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Essentially, all
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Abstract

The last decade has seen a burst in the development of organic electronics. Indeed,

the increasing electrical performances of organic semiconductors (OSCs) allowed

this technology to “leave the laboratory” and be implemented in the first real appli-

cations. Organic electronics presents many advantages compared to its traditional

inorganic counterpart. For instance, it allows the fabrication of transparent and

flexible devices exploiting solution processes. However, the conduction properties

of organic semiconductors are still poor, and, for this reason, organic electronics

is not meant to replace the well known silicon technology but to be implemented

in new kinds of applications.

In this thesis work, the use of machine learning-assisted optimization have been

studied in the field of organic field-effect transistors (OFETs). The optimization

tasks in organic electronics are often time consuming and require a large number

of experiments. Compared to the usual optimization approach adopted in aca-

demic laboratories, these novel techniques are able to better identify the interplay

of different factors, and, generally, require fewer experiments, hence reducing costs

in terms of time and money.

Two optimization methods (support vector regression (SVR) and bayesian op-

timization (BO)), based on machine learning algorithms and design of experi-

ments , were used to maximize the mobility of OFETs. Firstly, the methods were

validated and compared on a well known system: OFETs with P(NDI2OD-T2)

(a polymeric OSC also known as “N2200”) as active material. Afterwards, the

methods were used to draw predictions on OFETs fabricated with a new kind of

small-molecule OSC containing a sp-carbon chain: tetraphenyl butatriene (named

hereafter “[3]Ph”).

The optimization of N2200-based OFETs led to the fabrication of devices with

mobilities comparable with the ones obtained from the state-of-the-art for the
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same system. Additionally, it was possible to have a better visualization of the

“area of interest” on which to focus the future experiments to maximize the mo-

bility of OFETs fabricated with [3]Ph as active material.
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Estratto

L’ultimo decennio ha visto un considerevole sviluppo dell’elettronica organica. Le

crescenti prestazioni elettriche dei semiconduttori organici hanno infatti permesso a

questa tecnologia di “lasciare il laboratorio” ed essere implementata in applicazioni

reali. L’elettronica organica presenta molti vantaggi rispetto alla sua controparte

inorganica, ad esempio, rende possibile la produzione di dispositivi trasparenti e

flessibili attraverso processi da soluzione. Tuttavia, le proprietà di conduzione dei

semiconduttori organici sono tuttora limitate. Per questo motivo, l’elettronica or-

ganica non è volta a sostituire la performante tecnologia del silicio, bens̀ı ad essere

utilizzata in nuove, diverse applicazioni.

In questa tesi sono stati utilizzati due metodi di ottimizzazione per massimiz-

zare la mobilità nei transistor organici a effetto di campo (OFET). Generalmente,

i processi di ottimizzazione nel campo dell’elettronica organica sono molto dis-

pendiosi in termini di tempo e denaro. Queste nuove tecniche invece, rispetto alle

comuni tecniche di ottimizzazione adottate nei laboratori accademici, riescono ad

identificare meglio le interazioni tra fattori e in generale richiedono un minor nu-

mero di esperimenti.

I due metodi studiati sono la “support vector regression” (SVR) e la “ottimiz-

zazione bayesiana” (BO), i quali si basano sul “machine learning” e sul “design

degli esperimenti” (DoE). Inizialmente, i metodi sono stati validati e confrontati su

un sistema noto, OFET con P(NDI2OD-T2) come materiale attivo (un polimero

semiconduttore conosciuto anche come “N2200”). Successivamente, i due metodi

sono stati usati per trarre previsioni su OFET prodotti con un nuovo tipo di

semiconduttore organico a piccola molecola contenente una catena di carbonio sp:

tetraphenyl butatriene (chiamato d’ora in poi “[3]Ph”).

L’ottimizzazione dei transitor a base di N2200 ha portato alla produzione di dis-

positivi con mobilità superiore a quella ottenuta dallo stato dell’arte di dispositivi
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equivalenti. Inoltre, è stato possibile ottenere una migliore visualizzazione dell’area

di interesse dove concentrare gli esperimenti futuri per massimizzare la mobilità

dei transistor a base di [3]Ph.
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Introduction

The field of organic electronics has seen a growing interest during the last few

decades. Especially after the first demonstration of an efficient low voltage thin

film organic light-emitting diode (OLED) by Ching Tang and Steven van Slyke at

Kodak in 1987 [1]. Today, organic semiconductors (OSCs) find many engineering

applications, and are now reaching the consumer market [2]. The most notable

applications are in the field of optoelectronics (OLEDs) [1, 2], energy conversion

(organic photovoltaic and organic thermoelectrics) [3, 4], microelectronics (Or-

ganic field-effect transistors) [5, 6] and healthcare [7].

OSCs presents many advantages compared with traditional inorganic semicon-

ductors like silicon [6]. Indeed, organic chemistry posseses a great tunability of

properties, thanks to the tailorability of organic molecules. Another big advantage

of OSCs is their ability to be deposited from solution, allowing the production of

thin-films, large area [8], transparent [5] and flexible [9] electronics. The major

drawback associated with OSCs is related to their poor electrical performances.

In particular, they posses a charge mobility which is order of magnitudes lower

than their inorganic counterpart. For this reason, the objective of organic elec-

tronics is not to exceed the level of performance of conventional electronics, but to

enable the development of new devices characterized by new functionalities (e.g.

flexibility, transparency etc.) and a reduced production costs [10]. The success

of OSCs is, however, linked to the improvement of their charge mobility. Up to

now, the optimization of this property has been particularly difficult because of

its dependency on many parameters, such as the molecular structure and packing

of the semiconductor, the morphology of the film and the presence of impurities.

However, the main factor hindering this improvement is the lack of solid physi-

cal models and the consequent necessity of “case study” approaches for different

OSCs.

The usual optimization process adopted in academic laboratories consists in vary-

ing one variable at a time (OVAT) and observe how the mobility changes. However
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Introduction

this approach is highly inefficient and requires a large number of experiments, as-

sociated with a high cost in terms of money and time. New optimization methods,

based on machine learning and design of experiments (DoE), have recently proven

useful in the improvement of organic photovoltaics [3]. However, this modern ap-

proach has never been tested in the field of organic field-effect transistors (OFETs).

The field of machine learning is extremely wide, with applications ranging from

data analysis to artificial intelligence. Some concepts, typical of data science, can

be adapted in order to make predictions and enabling a better visualization and

understanding of the optimization problem. Indeed, with regression techniques, it

is possible to obtain maps that can help the experimentalist in finding the “region

of interest” on which to focus the experiments.

The goal of this thesis is to implement two different machine learning-based opti-

mization techniques for the maximization of the mobility in OFETs: support vec-

tor regression (SVR) and bayesian optimization (BO). Initially, the two methods

have been validated and compared using a well known polymeric OSC, P(NDI2OD-

T2), also known as “N2200”. Afterwards, using an existing dataset, some predic-

tions were drawn on a new unconventional small-molecule OSC based on carbon

atomic wires (CAWs): tetraphenyl butatriene, also knwon as “[3]Ph”.

Conventional OSCs owe their semiconducting behaviour to the π-electrons delocal-

ization due to their sp2-hybridized carbon atoms. CAWs instead, are characterized

by sp-hybridized carbon atoms. Studies on isolated CAWs have shown outstand-

ing conduction properties, even superior to those of the graphene and carbon

nanotubes [11]. However, the poor stability of sp-carbon hamper the synthesis

of long wires and their use in real applications. For this reason the carbon chain

has to be isolated with chemical moieties that alter the conduction properties and

lead to a much lower mobility associated with intermolecular transport. A better

understanding of the deposition techniques is the key to the mobility maximiza-

tion of these kinds of system and a necessary requirement for its implementation

in commercial devices.

The initial DoE was obtained using the “GPyOpt” open-source library [12] in

Python [13]. The same library was used to write the BO script, while the script

used in the “SVR optimization” was adapted from the open-source script written

by B. Cao et al. [3], available online.

The fabrication of OFETs with N2200 was carried out in the laboratories of Is-

tituto Italiano di Tecnologia (IIT) under the supervision of Mario Caironi and
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Stefano Pecorario of Printed and Molecular Electronics (PME) group in IIT. The

[3]Ph dataset, obtained by previous work of PME group, was analysed and pro-

cessed in order to improve the training of the machine learning algorithm.

The thesis starts with an introduction on OSCs and OFETs followed by a the-

oretical introduction on CAWs and on the machine learning techniques adopted.

Afterwards, the materials and methods used in this work are described in details,

and finally the obtained results are presented in the last chapter.
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Chapter 1

Organic field-effect transistors

1.1 Field-effect transistor

Field-effect transistors (FETs) are the fundamental building blocks of modern

computers. The FET is a 3-electrode device in which an electric field is used to

control the conductivity of a thin channel at the semiconductor-insulator interface.

It can be described as an electronically driven switch in which it is possible to

allow or prevent the flow of current between two electrodes without any mechanical

moving parts. The current flowing between two terminals (“source” and “drain”)

can be switched “ON” and “OFF” with the application of a voltage to the third

one, called “gate”. By exploiting this property, it is, for instance, possible to use

the transistor as a logical bit able to encode the information (1 or 0) in the form of

a current (ON or OFF). By combining different FETs it is possible to build logical

gates and, ultimately, computers. The most widely used FET is the silicon metal-

oxide-semiconductor field-effect transistor (MOSFET), composed by doped silicon

as semiconductor and silicon dioxide as insulator. A schematic representation

of a MOSFET is shown in Fig 1.1 underlining the most important geometrical

parameters: L (channel length), W (channel width) and tox (dielectric thickness).

In silicon MOSFET, silicon is doped to increase its conductivity: p-type doping

is achieved with the introduction of an element of the V group and the resulting

semiconductor will show hole conductivity while n-type doped silicon is realized

with elements of the VII group and will lead to electron conductivity. The most

common MOSFET is composed of an n-p-n or a p-n-p junction.
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CHAPTER 1. ORGANIC FIELD-EFFECT TRANSISTORS

Figure 1.1: General architecture of an n-p-n MOSFET [14].

1.1.1 Working principle

Considering an n-p-n device, the active part is the p-type material. By apply-

ing a positive vertical voltage at the gate, it is possible to accumulate charges at

the semiconductor-insulator interface. The gate terminal-insulator-semiconductor

system behave as a capacitor and an electric field will be established when the

capacitor is charged. The electric field, generated by the induced positive charges

at the gate terminal, will repel holes in the semiconductor, which are majority

carriers in the case of p-doped silicon, moving them away from the semiconductor-

dielectric interface. At the same time, it will attract electrons, which are the

minority carriers. Hence, increasing the gate voltage, a negative space-charge re-

gion will be created. At a certain point, if the positive bias is large enough, the

density of minority carriers at the interface will be comparable to the one of ma-

jority carriers, creating the so-called “electron inversion layer” or channel. This

channel is able to connect the two n-doped regions connected to the source and

drain terminals, such that, if a voltage is applied between these two terminals, a

current will flow with an intensity determined by the gate voltage and the con-

ductivity of the conducting channel. For a p-n-p device, the working principle is

equivalent, however, the applied bias at the gate is negative and creates a hole

inversion layer. This operating mode is called enhancing mode. In accumulation

mode instead of creating an inversion layer of minority carriers, an accumulation

layer of majority carrier is formed, applying an opposite bias, and prevents the

conduction between source and drain. In Fig 1.2 the two operation modes of a

MOSFET are schematized.
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(a)
(b)

Figure 1.2: Schematics of the two operation mode of a p-type MOSFET: (a) enhancing mode

and (b) accumulation mode [14].

1.2 Organic field-effect transistor

Over the past three decades, a new kind of device based on organic semiconductors

(OSCs) has been conceptualized and developed: the so-called organic field-effect

transistor (OFET) [15]. OSCs are molecular solids or polymers composed by

molecules characterized by π-conjugation (usually in the form of alternating single

and double carbon-carbon bonds), thus containing overlapped p-orbitals with delo-

calized electrons. π-conjugation underlies the semiconducting behaviour of OSCs

and makes the charge transport possible.

The OFET architecture is similar to its inorganic counterpart being a three-

terminal device with a semiconductor as active material. However, the working

principle is completely different due to the intrinsic differences between organic and

inorganic semiconductors. Indeed, inorganic semiconductors are characterized by

a highly crystalline structure and an important orbital delocalization. This results

in the characteristic band structure, and the charge transport is well approxi-

mated by the Bloch description. For OSCs, one would expect the only difference

to be that the Bloch states in the tight binding model would be constructed from

molecular orbitals instead of atomic orbitals of isolated atoms [16]. The situation,

however, is very different. Whereas inorganic semiconductors crystals are bounded

by covalent bonds, in OSCs the molecules interact only via Van der Waals forces.

In Van der Waals molecular solids, the intermolecular distances are much larger

than in covalently bonded inorganic semiconductors. For this reason, the resulting

orbital delocalization is much smaller, and the associated band structure is char-

7



CHAPTER 1. ORGANIC FIELD-EFFECT TRANSISTORS

acterized by a small bandwidth and resembles the molecular orbitals levels [16].

As a consequence, the main disadvantages of organic electronics are related to the

poor conduction properties of OSCs with respect to their organic counterparts.

The OFET has several advantages compared with its inorganic counterpart [6].

(i) Being based on OSCs it is possible to synthesize an incredibly large number of

different molecules (from small molecules to polymers), thus, having great control

on the semiconductor properties. (ii) With organic molecules, it is possible to form

thin films or pliant polymeric devices, allowing the realization of flexible [9] and

transparent electronics [5]. (iii) Finally, it is possible exploit a great variety of de-

position techniques. The fabrication of MOSFETs requires high temperatures and

a high level of vacuum because any form of contamination is highly detrimental;

in order to deposit organic molecules, instead, it is possible to use both physical

techniques, such as evaporation, and solution-based processes, thus, allowing the

deposition at room temperature and atmospheric pressure. This last point is par-

ticularly important. Indeed, the biggest advantage of organic electronics is the

possibility of fabricating devices on a large scale, with reduced fabrication costs,

and a less restrictive level of precision. One of the most promising application of

OFETs is the so-called “printed electronics”. This technique points at fabricating

large-area electronic devices on flexible and/or transparent substrates with appli-

cations in the field of microelectronics [5] and healthcare [7].

It is possible to group OSCs in three main categories: small molecules, polymers

and carbon allotropes [17]. Small molecules are characterized by more desirable

conduction properties related to their higher degree of crystallinity, on the other

hand their processability from solution is reduced. Indeed, their tendency to crys-

tallize in a fast way hinder the deposition of homogeneous films. Polymers, instead,

usually have a higher solubility and their deposition is easier to control. Addition-

ally, they present more desirable mechanical properties due to their stretchability

[18] and flexibility [9], although their semi-crystalline structure is detrimental for

their conduction properties. Finally, carbon allotropes, such as fullerenes, carbon

nanotubes or graphene, present outstanding electronic properties resembling the

ones of inorganic materials. The problems related to these materials lie in their

poor tailorability, i.e. chirality control in nanotubes or bandgap in graphene [19],

which makes their implementation in devices problematic.
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Figure 1.3: OFETs, schematic overview [6].

1.2.1 Working principle

As for its inorganic counterpart, also in OFETs it is possible to modulate the

conductivity of a thin layer of material, which acts as conducting channel, by ap-

plying a bias to the gate terminal. However, to create the channel, unlike inorganic

semiconductors, the OFET operates in accumulation regime. When a bias volt-

age is applied to the gate terminal, charges are injected into the channel between

source and drain and, equivalently to a capacitor, accumulates in the semicon-

ductor/insulator interface. Upon charge injection, the material conductivity will

increase, creating a conductive channel and allowing a current flow if a voltage is

present between source and drain. Applying a negative bias at the gate, a channel

of positive charges will be created, and the material will behave as a p-type semi-

conductor. On the contrary, if a positive voltage is applied, a channel of negative

charges is created, and the material behaves as n-type.

In principle, all OSCs can show p-type and n-type behaviour, for this reason, they

are defined “ambipolar”. However, it is still possible to distinguish between p-type

9
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and n-type materials by considering their higher tendency to undergo a positive or

negative charge-injection doping process, respectively [20]. A p-type material will

be characterized by a high highest occupied molecular orbital (HOMO), while, an

n-type material will show a low lowest unoccupied molecular orbital (LUMO) with

respect to the work function (Wf) of the metal contacts (see Chapter 1.4).

In OSCs, the charge injection process can be seen as a reversible doping process.

Charge-injection doping generates charged molecules thanks to charge transfer

processes, thus, increasing the charge-carrier density and the conductivity of the

semiconductor.

1.3 Charge transport in organic semiconductors

Charge transport in OSCs is the result of intra-molecular and inter-molecular

transport. The intra-molecular contribution can be relevant in polymers, while is

negligible in the case of small molecules.

One of the most important parameters of semiconducting materials is the so-called

charge mobility. Charge mobility determines the suitability of semiconductors

for applications in a large variety of electronic devices, including FETs [21]. It gov-

erns how fast charges can move in a material under an applied electric field. The

carrier mobility influences the device behaviour through its frequency response or

time response in two ways. First, the carrier velocity is proportional to the mo-

bility for low electric fields. Hence, higher mobility materials are likely to have

a higher frequency response because charges take less time to travel through the

device. Moreover, the device current depends on the mobility, hence, higher mo-

bility materials present, in general, higher currents.

In the absence of any external potential, transport is purely diffusive and is gen-

erally described by a simple diffusion equation [20]:

〈x2〉 = nDt (1.1)

where 〈x2〉 denotes the mean-square displacement of the charges, D is the dif-

fusion coefficient, t is the time, and n represents an integer number equal to

2, 4, or 6 for one-, two-, and three-dimensional (1D, 2D, and 3D) systems, re-

spectively. The charge mobility µ is related to the diffusion coefficient via the

Einstein-Smoluchowski equation:
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µ =
eD

KbT
(1.2)

where Kb is the Boltzmann constant and e is the electron charge. The application

of an external electric field induces a drift of the charge carriers; the mobility can

then be alternatively defined as the ratio between the velocity, v, of the charges

and the amplitude of the applied electric field, F :

µ =
v

F
(1.3)

Diffusion should be seen as a local displacement of the charge around an average

position, while drift induces a displacement of the average position.

When a charge is introduced into the system, for example through a charge in-

jection process, it is possible to distinguish two transport regimes: (i) polaronic

band transport typical of ideal (without defects) molecular crystals (i.e. small-

molecules OSCs) in the low temperature limit (T → 0), and, (ii) small polaron

hopping transport typical of systems at higher temperatures or with an higher

degree of defects such as polymeric OSCs [20, 22].

1.3.1 Polaronic band transport

When individual conjugated molecules are brought together in a crystalline struc-

ture, their molecular orbitals are only weakly perturbed by the neighbouring

molecules [22]. Indeed, in small-molecule OSCs, the energy required to ionize a

molecule exceed by at least one order of magnitude the interaction energy between

two adjacent molecules in the crystal. The resulting band structure is formed by

narrow bands closely matching the molecular orbitals of the isolated molecules

[16].

When a charge is introduced, the total Hamiltonian of the system can be expressed

as a sum of three contributions (electronic, nuclear and electron-phonon coupling):

H = Hel +Hnucl +Hel−nucl (1.4)

Considering a one-dimensional array of molecules, with one state |j〉 per molecule

corresponding to a frontier molecular orbital, each interacting with its nearest

neighbours we can write the electronic Hamiltonian as

11



CHAPTER 1. ORGANIC FIELD-EFFECT TRANSISTORS

Hel =
∑
j

(ε|j〉〈j|+ τ |j〉〈j + 1|) (1.5)

where ε is the energy of the state and τ is the electronic coupling (also called

transfer or hopping integral) between the localized molecular orbitals. In the low

temperature and defects-free limit, the charge carrier in the band behaves like a

particle with an effective mass

m∗ =
~2

(2|τ |L2)
(1.6)

where τ is the transfer integral and L is the distance between two sites. Therefore,

in this picture, the charge carrier can be described as a delocalised wavepacket.

The transfer integral is strongly dependent on the molecular orbital overlap [20],

thus, it decays exponentially with the intermolecular distance (as shown in Fig

1.4(a)) and it is a function of the relative phase of the overlapping orbitals (as

shown in Fig 1.4(b)). This dependency implies that the transport properties in

OSCs will be strongly related to the packing arrangement of the molecules.

(a) (b)

Figure 1.4: Calculation of the transfer integrals for electrons and holes in a tetracene cofacial

dimer as a function of: (a) intermolecular distance, and, (b) degree of translation of one molecule

along its long axis, with a representation of the HOMO (top) and LUMO (bottom) wavefunctions

[20].

12



CHAPTER 1. ORGANIC FIELD-EFFECT TRANSISTORS

Considering, for simplicity, a single nuclear mode ω per molecule, the nuclear

Hamiltonian can be expressed as [22]:

Hnucl =
∑
j

~ω
2

(q2
j + p2

j) (1.7)

with qj and pj being the adimensional displacement and momentum on molecule

j, respectively.

With the introduction of a charge the equilibrium geometry of a molecule is mod-

ified [22]. This is the so called local electron-phonon coupling, and its related

Hamiltonian can be expressed as:

Hel−nucl = g~ω
∑
j

qj|j〉〈j| (1.8)

where g is a parameter that quantifies the electron-phonon coupling and can be

seen as the shift of the equilibrium position as shown in Fig 1.5(c). The charge

carrier and the associated deformations is called polaron. In the case of polaronic

band transport, the charge wavefunction is delocalized over a large number of

molecules, thus, only a small deformation is associated with each one of them.

The resulting polaron will be delocalized and its states will be described by band

states that are solutions of a Hamiltonian similar to Eq 1.5:

Hpolaron =
∑
j

(ε′|j〉〈j|+ τ ′|j〉〈j + 1|) (1.9)

where the only difference is in the use of the on-site energy ε′ and the effective

transfer integral τ ′. The latter has a temperature dependence of the form:

τ ′ = τe−
1
2
g2(Nω+ 1

2
) (1.10)

with Nω = [exp(~ω/KbT ) − 1]−1. This temperature dependence has the effect

of further decreasing the transfer integral with increasing temperature, thus, in-

creasing the effective mass as shown in Eq 1.6. It is finally possible to obtain the

mobility, in this transport regime, as:

µ =
e · tS
m∗

(1.11)
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with tS being the average time between collisions with defects and e the electron

charge. The mobility, thus, decreases with increasing temperature. This is consid-

ered a signature of polaronic band transport.

Figure 1.5: Illustration of the terms appearing in the band transport model in the case of

pentacene molecules: (a) electronic coupling τ , (representation of the HOMO orbitals on two

neighbouring pentacene molecules), (b) nuclear deformation caused by the introduction of a charge

in the molecule (The arrows illustrate the direction and relative magnitude of the deformation

upon removal of an electron from pentacene), (c) change in energy and equilibrium configuration

upon the introduction of a charge in an idealized system where there is only one degree of freedom

per molecule [22].

1.3.2 Small polaron hopping transport

As the temperature is increased, the polaronic band becomes of vanishing width

(τ ′ → 0) and the effective mass becomes infinite [22]. It is more convenient, then,

to describe the carrier wavefunction as localized on a single molecule. This same

model is also well suited for “disordered” systems such as polymeric OSCs. In

these cases, the polaron moves from site to site and its dynamics can therefore be

described in a model containing only two sites (1 and 2) with ε = 0:

Htwo−side = Hnucl + g~ωq1|1〉〈1|+ g~ωq2|2〉〈2|+ τ(|1〉〈2|+ |2〉〈1|) (1.12)
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This hopping process from one site to the next can be seen as a chemical reaction

with a characteristic rate constant khop. In the initial state the carrier is in site

1, the equilibrium position of the oscillator 1 is qeq1 = −g and the equilibrium

position of the oscillator 2 is qeq2 = 0. In the final state, the carrier is in site 2,

the equilibrium position of oscillator 1 is qeq1 = 0 and the equilibrium position of

oscillator 2 is qeq2 = −g. The hopping takes place whenever there is enough energy

to overcome the energy barrier.

Figure 1.6: Schematics of the two charge transport models:(a) polaronic band model character-

ized by the delocalization of the charge carrier wavefunction over many molecules and a small

lattice deformation. (b) polaron hopping characterized by the carrier wavefunction localized on

one molecular site, which is also distorted by the excess charge. An example of potential energy

curve is reported for the process of hopping to the neighboring site. The energy is determined by

τ and the reorganization energy Λ (Λ = 2g2~ω), as discussed in the text. [22]

1.3.3 Role of morphology

As already anticipated, the transport properties in OSCs are highly influenced by

the morphology of the semiconducting material, in particular by the molecular

packing, crystalline disorder and presence of impurities [20]. Several studies have

shown that the crystallographic orientation within the channel will alter the mea-

sured field-effect mobility and that grain boundaries can play an important role

in charge transport within the channel [23]. Ideally, single crystals would show

the best transport properties and maximize the mobility [24]. However, even if

small-molecules OSCs tend to form single crystals, their fast crystallization pro-

cess prevents a uniform deposition and hinder the formation of thin films [25, 26],
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necessary for the fabrication of organic thin film transistors (OTFTs). It is pos-

sible to improve the transport properties of the OSC by acting on the fabrication

techniques. For example, with the control of the deposition method, it is pos-

sible to have an influence on the stacking direction of the molecules relative to

the substrate, thus, increasing the mobility [8]. The main directional deposition

techniques adopted in the fabrication of OFETs are off-center spin-coating [27],

bar-coating [28] and blade coating [29]. With these techniques, it is possible to

align the crystallographic domains in a favourable direction for conduction, thus

increasing the mobility and the performance of the device. Another way to improve

the morphology is to blend small-molecule OSC with a polymer (semiconducting

or insulating). In this way, it is possible to control the crystallization and obtain

more uniform films, thus increasing reproducibility and performances [26, 30]. An

example of blended small-molecule OSC is reported in Fig 1.7. Regarding poly-

meric OSCs, it is also possible to exploit the pre-aggregation in solution by the

optimal selection of the solvent and by using directional deposition techniques [31].

Figure 1.7: Effect of concentration of diF-TES ADT in a small-molecule/polymer blend with

PTAA deposited by spin-coating. Surface roughness and peak-to-peak heights were measured with

AFM [32].

1.4 Charge injection

The main factor that governs the performance of an OFET, along with the charge

transport, is the charge injection process.

When two materials with a different Fermi level (EF) are brought into contact (e.g.

the OSC and the metal contacts), they reach thermal equilibrium and establish
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a common EF by exchanging charge carriers [33]. This gives rise to a contact

potential across the interface, equal to the difference of the Fermi levels of the

isolated materials. Charges transferred to the semiconductor can be stored in the

form of a space charge, as a surface sheet charge (if surface states are present), or

a combination of the two.

In order to describe the potential across the interface it is necessary to introduce

the concept of work function (Wf). The Wf is the minimum energy required to

remove an electron from a solid to a point in the vacuum immediately outside the

solid surface. The metal Wf, is a surface property and, as such, it is modified by

the presence of molecules near the metal surface [33].

1.4.1 Contact resistance

From conventional semiconductor electronics, it is known that creating a low re-

sistance ohmic contact requires alignment of the metal EF with the energy levels

(bands) of the semiconductor. Usually in metal-OSC interfaces an interface dipole

is present due, for example, to charge transfer or reduction of the metal Wf caused

by the absorption of the organic layer [34]. The charge injection efficiency depends

on the potential barrier formed at the interface (hole or electron injection barrier).

A good estimation of the hole injection barrier from the metal to the OSC is given

by the LUMO offset that in turn can be expressed as:

EF − LUMO = Wf − IP ±∆ (1.13)

where IP is the ionization potential of the OSC and ∆ is the potential change due

to the dipole. For the electron injection barrier an equivalent expression can be

obtained by considering the HOMO and the electron affinity (E.A.):

HOMO − EF = Wf − E.A.∓∆ (1.14)

A schematic representation of the energy levels present at the metal-OSC junction

is reported in Fig 1.8 for the case of gold and pentacene. The degree of interaction

between the molecules and the metal governs the formation of the dipole and the

change in the Wf. It is possible to distinguish three adsorption regimes (reported

in order of interaction strength): physisorption, weak chemisorption and strong

chemisorption.
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Figure 1.8: Band diagram for the Au-pentacene interface. The hole injection barrier (Φh) is

determined by taking the difference in energy between the Fermi level and the edge of the valence

band [34].

1.5 Devices

As already introduced in Chapter 1.2, OFETs are able to modulate the current

between two electrodes with a bias applied to the gate.

An ideal FET is characterized by [34]:

• a mobility (µ) independent from the bias and constant over the channel

• a negligible contact resistance

• a negligible influence of defects on transport properties

• a transverse electric field much higher than the longitudinal one.

If these assumption are valid, it is possible to describe mathematically the current

between source and drain with the use of the so called Schottky equations:

Ids =


WCµ
L

[
(Vg − Vth)2Vds −

V 2
ds

2

]
if Vds < Vds(sat)

WCµ
2L

(Vg − Vth)2 if Vds > Vds(sat)
(1.15)
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where Ids is the output current at the drain, Vg is the gate bias, Vth is the threshold

voltage (minimum voltage required for the creation of the conduction channel),

Vds is the voltage difference between source and drain, C is the capacitance of

the device (C = ε/t with ε being the dielectric constant of the dielectric), W and

t are the geometrical parameters already introduced in Chapter 1.1 and, finally,

Vds(sat) is the drain voltage at saturation.

It is possible to distinguish between two operation regimes: linear regime and

saturation regime [14]. In linear regime there is a direct proportionality between

Ids and Vds, thus, the FET works as an ohmic resistance with a resistance RCH

related to the channel resistance (Fig 1.9(b)). If Vg is increased RCH decrease.

Increasing Vds the voltage drop across the dielectric close to the drain terminal

decreases, leading to a decrease of the charge density. This causes a deviation

from linearity and the Ids−Vds curve starts to bend. When VD is further increased

until Vds = Vg − Vth, the channel is “pinched off” (Fig 1.9(c)) [35]. That means

a depletion region forms next to the drain because the difference between the

local potential V (x) and Vg is now below Vth. From this moment, the FET works

in saturation regime. Further increasing Vds will not substantially increase the

current because the potential at the pinch-off point remains VG−Vth and thus the

potential drop between that point and the source electrode stays approximately

the same, and the current saturates (Fig 1.9(d)).

Figure 1.9: Illustrations of operation regimes of a field-effect transistor: (a) generation of the

charges, (b) linear regime, (c) start of saturation regime at pinch-off, and (d) saturation regime

[35].
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Because there are two operation regimes, the current–voltage characteristics have

to be described separately. For different gate voltages, with the increase of source-

drain voltage Vds, the current Ids comprises the linear and saturation regimes (Fig

1.10(a)). In the transfer characteristics, at first the Ids increases linearly with

the voltage Vg when the gate voltage overcomes the Vth (Fig 1.10(b)). When the

transistor is in the saturation regime, the square root of the saturation current is

directly proportional to the gate voltage (Fig 1.10(c)).

Figure 1.10: Current-voltage characteristics of an n-channel OFET: (a) output characteristics,

(b) transfer characteristics in the linear regime, and (c) transfer characteristics in the saturation

regime [35].

OFETs are often far from the model of ideal FET, in fact, the mobility is in

general a function of the bias, the contact resistance is non-negligible and the

presence of traps and defects, often unavoidable, influence the transport properties

in a detrimental way. One marker of non-ideality and possible degradation is the

formation of an hysteresis cycle, which may lead also to a shift of the threshold

voltage in the transfer characteristic, during the forward and backward sweeps of

the gate voltage Vg (Fig 1.11).

Figure 1.11: Types of hysteresis cycles in OFETs: (a) higher back sweep current hysteresis.

(b) Lower back sweep current hysteresis. [14].
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1.5.1 Architecture

There are four main architectures for OFETs, each one with its own advantages

and disadvantages (Fig 1.12).

• Top-gate top-contacts (TGTC)(Fig 1.12(a)): the OSC is deposited on

top of a substrate that acts as a support. Then, over the active material,

source, drain and the dielectric are deposited. Finally, the gate is deposited

on top of the dielectric.

• Top-gate bottom-contacts (TGBC)(Fig 1.12(b)): source and drain are

deposited on the substrate prior to the OSC deposition, then the dielectric

and the gate are deposited.

• Bottom-gate top-contacts (BGTC)(Fig 1.12(c)): the gate is deposited

on the substrate and covered with the dielectric, then there is the deposition

of the OSC followed by the deposition of source and drain on top of it.

• Bottom-gate bottom-contacts (BGBC)(Fig 1.12(d)): after the deposi-

tion on the substrate of the gate, and its coverage with the dielectric, source

and drain are deposited, finally, the OSC is deposited.

Figure 1.12: Schematic cross-section of four configurations of organic transistors. Panels (a)

and (b) are top-gate (TG) configured, with top-contact (TC) and bottom-contact (BC) configured

source and drain electrodes, respectively. Panels (c) and (d) are bottom-gate (BG) configured,

with TC and BC source/drain electrodes, respectively [36].
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In bottom-gate (BG) configurations the active material is directly exposed to the

external environment. This can limit the performances, since usually organic semi-

conductors are quite sensitive to temperature, moisture, light and can be easily

oxidized and degraded. For this reason the BG configuration is avoided with un-

stable OSCs. For a similar reason, bottom-contacts (BC) configuration avoid the

deposition of metal contacts on top of the OSC usually related to high temperatures

that can degrade the semiconducting molecules. The deposition of the dielectric

is usually not a problem since polymeric materials can be used, and they can be

processed by solution techniques. The configuration that offers more advantages,

regarding the stability of the OSC is usually the TGBC one due to the limited

exposure toward the environment. However, for the study of a new OSC usually

the BGBC architecture is chosen. With this configuration, indeed, it is possible

to prepare substrates with gate and contacts already deposited, thus, focusing the

attention on the deposition parameters of the OSC and keeping the latter away

from contamination or degradation due to further deposition steps.

1.5.2 Contact engineering

The injection barrier at the contact-OSC interface introduced in Section 1.4.1 is re-

sponsible for the origin of the so-called contact resistance (RC), which is important

for both the final performances of the device and the reliability of the extracted

values of the field-effect mobility. In order to minimize the contact resistance, it

is possible to apply a self-assemble monolayer (SAM) over the metal contacts [33].

The SAM is composed of organic molecules, usually characterized by a thiol group,

able to be absorbed on the metal surface in a strong chemisorption regime, form-

ing a covalent bond with the metal. These molecules modify the work function of

the metal due to the formation of an interfacial dipole, thus changing the injection

barrier [37]. It is important to note that the SAM modifies the interaction between

the contacts and the OSC, thus can lead to a different crystallization morphology

and change the transport properties in a detrimental way [30]. In Fig 1.14 an

example of the beneficial effect of the SAM is reported. It is possible to notice

that the SAM highly reduces the contact resistance (Fig 1.14(d)), increasing the

output current and the ideality of the output characteristic (Fig 1.14(b) and (c))

[38].
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Figure 1.13: a) Voltage profile of an ideal FET (RC=0). No voltage is dropped at the contacts,

∆VCH = Vapp. b) Voltage profile showing a real FET (RC 6= 0) with voltage drops at the source

and drain, leading to ∆VCH < Vapp, shown as a reduced slope. c) The total FET resistance is

a sum of three resistances connected in series: the source, channel, and drain resistances (RS,

RCH , and RD, respectively) [39].

Figure 1.14: Beneficial effect of a thiphenol (TP) SAM on a silver contact OFET: (a) Transfer

characteristics of the all-solution-processed OFETs with and without SAM treatment. Output

characteristic of the device (b) without SAM treatment and (c) with TP treatment. Output

characteristics were obtained in the region of gate-to-source voltage from 0 V to 80 V with a 10

V step. (d) Width-normalized device resistance with respect to the channel lengths. [38].
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Carbon atomic wires

Thanks to its chemical versatility, carbon has played a crucial role in science and

technology advancement in the last 30 years [11]; in fact, its ability to adopt dif-

ferent hybridization states allows the production of a wide variety of allotropic

forms: sp-, sp2-, and sp3-hybridized atomic orbitals give rise to linear, planar and

three-dimensional organization. Fullerenes, nanotubes, and graphene demonstrate

that carbon can form a great variety of structures whose properties are strongly

related to structural issues such as dimensionality, hybridization, chirality and

topology. More recently the research focussed on sp- and sp2-hybridized carbon

systems, these systems can sustain π-conjugation, which is the basis of the metal-

lic properties of graphene and carbon nanotubes, and, a necessary property for

organic semiconductors (OSCs). As graphene is today considered the ultimate

2-dimensional (2-D) system (1-atom-thick) showing peculiar electronic properties,

carbon atomic wires (CAWs) represent a true 1-D system (1-atom diameter). Out-

standing properties have been predicted by theoretical studies for CAWs [19] sup-

ported by experimental results obtained through the study of the charge transport

properties in single isolated molecules [40]. In particular ballistic and oscillatory

conductance, spin-dependent transport, and a strain-induced metal-to-insulator

transition are predicted in sp-carbon atomic wires, making these systems promis-

ing candidates for the future of organic electronics.

2.1 -sp hybridization: polyynes and cumulenes

Considering an infinite CAW (sometimes called “carbyne” [41]), only two ideal

different structures are possible: the so-called “polyyne” corresponding to a chain

with alternating single and triple bonds (–C–––C–C–––C–) and the “polycumulene”
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or “cumulene” which identifies the opposite case where an equalized geometry is

formed by all double bonds (––C––C––C––C––) [42]. The first case can be described

as an infinite 1D crystal with a basis of two carbon atoms showing a bond-length

alternation (BLA) defined as the difference between the distance of the single and

the triple bonds as shown in Fig 2.1.

Figure 2.1: Schematic representation of the bond length alternation (BLA) in a polyyne [41].

Cumulenes, on the other hand, are characterized by a BLA=0. The importance

of the BLA parameter is related to the degree of π-electron conjugation displayed

by CAWs. Polyynes show semiconductor properties while cumulenes are metal-

lic and this behavior is indeed directly related to their structure, with a strong

structure–property relationship [43]. Polycumulene turns out to be unstable due

to Peierls distortion, thus, the polyynic structure is expected to be the only stable

form for infinite relaxed chains.

Peierls’ theorem states that a one-dimensional equally spaced chain with one elec-

tron per ion is unstable [44]. The atoms in the lattice rearrange slightly, moving

from an equally-spaced crystal to one in which the spacing alternates, in other

words, the atoms rearrange in pairs. This is called “dimerization”, and costs some

elastic energy, since for identical atoms the lowest state must be one of equal

spacing. However, the electrons are able to move to a lower energy state by this

maneuver. Hence, the resulting lowest energy structure is polyynic and it is char-

acterized by: a BLA6=0, the presence of a band gap between the completely filled

valence band and the empty conduction band (semiconducting behavior), and an

optical phonon branch. In contrast, the cumulene geometry would be character-

ized by a BLA=0, a closed band gap with an half filled valence/conduction band

and the absence of the optical phonon branch. These two configuration with the

respective properties are shown in Fig 2.2.
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Figure 2.2: The two structural configurations of carbyne: (a) cumulene and (b) polyyne. The

electronic band structure and phonon dispersion relation are shown for cumulene (c–e) and

polyyne (d, f), respectively. [43].
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2.2 End-groups

As a matter of fact, the ideal infinite CAW does not exist. Furthermore, CAWs

are highly reactive and were only syntesized inside carbon structures (graphite,

amorphous carbon, fullerenes, carbon nanotubes or graphene) or with end-groups

able to isolate the chain [41]. The latter approach is particularly promising because

terminating groups have multiple beneficial effects. As already said, the end-

capping moieties are able to isolate the chains one from another, reducing the

possibility of cross-linking and the consequent degradation. Moreover, the end-

groups affect significantly the structure of the sp-domains, and tune the related

electronic, optical, and spectroscopic properties.

First of all, the finite carbon chain present different electronic properties with

respect to the infinite carbyne. Theoretical works on hydrogen-capped polyynes

predict a decreasing value of BLA and energy gap with increasing chain length

[11]. Furthermore, based on the type of chemical coordination to the chain, the

capping molecules could induce a well-defined structure, promoting a cumulene-

like or polyyne-like organization. For instance, capping the chain with specific

molecules that create a true double bond with the adjacent carbon atoms, give

raise to a “domino effect” through the sp carbon domain, forcing the chain to

have a cumulene-like geometry. This leads to a low value of electronic gap and the

consequent semiconducting behaviour. Finally, the end-groups define the solubility

and the crystallization properties of the molecule, fundamental parameters for the

application of these systems in solution-processable organic field-effect transistors

(OFETs).

Figure 2.3: Schematic representation of the structure of a “polyyne-inducing” (above) and

“cumulene-inducing” (below) end-groups in sp-carbon chains. The red spheres represent the

general functional end-group [41].
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2.3 Charge transport properties

The vast majority of the papers related to charge transport in CAWs are focused

on intramolecular transport [11, 45], and very few comprise experimental evidences

[40]. Nonetheless, starting from intramolecular charge transport properties, it is

possible to get an insight of the reason why CAWs can be good candidates for

OFETs.

As already introduced CAWs display high degree of π-electron delocalization and

π-conjugation. The electronic behavior is strictly dependent on the conjugation

properties, thus CAWs are an extremely interesting system for organic electronic

applications. Generally speaking, long molecules conduct electricity through them-

selves less well than short ones [45]. The conductance G can be expressed as:

G =∝ e−βL (2.1)

where L is the molecular length and β is an attenuation factor. β is usually in

the range of 0.2-0.5 Å
−1

for a conjugated organic π-system, but, in the case of

molecules with BLA≈ 0, β becomes close to zero or even negative [45]. Cumu-

lenes are the simplest type of neutral π-system not to exhibit substantial BLA and

this makes them the perfect candidate for intramolecular charge transport. Addi-

tionally, CAWs offer an approximately cylindrical distribution of electron density

along their one-dimensional backbone [46]. In contrast, more commonly employed

structures used in organic and molecular electronics are composed by linearly-fused

benzene rings which display an interruption of π-conjugation upon twisting. This

property is particularly promising for their application in single molecule electron-

ics, but can be a strong point also in organic electronics where, as already said in

Section 1.3.1, the transport efficiency is highly influenced by the molecular orbital

overlap.
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2.4 Stability

The main problem of CAWs is related to their stability. The sp-carbon chains

have to be isolated from one another by means of carbon structures or end-groups,

in order to avoid crosslinking. Even if it is possible to obtain stable chains at room

temperature, crosslinking is difficult to avoid upon irradiation or at high temper-

atures. The most common degradation mechanism in cumulenes is the thermal

dimerization, a formal cycloaddition reaction, between two molecules (reported

in a schematic example in Fig 2.5) [47], but also trimerization, involving three

molecules, has been reported in one work [48].

Figure 2.4: Frontier orbitals of SP [4] polyyne (left column), [7]tBuPh (central column), and

[9]Mes cumulene (right column), from DFT calculations with the respective energies of the or-

bitals, reported in atomic units [49].
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Figure 2.5: Example of thermal dimerization between two [5]cumulene molecules [47].
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Chapter 3

Design of experiments and

machine learning

During the study of a material, the main objective is usually to predict and opti-

mize one of its properties. However, the experimental process required to achieve

this objective is often difficult and time-consuming, especially when a fundamental

understanding of the chemistry or physics behind the property is lacking [3].

Usually, the experimentalist has to perform many experiments and evaluate the

system response, trying to understand the cause-effect relationship. The system

response can be described as a “black-box” function, i.e. a function that does

not have a closed-form representation, does not provide function derivatives, and

only allows point-wise evaluation [50]. The experimentalist performs point-wise

evaluations by choosing the fabrication or simulation parameters and observe the

system response by measuring the dependence of the chosen property (“output”)

on the “input”.

In the field of materials optimization, the property to be optimized is often influ-

enced by a large number of factors and, for this reason, it is hard to find a model

able to take into account all these dependencies. The usual approach is to perform

a large number of experiments changing one variable at a time (OVAT) until the

required performances are achieved. This approach, however, is highly inefficient

and can be seen as a “blind” search over the black-box function of the system

response.

Machine learning-assisted methods, combined with experimental design, on the

other hand, offer a powerful and efficient alternative to this kind of optimization

problems. Indeed, this approach uses fitting techniques able to approximate the

“black-box” response function. The predicted function can then be plotted, pro-
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viding the experimenter a better visualization of the outcome, thus, allowing the

design of a smarter experimental route, reducing costs both in terms of money and

time. In addition, when some physical or chemical insight is present, the additional

information can be included in the model, providing a more powerful (and physi-

cally meaningful) prediction. Ultimately, in some specific cases, machine learning

techniques can be not only good in interpolating the data but can be used in order

to make extrapolations and, thus, prediction outside the input data domain [51].

The field of machine learning-assisted optimization has seen a growing interest in

the field of materials optimization and discovery in recent years. This is probably

due to the fact that machine learning algorithms are becoming more available and

user-friendly [3].

In the field of material research, machine learning has been used in two main

different ways:

• as a tool for classifying and interpolate a large number of data taken from

existing databases in order to make predictions and discover new kind of

materials [51, 52].

• as a way to guide experiments starting from experimental design without

relying on external data in order to optimize the required material properties

[3, 50, 53].

In both cases machine learning has proven to be an extremely useful tool, able

to exclude preconceived bias or notions, enabling a “big picture” vision. With

this tool, indeed, the experimentalist is able to “leave a narrow valley of one-

dimensional data and view the landscape from a mountain ridgetop” [3].

3.1 Design of experiments

Every experiment has two components [54]: a measurable outcome which is the

response of the experiment, that is, in general, the quantity to optimize or predict;

and one or more variables or factors. The factors can be numerical (quan-

titative), if quantifiable by measurements, or categorical if qualitative and not

orderable.

In academic laboratories, the usual strategy to experimentation is the OVAT ap-

proach [3]. While this technique does not confound the roles of different factors,

it is time-consuming and rarely results in discovery of optima. The design of
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experiments (DoE) approach, instead, enables the experimentalist to sample a

large, multidimensional parameters space in a rational manner, greatly decreasing

the number of experiments while keeping an high level of obtainable information.

The general approach during DoE, is to subdivide the numerical factors (i.e. pa-

rameters) in different levels and construct a grid in the parameters space. Each

experiment will be characterized by a unique set of variables, each one with its

own levels. In order to sample the parameters space, different designs are pos-

sible, the most used ones are full factorial, fractional factorial and latin square

(or latin hypercube) design. In full factorial design (Fig 3.1(a)) all the possible

combinations of parameters are tested. It yields the highest fidelity but requires

an unfeasibly large number of experiments. Assuming the same number of levels

for each parameter, the number of experiments required in this design scales as:

N = LP (3.1)

where L is the number of levels and P the number of parameters. In fractional

factorial design (Fig 3.1(b)) the number of experiments is reduced as a fraction

of the full factorial design, the level of fidelity remains relatively high while the

number of experiments is strongly reduced. Finally, in the latin square design

(Fig 3.1(c)) each parameter level is tested only once, the number of experiments

is reduced at its minimum but the fidelity obtained is very low. In this design the

number of experiments simply scales as

N = L (3.2)

thus, it does not depend on the number of parameters.

Figure 3.1: Examples of factorial sampling in two-factor 4-level system showing (a) full facto-

rial, (b) fractional factorial, and (c) Latin square design. [3].
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Each of these designs has its own advantages and is more suitable for one of the

three main experimental stages [54]:

• Screening: phase aiming at getting a better understanding of the system,

identifying the suitable range for each factor and isolating the important

effects. It generally uses a latin square design or a fractional factorial design

with a strong fraction, able to test a large number of factors in a fast way.

• Sequential experiments: second run of experiments based on the informa-

tion obtained during the screening phase. It aims at increasing the resolution

and identifying the main effects and the factor interactions. A fractional

factorial design is generally used.

• Optimization: once the main effects and factor interactions are known, it is

possible to use a higher resolution in order to increase the predictive precision

and optimize the outcome. The precision required is achieved with a fractional

factorial design with a low fraction or with a full factorial design.

Once the experiments are performed, it is possible to use machine learning tech-

niques in order to fit the data and obtain predictive curves able to guide the

experimentalist towards the optimization of the system.

For instance, take a simple material or a device to optimize that has two uncorre-

lated parameters, like the one seen in Fig 3.2(a,b) [3]. The blue cloud represents

the region of best/optimum performance that the experimentalist would like to

find. Following the OVAT approach, one of the two parameters would first be

chosen to be screened (green line). Successively, the experimentalist would take

the optimum on the green line as the starting point for orthogonal screening of

the second variable (orange line). In this simple example, with a sequential exper-

imental approach, the experimentalist would find the optimum as this approach

does locate the center of the blue region that represents best performance or char-

acteristics.

For more complex systems with greater number of parameters or correlations, this

simple experimental approach would require a larger number of experiments and

yet could miss the optimum, as demonstrated in Fig 3.2(c,d). In the first series

of tests (shown in green), the experimentalist observes a maximum, but unlike

the previous uncorrelated system shown in Fig 3.2(a,b), starting from this max-

imum the orthogonal second set of experiments (orange line) does not yield the
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optimum value for the system. The experimentalists could be self-deceived into

thinking that they had found the best performance, when in fact, they did not.

This method cannot reveal if the actual maximum has indeed been found because

a simple OVAT optimization approach reveals little about correlations between

the system parameters.

Considering the case where the experimentalist tackles the same correlated system,

but instead of choosing points on lines via serial optimization, they choose specific

points in parameters space using DoE principles, where the points are distributed

orthogonally and evenly like those found in Fig 3.2(e). With the data from these

points, data analysis techniques from machine learning can be used to build a map

of the whole parameters space (Fig 3.2(f)), instead of only having linear series

of data along a small number of lines (directions). This map from the first six

experiments also does not currently contain the maximum, but it shows an area

of interest and reveals correlations between the parameters. At this point, the

experimentalist would use this map to design a second set of experimental points

focused on the area of interest. Continuing in this way, the experimentalist will

likely find the system optimum, with an arbitrary degree of confidence.
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Figure 3.2: Optimization of a two-factor system: DoE vs OVAT. (a,c,e) Map of the true values

(blue gradient) of the outcome as a function of the two input parameters (horizontal and vertical

axes). (a,b) OVAT sampling of an uncorrelated system will generally lead to finding the optimum

value of the outcome. (c,d) OVAT sampling of a correlated system will generally not result in

finding the optimum value of the outcome. (e) DoE approach with orthogonal sampling of a

correlated system. (f) Approximation of the true outcome map produced by machine-learning

fitting methods applied to the six data points acquired by DoE in (e). [3].
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3.2 Machine learning

Machine learning is the study of computer algorithms that improve automatically

through “experience”. In order to make predictions, machine learning algorithms

build a mathematical model based on sampled data, known as “training data”

without being explicitly programmed for the specific problem.

There are many different machine learning algorithms, the one used in combination

with DoE is usually supervised regression. Supervised learning implies that the

training dataset is composed by both the inputs, in the form of labeled variables

(also called features), and the output, in the form of the experimental outcome.

Regression analysis aims at fitting a multidimensional curve on the data, this curve

should be able to predict and forecast the outcome of an experiment based on the

input parameters.

3.2.1 Linear regression

Undoubtedly, the simplest case of regression is the “one-variable linear regression”.

In this case the objective is to fit a straight line to a set of data composed of one

variable and one outcome ((x1
D, y

1
D), (x2

D, y
2
D), ... (xmD , y

m
D )). The point from the

dataset will be denoted with a subscript “D”. This data can be plotted, as a set of

points, in a x-y plane, where the horizontal axis represent the value of the variable

and the vertical axis the outcome value. The fitted line will predict the outcome

given a generic variable.

In general the data will not be aligned, thus, the fitted line will present a certain

degree of error, the aim is to find the line parameters which minimize the error.

A straight line is described by the following equation:

ŷ = ω0x+ b (3.3)

where ω0 is the slope, b is the intercept, x is the generic input variable and ŷ the

predicted outcome. In order to “fit” the line it is necessary to define the error.

There are many ways to calculate the error, one of the most commonly used is the

mean squared error (MSE) function, defined as:

MSE =
1

2m

m∑
i=1

(ŷ
(i)
D − y

(i)
D )2 (3.4)

where the sum is over the points of the dataset (numerated from 1 to m), ŷ
(i)
D is
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the predicted outcome calculated from the input x
(i)
D of the dataset, 1

2m
is a scaling

factor, and the term (ŷ
(i)
D − y

(i)
D ) is called residual and is the difference between

the predicted value and the actual value taken from each data point (represented

in Fig 3.3 as red line).

Figure 3.3: Example of linear regression: the blue dots are the data, the green line is the fitted

line and the residuals are graphically represented, for two points, as red lines.

Substituting Eq 3.3 in Eq 3.4 we obtain the expression for the so-called “loss

function”:

J(ω0, b) =
1

2m

m∑
i=1

((ω0x
(i)
D + b)− y(i)

D )2 (3.5)

Now it is possible to minimize J , and thus the error, as a function of the line

parameters ω0 and b. There are many ways to do that. A very simple and intuitive

one is to use gradient descent. Gradient descent is an iterative approach which can

be expressed as:
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ω′0 = ω0 − α·
∂J(ω0, b)

∂ω0

b′ = b− α·∂J(ω0, b)

∂b

(3.6)

During each iteration the value of ω0 and b is updated in the direction that mini-

mize J . α is a tunable parameter that governs the step of the descent. With low

values of α the descent will be slow and will take many iteration, while with a

value too large process may diverge and thus be unable to minimize the error. A

visual representation of this process is shown in Fig 3.4 where three iteration steps

are reported (1, 6 and 16). The parabola represents the error J as a function of

ω0 with the black dots being the error value for each iteration. On the right are

reported the data points and the resulting fitted straight line.
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Figure 3.4: Example of linear regression using mean squared error and gradient descent: the

iterative process is represented from top to bottom (iteration 1, 6 and 16).
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3.2.2 Support vector regression

Not every problem has a single input variable or is well fitted by a straight line,

for this reason different kinds of regression models were developed. During the

last two decades, the machine learning research focused on the study of support

vector machines (SVMs).

SVMs are a set of supervised learning methods used for classification, regression

and outliers detection [55]. SVMs can be extended to solve regression problems.

This method is called support vector regression (SVR).

The working principle of SVR is similar to the one of linear regression explained

above. The main difference lies in the loss function and in the use of a kernel

which allows the fitting of functions different from straight lines.

As for the the linear regression, the aim of SVR is to predict a scalar observable ŷ

(the outcome) as a function of one of more variables [56]. If more than one vari-

able is present, it is possible to express them in a vector xxx, this will increase the

problem dimensionality and the obtained curve will lay in a space with dimension

equal to the number of variables + 1. In the case of linear SVR the resulting curve

will be an “hyperplane”, and, similarly to Eq 3.3, will be described by:

ŷ = 〈www · xxx〉+ b (3.7)

www is a vector containing the curve parameters (also called weights), 〈·〉 represent

the dot product, and b is similar to the intercept for the case of linear regression

but, in this context, is called bias. The final objective is to find the parameters www

and b that minimize the risk functional :

R =
1

2
‖www‖2 + C

m∑
i=1

|ŷ(i)
D − y

(i)
D |ε (3.8)

where ‖www‖2 is the square of the euclidian norm of the vector www, thus, nothing

else than the sum of the squares of its components, C is a positive constant and

|ŷ(i)
D − y

(i)
D |ε is the ε-insensitive loss function defined as:

|ŷ(i)
D − y

(i)
D |ε =

{
|ŷ(i)
D − y

(i)
D | − ε for |ŷ(i)

D − y
(i)
D | ≥ ε

0 otherwise
(3.9)

In the case of SVR, the risk functional has a slightly deeper meaning than the
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simple loss function used in linear regression. Indeed, the objective is not only to

minimize the error by means of the loss function, but also ensure that the fitted

curve is as smooth as possible. For this reason also the term ‖www‖2 has to be

minimized. The constant C determines the trade-off between the training error

and the “smoothness” of the function.

Figure 3.5: One-dimensional nonlinear SVR with ε-insensitive loss function: only the points

outside the ε margin contribute to the error [57].

Finally, in order to fit functions different from the trivial straight line, the Kernel

method has to be introduced1.

Instead of acting on the curve parameters www the Kernel method “maps” each input

data xxx
(i)
D into a higher dimensional space using a specific transformation dictated

by the kernel function [58]. In the higher dimensional space, the data are fitted

with a linear model, as described above, and then mapped back. The final result is

a non-linear curve obtained without the computational expense of fitting complex

functions.

There are many kernel functions available, the most common ones are reported in

Table 3.1.

1Here just an intuitive description of the Kernel method is reported, for a more rigorous approach refer to

Appendix A.
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Function Expression Parameters

Linear k(xxxD,xxx) = 〈xxxD,xxx〉
Polynomial k(xxxD,xxx) = (γ〈xxxD,xxx〉)d γ, d

RBF k(xxxD,xxx) = exp(−γ‖xxxD − xxx‖2) γ

Table 3.1: Table reporting three of the most common kernels.

With a radial basis function (RBF) kernel, the algorithm will fit best to Gaussian-

shaped features that would normally be found in cases of optimization [3]. For this

reason, RBF was the kernel selected for this work. The parameter d determines

the degree in the polynomial kernel while γ, present in many kernels, defines the

range of influence that a single training point xxx
(i)
D has. Two data points close to

each other in the parameters space will have a concomitant influence on the fitting,

particularly if a small γ is chosen for the fitting.

Figure 3.6: Example of SVR using three different kernels: from left to right RBF, linear and

polynomial kernel [55].
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3.2.3 Hyperparameters tuning

In the previous section some key parameters were introduced: ε, γ and C, along

with the Kernel function. These parameters are called hyperparameters and are

constant and independent from the dataset, thus, have to be tuned “manually” in

order to optimize the fit.

It is possible to distinguish between three fitting regimes (Fig 3.7):

• Underfitting: the curve is not able to fit the input data nor to predict in a

reliable way new data.

• Overfitting: the curve fit the data with minimal error, although is not able

to predict new data in a reliable way. It is too specific for the input dataset.

• Optimal fit: the curve fit the data with low error and is still able to generalize

and thus predict new data in a reliable way.

Figure 3.7: Representation of the three fitting regimes for a one-dimensional non-linear regres-

sion (fitted curve reported in blue): from left to right underfitting, optimal fitting and overfitting.

The general approach to understand the fitting regime is to subdivide the dataset

in training set and test set. In this way, it is possible to “train” the model with

the training set and test its performances with the test set. By changing the

hyperparameters and the kernel it is possible to govern the fit and, by plotting the

training and test error, it is possible to find the optimal value for each parameter.

A table reporting the effect of each SVR hyperparameter on the fitting is reported

in Table 3.2.
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Parameter Effect Too high Too low

γ Governs the

range of influ-

ence of each

training data

Minimal range,

the curve is fitted

only very close to

the training point

(overfitting)

The range of influence of

each training point gets

confounded with the oth-

ers, resulting in a smooth

curve (underfitting)

C Governs the

smoothness of

the curve

The curve is too

peaked (overfitting)

The curve is too smooth

(underfitting)

ε Governs the

tolerance of the

model on the

noise of the data

The fit consider all

the data as noise

(underfitting)

The curve fit also the noise

that may be present in the

data

Table 3.2: Table reporting the influence of the hyperparameters and the effect of a bad tuning.

Figure 3.8: Representation of the error for the three fitting regimes: underfitting is characterized

by an high error both in the training set and test set (validation set), overfitting has an low error

for the training set and an high error for the test set and, finally the optimal fit has a low error

for both training and test set.
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In order to avoid the possibility of a “lucky” train/test set subdivision, the usual

approach is to use a technique called cross-validation. Cross-validation consists in

iterating the train-test set split many times and test the model for each different

subdivision. The final result is an average error that exclude the possibility of

testing on a “lucky” test-set. This approach is schematized in Fig 3.9. The split

of the data is arbitrary, however, increasing the number of subdivisions increase

the cross-validation efficiency. A high number of splits although requires a high

number of iteration and can thus result in long computational times. Due to the

small dimension of the training set, in this work, the finest cross-validation, called

“leave-one-out” cross-validation, was adopted. In this approach, the test set is

composed by a single sample and the number of iteration is equal to the size of

the dataset.

Figure 3.9: Schematization of the cross-validation technique: the entire dataset is divided in a

different train and test set for each iteration.
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3.2.4 Bayesian optimization

In classical experimental design, modelling and optimisation are separate pro-

cesses, but newer model-based approaches can potentially sample more efficiently

by adapting to the response surface, and can incorporate optimisation into the

modelling process [50]. Bayesian optimization (BO) is an iterative process which

uses a model-based approach with an adaptive sampling strategy to minimise

the number of function evaluations (experiments). For these reasons it is perfectly

suited for the optimization of expensive “black-box” systems. Moreover, compared

to the SVR strategy discussed in Section 3.2.2, it does not require the experimen-

talist to “read” the fitted curves, thus allowing a higher dimensional optimization

comprising a larger number of variables.

BO is based on two main ideas: a Gaussian process (GP) to fit the data; and

an acquisition function, which, based on the GP prediction, returns the most

promising set of parameters for the next experiment.

Given a set of observations, a GP regression returns a “posterior distribution”,

that is, a normal distribution with mean µ(t)(xxx) and uncertainty σ(t)(xxx) at each

point xxx in the parameters space. Where xxx is the generic set of parameters and

the superscript “(t)” indicates that the function gets “updated” when new exper-

iments are performed during the adaptive sampling. An acquisition function is

then derived from µ(t)(xxx) and σ(t)(xxx) of the GP model. The acquisition function

allows a balance between exploitation (sampling where the objective mean µ is

high) and exploration (sampling where the uncertainty σ is high), and its global

maximiser is used as the next experimental setting. In Fig 3.10 an example of a

GP regression and its associated acquisition function is reported, while in Fig 3.11

is schematized the general BO iterative process.
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Figure 3.10: The upper panel shows the Gaussian process (GP) model in a problem with a

one-dimensional input space: the circles are previously measured points, the solid line is the

GP mean µ(t)(xxx), and the dashed lines are at µ(t)(xxx) ± 2σ(t)(xxx). The lower panel shows the

acquisition function (Expected improvement EI(xxx)) computed from the GP model. An “x” marks

the point with the largest expected improvement, which indicates where the next experiment will

be performed. [53].

Figure 3.11: Schematization of the iterative process of bayesian optimization [50].
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Chapter 4

Materials and methods

4.1 Materials

In order to validate and compare bayesian optimization (BO) and support vec-

tor regression (SVR) guided approaches, top-gate bottom-contacts (TGBC) or-

ganic field-effect transistors (OFETs) were fabricated using a well known semicon-

ductive polymer (P(NDI2OD-T2)) as active material. The same Machine learn-

ing approach was then used to guide future experiments for a cumulenic system

(tetraphenyl butatriene) based on experimental data taken from previous works of

Printed and Molecular Electronics (PME) group [14, 19].

4.1.1 N2200

P(NDI2OD-T2), also known as ActivInk “N2200”, is an organic semiconductor

(OSC) produced by Flexterra, formerly Polyera, whose chemical structure is shown

in Fig 4.1.

This OSC is a preferential electron conductor (n-type OSC) characterized by an

highest occupied molecular orbital (HOMO) and lowest unoccupied molecular or-

bital (LUMO) levels around −4 eV and −5.6 eV respectively [59] and mobilities

exceeding 1 cm2

V ·s [31]. N2200 tends to pre-aggregate when dissolved in specific sol-

vents, forming a liquid-crystalline like phase, and this property can be exploited

in order to obtain higher mobility OFETs. Indeed, it was demonstrated that, by

means of off-center spin coating, it is possible to maintain the long-range order

and obtain extended orientational domains of hundreds of micrometers in the de-

posited film [31]. As discussed in Section 1.3.3, the ordered molecular packing

favours the charge transport leading to higher mobilities. In the case of N2200,
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Figure 4.1: Chemical structure of N2200.

the increase in mobility values in the direction parallel to the domains alignment

is due to a faster intrachain transport parallel to the polymer backbone [60]. The

domain size depends mainly on two factors [61]:

• Molecular interaction between the polymer and the solvent: it gov-

erns the degree of pre-aggregation in solution and can be quantified with

UV-Vis absorption techniques [62].

• Solvent boiling point: higher boiling point solvents maintain the polymer

in a metastable state for a longer time during the deposition, and lead to a

better alignment of the domains.

Figure 4.2: Cross polarized optical microscopy image of N2200 deposited on glass substrate

from toluene: the birifrangent domains are clearly visible, the darker areas reveal that the polymer

chains are aligned along one of the two polarizes directions (represented by the two arrows), while

the polymer chains aligned at 45 degrees appear as brighter areas [31].
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4.1.2 [3]Ph

Tetraphenyl butatriene, also knwon as “[3]-cumulene” or “[3]Ph”, is a small-

molecule OSC containing a cumulene-like carbon atomic wire (CAW) [14]. The

molecule is characterized by a short carbon chain composed of three cumulated

double bonds (i.e., four carbon atoms) and terminated at each end by two phenyl

moieties (Fig 4.3). The cumulene-like structure in the molecule leads to a HOMO-

LUMO gap of 3.2 eV [19] and results in its semiconducting behaviour. The phenyl

end-groups have multiple functions: (i) they are able to isolate the carbon chain

making the molecule stable up to ∼250 °C in ambient conditions [19], (ii) they

induce a cumulene-like organization thus reducing the bond-length alternation

(BLA) and the HOMO-LUMO gap as described in Chapter 2.2, and finally (iii)

they make the molecule soluble in commercial solvents thus allowing its depo-

sition from solution. The solubility of [3]Ph in different solvents is reported in

Table 4.1. The molecule was produced by R. Tykwinski et al. [47]. The depo-

sition from solution of [3]Ph, as for most small-molecules OSC, is characterized

by a fast crystallization process. This effect causes a non-uniform coverage of the

transistor, detrimental for the OFET performance [19]. In order to have a better

control of the deposited film microstructure, [3]Ph can be blended with a suit-

able polymer. In a previous work [14], atactic polystyrene (PS) with a molecular

weight of 2000000 g/mol was chosen as blending polymer. In order to increase

the charge injection efficiency, a self-assemble monolayer (SAM) can be applied on

the gold electrodes. Being [3]Ph a p-type OSC, a suitable SAM is pentafluorotio-

phenol (PFBT). PFBT lowers the gold work function (Wf) reducing the contact

resistance. Anyway, the presence of the SAM strongly affects the crystallization

process. Hence, while it improves the charge injection, it is still not clear if it

benefits the overall performance of the transistors.

[3]Ph solubility

Solvent Solubility (g/L)

Acetone 0.8

Ethanol 0.07

Hexane 0.15

Dichloromethane 12.6

Toluene 6.07

Table 4.1: Solubility of [3]Ph in different solvents [14].
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(a)
(b)

Figure 4.3: (a) Lewis structure and BLA of the [3]Ph molecule [47] and (b) the pure molecule

in the solid form [14].

4.2 Device fabrication

In this section, the procedures adopted to fabricate the devices with N2200 as

active material will be described in detail. The devices fabrication was carried out

following a procedure similar to previous works [31, 63]. Regarding the OFETs

architecture, TGBC was chosen. Indeed, this structure helps protecting the active

material from possible environmental contaminations and allows the deposition of

the dielectric from solution. Being the stability of N2200 well known, the appli-

cation of the dielectric via solution process allowed a cheap and fast deposition

without altering the semiconductor properties. All the fabrication steps were car-

ried out in a nitrogen glove box in order to minimize contaminations, except from

the solutions preparation carried out under a chemical fume hood.

4.2.1 Contact deposition

The source and drain interdigitated electrodes where fabricated on top of Corning

glass substrates using conventional photolithography. The LOR 5B underlayer

and the MICROPOSIT S1813 layer were deposited exposed and developed in MF

319. The substrates with the patterned resist were brought into the “PROvap

Glovebox Integrated M-braun Thermal Evaporator” without mask for the contacts

evaporation and brought in high vacuum. On top of the substrates a thin layer
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of chromium with a thickness of 2 nm was deposited by thermal evaporation

in order to increase the adhesion of the gold contacts with the glass substrate.

Over the chromium layer a gold layer with a thickness of 30 nm was deposited.

Afterwards, the substrates were put in a bath of n-Methyl-2-pyrrolidone (NMP)

and left overnight for the lift-off. The process is reported in Fig 4.4 while the final

gold patterned substrate is reported in Fig 4.5. After the semiconductor, dielectric

and gate deposition each final substrate (sample) is composed of 16 transistors with

two orthogonal orientations and four different channel lengths (20, 10, 5 and 2.5

µm).

Figure 4.4: Schematic representation of the photolithography: 1)Deposition of LOR5B, 2)

deposition of MICROPOSIT S1813, 3) exposure of the photoresist to UV light, 4) development

of the photoresist, 5) chromium and gold deposition, 6) lift-off.

4.2.2 Solutions preparation

Four different solvents were used in order to dissolve N2200: toluene (Tol), mesity-

lene (Mes), chlorobenzene (CB) and 1-chloronaphthalene (CN), with boling points

of 111 °C, 164.7 °C, 131 °C and 263 °C respectively. N2200 was weighted using a

microbalance and then dissolved in the different solvents listed above, the process

was performed under a chemical fume hood. Four different solutions with concen-

tration of 15 g/L were prepared, then stirred overnight at ambient temperature in

order to completely dissolve the polymer. When needed, part of the solutions was

taken out and diluted in a new vial after stirring the original solution for an hour.
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(a)
(b)

Figure 4.5: a) Schematic representation of the substrate composed of 16 contacts with two

different orientations and four different channel lengths. b) Schematic representation of the

single interdigitated electrode.

(a) (b)

(c)
(d)

Figure 4.6: Chemical structure of the four solvent used to dissolve N2200: a) Toluene, b)

Mesitylene, c) Chlorobenzene and d) 1-Chloronaphthalene.
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4.2.3 Substrate preparation

The gold-patterned substrate were carefully cleaned, just before the OSC depo-

sition, by following a cleaning protocol. The first cleaning step was performed

by ultrasonic bath in acetone (five minutes) and isopropyl alcohol (five minutes)

followed by a drying step done with a nitrogen gun. This process aims at remov-

ing the impurities which may be still present from the lithography such as gold

fragments or resist leftovers and all the macroscopic particles such as dust. After-

wards, the substrates were treated for five minutes with an O2 plasma in order to

“burn” any organic impurities left. A “Diener Electronic Femto Plasma asher” was

used. Molecular oxygen was injected in the chamber at pressure of 0.4 mbar with

a flux of 0.5 SCCM and the plasma with a nominal power of 100 W . The cleaned

substrates were then immediately brought in the glove box for the deposition of

the semiconductor.

4.2.4 Off-center spin-coating

The semiconductor deposition was performed in a nitrogen glove box by means

of off-center spin-coating. This technique allows to deposit an OSC from solution

and obtain a uniform layer, furthermore, during the deposition a centrifugal force

is applied on the solution which lead to an alignment of the crystalline domains in

the deposited film [27]. The semiconductor film thickness mainly depends on two

parameters: viscosity of the solution and spin-coating-speed [64]. The film thick-

ness decrease with decreasing viscosity and increasing spin-coating-speed. The

resulting semiconductor thickness affects the transport properties. For instance,

in TGBC OFETs, carriers have to be transported in bulk to reach the channel at

the interface with dielectric. This causes the presence of a bulk resistance, that

can not be neglected if the film is thick. On the other hand, if the film is too

thin there might be a poor active material coverage, detrimental for the charge

conduction. The chosen setup was composed by a microscope slide with, at one

side, a double-side adhesive carbon tape over which was attached the substrate,

and on the other side a counterweight. The carbon tape, and thus the substrate

center, was positioned at a distance of 3 cm from the spin coating center. 70 µL of

solution was deposited on the substrate prior to the beginning of the spin-coating

program, carefully paying attention that the solution covers every gold electrodes.
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Figure 4.7: Schematic representation of on-center and off-center spin-coating [27].

The deposited liquid is subjected to two forces able to align the domains: a cen-

tripetal (and centrifugal) force, due to the rotational speed, which align the do-

mains in the direction radial with respect to the spin center, and, a tangential force

due to the angular acceleration which tends to align the domains in the direction

tangential with respect to the spin center. The tangential force is present only in

the first section of the spin coating process, indeed, the tangential force becomes

null once the maximal rotation speed is reached. In order to minimize the tangen-

tial force and thus the tangential alignment of the domains, a two step spin coating

program was selected: a first step characterized by a low angular acceleration and

a second step during which the target speed is reached and maintained. Specifi-

cally, the first step was characterized by an angular acceleration of 50 rpm/s for

10 seconds reaching a rotation speed of 500 rpm, and the second step, lasting 60

seconds, with 2000 rpm/s acceleration until the required speed was reached.

4.2.5 Kinetically controlled crystallization

Immediately after the spin-coating process the coated substrate was put on a hot

plate for the kinetically controlled crystallization (KCC) treatment. This process

aims at controlling the crystallization mechanism by changing the rate at which

the solvent evaporates [63]. By controlling the crystallization rate it is, in principle,

possible to influence the dimension and distribution of the polymer domains. Two

main factors are involved: the nucleation rate and the growth rate. The nucleation

rate increases with temperature due to an activation energy for diffusion (Qd)

following an Arrhenius-like equation, but it is suppressed at high temperature due

to the high energy barrier for phase transformation of the polymer from solid to
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liquid (∆G∗) given by the difference in Gibbs free energy between the solid and the

liquid state. The latter energy barrier is proportional to 1
(∆T )2

, thus it is responsible

for the suppression of the nucleation rate at high temperatures. It is possible to

express the nucleation rate N as:

N ∝ exp

(
−(Qd + ∆G∗)

KbT

)
∝ exp

(
−Qd

KbT
− 1

KbT (T − Tm)2

)
(4.1)

where Kb is the Boltzmann constant and Tm is the melting point of the polymer.

The growth rate, on the other hand, depends only on the diffusion energy and,

thus, keeps growing with increasing temperature. It is possible to distinguish

between three main regimes:

• Low temperature KCC (∼60 °C): both nucleation and growth rates are

low, the resulting domains are small.

• High temperature KCC (∼150 °C): high nucleation and growth rate lead

to a large number of nucleation points, the domains does not have space to

grow.

• Moderate temperature KCC (∼100 °C): sufficiently high growth rate

and moderate nucleation rate give time to the polymer domains to grow,

allowing optimal domain extension.

The KCC was performed between 30 °C and 150 °C until all the solvent evaporated,

thus the treatment time was different for each sample and was chosen based on

the deposition and solution parameters, KCC temperature, and, after visual check

of the samples. The treatment time increases with increasing boiling point of the

solvent, solution concentration and decreasing KCC temperature and spin-coating

speed, because higher concentrations and slower spin coating speeds lead to thicker

films and, thus, slower evaporation rates. Once the films were dry, an annealing

at 200 °C was performed for 30 minutes. This treatment aims at completely

evaporates the residual solvent and helps to slightly rearrange the polymer chains

without causing drastic changes in the film morphology [60].
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Figure 4.8: Schematic representation of the KCC process and the expected transformation rate

as a balance between nucleation and growth rate [63].

4.2.6 Dielectric and gate deposition

Poly(methyl methacrylate) (PMMA) was chosen as dielectric material because

it provides a suitable interface with N2200 for the charge transport (trap-free).

In addition, by chosing a suitable solvent unable to dissolve N2200, PMMA can

be deposited from solution with a cheap and fast process. PMMA with average

molecular weight of 120000 g/mol purchased from Sigma-Aldrich was weighted

using a microbalance and dissolved in n-butyl acetate, preparing a solution with

concentration of 80 g/L. The solution was then put on a hot plate for 2 hours at 80

°C with strong stirring in order to completely dissolve the PMMA in the solvent.

The solution was then brought into the glove box and let it cool down to ambient

temperature. In order to obtain a uniform PMMA film, 80 µL of solution was

placed on top of the substrates just before on-center spin-coating at 1300 rpm for 60
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seconds with an acceleration of 1000 rpm/s. Then, the coated substrates were put

on a hot plate and annealed at 80 °C for 2 hours in order to completely evaporates

the solvent. This procedure allowed to obtain a PMMA film with a thickness

around 500 nm, assessed by means of mechanical profilometer. After deposition

of the dielectric the samples were brought into the “PROvap Glovebox Integrated

M-braun Thermal Evaporator” for the aluminum gate deposition. Aluminum was

chosen because it is cheap, easy to evaporate and compatible with most organic

materials. Using a specific shadow mask reported in Fig 4.9, the aluminum gate

with thickness of 50 nm was deposited on top of the PMMA layer yielding the

final transistor (schematized in Fig 4.10).

Figure 4.9: Picture of the mask used for the aluminum gate evaporation.

Figure 4.10: Schematic representation of the complete OFET [63].
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4.3 Characterization

In this section the characterization techniques are reported. Starting from the

characterization of the solutions, followed by the film and material characteriza-

tions and ultimately the device electrical analyses.

4.3.1 UV-Vis spectroscopy

In order to address the pre-aggregation level in solution, the most straightforward

way is to use UV-Vis absorption spectroscopy. Indeed, it was demonstrated that

the presence of chain aggregation leads to the appearance of an absorption peak

around 710 nm and a shoulder peak around 800 nm [62]. These absorption features

have an absorption wavelength mostly independent on the solution concentration

while it is highly dependent on the solvent. In the case of CN, these “low en-

ergy” features are not present, instead the absorption spectrum is characterized

by a broad and featureless band centered around 620 nm. This features were at-

tributed to the fact that N2200, when dissolved into CN, does not aggregate and

the absorption around 620 nm is due to intrachain excitons in the isolated chains.

On the other hand, when the aggregation in solution is present, the change in

conformation of the polymer upon stacking leads to a red-shift of the absorption

spectra. The two different features at 710 and 800 nm were attributed to two

different aggregation states, called “aggregate I” and “aggregate II”. Finally the

“high energy” peak present around 400 nm is related to the π− π∗ transition and

it is slightly influenced by the aggregation state. The UV-vis Absorption spectra

were obtain by measuring transmission spectra on a “PerkinElmer Lambda 1050

UV/Vis/NIR” spectrometer.

4.3.2 Optical polarized microscopy

The supramolecular structure transferred from the pre-aggregation in solution to

the deposited film can be addressed by means of polarized light microscopy (PLM)

[31]. In this technique, polarized light is shined on the substrate, then the reflected

or transmitted light is observed through another polarizing filter, by rotating the

second filter it is possible to operate in different regimes. In particular when the

second polarizing filter is oriented at 90° with respect to the first, the technique is

called “cross polarized optical microscopy” and only the light that is being rotated

in polarization by the sample will be observable. When a birefringent material is

observed, the polarized beam is splitted into two different beams with different
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Figure 4.11: Schematic representation of the aggregation state of N2200 in toluene and chloron-

aphtalene [62].

Figure 4.12: UV-Vis absorption spectra of N2200 dissolved in different solvents (concentration

of 1 g/L), and in the film form. The spectra were normalized at their maximum [62].

phases and polarizations, thus making the sample observable. Using the latter

approach, it is possible to exploit the birefringence in the deposited N2200 film

in order to distinguish the domains. Indeed, the darker areas in the film can be

addressed as zones in which the polymer is oriented along one of the two polarized

directions, the brighter areas, instead, are observed when the polymer is oriented at

61



CHAPTER 4. MATERIALS AND METHODS

45°. PLM is therefore able to distinguish the orientation of the polymer chains and

thus makes the observation of the domains possible. The cross polarized optical

microscopy analyses were carried out using a “Zeiss Axioscope A1” microscope

both in reflection and transmission mode and captured using a camera directly

mounted on the microscope.

Figure 4.13: Optical polarized microscopy image of a N2200 film deposited from toluene, the

domains are clearly visible. A sketch of the polymer chain orientation, based on of AFM mea-

surements, is reported [31].

4.3.3 Mechanical profilometer

The evaluation of the film thickness was carried out using a mechanical profilome-

ter, in particular the instrument was a “Alpha-Step IQ surface profilometer” in

contact mode. In order to characterize the dielectric thickness, during each dielec-

tric deposition a PMMA film was deposited on a microscope slide, previous cutting

followed by the cleaning processes described in Section 4.2.3. The deposited film

was then carefully scratched with a pair metal tweezers. By measuring in the

direction perpendicular to the scratch, and comparing the height measured on the

scratch with the one of the film, it was possible to address the film thickness.

4.3.4 Semiconductor parameter analyzer

The electrical measurements were performed using a semiconductor parameter

analyzer (SPA) “Agilent Technologies B1500A Semiconductor Device Analyzer”

with a current resolution of 0.1 fA, placed into a nitrogen glove box. With the

use of this instrument it was possible to obtain the “transfer curves” and the
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“output characteristics” of the devices. Prior to the measurement, the devices were

annealed at 120 °C overnight in order to remove any moisture and oxygen residues,

then were placed under the microscope and contacted with the instrument. The

device characteristics were obtained with a sweep in the gate voltage from -10 V

to 40 V and back, while the source was at ground voltage and the drain voltage

at 10 V and 40 V for linear and saturation regimes respectively. Only the devices

with channel lengths of 20, 10 and 5 µm were measured in order to not take into

account “short channel effects” and thus obtain more reliable results. The SPA

measures three currents as a function of the gate voltage: the source current,

the drain current and the gate current also known as “leakage current”. The

leakage current comes from the charges that are able to penetrate the dielectric.

Of course, this effect is non-ideal and is a source of noise in the measure, for this

reason it should be minimized. In saturation regime the leakage current usually

has a minor influence because the potential between source and drain is greater

than the potential between the gate and the other contacts. For this reason the

extraction of the mobility in the saturation regime is usually more reliable and was

chosen as the quantity to be optimized in this work. An example of the obtained

transfer curve is reported in Fig 4.15.

Figure 4.14: Picture of the SPA setup.
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Figure 4.15: Example of the transfer curve obtained in linear and saturation regime.

4.3.5 Parameters extraction

The aim of this work was to optimize the mobility of the semiconductor, in partic-

ular in the saturation regime. For this reason, even though it is possible to extract

many device parameters from the transfer curves, the focus of this section will be

put on the mobility extraction.

Starting from the transfer curves the mobilities in the two different regimes can

be calculated as:

µlin =
L

WC
′
dielVds

∂Ids,lin
∂Vgs

(4.2)

µsat =
2L

WC
′
diel

∂
√
Ids,sat

∂Vgs
(4.3)

where W and L are the channel width and length, C
′

diel is the capacitance per

unit area of the dielectric, Vds and Ids are the voltage and the current between

source and drain and Vgs is the gate voltage. It has to be noted that the mobility

extracted from Eq 4.2 and 4.3 does not correspond to the intrinsic mobility of the

semiconductor because it is influenced by the non-idealities that may be present

in the device such as contact resistance and short channel effects. The obtained

transfer curves were analyzed by using a Matlab script written by S. Pecorario.
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In order to obtain a more reliable extraction of the mobility, the derivatives present

in Eq 4.2 and 4.3 were calculated by fitting the I −V curve, in the forward sweep,

between 20 V and 30 V with a straight line. By calculating the slope of the fitted

line, it was possible to estimate the derivative in that region in a precise way. The

graphical representation of the method is reported in Fig 4.16. With this method,

the extracted saturation mobility is similar to the linear one, and, in general, is

understimated. The correct procedure for the extraction of the mobility is still

under debate [65]. For instance, in N2200, the mobilities extracted in saturation

regime increase with increasing gate voltage [31]. However, the values extracted at

high potentials are less reliable because the non-ideal effects, discussed in Chapter

1.5, can have a big influence. The goal of this work was to have reliable data to

train the machine learning algorithm. For this reason, only the best devices were

then measured again with the SPA in an extended range of gate potential in order

to make a comparison with the mobility values extracted in the reference work

at 60 V [63]. The saturation regime was characterized by a drain voltage of 60V

and the gate sweep was between -10 V and 60 V , the mobility was then extracted

between 55 V and 58 V .

Figure 4.16: Example of the mobility extraction method adopted in the case of saturation

regime.
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4.4 Optimization

The optimization process was carried out in two stages:

• Validation with N2200 OFETs: the effectiveness of BO and SVR op-

timization was validated and compared in the case of N2200 OFETs. The

optimization started from design of experiments (DoE) common to the two

methods in order to have a reliable comparison. All the data used were ob-

tained during the optimization process.

• Prediction of [3]Ph OFETs: the methods validated during the N2200

OFETs optimization were used on an existing dataset in order to make pre-

dictions and guide future experiments in the optimization of [3]Ph OFETs.

4.4.1 Software

The scripts for the optimization algorithms were written using Python 3 [13].

For the SVR optimization it was adapted from a script written by B. Cao et

al. [3] using Scikit-learn package [66], while the BO script was written using the

“GPyOpt” open-source library [12].
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Results

5.1 Validation of the models with N2200 OFET

As already introduced, the work started with the validation of the two machine

learning models via the optimization of the saturation mobility of N2200 organic

field-effect transistors (OFETs). The optimization process started with the selec-

tion of the input variables, followed by the design of experiments (DoE) of the

first round of experiments, common to the two optimization methods. After the

first round of experiments, the two optimization methods were carried out inde-

pendently from each other in order to obtain a genuine comparison.

5.1.1 Variables selection

Based on existing literature, four different fabrication parameters were chosen as

input variables [31, 63, 61]: solvent type, solution concentration, spin-coating speed

and kinetically controlled crystallization (KCC) temperature. The range selection

of each variable was based on the reference papers as well, although wider ranges

were chosen in order to increase the exploration possibilities. The variables and

the related ranges and levels are reported in Table 5.1.

5.1.2 Design of experiments and first round of experiments

The DoE was performed using a package present in GPyOpt [12]. The initial de-

sign chosen was a “space filling” design with 15 experiments. By specifying the

parameters range and the number of experiments GPyOpt returns the experimen-

tal design. The first round of experiments is listed in Table 5.2. A scatter matrix

is shown in Fig 5.1 to better visualise the DoE.
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Parameters space Round 1

Variable Levels Range Spacing

Solvent 4 Tol, CN, Mes, CB /

Solution conc. 15 1 g/L to 15 g/L 1 g/L

KCC temperature 13 30 °C to 150 °C 10 °C

Spin-coating speed 26 500 rpm to 3000 rpm 100 rmp

Table 5.1: Table reporting the parameters and the related range selected for the first round of

experiments.

A scatter matrix, sometimes called “pairs plot”, compactly represents all the nu-

meric variables in a dataset against each other one. The diagonal cells report the

histograms of the distribution of the data for each variable (how many experi-

ments are present at that specific level) while the other cells report the scatter

plots (i.e. correlation plot) of each variable combination. This visualization is

useful in understanding if the DoE is able to fill the parameters space efficiently.

Figure 5.1: Scatter matrix representing the DoE for the first round of experiments. The solvents

are reported as numbers from 1 to 4 (1=Tol, 2=CN, 3=Mes and 4= CB).
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Round 1

Sample Conc. (g/L) Solv. KCC ( °C) rpm

0 6 CB 40 600

1 4 Tol 30 1800

2 8 Tol 100 2800

3 5 Mes 140 1900

4 14 CB 50 900

5 3 CN 70 1200

6 1 CN 120 2900

7 7 CN 150 1100

8 15 CB 90 1600

9 13 Tol 130 800

10 2 Tol 50 2400

11 12 CN 60 2200

12 10 Mes 110 1400

13 11 Mes 80 2600

14 9 CB 100 2100

Table 5.2: Table reporting the experiments performed in the first round.

Fifteen different substrates (samples) were then fabricated following the procedure

described in Chapter 4.2 with the parameters taken from the DoE. The substrate

were then brought into the glove box, annealed overnight at 120 °C and then mea-

sured with the semiconductor parameter analyzer (SPA) as described in Section

4.3.4. Each substrate contained 16 OFETs, although the transistors with channel

length 2.5 µm were not measured in order to avoid short channel effects in the opti-

mization, resulting in 12 devices for each fabricated substrate. The transfer curves

obtained were then analysed in order to extract the mobility of each transistor as

described in Section 4.3.5.

5.1.3 Data analysis

After the mobility extraction, only the saturation mobilities of the aligned devices

(i.e. with polymer domains parallel to the conduction direction) were considered

for the optimization. The “outliers”, reported in the boxplots as white dots, were

not discarded. In Fig 5.2 is reported the outcome of the first round of experiments.
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Figure 5.2: Boxplot reporting the saturation mobility values for the first round of experiments.

In order to improve the fitting performance of the two machine learning methods,

the “solvent” variable was transformed from a categorical to a discrete variable.

Categorical variables have the advantage of considering all the variable properties,

in this case every solvent characteristic. However, regression methods are not able

to fit categorical variables in an efficient way. The resulting fitting is comprised

by a different regression for each level of the categorical variable. This approach

is more general, although it requires a much larger number of experiments in or-

der to have the same predicting ability. On the other hand, by transforming the

categorical variable into a discrete variable, only some variable properties will be

considered. However, the regression will be able to fit all the data with a single

function, reducing the number of experiments.

During this process, the properties of the categorical variable are “encoded” into

a number, which is then orderable on a one-dimensional axis. If two data points

are close to each other in the parameters space, they will have a similar fitting,

as discussed in Section 3.2.2. For this reason, it is extremely important to encode

the variable according to a physical description. Indeed, the aim is to identify the

features of a categorical variable (the solvent, in this case) that have an impact

on the target property. In this way it is possible to improve the “quality” of the

training set, thus the fitting performance and finally the predictive power of the
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model. However, one should be aware that this discretization procedure of a cat-

egorical variable introduces a bias in the model. For this reason it is important

to rely on a solid understanding of the physical phenomena underlying the impact

of the categorical variable. As discussed in Section 4.1.1, the two most important

factors influencing the formation of extended domains in the deposited film are: (i)

the aggregate content of the polymer in solution and (ii) the solvent boiling point.

The first property was quantified by analysing the UV-Vis absorption spectra in

solution, while the solvents boiling points were taken from literature.

Solid N2200 was dissolved in the four different solvents, obtaining solutions of

toluene (Tol), 1-chloronaphthalene (CN) and chlorobenzene (CB) with concentra-

tion 0.1 g/L and a solution of mesitylene (Mes) with concentration 0.2 g/L. The

solutions were stirred for 2 hours in order to completely dissolve the polymer, then

the solutions were transferred into quartz cuvettes and measured with the UV-Vis

spectrometer. The obtained spectra are reported in Fig 5.3.

Figure 5.3: UV-Vis absorption spectra of N2200 dissolved into the four different solvents. The

spectra were normalized at their maximum.
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To address the aggregation content in solution, the spectra were normalized at

550 nm and integrated between 500 nm and 900 nm (Fig 5.4). Knowing that CN

presents no aggregates in solution and knowing the ratio of the “oscillator strength”

of the chains in the aggregate and non aggregate state (εaggr./εamorph. ≈ 2.5) [62],

it is possible to calculate the aggregate content as:

Agg(x) =
εamorph.
εaggr.

· AS(x)− AS(CN)

AS(CN)
(5.1)

where x is the solvent and AS(x) is its integrated absorption spectrum. The

calculated aggregation contents are reported in Table 5.3.

Figure 5.4: Integrated UV-Vis absorption spectra, normalized at 550nm, of N2200 dissolved

into the four different solvents.
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Aggregate content in solution

Tol CN Mes CB

Calculated aggregate % 66 0 74 48

Table 5.3: Table reporting the calculated aggregate content in the four different solvents.

In order to encode the “solvent” categorical variable into a numerical one, consid-

ering the solvent properties listed above, the following function was implemented:

f(x) = a · (norm(Agg(x))) + b · (norm(BP (x))) (5.2)

where x is the solvent, “Agg” is the aggregate content and “BP” is the boiling

point, a and b are arbitrary weights and norm() indicates a normalization function

defined as:

norm(z) =

(
z(x)−min(z)

max(z)−min(z)

)
(5.3)

where z(x) is one of the solvent properties (Agg(x) or BP (x)). The function in

Eq. 5.2 returns a number between 0 and 1 (if a + b = 1) rating the predicted

solvent ability to deposit high-mobility films. Based on the importance of each

factor [61], the arbitrary weights were chosen as a = 0.9, b = 0.1. Proceeding in

this way, it was possible to exploit the existing knowledge on the physics of the

system in order to transform the “solvent” variable from categorical to discrete.

The solvent properties and the calculated ratings are reported in Table 5.4.
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Agg. B. point f

Tol 0.66 111 0.8

CN 0 164.7 0.1

Mes 0.74 131 0.94

CB 0.48 263 0.6

Table 5.4: Table reporting the solvent variable encoding.

It is important to note that there is no need for an extreme precision in the value

attributed to the categorical level. The objective is to encode a categorical variable

into a discrete one in order to assign an order to the data to be fitted. The assigned

value will determine “how close” two data points will be during the fitting. Hence,

it is important to assign a physically correct order and not a precise numerical

value, although the latter may influence the convergence speed of the optimisation

process.

5.1.4 Support vector regression optimization

The support vector regression (SVR) optimization started with the tuning of the

model hyperparameters with the data obtained from the first round of experiments.

It is important to chose the correct combination of hyperparameters in order to

minimize the prediction error while avoiding overfitting. In order to do so, the

training and cross-validation error (loss) were plotted as a function of the three

model hyperparameters (γ, C and ε), using leave-one-out cross-validation. The

error was evaluated as a mean squared error. The hyperparameter values that

minimize the error were chosen in order to avoid underfitting and overfitting, as

described in Section 3.2.3. The plots used for the selection of γ and C are reported

in Fig 5.5 while the selected hyperparameters are reported in Table 5.5.
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(a) (b)

Figure 5.5: SVR hyperparameter tuning for the first round: (a) training and cross-validation

loss versus γ (b) training and cross-validation loss versus C.

Round 1 hyperparameters

γ C ε

0.25 2.75 0.01

Table 5.5: Hyperparameters selected for the first round of SVR optimization.

After the selection of the hyperparameters, the model was trained with the data.

In order to check the fitting efficiency, the mobilities predicted for each sample by

the model were plotted against the actual measured mobilities. Ideally, the plotted

points should all lay on the dashed line (predicted value equal to the real value).

This is obviously not the case, since an intrinsic error is present in the measurement

and, even for the same sample, a distribution of mobilities is present. In any case,

the graph reported in Fig 5.6 show that the fitting was successful and the points

are distributed sufficiently close to the dashed line.
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Figure 5.6: Measured versus predicted mobility from the SVR of the first round of experiments.

In order to visualize the function fitted by the SVR method, the five-dimensional

function was “sliced” and plotted as contour plots reporting the predicted mobil-

ity as the contour. The plots in Fig 5.7, 5.8, 5.9 and 5.10 report the complete

parameters space with the experimental points of the first round.
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Figure 5.7: SVR contour plots of the first round of experiments for mesitylene.

Figure 5.8: SVR contour plots of the first round of experiments for toluene.
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Figure 5.9: SVR contour plots of the first round of experiments for chlorobenzene.

Figure 5.10: SVR contour plots of the first round of experiments for chloronaphthalene.
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Based on the results of the SVR fitting, it was possible to narrow the parameter

ranges and focus the experiments on the area where a higher mobility was pre-

dicted. The ranges chosen for the second round of SVR optimization are reported

in Table 5.6.

Parameters space DoE Round 2 SVR

Variable Levels Range Spacing

Solvent 2 Tol, Mes /

Solution conc. 8 4 g/L to 11 g/L 1 g/L

KCC temperature 5 30 °C to 70 °C 10 °C

Spin-coating speed 11 1200 rpm to 2200 rpm 100 rmp

Table 5.6: Table reporting the parameters and the related range selected for the second DoE for

SVR optimization.

The second round of experiments was carried out, equivalently to the first round,

following the procedure already described. The second round was however com-

posed by only five samples. The experiments were chosen based on a new DoE

performed with the new parameters ranges and are reported in Table 5.7. The

samples were then measured with the SPA in order to extract the mobility values.

The outcome is reported in Fig 5.11.

Round 2 SVR

Sample Conc. (g/L) Solv. KCC ( °C) rpm

15 10 Mes 30 1500

16 5 Tol 50 1700

17 6 Mes 70 1900

18 8 Tol 60 1300

19 9 Tol 40 2100

Table 5.7: Table reporting the experiments performed in the second round guided by SVR.
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Figure 5.11: Boxplot reporting the saturation mobility values for the second round of experi-

ments guided by SVR.

The dataset of the second round was added to the first one and the model hyper-

parameters were slightly adjusted using the same procedure described above, the

updated hyperparamteres are reported in Table 5.8.

Round 2 hyperparameters

γ C ε

0.28 15 0.01

Table 5.8: Hyperparameters selected for the second round of SVR optimization.

The prediction efficiency was again checked with the graph reported in Fig 5.12.

The obtained contour plots, showing the “interesting” updated region are reported

in Fig 5.13 and 5.14.
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Figure 5.12: Measured versus predicted mobility from the SVR of the second round of experi-

ments.

Figure 5.13: SVR contour plots of the second round of experiments for mesitylene.

Figure 5.14: SVR contour plots of the second round of experiments for toluene.
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For the third and last round the parameters range was narrowed again. This

time, the “solvent” variable was not considered because the sample deposited from

mesitylene clearly showed the best performances. The chosen range is reported in

Table 5.9. This time, having only 5 levels for each variables, it was possible to

have a proper “latin hypercube” design in which each level is tested one and only

one time. The resulting design is schematized in the scatter matrix in Fig 5.15,

the experiments are reported in Table 5.10 and the outcome in Fig. 5.16.

Parameters space DoE Round 2 SVR

Variable Levels Range Spacing

Solvent 1 Mes /

Solution conc. 5 6g/L to 10g/L 1g/L

KCC temperature 5 30 °C to 70 °C 10 °C

Spin-coating speed 5 1600rpm to 2000rpm 100rmp

Table 5.9: Table reporting the parameters and the related range selected for the third DoE for

SVR optimization.

Figure 5.15: Scatter matrix representing the DoE for the third round of SVR optimization.
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Round 3 SVR

Sample Conc. (g/L) Solv. KCC ( °C) rpm

25 9 Mes 60 2000

26 10 Mes 70 1700

27 8 Mes 40 1900

28 6 Mes 50 1600

29 7 Mes 30 1800

Table 5.10: Table reporting the experiments performed in the third round guided by SVR.

Figure 5.16: Boxplot reporting the saturation mobility values for the third round of experiments

guided by SVR.

It is possible to conclude that SVR optimization led to an overall increase of the

performances of the samples. In the last round, the effectiveness of the optimiza-

tion is clearly visible. Indeed, the worst device showed a saturation mobility over

0.3 cm2/V s and the best one, with a saturation mobility of 0.756 cm2/V s, was

the best device of the entire SVR optimization.
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5.1.5 Bayesian optimization

Bayesian optimization (BO) was performed in parallel with the SVR optimiza-

tion, starting as well from the first round of experiments and with the “solvent”

variable transformed to discrete variable. With this approach, the data are fitted

with a Gaussian process (GP), then with the use of an acquisition function, the

algorithm is able to return the suggested experiments for the following round. The

parameters space chosen for the optimization was the same as the one used for the

DoE of the first round of experiments, reported in Table 5.1. Differently from SVR

optimization, the BO algorithm does not need an adjustment of the parameters

space and it is able to identify automatically the “zones” where to focus the exper-

iments. The chosen acquisition function is called “local penalization” [67]. This

acquisition function was designed specifically for “batch optimization” in which

each iteration (round) is composed by more than a single evaluation (experiment).

The chosen batch had a size of 5 for each iteration, this kind of acquisition func-

tion allows to have five different suggested experiments each iteration. In this

way, within the batch, the experiments will evolve from exploitation-oriented to

exploration-oriented, resulting in a more explorative optimization compared to

the SVR approach.

Figure 5.17: Example of the working principle of “local penalization” acquisition function for a

batch BO with batch size=3. The suggested experiments are depicted as black stars. Subsequently

to the experiment suggestion, the acquisition function gets locally penalized, this leads to a better

exploration of the space within the same iteration [67].

The experiments suggested for the second round by the BO algorithm are reported

in Table 5.11. The samples were then fabricated following the same procedure used

previously. The outcome is reported in Fig 5.18.
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Round 2 BO

Sample Conc. (g/L) Solv. KCC ( °C) rpm

20 5 Tol 30 1700

21 6 Mes 30 1800

22 3 Mes 30 1500

23 7 Mes 70 1500

24 6 Tol 30 2200

Table 5.11: Table reporting the experiments performed in the second round of BO.

Figure 5.18: Boxplot reporting the saturation mobility values for the second round of experi-

ments guided by BO.

The algorithm was then ran again with the data from the first and the second

round. The suggested experiments are reported in Table 5.12 and the outcome in

Fig 5.18.
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Round 2 BO

Sample Conc. (g/L) Solv. KCC ( °C) rpm

30 5 Mes 50 1500

31 2 Mes 30 700

32 5 Mes 30 3000

33 12 Mes 30 600

34 1 Mes 120 500

Table 5.12: Table reporting the experiments performed in the third round of BO.

Figure 5.19: Boxplot reporting the saturation mobility values for the third round of experiments

guided by BO.

Interestingly, in the last BO round it is possible to notice two important facts:

• The algorithm was able to identify the best solvent and, during the second

round, all the sample were deposited from mesitylene.

• The first experiment of the batch (sample 30) was suggested “near” the

best sample of the previous round (sample 23), this reflects the explotiation-

oriented approach. The last experiment of the batch (sample 34), on the

other hand, is characterized by a concentration and a spin-coating speed at

the edge of the parameters space, where few experiments were performed,

reflecting the more explorative approach.
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5.1.6 Results

Both optimizations resulted in an overall improvement of the N2200 transistors.

The final outcome of the optimization is reported in Fig 5.20 both for the aligned

and the misaligned devices. The improvement can be seen by plotting the mean

mobility value (Fig 5.21(a)) and the best device mobility (Fig 5.21(b)) for each

round in the two optimization approaches. As expected, SVR optimization, being

a more focused approach, resulted in an improvement of the entire batch during

each round, as can be seen by the gradual improvement of the mean mobility.

BO, on the other hand, being a more explorative approach, does not result in an

improvement of the mean mobility during each round. Indeed, in the third round,

most of the experiments were suggested in “unexplored” zones, and this resulted

in a lower mean value of the overall batch.

Figure 5.20: Barplot reporting the outcome of the entire N2200 optimization. The saturation

mobilities are reported both for aligned and misaligned devices. The experiments of the first round

are highlighted in red, while the experiments of the SVR optimization and BO in green and yellow

respectively.
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(a) (b)

Figure 5.21: Evolution of the mean (a) and maximum (b) mobility value in each round for the

two optimization methods.

The complete dataset, reported in Table 5.13 and Fig 5.22, composed by all the

experiments performed during the two optimizations was fitted using SVR. The

hyperparameters for the SVR fitting were selected using the same approach de-

scribed in Section 5.1.4 and are reported in Table 5.14. The contour plots obtained

for the entire parameters space are reported from Fig 5.24 to 5.27.

Figure 5.22: Boxplot reporting the complete dataset obtained during N2200 optimization for

the aligned devices.
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N2200 complete dataset

Sample Conc. (g/L) Solv. KCC ( °C) rpm Mean µ (cm2/V s)

0 6 CB 40 600 0.304

1 4 Tol 30 1800 0.617

2 8 Tol 100 2800 0.314

3 5 Mes 140 1900 0.291

4 14 CB 50 900 0.269

5 3 CN 70 1200 0.172

6 1 CN 120 2900 0.2 · 10−3

7 7 CN 150 1100 0.116

8 15 CB 90 1600 0.199

9 13 Tol 130 800 0.072

10 2 Tol 50 2400 0.386

11 12 CN 60 2200 0.045

12 10 Mes 110 1400 0.464

13 11 Mes 80 2600 0.337

14 9 CB 100 2100 0.327

15 10 Mes 30 1500 0.658

16 5 Tol 50 1700 0.353

17 6 Mes 70 1900 0.649

18 8 Tol 60 1300 0.099

19 9 Tol 40 2100 0.163

20 5 Tol 30 1700 0.402

21 6 Mes 30 1800 0.564

22 3 Mes 30 1500 0.438

23 7 Mes 70 1500 0.744

24 6 Tol 30 2200 0.356

25 9 Mes 60 2000 0.593

26 10 Mes 70 1700 0.405

27 8 Mes 40 1900 0.551

28 6 Mes 50 1600 0.602

29 7 Mes 30 1800 0.673

30 5 Mes 50 1500 0.595

31 2 Mes 30 700 0.297

32 5 Mes 30 3000 0.425

33 12 Mes 30 600 0.490

34 1 Mes 120 500 0.157

Table 5.13: Table reporting all the experiments performed during N2200 optimization.
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Figure 5.23: Scatter matrix of the complete N2200 dataset. The solvents are reported as num-

bers from 1 to 4 (1=Tol, 2=CN, 3=Mes and 4= CB). The saturation mobility of the aligned device

is qualitatively reported as color scale (purple=“lower mobility” and yellow=“higher mobility”).

Complete N2200 hyperparameters

γ C ε

0.34 15 0.01

Table 5.14: Hyperparameters selected for the SVR fitting of the complete N2200 dataset.
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Figure 5.24: SVR contour plots of the complete N2200 dataset for mesitylene.

Figure 5.25: SVR contour plots of the complete N2200 dataset for toluene.
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Figure 5.26: SVR contour plots of the complete N2200 dataset for chlorobenzene.

Figure 5.27: SVR contour plots of the complete N2200 dataset for chloronaphthalene.
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It is interesting to notice that by “slicing” the fitted curve it is possible to ob-

tain some “physically significant” results. For example, by plotting the predicted

mobility as a function of the KCC (Fig 5.28(a) and (b)), it is possible to observe

the predicted effect of the KCC. In order to make a comparison, the SVR fit-

ted function was sliced at parameter values similar to the deposition parameters

used in the work of Y. Kim et al. (Tol 10 g/L at 1000 rpm) [63]. The slice at

10g/L does not show the same trend obtained in the reference paper, although at

lower concentrations (5 g/L) (Fig 5.28(a)) the trend resembles the results from

the paper (Fig 5.28(c)), presenting a peak around 100 °C. This difference can be

attributed to the other deposition conditions adopted. For instance, in the paper

the off-center spin-coating was performed at 2 cm from the center instead of 3 cm.

Obviously the lack of experimental data does not allow to draw solid conclusions,

although this example demonstrate the power of machine learning-guided opti-

mizations. Even if this work was not focused on the study of the effect of KCC, it

was still able to identify the correct physical trend. Furthermore, it enables a “big

picture” vision: by slicing at different parameter values, it is possible to see the

influence of each variable on the trend of interest (in this example the influence of

the concentration on the mobility versus KCC trend).
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(a) (b)

(c)

Figure 5.28: Mobility versus KCC: (a) SVR fitting for Tol 5 g/L at 1000 rpm, (b) SVR fitting

for Tol 10 g/L at 1000 rpm and (c) experimental data obtained by Y. Kim et al. [63].
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After the optimization, in order to characterize the film microstructure, N2200 was

deposited onto some glass substrates following the same deposition parameters of

the most interesting devices. Some microscope slides were cutted with a diamond-

tip glass cutter and then cleaned following the usual procedure described in Section

4.2.3. N2200 was then deposited as for the most interesting samples. The deposited

films were then characterized by means of polarized light microscopy (PLM) both

in reflection and transmission regimes. In Fig 5.29 some cross-polarized microscopy

images taken in transmission regime are reported.

(a) (b)

(c)

Figure 5.29: Transmission cross-polarized microscopy images of the morphologies yielding the

best device performances: (a) sample 1, (b) sample 23 and (c) sample 29.

It is possible to notice the different morphologies obtained. For the film deposited

with the same parameters of sample 1 (4 g/L in Tol at 1800 rpm and KCC at 30

°C) (Fig 5.29 (a)) the resulting domains are very elongated, although their lateral
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dimension is relatively small. This may be due to the smaller degree of aggregation

in solution of toluene with respect to mesitylene. For the film deposited with the

parameters of sample 23 (7 g/L in Mes at 1500 rpm and KCC at 70 °C) (Fig 5.29

(b)) the resulting domains are larger but less elongated, probably because of the

different KCC. Finally the ideal morphology was obtained for mesitylene solutions

of 7 g/L deposited at 1800 rpm and KCC at 30 °C. This set of parameters was

used to deposit the sample 29 that also presented the best saturation mobility at

high voltage of the entire optimization. From the PLM image of the semiconductor

film it is possible to observe the largest domains, characterized by millimetric-size

lengths and lateral dimensions of over 50 µm.

The best OFETs were finally measured with the SPA in an extended range of

voltages. In particular the best results were obtained for “sample 29”, fabricated

in the third SVR optimization round. The best device showed a saturation mo-

bility of 5.58 cm2/V s, extracted with a drain voltage of 60 V and at gate voltage

between 55 V and 58 V. The transfer curve and the mobility extraction are shown

in Fig 5.30. The highest mobility extracted in one of the reference paper, using

the same voltage range, was 3.99 cm2/V s [63]. This demonstrate the power of ma-

chine learning-assisted optimization. Indeed, with only three optimization rounds,

it was possible to obtain competitive state-of-the-art results.
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Figure 5.30: Transfer curve and mobility extraction for sample 29 of N2200 optimization.
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5.2 Predictions for [3]Ph OFET

The first OFET based on carbon atomic wire (CAW) molecules was only recently

demonstrated in a work by Printed and Molecular Electronics (PME) group re-

searchers [19]. In the paper, A. D. Scaccabarozzi et al. fabricated a device with

[3]Ph as semiconductor, deposited by drop-casting from a solution of dichloro-

methane. The achieved OFET mobility was in the order of 10−3 cm2/V s. The

authors claimed that this value may be a big underestimation, since the simple

drop-casting deposition led to a poor coverage of the device active area. They are

trying to improve the performance of [3]Ph-based transistors experimenting other

deposition techniques and conditions. Attempts in depositing the film with spin-

coating techniques did not result in the formation of extended crystalline domains

and, up to now, the best performances reported by the group were obtained with

bar-coating [14].

Bar-coating is a technique commonly used in the deposition of organic semicon-

ductors (OSCs). With this technique it is possible to place a dissolved OSC on a

threaded bar. The bar rolls on the substrate and uniformly deposit the semicon-

ductor. In order to favour the solvent evaporation usually the substrate is heated

during the deposition. The crystallization process of [3]Ph, and small-molecule

OSCs in general, is a complex phenomenon and its understanding is the key to

the development of uniform films with extended crystalline domains [26, 68, 69].

Several variables impact the final semiconducting film morphology and, hence, the

electrical performances of the devices. Some can be tuned during the deposition

process, like bar-coating speed and temperature. Others are environmental condi-

tions which are more difficult to keep under control, like humidity and exposition

to light during the process. For instance, it was noted that also the random motion

of the air due to the aspiration in the fume hood affects the deposition. For this

reason the group is now blowing a flux of nitrogen onto the substrate during the

bar-coating process, resulting in an increased reproducibility of the films.

For the first studies on the system, the variable selection was performed based on

literature data of similar systems and on “spot” experiments. The dataset used

in this work was obtained by depositing [3]Ph (pure and blended with polystyrene

(PS)) from dichlorobenzene solutions using bar-coating with nitrogen flux. The

semiconductor was deposited on silicon-silicon dioxide substrates with interdigi-

tated gold contacts, yielding bottom-gate bottom-contacts (BGBC) OFETs. The

substrate consists in 16 transistors with two parallel orientation and 4 different

channel lengths (2.5, 5, 10 and 20 µm). The main variables screened so far are
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listed in Table 5.15, while the parameters space considered for this optimization

process are reported in Table 5.16. A better parameter screening is however re-

quired in order to have a better understanding of the system response. The DoE

approach would be an excellent way to get a grasp on the relative influence and

the importance of each deposition parameters. Indeed, the understanding of the

interplay of these effects is one of the main challenges hampering the performance

of cumulenes-based transistors.

[3]Ph deposition parameters

bar-coating Blend Substrate

Speed Solvent Application of a SAM

Temperature Polymer

Nitrogen flux Polymer concentration

[3]Ph concentration

Table 5.15: Main parameters influencing [3]Ph deposition.

[3]Ph parameters space

Variable Range

Temperature 50 °C to 110 °C

[3]Ph concentration 2.5 g/L to 20 g/L

PS concentration 0 g/L to 20 g/L

SAM PFBT or without SAM

Table 5.16: Table reporting the parameters space of the [3]Ph dataset.
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The bar-coating deposition of the blend leads to three possible crystalline mor-

phologies in the film. It is possible to observe the different domain structures with

PLM (Fig 5.31). The morphology obtained is highly influenced by the deposi-

tion parameters, although a morphology-charge transport relationship still misses

a good understanding for [3]Ph.

(a) (b)

(c)

Figure 5.31: PLM images of the three possible morphologies obtained in the [3]Ph films: (a)

fibrillar spherulites, (b) planar spherulites and (c) platelets domains. The films were deposited

onto interdigitated contacts (yellowish stripes), which presence severely affect the film morphology.
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5.2.1 Dataset analysis

As for the case of N2200, also for [3]Ph transistors the saturation mobility was cho-

sen as the property to be optimized. The mobility measurements in the dataset

presented a great variability and had to be refined in order to obtain a reliable

fitting. First of all, the measurements for the short channel transistors (2.5 µm)

were discarded in order not to take into account the short channel effects. Then

only the top five mobility measurements were kept for each sample. In this way the

variance for each sample was reduced, while still keeping a significant statistical

power. Moreover, it is worth stressing that, especially in early stages optimization

of materials properties, it is more important to target the maxima than the aver-

age values. The final dataset consisted of 28 different samples, each composed of

three to five mobility measurements. Finally, because the data presented a wide

range of mobility values, the logarithm base 10 of the mobility was selected for

the fitting and the optimization. The refined dataset is reported in Fig 5.32 and

in Table 5.17.

Figure 5.32: Boxplot reporting the [3]Ph dataset.
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[3]Ph complete dataset

Sample Temp. ( °C) [3]Ph conc. (g/L) PS conc. (g/L) SAM Mean µ (cm2/V s)

0 70 10 10 PFBT 1.5 · 10−2

1 110 10 10 PFBT 2.3 · 10−4

2 70 10 20 PFBT 9.0 · 10−3

3 70 10 5 PFBT 1.1 · 10−2

4 70 10 2.5 PFBT 5.0 · 10−3

5 90 10 10 PFBT 1.2 · 10−4

6 90 10 5 PFBT 3.2 · 10−3

7 70 10 5 NO SAM 1.6 · 10−2

8 60 10 5 PFBT 1.4 · 10−2

9 70 10 10 NO SAM 7.0 · 10−3

10 60 10 10 PFBT 1.1 · 10−2

11 100 10 10 NO SAM 2.1 · 10−5

12 110 10 10 NO SAM 5.9 · 10−4

13 80 10 5 PFBT 1.3 · 10−2

14 80 10 5 NO SAM 4.2 · 10−4

15 90 10 5 NO SAM 3.6 · 10−4

16 80 5 0 PFBT 7.6 · 10−3

17 50 20 0 NO SAM 8.0 · 10−3

18 80 10 10 NO SAM 1.0 · 10−3

19 80 10 0 NO SAM 1.4 · 10−2

20 110 5 0 PFBT 3.7 · 10−5

21 50 5 0 PFBT 1.4 · 10−3

22 50 10 0 PFBT 3.4 · 10−3

23 80 10 0 PFBT 1.8 · 10−3

24 110 10 0 PFBT 1.4 · 10−4

25 50 2.5 0 PFBT 4.0 · 10−4

26 80 2.5 0 PFBT 1.2 · 10−5

27 110 2.5 0 PFBT 6.7 · 10−10

Table 5.17: Table reporting the [3]Ph dataset.
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5.2.2 Machine learning prediction

The dataset was fitted with SVR as for N2200 (Section 5.1.4). The selected hyper-

parameters are reported in Table 5.18. The prediction efficiency was checked with

the graph in Fig 5.33, and the contour plots are reported in Fig 5.34 and 5.35.

[3]Ph hyperparameters

γ C ε

0.25 25 0.1

Table 5.18: Hyperparameters selected for the SVR fitting of [3]Ph.

Figure 5.33: Measured versus predicted mobility from the SVR of [3]Ph.

103



CHAPTER 5. RESULTS

Figure 5.34: SVR contour plots for [3]Ph with PFBT SAM.

Figure 5.35: SVR contour plots for [3]Ph without SAM.

The lack of a DoE does not allow an efficient screening of the parameters space.

As it is possible to notice in Fig 5.36, most of the experiments were performed with

[3]Ph concentration of 10 g/L. For this reason, the prediction around that concen-

tration are very accurate while at low and high [3]Ph concentrations the fitting is

mostly based on extrapolation because few data are present. The predicted best

PS concentration is clearly around 7.5 g/L and the deposition temperature below

80 °C. The role of the self-assemble monolayer (SAM) is not clear, although the

mobility seems to be slightly higher for the devices without pentafluorotiophenol

(PFBT). As discussed in Section 1.3.3, despite an improvement of charge injection,

the application of a SAM can modify the crystallization process, and the resulting

morphology can be less favourable for the charge transport.
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Figure 5.36: Scatter matrix of the [3]Ph dataset. The SAM levels are reported as 0=“No SAM”

and 1=“PFBT”. The saturation mobility is qualitatively reported as color scale (purple=“lower

mobility” and yellow=“higher mobility”).
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With the same dataset, also a BO was tested. After the parameters space was

defined, the model was trained with the data and 10 suggested experiments were

obtained using a batch optimization with local penalization. The suggested exper-

iments (reported in Table 5.19) were plotted over the SVR contour plots in order

to assess the prediction consistency (Fig 5.37 and 5.38).

[3]Ph BO suggested experiments

Sample Temp. ( °C) [3]Ph conc. (g/L) PS conc. (g/L) SAM

0 70 10 7.5 PFBT

1 60 10 7.5 PFBT

2 70 10 7.5 NO

3 70 10 2.5 NO

4 60 10 2.5 PFBT

5 80 7.5 0 PFBT

6 70 12.5 7.5 PFBT

7 70 7.5 7.5 PFBT

8 70 7.5 5 PFBT

9 80 7.5 2.5 PFBT

Table 5.19: Table reporting the experiments suggested by the BO algorithm for [3]Ph.
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Figure 5.37: BO suggested experiments (white dots) plotted over SVR contour plots for [3]Ph

with PFBT SAM.

Figure 5.38: BO suggested experiments (white dots) plotted over SVR contour plots for [3]Ph

without SAM.

Regarding the future experiments for this kind of system, a new DoE, considering

as many deposition parameters as possible, can be used as starting point for a more

detailed optimization. Given the large number of parameters, probably BO would

be a better solution for guiding the initial rounds of the optimization. BO, indeed,

does not require the experimentalist to “read” the fitted curves, thus allowing an

higher dimensional optimization. In a second phase the data can be fitted with

SVR in order to understand the interaction between the parameters and get a

physical intuition of the system response. The curves obtained with SVR are an

extremely powerful tool for the understanding of variables interactions and, in

contrast to BO, enable the experimentalist to see the “big picture”.
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Conclusion and perspectives

In this thesis work, the use of machine learning techniques to support the efficient

optimization of the mobility of organic field-effect transistors (OFETs) has been

studied. In particular two machine learning-guided optimization techniques, based

on support vector regression (SVR) and bayesian optimization (BO), were adopted.

In the first part of the thesis, the two optimization techniques were validated and

compared to maximize the charge mobility of OFETs employing N2200 as semi-

conducting material. The optimization started with the selection of the variables

to be considered for optimizing the deposition and their range. Once the variables

space was defined, the first round of experiments was planned following a design

of experiments (DoE) obtained using GPyOpt [12]. Starting from the results of

the first round, the two machine learning-based optimization approaches were car-

ried out separately. Both the optimization techniques lead to an improvement of

the mobility. SVR optimization allowed a better visualization of the optimization

process by returning contour plots of the fitted function. By “reading” these plots,

it was possible to focus the experiments of the subsequent rounds in the area of

interest, thus guiding the research towards the optimal mobility. With the fabrica-

tion of 15 different samples in the fisrt round and another 10 for each optimization

method, it was possible to obtain mobility values higher than the ones obtained

in the reference paper. In particular, the best device was obtained in the SVR

optimization, showing a saturation mobility of 5.58 cm2/V s, compared to the best

mobility of 3.99 cm2/V s extracted by Y. J. Kim et al. [63].

In the second part of the thesis, SVR and BO were used to draw predictions

on OFETs fabricated from a new kind of small-molecule organic semiconductor
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(OSC), based on carbon atomic wires (CAWs). After a preprocessing of the data,

the models were trained and it was possible to obtain a better visualization of the

dependence of the mobility on the fabrication parameters in this kind of system.

The predictions from SVR and the experiments suggested by BO will be useful

leading the future studies on this new system. However, a new DoE, including a

larger number of fabrication parameters, is required for a better screening of the

parameters space. Starting from this new DoE, probably BO would have a better

performance than SVR in guiding the experiments. BO, indeed, does not rely on

the visualization of the fitted curve. For this reason, it can be used to guide the

experiments in a parameters space with a large number of dimensions. At the

same time, SVR allows a better visualization of the optimization process, thus, it

can be used to support the bayesian predictions and help the experimentalist to

get a physical insight of the problem.

A challenge for future improvements of the model consists in including direct

structural information. For instance, in the case of [3]Ph, it might be possible to

include a variable describing the kind of polymorph. This would require a classi-

fication algorithm to analyze, for example, polarized light microscopy (PLM) or

atomic force microscopy (AFM) images. This may help the understanding of the

role of morphology on the charge transport properties in [3]Ph OFETs which is

nowadays lacking. Moreover, the architecture of the transistor might be changed,

passing from a bottom-gate bottom-contacts (BGBC) configuration to top-gate

bottom-contacts (TGBC). In this perspective, a new optimization task has to be

performed. The information obtained from the study on BGBC OFETs can guide

the choice of the relevant variables and ranges for the new optimization, improving

its predicting ability and reducing the number of experiments required.

The two optimization approaches used in this thesis have proven an extremely

useful tool to guide the optimization of OFETs mobilities. Compared to the usual

one variable at a time (OVAT) approach which requires a much larger number of

experiments to obtain the same results. Moreover, these methods can be general-

ized and used in many experimental fields. Hence, it is reasonable to think that

machine learning methods will become an essential tool for twenty-first century

researchers.
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Appendix A

Kernel method

In order to better understand the kernel method introduced in Section 3.2.2, a

rigorous mathematical treatment is required.

Starting from the equation of the hyperplane reported in Eq 3.7:

ŷ = 〈www · xxx〉+ b

the objective is to minimize the risk functional of Eq 3.8:

R =
1

2
‖www‖2 + C

m∑
i=1

|ŷ(i)
D − y

(i)
D |ε

Through Lagrangian theory [70, 71] it is possible to solve the following minimiza-

tion problem:

minimize
1

2
‖www‖2 + C

m∑
i=1

|ŷ(i)
D − y

(i)
D |ε (6.1)

which can be rewritten as a function of two non-negative slack variables ξ(i) and

ξ∗(i).

minimize
1

2
‖www‖2 + C

m∑
i=1

(ξ(i) + ξ∗(i)) (6.2)

subjected to


y

(i)
D − 〈www · xxxD〉+ b ≤ ε+ ξ(i)

〈www · xxxD〉+ b− y(i)
D ≤ ε+ ξ∗(i)

ξ(i), ξ∗(i) ≥ 0
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it is now possible to minimize the function using the Lagrangian multiplier method.

The resulting Lagrangian function will be:

L =
1

2
‖www‖2 + C

m∑
i=1

(ξ(i) + ξ∗(i))−
m∑
i=1

α(i)(ε+ ξ(i) − y(i)
D + 〈www · xxx(i)

D 〉+ b)

−
m∑
i=1

α∗(i)(ε+ ξ∗(i) + y
(i)
D − 〈www · xxx

(i)
D 〉 − b)−

m∑
i=1

(η(i)ξ(i) + η∗(i)ξ∗(i))

(6.3)

where α, α∗, η and η∗ are the Lagrangian multiplier. Through Lagrangian theory,

necessary conditions for the multipliers to be a solution to the original optimization

problem are:

∂L

∂b
=

m∑
i=1

(α∗(i) − α(i)) = 0 (6.4)

∂L

∂www
= www −

m∑
i=1

(α∗(i) − α(i))xxx
(i)
D = 0 (6.5)

∂L

∂ξ(i)
= C − α(i) − η(i) = 0 (6.6)

∂L

∂ξ∗(i)
= C − α∗(i) − η∗(i) = 0 (6.7)

Finally from Eq 6.5 it is possible to obtain the following relationship:

www =
m∑
i=1

(α∗(i) − α(i))xxx
(i)
D (6.8)

thus, Eq 3.7 becomes:

ŷ =
m∑
i=1

(α∗(i) − α(i))〈xxx(i)
D · xxx〉+ b (6.9)

Thus, the training algorithm and the regression function ŷ can be expressed in

terms of the dot product 〈xxx(i)
D · xxx〉.

Non-linear function approximations can be achieved by replacing the dot product
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of input vectors with a nonlinear transformation on the input vectors. This trans-

formation is referred to as the kernel function and is represented by k(xxxD,xxx).

The final expression for the regression function is:

ŷ =
m∑
i=1

(α∗(i) − α(i))k(xxx
(i)
D ,xxx) + b (6.10)

and by using different kernels (some of which are reported in Table 3.1) it is

possible to fit non-linear functions.
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