0xC0000. The execution of this SID informs the switch not to act as a
sink when forwarding the packet to a host. This means existing INT data will be
left in the packet, and new INT transit headers will be added before the packet’s
egress. The egress timestamp included in these headers will be considered the start
of the function’s execution.

At this point, since the pipeline implements INT over UDP, the function will receive
a packet whose payload includes all INT headers accumulated so far. This fact
requires the function to be aware of this data, and to actively cooperate to the
measurement. The function must only take the real payload into consideration
by reading the size of INT data from the INT shim header [24] and skip ahead
by that amount. This step can be accomplished by an explicit declaration of this
logic by the developer, or with the use of a library that transparently performs these
operations while providing the developer with the same output it would expect from
native function calls. The resulting packet will include the INT data collected up
to that point and the payload modified by the function. When it will be emitted,
CHIMAclient will encapsulate it with the appropriate label stack that will include
a segment to record the end of the execution time, as shown in Figure 4.6b.

This segment will be located at the top of the stack, so that the first receiving
switch will execute it. The value of the last 18 bits of the label is a unique identifier
of the function, that will be used by CHIMA to match the computed execution
time to the correct task. The presence of such a segment instructs the pipeline to
perform a bitwise OR of its value with the 18 most significant bits of the 32 bits
wide switch_id transit header [24]. switch_ids are assigned to devices by the
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inbandtelemetry ONOS application and, considering that the maximum number
of supported switches is 99 (using the least significant 7 bits at most), the two
values will never overlap. The same result could be obtained by adding two sets of
INT transit headers in the first hop: one for the switch, and one for the function.
However, since the included timestamps would have the exact same value, it was
chosen to fully exploit the available and unused bits of the switch_id field with this
solution. The ingress timestamp embedded by this switch will mark the end of the
function’s execution, enabling the computation of its extent.

INT
Report

Previous INT

... ...S1 F1

(a) Regular processing of an INT packet when forwarded to a host
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...
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MPLS: 0xC0000
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(b) Additional measurement of the function’s time using Segment IDs

Figure 4.6: Comparison of the content of packets and the forwarding behavior with
regular INT and with CHIMA’s extension
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4.7.7. Computation of path measurements

Requirements set by users on the whole service or a function don’t refer to single
links, but to section of the service’s path. To check if the requirements are not
exceeded, path-wise measurements of the corresponding quantities must be com-
puted from the ones of single links. During this process, the performance of general
purpose functions executed along the path, obtained with the method from Section
4.7.6, is handled as if they were links to traverse. The considered section of path for
each of the requirements is determined as explained in Section 4.2.1.

Total latency

The total latency along a path is computed as the sum of the latency measurements
of the links that compose the path.

Assuming the set of links belonging to the path is denoted as P , the value at time
t is:

total_latencyPt =
∑
l∈P

latency_ewmalt (4.7)

Total jitter

Keeping in mind that the values of jitter provided by the collector are signed, the
jitter of a path can be computed as the sum of the jitter values on the links that
compose the path.

Assuming the set of links belonging to the path is denoted as P , the value at time
t is:

total_jitterPt =

∣∣∣∣∣∑
l∈P

jitter_ewmalt

∣∣∣∣∣ (4.8)

Latency variation

The latency variation refers to the difference between the minimum and maximum
value of total latency ever recorded for a path. Its computation is achieved by
keeping a record of the two extreme values for each of the paths that are subject to
this requirement.

Assuming the set of links belonging to the path is denoted as P , the value at time
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n is:

latency_variationP
n = max

t∈[0,n]

{
total_latencyPt

}
− min

t∈[0,n]

{
total_latencyPt

}
(4.9)

4.8. Redeployment

Each time path-wise metrics are computed, CHIMA compares the obtained values
with the corresponding requirements. As soon as one of these limits are exceeded,
the redeployment process is started in an attempt to mitigate it. The course of
action that leads to the detection of such states is represented in Figure 4.7. The
same would happen in response to a topology update that disrupts the path used
by a service. The focus of this procedure is the speed at which the service can be
brought back to a requirement compliant state.

New INT report
received by the

collector

EWMA values for
latency and jitter

updated with new
measurements

Userspace module
of the INT collector

polls the EWMA 
(link-wise) values

New path-wise
metrics are computed
for each requirement

Path metrics are
compared to max

values set by the user

Exceeded? Yes REDEPLOY

Figure 4.7: Series of events that lead to the detection of an unmet requirement

First of all, the computation of a new placement for the affected service’s functions
and their routing has to be carried out. Besides ensuring that the new deployment
meets every requirement, the model used in this process should minimize the number
of components to move, since the deployment time of functions of both types is the
most significant contribute to the time for a redeployment to take place. This will
be outlined in Section 5.
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When a new optimal placement becomes available, the framework must determine
which components already reside on the correct device and which have to undergo a
new deployment. This is done by comparing the new direction with the internal data
structures that describe the current state of the service. Such portions of metadata
are moved from the old deployment instance to the new one, leaving behind only
the data of components to be removed after the redeployment is complete.

At this point, the actual deployment of moving functions must be carried out, as
described in Sections 4.4 and 4.5. The necessary procedures for each of the target
devices are performed simultaneously. In the meantime, if the redeployment wasn’t
caused by the complete unavailability of a link, the original deployment of the service
is not affected and is still able to serve the client, even though its performance is
degraded.

After the completion of all parallel installations, the communication can be safely
steered towards the newly deployed functions by updating the label stacks used by
hosts. This is achieved with requests to the API exposed by relevant instances of
CHIMAclient. With this step the performance of the service is finally restored.

4.8.1. Cleanup

After all time-sensitive tasks are completed, unused components of the old deploy-
ment must be removed to reclaim resources. In practice, this only involves tearing
down the Docker containers of general purpose functions. P4 functions installed on
switches don’t impact the device’s performance if their execution is not requested
through a Segment ID, and will be removed with the installation of a new program
if needed at a later time.
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Measurements for the evaluation of the framework’s performance and an assessment
of its success in satisfying objectives will be presented in this chapter.

5.1. Methodology

Among the objectives set in Section 3.3, only the last two can be objectively mea-
sured. Both refer to the amount of time needed by the framework to complete
operations that are crucial for the success of a redeployment. For this reason, a
method to measure the time at which different events happen across components of
the simulated system had to be put in place.

5.1.1. Collection of measurements

The code of the framework’s components have been instrumented so that when
an event that is relevant to the measurement of redeployment times happens, a
timestamp with nanosecond resolution will be taken. These timestamps, with the
corresponding description of the events they refer to, are written to a single file
that can be parsed at a later time to extract precise time spans between episodes.
During the automated execution of test cases, that will be explained shortly, a record
of these amounts is saved with information about the setup that generated them,
including the topology used and the values of variable input parameters.

The complete list of measurements of a test run is shown in Figure 5.1.

Each of the data points presented in the following sections has been obtained as the
mean value of 30 samples.
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Figure 5.1: Representation of the timestamps collected during one test run, and their
relationship in time. The time spans considered for the computation of detection
and redeployment performance are highlighted in red.

5.1.2. Test setup

Running a test case to measure the performance of a redeployment involves the exe-
cution of multiple steps over different processes. Since the order of these operations
is important for the collection of meaningful data, a parametric expect script has
been developed to easily and consistently run them. During these operations we
assume that ONOS is running and all needed applications (including CHIMAstub)
have been activated on it.

Topology

First of all, a fresh instance of the target test topology must be started. Even if
successive tests are performed for the same topology, the older instance is torn down
and started again to avoid possible influences on performance.
Topologies are simulated in FOP4 [43], an extension of mininet that allows the use
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of Docker containers as hosts and bmv2 [1] instances as switches. The hosts used
in these tests are custom Docker-in-Docker (or dind for short) images, modified to
allow the installation of the eBPF filter used by CHIMAclient with the bcc python
package. These containers are configured to expose their Docker engine as specified
in Section 3, and to run CHIMAclient at their startup.
After the topology has started up completely, a pingall command is used to make
hosts exchange packets in order to allow ONOS to detect them.
One of the interfaces added to the switches of the simulated network will be a virtual
interface that links the simulation namespace and the root network namespace of
the machine. In this way, it will be possible for regularly run programs to act as
clients for the deployed application.

CHIMAclient and CHIMA

As stated above, thanks to the virtual interface, programs that should be run by
a client device can be started without additional configuration. The first one will
be an instance of CHIMAclient, that will bind to the virtual interface to install its
eBPF filter on it. CHIMA is started as well. It will registers to CHIMAstub to
collect topology information and perform initial telemetry on the communications
of the network. In order to receive INT reports, it will bind the eBPF component
of its collector to the same interface.

Test service

At this point, everything is in place for the deployment of a test application. This
dummy service has been designed with the goal of using the same client logic across
all tests, but with the possibility of using a variable number of functions depending
on the desired complexity for the particular case. The client application sends a
packet with a string as payload, and expects a modified version of the string (on
which each function applies a different transformation) to be returned.
A command to request the deployment of the service is fired to CHIMA, and as
soon as its deployment is completed, communication can start.

Introduction of the perturbation

After the completion of the deployment, the client application can be started. Pack-
ets are sent at regular intervals, and CHIMA starts collecting measurements of their
performance.
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To simulate the introduction of a perturbation that will cause requirements to be
unsatisfied by the current state of the service, an extension of FOP4’s CLI has been
written to allow the introduction of delays on particular links. When it is executed,
the first of the timestamps described in Section 5.1.1 will be recorded. Since teleme-
try data is carried by packets, the time at which the first packet is sent after the
introduction of delay is relevant. This event, together with the time at which it is
received, are timestamped as well.

Redeployment

When the metrics computed by CHIMA finally exceed one of the requirements,
a timestamp for the moment of the detection is recorded. At the same time, a
redeployment is triggered. As explained in Section 4.1 the new target placement
for the service is already known, and only has to be deployed. Various steps during
this process are timestamped, some of which happen in parallel, as described in 4.8
and shown in Figure 5.1. When the new state of the service becomes ready, one last
timestamp is taken.

Cleanup

After a successful redeployment, measurements for the test have been completed.
All the processes that have been started for the test can be shut down. This includes
the topology simulation, CHIMAclient, CHIMA and the dummy service’s client.

5.1.3. Hardware

All measurements have been performed on a bare-metal installation of Ubuntu 20.04
LTS, running on an Intel Core i7-6700 CPU with 64GB of RAM.

5.2. Measurements

5.2.1. Detection delay

The first set of measurements have the objective of determining how much time is
needed by the framework to detect the introduction of a perturbation, depending
on the values of user-configurable parameters.

As highlighted in Figure 5.1, the detection delay is computed as the elapsed time
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between the first packet sent after the beginning of the adverse event, and the
detection of an exceeded requirement by CHIMA. There are multiple reasons for
this choice.

• Since the framework uses embedded INT for telemetry, information on the per-
formance of a path cannot be known until a packet is sent on that path. At the
same time, the service is not affected by the change until some communication
is performed.

• The time span between the artificial introduction of a delay and the first chance
of receiving telemetry data is highly dependent on the frequency at which the
service performs transmission, which is not a characteristic of the framework
itself.

The time spans that contribute to this amount are laid out in Figure 4.7. Assuming
the properties of topology and service to be constant, we can consider the detection
delay as defined above to be a function of the polling interval and the EWMA
coefficient.

The topology and service used for these test is shown in Figure 5.2. The service
is initially deployed on the devices of one branch of the topology. Green functions
belong to this original layout, and green links are those carrying packets for their
communication. A lightning bolt marks link on which an artificial delay that ex-
ceeds the maximum latency requirement on the first function is introduced. The
redeployment procedure will transition the service to the state highlighted with or-
ange functions and links. In all tests, the application is configured to generate a
packet every 100ms.
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Figure 5.2: minimal test case with 4 functions, 2 of which are general purpose and
2 P4 ones. All the functions are relocated after the introduction of a delay

Polling interval

The first parameter that influences detection times is the rate at which the userspace
component of the eBPF INT collector in CHIMA polls new EWMA values of latency
and jitter. Apart from the varying value for the polling interval, these measurements
have been performed with a value of α = 2−3 for the computation of the EWMA.

In the same figure, the time taken by a request to traverse the function chain end-
to-end is plotted in red. This duration is only a characteristic of the studied service
and topology, but can have important effects on the detection time, delaying the
moment in which the first affected INT report is received.
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Figure 5.3: Delay in the detection of an exceeded requirement with different intervals
for the polling of new measurements from the INT collector. 95% CI.

As expected, the results of Figure 5.3 present a clear linear trend, directly propor-
tional to p.
The recorded values can be thought as the sum of two contributes. The first one
is represented by the time needed for the EWMA of the affected measurement to
converge to a value that surpasses requirements. This only depends on the used
value of α, which is constant for the whole graph. The second one is the delay
caused by the polling interval. Since the moment in which the EWMA reaches the
threshold in kernel space is independent from the one in which it will be polled by
the userspace, its expected value will be equal to

p

2
for a polling interval of p. This

fact is reflected by the slope of the curve, for which |d1 − d2| ≈
∣∣∣p1
2

− p2
2

∣∣∣, where dn

is the detection delay measured with a polling interval of pn.

These measurements reveal that to achieve minimal detection times, the lowest value
of p that doesn’t cause excessive system load should be used.

EWMA coefficient

The second examined parameter is the coefficient used in the computation of the
Exponentially Weighted Moving Average, explained in Section 4.7.3. While running
these tests, the Polling interval has been set to 0.1s.
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Since the computation of EWMA is performed in an eBPF filter, and it has to be
computed for each of the measurements of a received INT report, its performance is
crucial. For this reason, it is implemented with bit-shift operators, and only allows
users to configure exponent k ∈ N where α = 2−k.

As for the previous case, the travel time of packets is plotted in red.

2−7 2−6 2−5 2−4 2−3
0

1

2

3

4

EWMA α

T
im

e
[s

]

Detection[s] Travel[s]

Figure 5.4: Delay in the detection of an exceeded requirement with different coeffi-
cients for the computation of the EWMA on link measurements. 95% CI.

In the computation of new values, detailed in Section 4.7.7, greater α results in more
weight given to recent data rather than the old average. This is clearly shown by
Figure 5.4, in which smaller coefficients cause the time needed for convergence to
the new value of latency to grow exponentially.

This data confirms the effectiveness of the use of α as a smoothing parameter, that
can be used to tune the response of the framework in case of short-lived congestion
events. A high value will correspond to a very fast response, but could be too
aggressive and cause frequent and unneeded redeployments. Therefore, the optimal
value for this parameter should be determined based on the intended application.
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5.2.2. Redeployment time

Another crucial measurement to outline the framework’s performance is the time
needed to complete a redeployment. Of course this time is heavily dependent on the
considered topology and service. The test cases used to obtain the following values
are, besides the minimal topology of Figure 5.2, the ones shown in Figure 5.5.
The medium (Figure 5.5a) and large (Figure 5.5b) cases are extensions of minimal,
causing the redeployment of 6 and 8 functions respectively. Instead, the mesh case
(Figure 5.5c) is much simpler and only needs the redeployment of a general purpose
function in the middle of the chain. The unbalanced case (Figure 5.5d) presents
a situation in which many functions are deployed together, but the redeployment
involves only one function of each kind. Finally, the datacenter (Figure 5.5e) case
only needs the redeployment of a P4 function, thanks to the highly redundant spine
leaf topology.
Table 5.1 presents a comparison of the relevant characteristics between test cases.

Topology Switches Containers P4 functions

mesh 7 3 (1) 0 (0)

datacenter 6 2 (0) 1 (1)

unbalanced 4 4 (1) 2 (1)

minimal 5 2 (2) 2 (2)

medium 7 3 (3) 3 (3)

large 9 4 (4) 4 (4)

Table 5.1: Characteristics of the presented test cases. The number of functions that
will be moved in each case is stated in parenthesis.

The results presented in Figure 5.6 show the variation of the total redeployment
time for these services and topologies, along with the most significant contributing
factors. Additionally, all recorded contributes are detailed in Table 5.2.
The temporal relationship between these sums is highlighted in Figure 5.1: while
the adjustment of internal metadata is executed after all other operations have been
completed, the installation of P4 functions happens in parallel with the startup of
containers and the distribution of new paths. For a correct evaluation, it’s also
important to keep in mind that the installation of multiple functions of the same
type is executed simultaneously rather than sequentially. This means the recorded
times will be equal to the delay caused by the slowest one.

Apart from the mesh case, with only a general purpose function to be moved, chang-
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ing the P4 program of affected switches proves to be the dominant factor across the
redeploy procedure, causing the total time to be in the order of seconds. As ex-
plained in Section 4.4, this operation is executed by ONOS. The two contributing
factors to this delay are the time needed to reconfigure the switch’s pipeline, and
that required to reinstall the correct set of rules in the pipeline’s tables.
While the former is caused by the use of the bmv2 software switch, and could be
reduced to tens of milliseconds with specific hardware features (Section 4.4.2), the
latter is mainly due to the fact that ONOS’s management of programmable data
planes is not structured for frequent and time sensitive pipeline changes. The intro-
duction of improvements to target this specific use case could drastically decrease
delays.

The second biggest time is caused by the startup of Docker containers, which while
being in the same order of magnitude, always result to be significantly faster than
P4 functions.
This time is due to the use of Docker Compose for their management, explained
in Section 4.5. The implementation of a custom solution with a focus on spin-up
performance could lower this amount.

Finally, the times for path distribution and metadata adjustment can be entirely
attributed to the framework’s logic. New paths for each changed route must be sent
to CHIMAclient processes through API calls, while the changes applied to internal
data structures are needed to keep track of the new state of the service.
These values are much less significant than previous ones, and thus can be considered
adequate for the objective of minimizing overhead.

Topology P4[s] Containers[s] Paths[ms] Metadata[ms]

mesh - 1.13 [1.09,1.17] 54.23 [49.16,59.31] 2.68 [2.55,2.81]

datacenter 5.20 [5.17,5.23] - 288.60 [283.30,293.90] 2.79 [2.63,2.95]

unbalanced 5.19 [5.16,5.21] 0.97 [0.96,0.98] 60.57 [58.09,63.04] 2.81 [2.64,2.97]

minimal 6.06 [6.02,6.10] 1.50 [1.48,1.51] 48.79 [43.78,53.81] 3.50 [3.31,3.69]

medium 6.93 [6.90,6.97] 2.12 [2.09,2.14] 125.89 [107.94,143.84] 4.81 [3.84,5.78]

large 8.28 [8.19,8.36] 2.54 [2.46,2.63] 477.55 [387.49,567.62] 6.10 [4.84,7.35]

Table 5.2: Breakout of redeployment times for different topologies. 95% CI.
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In this thesis, a framework for the deployment, monitoring and realtime readjust-
ment of heterogeneous SFCs has been proposed.
The ability to define functions for programmable switches, with the use of an ex-
tensible template pipeline, grants the possibility to accelerate services by offloading
sections of their computation to the network, while locating them as close as possible
to their client to reduce latency. The use of Segment Routing, implemented on top
of MPLS, ensures that the communication between functions will follow predefined
paths, computed according to the requirements set by users. The same technique is
used to request the execution of P4 functions on transiting packets. Programmable
data planes are also exploited to perform In-band Network Telemetry, which en-
sures accurate monitoring with hop-by-hop resolution for every packet of a targeted
communication. At first, it is used to collect information on the latency and jitter
of links, which can be used to determine the best placement and routing for the
functions of a performance-constrained SFC. After its deployment, while the service
is running, INT collects metrics on its packets specifically. An extension of this
process has been proposed to also measure the time required for the execution of
general purpose functions. This allows the constraints to reflect real delays expe-
rienced by packets, and not just ones caused by the network. All sources of data
are combined to to guarantee that the thresholds set for latency, jitter and latency
variation will be corrected as soon as a violation is detected, by triggering a process
of redeployment. In those cases, functions will be moved to a new location that will
restore the desired performance with minimal overhead.

A prototype, released on GitHub [3], has been developed and tested through simula-
tions on the FOP4 platform with bmv2 software switches, to show that the detection
of exceeded requirements happens in the order of hundreds of milliseconds, and can
be tuned by the user to achieve the desired level of responsiveness. Analysis of
the redeployment process showed that the overhead introduced by the system is
negligible compared to the time needed for the startup of functions, and real time
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relocation of VNFs to achieve desired levels of performance is feasible.

Further work on the proposed solution could follow various directions:

• Testing the framework on networks with hardware programmable switches, in-
stead of software ones, would provide closer results to real world performance.
Taking advantage of platform specific features redeployment times of P4 func-
tions could be lowered significantly, reducing delays in the restoration of a
requirement compliant state.

• VNF placement algorithms proposed in literature could be introduced in the
phases of initial deployment and runtime redeployment, evaluating which would
provide the best results, taking into consideration user-set requirements and
the limited time available when reacting to adverse events.

• The solution used for the measurement of execution time of general purpose
functions could be extended to support more complex scenarios, for instance
services whose requests span multiple packets.
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