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Sommario

La SNCF Réseau, la principale compagnia ferroviaria francese che si occupa della
gestione e della manutenzione della rete ferroviaria nazionale, lavora ogni giorno con
una vastissima mole di dati che vengono analizzati e sfruttati per migliorare costan-
temente i propri servizi e infrastrutture.
Due dei principali modelli di dati utilizzati dalla compagnia sono Réseau e GAÏA. Il
primo è un modello semantico basato su una visione locale e consiste in un assem-
blaggio di modelli locali, offrendo l’unicità dell’oggetto solo a livello di stazione o
linea ferroviaria. Il secondo è un modello più recente basato su una visione globale,
dove per definizione si ha l’unicità dell’oggetto a livello dell’intero modello.
Siccome GAÏA risulta essere un modello più completo e informativo, è stato creato
il progetto MGOC (Modernisation de la Gestion Opérationnelle des Circulations,
modernizzazione della gestione operativa del traffico) che ha tra gli obiettivi proprio
la migrazione del vecchio modello Réseau a quello nuovo GAÏA.
Lo scopo di questo lavoro si inserisce all’interno del progettoMGOC e, in particolare,
cerca di risolvere due importanti problematiche: la prima riguarda esclusivamente
GAÏA e la struttura di dati sulla quale si basa. Esistono, infatti, due versioni di
GAÏA, ovvero una più vecchia, fissa nel tempo, e una attuale, dinamica, che viene
costantemente modificata con i nuovi dati. Lo scopo di questa prima parte è allora
quello di creare un confronto tra le due versioni con relative corrispondenze e diffe-
renze, in modo da facilitare il passaggio di informazioni da una all’altra. La seconda
problematica riguarda invece la necessità di avere un modello chiamato bouchon che
metta in relazione Réseau con GAÏA e che permetta di avere le informazioni in modo
più preciso ed efficacie a livello della singola via ferroviaria.
Infine, l’ultima parte di questa tesi è un lavoro sperimentale ed esplorativo sul com-
pletamento e l’incremento dell’affidabilità del modello bouchon attraverso il flusso
di dati proveniente da un’altra sorgente, chiamata X16, la quale, in connessione con
GAÏA, ha l’obiettivo di coprire il traffico ferroviario in tempo reale.
Questo lavoro è stato svolto nell’ambito di uno stage alla SNCF Réseau da maggio
a novembre 2021.
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Abstract

The SNCF Réseau, the main French railway company responsible for the manage-
ment and maintenance of the national rail network, works every day with a huge
amount of data that is analysed and exploited to constantly improve its services and
infrastructure.
Two of the main data models used by the company are Réseau and GAÏA. The first
is a semantic model based on a local view and consists of an assembly of local mod-
els, offering the uniqueness of the object only at the level of the station or railway
line. The second is a more recent model based on a global view, where by definition
there is uniqueness of the object at the level of the whole model.
Since GAÏA is a more complete and informative model, the MGOC project (Mod-
ernisation de la Gestion Opérationnelle des Circulations, modernisation of opera-
tional traffic management) was created and one of the objectives of it is the migration
of the old Réseau model to the new GAÏA model.
The aim of this work is part of the MGOC project and, in particular, seeks to re-
solve two important issues: the first concerns only GAÏA and the data structure on
which it is based. There are, in fact, two versions of GAÏA, namely an older one,
fixed in time, and a current one, dynamic, which is constantly modified with new
data. The purpose of this first part is therefore to create a comparison between the
two versions with their correspondences and differences, in order to facilitate the
transfer of information from one to the other. The second issue concerns the need
to have a model called bouchon which relates Réseau to GAÏA and which allows to
have the information in a more precise and efficient way at the level of the single
railway track. Finally, the last part of this thesis is an experimental and exploratory
work on the completion and increase of the reliability of the bouchon model through
the flow of data coming from another source, called X16, which, in connection with
GAÏA, has the objective of covering the railway traffic in real time.
This work has been carried out as part of an internship at SNCF Réseau from may
to november 2021.
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Chapter 1

Introduction

The railway network is composed by different "objects" (e.g. stations, tracks, etc..)
described according to a data model called Ariane in each "data pool". The model
is thus used to describe infrastructure elements as well as traffic, works, etc..
GAÏA is the repository that describes the railway infrastructure and all its com-
ponents: rails, signalling elements, switches, other "track devices", etc.. Moreover,
GAÏA includes metadata and links to external data to precisely qualify each object
in the network. These include the railway location (initial and final kilometre points
on the track diagram) and geo-location (spatial coordinates) of the objects, but also
descriptions and documentation, traffic, status (wear and tear, repairs, scheduled or
completed maintenance operations) and many other useful information.
There are two GAÏA versions. A first version, called Data Preparation (in short,
Data Prep), was created in January 2020 and is fixed in time, i.e. it has not been
updated since then. The second version, on the other hand, called Data Produc-
tion (in short, Data Prod), is dynamic, i.e. it is periodically updated with the new
structures and data created. However, the fact that many tools still use the first
version makes it necessary to create a translation model between the two versions.
This will be the objective of the first part of our work. In particular, we will try to
compare between Data Prep and Data Prod a particular GAÏA object called SRV
(Système de Repérage Voie, Track Position System), the system which describes all
the tracks.
The SRV is one of the most used objects in GAÏA and will be constantly exploited
in all our work. In particular, the SRV will also be one of the protagonist of the sec-
ond part of this thesis together with the Localisateurs (trackers or locators). These
are sensors that are physically attached to the tracks and detect useful information
related to the passage of trains. Originally, the tracks identified by the locators are
those associated to the Réseau repository. Since the MGOC project to which this
work belongs is creating a migration operation from GAÏA to Réseau, we want to
couple the trackers with the SRVs. In fact, GAÏA is definitely simpler than Réseau:
it offers some new perspectives for railway export since the observations on trains
are done in a more precise way at the level of tracks.
In order to do this we will create the bouchon file by implementing an algorithm
based on a semantic comparison between the tracks from GAÏA and Réseau. the
term bouchon (cap or cover in english) comes from the caps that are used in elec-
tronic systems. In fact, we want to cover all the associations between trackers and
SRVs.
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Following the creation of this model, since it is difficult to achieve 100% of corre-
spondence between trackers and SRVs due to various problems that we are going
to analyse, we need a way of completing it and making it more reliable. For this
purpose we will exploit the dynamic flow of data coming from the X16 model (see
diagram in Fig. 3.1 of Chapter 3.2) which provides real time information about the
train itineraries. In the same time, since this flow of data is often inaccurate or
presents some missing values, we will use the bouchon file to adjust it. This part is
just an exploratory and experimental analysis in which only a small percentage of
data from X16 will be used in order to show a possible methodology that can be
exploited. We will see how this method already shows some good results that will
be improved in future when, in a few years, a new tool that makes use of a higher
frequency of the GPS of the trains will be introduced to get more accurate data.

The thesis is structured as follows: in Chapter 2 we will focus on the first of our
two tasks, namely the SRV comparison analysis between Data Prep and Data Prod.
After a short introduction on the main objects of GAÏA and, in particular, on the
SRV class (Section 2.1), we will conduct a statistical analysis of the two datasets
(Section 2.2) and then we will move on the concrete phase of comparison (Sections
2.3 and 2.4). In order to have a more accurate comparison, we will deal with the
classification problem of the type of track in "junctions" and "non-junctions", where
we will analyse some supervised machine learning techniques (Section 2.5), and we
will take advantage of unsupervised methods for clustering the tracks in groups such
as the comparison can be made at the level of them (Section 2.6). In Section 2.7 we
will take into account a concrete example of a railway line, specifically that one from
Creil to Jeumont, two small french cities, where we will adopt all the techniques we
have developed before for associating SRVs between Data Prep and Data Prod. Fi-
nally, the last part of this chapter will be devoted to the analysis of TIVs (Tronçon
d’Itinéraire Voie, Way Section Track) that have been used during the classification
problem.
In Chapter 3 we will focus on the second of our tasks: the creation of bouchon model.
After an overview of the data structures that we will rely on, we will move firstly on
the detection of the origin track (Section 3.1.1), that is the railroad way to which
the tracker is attached and used for constructing the bouchon file, and then we will
move on the detection of the destination track (Section 3.1.2), although this part is
a bit out of our scope. Finally, in Section 3.2 we will tackle the completeness and
reliability problem of the bouchon model by using some of the data coming from
X16. In particular, we will analyse a dataset where we will find some anomalies
(Section 3.2.1) and a dataset where we will have some missing data (Section 3.2.2).
At the end, in Chapter 4 we will draw the conclusions.
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Chapter 2

SRV Comparison Analysis

There are 3 main systems that describe the entire French railway network. Proceed-
ing in order from largest to smallest we have:

• SRL (Système de Repérage Ligne, Line Tracking System): it is the system
that describes all French railway lines. By definition, a line is "a railway track
or a set of railway tracks with characteristics of alignment, operation and
installation between a point of origin and a point of destination and on which
a transport service can be provided". There are 953 lines in total and each one
is identified by a series of attributes describing its name, length, identification
codes etc..

• SRV (Système de Repérage Voie, Track Position System): it is the system
that describes all French tracks. By definition, a track is "a physically con-
tinuous element of the network that allows for rail traffic, made up of two
lines of rails". They are divided into 2 main groups: Voies Principales
(Main Tracks), which are the tracks used for trains circulation between sta-
tions (VPL, Voies Principales de Ligne, Main Lines Tracks) or inside them
(VPA, Voies Principales Autres, Other Main Tracks) and the Voies de Ser-
vice (Service Tracks), which include all pathways that are not main tracks;
these include, in particular, marshalling tracks excluding traffic ones, overflow
tracks in stations, second part tracks of particular sidings, etc..
A SRL is composed by several SRVs, which do not form the topological con-
tinuity of the line as we will see later, but they cover its entire path. A SRV
belongs to an unique SRL. Like SRL, a SRV is described by several attributes
that identify it (see 2.1).

• TIV(Tronçon d’Itinéraire Voie, Itinerary Section Track): it is the smallest
element of the 3 described and belongs to an unique SRV. In particular, TIVs
forms the topological continuity of the SRV. Thanks to TIVs we have the pos-
sibility to have more local and precise information about the network system.

In this chapter we will focus on the second element, the SRV. In particular, we want
to make a comparison analysis between the old data system structure, the Data
Prep, that is frozen in time, and the new one, the Data Prod., that is continuously
updated.
In particular, our aim is to understand which are the new SRVs comparing to the
old ones.
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2.1 SRV: Système de Repérage Voie (Track Position
System)

One of the main classes in the GAÏA database is the SRV class and and it will be
our main protagonist in the rest of our work. Basically, it is the device that defines
the location of any point on the railway network and through which we can trace
which tracks make up the railway lines, where they begin and where they end, which
stations connect and many other useful information.
This is one of the most important class since the new corporate repository is based
Ariane modeling composed by attributes that allow each object to be identified
unambiguously across the railway network.
The first step is to understand how this class is composed.
After a deep analysis over all the attributes that define an SRV object, the most
useful ones are the following:

• Id: long and unique alphanumeric value identifying the SRV.

• Libelle: SRV name.

• DateDebutActivite: starting activity date.

• DateFinActivite: ending activity date.

• PkDebut: starting PK (Point Kilométrique, kilometric point). It is written
as XXXX00<sign>YYY, where:
- XXXX: number of kilometres.
- 00: separation digits.
- sign: empty or "-" for negative values.
- YYY: number of metres.

• PkFin: final PK.

• SrPkLigneId: Unique SRL ID to which the SRV belongs to.

We remark that it may happen that a negative sign appears before the value of a
PK: indeed, sometimes the tracks or the kilometre system of these undergo changes.
For example, suppose a pathway has an initial PK of 20 metres. If, following a
change of the kilometre system, the original 0 is moved 50 meters further, then the
initial PK of the same track will be −30 metres.

2.2 Statistical Analysis of Data Prep. and Data
Prod.

Before diving into the main topic of this chapter, that is the SRV comparison between
Data Prep and Data Prod, it is necessary to explore deeper our datasets. In order
to deal with valid data, the first step is a pre-processing phase: to begin with,
we will consider only SRVs with an end of activity date that is not already expired
and therefore still used. Then, we remove unnecessary NaN (Not-A-Number) values
and we correct values written in a wrong format.
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After this first preliminary phase, we want to deepen our knowledge of the datasets
by giving an answer to some questions:

1. What type of tracks we are dealing with?

2. How long are SRVs?

3. How many SRVs are located along the different railway lines?

We start by taking a random railway line and collect all SRVs composing it, ordered
in ascending track for initial PK. Figure 2.1 displays part of the SRVs that compose

Figure 2.1: Part of the SRVs of the Data Prep. forming the railway line from Paris
to Strasbourg.

the railway line that goes from Paris to Strasbourg.
Firstly, we can notice that there are 2 principal railroad ways "Voie V1 de Vaires-
sur-Marne" and "Voie V2 de Vaires-sur-Marne" that are long almost 400 km (that
is the distance between the 2 cities). This is not so surprising: it is normal for
a railway line to be composed of main and secondary tracks. In support of this
argument, it can be observed that a large part of the SRVs composing this line are
junctions (see the "jonction" word in the feature "libellé"). In general, as we can
see from this table, junctions are very short tracks connecting other railroad ways.
Another remark one can state is that there are some repeated track names, like,
for instance, "Voie 3" or "Tiroir 5 T". This is an important consideration to take
in mind when we will attempt to compare SRVs from Data Prep and Data Prod,
in order not to associate SRV with the same name but representatives of different
tracks.
Finally, but not less important, notice that SRVs do not form the kilometre conti-
nuity of the railway line; this means that there are overlap between SRVs, mainly

5



Figure 2.2: Real scheme of 2 junctions and 2 tracks at Dijon control station.

between tracks and junctions or between the 2 main pathways and the others.
To better understand this concept, consider the Figure 2.2.

In this figure there are 2 junctions, represented with oblique lines, that connect
2 tracks, represented with horizontal lines. At the center there are some black dots
with numbers on the side, indicating the number of meters (we are at PK 48, which
is omitted in this figure due to size issues). It is evident then that the PK of SRVs
can overlap, depending on the structure of the railway line.

After the over mentioned considerations, we can distinguish 3 type of tracks: junc-
tions, medium length tracks and long length tracks. However, this is generally true
for medium-long railway lines, whereas most of the lines (as we will see at the end
of the chapter) are provincial lines consisting of a few SRVs and therefore the dis-
tinction into the three classes becomes more subtle.
For this reason in the following we will consider a binary classification problem:
junctions vs non-junctions.
In order to analyze their distribution and try giving an answer to the second of
our questions, we created the 2 classes in a deterministic way, following a simple
algorithm (Alg. 1) where junctions are detected by looking for the word jonction
(or similar) in the SRV name. In the Chapter 2.5 we will address the supervised

Algorithm 1: Deterministic Type Classification
input : D - set of SRVs
output: class labels

1 for i ∈ D:
2 if i name contains the word "jonction":
3 i is a junction;
4 else:
5 i is NOT a junction;

classification problem in order to separate these 2 classes by considering the SRV
lengths and the number of TIVs (track segments) composing such SRV.
From here on out we will show results obtained by classifying the type of tracks in
a deterministic fashion.
In Fig. 2.3 there are two boxplots and violin plots in log scale (for better visualiza-
tion) of SRV lengths for both Data Prep and Data Prod.
Firstly, we can state that there are no evident differences between the two datasets:
in both cases the median is almost centrally located within the box between the first
and the third interquantile (but recall that we are in log-scale!). However, the pres-
ence of many outliers in the higher whisker, represented with circles in the boxplots,
makes the distribution a bit asymmetric. Indeed, as we have already mentioned,
there are several principal tracks that are much longer than the others and that are
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(a) Boxplots (b) Violin plots

Figure 2.3: Log-scale Boxplots and Violin plots of SRV lengths for Data Prep and
Data Prod.

then detected as outliers.
The violin plots, compared to the boxplots, provide as additional information the
distribution of SRV lengths. Even here there are no particular differences between
Data Prep and Data Prod and we can conclude that we have two peaks of frequen-
cies for "short" (mostly junctions) and "medium" length SRVs at around 90 and
900 metres respectively.
In the following table we have just collected some useful statistics, that are very
similar between the two datasets due to the considerations already done:

Data Prep Data Prod
Junctions 5252 5205
Non-Junctions 5010 4972
Mean 5312.91 5342.70
Std 31231.43 31212.57
Min 12.00 12.00
25% 82.00 82.00
50% 230.50 237.00
75% 846.00 851.00
Max 861540.00 861540.00

Table 2.1: SRV lengths main statistics between Data Prep and Data Prod.

Notice the huge difference between the median and the mean due to an enormous
variability in the data and otuliers. In addition, we can observe the strong presence
of junctions, which cover about half of the total of SRVs.
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In the Figure 2.4 we have both the violin plots and distributions of the SRV lengths
between junctions and non-junctions (we have taken into account only Data Prep
since, as we have seen, the distributions are almost the same). Here we find again, in

(a) Violin plots
(b) Histograms

Figure 2.4: Log-scale Violin plots and Histograms of SRV lengths between junctions
and non-junctions.

more detail, some patterns that we noticed in the previous graphs. We observe that
there are some notable differences between the two sets: junctions have a narrower
distribution (i.e., less variance) and lower average length values than the other tracks
(with the peak around 90 meters); non-junctions, on the other hand, present a more
variable distribution with a peak density around 900 meters.
Here some statistics that explain in more details these considerations:

Junctions Non-junctions
Mean 103.20 10774.28
Std 70.11 44045.70
Min 13.00 12.00
25% 61.00 540.00
50% 82.00 867.00
75% 125.00 2260.75
Max 1671.00 861540.00

Table 2.2: SRV lengths main statistics between junctions and non-junctions.

Finally, in order to answer the last of our questions, namely how many SRVs are
distributed between the different railway lines, we collect the number of SRVs for
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each railway line in a list and we plot both a violin plot and a boxplot (for the same
reasons explained before we consider only the Data Prep).

Figure 2.5: A violin plot and a boxplot in log-scale on the number of SRVs in railway
lines for Data Prep.

From these plots we can observe that most of railway lines have just few SRVs.
Indeed, addional analysis carried out that 80% of railway lines have less than 10
SRVs and, in particular, 36.62% only one. In fact, most railway lines are short
and connect provincial cities, which are much more numerous than big cities. The
principal railway lines, like for instance the line Paris-Marseille, are represented as
outliers in the boxplot, since they are few and with many SRVs.

2.3 Preliminary Comparison Phase
Our goal is to associate each SRV of the Data Prep to his corresponding SRV in the
Data Prod and find out eliminations or new creations.
A first approach might be using the "libellé", namely the name of the SRV, but this
arises some ambiguities: in fact, after a first sight to the datasets, it can be noticed
that the name of tracks are often repeated. In general, all railway lines have few
tracks whose names are often the same: "voie 1" (where "voie" means track), "voie
2", ecc.. Moreover, there are some ambiguous pathways that are frequently used,
like for example "voie unique". For these reasons the variable "libellé" alone is not
particularly meaningful.
Another possible idea is to use the PK, the kilometric point, to find the position of
our SRVs. However, we have to discard this idea as well, since the kilometre system
is not unique. Indeed, in general, the PK = 0 corresponds to Paris, and all rail
lines starting from this point consequently starts from 0 and it results that PKs are
repeated between the tracks.
Then, the best basic approach we can adopt for the moment is to use the ID that
identifies uniquely a SRV. Indeed, thanks to the ID we can not have ambiguities.
However, even if 2 SRVs share the same ID, this does not imply that the other
attributes are the same. In fact, a SRV can be longer or shorter, it can have a
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different name or it can belong to a different railway line. Moreover, we must take
into account the fact that a track might be deleted or created in the new system.

The table in Figure 2.6 summarizes the number of changes mentioned above by
taking into consideration SRV with the same ID. By analysing this table, we can

Figure 2.6: A summary table comparing SRV between Data Prep and Data Prod
by selecting the same ID

firstly notice that since our datasets are composed by 10263 and 10186 SRVs respec-
tively for Data Prep and Data Prod and since there are 9993 pairs that have been
found by combining the two datasets, it turns out that there are 270 unique SRVs in
Data Prep and 193 unique SRVs in Data Prod, so most of the SRVs preserve their
ID.
This table shows the number of SRVs with same ID and belonging to the same or a
different railway line and having same or different PKs, that means that the initial
or final PK is modified.
It can be noted that most of the SRVs are identical (93.83%) in line and PKs, but
there are some exceptions. In particular, it is interesting that 455 SRVs have changed
line. A deeper analysis has carried to find out that there have been 13 railway lines
that are changed, or better, that have a different SRL ID, the unique identifier for
the rail line, out of a total of 953 lines.

From the next chapter onwards we will analyse SRVs grouped by railway lines,
as this facilitates comparison both from a practical and visual point of view.

2.4 Comparison Tool Plot
It would be nice to have a tool that allows the user to immediately visualize how the
SRVs are displaced along the railway line, for both Data Prep and Data Prod, and
observe which are the differences between the 2 datasets in terms of ID and length.
For this purpose, we created a Python plot where railway lines and tracks are rep-
resented as segments of length [Initial_Pk, Final_Pk] on top of each other. In Fig.
2.7 there is an example of the railway line that goes from Dole-Ville to Belfort.

In the centre the railway line is represented in black.
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Figure 2.7: SRVs comparison between Data Prep and Data Prod of the railway line
from Dole-Ville to Belfort.

The SRVs of Data Prep are represented in the half above, while those of Data Prod
are represented in the half below.
SRVs are colored in blue when they share the same ID between the two datasets,
in red when the ID is different. In this example, there is a long SRV that changes
ID from Data Prep to Data Prod. Moreover, less evidently, there is another short
SRV at the end of the line that is represented in red in Data Prep. However, this
track is not presented in Data Prod, meaning that has been removed in the new
data system for this particular railway line.
A common pattern that can be observed not only in this example but more gener-
ally in all railway lines with a sufficient number of SRV is that there are some main
tracks that follow the entire railway line, and other shorter SRVs that are displaced
all along the line. Most of the time these seem to be clustered together, probably
close to stations or "collection points". We will focus more on this part on the
chapter 2.6 devoted to the clustering analysis.
Also, as already said before, SRVs do not form the kilometre continuity of the railway
line: in fact, there are overlap between SRVs, mainly when they are in a "cluster".

Thanks to this plot we have a fast tool to visualize the disposition of SRVs along a
railway line, to understand how many and how long they are and a way to compare
them between the two datasets. However, this is not enough, because we cannot
easily recognize, especially for long railway lines, whether a SRV has a different ID
or it is just removed from Data Prep or just created in the Data Prod. Moreover,
we cannot get further information about the differences of SRVs lengths and their
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type.
For this purpose, we created a table together with this plot (as output of the same
Python code) that provides all the mentioned information.
In the next two sections we present the main keys we exploited in the creation of
the table: the type classification and the clustering.

2.5 Track Type Classification

In Section 2.2 we have already discussed the classification of the SRV type in 2
classes: junctions and non-junctions.
In that occasion, the classification was made by following a deterministic algorithm
that relies on the presence of the word "junction" in the SRV name (see Alg. 1).
In this section we go a little further by exploiting supervised learning techniques
[Bishop 2006]. Indeed, sometimes we rely on tools that exploit the geographical
structure of tracks and we don’t have access to the SRV name, but only to the
initial and final PK and to the number of segments (TIVs) that compose it. Since
our deterministic algorithm fails in this case, how could we classify a track?
We will use this information to try to create a good classifier that can recognise
whether a track is a junction or not, taking into account its length and how many
TIVs it consists of. We have already discussed about the distribution of lengths
between junctions and non-junctions (see Fig.2.4) and we have seen that there is a
significant difference between the two sets. We analyze now the distribution of TIVs
in the two classes. The histogram in Fig.2.8 clearly shows that junctions consist of
only one or a few sections, whereas non-junctions have a wider distribution.

Figure 2.8: Histograms on the number of TIVs composing SRVs between junctions
and non-junctions for Data Prod.
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Here some more precise statistics:

Junctions Non-junctions
Mean 1.26 6.20
Std 0.74 16.31
Min 1.00 1.00
25% 1.00 1.00
50% 1.00 3.00
75% 1.00 5.00
Max 9.00 418.00

Table 2.3: Main statistics on the number of TIVs composing a SRV.

We can observe that "non-junction" class has a much larger standard deviation
and, in average, longer tracks. We finally plot all our data (Fig.2.9).
Notice that the presence of several "outliers", which are the main tracks that make
up the French rail network, leads to some problems in visualizing the junction class
in the overall figure. For this reason we also inserted a zoom plot, where we can
visually distinguish the two classes. We point out that, although the two groups seem
to be numerically different, they have almost the same number of elements (Table
2.1). Moreover, we remark that the variable scales are have been left unchanged,
both in the plots and algorithms. In fact, both following normalisation and not, we
obtained very similar results.
The methods we have considered for our classification problem are:

• Naive algorithm.

• KNN (K-Nearest Neighbors).

• Logistic Regression.

The Naive algorithm simply consists in associating the new SRV of the test set (with
coordinates his length and the number of TIVs composing it) to the class with the
nearest median. The reason for using the median is that it is much more robust to
the variance of the data, which is very large in the non-junction group as we have
already observed.
The other two methods, i.e KNN and Logistic Regression, are widely used classifi-
cation models that best performed for this problem among all those tested.
Before proceeding to analyse the performance of the three methods, we would like
to devote the next two subsections to a more detailed analysis of how the last two
machine learning techniques work.
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Figure 2.9: (a) Overall plot of lengths and number of TIVs for all SRVs in Data
Prod. divided by type class (b) Zoom over the "overlap zone" where I have all the
junctions and part of the non-junctions.
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2.5.1 KNN: K-Nearest Neighbors

K-Nearest Neighbour is a supervised machine learning algorithm, which means that
we already know how many and which classes we are dealing with and we want
to classify the new data or case based on a similarity measure after having stored
all the available cases. It is mostly used to classify a data point based on how its
neighbours are classified, but it can also be adopted for regression (that is not our
case).
The basic idea behind KNN is simple: similar things exist in close proximity. In
other words, similar things are near to each other.
There are many distance metrics that can be exploited by the algorithm (Euclidian,
Manhattan, Cosine, Jaccard etc..). In the following we will use the most known one,
the Euclidean distance , defined as:

d(x, y) =
2∑
i=1

|xi − yi|2

where x and y are 2 dimensional vectors for our classification problem.
In order to deeper understand how KNN works, we will adopt a probabilistic ap-
proach. Suppose that we have a dataset of N points and Ck classes, with Nk points
for each class such that

∑
kNk = N . In order to classify a new point x we consid-

ered a sphere centered on x containing precisely K points irrespective of their class.
Suppose this sphere has a volume V and contains Kk points from class Ck. Then,
we can estimate the density associated with each class as:

p(x|Ck) =
Kk

NkV

In a similar way, the unconditional density will be:

p(x) =
K

NV

while the class priors are given by

p(Ck) =
Kk

N

Finally, using Bayes’ theorem, we can obtain the posterior probability of class:

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
=
Kk

K

Since we want to minimize the misclassification error, we assign the test point x to
the class having the largest posterior probability, namely with the highest value of
Kk

K
. In other words, we assign x to the class having the largest number of represen-

tatives among this set.
For an illustrative example, consider Fig.2.10.
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Figure 2.10: An illustrative example in order to understand the KNN algorithm for
classification problem. If we set K = 3 we assign the new test point to the red
squared class since there are 2 points belonging to this class against 1 of the blue
circle class. Instead, if we set K = 5 we assign the test point to the blue circle class
since now we have more neighbours belonging to this class than to the red squared
one.

Notice that the number of neighbours K to be considered, that must be defined
a priori in our model, influences the assignment of the test point to the best fit class.
In fact, in the figure, if we consider 3 neighbours we classify the yellow star, our
new test point, to the group of red squares, whereas if we consider 5 neighbours, we
classify the new point to the blue points class.

In Figure 2.11, we show the results of applying the K-nearest-neighbour algorithm to
our specific classification problem junction vs non-junctions for various values of K.
As expected, we see that K controls the degree of smoothing, so that small K pro-
duces many small regions of each class, whereas largeK leads to fewer larger regions.

In order to choose the best K we proceed as in Algorithm 2, where we used the
K-Fold Cross-Validation method (or better, we called it M-Fold in the algorithm to
avoid confusion with the number of neighbours K).
In Figure 2.12 we have a plot of all accuracy (test, training and Cross-Validation
accuracy) by setting different values of K and we picked up the best score for the
CV-accuracy, i.e. 0.9592, corresponding to K = 9.
Notice that Cross-Validation accuracy is smaller than the others since we are train-
ing on a smaller dataset. Moreover, observe that if K is small, the model tends to
overfits the train set (high training accuracy, but small test accuracy) and incurs in a
large variance. When K assumes bigger values instead, the train accuracy decreases
while the test accuracy increases and they become similar.
We remark that KNN algorithm does not involve a real training phase, but simply
arranges the data in a sort of indexing process in order to find the closest neighbors
efficiently during the inference phase. Otherwise, it would have to compare each
new case during inference with the whole dataset making it quite inefficient.
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(a) K = 1 (b) K = 6

(c) K = 12 (d) K = 18

Figure 2.11: Plot of KNN for different values of K for the junction and non-junction
classification problem.

Figure 2.12: Plot of all KNN algorithm accuracy by setting different values for the
number of neighbours K. The red vertical line corresponds to the best score for
Cross-Validation (K = 9).
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Algorithm 2: Choice of best K in K-NN with Cross-Validation
input : D - training set of observations x ∈ D of dimension N

t - training set of targets
K_max - maximum value of K we use as parameter for training

KNN.
output: best_k - best K

1 foreach k ∈ range(K_max):
2 Compute the KNN classifier setting K = k;
3 Split the training data into M folds: D1, ..., DM ;
4 foreach i ∈ range(M):
5 Train the model on D - Di;
6 Compute accuracy on Di: LDi

= M
N

∑
(xn,tn)∈Di

(tn − yD−Di
(xn))

2;
7 Compute the mean of accuracy: LM−fold = 1

M

∑M
i=1 LDi

;
8 Add LM−fold to a list of scores;

9 Plot and find the best K linked to the best score;
10 return best_k;

2.5.2 Logistic Regression

Logistic Regression is a statistical model very popular for supervised machine learn-
ing tasks that, despite his name, is mainly used for classification problems. In
particular, we will rely on the Binary Logistic Regression since we want to predict
a binary categorical variable (junction/non-junction).
Logistic Regression is based on the sigmoid function σ(x) = 1

1+e−x exploited for
modelling the posterior probability of class C1 as:

p(C1|φ) =
1

1 + e−wTφ
= σ(wTφ),

where φ : x 7→ φ(x) is any transformation (also non-linear) from the input space of
the dataset to the feature space and w is the vector of model weights (p(C2|φ) =
1− p(C1|φ)).
Then, given the dataset D = {xi, ti}, with i = 1, ..., N , where t is the vector of labels
(ti ∈ {0, 1}), we want to maximize the likelihood, i.e. the probability to observe the
targets given the inputs, using the Bernoulli distribution of parameter p(C1|φ) = yi:

p(ti|xi, w) = ytii (1− yi)1−ti

By taking the negative log-likelihood and considering our data independent we ob-
tain the cross-entropy loss:

L(w) = − ln(p(t|X,w) = −
N∑
n=1

(tn ln(yn) + (1− tn) ln(1− yn)) =
N∑
n=1

Ln

Finally, by computing the derivative of Ln with respect to w we have:

∇L =
N∑
n=1

(yn − tn)φn
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Since our problem is convex, we can adopt a gradient-based optimized technique to
solve it.
Notice that if we define:

logit(yi) = log

(
yi

1− yi

)
we get:

logit(yi) = wTx

We have the same statistical characterization of the parameters w that we have
in linear regression if we consider as output the logit transformation of the target.
In this way, we are also able to perform hypothesis tests on the significance of
parameters w.

2.5.3 Comparison of Classification Models

After having introduced the three main models used to solve the classification prob-
lem on the type of track (junction or non-junction) we want to compare their per-
formances by computing confidence intervals for accuracy.
A robust way to calculate them for machine learning algorithms is to use the boot-
strap. This is a general technique for estimating statistics that can be used to
calculate empirical confidence intervals, regardless of the distribution of skill scores
(e.g. non-Gaussian).
We proceed as follows:

1. Split the dataset in training set (80%) and test set (20%) with resampling.

2. Train K-NN (with K = 9) and Logistic Regression over the training set.

3. Compute the median of each class for the naive model.

4. Compute models accuracy with the test set.

5. Go to 1 and repeat these steps several times (e.g. 500 times).

Finally we compute the confidence intervals for each of the three models accuracy.
This is done by first ordering the scores, then selecting values at the chosen percentile
for the confidence interval (that we call α). For example, we are interested in building
a confidence interval of 95%, which is probably the most popular case. Then, we
set α at 0.95 and we select the value at the 2.5% percentile as the lower bound and
the 97.5% percentile as the upper bound on accuracy.
In this way, we are calculating a non-parametric confidence interval that does not
make any assumption about the functional form of the distribution of the statistic,
and for this reason is also called empirical confidence interval.
These are the results:

Model Mean Std. Dev. CI 95%
Naive 0.905 0.00575 [89.4%, 91.6%]
9-NN 0.959 0.003 [95.1%, 96.7%]
Logistic Regr. 0.945 0.00462 [93.6%, 95.4%]

Table 2.4: Empirical confidence intervals of three model accuracy for type classifi-
cation problem.
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From these results we can conclude that all three models perform well in classi-
fying the type of track by knowing its length and how many sections (TIVs) it con-
sists of. However, thanks to the two simple machine learning models used, namely
K-Nearest-Neighbours and Logistic Regression, we can increase the accuracy respec-
tively by 5.4% and 4% on average compared to the naive model.

2.6 SRV Clustering

As we have already discussed, in the table in Fig.2.6 we considered the same SRV
ID to compare the tracks in the Data Prep and Data Prod and we divided them
taking into account differences or similarities in the railway line they belong to and
their PK.
However, there are some SRVs that have an unique ID in both the datasets and that
are not present in the table. For these SRV we can not rely on neither the name nor
the PK as they are not unique. However, we know that the PK is unique within a
railway line and using it combined with the name we can find a track to associate
SRVs even if with different ID.
The idea is based on clustering. By taking a closer look to Fig.2.4, we can notice
that SRVs seem to be clustered based on initial and final PK.
Hence, we can find groups of SRVs in both Data Prep and Data Prod and compare
them: even if the SRV IDs are different within the same cluster, we can find a
match using the name. In addition, the clustering helps the process of comparison,
also from a logical and visual point of view, managing thus to give an answer to
the question: "Which group of SRV becomes which in the new data system (Data
Prod)?"
Before showing a concrete example (see Chapter 2.7), we want to focus on the
clustering techniques, unsupervised machine learning methods [Bishop 2006], that
we adopted for our problem: K-Means and DBSCAN.
Before proceeding, we want just to remark that clustering methods have been used
for all railway lines with a sufficient number of SRVs (e.g. 50 SRVs), otherwise it
doesn’t make really sense to apply it for our purpose, since we can directly compare
all SRVs of the two datasets.

2.6.1 K-means

K-Means clustering is an unsupervised learning algorithm, which groups the un-
labeled dataset into different clusters by minimizing the internal distance between
points of the same cluster. Here, K is the number of pre-defined clusters that need
to be created in the process. Given a set of observations (x1, x2, . . . , xn), where each
observation is a d-dimensional real vector, this algorithm aims to partition the n ob-
servations into k(≤ n) sets C = C1, C2, . . . , Ck so as to minimize the Within-Cluster
Sum of Squares (WCSS), defined as:

WCSS(C) =
k∑
i=1

∑
x∈Ci

d2(x, µi) (2.1)

C? = argmin
C

WCSS(C) (2.2)
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where µi is the cluster centroid of points in Ci, computed as:

µi = argmin
µ∈Rd

∑
x∈Ci

d2(x, µ) (2.3)

where d is a distance.
The centroid is strictly related on how we measure dissimilarities: if d is the Euclid-
ian distance, defined as d(x, µi) = ‖x − µi‖2, it coincides with the sample mean of
the cluster, otherwise it might have a different interpretation.

The idea behind K-Means clustering is an iterative greedy approach: firstly, the
clusters centroids are initialized following a criteria (e.g. randomly); then, itera-
tively each observation is assigned to the nearest centroid, which are updated by
following again eq. 2.3, and this process goes on until convergence (see Alg. 3).

Algorithm 3: K-Means Algorithm
input : D - set of observations x ∈ D

k - number of resulting clusters
ε > 0 - convergence tolerance

output: C - set of clusters

1 t = 0;
2 Initialize k centroids: µ0

1, µ
0
2, . . . , µ

0
k ∈ Rd;

3 while
∑k

i=1 ‖µti − µ
t−1
i ‖2 > ε:

4 t = t+ 1;
5 Cj = ∅ ∀j = 1, . . . , k;

/* Cluster assignment step */
6 foreach x ∈ D:
7 j? = argmin ‖x− µt−1i ‖2;
8 Cj? = Cj? ∪ x;

/* Centroid update step */
9 for i from 1 to k :

10 µti =
1
|Ci|
∑

x∈Ci
x;

11 C = {Ci}ki=1;
12 return C;

The complexity of this algorithm is O(nkdi) where n is the number of d-dimentional
observations, k is the number of clusters and i is the number of iterations needed
until convergence.

2.6.2 How to choose K

In order to apply the K-Means clustering we have to provide as input the number K
of clusters we want to get. Since we are in an unsupervised setting, how to choose
this parameter? This is the most important part of our algorithm.
The principal methods are:

21



• Elbow method

• Silhouette method

We start from the first one, the Elbow method. This is probably the most well-
known method for determining the optimal number of clusters.
As we have seen, the basic idea behind K-Means clustering is to define clusters
such that the total intra-cluster variation (or total Within-Cluster Sum of Square
(WCSS)) is minimized (see Eq. 2.2). The total WCSS measures the compactness of
the clustering and we want it to be as small as possible.
The Elbow method looks at the total WCSS as a function of the number of clusters:
one should choose a number of clusters so that adding another cluster does not
improve much better the total WCSS.
The steps to follow are, then, the following:

1. Compute K-means clustering for different values of K, chosen between 2 and
the minimum between 90 and the number of SRVs in the railway line we are
considering (the value of 90 was chosen experimentally to avoid too large and
useless computations).

2. For each K, calculate the total WCSS.

3. Plot the curve of WCSS according to the number of clusters K.

4. Choose the location of an elbow in the plot as an indicator of the appropriate
number of clusters.

Unfortunately, we do not always have clearly clustered data, meaning that the elbow
may not be explicit and sharp. In such cases, we should rely on other methods.

The second method we present here is the Silhouette method. Silhouette analysis
[Rousseeuw 1987] can be used to study the separation distance between the result-
ing clusters. The silhouette value is between +1 and −1 and measures how similar
a point is to its own cluster compared to other clusters. A high value is desirable
and indicates that the point is placed in the correct cluster, whereas a negative
value indicates that the point is wrongly classified. If many points have a negative
silhouette score, it may indicate that we have created too many or too few clusters.
Assume the data have been clustered into K clusters. For a data point i ∈ Ci (data
point i in the cluster Ci), let

a(i) =
1

|Ci| − 1

∑
j∈Ci,i 6=j

d(i, j) (2.4)

be the mean distance between i and all other data points in the same cluster, where
d(i, j) is the distance between data points i and j in the cluster Ci.
a(i) is the measure of similarity of the point i to its own cluster (the smaller the
value, the better the assignment). We then define the mean dissimilarity of point
i to some cluster Ck as the mean of the distance from i to all points in Ck (where
Ck 6= Ci). For each data point i ∈ Ci, we now define

b(i) = min
k 6=i

1

|CK |
∑
j∈Ck

d(i, j) (2.5)
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to be the smallest mean distance of i to all points in any other cluster, of which i
is not a member. The cluster with this smallest mean dissimilarity is said to be the
neighboring cluster of i because it is the next best fit cluster for point i. We now
define a silhouette coefficient of one data point i

s(i) =
b(i)− a(i)

max {(a(i), b(i)}
, if |Ci| > 1 (2.6)

and
s(i) = 0, if |Ci| = 1 (2.7)

which can also be written as:

s(i) =


1− a(i)/b(i) if a(i) < b(i)

0 if a(i) = b(i)

b(i)/a(i)− 1 if a(i) > b(i)

(2.8)

from which it is clear that −1 ≤ s(i) ≤ 1. Also, note that score is 0 for clusters
with size equal one. This constraint is added to prevent the number of clusters from
increasing significantly.

The silhouette method can be used as evaluation method for any clustering method,
also for the DBSCAN algorithm that will be introduced in the next section 2.6.3,
and we will rely on it in the final example of section 2.7 in order to choose the best
clustering model.
Moreover, it can be applied specifically for K-Means to set the best number of clus-
ters K. In particular, we will rely on the average silhouette score, obtained by a
Python pre built function that simply averages all Silhouette values of all points.
We follow this procedure:

1. Compute K-means clustering for different values of K, chosen, as in the elbow
method, between 2 and the minimum between 90 and the number of SRVs in
the railway line we are considering.

2. For each K, calculate the average silhouette score.

3. Plot the curve of WCSS according to the number of clusters K.

4. Choose the first local maximum in the plot as an indicator of the appropriate
number of clusters.

The choice to take the first local maximum was done experimentally after having
examined the trend of the average silhouette score for all railway lines with at least
50 SRVs (that’s a possible threshold we chose for applying clustering methods).
From the plot in Figure 2.13 one can observe a common trend in which the func-

tion initially increase to a local maximum, then decreases and regrow again. We
want to keep the first local maximum because too many clusters would result in a
situation where almost each SRV forms its own cluster and this would be useless
and unnecessarily expensive for our analysis.
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Figure 2.13: Average silhouette plot of 4 random railway lines with at least 50 SRVs

2.6.3 DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) [Ester et al. 1996]
is a density-based clustering non-parametric algorithm: given a set of points in some
space, it groups together points that are closely packed together (points with many
nearby neighbors), marking as outliers points that lie alone in low-density regions
(whose nearest neighbors are too far away).

Consider a set of points in some space to be clustered. Let ε be a parameter
specifying the radius of a neighborhood with respect to some point, we define the
ε-neighborhood of a point as:

Nε(x) = {y | d(x, y) ≤ ε}

For the purpose of DBSCAN clustering, the points are classified as core points,
reachable points and outliers, as follows:

• A point x is a core point if the ε-neighborhood of x contains at least minpts,
including x;

• A point x is a directly reachable point from y if x is within the ε-neighborhood
of y and y is a core point;

• A point x is reachable from y if there is a chain of points x1, x2, . . . , xp where
x1 = x, xp = y and such that xi+1 is directly density reachable from xi;

• A point x is density-connected to y with respect to ε and minpts if there is a
point z such that both x and y are reachable from z;

• All points not reachable from any other point are outliers or noise points.
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Now if x is a core point, then it forms a cluster together with all points (core or
non-core) that are reachable from it. Each cluster contains at least one core point;
non-core points can be part of a cluster, but they form its "edge", since they cannot
be used to reach more points (see Algorithm 4).

Algorithm 4: DBSCAN Algorithm
input : D - set of observations x ∈ D

ε - neighborhood radious
minpts - minimum number of points to get a core point

output: C - set of clusters
Core - set of core points
Border - set of not core points in neighborhood of core points
Noise - set of noise points

1 DBSCAN(D,ε,minpts):
2 Core = ∅;
3 foreach x ∈ D:
4 Compute Nε(x);
5 id(x) = −1; /* Cluster id for x */
6 if |Nε(x)| ≥ minpts:
7 Core = Core ∪ {x}
8 k = 0;
9 foreach x ∈ Core such that id(x) = −1:

10 id(x) = k; /* Assign x to cluster id k */
11 DENSITYCONNECTED(x, k);
12 k = k + 1;
13 C = {Ci}ki=1, where Ci = {x ∈ D | id(x) = i};
14 Noise = {x ∈ D | id(x) = −1};
15 Border = D \ {Core ∪Noise};
16 return C, Core, Border, Noise;

17 DENSITYCONNECTED(x, k):
18 foreach y ∈ Nε(x):
19 id(y) = k; /* Assign y to cluster id k */
20 if y ∈ Core:
21 DENSITYCONNECTED(y, k);
22 return;

DBSCAN visits each point of the database, possibly multiple times, however, the
time complexity is mostly governed by the number of point neighborhood compu-
tations. DBSCAN executes exactly one such computation for each point, and if an
indexing structure is used that executes a neighborhood computation in O(log n),
an overall average time complexity of O(n log n) is obtained; however the worst case
run time complexity still remains O(n2). We can benefit from the distance matrix of
size O(n2) to avoid distance recomputations, but this needs O(n2) memory, whereas
a non-matrix based implementation of DBSCAN only needs O(n) memory.
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2.6.4 How to choose the minpts and ε parameters

The trickiest part of DBSCAN is the choice of his parameters minpts and ε, where
the former is the fewest number of points required to form a cluster and the latter
is the maximum distance two points can be from one another while still belonging
to the same cluster.
There is not an automatic way to determine the minpts value for DBSCAN. Ulti-
mately, this value should be set using domain knowledge and familiarity with the
data set. However, there are some "rules of thumb" to set an appropriate value:

• The larger the dataset, the larger the value of minpts should be.

• The noisier the dataset, the larger the value of minpts should be.

• In general, minpts should be greater than or equal to the dimensionality of the
dataset: for 2-dimensional data, use DBSCAN’s default value of minpts = 4.
For higher dimensions, choose minpts = 2 ∗ dim, where dim is the dimension
of the dataset [Sander et al. 1998].

As far as the ε choice is concerned, an automatic way to determine the optimal value
is the elbow method [Rahmah and Sitanggang 2016].

Algorithm 5: How to find the optimal epsilon in DBSCAN algorithm
(Elbow method)
input : D - set of observations x ∈ D

minpts - minimum number of points to get a core point
output: ε - neighborhood radius

1 Create an empty list of distances;

2 foreach x ∈ D:
3 Neighbs = NN(minpts); /* Use Nearest Neighbours to find the

closest minpts points to x */
4 Compute distance between x and the minpts-neighbour and append it

to the list of distances;

5 Sort distances ascending and plot to find each value;
6 ε corresponds to critical change (elbow) in the curve;
7 return ε;

This technique calculates the average distance between each point and its k
nearest neighbors, where k = minpts. The average k-distances are then plotted in
ascending order on a k-distance graph. The optimal value for ε is that one at the
point of maximum curvature (i.e. where the graph has the greatest slope or elbow)
(see Algorithm 5).
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2.7 Practical Example
After having explained in details in the previous chapters the methods that we con-
sidered to perform the comparison analysis of SRVs between Data Prep and Data
Prod, we want to apply them to a concrete example. In particular, we have chosen
the railway line between Creil and Jeumont, two cities in the north of France (2.14).

Figure 2.14: Railway line between Creil and Jeumont

In the comparison plot in Fig. 2.17 we can firstly notice the distribution of SRVs
along the railway line. As usual pattern, we have 2 long SRVs that are the principal
tracks, called "Voie V1 de Creil à Jeumont" and "Voie V2 de Creil à Jeumont", and
many (in total 162 and 160 for Data Prep and Data Prod respectively) shorter SRVs
that are distributed all along the railway lines.

As far as the SRV type classification part is concerned, we can simply use the
deterministic algorithm 1 since we have all the information concerning the SRV
names for this railway line.
However, we want to address the problem in the "unsupervised" settings, ignoring
the real classes, putting us in a possible situation where we only have information
on the lengths of the tracks and the number of sections (TIVs) that make them up.
In order to be able to use the classification techniques analysed in chapter 2.5, we
will train the classifiers on one of the main lines, for example the Marseille - Paris
line, and test them on our example (see Fig. 2.16). In this way, we will also be
able to verify the robustness of these algorithms, as they are trained on a smaller
dataset.
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Figure 2.15: SRV Comparison between Data prep (above) and Data Prod (below)
of the railway line Creil-Jeumont
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Figure 2.16: (a) 9-NN on train set (Paris-Marseille) (b) 9-NN on test set (Creil-
Jeumont) (c) Logistic Regression on train set (Paris-Marseille) (d) Logistic Regres-
sionon test set (Creil-Jeumont). 28



In order to better evaluate the performances of our model, we show the relevant
confusion matrices together with the more relevant scores:
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Non-

Junctions
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Junctions

TRUE
Non-

Junctions
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TRUE
Junctions 0 83
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Non-
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LOGISTIC REGRESSION 9-NN NAIVE

Accuracy: 0.9448
Recall: 0.8875
Specificity: 1

Accuracy: 0.9202
Recall: 0.875
Specificity: 0.9639

Accuracy: 0.8466
Recall: 0.6875
Specificity: 1

Figure 2.17: Confusion matrix for the three methods with the more relevant scores.

The accuracy of 9-NN and Logistic Regression are similar and definitely higher
than Naive one. The recall (i.e. the number of corrected classified non-junctions
over the total sum of them) is lower than accuracy for the three models and, in par-
ticular, for the naive model, which has some difficulty in classify the non-junctions.
However, all three models manage to classify all junctions well, since the value of
specificity is very high (i.e. the number of corrected classified junctions over the
total sum of them). Note that apart from the Logistic Regression, the other meth-
ods have a slightly lower accuracy than the previously calculated with an empirical
confidence interval, as the training phase is only done on 766 SRVs compared to the
about 8000 SRVs as before. However, the results are still good, which confirms the
robustness of the method even when training on only one railway line.

At this point, for the reasons already explained in chapters 2.3 and 2.6, we would
like perform a clustering analysis as the data distribution seems to be suitable
for this type of analysis.
We compare the 3 spacial clustering methods we have analyzed in the previous
chapters:

• K-Means with K set to the elbow value of the WCSS plot (the Within-Cluster
Sum of Square or, sometimes, simply SSE, the Sum of Square Errors);

• K-Means with K set to the first highest average silhouette value;

• DBSCAN with minpts set to 4 and ε set to the elbow value of the minpts-
neighbour distances of all points (see algorithm 5).

In figures 2.18, 2.19 and 2.20 we have displayed a pair of plots for each of the
3 clustering methods: on the top a SRVs comparison plot between Data Prep and
Data Prod highlighting with different colors and circles the clusters obtained with
the relative method; on the bottom a silhouette plot for the different clusters, where
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Figure 2.18: Silhouette Plot for K-Means with SSE method.
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K-Means with silhouette method
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Figure 2.19: Silhouette Plot for K-Means with Silhouette method.
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DBSCAN
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Figure 2.20: Silhouette Plot for DBSCAN.
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for each of them we sorted in ascending order the silhouette value of all points be-
longing to it. In addition, we added a vertical red dashed line indicating the average
silhouette score. Notice that the colors are shared between the two plots in order to
make it easier to read them.

Firstly, notice that the K-Means with silhouette method and DBSCAN find 17
and 18 clusters respectively against the only 9 of the K-Means with SSE method.
On one hand, having too many clusters can be a problem since we may miss some
matches in the case we have 2 SRVs that change ID and they are assigned to 2
different groups. On the other hand, a smaller number of clusters results in a larger
number of comparisons which could be very expensive in the case of railway lines
with many SRVs. However, it is also true that this cost would be largely covered by
the computational savings of calculating fewer clusters (e.g., K-Means complexity is
linear in K). Also, notice that all methods recognise the main SRVs that follow the
entire railway line as a separate cluster.
Another remark is that K-Means with silhouette method (Fig. 2.19) has the highest
average silhouette score (also due to the way it is built) but the presence of several
clusters (11,13,16) that are below the average silhouette score and the wide fluc-
tuations in the size of the silhouette plots make it a bad pick for the given data.
We have large fluctuations in clusters size for the DBSCAN as well (Fig. 2.20), but
all clusters manage to exceed the average silhouette score. As far as the K-Means
with SSE is concerned, we have just a problem with the cluster 1 that is not really
well-formed since all silhouette scores are low, but the number of clusters and their
sizes make it probably the most suitable for our example.
As last remark, observe that in DBSCAN we have the cluster 0 that is splitted in
more subgroups. This is the "noisy cluster" built by this method: it is formed by all
the small and isolated SRVs. For our objective it is not a particularly useful cluster
as we can hardly associate SRVs that are distant from each other and even may be
dangerous.

Finally, after the clustering analysis, we compare SRVs of the two datasets pro-
ceeding cluster by cluster. Firstly, we consider only SRVs that share the same ID
and we compare the PK (Kilometric Point) to understand if there has been a short-
ening or elongation of the track. Then, we take SRVs with different ID and we check
if there are any names in common. In that case, we will associate such SRVs even
if with different ID, otherwise we will have a "new" SRV if this was not present in
Data Prep, or an "elimination" if this is no longer present in Data Prod.
To better understand this final procedure, consider Fig. 2.21, where we have a part
of the final comparison table. We have highlighted clusters in different colours to
facilitate reading. When a box is empty it means that the SRV has been deleted or
created. For example, on the 14th row we have a SRV that is new in Data Prod,
while on the 18th row the SRV was in the Data Prep but is no longer present on
Data Prod.
Note that we added two columns at the end to indicate whether the SRVs share
the same ID and/or PKs between the two datasets (0 if they not share, 1 if yes).
Obviously, for the latter two examples we have talked about, the ID is different as
the SRV is present in only one of the two datasets, but there is also a case (row 23)
where the SRV has a different ID but the same name between the datasets.
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2.8 TIVs Comparison
In the previous chapters we have discussed several times about TIVs ("Tronçon
d’Itinéraire Voie", Itinerary Section Track) using them as a variable, together with
the length of the track, to discriminate between junctions and non-junctions, since
on average, as we have seen, junctions have fewer segments than the others.
In this last section of this chapter we want to perform a short comparison analysis
of TIVs between Data Prep and Data Prod, similarly to what we did with the SRVs.
However, unlike SRVs, the work here is facilitated by the fact that we have topolog-
ical continuity of the TIVs. Moreover, a TIV is simply represented by:

• Id: long and unique alphanumeric value identifying the TIV.

• PkDebut: starting PK.

• PkFin: final PK.

• SrvId: ID of the SRV to which it belongs.

Notice that they don’t have a name, but they have just an unique ID that identifies
them.
The idea is the following:

1. Collect the list of TIVs from a SRV that is in common between Data Prep and
Data Prod.

2. Compare the list of IDs to understand which TIVs are the same and which are
removed or created in Data Prod.

3. Comparing PKs to see which segments have been lengthened and which short-
ened.

Notice that, due to the kilometre continuity of PKs, if a TIV has been short-
ened/lengthened to the right, for example, the following one has received an elon-
gation/shortening to the left.
In order to have a tool that helps us in visualizing the differences in PK and ID,
together with an output comparison table, we created an interactive plot that shows
all the TIVs as segments making up a SRV of Data Prep and Data Prod.
For a practical example, consider the SRV "Voie V2 de Creil à Jeumont", that is
one of the 2 main tracks composing the railway line we analyzed in Chapter 2.7. In
the Figure 2.22 we have two lines: in the upper side we have the sequence of TIVs,
separated by black vertical lines, composing the Data Prep SRV; in the lower side,
instead, we have the same for the SRV belonging to Data Prod. We colored in blue
the TIVs that share the same ID, in red when these are different.
When we have a track formed by several segments, as in this case, it’s not easy
to visually understand the differences of PK. For this reason, a red dot has been
inserted wherever we have a difference of PK. For instance, consider the section
starting at PK 91681 in Data Prep and at PK 91676 in Data Prod: firstly, it is
colored in red because his ID has been changed; secondly, there is a red point close
to the starting border indicating the adjustment of PK undergone. In order to have
detailed information on the PK of any border, we have added an event to the graph
which opens a small window containing the value of PK by moving the mouse over it.
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Figure 2.22: Comparison plot between Data Prep and Data Prod for TIVs composing
the SRV "Voie V2 de Creil à Jeumont".

Finally, the output of our Python function gives all specific information about the
comparison we are looking for (Fig. 2.23).
The first two blocks displays the list of TIVs for both datasets (we have just plotted
the heads and the tails for size issues) with a resume of their situations. It’s a table
of 0-1 values with these attributes:

• égal (equal): if the TIV ID is the same between the datasets.

• élimination (elimination): if the TIV ID has been removed from Data Prep.

• neuf (new): if the TIV ID has been created in Data Prod.

• allong_droite (extension to the right): if the TIV has been stretched to the
right with respect to its counterpart in the other dataset.

• allong_gauche (extension to the left): if the TIV has been stretched to the
left with respect to its counterpart in the other dataset.

• racc_droite (shortening to the right): if the TIV has been shortened to the
right with respect to its counterpart in the other dataset.

• racc_gauche (shortening to the left): if the TIV has been shortened to the
left with respect to its counterpart in the other dataset.
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Notice, for example, that the TIV at position 95 has been removed from Data Prep
and, for this reason, the TIV at position 94 has had a shortening with respect to
the same TIV in Data Prod, that inevitably has been extended at right.
Then, we have two blocks with TIVs that are unique in Data Prod and Data Prep
respectively. Finally, the last block shows the list of TIVs which have changed PKs.

Figure 2.23: Output of the TIVs comparison algorithm for the SRV "Voie V2 de
Creil à Jeumont".
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Chapter 3

Trackers and SRVs

In this chapter we will focus on a new problem that involves a new particular type
of infrastructure element (organ): the "Localisateurs" (trackers or locators). These
are sensors that are physically attached to the tracks and detect useful information
related to the passage of trains.
Let’s analyse the diagram in Figure 3.1, which explains how the trackers are inte-
grated into the SNCF Réseau data collection system.

Train GPS
Brehat 

trackers
Manual

HUBIC

GAIA X16

RÉSEAU

Bouchon

Dispatching 
Systems

Figure 3.1: Diagram for the creation of file bouchon.
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In the past, 3 sources of location data were used: 2 "historical" sources and one,
more modern, based on the GPS signal of trains. The first of the two historical
sources uses "Brehat" trackers attached directly to the railroad ways to provide
information on the time of the train’s passage, while the second source is manual,
namely some agents detect the train’s passage directly on the spot. This stream
of data is then projected onto PRs (Points Remarquables, Marker Points) on the
network where information on theoretical train passing times is available. In this
way, it is possible to calculate the hourly variance and consequently the train delays.
However, this stream of data is very noisy and inaccurate. For this reason, the X16
project was created, which, through a model called HUBIC, aims to build a refer-
ence location base consistent with the bases identified by the railway companies that
can cover all traffic in real time. This represents a major advantage, particularly in
the event of disruptions.
X16 continuously uses this raw data stream together with the one from GAÏA to
create a dynamic association between the tracks (SRV) and the locators. These data
are then used for dispatching systems for communication. However, this dynamism
in the data often leads to errors and missing information, which is the reason why
we want now to create a stable and static system that allows each tracker, identified
by a module and window number, to be associated uniquely with the SRV to which
it is attached.
How to do this? There exists another data source, called Réseau, which provides
association between trackers and railroad ways, detected with 3 particular systems
that we will show in the next section (Section 3.1).
Then, the idea is to associate the data coming from Réseau to SRVs coming from
GAÏA and create a table that we called bouchon.
Finally, in order to make more reliable the bouchon model and complete it, we will
exploit the dynamic stream of data from X16 (Section 3.2). In fact these data, al-
though they may present anomalies (Section 3.2.1) or missing values (Section 3.2.2),
provide a way to validate our reference file and make it more robust. In the same
time, we will use the bouchon model to modify this dynamic stream of data so as
to decrease the percentage of errors they have.

3.1 Tracker SRV Detection

As already mentioned, a tracker provides information on the passage of trains. In
particular, we have:

• r_num_module: tracker module number.

• r_fen: tracker window number.

• r_int_fen: an unique locator number for each pair module-window.

• r_pk: tracker PK (Kilometric Point).

• r_nom_voie, r_nv_prov, r_nv_thor_prov: 3 different systems for
locating the origin track of the train. They are the tracks on which the locator
is attached to.
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• r_nv_dest, r_nv_thor_dest: 2 different systems for locating the desti-
nation track of the train.

• id_srl: unique ID of the railway line on which the tracker is located on.

• libelle_ligne: name of the railway line on which the tracker is located on.

Each tracker is identified by a module number, the r_num_module, that is not
unique. To understand why, consider the Fig. 3.2.
There are several pathways parallel to each other. The tracker, identified by the

1

V2

V2 BIS

V1

V3

V4

PK

800501

LOC

800500 800504

Figure 3.2: Example of a tracker with two different window numbers: in the first
one, in red, the train starts from V3 and goes to V1. In the second one, in yellow,
the train starts from V1 and goes to V2.

module number 10254 is located on V3 according to the three systems for the origin
track. Recall that the origin track is also the railroad way on which the locator is
installed. However, there are two possible destination tracks corresponding to two
different window numbers: 24 and 25. The first module-window pair, identified with
the r_int_fen number 18352 and colored in red in the figure, has V1 as destination
track; whereas the second pair, identified with the r_int_fen number 18353 and
colored in yellow, has V2 as destination track.

What is missing in our data is information about SRVs. In fact, we have 5 dif-
ferent systems for detecting the origin and destination tracks of the train for each
specific module-window pair, but these are just generic abbreviations for the railroad
way coming from an old source of data called "Réseau". Our task is to associate
each of these "acronyms" to the corresponding SRV. In fact, the SRV is the unique
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object that describes the railway track and provides us a lot of new useful informa-
tion that we do not currently have with just the Réseau information.
In the next section we will focus on the origin track of the trains and we will imple-
ment an algorithm that creates the associations we are looking for, whereas in the
following one we will almost adopt the same algorithm (with some modifications) for
the destination track of the trains. In the following, we will consider only the Data
Prod since, as we explained in the introduction, it is that one that is constantly
updated and used for analysis.

3.1.1 Detection of Origin Track

In this part, we want to associate for each locator, and specifically for each pair of
module-window number, the origin pathway of the train, expressed by the 3 vari-
ables r_nom_voie, r_nv_prov and r_nv_thor_prov, with the corresponding
SRV.
The algorithm adopted can be summerized in the Alg.6.

Algorithm 6: Detection of the origin track
input : Data_PROD - set of all SRV in Data Prod

Line_PROD - set of all railway lines in Data Prod
Localisateurs - set of all trackers

output:
bouchon table - table of all trackers with the corresponding SRV

for the origin track ("voie de provenance")
not found tables - tables of all trackers without matching any SRV

for the origin track

1 foreach line ∈ Line_PROD:
2 Take a line;
3 Select all SRV (except for junctions) and all module-window tracker

pairs on that line;
4 Select all SRVs such that: Initial PK SRV - X ≤ Tracker PK ≤ Final

PK SRV + X, where X is a threshold (in metres);
5 Semantic comparison between the 3 abbreviations for the origin track

and the SRV name;
6 Creation of the bouchon file and the two tables for matches not found;
7 return bouchon table and not found tables ;

Firstly notice that since the origin railroad way is also the track on which the
locator is attached to, we need to exploit the position of both the locator and SRV,
expressed by their Kilometric Point (PK). Considering that PK is unique only over
railway lines, we start by looping on the set of all lines and by extracting the list
of all SRVs and trackers belonging to them. At this point, for each module-window
tracker pair, we select those SRVs such that:

Initial PK SRV− X ≤ Tracker PK ≤ Final PK SRV+ X

where X is a threshold in metres that we should take into account because sometimes
the measurements are not really precise. In fact, it might happen that a tracker is
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located just a little beyond the end of the track or a little before his starting PK.
This value cannot be too small, otherwise we risk having false negatives, i.e. we
miss some good matches, but neither can it be too large, otherwise we can get too
many false positives, i.e. chosen fake matches. During our analysis we considered a
threshold of 150 metres.
After this step we have in total more than 200000 possible matches out of 40667
unique trackers. In fact, as we can simply observe from Fig. 3.3, the position of a
single tracker may belong to several SRVs.

V2 BIS

V1

V3

V4

PK

LOC

18 2793 7 11

Figure 3.3: Example of a tracker, indicated with a blue triangle called "LOC"
(localisateur in french, tracker in english) whose position is included between the
initial and final PK of several SRVs.

In order to understand which is the real match among those available, we have
to proceed with the semantic comparison.

After a first analysis of the structure of abbreviations and names of SRVs, we can
observe that most of the tracks are called as "voie V* de **" (i.e., track V* of ** ),
where * stands for a number and ** generally indicates the cities of origin and des-
tination. The corresponding abbreviation, since it is shorter, is usually written as
V* or just only *, where, as before, * stands for a number.
However, although this is the most frequent case, there are so many special struc-
tures and unique names that have made the creation of a generic algorithm very
challenging. In fact, we can find tracks written in the most diverse manner: V1BIS,
V2G, CIRC, SAS, V11-V12, etc.. Due to the hyper vertical structure of the prob-
lem, the application of a complex deep learning method would probably have been
ineffective. However, some recurring patterns are present, and thanks to the use
of regex (regular expressions), namely sequence of characters that specifies a search
pattern, we have managed to build an algorithm (Alg.7) that succeeds in construct-
ing most of the associations we are looking for.

1. Splitting in numbers and words.
The first step consists on dividing both the three abbreviations and the SRV name
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Algorithm 7: Semantic Comparison
input : r_nom_voie, r_nv_prov, r_nv_thor_prov - the 3 systems for

locating the origin track
libelle_srv - SRV name

output:
bouchon table - set of all trackers with the corresponding SRV for

the origin track ("voie de provenance")
not found tables - tables of all trackers without matching any SRV.

1 Splitting in numbers and words;
2 Comparison between SRV and each of the three abbreviations;
3 Choice of the unique match;
4 return bouchon table and not found tables ;

in words by splitting by spaces, brackets or other special punctuation marks. For
the SRV name, we take everything after the words "voie" (that means track) and
before "de","des","d’" (that means of ).
Finally, we divided the list of strings in 2 big groups: numbers and words. Indeed,
as we will see in the second step, the first comparison we are going to make is be-
tween numbers. If two strings do not share the same numbers, they are unlikely to
refer to the same track and thus be considered a match. However, it is also true that
even if the numbers in the two strings are the same, it may happen that there are
any additional different words or letters and therefore the association is not valid.
For instance, consider as SRV name "Voie V1G de Paris-Marseille" and as the found
abbreviation "V1". Despite the fact that the number 1 appears in both notations,
we cannot consider this a true match, since the SRV name contains the letter G,
which could stand for "Garage" and thus refer to another track. Therefore, it is
important to distinguish the numbers from the rest as first step in order to be able
to make a more accurate comparison later.
Just a specific remark: when there is a string starting by V and longer than 1 char-
acter, we remove the V. The reason is that the letter V, the initial of "voie", may
or may not be present, and to avoid complications and ambiguities we prefer to
eliminate it.
Here some examples:

Voie V2 de Strasbourg

1

[«V2»] MOTS: []
NOMBRES: [«2»]

Voie V2 BIS de Strasbourg

[«V2», «BIS»] MOTS: [«BIS»]
NOMBRES: [«2»]

Voie 1BIS CIRCULATION de Strasbourg

[«1BIS», «CIRCULATION»] MOTS: [«BIS», «CIRCULATION»]
NOMBRES: [«1»]

Voie de sas M1-L2 de Belfort

[«sas», «M1», «L2»] MOTS: [«sas», «M», «L»]
NOMBRES: [«1», «2»]

Figure 3.4: Examples of SRV name splitting in words and numbers
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2. Comparison between SRV and each of the three abbreviations.
At this point, we are going into the heart of the semantic comparison. The algorithm
simply consists of sequencing "if-else" conditions in descending order of probability
of success so as to minimize the computational cost. In fact, we will start, as
anticipated, from the comparison of the group of numbers and then we will gradually
consider more and more specific and rare cases.
The comparisons can be listed as:

1. Comparison between the group of numbers. If true we continue the search,
otherwise we stop and we consider it a false match.

2. Check whether the group of words is exactly the same.

3. Check whether the words of the abbreviations are sub-sequences of some of
the words of the SRVs.
Ex: "CIRC" is a sub-sequence of "CIRCULATION".

4. Check whether the words of the abbreviations are a sequence formed by the
initial letters of the SRV words.
Ex: "V1BC" is a sequence formed by initial letters of "V1 BIS CIRCULA-
TION".

5. The same as before, but considering permutations.
Ex: "V1BC" is a sequence formed by initial permuted letters of "V1 CIRCU-
LATION BIS".

Here some examples:

1

Figure 3.5: Examples of semantic analysis.
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3. Choice of the unique match.
After the second step, we have collected in total 31812 out of 40667 module-window
tracker pairs. However, some of these are multiples, i.e. a pair may have found 2 or
more matches. Indeed, it usually happens that some track names are repeated along
the railway line or that different systems for locating the origin track find different
railroad ways. Which one should we choose?
Consider, as example, these 5 matches found by tracker with r_int_fen = 87965.

Figure 3.6: Example of unique match choice.

As there are 3 origin track identification systems, I select those rows for which I
have the highest number of matches. In this particular example, since V2 appears
two times out of three, I select the first and the third row.
After this first selection, if I have still ambiguity as in this case, we select the short-
est track, so the first row in the example. The reason for this is that since there are
railroad ways with repeated names, some of these are the main tracks (like "Voie 1"
or "Voie 2" in our example) that run the entire length of the railway line and are,
consequently, detected by all trackers on that line. Therefore, in case of ambiguity,
the shortest railroad way is more likely to be the one actually identified.

At the end of this phase we found 28409 matches out of a total of 40667 (70%).
We remark that we considered the row to be true whenever at least one of the three
source pathway location systems finds a true match, as we gave the same importance
to all the three systems.
The reasons why it is not possible to obtain 100% for the moment are as follows:

• 3355 trackers are without line code and this makes them useless for under-
standing which SRVs are attached to.

• Some trackers are located on secondary railroad ways (e.g. service) and not
identified as SRV.

• There are so many special cases and creating an algorithm that takes them all
into account would inevitably lead to many more false positives.

However, it is possible to increase this percentage in a second step (see more details
Chapter 3.2).
In fact, as output of the algorithm, in addition to the creation of the bouchon model,
we have two more tables of matches not found automatically: a larger table, created
considering only the criterion of the same group of numbers, and a smaller one,
created taking into account also the cases where all the words of the abbreviations
were found in the SRV name, but this also contains something extra. It is clear then
that the small table is a subset of the big one, where the probability of having a real
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match is higher.
For instance, consider this not found match:

Figure 3.7: Example of not found match

The set of numbers, composed by only the number 4, is the same, as well as the
word "VILLE" in the first two abbreviations, that stands for "Villette". However,
in the SRV name appears also the word "La" (i.e. the) that is an extra word which
prohibited the algorithm from considering it as a true match, but it is clear that
this is a false negative.
Then, by creating a graphical interface that allows the user to select or remove the
row from the table and through more precise tools it is possible to manually increase
the number of total matches.

3.1.2 Detection of Destination Track

It is possible to carry out a similar analysis that we did for the origin track also
for the destination track, using the variables r_nv_dest and r_nv_thor_dest.
The algorithm we are going to use is approximately the same, but in this case the
destination track is not anymore the pathway on which the locator is attached, but
is a pathway that may be further or further back, depending on the direction of the
train, than its position.
To better understand this concept, consider Fig. 3.8.

1

V2

V2 BIS

V1

V3

V4
LOC

V3TER V5

VS

GAR

EVI

V3R

10 km10 km

Figure 3.8: Example of a tracker attached to V3 in a system of railroad ways.
We consider a spatial interval of 10 km before and after the tracker to trace the
destination pathway.
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We have a tracker that is located on V3 and there are several railroad ways around
it. As a train can run from right to left or vice versa, we need to consider a spatial
interval of a certain threshold around the position of the locator to find the des-
tination track, that for our analysis we decided to set to 10 km. As before, this
threshold has been set considering the fact that a too big value would lead more
false positives, whereas with a too small value we can miss some good matches (false
negatives). The general algorithm can be summarised in Alg. 8.

Algorithm 8: Detection of the destination track
input : Data_PROD - set of all SRV in Data Prod

Line_PROD - set of all railway lines in Data Prod
Localisateurs - set of all trackers

output:
assoc_dest_loc_srv - set of all trackers with the corresponding

SRV for the destination track ("voie de destination")
not_found_assoc_dest_loc_srv - set of all trackers without

matching any SRV for the destination track

1 foreach line ∈ Line_PROD:
2 Take a line;
3 Select all SRV (except for junctions) and all module-window tracker

pairs on that line;
4 Select all SRVs such that: Initial PK SRV ≤ Tracker PK + X AND

Final PK SRV ≥ Tracker PK - X, where X is a threshold (in metres);
5 Semantic comparison between the 3 abbreviations for the destination

track and the SRV name;
6 Creation of the tables assoc_dest_loc_srv and

not_found_assoc_dest_loc_srv for found and not found matches
respectively;

7 return assoc_dest_loc_srv and not_found_assoc_dest_loc_srv;

The only difference with the origin track algorithm (Alg.6) regards the choice of
the list of SRV we select, where the following conditions must be satisfied:

Initial PK SRV ≤ Tracker PK+X AND Final PK SRV ≥ Tracker PK−X

where X is the threshold of 10 km we set up.
Namely, we consider all those SRVs such that overlap this spacial interval even if
only for a few metres.
The semantic comparison is exactly the same as that made for the track of origin.
The only difference concerning the algorithm is in case of multiple matches. In fact,
since the spatial interval is much wider than in the case of the origin track, and since
we only have two localisation systems instead of the three we had previously, there
are many more multiple matches.
Therefore, it is necessary to develop a more precise algorithm that allows us to
choose the destination track with highest likelihood.
The idea is the following:
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• We assign a different score depending on the method used to obtain the match:

– 4 points if the group of words is empty and we have only shared numbers;

– 3 points if the words in the abbreviation are a sub-sequence of the starting
letters of the words in the SRV name;

– 2 points if the group of words are exactly the same;

– 1 point if the words in the abbreviation are sub-sequences of some words
in the SRV name;

– 0 otherwise.

• After taking the matches with a higher score, I consider the ones with the
highest number of matches between the 2 systems;

• I consider as final match that one with the closest corresponding SRV (the
distance is 0 whenever the tracker belongs to the SRV).

For instance, consider this example:

2

2

1

1

0

0

0

0

SCORE

Figure 3.9: Example of unique match for destination track in case of multiple
matches.

We have inserted the scores next to each abbreviations for easier reading. Since
the maximum between the last two scores is 1 and between the first two is 2, we
discard last two rows. Then, in order to choose the best one, we look at PKs: we
notice that the first SRV is closer to the tracker than the second one and, for this
reason, this will be our best fit.

At the end of this phase we found 26771 matches out of a total of 40667 (65.8%).
The percentage is lower than that one found with the origin track, but it is an ex-
pected result as the destination track may be very far away from the locator and
then not found by the algorithm. Moreover, many trains terminate on service tracks
that are not present on the SRV list and therefore cannot be detected.

3.2 Reliability of Bouchon File and Interaction with
X16

In this section and in the following one we will work on the file bouchon constructed
in chapter 3.1.1 concerning the association of SRVs with trackers physically attached
to them together with concrete problems where these data are important, coming
from the X16 system (Fig. 3.1).
Our goals are as follows:

49



1. Complete and make more reliable the bouchon file through the stream of data
coming from X16.

2. At the same time, update and/or complete the data coming from X16.

In fact, as we already discussed in the introduction of this chapter, the stream of
data coming from X16 is often inaccurate and need to be fixed by the bouchon model
that is more robust. However, in these data there are often locators that have not
been used in the creation of the bouchon file because a good match with a SRV has
not been found, and they could therefore be added to our reference table (albeit
with the right caution as we have no guarantee that they are definitely correct). In
summary, we will make the bouchon model interact with X16 in such a way as to
improve both.
In the next sections we will consider just a small part of data coming from X16.
The new trackers we will add to the bouchon file will be then only a part of the
total number of trackers we could have. In fact, the next two sections are only an
example of a methodology we can adopt to complete and make more reliable our
reference table.

3.2.1 Anomaly Detection Problem

Every day, hundreds of trains cross the tracks of the French railway network and
locators are useful tools for monitoring their transit.
In this section we will consider a file from X16 that takes into account all train
journeys in the week between 11-07-2021 and 18-07-2021.
We have many different train numbers. Each train run on one or more paths,
sometimes similar and other times different, in the week under consideration. For
each itinerary the trackers detect the time of passages, the railway lines and tracks
they are on and the PKs. Therefore, the attributes we will consider are:

• Numero_Sillon (Train Number): unique number for a train.

• Date_Heure_Depart_Theorique (Theoretical Departure Date): depar-
ture time of the train (format: yyyy-mm-dd hh:mm:ss).

• Date_Mesure (Measurement Date): detection time of train passage (format:
yyyy-mm-dd hh:mm:ss).

• SRL: ID of the SRL.

• SRV: ID of the SRV.

• Libelle_Voie (Track Name): name of the SRV.

• Pk_Ligne (Line PK ): tracker PK (Kilometric Point) on the detected SRL.

• Pk_Voie (Track PK ): tracker PK on the detected SRV.

• Numero_Module (Module Number): module number of the tracker.

• Numero_Fenetre (Window Number): window number of the tracker.
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These are the principal information that we can extract from trackers displaced all
along the lines and thanks to which we can construct a time series for each train’s
path.
In order to better visualize these data, in Fig. 3.10 we have considered a part of the
itinerary computed by the train number 17751 with departure time set to 2021-07-12
04:22:00.

Figure 3.10: Part of the itinerary of train number 17751 with departure time set to
2021-07-12 04:22:00.

After a deep pre-processing phase of the dataset, we want to:

1. Modify the detection of SRVs by trackers through the bouchon file.

2. Detect anomalies in the updated version of the X16 file.

3. Update the bouchon file by adding all trackers that are present uniquely in the
X16 file.

We analyse now step by step this procedure.

1. Modify the detection of SRVs by trackers through the bouchon file.
The first problem is updating the X16 file with the bouchon file. To start with, we
perform a short descriptive analysis of the data. In total we have 777 trackers in the
file X16 (detected as pairs module_number - window_number) out of 51274 rows,
due to the fact that the pathways on which the trackers are located are used more
times by different trains on different dates. Of these 777 trackers, 554 are shared
with the bouchon model and 223 are unique in the X16 file. We will add these 223
trackers to bouchon model in a second moment, after making some considerations.
We focus on the 554 shared trackers: 432 detect the same SRVs as in bouchon model,
whereas 122 find a different SRV ID. To sum up, on average 1 locator out of 6 detect
a different SRV between the two tables.
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2. Detect anomalies in the updated version of the X16 file.
After having updated the X16 file, we look for anomalies. But firstly we must pro-
vide a definition of anomaly.

We define an anomaly as an ABA or ABB or ABC sequence belonging to the
same itinerary (i.e. same train number and same departure date) and repeated more
times, where A, B and C stand for three different SRV IDs, such that the average
train speed is above a certain threshold in a small time interval around the detection
of the central track.

In other words, we know that a train can change its track at a certain maximum
speed, which corresponds to 30 km/h or 60 km/h depending on the type of railway
switch. If the train switches from track A to track B and then back to track A in few
seconds with a speed higher than the maximum allowed, this sequence is probably
an anomaly and should be corrected in the AAA sequence.
As far as the ABB and ABC sequences are concerned, these are a bit more difficult
to correct because more combinations are possible. However, the same argument
applies as for ABA sequences, as a track switch cannot be performed above a certain
speed threshold.
In particular, we decided to take all sequences with time intervals of less than 4
minutes and speeds above 60km/h OR with time intervals of less than 8 min-
utes and speeds above 100km/h. The reason why we put two conditions is not
to loose possible anomalies when the time window is large. In these cases, logically
the threshold for speed must be increased.
In order to compute the train speed, the best we can do is to use the difference of
PKs and the difference of detection times. Obviously, the result obtained will be an
average of the train speed between two successive measurement times and will not
be particularly accurate, especially when the time gap is large (another reason why
we look for small time windows).

In total, 43 ABA unique sequences are found after the update with bouchon model,
of which 2 are possible anomalies. Instead, 183 ABB and ABC sequences are found,
of which 37 are possible anomalies.
We take now under analysis the itinerary we have considered before as example (Fig.
3.10).
In Fig. 3.11 we have two graphs of the train speeds and times detected by the
trackers along its itinerary: the upper plot is the original one, the lower one follows
a possible modification.
In the y-axis we have the speed in km/h, whereas along the x-axis we have the

accumulated seconds from the start of the path. We point out that we have con-
sidered the accumulated seconds for two reasons: to better visualize the time gaps
between two sequential detections (longer is the segment, wider is the time interval)
and not to have overlaps of labels in the plot in case we had taken the measurement
dates.
Each point corresponds to a detection of a particular locator and has as coordinates
the detected speed of the train and the time of passage. Points have a different color
according to their ID.
Notice, as one can imagine, that the speed of the train fluctuates continuously be-
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Figure 3.11: (a) Speeds detected by trackers in the original file. (b) Speeds detected
by trackers after anomaly resolution.
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tween higher values, when the train is between two stations for example, and lower
values, in the proximity of stations or interchange points.
The horizontal distance between two points indicates how much time has elapsed
between two measurements (this data is not very clear from this plot, but by zoom-
ing in on the original output it is possible to better quantify this time interval).
In the graph all points are in light grey except for points inside the 3 rectangles.
These are the SRVs with a different ID. The red rectangle has only one dot, that
forms an ABA sequence. The green one, instead, enclose 2 dots with same dark
grey color, composing a ABB sequence. Finally, the yellow rectangle contains three
points of different colors, that do not compose any particular sequence among those
we are looking for.
The points inside the first two rectangles are the most problematic ones, because
the train here was detected at higher speeds (on average by considering the previ-
ous detection) than the points inside the yellow square, which probably are in the
proximity of a station.
We focus now on the ABA sequence (light blue point in the red rectangle): this small
table describes the data of the SRV B detection and the second SRV A detection
(we insert only the first 8 characters of the SRV ID for size issues).

ABA Sequence
SRV IDs 284cf558 60312ede 284cf558
Loc. Numbers 10781-39 10781-149 10870-954

Distance(m) Time(s) Speed(km/h)
Detect. B 1930 65 106.89
Detect.(2nd) A 17495 404 155.90

Table 3.1: Distance, Time and Speed detection for an ABA sequence.

As we can see, we are within the range of values we set for detecting an anomaly
(just looking at the speed, these are all over 100km/h with a time interval below
the 8 minutes) and for this reason in the below plot of Fig. 3.11 we colored in light
grey the anomalous point, namely as the other "ordinary" points.
We proceed similarly with the ABB sequence inside the green box. These are the
measured data:

ABB Sequence
SRV IDs 284cf558 65f5aa18 65f5aa18
Loc. Numbers 10445-168 10782-868 10872-925

Distance(m) Time(s) Speed(km/h)
Detect. B 10623 441 86.71
Detect. A 466 15 111.84

Table 3.2: Distance, Time and Speed detection for an ABB sequence.

Although the values of the second detection are within the range of the param-
eters of an anomaly, the speed detected by the first SRV B is not high enough (less
than 100km/h with a time interval of 441 seconds (7 minutes and 21 seconds) ) and
therefore we left the SRVs unchanged.
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As mentioned above, this detection method is very approximate and is based on
the considerations listed above. However, it provides a first preliminary step to find
possible anomalies, which will then be analysed one by one with other tools. In
addition, a new speed detection system will be introduced in few months, which will
provide data on train speeds in real time, representing a more precise method of
finding these anomalies.

3. Update the bouchon file by adding all trackers that are present
uniquely inthe X16 file.
As we mentioned before, there are 223 locators that are present in the X16 file but
not in the bouchon file.
In order to update the bouchon model with these new trackers, we followed the
procedure divided in 3 steps that is explained in the diagram in Fig. 3.12.
At the end of Chapter 3.1.1 we introduced 2 tables of not found matches: a larger

1 223 new trackers              
(10 with anomalies)

SHORT TABLE               
- 8 track. in comm.                 

(0 anomalies)                                                                            
- 3 track. with SRV in comm. 

(0 anomalies)
Add to 

BOUCHON 
with "HIGH" 

reliability

LONG TABLE               
- 201 track. in comm.                   

(10 anomalies)                                                                            
-  141 track. with SRV in 

comm.                                   
(3 anomalies)

Add to 
BOUCHON 

with "MEDIUM" 
reliability

EXTRA                                            
14 track. not in tables + 65 
in tables without SRV in 
comm. = 79 trackers (7 

anomalies)

Add to 
BOUCHON 
with "LOW" 

reliability

2 

3

Figure 3.12: Diagram that explains the updating procedure for bouchon model for
the detection problem (the order of the 3 steps is highlighted with the numbers).

table, created considering only the criterion of the same group of numbers, and a
smaller one, created taking into account also the cases where all the words of the
abbreviations were found in the SRV name, but this also contains something ex-
tra. We have firstly checked that all 223 trackers belong to that 30% of matches
not found, but to go further we want to verify if any of these are contained in the
two tables. In order to update the bouchon model we started the comparison with
the short table, since this contains matches not found with a higher probability of
being good matches (i.e. false negatives). We concluded that 8 trackers out of 223
are in common with this table, of which 3 identify the same SRV of X16 file. We
added these 3 trackers, with the associated SRVs, to the bouchon file with "HIGH"
reliability. At the same time, we removed them from both the "not found" tables.
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After that, we moved to the long table and we found out that 201 locators are
shared, of which 141 identify the same SRV of X16 file. As before, we added these
141 locators, with the associated SRVs, to the bouchon file with "MEDIUM" reli-
ability, since this table has lower probability of containing false negative matches,
and we remove them from the two tables.
Finally, we considered the 79 "extra" trackers left and we added them to the bou-
chon model with "LOW" reliability.
As far as the anomalies are concerned, 10 out of 39 we have found before are in
the 223 new locators, whereas the others are in the bouchon model (see diagram
for more details). We decided not to edit the bouchon file with the SRV found by
the anomaly, but to add them separately as they have to be analysed with other
methods.
These results confirm the presence of some good matches in the two tables, which
can therefore be exploited to increase the reliability and completeness of the bouchon
table.

3.2.2 Missing Data Problem

Data coming from X16 not only might be inaccurate as we have seen in the previous
section, but they may have some missing values.
In this final part of our work, we analyse some train itineraries on 3 and 4 November
2021 that present some missing data for the SRV and the name of the track. The
objectives are basically the same as those we discussed in the introduction to Chapter
3.2, and specifically we want to:

1. Modify the detection of SRVs by trackers through the bouchon file.

2. Fill some missing values.

3. Update the bouchon file by adding all trackers that are present uniquely in the
X16 file.

Also in this case we go through the procedure step by step.

1. Modify the detection of SRVs by trackers through the bouchon file.
The structure of the dataset is the same as before with the same features we de-
scribed in Chapter 3.2.1.
In total we have 1331 unique trackers in this file out of 7490 rows. Of these, 1123 are
shared with the bouchon model (after the update of the anomaly detection problem!)
and 208 are unique in the X16 file. These are all present in the list of all trackers
except for one, that is a new locator since this file is more recent than bouchon file.
What is surprising, however, is that all 208 locators do not identify any tracks, or
rather, the SRV that should be identified by them is missing from the table. At the
end of the filling phase, we will add to the bouchon file only the filled data we found.

2. Fill some missing values.
The original dataset has 2624 missing SRVs (out of 7490 rows), but after updating
with the bouchon table, this number decreases to 672, meaning that almost the 75%
of missing values has been filled by our reference table. However, since the 208
locators we want to add are unique in this dataset, they still remain without SRV.
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In Fig. 3.13 we inserted part of the table referred to a particular train itinerary.
Note that sometimes we have many missing values in a row, sometimes only one
hole. In the following, we will consider only the last case, because with our data it is
difficult and dangerous to fill in so many close missing data and would compromise
the reliability of the bouchon model. The algorithm used is illustrated in Alg. 9.

Figure 3.13: Part of the X16 table with some missing values.

Cycling on each railroad way, we consider successive sequences of 3 locators (or
2, in case of beginning or end of sequence) and we associate the tracker with the
missing SRV with the most similar one. In the case of sequences of 3, the first
similarity criterion is the SRL, i.e. the railway line on which the locator lies.
If the previous or the following tracker with respect to the central missing one shares
the same SRL, we copy the data from that SRV. If, however, the three lines are all
different, then we skip this sequence, as the missing data belongs to another line
and we have no clues about the possible track.
Finally, there is the case where the three tracks are on the same railway line. In this
case, if the previous SRV is the same as the next one, it is logical to think that my
missing data follows the same trend. If, however, the preceding SRV is different from
the following one, one can use PK as a second similarity criterion. Logically, the
missing SRV will be more similar to the closest one in terms of distance. However,
we prefer to omit this association because it may create too many false positives
and compromise the reliability of the bouchon file.
In case of initial or final sequence (the first two conditions in Alg. 9), we simply
compare the SRL with the second and penultimate row respectively and, if they are
the same, we copy otherwise we skip.

After this procedure, we have filled 118 new rows. Therefore, there are still 554
missing values, that we will leave blank in order not to risk having too many false
positives, since with the information provided we cannot go further.

3. Update the bouchon file by adding all trackers that are present
uniquely in the X16 file
Finally, we update the bouchon table with the new trackers. These are 208 in total,
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but originally none of these identified an SRV. After the filling algorithm we imple-
mented, we managed to fill 34 of these. As we have done with the anomaly detection
problem, we checked whether these 34 locators belong to the two not found tables
and we added with different reliability level depending on the table where we found
them. We started from the short table: here only 4 trackers are found, but none
of them also share the same SRV. For this reason, we didn’t add any trackers with
"HIGH" reliability level.
Then, we moved to the long table. We found out that 25 trackers share the same
module and window numbers and, in particular, 16 of them have the same SRV
as well. We added these 16 locators to bouchon table with "MEDIUM" reliability
level.
Finally, we added the remaining 18 locators with "LOW" reliability level.
The diagram in Fig. 3.14 summarizes what we have just explained. We recall that

1
34 new trackers

SHORT TABLE               
- 4 track. in comm.                                                                              

- 0 track. with SRV in comm. 

NO addition to 
BOUCHON 
with "HIGH" 

reliability

LONG TABLE               
- 25 track. in comm.                                                                             

-  16 track. with SRV in 
comm.  

Add to 
BOUCHON 

with "MEDIUM" 
reliability

EXTRA                                            
9 track. not in tables + 9 in 

tables without SRV in 
comm. = 18 trackers 

Add to 
BOUCHON 
with "LOW" 

reliability

2 

3

Figure 3.14: Diagram that explains the updating procedure for bouchon file for the
missing data problem (the order of the 3 steps is highlighted with the numbers).

these new detected trackers that we added to bouchon model, for both the anomaly
detection and missing values problems, are just a small part of the total we could
have. Indeed, as we mentioned above, we are just considering some examples of
data coming from X16 in order to show a possible method for completing and mak-
ing more reliable our reference table. As we said in the introduction, this is an
exploratory part of our work, that it will be exploited in future thanks to new more
precise tools that will be available.
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Algorithm 9: Filling sequences with a missing data
input : D - Train itineraries table with missing values
output: D - Train itineraries table with (partial) filled values

1 foreach (train_number, departure_time) ∈ D:
2 Select the relevant sub-table S;

3 foreach i ∈ range(len(S)):
/* Start of sequence */

4 if i = 0:
5 Select SRL of row[0] and row[1];

6 if SRL[0] == SRL[1]:
7 SRV_ID[0] = SRV_[1];
8 SRV_name[0] = SRV_name[1];

9 else:
10 continue;

/* End of sequence */
11 elif i = len(S):
12 Select SRL of row[len(S)] and row[len(S)-1];

13 if SRL[len(S)] == SRL[len(S)− 1]:
14 SRV_ID[len(S)] = SRV_[len(S)-1];
15 SRV_name[len(S)] = SRV_name[len(S)-1];

16 else:
17 continue;

18 Select SRL of row[i-1], row[i] and row[i+1];

19 if SRL[i− 1]! = SRL[i]! = SRL[i+ 1]:
20 continue;

21 elif SRL[i] == SRL[i− 1]:
22 SRV_ID[i] = SRV_[i-1];
23 SRV_name[i] = SRV_name[i-1];

24 elif SRL[i] == SRL[i+ 1]:
25 SRV_ID[i] = SRV_[i+1];
26 SRV_name[i] = SRV_name[i+1];

27 elif SRL[i− 1] == SRL[i] == SRL[i+ 1]:
28 if SRV_ID[i− 1] == SRV_ID[i+ 1]:
29 SRV_ID[i] = SRV_[i-1];
30 SRV_name[i] = SRV_name[i-1];

/* I can assign i− 1 or i+ 1 since they are the same */
31 else:
32 continue;
33 return D;
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Chapter 4

Conclusions

In this work, we have addressed two very important issues from the practical point
of view of data analysis of the French railway network.
The first one concerns the transition from the old and time frozen version of GAÏA
to the current and dynamic one, which is used every day for the creation of fun-
damental tools for the consumer. Several machine learning algorithms have been
used, leading to excellent results and discrete improvements over simpler algorithms,
without having a particularly high computational cost. In addition, we created a
useful plot for visualizing SRVs along a single railway line, where we compared with
different colours the tracks that have been modified from Data Prep to Data Prod,
and an another interesting graph for comparing TIVs that make up a specific SRV.
The second topic was the creation of a model, the bouchon file, which will be used
nationwide as a reference model for the association of locators with railway tracks.
This is a part that is still under development at SNCF Réseau. The contribution of
this work was the creation of a first version of the model based on semantic com-
parison algorithms between words which allowed to couple about 70% of the total
of the trackers with their respective SRVs. Moreover, after showing the limitations
of the algorithm, we created two tables that can be used to increase the number of
matches.
In the final part, an exploratory method has been proposed, which exploits the
dynamic data flow of X16 as a way for completing and making the bouchon table
more reliable. At the same time, we showed how the bouchon model can be adopted
for improving this data flow by also adjusting any anomalies and filling in missing
data. The contribution of this last part of the work was therefore to provide a good
starting method that will be improved in the future by the introduction of new and
more efficient data collection tools.
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