
Scuola di Ingegneria Industriale e dell’Informazione
Dipartimento di Elettronica, Informazione e Bioingegneria

Corso di Laurea Magistrale in Computer Science and Engineering

2.1 . | MARCHIO E LOGOTIPO

HErBERT: a privacy-preserving natural language
processing solution for text classification

Advisor: Prof. Manuel Roveri
Co-Advisor: Prof. Mark James Carman

Eng. Alessandro Falcetta

Thesis by:
Daniele Comi Matr. 944534

Academic Year 2020–2021

I want to thank the professors Manuel Roveri, Mark James Carman
and the Engineer Alessandro Falcetta who helped me throughout the

conception of the Thesis and the ideas behind it, and for allowing me
to make the first submission of a paper for a possible publication.

I want to thank my dear Valeria for her continuous long time
support making me do my best, and through the various years for

always having my back, always believing in me, always having been
here with me and for me. I thank her for the help in reviewing the

images and making them better good-looking, improving the quality of
the thesis and making it as good as it is.

I want to thank my dear Martina for her continuous support on the
work I have been doing, for believing in me achieving my goals, for
cheering me in doing my best with her kindness and for the help in
improving the quality of the thesis by reviewing the English writing.

I want to thank my parents for their support, making all this possible.

I want to thank all my friends supporting me through the years.

I want to thank anyone else involved in what I was able to achieve.

Acknowledgments

The authors would like to thank Subcom, the company which funded
and provided access to AWS in order to test the results of the privacy-
preserving Deep Learning model HErBERT.

II

Abstract

Privacy-preserving machine and deep learning solutions will enable new
and exciting breakthroughs in many different application fields in the
next few years. In fact, their ability to process encrypted input data
through machine and deep learning models will allow to guarantee the
privacy of users during the processing, hence allowing to match the
stricter and stricter legislation and recommendations in terms of data
protection and user privacy. For this reason, the research interest in
this field is steadily growing, with relevant results only in specific appli-
cation fields. In this work, for the first time in the literature, we intro-
duce a privacy-preserving natural language processing solution, called
HErBERT, able to perform text classification on encrypted data. The
proposed solution, which relies on Homomorphic Encryption to pro-
cess encrypted data, is inspired by the well-known BERT architecture
and introduces privacy-preserving Transformers. A computationally-
efficient inference of HErBERT has been designed and developed and
made available to the scientific community. Experimental results on
two real-world benchmarks for text classification show the effectiveness
of the proposed solution.

IV

Sommario

I modelli di Machine Learning e Deep Learning che preservano la pri-
vacy consentiranno nuove ed entusiasmanti scoperte in svariati campi
di applicazione nei prossimi anni. Infatti, la loro capacità di elaborare i
dati di input crittografati attraverso modelli di machine e deep learning
consentirà di garantire la privacy degli utenti durante il trattamento,
consentendo così di adeguarsi alla legislazione e alle raccomandazioni
più severe in termini di protezione dei dati e privacy degli utenti. Per
questo motivo l’interesse della ricerca in questo campo è in costante
crescita, con risultati rilevanti solo in specifici campi di applicazione.
In questo lavoro, per la prima volta in letteratura, introduciamo una
soluzione di elaborazione del linguaggio naturale che preserva la pri-
vacy, chiamata HErBERT, in grado di eseguire la classificazione del
testo su dati crittografati. La soluzione proposta, che si basa sulla
crittografia omomorfica per elaborare i dati crittografati, si ispira alla
nota architettura BERT e introduce i Trasformers che preservano la
privacy. Un’inferenza computazionalmente efficiente di HErBERT è
stata progettata e sviluppata e resa disponibile alla comunità scien-
tifica. I risultati sperimentali, su due dataset di riferimento su problemi
reali per la classificazione del testo, mostrano l’efficacia della soluzione
proposta.

VI

List of Figures

3.1 Example comparison between common Encryption Schemes
and Homomorphic Encryption schemes 16

3.2 Noise relation with ciphertext during encrypted compu-
tation [1] . 17

3.3 Types of Homomorphic Encryption operations 24
3.4 SEAL pre-computed q values 30
3.5 (m,q) parameters space showing the available and secure

areas . 30
3.6 Visualization of Regularities in Embeddings Word Vec-

tor Space . 39
3.7 Extracting the corresponding word embeddings 42
3.8 Self-Attention . 44
3.9 Transformer Encoder 45

4.1 Computing chain of a text classification service, working
on encrypted inputs. 49

4.2 HErBERT architecture and classifier 55

5.1 HErBERT implementation 71

6.1 Block matrix multiplication 78
6.2 Global Interpreter Lock in Python multi-threading . . 81

7.1 HE parameters benchmarks after five Encrypted-Encoded
multiplications between 4-dimensional square matrices
using the indicated HE parameters Θi = (211, p) 93

7.2 HE parameters benchmarks after five Encrypted-Encoded
multiplications between 4-dimensional square matrices
using the indicated HE parameters Θi = (212, p) 94

VIII LIST OF FIGURES

7.3 HE parameters benchmarks after five Encrypted-Encoded
multiplications between 4-dimensional square matrices
using the indicated HE parameters Θi = (213, p) 95

List of Tables

3.1 SEAL Noise bound of output 23
3.2 HE schemes and available operations 32

4.1 HErBERT symbols . 50
4.2 BERT modules approximations 60

5.1 Training parameters 74

7.1 HE multiplication timings comparison using m = 8192
and p = 2100000 . 87

7.2 Transformer approximation accuracy in clear on Yelp
Polarity Review dataset, in the columns the numbers are
referring to (embedding dimension, maximum utterance
length) . 88

7.3 Results accuracy on Yelp Polarity Review test set using
HErBERT (4, 32) . 90

7.4 Results accuracy on Yelp Polarity Review test set using
HErBERT (4, 64) . 91

7.5 Results accuracy on Yahoo! Answers test set using HEr-
BERT (8, 32) . 91

7.6 Results accuracy on Yahoo! Answers test set using HEr-
BERT (4, 32) . 92

7.7 Noise budget consumption over using m = 214 96
7.8 Noise budget consumption over a single review of 32 words 97
7.9 Comparison of inference output between various HEr-

BERT executions on a 32 word sample using the same
Θ parameters . 97

X LIST OF TABLES

7.10 Fractional Encoder bits and their influence using the
same Θ parameters . 98

7.11 Inference time of a single review of 32 words 98
7.12 Memory peak consumption of a single review of 32 words 99

Contents

Acknowledgments I

List of figures VII

List of tables IX

1 Introduction 1
1.1 Motivation . 1
1.2 Applications of Homomorphic Encryption 4

1.2.1 Classified information and National security . . 5
1.2.2 Healthcare . 5
1.2.3 Financial Services 5
1.2.4 Genomics . 6

1.3 Goal and Results . 6
1.4 Thesis Structure . 7

2 Related Literature 9
2.1 First HE schemes and their evolution 10
2.2 HE schemes and libraries implementations 11
2.3 Use of HE in Machine Learning 13

3 Background 15
3.1 Homomorphic Encryption 15

3.1.1 Classification of HE schemes 16
3.1.2 The Noise . 17
3.1.3 Brakersi/Fan-Vercauteren scheme (BFV) 18
3.1.4 Tuning HE parameters 28
3.1.5 Homomorphic Encryption challenges 31

XII CONTENTS

3.2 Machine Learning . 34
3.2.1 Deep Learning 35
3.2.2 Natural Language Processing 36
3.2.3 Transformers 41

4 Architecture of the proposed solution 49
4.1 Embeddings, Encryption and Decryption 54
4.2 HErBERT . 54
4.3 Approximated and encoded Deep Learning processing . 59
4.4 Dimensioning the embeddings 64
4.5 Parallelizing computations 65
4.6 Encryption parameters 65

5 Implementation of the proposed solution 67
5.1 External libraries and dependencies 67
5.2 Structure . 68
5.3 Model loading . 70
5.4 Model . 71
5.5 Software testing . 72
5.6 Model training and testing 73

6 Efficiency optimizations 77
6.1 Limitations . 77
6.2 Parallelizing computations 78
6.3 Implementation . 82

7 Experimental results 85
7.1 Description of HErBERT settings 85
7.2 Datasets . 85
7.3 Parallelization . 86
7.4 Experimentation details 87
7.5 Results . 88

8 Conclusions 101
8.1 Conclusions . 101
8.2 Future Works . 102

CONTENTS XIII

A Source code 121
A.1 Loading and encoding of model’s parameters 121
A.2 HE Multi Headed Self-Attention implementation 122
A.3 Fundamental HE tensor operations implementation . . 123

XIV CONTENTS

Chapter 1

Introduction

1.1 Motivation

Privacy-preserving machine and deep learning is a new and promising
research area aiming at designing machine and deep learning models
able to operate on encrypted data, hence guaranteeing the privacy
of user data. This is a crucial ability in a technological and regu-
lation scenario aiming at enforcing the privacy of users when sensi-
tive data (e.g., health data, genetic and biometric data, or data re-
vealing political opinions or other personal information) are processed
through Cloud-based on-line services or mobile applications [2]. The
prerequisite for designing privacy-preserving machine and deep learn-
ing solutions is to integrate machine and deep learning models with
privacy-preserving computation. Among the mechanisms supporting
computation in a privacy-preserving manner present in the literature,
we focused on Homomorphic Encryption (HE) that is a group of en-
cryption schemes able to support the execution of a (given) set of op-
erations directly on encrypted data. This allows third-party software
or systems (e.g., Cloud-service providers or mobile app developers) to
offer, in a Software-as-a-Service (SaaS) or Platform-as-a-service (PaaS)
manner, advanced machine and deep learning services operating on en-
crypted data guaranteeing that the outcome of the computation is still
encrypted and that only the user encrypting the data will be able to
decrypt it. Cloud Providers provide ready-to-use services to execute
Machine Learning and Deep Learning models on very powerful hard-

2 Introduction

ware thanks to advanced Virtualization techniques which enables it to
share powerful hardware resources among multiple users on-demand
with very little loss, if none, in performances [3]. Paravirtualization [4]
[3] techniques are commonly used so that the Virtual Machine Manager
can present to the running Virtual Machines a similar, but not iden-
tical, interface to that of the underlying hardware. There are a lot of
examples of the provided services for ML and DL, some are the follow-
ings [5]: classification of images and videos, object detection, instance
segmentation, object-tracking, text classification, sentiment analysis,
language models, sequence-to-sequence model for machine translation,
text-to-speech, speech recognition, summarization, text generation and
many other models solving some very hard non-linear and also dynamic
problems. Cloud Computing also provides some important properties
such as on-demand resources, broad network access, elasticity and scal-
ability, availability, maintainability and pay-per-use billing mechanism
[6].

Looking at all of this from a privacy perspective, it is not possible to say
it is completely good. In fact, the user necessary has to upload data to
the model on the Cloud Computing service in clear, which means that,
even though the transmission on the network the data is encrypted,
on the other end it will be decrypted in order to make any kind of
inference on the model being used. These data can be highly sensitive
and worth of being Privacy-Preserved, such as government data, clas-
sified data, health data, genetic and biometric data or other kind of
data which might reveal political opinions or other personal informa-
tion not to be disclosed without the owner’s will [2]. The aim of this
work is to introduce a novel architecture, HErBERT, indeed meant to
preserve the privacy of the user data in the deep-learning-as-a-service
computing scenario. It is inspired by the BERT [7] architecture and is
able to operate on encrypted data thanks to the use Homomorphic En-
cryption. Homomorphic Encryption (HE) [8] is a family of encryption
schemes able to support the execution of a (given) set of operations
directly on encrypted data. To achieve this goal HErBERT intro-
duces privacy-preserving Transformers, being the privacy-preserving
version of the well-known and widely-used Transformers architectures.

1.1 Motivation 3

Privacy-preserving Transformers have been carefully designed and re-
trained to take into account the severe constraints on the type and
amount of operations that can be executed within a HE-based process-
ing pipeline. In addition, we introduced a computationally-efficient
inference of HErBERT by exploiting block-matrix multiplications to
reduce the computational demand.

The ability of performing computations directly on encrypted data
comes at the expense of three main drawbacks. On the first hand, the
set of operations that can be executed within the privacy-preserving
machine and deep learning pipeline is very limited. Indeed, in HE
schemes are often allowed just the two basic operations of addition
and multiplication operations. On the second hand, in order to guar-
antee the correctness of the decryption operation on the results, the
total amount of operations that can be executed within the machine
and deep learning pipeline is limited (most of the times very limited).
On the third hand, the computational complexity of the HE opera-
tions is much larger than the corresponding complexity of operations
on plaintexts, hence introducing a significant overhead in computa-
tional time (at least 40-50x) and memory demand (at least 10-20x)
[9] when HE-based machine and deep learning models are considered.
The higher computational load of scheme is also worsened by the fact
that current available HE scheme are only supporting CPU instruc-
tions. No CUDA [10] implementation or implementation on GP-GPU
has been ever provided. Moreover, HE schemes must be configured
through some parameters that are able to trade off the accuracy in the
computation with the computational loads, memory occupation and
how large the deep-learning model is. These three drawbacks severely
impact the design of privacy-preserving machine and deep learning
solutions, since machine and deep learning models and algorithms are
typically characterized by a long pipeline of non-linear operations. This
is the reason why the literature about privacy-preserving machine and
deep learning solutions based on HE is limited, but the research inter-
est in this field is steadily growing. Interestingly, most of the available
solutions focus on image classification/recognition, hence introducing
Convolutional Neural Networks (CNNs) integrating HE mechanisms.

4 Introduction

The field of privacy-preserving Natural Language Processing (NLP)
has been rarely explored due to the very deep and nonlinear architec-
tures of NLP solutions and models. To partially mitigate these issues,
the NLP privacy-preserving solutions present in the literature do not
support a fully privacy-preserving NLP processing solution, since the
user is required to take part in the processing. Further details about
the privacy-preserving machine and deep learning solutions based on
HE can be found in Chapter 2. The proposed HErBERT architecture
will show the first HE-friendly Transformer in order to preserve the
privacy of textual data sent for performing Sentiment Analysis and
Text Classification. Such NLP tasks are also a very good example of
the reason why and when privacy preserving models are and will be
a must. The proposed model will be run on AWS Cloud Comput-
ing services. we will show how it is possible with this architecture to
let the user encrypt the data locally through a public key generated
by the HE scheme and then send this encrypted data to an encoded
Cloud-based deep-learning model as-a-service, and receive back the en-
crypted results of the model inference which will be locally, from the
sending user/data owner, decrypted. In this way, the encryption and
decryption phase is decoupled between the end-user device and the
Cloud-based computing infrastructure in order to be able to fully pre-
serve the privacy of data while still guaranteeing the previous explained
properties of Cloud Computing.

1.2 Applications of Homomorphic Encryp-
tion

There is an ongoing, increasing need to create models and make pre-
dictions from confidential distributed datasets in so many different
industries. [11] shows various potential real-world applications of Ho-
momorphic Encryption. Some of the most ongoing applications are:

1.2 Applications of Homomorphic Encryption 5

1.2.1 Classified information and National security

Various governments currently have resources dedicated to the only
purpose of keeping relegated really important and sensible informa-
tion. Sometimes this information may leak and release sensible need-
to-know information, creating dangerous consequences [12]. This can
happen due to the fact that while this information are sent through
encrypted packets in the network, they will have to be decrypted in
order to be elaborated by another computer. For example, to check the
presence of a particular object in a classified image. Here, Homomor-
phic Encryption can quickly solve the issue of having to decrypt very
sensible information, avoiding any risks of leaking too much relevant
information.

1.2.2 Healthcare

Maintaining the privacy of the patients is crucial [13], it is a right guar-
anteed by the law; but there still is the need to share patients data
and to make computations distributed across systems. We can think
for example about the most common use-case of sharing patient data
in order to compute the cost of a patient’s treatment for the govern-
ment or for the insurance companies. Making such computations may
reveal the patient’s treatment, diseases and medical history without
the patient say-so. This is not acceptable and can be solved by using
a system backed by Homomorphic Encryption.

1.2.3 Financial Services

In financial services there a lot of potential applications regarding Ho-
momorphic Encryption such as the computation of the taxes or the
evaluations of the owned shares in certain companies at the stock mar-
ket exchange. All the data involved is potentially in danger of multiple
privacy violations [14] if not well treated when they are manipulated
and used to perform the needed computations. Using Homomorphic
Encryption to perform the operations involved and automatically per-
formed in finance can solve this problem, and it can also help the
industry in making the people more involved in this area where they

6 Introduction

may have distrust for privacy related reasons indeed.

1.2.4 Genomics

Private health data obtained from sequencing human genome can be
a powerful tool to develop a cure, a therapy or to improve the re-
searches. DNA and RNA sequences can now be obtained very easily,
and often people share their own DNA data in order to better under-
stand their health. Certainly, this has a lot of implications regarding
one’s privacy [15] because a DNA sequence is linked to a person, and
it is unique. But other than that, it can also reveal possible diseases of
the person who does not want to disclose. Current laws regarding ge-
nomics data privacy has created a lot of limitations for the researchers.
Homomorphic Encryption can enable researchers to speed up sharing
information while safeguarding privacy of the individuals, and thus
significantly speed up research in this field.

1.3 Goal and Results

This work focuses on approaching the problem of privacy-preserving
computation regarding Natural Language Processing. While the archi-
tecture being used, the Transformer, has been tailored on Sentiment
Analysis and Sequence Classification, it can be easily used for other
various and different NLP tasks at hand. In the proposed Transformer
architecture, through the properties of HE schemes, the input data
composed of the corresponding Embeddings is encrypted on the user
machine (e.g., a personal computer or a mobile device) through a pub-
lic key. The encrypted data is then sent to a Cloud-based special
MLaaS where the prediction will be computed. After the computation
is completed, the still encrypted result is sent back to the user machine,
where it will be decrypted, and the result will be obtained.

This work includes an implementation of the proposed Transformer
architecture. It includes the open source Python implementation of the
model which also contains the necessary implementation for bridging
Pytorch models to this custom approximated implementation, which
will be better explained in the followings. Using this implementation,

1.4 Thesis Structure 7

we offer a working solution for solving privacy problems regarding the
classification of raw textual data.

A detailed experimental campaign showed the effectiveness of the
proposed solution. In particular, two real-world datasets for text clas-
sification have been considered: the first one is the Yelp Polarity Re-
view [16] which contains reviews classified as positive and negative, and
the second one is Yahoo! Answers [16] dataset have been considered.
The Python implementation of HErBERT is released to the scientific
community1, while the efficiency of HErBERT has been tested on AWS
Cloud Computing services.

1.4 Thesis Structure

Chapter 3 introduces the fundamental notions about HE, its limita-
tions and possibilities, the advantages of its adoption and the necessary
steps to use it. In particular, the peculiarities of the chosen HE scheme
are presented, with guidelines to select the optimal parameters. More-
over, a basic background on ML and Transformer is exposed, along
with a background on Natural Language Processing. These are con-
cepts needed to fully understand the characteristics of the research.
Chapter 2 describes the current state-of-the-art of privacy-preserving
solutions for MLaaS. Chapter 4 is the core of the work, where the
proposed architecture is detailed. Chapter 5 explores HErBERT, the
architecture implemented in Python. Chapter 6 will show what solu-
tions we implemented in order to improve the performances while using
a Homomorphic Encryption scheme. Chapter 7 includes the experi-
ments made on some typical use-cases in the NLP field. Conclusions
are finally drawn in Chapter 8.

1https://github.com/comidan/HErBERT

https://github.com/comidan/HErBERT

8 Introduction

Chapter 2

Related Literature

This Chapter collects studies and works with the goal of offering privacy-
preserving solutions for Machine Learning and other examples of ar-
chitectures similar to the one presented in this thesis. Trying to use
Homomorphic Encryption scheme in order to maintain the privacy of
the data involved during a certain computation has been first intro-
duced years ago in this work [17]. This work was the first in proposing
the use of HE in order to maintain the privacy of data during the com-
putation. The idea behind their work was generated by the need of a
small company using storage resources of a time-sharing service. Their
problem was that if the company decides to encrypt their data before
submitting writing it to storage, to maintain private the contained in-
formation, it becomes impossible to use other computational resources
offered by the time-sharing service to answer query about the stored
information. It can be considered as example the case in which the
company needs to know the amount of income from loan payments is
expected in the following months, while the data for answering this
query is completely encrypted. In this first HE work, the authors in-
deed proposed a privacy homomorphism to encrypt the data so that
computations could still occur on the stored and encrypted data. As
it is clear, solving the problem of maintaining the privacy of data is an
old problem still waiting for a final solution.

10 Related Literature

2.1 First HE schemes and their evolution

The first HE schemes put in practice were only Partially Homomorphic
Encryption schemes given that they allow only or additions or multipli-
cations like for example RSA [18]. Partially Homomorphic Encryption
schemes are just one of three existing types available: the other two
types are Somewhat Homomorphic Encryption Schemes and Fully Ho-
momorphic Encryption schemes which they both allow to perform more
than one operation but while the former a limited number of times,
the latter it can perform them an unlimited number of times. The first
Homomorphic Encryption scheme allowing both multiplication and ad-
ditions has been proposed in this work [19]. There, the idea was to
rely on ideal lattice-based cryptography to provide a scheme support-
ing additions and multiplications with theoretically-grounded security
guarantees. But that is not the best result from that paper. Gentry
has been able for the first time ever to make a Somewhat Homomorphic
Encryption scheme into a Fully Homomorphic Encryption scheme. In
order to be able to make this transformation Gentry introduced the
concept of Recryption [19] which is the ability to change the encryp-
tion key, so to re-encrypt it, by using the first homomorphic private
key just homomorphically encrypted under a new generated public key
from the client itself. Then the decryption circuit of the scheme will be
Homomorphically-Evaluated using this encrypted data in order to de-
crypt the original data and then re-encrypt it with the new public key.
In this way, the noise will go back to be manageable again for another
run of Homomorphic Encrypted operations: so, the Somewhat Homo-
morphic scheme can be virtually transoformed to a Fully Homomorphic
scheme where there is no bound on homomorphic operations that can
be made. But all this requires a scheme to have the property of Boot-
strappability, which means being able to homomorphically evaluate its
own decryption circuit schemes. Being able to do that, in practice, it
is very expensive because actually slow HE operations are being per-
formed in order to decrypt a HE encrypted data. It is so expensive that
not all the Homomoprhic Encryption schemes implements it nor all the
related libraries [11]. After what Gentry has done with [19], exploit-
ing what he achieved, there has been a work on a Fully Homomorphic

2.2 HE schemes and libraries implementations 11

Encryption scheme using bootstrapping which was relaxing the ideal
lattice assumption (and its security), but allowing the usage of integer
polynomial rings to define the ciphertexts [20]. The next work intro-
duces the Brakerski-Gentry-Vaikuntanathan (BGV) scheme [21] that
relies on polynomial rings to define the ciphertexts and on the learning
with error (LWE) and ring learning with errors (RLWE) problems to
provide theoretically-grounded security guarantees. The RLWE prob-
lem is also the basis of the Brakerski/FanVercauteren (BFV) scheme
[22], detailed in Chapter 3, and the Cheon-Kim-Kim-Song (CKKS)
scheme [23], that extends the polynomial rings to the complex num-
bers and isometric rings and leverages no more on the noise budget
itself but on the error introduced by performing the various opera-
tions given the set of parameters different from BFV. The HE schemes
mentioned above are theoretical and, to be applied, have then been
implemented to specific processing chains.

2.2 HE schemes and libraries implemen-
tations

Various published scheme available in the literature are also available
for researchers to use.[24]. One of the most commonly used in this re-
search area is HElib [25] [26] [27]. HElib implements the BGV scheme
[21] with Smart-Vercauteren ciphertext packing techniques and various
other kinds of optimizations. HElib has been implemented using low-
level programming, so in direct contact with the hardware constraints
and the various components of the machine being used without using
any kind of primitive defined in a particular programming language. It
is indeed defined as the assembly language for HE. It was implemented
using C++ library. Since 2014, it supports the introduced bootstrap-
ping technique and since 2015, it also supports multi-threading which
has been directly implemented in the library managing HElib. In a
particularly important update, HElib added the homomorphic eval-
uation of AES [28] [29] [30], but unfortunately using HElib is quite
difficult due to the sophistication needed for its low-level implemen-
tation and HE parameter selection, affecting the performances. An

12 Related Literature

interesting implementation is the “Fastest Homomorphic Encryption
in the West” (FHEW) [31]. It indeed improves the computational
time required to perform the bootstrapping technique to the cipher-
text. It supports the evaluation of binary gates, and given that it
supports NAND gates (and given that NAND gates are functionally
complete) any possible function expressed with boolean gates can be
computed. In this work, the usage of ciphertext packing and SIMD
techniques provides an amortized cost. In this work there has been
also a further improvement regarding the noise propagation by using
some approximations. Finally, they also reduced the size of bootstrap-
ping key from 1 GB to 24 MB by achieving the same security level as
the one used with the 1 GB key. Another HE library called Simple
Encrypted Arithmetic Library (SEAL) [32] has been released by Mi-
crosoft Research. The main reason behind the release of this library is
offering a well-documented HE library which can be easily used by both
crypto experts researchers and non-experts with no crypto background
like Machine Learning researchers and engineers. The library does not
have external dependencies like others, and it includes an automatic
parameter selection for some of its parameters and more importantly
noise estimator tools in order to manage the noise of HE schemes. Here
there are also listed further HE implementation and relative libraries:

• HEAAN [23]: Scheme with native support for fixed point ap-
proximate arithmetic implemented in C++.

• TFHE [33]: Scheme implementing the evaluation of binary gates
and homomorphic bit operations evaluation. It is implemented
in C++.

• PALISADE [34]: Lattice encryption library implemented in C++
and includeds a Python wrapper.

• Pyfhel [35]: Python For HElib, which also supports BFV scheme
through the SEAL API.

• cuHE and cuFHE [36]: GPU-accelerated HE library for NVIDIA
CUDA-Enabled GPUs using the TFHE scheme and so evaluat-
ing binary gates, implemented in C++ and supporting Python
through a wrapper.

2.3 Use of HE in Machine Learning 13

• TenSEAL [37]: Library for HE operations on tensors, built on
Microsoft SEAL, with a Python API. It supports both CKKS and
BFV scheme, with regard to BFV we have also contributed in this
project by adding support for multithreaded tensors operations
directly in the C++ implementation and by also providing the
required Python wrapper for API call [38].

2.3 Use of HE in Machine Learning

Regarding the application of HE schemes to Machine Learning and
Deep-Learning there has been a lot of different works regarding its
application to CNNs like [39] where a distributed deep-learning-as-a-
service approach has been used but also these other two works [40]
[41]. Some other works related to NLP via privacy-preserving Machine
Learning have been done with [42] [43] [44] using RNNs, GRUs and
LSTMs [45] where the various activation functions have been also here
approximated with a working alternative which has been used dur-
ing the training process on the approximated model version. In [42]
they have analysed the classification of encrypted word embeddings
using RNNs where they have analysed very well the noise growth in a
RNN and they handled the approximation of activation functions with
Chebyshev polynomials and the method described in [46]. Instead, in
[43] they have used a different approach to handle the noise growth.
They did not handle it reducing eventually the size of the network or
by using the theoretically constructs of Bootstrapping, but they have
built a communication system in order to send back the tensor data to
the client in order to be decrypted and to perform on them in clear the
non-polynomial operations required in order to not use any approxi-
mations reducing the final results and also to completely refresh the
noise budget for further HE operations. Regarding this approach, there
is also the very recent nGraph-HE2 framework [47] which is derived
from the Intel nGraph deep learning (DL) compiler [48]. It is able
to give the possibility to train in particular CNNs in plaintext on a
particular given hardware and then deploy these trained models to HE
cryptosystems. Their objective with this work was to hide most of the

14 Related Literature

complexities behind the usage of HE. While in their work the CKKS
scheme has been used, their true goal is to let researchers deploy pre-
trained models using their native activation functions without, or with
a minimal, code refactoring. To address non-polynomials activation
functions like ReLU, GeLU, etc., the framework uses indeed a similar
client-server continuous communication computation approach of [43]:
during inference in the model the intermediate results are sent to the
client which decrypts the running tensors in the model, computes the
corresponding needed activation function in clear, then re-encrypts the
resulting tensor, and it sends the new encrypted tensor back again to
the server where it will be further computed in the remaining step
of the model inference. While those systems are able to provide en-
crypted results on encrypted data, they require an active participation
of the users introducing various difficulties regarding data transmis-
sion, network issues, etc. For this reason, they are not considered in
the comparison with HErBERT, which instead provides a fully end-
to-end inference, but they are cited to show the growing interest of
achieving privacy-preserving predictions also in the NLP field using
various types of architectures, and now also the Transformer. Also,
the same for this work [44] which is interesting because they have used
an approach which involved evaluating homomorphically binary gates
in order to perform some operations like activation functions, this has
been achieved by them using the Gazelle library [41] to adopt a simpler
HE scheme, namely packed additive homomorphic encryption (PAHE)
scheme and garbled circuits (GC). Instead, as of our current knowl-
edge no work has been done on applying Homomorphic Encryption to
the novel state-of-the-art architecture of Transformer [49], or better
no work related trying to adapt, approximate and scale down Trans-
former making it practical with Homomorphic Encryption. Interesting
work [50] using instead Federated Learning has been used for large
Transformers models like BERT has been done, where homomorphic
encryption is cited as a possibility, but the paper is focusing on Feder-
ated Learning differently from us.

Chapter 3

Background

This Chapter collects the main notions which are required to com-
pletely understand the various aspects of this research work. Sec-
tion 3.1 presents the concepts of Homomorphic Encryption schemes
in general, then the one used in this work along with considerations
on the security assumptions, the permitted operations, the computa-
tional overhead, the advantages, and the drawbacks. In Section 3.2
a brief summary on Machine Learning will be presented, following a
summary on Deep Learning 3.2.1 and on Natural Language Process-
ing 3.2.2, along with more specific notions regarding Transformer in
Subsection 3.2.3.

3.1 Homomorphic Encryption

Homomorphic encryption (HE) is a type of encryption scheme which
enables some simple operations to be performed on encrypted data, di-
rectly without knowing any key to decrypt these data, with a very good
approximation or exact computation. A general encryption scheme can
be described by means of an encryption function E and a decryption
function D. Where given a certain input x, x = D(E(x)) given a cer-
tain set of keys. Common encryption schemes, both symmetrical and
asymmetrical, are not homomorphic though, they don’t generally allow
operations to be performed on encrypted data because the underlying
algebraic structure of the plaintext is not maintained after encryption.
Using instead an Homomorphic Encryption scheme operations on en-

16 Background

crypted are allowed to take place, as shown in the example in Figure
3.1

Figure 3.1: Example comparison between common Encryption
Schemes and Homomorphic Encryption schemes

3.1.1 Classification of HE schemes

There exists various types of available HE schemes, the ones available
are three different main categories.

Somewhat homomorphic schemes

Somewhat homomorphic schemes are the ones which allow multiplica-
tions and additions to be performed, but in a limited number of times
due to the presence of a noise. This noise is always present (in order
to have a certain amount of confusion and diffusion of the encrypted
data) and it is added during the encryption phase. For this fact, at
each operation performed, some quantity of noise is added to the new
resulting ciphertext. This is an issue which needs to be addressed be-
cause the presence of the noise is tolerated until a certain threshold
by the encryption scheme, meaning that having an amount of noise
greater than this threshold will result in not being able to decrypt the
data anymore. This threshold is called noise budget.

Partially homomorphic schemes

Partially homomorphic schemes have the characteristic of not having
any bounds on the number of operations being able to be performed,
but they are allowed to perform only one type of operation. Taking as
an example, RSA [18] which it has the multiplicative homomorphism

3.1 Homomorphic Encryption 17

allowing so to perform an unbounded number of multiplications-only
on ciphertext data.

Fully homomorphic schemes

Fully homomorphic schemes have the capability of performing an un-
bounded number of times both addition and multiplication without
any limitations from the noise or anything else.

3.1.2 The Noise

Homomorphic Encryption schemes classified as somewhat homomor-
phic have the dark side of always adding some noise during the en-
cryption phase: this enables to guarantee the fundamental properties
of confusion and diffusion on encrypted data. Upon the commit of an
operation, its result will have more noise proportionally on the opera-
tion performed, while multiplication being the most expensive one.

Figure 3.2: Noise relation with ciphertext during encrypted computa-
tion [1]

We can then call Noise Budget (NB) the amount of noise we are
allowed to add without reaching the point in which we are no more

18 Background

able to decrypt correctly as in Figure 3.2 from [1], so we will have, de-
pending on the scheme, a limited number of consecutive operations to
be performed. While this noise is strictly dependent on the encryption
scheme chosen, we are allowed to assign a set of parameters Θ, which
we will see later on, in order to optimize both the noise consumption
and noise budget.

3.1.3 Brakersi/Fan-Vercauteren scheme (BFV)

The HE scheme considered in this work is the Brakerski/Fan-Vercauteren
(BFV) [22] [51] scheme, which is based on the Ring-Learning With
Errors (RLWE) problem. The BFV encryption scheme has been intro-
duced by Junfeng Fan and Frederik Vercauteren in 2012. Their idea
was to modify the scheme proposed by Brakerski, porting it from a
setting in which the Learning With Error (LWE) problem was used
to RLWE [52]. The main object used in the BFV scheme is the poly-
nomial ring. The ring used in the BFV scheme is R = Z[x]/(f(x))
where f(x) ∈ Z[x] is a monic irreducible polynomial of degree m. In
particular, a cyclotomic polynomial m(x) of degree m is used; m is a
positive power of 2.

Polynomial rings

The main object used in the BFV scheme is the polynomial ring. A ring
is a set R with the operations of addition as + : R×R→ R, (a, b) 7−→
a+b and multiplication as ∗ : R×R→ R, (a, b) 7−→ a∗b [53] satisfying
the following conditions:

1. (R, +) is a commutative group so where a+b = b+a, there exist
the element 0 ∈ R which is the neutral element in the group and
there exist the inverse element of a ∈ R as −a.

2. The multiplication operation has associative property so, (a∗b)∗
c = a ∗ (b ∗ c) for all a, b, c ∈ R.

3. There is the distributive property: for all a, b, c ∈ R a ∗ (b+ c) =
a ∗ b+ a ∗ c and (a+ b) ∗ c = a ∗ c+ b ∗ c.

3.1 Homomorphic Encryption 19

The unit element 1 ∈ R is called unit and 1 ∗ a = a ∗ 1 = a for all
a ∈ R. Given now the understanding of the algebraic structure called
Ring we can understand and define the polynomial ring R[x], which is
the ring of all polynomials with coefficients in R:

R[x] = {a0 + a1x+ · · ·+ anx
n : ai ∈ R ∀i}

The addition and multiplications operations are defined as:
n∑
i=0

aix
i +

n∑
i=0

bix
i =

n∑
i=0

(ai + bi)xi

n∑
i=0

aix
i ∗

m∑
j=0

bjx
j =

n∑
i=0

m∑
j=0

aibjx
i+j

The ring used in the BFV scheme is:

R = Z[x]/(f(x))

f(x) ∈ Z[x] is a monic irreducible polynomial of degree m. In particu-
lar, a cyclotomic polynomial Φm(x) of degree m is used; m is a positive
power of 2.

Ring Learning With Errors problem

Ring Learning With Errors (RLWE) is a computational problem used
in many fields of cryptography, including the development of encryp-
tion schemes resistant to attacks conducted with quantum computers.
RLWE it is used in order to give assurances on the security and the
strength of the scheme.

Two different versions exists of this problem: “search” and “deci-
sion”. BFV uses the “decision” version.

Definition 3.1.1. RLWE-Decision Given:

• ai a set of random but known polynomials from Rq, which is the
ring R with coefficients in Zq;

• ei is a set of small random and unknown polynomials relative to
a bound b in the ring Zq;

20 Background

• s be a small unknown polynomial relative to a bound b in the
ring Zq.

• bi = (ai · s) + ei

And a list of polynomial pairs (ai,bi), the RLWE-Decision problem
consists in determining if the bi polynomials were constructed as bi =
(ai · s) + ei or were generated randomly from Rq.

The security of a scheme built on the RLWE problem is explored
in the work by Lyubashevsky et al. [52]. The main idea is that solving
the RLWE problem is equivalent to solve the Approximate Shortest
Vector Problem (α-SVP). This problem is known to be NP-hard [54].

Encryption Scheme

These are the basic operations employed in the BFV scheme:

• SecretKeyGen (1λ): sample s← χ and output sk= s.

• PublicKeyGen (sk): set s=sk, sample a← Rq, e← χ and output

pk = ([−(a · s + e)]q, a)

• EvaluateKeyGen (sk, p): sample a← Rp·q, e← χ
′ and return

rlk = ([−(a · s + e) + p · s2]p·q, a)

Evaluation keys are necessary to perform an operation called
relinearization, described more in detail in Sub-Section 3.1.3.

• Encrypt (pk, m): to encrypt a message m ∈ Rt, let:

p0 = pk[0]

p1 = pk[1]

Then, sample u, e1, e2 ← χ and return:

ct = ([p0 · u + e1 + ∆ ·m]q, [p1 · u + e2]q)

3.1 Homomorphic Encryption 21

• Decrypt (sk, ct): set s = sk, c0 = ct[0], c1 = ct[1]. The decrypted
value is: [⌊

t · [c0 + c1 · s]q
q

⌉]
t

• Add (ct0, ct1): Output (ct0[0] + ct1[0], ct0[1] + ct1[1])

• Multiply (ct0, ct1, rlk): compute

c0 =
[⌊
t · (ct1[0] · ct2[0])

q

⌉]
q

c1 =
[⌊
t · (ct1[0] · ct2[1] + ct1[1] · ct2[0])

q

⌉]
q

c2 =
[⌊
t · (ct1[1] · ct2[1])

q

⌉]
q

If the hardness of the RLWE problem is assumed, this scheme can be
shown to be semantically secure [52]. The relinearization operation
described above is related to noise and noise growth in the ciphertexts.
These concepts are fundamental from a practical point of view for the
use of the BFV scheme as explained before.

Noise growth

Definition 3.1.2. Invariant noise Let ct = (c0, c1, . . . , ck) be a ci-
phertext encrypting the message m ∈ Rt. Its invariant noise v is the
polynomial with the smallest infinity norm such that:

t

q
ct(s) = t

q

(
c0 + c1s+ · · ·+ cks

k
)

= m+ v + at

for some polynomial a with integer coefficients [32].

During the encryption phase, noise is added to the ciphertexts to
guarantee that, being p1 = p2 two plain values to be encrypted with the
same public key, the corresponding ciphertexts c1 and c2 are different
(i.e., c1 6= c2). However, performing operations on ciphertexts increases
their noise. When the noise reaches a certain threshold, it becomes
impossible to decrypt the data without corrupting it.

The Noise budget is a practical way to measure the noise of a
ciphertext.

22 Background

Definition 3.1.3. Noise budget Let v be the invariant noise of a
ciphertext ct encrypting the message m ∈ Rt. Then the noise budget
(NB) of ct is − log2(2||v||).

The NB is an integer positive number. If it is greater than 0, it is
still possible to decrypt a ciphertext and obtain the correct plaintext
value. Hence, for NB, greater is better. As stated in [32]:

Lemma 3.1.1. The function Decrypt correctly decrypts a ciphertext
ct encrypting a message m, as long as the NB of ct is positive.

It is useful to understand how noise grows when an operation is
performed on a ciphertext. In general, the important aspect is that
additions and subtractions have a small impact on the noise growth,
while multiplications are the most NB-consuming operations. The pre-
cise growth bounds of the noise, for each operation, is here reported
for completeness in Table 3.1 taken from [32].

What we can infer from this table is that:

• The NB is an integer positive number. If it is greater than 0,
it is still possible to decrypt a ciphertext and obtain the correct
plaintext value. Hence, for NB, greater is better.

• Additions between two ciphertexts cause the noise to be the sum
of the noise value of the two ciphertexts.

• Multiplications not only make the noise grow with a greater fac-
tor, but also depends on the size of the two ciphertexts.

• Operations between one ciphertext and one plaintext consume
less noise budget

• It is fundamental to reduce the size of the ciphertexts in order
to limit the noise growth during operations, especially multipli-
cations. The relinearization operation, which consumes noise,
will perform such size reduction. Referencing the Multiply opera-
tion 3.1.3, relinearization [22] consists in writing c2 in base T as

3.1 Homomorphic Encryption 23

T
ab

le
3.
1
SE

A
L
N
oi
se

bo
un

d
of

ou
tp
ut

O
pe

ra
tio

n
In
pu

t
de
sc
rip

tio
n

N
oi
se

bo
un

d
of

ou
tp
ut

En
cr
yp

t
Pl
ai
nt
ex
t
m

r t
(q

)
q
‖m
‖N

m
+

7n
t
q
m
in
{B

,6
σ
}

N
eg
at
e

C
ip
he
rt
ex
t
ct

υ

A
dd

/S
ub

C
ip
he
rt
ex
t
ct

1
an

d
ct

2
υ

1
+
υ

2

A
dd

Pl
ai
n/

Su
bP

la
in

C
ip
he
rt
ex
t
ct

an
d
pl
ai
nt
ex
t
m

υ
+

r t
(q

)
q
N
m
‖m
‖

M
ul
tip

ly
Pl
ai
n

C
ip
he
rt
ex
t
ct

an
d
pl
ai
nt
ex
t
m

N
m
‖m
‖υ

M
ul
tip

ly
C
ip
he
rt
ex
ts
ct

1
an

d
ct

2
of

siz
es
j i

+
1
an

d
j 2

+
1

t√
3n

[(1
2n

)j 1
/
2 υ

2
+

(1
2n

)j 2
/
2 υ

1
+

(1
2n

)(j
1
+
j 2

)/
2]

Sq
ua

re
C
ip
he
rt
ex
t
ct

of
siz

e
j

Sa
m
e
as

M
ul
tip

ly
(c
t,c

t)
R
el
in
ea
riz

e
C
ip
he
rt
ex
tc

to
fs
iz
eK

an
d
ta
rg
et

siz
e
L,

su
ch

th
at

2
≤
L
<
K

υ
+

2t q
m
in
{B

,6
σ
}(
K
−
L

)n
(l

+
1)
ω

A
dd

M
an

y
C
ip
he
rt
ex
ts
ct

1,.
..,
ct
k

∑ i
υ
i

M
ul
tip

ly
M
an

y
C
ip
he
rt
ex
ts
ct

1,.
..,
ct
k

A
pp

ly
M
ul
tip

ly
in

a
tr
ee
-li
ke

m
an

ne
r,

an
d
R
el
in
ea
riz

e
do

w
n
to

siz
e
2
af
te
re

v-
er
y
m
ul
tip

lic
at
io
n

Ex
po

ne
nt
ia
te

C
ip
he
rt
ex
t
ct

an
d
ex
po

ne
nt

k
A
pp

ly
M
ul
tip

ly
M
an

y
to

k
co
pi
es

of
ct

24 Background

c2 = ∑l
i=0 c(i)

2 T
i with c(i)

2 ∈ RT and set:

c′

0 =
[
c0 +

l∑
i=0

rlk[i][0] · c(i)
2

]
q

c′

1 =
[
c1 +

l∑
i=0

rlk[i][1] · c(i)
2

]
q

Then, return (c′
0, c

′
1).

Classification of HE operations

As we saw, Homomorphic Encryption schemes allow to perform a set of
operations on encrypted data. There exists though two types of opera-
tions involving encrypted data, and they have different characteristics
as seen in Figure 3.3.

Figure 3.3: Types of Homomorphic Encryption operations

• Encrypted-Encrypted operations: In Encrypted-Encrypted
operations both of the operands are encrypted data. This char-
acteristic is important because it will determine how fast will the
operation be performed and how much noise will be used.

• Encrypted-Plain operations In Encrypted-Plain operations
just one of the operands in encrypted and the other one is en-
coded, so it is just represented in terms of a polynomial ring so to
being able to be used for performing Homomorphic Encryption
operations. Plain operations are less computational consuming
with respect to operations between ciphertexts; moreover, they
consume much less noise as shown in Table 3.1.

3.1 Homomorphic Encryption 25

Encoding

As previously said, the Homomorphic Encryption schemes allow per-
forming operation even between plaintext and ciphertext data, by en-
coding (changing the representation of) the plaintext. Encoding is the
process always used, even when encrypting, but just to encode some-
thing is different from also encrypting it. Encoding in HE means trans-
forming data (without encrypting it) in the same polynomial form of
encrypted values, to be able to perform the various operations among
other encrypted data in that form, without encrypting it with any en-
cryption key. Obviously, an operation of decoding is needed in order to
obtain the number corresponding to a (possibly previously decrypted)
plain polynomial. The problem is not trivial. It is clear that the rings
Z and Rt are very different: for example, the set of integers is infinite,
whereas Rt is not. This is the main reason for which HE applications
must be carefully designed: in particular, the evaluating party (the
party which will have to perform the computation on encrypted data)
should find appropriate parameters to guarantee a correct encoding of
the involved values. While we will describe the various three encoders
available in SEAL for BFV (Integer, Fractional and Batch encoders)
we will use in our setting the Fractional Encoder.

Integer encoder

While we will consider the case with B = 2, there exist different integer
encoders, one for each base. The base is denoted by B ≥ 2. A possible
way [32] to encode an integer in the range −(2n − 1) ≤ a ≤ 2n − 1 is
to form the n-bit binary expansion of |a|, say an1 , ·, a1a0. The binary
encoding of a, then, is:

IntegerEncode(a,B = 2) = sign(a) · (an−1x
n−1 + ·+ a1x+ a0)

If B > 2, instead of a binary expansion, a base-B expansion must
be used. The coefficients are the ones chosen from the symmetric set
[− (B−1)

2 , ·, (B−1)
2], given that there is a unique representation with at

most n coefficients for each integer in [− (Bn−1)
2 , (Bn−1)

2]. B = 2 it is
commonly used, but also B = 3 is usually used. The decoding of an
Integer Encoded value is the evaluation of the plaintext polynomial at

26 Background

x = B. It is important to denote that performing modulo operations
during the computations may result in making impossible to decode
the polynomials. There are two cases, the one is with modulo xn + 1.
When at least one degree in the polynomial is greater than n, the
decoding operation will fail without even being noticed. The second
one is due to the coefficients of the polynomials, where the modulo
t operation is performed. It is sufficient that just one coefficient is
greater than t and the decoding operation will not be possible, and the
operation will fail silently. It is so very important to avoid such bad
situations during the running of a service.

Fractional encoder

Fractional encoder will enable the encoding of real numbers. Given
that this encoding is done directly on an integer type, the procedure
to carry out the encoding will be more complex and different. Frac-
tional encoders, as for the previous encoders, are parameterized by an
integer base B ≥ 2 [55], on the same principle of the Integer encoder.
Fractional encoding consists in encoding the integer part of the inter-
ested value, using the integer encoder. n is added to each exponent
of the fractional part of the binary expansion of the value. Then, the
base B is changed into the variable x; lastly, the signs of each term
are flipped. [32] presents a practical example. From [32] let’s consider
B = 2 and the rational number 5.8125. It has a finite binary expansion:

5.8125 = 22 + 20 + 2−1 + 2−2 + 2−4

The integer part is encoded as usual, obtaining the polynomial Inte-
gerEncode(5, B = 2) = x2 + 1. Then, n is added to each exponent of
the fractional part (2−1 + 2−2 + 2−4) and the base 2 is changed into
x: the result is xn−1 + xn−2 + xn−4. Lastly, each sign of the terms is
switched:

−xn−1 − xn−2 − xn−4

More formally, for any rational number r with finite binary expansion
it holds:

FracEncode(r, B = 2) = sign(r) · [IntegerEncode(b|r|c, B = 2)
+ FracEncode({|r|}, B = 2)]

3.1 Homomorphic Encryption 27

The decoding is performing by applying the presented procedure in
the opposite order. There are of course interesting cases, as for real
numbers, which do not have a finite binary expansion. For this par-
ticular problem the generated expansion of the fractional part has to
be necessarily truncated to some precision (which can be expressed as
nf bits). The simplest proposed solution [32] is to fix a number ni to
denote the number of coefficients reserved for the integer part, while
the remaining n− ni coefficients will be used for the fractional part of
the encoded number. The condition nf + ni ≤ n has to be respected.
We saw that the Fractional Encoder of SEAL uses nf + ni <= n bits
in order to represent the fractional and integer part of an encoded/en-
crypted number. The higher the nf the better the representation of
the value will be in terms of its fractional part given that this bits value
will be used to truncate the expansion of the fractional part to some
precision, nf bits (equivalently, high-degree coefficients of the plaintext
polynomial).
Similarly to the Integer encoder, also the decoding with the Fractional
encoder can fail. The first reason is the same of the previous case:
if any of the coefficients of the plaintext polynomials is greater than
the plaintext modulus t, the decoding will probably fail. The second
reason is that an homomorphic multiplication may cause the fractional
parts of the plaintext polynomials to expand down towards the integer
part, with the result that the two parts get mixed up.
it is very important to denote that BFV was born as a scheme for
exact computation, more in detail it was born to handle integers. The
Fractional Encoder instead allows to have a scaled representation of
fractional values, through these assigned bits values, but at the cost of
having at the end of the computation some error due to the truncation
mentioned above. While using an Integer Encoder won’t introduce any
kind of error while handling integer values only.

Batch encoder

The Batch encoder will be able to encode in a ring polynomial form a
vector of integer values only, to which the operation of rotation will be
available to be used on. The Batch encoder has the very interesting

28 Background

characteristic of making the allowed operation perform better than the
respective encoding on single numerical values. The downside of this
encoder is the support for integer only numbers, which of course can
limit its application to a number of applications.

3.1.4 Tuning HE parameters

The BFV scheme is based on the following set of encryption parameters
Θ:

• m: Polynomial modulus degree,

• p: Plaintext modulus, and

• q: Ciphertext coefficient modulus.

The parameter m must be a positive power of 2 and represents the
degree of the cyclotomic polynomial Φm(x). The plaintext modulus p
is a positive integer that represents the module of the coefficients of the
polynomial ring Rp = Zp[x]/Φm(x), the RLWE problem is based on
it. The last parameter q is a large positive integer resulting from the
product of distinct prime numbers and represents the modulo of the
coefficients of the polynomial ring in the ciphertext space. Choosing
different values of these parameters directly affects the performances
obtained in the HE scheme. It will directly affect the number of opera-
tions which can be done on a ciphertext without making it impossible
to be decrypted after the computations, the computational overhead in
time and memory requested to perform each operation and the security
against attacks. Moreover, parameters affects also the precision of the
operations’ result, especially operations involving Fractional encoded
values.

The Noise Budget (NB), introduced in Sub-Section 3.1.3, is a di-
rect and numerical measure of the number of operations which can
still be done on the selected ciphertext while ensuring the correctness
of the final decryption operation. Every operation consumes NB like
additions, but in particular multiplications between ciphertexts are the
most expensive operations in terms of NB consumption. Especially the

3.1 Homomorphic Encryption 29

multiplications involving two encrypted values, differently from oper-
ations involving a ciphertext and a plaintext, given that a plaintext
does not have a NB, which consumes a certain amount of NB (con-
sider that the result of such operation will be an encrypted value)
strictly less than the NB consumed in the operation between two ci-
phertexts as stated in Sub-Section 3.1.3. When the NB of a ciphertext
reaches 0, it will then become completely impossible to correctly de-
crypt it, corrupting definitely the resulting value. Given this fact, it is
fundamental to careful tune the encryption parameters for ensuring a
sufficient initial NB able to carry out all the next planned operations.

Choice of the parameters

For further details on those parameters the reader can look at SEAL
[32] which is the library being used where the BFV HE scheme is
implemented, in the followings we will briefly explain some of those
parameters’ characteristics.

In order to minimize the computational load and the noise con-
sumption while maximizing the noise budget, we can search in the
space of these three parameters:

• p : plaintext modulus, all operations will be made in modulo p.
It increments the precision of the operation on encrypted data,
but also increase the NB consumption per operation.

• m : polynomial ring coefficient modulus, it must be a power of 2.
Higher is the modulus higher the number of operations (higher
initial noise budget), unfortunately it proportionally increases
computational load in terms of execution time and memory oc-
cupation.

• q : ciphertext modulus, it affects the security level of the en-
cryption scheme, left to pre-computed values of SEAL, due to its
complexity, which provides a way to automatically set q given
m and the desired AES-equivalent security level sec, as shown in
Figure 3.4 from [32].

30 Background

Figure 3.4: SEAL pre-computed q values

Figure 3.5: (m,q) parameters space showing the available and secure
areas

it is also very important to remember that these parameters are not
just here to fine-tune the HE scheme but they are also fundamental
for it to work correctly and being secure as desired. This means that
there exists a set of Θ parameters which make a scheme not secure
or incorrect in terms of performing the computation of the operations.
This effect can be clearly seen in Figure 3.5 taken from the presentation
[1] of [32].

3.1 Homomorphic Encryption 31

3.1.5 Homomorphic Encryption challenges

Homomorphic Encryption schemes, as it has been discussed in the
years, bring quite some challenges and difficulties. The main difficul-
ties are the current limitations involved around the computational time
required to handle encrypted computation, especially using large data
and/or large HE parameters Θ. It will affect the occupied memory
of the homomorphically encrypted data, its encryption and decryp-
tion time but indeed more importantly the time required to process
operations on the data [56]. These difficulties are the reason behind
why currently to make Homomorphic Encryption practical every work
is exploiting computationally powerful servers on the Cloud through
Cloud Computing, as it was also stated in this work [57]. There are
also difficulties related to the limitation on the possible operations
available. What’s available for any Somewhat Homomorphic Encryp-
tion scheme is the addition/subtraction and the multiplication. The
very issue is about the missing compatibility with the division opera-
tion which is not supported in the polynomial ring algebraic structure.
However, existing schemes and libraries added support for other useful
operations as we can summarize in the below Table 3.2. As we can
see, both operations, while fundamental in many cases, of division and
comparison are not present in any of the available HE schemes up to
now. This is an important drawback that can be circumnavigated with
some effort. In most of the literature the division operation is just seen
as a multiplication inverse of an Encrypted-Encoded operation where
we can actually multiply the inverse just by encoding the value as the
inverse of the division operand. The comparison operation instead is
quite difficult to achieve homomorphically and indeed there has been
done some work [59] about it and some methods available for certain
HE schemes achieve a decent computational complexity in performing
the function approximating the behavior of the comparison operation.
Difficulties around Homomorphic Encryption schemes are also related
to their usability, without proper libraries or frameworks they are quite
challenging to be used. This is why quite a few libraries supporting
one or more Homomorphic Encryption schemes have been developed.
While this work will rely on SEAL [32], also other libraries currently

32 Background

T
ab

le
3.
2
H
E

sc
he
m
es

an
d
av
ai
la
bl
e
op

er
at
io
ns

O
pe

ra
tio

ns
SE

A
L(

BF
V
,C

K
K
S)

H
El
ib

T
FH

E
Pa

ill
ie
r

EL
G
am

al
[5
8]

R
SA

A
dd

iti
on

,S
ub

tr
ac
tio

n
Ye

s
Ye

s
Ye

s
Ye

s
N
o

N
o

M
ul
tip

lic
at
io
n

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

C
om

pa
ris

on
N
o

N
o

N
o

N
o

N
o

N
o

D
iv
isi
on

N
o

N
o

N
o

N
o

N
o

N
o

Bo
ol
ea
n
op

er
at
io
ns

N
o

N
o

Ye
s

N
o

N
o

N
o

Bi
tw

ise
op

er
at
io
ns

Ye
s

Ye
s

Ye
s

N
o

N
o

N
o

M
at
rix

op
er
at
io
ns

Ye
s

Ye
s

N
o

N
o

N
o

N
o

Ex
po

ne
nt
ia
tio

n
Ye

s
Ye

s
N
o

N
o

N
o

N
o

Sq
ua

re
Ye

s
Ye

s
Ye

s
N
o

Ye
s

Ye
s

N
eg
at
io
n

Ye
s

Ye
s

N
o

N
o

N
o

N
o

A
dd

Pl
ai
n,

Su
bt
ra
ct

Pl
ai
n,

M
ul
tip

ly
Pl
ai
n

Ye
s

N
o

N
o

N
o

N
o

N
o

3.1 Homomorphic Encryption 33

exists such as Palisade [60], HEANN [61] and HElib [62]. Recently
there has also been some new developments about HE frameworks [63]
[64], so that who will have to perform a Homomorphic Encryption exe-
cution flow won’t have to be so responsible for all the management and
initialization process as with the provided libraries, but these frame-
works are the starting point for a bright future where Homomorphic
Encryption will be more and more mainstream. Indeed, more and more
excellent works are being done regarding the application of Homomor-
phic Encryption to secure algorithms of any kinds, as these works [65]
[66] [67] regarding the application of Homomorphic Encryption to sub-
string search and pattern matching where one of their main application
is Bioinformatics in DNA sequencing: in these applications Homomor-
phic Encryption should be a must-have! Regarding the difficulties in
achieving comparable performances to in-clear computations, there has
been some development with respect to GPU computations. In this
ongoing work [68] it has been started to implement a working version
of the CKKS scheme running on PyTorch and compatible on GPUs.
This can actually solve the challenge of Homomorphic Encryption re-
garding the quite higher time required for its execution compared to
plaintext computations.

34 Background

3.2 Machine Learning

Machine Learning (ML) is a subfield of the Artificial Intelligence field.
It is the study of computer algorithms able to learn how to better solve
a specific task at hand. This reflection of human behavior is possible
through the Statistics and Mathematics behind ML. A more precise
definition for a learning algorithm is:

Definition 3.2.1. A program learns from a certain experience E, with
respect to a class of tasks T , obtaining a performance P , if its perfor-
mance in solving tasks of type T , measured by performance P , im-
proves with the experience E.

ML algorithms are often used, and better shine, when there are dif-
ficult problems to solve if they were solved through a hard-coded algo-
rithm. ML algorithms are applied to a vast number of fields and tasks
such as: image classification, instance segmentation, sequence clas-
sification, sentiment analysis, text-to-speech, speech-to-text, visual-
question-answering, clustering, behavior learning, etc. . . The various
tasks listed above belong to three different paradigms used to build
ML algorithms: Supervised Learning, Unsupervised Learning and Re-
inforcement Learning. While they are all important given the nature
of this work, we will further describe the Supervised Learning process.

Supervised learning

In this case, the Machine Learning algorithm is fed with a series of
inputs (X) and the corresponding outputs (Y) to learn from. Dur-
ing a phase called training consisting in a series of epochs call, where
an epoch consists in evaluating the entire series of the data set. The
algorithm will then use a loss function in order to understand how
much distance there is between the real and ideal mathematical model
mapping Y = f(x) and the current one being trained, this will be
used to accordingly update the corresponding weights of the Machine
Learning model. The update of the weights happen through an opti-
mization algorithm which can be of various types from the basic one
of gradient descent, to SGD, to Adam, to AdamW and so on. Each of

3.2 Machine Learning 35

these algorithms will provide a different convergence rate to the opti-
mal model obtainable given the model architecture and provided data
set. The program is given some inputs (X) and the desired outputs
(Y). Through a series of attempts, the program constantly improves
with the goal of finding the best possible mapping between the inputs
and the outputs (Y = f(x)). If the examples are enough representative
of the problem’s domain and the model is enough flexible to correctly
learn complex relationships, the final mapping will have a good per-
formance even on new, unseen data. Supervised learning is generally
used in regression and classification task. Common types of models
used in Machine Learning are Linear Regression, Naive Bayes, Logis-
tic Regression, Support Vector Machines (with or without Kernels),
Neural Networks, etc. . . Each one of these models are good in their
own way and there is no particular always-best model than others: it
all depends on the task, this is essentially the No Free Lunch theo-
rem where it is stated that we shouldn’t have a preferred algorithm or
model. We have to consider what’s best on a particular task.

In general, ML algorithms outperform human ones in tasks which
encompass a high amount of possible input data with a corresponding
amount of hidden patterns in the mapping between inputs and outputs.
Building ad-hoc algorithms in such domains can be time-consuming or
not possible and have bad performances, while the capacity of ML al-
gorithms of improving themselves simplifies the work of programmers.
The work will shift to the identification of representative couples of
input and output data and to the manual labeling of such training set.

3.2.1 Deep Learning

Deep Learning (DL) is a subset of Machine Learning. Differently from
ML, Deep Learning encompass the set of algorithms and methods to
create better representation of data, extract and select features au-
tomatically in order to ease the work on a classifier or a regression
model: it learns both features and model end to end. So, now that the
features are no more described or found by the engineers but by the
computer itself, we are able to extract better and better characteris-

36 Background

tics from data. It all depends on the amount of data available and the
flexibility (the complexity) of the model, proportionally on the task
and the data. Again, differently from ML when we are talking about
DL we are talking about Neural Networks only: or better, architec-
tures comprehending various layers of Neural Networks in order to go
“deeper” in finding better and better features.

While there exists a number of DL models, this work will focus in
particular on Transformers and their application on the general classi-
fication task through BERT.

3.2.2 Natural Language Processing

Natural Language Processing (NLP) is a field already present before
the dawn of Machine Learning, but that it empowered itself even more
thanks to the novel Machine Learning methods. Giving computers the
ability to handle and to process the natural human language is a very
important and old idea. There has been a lot of efforts through the
years in building algorithm based (and not data based) models trying
to capture human language and to process it for a variety of reasons:
understanding its meaning, answering to questions, machine transla-
tion, speech recognition, speech synthesis, creating summaries etc. . .
The real main problem for NLP has always been the ambiguity which
is carried by any natural language, and that is what’s most difficult to
make computers handle. Since the beginning of the climbing of Ma-
chine Learning in modern times, NLP took advantage of it building
better language models, better syntax parsers and a variety of its ap-
plications previously listed. NLP models are getting better and better
nowadays thanks to also the arrival of Deep Learning. This was a game
changer because it made it possible to find directly and automatically
from data the best features for a certain NLP task. There are a lot
of various applications of DL in NLP, and this has given NLP much
more space for growing. There are a lot of different areas of working
in NLP:

• Part-Of-Speech (POS) tagging and Named Entity Recog-
nition (NER): both of the two are sequence labeling problems
over text data. POS tagging is the NLP task of assigning syn-

3.2 Machine Learning 37

tactic tags to a certain text in order to better handle further
parsing and controls. NER instead is the process of finding the
corresponding pronoun for a certain entity, there exists algorithm
for finding it but of course through Deep Learning models using
Attention layers, RNN, CNN etc. . . you get better results. In
these cases, the input is a word embedding vector and the output
class computed over Softmax is a set of POS tags or NER classes.

• Machine Translation: this task has the responsibility to au-
tomatically translate a given utterance in one language to an-
other language. In this task, the given input is again a set of
word embeddings vectors representing each words of an utter-
ance and the output is the probability distribution of the word
sequence composing the translation in the target language. Var-
ious solutions exist like using Transformer Encoder-Decoder and
Recurrent encoder-decoder Seq2Seq with LSTMs. The current
state-of-the-art architecture for this task is BERT [7] as for most
of the NLP tasks nowadays.

• Question Answering: for this task given a sequence of sen-
tences and a final question we want the answer to that question.
Various possible solutions exists like Recurrent Seq2Seq models,
Memory networks with Attention mechanism, Transformer ar-
chitecture like in GPT-2 [69] and GPT-3 [70]. The Question
Answering task is part also of the general Chatbot application,
where its implementation depends on the type of the interac-
tion (single-turn or multi-turn) and how the core algorithm is
implemented (whether generative or retrieval).

• Speech and Sound Recognition: before DL, speech recogni-
tion was using a predefined set of 39 feature vectors encapsulating
the relevant parts of the Fourier Transform of the audio spectrum.
It is a fine solution, but not if compared to the wonders offered
by Deep Learning. In DL models for Speech Recognition, the in-
put can be given as a raw input in the time domain or with more
elaborated input in the frequency domain with the spectrum. In
both cases those inputs are used in order to extract the acous-

38 Background

tic features, and then they are passed to further layers in order
to perform the recognition and classify the corresponding input,
whether as a classification or as a continuous labelling. For this
aspect any kind of layer can potentially be used, with different
interesting advantages, like Convolutional layers, Recurrent lay-
ers or Attention layers. Many interesting architectures exist like
SoundNet [71] which is CNN based with raw inputs, VGGish [72]
that is again CNN based but with spectral inputs and Wav2Vec
[73] in order to find a compressed representation through an auto-
encoder.

• Text Classification: text classification includes the two simi-
lar tasks of Sequence Classification and Sentiment Analysis which
are the tasks related to predicting a certain class of a sample text,
whether it belongs to a subset of sentences, questions, etc. . . or
whether it holds a certain sentiment, generally positive or nega-
tive. The general input for this kind of task is a certain utterance,
represented differently than just raw words. In input we are go-
ing to give the model a certain numerical representation. There
has been various different kinds of representations starting from
the one-hot encoding from a dictionary, to the TF-IDF (Term
Frequency — Inverse Document Frequency) to the most used
one nowadays which are the Embeddings. Each embedding is
representing one word numerically through a vector. Given this
input, any kind of layer can be used: from 1D convolutions and
poling to Recurrent layers to Attention layers. The final classi-
fication is dealt with a flattening layer like GAP, and then the
Softmax activation function is used in order to get the proba-
bility distribution assigned to the set of the pre-defined classes.
The presented work will focus on this specific NLP task. There
exists various different architectures for this task, from the lin-
ear one represented by Logistic Regression to the most complex
ones like Bi-RNN, LSTMs [45] and the Transformers [49] holding
the state-of-the-art with the BERT architecture achieving really
exciting results.

• and many others. . .

3.2 Machine Learning 39

Embeddings

In the previous tasks we talked about the presence of feature vectors
representing words numerically. Embeddings serve the purpose of rep-
resenting the input sequence in a different dimension. Embeddings
represent and map textual representation, words, into vectors v ∈ Rn

of a certain dimension n. Since we move from a raw textual representa-
tion to a mathematical representation in form of a vector, embeddings
are transforming the input from a high dimensional input space to a
lower dimensional numerical vector space representation which has the
property of having its vectors comparable and linked together depen-
dently on the corresponding meaning of the words they are represent-
ing. This means that two similar words will be numerical near in the
vector space of the embeddings: closeness in this vector space means
semantic similarity and correlation as shown in Figure 3.6

Figure 3.6: Visualization of Regularities in Embeddings Word Vector
Space

We can the resume the characteristics of word embeddings as:

40 Background

• Compression (dimensionality reduction): the vector size
d is way smaller than the original dictionary dimension, which
makes embeddings easier to use in Machine Learning applications
as features.

• Smoothing: from discrete orthogonal representations, we move
to a continuous representation, making possible computation re-
garding the similarity between words based on their original en-
capsulated meaning.

• Densification: we move from a very sparse representation of
a discrete set of words to a more dense representation where
the word embedding vectors are not just now comparable, but
they are quite close to each other in their sub-dimensional vector
space.

There are different architectures for word embeddings one of the most
known are Word2Vec [74] (with Skip-Gram architecture where the sur-
rounding context is predicted or with the continuous bag-of-words ar-
chitecture where the missing word is predicted in order to train the
network for finding the correct embeddings), Glove [75] and FastText
[76]. Other than word embeddings there exists also sentence embed-
dings, which are compressing the meaning of a sentence in common
vector of continuous values.

One of the advantages of NLP, or better of the text-related tasks
of NLP, is the less difficulty in finding data in order to train models.
Through the Internet, an enormous amount of natural language data
in textual form can be accessed and prepared for being used in training
a model for a certain task.

NLP combined with DL is changing and reshaping the world with
the better and better applications they find themselves fitting it or that
they create. One thing for sure is that NLP will contribute more and
more in the future, it will be fundamental in building the Computer-
Human user interface of the future.

3.2 Machine Learning 41

3.2.3 Transformers

Transformers [49] are a recently proposed architecture for Natural Lan-
guage Processing (NLP) in a variety of tasks: Sequence Classifica-
tion, Sentiment Analysis, Machine Translation, speech-to-text, Ques-
tion Answering, etc. . . but it also found applicability in various other
different or correlated fields like image recognition or Visual Ques-
tion Answering (VQA). The architecture outperformed the previous
state-of-the-art defined by Recurrent Neural Networks (RNNs). The
Transformer is a complex yet simple architecture composed of a variety
of different modules. For its simplicity it is meant that it is way more
efficient than previous RNNs architectures where the parallelization
among a sequence was not possible given those architectures nature.
In the Transformer architecture instead we are not bound to compute
in sequence each data in input, but we can parallelize it, and we can
so remove the dependence on the sequence length. Indeed, the Trans-
former big-O complexities are the followings:

• complexity per layer: O(n2 · d) where n is the sequence length
and d the embedding dimension.

• sequential operations: O(1)

• maximum path length: O(1), no dependence on sequence length,
allowing to capture very long range dependencies easily.

The Transformer uses, as well as any model in Deep Learning, Artifi-
cial Neural Networks (ANNs). It isn’t composed by ANNs only, but it
contains a series of other different modules: Self-Attention, Layer Nor-
malization with residual connections and the initial Embedding layer.

The architecture of the Transformer allows it to elaborate the se-
quences in input in order to gather all the obtainable relevant features
required to perform the said NLP task.

What’s different from previous existing architecture in NLP is the
presence of the Self-Attention module, which will be better explained.

42 Background

Figure 3.7: Extracting the corresponding word embeddings

Embeddings

The Embedding module serves the purpose of representing the input
sequence in a different dimension. The embedding module is always
placed at the beginning because it is the essential part of the model,
making the input ready to be fed to the model no more as a sparse
discrete representation but as compressed dense representation through
continuous vectors. In this module, the embeddings are generated
from words just by making an indexing operation. The embedding
module contains a dictionary where for each word present inside the
dictionary there is the corresponding word embedding vector that is
then extracted as shown in Figure 3.7 from [77]. The corresponding
word embedding vector is essentially generated through auto-encoder
self-trained networks like Word2Vec.

Self-Attention

Self-Attention is the module which has the responsibility to find on
which data of a sequence better focus on, better pay attention to. In
Self-Attention module there are various operations, as it is not just
one single operation, but it encompasses a series of different opera-
tions inside it. Inside it every word in a sentence is weighted through
different operations which involve three principal vectors: Query, Key
and Value. (They’re abstractions that are useful for calculating and
thinking about attention.) Essentially, Q helps keeping focus on a word
on a sentence being analysed, whereas Key it is used to help comput-
ing the score among all the words on a sentence. Value will be used to

3.2 Machine Learning 43

know which words are worth being focused on.
The first step in calculating self-attention is to generate Q, K and V
vectors from each of the encoder’s input vectors (the word embed-
dings). So for each word in input, a Query vector, a Key vector, and a
Value vector are created. The three vectors are generated by multiply-
ing the word embedding by the three matrices that have been trained
during the training process of the model.
The second step of self-attention is to compute a score. Starting from
the self-attention of the first word of input. The score of each word
of the input sentence against this first word is needed. The score is
indeed what determines how much “attention” and focus to place on
other parts of the input sentence while encoding a word at a certain
position. The score is calculated through the dot product of the query
vector with the key vector of the respective word its score is being
computed. So if the model is processing the self-attention for the word
in first position, the first score would be the dot product of q1 and k1.
The second score would be the dot product of q1 and k2.

Q ·KT

The third and fourth steps are to divide the scores by the square root of
the dimension of the key vectors. This operation has the functionality
of being a scaling factor, it is used to having more stable gradients
during the training phase.

Q ·KT

√
d_model

After having performed this operation, the result is then passed through
a softmax operation: this will normalize the scores making them posi-
tive and add up to 1, given that they will be mapped to a probability
distribution.

softmax(Q ·KT

√
d_model

)

The fifth step involves the multiplication of each value vector V by the
result of the previous softmax operation. The intuition here is to keep
intact the values of the word(s) we want to focus on, and drown-out
irrelevant words (by multiplying them by tiny numbers like 0.001, for

44 Background

Figure 3.8: Self-Attention

example). [78]
The sixth and final step is the summation the weighted value vectors.
This produces the output of the self-attention layer at the first position,
so for the first word. In the following Figure 3.8 from [78] we can better
see how all the procedure works.

Z = softmax(Q ·KT

√
d_model

) · V

After this important computation to better generate the context of
a sentence, the output is a set of vectors which can be sent along to
the feed-forward neural network, where each vector can be forwarded
independently. This concept is really important because even the self
attention can be computed independently, and this means that here
differently from RNNs the parallelism can be exploited way better.

3.2 Machine Learning 45

Figure 3.9: Transformer Encoder

Also, here the order is not important, or better: by using a vector
indexing the order of the words there are no issues like in RNN to give
in the network inputs in a specific correct order (could be important
for some applications). In the end the architecture of the Encoder (the
Deep-Learning feature extractor) looks like this in Figure 3.9 from [78]:

Activation functions

Between the two Feed Forward layers shown in Figure 3.9 there is an
activation function. The activation is used to modify the output of
the neurons before passing it to the next ones, this approach enables
the network to better generalize over more complex data, to be more
flexible. In order to do that only non-linear functions will be useful to

46 Background

represent non-linearities of complex data better described, usually, by
Neural Networks models. There a various number of existing activa-
tion functions but in the Transformer architecture two common types
are usually used which are ReLU and GeLU. They are defined as the
followings, ReLU = max(0, x) and GeLU = x · 1

2 [1 + erf(x/
√

(2))]
but it can be also approximated for faster computation as 0.5x(1 +
tanh[

√
2/π(x + 0.044715x3)]). ReLU (Rectified Linear Unit) was first

introduced for Neural Networks in order to solve a very important
problem, which is the vanishing gradient. Using activation functions
previously common in ML such as tanh or sigmoid, there was the prob-
lem of not being able to make Deep Learning models learn due to the
various layers present to be trained. This problem, it is particularly
important for Feed Forward Neural Networks (FFNNs) and Recurrent
Neural Networks (RNNs). For RNNs it is due to the fact that while do-
ing back-propagation through time unrolling the network for U steps
back in time we are computing the part of the gradient as product
of the various other weights of the “static” part of the network but
also of the recurrent part of the network. In the recurrent part of
the network and its following output we will have as derivative the
weight_of_recurrence ·∂f

∂x
output_function: if we compute the norm

of this we see that the norm is less than or equal than the product of
the norm of these two terms, multiplied by themselves U times: if the
norm of one of the two is very low or just < 1 it will cause a vanishing
gradient after a certain time of k<U steps because it will make the
product converge to 0 and so all the back-propagation converge to 0.
The problem with ReLU it is not solved in RNN yet, but it will need
to use the Circular Error Carousel introduced in the Long-Short Term
Memory (LSTM) model in order to avoid the opposite problem, the
exploding gradient. In the FFNNs ReLU and Leaky-ReLU solves the
vanishing gradient problem by substituting tanh and sigmoid functions
which are the main cause of vanishing gradient due to their saturation.
The ReLU activation solves it by setting its gradient either to 1 if input
is greater than 0 or to 0 otherwise. Leaky-ReLU solves the problem of
not being to represent negative values by setting its derivative to 1 if
input > 0 otherwise to 0.01 ·x. This actually means that in the Trans-
former as long as in the FFNN module which is applied on each part

3.2 Machine Learning 47

of the input sequence in the various modules is being used as activa-
tion function ReLu or Leaky-ReLU, then it won’t suffer from vanishing
gradient because the ReLu activation function solves it by setting its
gradient either to 1 if input is greater than 0 or to 0 otherwise. The
self-attention part instead is not a cause of vanishing gradient because
it is essentially computing self-attention by performing as seen before
the softmax of the various operations between the Q, K and V tensors
which are just the values obtained to compute self-attention on the in-
put sequence in order to decide on which part the model should better
focus on.

Layer Normalization

Layer Normalization is a layer used to re-scale data in a better rep-
resentation for further computations, reducing it to values between 0
and 1. It consists in computing the standard deviation and mean of
the current tensor in input to the layer and the output will consist
of y = x−µ√

σ2+ε . The main difference between this normalization and
another common one such as Batch Normalization is how the mean
µ and the variance σ2 are computed: in this case they are computed
during each inference (even not in the training phase) while in Batch
Normalization µ and σ2 are learnt, and so they won’t be computed no
more. As we will see in the next chapters, Batch Normalization will
play an important part in our work.

Feed Forward Neural Networks layer

In an encoder of the Transformer architecture there are two Feed For-
ward Neural Network layers being used in order to better extract
features and compute the prediction after having computed the Self-
Attention. It consists of a weight tensor learnt during training together
with a bias vector. They are then used to multiply and sum the input
value to the module in order to transform it accordingly to the weight
previously learnt. These layers will also be used again for the final
classification being performed after completing the computation in the
Transformer encoder.

48 Background

Pooling layer

Used for end-classification purposes, pooling layers can use different
functions to implement such simplification: the most common ones are
average poolings and max poolings. In each case, the pooling layer will
extract the more relevant data depending on the function, by averaging
a tensor into a matrix or by extracting the maximum matrix from the
tensor.

Softmax layer

While it is usually used at the end of the classification, in this case Soft-
max has also the particular function of being inside the Self-Attention
module for the Transformer architecture. Its function has the property
of mapping the tensor values along a certain dimensions to a probabil-
ity distribution.

Chapter 4

Architecture of the proposed
solution

The proposed architecture is shown in Figure 4.1.
Privacy-preserving computation comprises two different actors: the
user U and the service provider S. The user U aspires to execute a
service, e.g., a Cloud-based service or a mobile application, provided
by the service provider S for his/her purposes but he/she requires the
service provider not to access his/her data. To achieve this goal, the
service provider S make available the requested service in a privacy-
preserving “as-a-service” where the designed and developed service is
able to process data that have previously encrypted by U . The result
of this processing is still encrypted and only the user U can decrypt it.

In our specific case, HErBERT is a privacy-preserving text classifi-

Raw text Text
embedding

Public key ()

Private key ()

Encrypted
embedding

HErBERT

Encrypted
classification

result

Classification
result

Embedding Encryption

Decryption

Privacy-preserving
text classification

service User

Privacy-preserving
text classification
service provider

= Encoded weights

Figure 4.1: Computing chain of a text classification service, working
on encrypted inputs.

50 Architecture of the proposed solution

Table 4.1 HErBERT symbols

Symbol Meaning

U user
S service provider
m raw text
kp public (shared) key
ks private (secret) key
Ψ(m) embedding function of raw text m
m text embedding of raw text m
EΘ(m, kp) encryption function of text emedding m us-

ing the public key kp
m̃ encrypted text embedding m
ϕΘ(m̃) HErBERT making inference on m̃
ŷ encrypted prediction result of HErBERT
DΘ(ŷ, ks) decryption function of encyrpted result ŷ us-

ing the private secret key ks
y decrypted prediction result of HErBERT

51

cation service (e.g., to distinguish between spam or not) provided by
a service provider S and the user U is interested in using HErBERT
on his/her text data m without sending it in plaintext. An overview
of the proposed HErBERT solution is shown in Figure 4.1 encompass-
ing user U , service provider S, the encryption/decryption phases, the
embedding phase and the inference of the HErBERT NLP deep neural
network for the text classification.

In more detail, given m the raw text to be classified, the user U gen-
erates the secret and public keys, i.e., ks and kp, and performs the
text embedding on his/her own device (e.g., the personal computer
or the mobile device). In this last step, i.e., the text embedding, the
words composing the raw text m are embedded by means of an em-
bedding algorithm Ψ(·), obtaining the text embedding m. The embed-
ding algorithm together with the encryption/decryption phases and
the HErBERT architecture, training and inference will be detailed in
Chapter 5. We emphasize that the text embedding represents a form of
extraction of numerical features from text m. This embedding phase,
requiring operations (e.g., the indexing operation) that are not allowed
in the HE scheme, is executed on the user device, but this does not
limit HErBERT since m it is encrypted before being sent to the service
provider S. Without any loss of generality Ψ(·) can be provided by
the service provider S (being trained from existing provided models
such as HErBERT) or downloaded from public-services by choosing a
pre-trained word-embedding with a compatible dimensionality to HEr-
BERT.

Once m is computed, it is encrypted by the user U through the en-
cryption step

m̃ = EΘ(m, kp)

by means of the public key kp obtaining the encrypted version m̃ of the
text embedding m. The encrypted embedding m̃ is then sent to the
service provider S for the privacy-preserving text classification ϕΘ(·)
through HErBERT:

ŷ = ϕΘ(m̃).

52 Architecture of the proposed solution

This is the core of this work: designing an effective and efficient ϕΘ(·)
requires both to completely re-design the NLP text-classification so-
lution taking into account the constraints on the type and number
of operations characterising the BFV scheme and to efficiently imple-
ment it by means of novel algorithmic solutions to reduce the inference
time (since traditional GPU-based solutions cannot be here consid-
ered). These aspects will be better explained in Chapter 6.

We emphasize that, to support the processing of encrypted data, ϕΘ(·)
is encoded by means of the encryption parameters Θ. The output ŷ of
ϕΘ(m̃) is the encrypted version of the text classification provided by
HErBERT. Only the user U , by relying on the private key ks, can then
decrypt it and get the final result

y = DΘ(ŷ, ks).

The Deep-Learning models considered in this work on which HErBERT
is based are Transformers (BERT) models for Sequence Classification,
but as it will be clear the HErBERT architecture can be easily adapted
to any other NLP task. Approximating the original model, so actually
changing its composing modules, where it is needed, is a must in order
to make it possible to run the model using Homomoprhic Encryption
operations, so with just additions and multiplications. This is unfortu-
nately something usually needed when Homomoprhic Encryption and
Neural Networks come together because of the presence of non-linear
functions present in these type of models.
The general model architecture is completely based on the Trans-
former’s BERT general architecture, but approximated and reduced.
So it will have the central part of the Transformer which is Self-
Attention, but it has been approximated in order to be used with
Homomoprhic Encryption. The same goes for the further parts of the
Transformer encoder, which are the normalizations and the activation
function of the two Feed Forward Neural Network layers. The ap-
proximated architecture, with the various details and reasons of the
approximations, is shown in Figure 4.2.

53

it is important to denote the various steps in order to make the HEr-
BERT possible.

• Reducing the size of the model

• Approximating the model for HE-compatibility

• Training the model from scratch

• Encoding the model for privacy-preserving inference

The architecture was in the need of reduction compared to the com-
mon size of Transformer and the Transformer base architecture, BERT,
which has been used. This was needed in order to deal with the noise
budget: those model dimensions were really too large to handle with
Homomorphic Encryption, we can’t just use tensor with dimensions of
thousands in magnitude with these ciphers because even the highest
parameters will fail to handle such large data, and also the required
time for computation is simply unfeasible.
BERT needs to be reduced and approximated in order to be com-
patible with HE available operations: the various approximations are
explained in high details in this Section.
Training the model from scratch is required in order to get the best
weights for this approximated and reduced BERT architecture, given
that the architecture is changed from the required resizing and the ap-
proximations.
The final step, after having trained the model, is to encode its weights
found during training. It has to be encoded so that the Homomoprhic
Encryption scheme BFV can perform privacy-preserving operations
with the received encrypted inputs. Encoding the model means en-
coding all its plaintext parameters into an encoded polynomial ring
representation through the HE parameters Θ, so that now ϕΘ(Î) can
perform operations on the encrypted inputs Î.

54 Architecture of the proposed solution

4.1 Embeddings, Encryption and Decryp-
tion

In NLP in general we make use of Embeddings, an ordered subspace
representation of the unordered set of possible words present in a cer-
tain vocabulary. Given the nature of Embeddings and how they are
obtained during inference from a text representation, we have seen
that they have to be made part of the actual pre-processing (and it is
actually a pre-processing) of text, and it needs to be performed on the
client side. This is due to the fact that to obtain Embeddings from
a word we need to index integer values, corresponding to a certain
dictionary of words, to a tensor containing the real values associated
with the subspace representation of that word that we call the em-
bedding. This indexing operation, among other operations being per-
formed for the process of Embeddings, is not inside the set of available
operation in HE schemes. So, the client before encrypting will have
to pre-process the input text through the trained Embedding layer of
Transformer and then send the HE encrypted Embeddings of the sam-
ple to the Cloud Computing service. This means that the encrypted
input, E(I,Θ, kp), which it will send, already contains the indexed em-
beddings. The server at the end of the classification task will send back
still encrypted data. When the user will decrypt them will see a set
of values on which it will be able to perform the Softmax operation in
order to obtain the highest predicted class probability among all the
present ones.

4.2 HErBERT

HErBERT is a privacy-preserving DL model for NLP, in particular for
text classification. The proposed HErBERT architecture is shown in
Figure 4.2, while a thorough description is provided in the remaining
of the Section. The definition of the model has taken into account the
limitations imposed by HE, because HErBERT is specifically designed
to be used on encrypted data.

4.2 HErBERT 55

Figure 4.2: HErBERT architecture and classifier

56 Architecture of the proposed solution

Embedding layer

The first layer of HErBERT is the Embedding layer. As we can see
from its describing figure it is receiving input in plaintext and that’s
because, as it will be better explained, the limitations of HE won’t
allow to perform the required indexing operation to extract the corre-
sponding embeddings from the words of the input text. Anyway, the
Embedding layer as in BERT is constituted in order to let the em-
bedding vectors determine the position of each word, or the distance
between different words in the sequence. Adding these positional values
to the embeddings provides meaningful distances between the embed-
ding vectors once they’re projected into Q/K/V vectors and during
dot-product Self-Attention. These positional encodings have the same
dimension of the embeddings, given that the two are to be summed.
There are many choices of positional encodings, learned and fixed [79].
In [49] it has been experimented in using both fixed and learned posi-
tional embeddings. While it has been found out that the two versions
produced nearly identical results, a fixed mapping function f : N→ Rk

is better because it allows the model to extrapolate sequence lengths
longer than the ones encountered during the training phase of the
model. In HErBERT’s embedding layer, it has been used the same
mapping function constituted of sine and cosine functions of different
frequencies:

PE(pos,2i) = sin(pos/100002i/d_model)

PE(pos,2i+1) = cos(pos/100002i/d_model)

where pos is the position and i is the dimension. So each dimension
of the positional encoding corresponds to a sinusoid. The wavelengths
form a geometric progression from 2π to 10000 · 2π. This function is
suggested [49] because it has shown the ability of allowing the model
to easily learn to attend by relative positions, since for any fixed offset
k, PEpos+k can be represented as a linear function of PEpos. The final
output of the Embedding layer will be then the indexed word embed-
dings plus the fixed positional embeddings which will model the order
of words in the input text, in HErBERT the embedding dimension will
be of 4 or 8.

4.2 HErBERT 57

Approximated Self-Attention

The second layer of HErBERT is constituted by the approximated Self-
Attention. As can be seen from Figure 4.2 this layer has its parameters
encoded so that HE operations can be successfully be performed. The
first operation will be applying the optimized operation suggested in
[49] and [80] which through a Linear Layer will compute the Query (Q),
Key (K) and Value (V) tensors. Then the Self-Attention dot-product
in HErBERT will be then computed as

Z = Q ·KT

√
head_size · heads

· V

where the scaling factor head_size · heads is equal to d_model. This
layer involves an high number of encrypted-encrypted multiplications,
which are the most NB consuming operations, as explained in Chap-
ter 3. The output of the Self-Attention layer will be an encrypted
tensor which will be used as input of the following layer.

Normalization layer and residuals

The following layer is the normalization layer. In HErBERT Batch
Normalization has been used to normalize the tensor flowing through
the model during inference. Even in this case, given that Batch Nor-
malization has its parameters, the parameters are encoded as indicated
in the Figure 4.2. Although this may seem just a Batch Normaliza-
tion, HErBERT also maintained the residual connections. Together
with Batch Normalization (but also other Normalization techniques),
residual connections are a standard procedure used to help Deep Neu-
ral Networks train faster and more accurately. So, the output of Batch
Normalization won’t just be the normalized Self-Attention but:

Y = Z + BatchNorm(Z)

it is important to note that HErBERT apply the Batch Normalization
over the embedding dimension through a temporary reshaping of the
input tensor: this is done in order to make the model faster while
preserving the required Normalization.

58 Architecture of the proposed solution

Feed Forward layers

In BERT architectures, as well as in HErBERT, following the residual
connection with the normalization layer there is the first Feed Forward
Neural Network layer which is still encoded in its parameters, as any
other parameterized layer of HErBERT. In these layers HErBERT, as
BERT does, will make use of the computed tensors in Self-Attention
to perform a parallelized computation, differently from other RNN ar-
chitectures, over the various words of the input text given the absence
of any recurrent connection. Following the first Feed Forward layer,
HErBERT applies as activation function the non-linear Square func-
tion. This function has been chosen accordingly to be able to make
HErBERT still enough flexible to learn non-linearities in the input data
while keeping under control the growth of the Noise. The activation
function is not a layer composed of learned parameters and indeed
in this case there is nothing in need to be encoded, as the Figure
4.2 suggests. After having performed the activation function, HEr-
BERT maintains the common repetition of the second Feed Forward
Neural Network layer and of the second Normalization (using Batch
Normalization) with the residual connection, keeping under control the
gradient. This module of HErBERT is then consisting of two linear
transformation with a Square activation in between:

FFN(x) = (xW1 + b1)2W2 + b2

Being two different layers, the two FFNNs use different parameters. In
HErBERT the hidden dimension hyperparameter (the dimension of the
FFNNs) is set to be equal to the chosen d_model for the embeddings.

Pooling and classification

HErBERT from this last layer begins the final phase of the classifica-
tion. HErBERT is using an Average Pooling layer to extract a matrix
from the computed tensor of the DNN, representing the average of the
extracted features which have been found. Then a Feed Forward Neural
Network layer, encoded, has been trained as further pooling function,
which is directly followed by the final Feed Forward Neural Network

4.3 Approximated and encoded Deep Learning processing 59

layer for the final classification reshaping the output as a series of val-
ues to be further transformer as probability distribution through the
Softmax operation after they have been correctly decrypted. In HEr-
BERT the pooling layer and the classification layer given that they
operate on simpler operation were able to be larger in dimension, and
they were assigned 20 dimension in output for the Pooling layer and
20 dimension in input respectively for the classifier:

pooler = LinearLayer(d_model, 20)

classifier = LinearLayer(20,#classes)

4.3 Approximated and encoded Deep
Learning processing

As said in the previous section, the proposed HErBERT architecture
is general enough in its nature to be used in future works for also other
NLP tasks. The Transformer is in its nature an architecture which is
able to be applied among different kind of tasks. While there could
be the need of the Decoder part of the Transformer for sequence-to-
sequence tasks, the proposed architecture will work as a reference to
easily add that other approximated needed component. As mentioned
in the Introduction, the Transformer in order to work with HE data
needs to be approximated in order to have polynomial operations only.
This means that all the non-linear functions not already expressed in
a polynomial form will have to be in some way approximated in a
polynomial form. For example, one of the most common non-linear
and non-polynomial activation functions is ReLU. Given that ReLU
is non-polynomial, it can’t be performed through HE schemes (they
can’t perform the comparison operation). So ReLU will have to be
substituted by another working non-linear and polynomial activation
function. In the following Table 4.2 there are shown the various ap-
proximation that has been done on the original BERT architecture.

60 Architecture of the proposed solution

Table 4.2 BERT modules approximations

Original Approximation

Softmax NULL or Batch Normalization
Layer Normalization Batch Normalization

ReLU or GeLU Square

Max pooling Average pooling

Let’s now analyse in more details the chosen approximations needed
to be made:

• Softmax: this is a highly non-linear and non-polynomial function
involving exponential functions and divisions, σ(z)j = ezj∑K

k=1 e
zk
.

Unfortunately, these are two types of operations unable to being
performed using HE schemes. Approximating it through polyno-
mials is not very good because we would need very high degree
polynomials [81] compromising all the available noise budget. So,
the first approximation we thought about to try was Batch Nor-
malization [82]. Given that Softmax scale all values among a cer-
tain axes between [0, 1] and make their summation exactly equal
to 1, we wanted to let the model maintain at least an approxima-
tion of one of these two properties. With Batch Normalization
we were able to do that. We also saw that Softmax is not the
Self-Attention’s best paired function. Completely removing the
Softmax operation and not adding any of its approximations the
model during training phase was able to reach the same perfor-
mances or better than the model using Batch Normalization to
partially substitute Softmax. The fact that our model being used
is smaller than common BERT architectures in clear and with-
out having multiple stacked Transformer’s encoders, it is reason
why Softmax seems to have less importance in this case and even
without it the model will actually perform well.

• Layer Normalization [83]: this module has one problem, which
is the computation of the square root of the variance, but also
has a more subtle issue. The computed-during-inference mean

4.3 Approximated and encoded Deep Learning processing 61

and variance are encrypted data, they won’t be encoded like the
weights of the model. This is because in Layer Normalization,
mean and variance are computed during inference for each sam-
ple. That’s not completely an issue if not for the higher compu-
tational load and noise consumption. The issue is what we do
with this data. Layer Normalization is computed in this way:
y = x−mean√

variance+ε . As you can see, this would mean to perform
a division between encrypted data, but remember that the only
two atomic type of operations available are the sum and multi-
plication between encrypted data, not the division. So instead
of using Layer Normalization we are able to perform Batch Nor-
malization [82] on the tensor received in the corresponding part
of the Transformer and learn during training the estimation of
the mean and variance of the population of the training dataset,
which will be a good approximation of the man and variance of
the test dataset population. Furthermore, in order to ease the
noise budget degradation we decided to apply Batch Normaliza-
tion not on the batch column but on the feature columns so that
we would consume less noise and time during computation, the
Section 7 will show the good accuracy that Batch Normalization
on a temporary reshaped tensor achieves.

• ReLU [84]: ReLU is not a polynomial function: it isn’t even
derivable technically. We can’t perform ReLU = max(0, x) be-
cause we can’t perform the comparison operation or at least not
in a feasible time using the current scheme and implementation.
So by following other works we are using the interestingly easy
and working polynomial activation function Square = x2 which
showed in other works bringing good results [85].

• Max pooling: we are not able again to perform comparison oper-
ation so we can’t compute the maximum among a certain axes of
a tensor. The solution is to use the other working and common
pooling method, which is to perform the mean. The mean oper-
ation is completely HE compatible given that we are performing
a summation between encrypted data and dividing them to a
plaintext, the number of values: 1

n
∗∑n

i=1 xi. The division here is

62 Architecture of the proposed solution

not a problem because we can easily change it to the multiplica-
tion of the inverse of the number of values, which is possible to
compute given that it is not an encrypted value.

As briefly explained above, before reaching this final result, we ini-
tially investigated other solutions which we thought to be valid. The
first solution with regard to the Self-Attention was trying to partially
substitute Softmax with another BatchNorm which tried to normalize
the values and partially emulating Softmax behaviour of limiting the
range of the values in the input tensors.
With regard to the activation function, before reaching to the Square
activation, we tried to see whether was possible to run the approx-
imation of the GeLU function homomorphically. Unfortunately, the
approximation involves a power with a degree of 3 which made our
available noise budget quickly go down to 0 or to near-0 values given
the already present multiple encrypted-encrypted type of operations in
the module of Self-Attention.
Regarding instead the final classifier, we initially thought of adding
an approximation of an activation function like the hyperbolic tangent
function. At the beginning we thought of using Taylor series or Cheby-
shev polynomials which are good for a general purpose approximation
but not so good when you have a very strict amount of operations
available, given that those approximations were involving polynomials
with degrees of 3 or more. An interesting approximation we thought
about was from an intuition thanks to a simple numerical analysis of
the tensors running inside the model. We saw that the range of values
was quite small, and so in this range the hyperbolic tangent can be
approximated linearly. While mathematically correct, this approxima-
tion did not bring any improvement due to the lack of non-linearities
which are giving the model more flexibility to learn more complex pat-
terns.
The final proposed architecture was chosen not only thanks to analysing
the feasibility of other solutions but also by finding out the perfor-
mances of various different solutions and comparing them: we were
able to see that the chosen solution was performing quite good or bet-
ter compared to other solutions we thought about, more on that will

4.3 Approximated and encoded Deep Learning processing 63

be shown in 7. After having chosen the solution, indicated in the Table
7.2 we investigated, as it will be explained furthermore, the feasibil-
ity of an embedding dimension of 4 which improved furthermore our
architecture with respect to the usage of Homomorphic Encryption
schemes.
Anyway all these approximations of the final model of course will alter
the final results in accuracy which will be addressed in the following
Sections. We also emphasize that we cannot use an already trained
BERT and approximate it, but we had to train an approximated and
reduced BERT from scratch in order to obtain the best results from it.
This is due to let the model adapt its weights to the various approx-
imations now in place, which are of course different from the original
model. The general model will then have the following form:

y(x) =
∑
i

∑
j

(wij ·
1
n
·
∑
k

((
∑
l

∑
m

wlm·

((
∑
n

∑
o

(wno · ((Q · x) · (K · x)) · (V · x) + bno) + b_norm1)/σ1)2)

+ b_norm2)/σ2 + blm) + bij) (4.1)

In the above Equation 4.1 we can see how our model is now completely
free of non-polynomial non-linearities, we just have a set of summations
and multiplication operations among tensors and the non-linearity of
x2 is added in order to still give the model the power of being more
flexible and to better represent complex data. The division operations
while shown are actually just multiplications: 1

n
, 1
σ1

and 1
σ2

are just
constant values or values obtained through the initial training of the
model. The first term is for the average pooling while the other two
are for the Batch Normalization. Being just known values of the model
itself, which is as we said encoded, we are able to perform the division
by just encoding not those values at the denominator but by encoding
the whole fraction computed in clear just before so that then we will be
completely free of division, and we will have the full HErBERT. Also
note the presence of the Q (query), K (key) and V (values) tensors for
the Self-Attention while the absence of the Softmax operation which
was removed as explained in the current Section.
In the HErBERT architecture as previously shown, it has also been

64 Architecture of the proposed solution

considered the final classifier, which is not technically a part of BERT,
but it is just a module used for classification tasks. It is important
to denote that we also wanted to let the classification be privacy-
preserving, but it is completely possible to just consider a feature-
extraction privacy-preserving-deep-learning model while letting the less
computational demanding classifier module run on the client in order to
consume less noise and of course to make computation slightly shorter.
In this way, we would have a Transfer Learning model where a clas-
sifier can be trained and used in clear from the features extracted by
the deep learning model run in a privacy-preserving setting.

4.4 Dimensioning the embeddings

For achieving a working HErBERT we necessarily needed to scale down
a bit the dimensions of the model. One of the most influencing dimen-
sion of the model is the size of the embeddings. Without doing this,
we would not be able to make computations in a feasible time, and
we would not be able to find the feasible parameters needed to handle
such large tensors. We introduced in this Section that embeddings of
4, 8, 16 and 32 were initially used while then reducing them to 4 and
8 due to constraints imposed by HE. The first question which comes
to mind is that they seem to be quite small embeddings compared to
what the original implementation of the Transformer used.
While the analysis of the number of dimensions have not received
enough attention [86] and also previous works [87] show the perfor-
mance for some tasks degrading for higher embeddings dimensions.
This justifies the need for study of bounds for dimensions of embed-
dings. And it also shows that smaller embeddings are not unusable,
it is all dependent on the level of generalization and complexity a
model need to achieve with respect to a certain dataset and espe-
cially how large such dataset is. Coming back to our embeddings di-
mensions, the choice other just made out of trial and error was also
backed by this work of Google [88] where they provided a general
formula for dimensioning the embeddings in function of how large is
a vocabulary of a certain dataset. The general provided formula is

4.5 Parallelizing computations 65

embeddingDimension = 4√vocabularySize. The results in the next
Sections will show that in this work, small embeddings for the HEr-
BERT architecture performed with good results on the various dataset
chosen to be analysed. Further details about the dimensioning of the
embeddings will be shown in there.

4.5 Parallelizing computations

Homomorphic Encryption makes everything slower in computation. In
order to make things faster we decided not to just parallelize over the
various sample of a batch and over multiple batches but we decided
to also parallelize the computation of a single sample. In the used
implementation of SEAL, further presented later in the next Section,
this parallelism was missing. This was a problem because for the most
common use-case in production, a model would not receive batches of
data but mostly single samples and so here it is the first reason of why
we added this parallelization. The other main reason is that in this
way we can further reduce the inference time of the whole test set in
order to measure the performances of the model.

4.6 Encryption parameters

Choosing the parameters Θ is fundamental in order to make possible
the inference through the model and to get correct results back. While
the q parameter, as already mentioned, is more difficult to choose and
for that we just refer to pre-computed values present in SEAL [32]
for the other parameters we made a throughout search for the ones
which provided best results. In the previous subsection we explored
the various approximations and changes to be made in order to make
HErBERT working. This also gave suggestion on which parameters put
our focus better on. In HErBERT there are in total a larger encrypted-
encrypted tensor multiplication for the obtaining the Query, Key and
Value tensors from Self-Attention and another encrypted-encrypted
tensor multiplication for the Square activation function. Then mul-
tiple others encrypted-encoded tensor multiplication for the inference

66 Architecture of the proposed solution

through the various layers’ weights of the model. We already talked
about the higher noise consumption for encrypted-encrypted tensor
multiplications and this was what limited our choice of parameters.
We could not choose, m ∈ 1024, 2048, 4096 but we had to choose a
baseline of 8192 in order to do not finish all the noise budget avail-
able before ending the computation. This particularly influenced the
inference time given that this large parameters while bringing more
noise budget, it also has the counter-effect of making computations
way slower. particularly difficult and influences the security of the
scheme. The p parameter, now that the m parameter had been fixed,
was chosen by just exploring a certain range of values in order which
one was providing good results in terms of low computational error
and noise budget consumption. By doing in this way we saw that the
parameter p = 2100000 was a good choice in terms of those two met-
rics. Regarding security, in this work we considered the sec parameter
equals to 128 bits, which is the default value of SEAL. There are also
what we could call other hyperparameters which are the integer and
fraction bits assigned for the Fractional Encoder, their influence will
also be shown in the Section for Experimental Results regarding their
effect of lowering the computational error.

Chapter 5

Implementation of the
proposed solution

In this Chapter, the HErBERT architecture implementation will be
introduced. This implementation is just one of the many possible ones.
HErBERT is the Python implementation of a Crypto Transformer.
What’s new differently from other different Crypto NLP models is
the usage for the first time of the BERT architecture, while reduced
in dimension. The following implementation has the characteristics of
completely working as if it was in clear, all the encrypted operations are
hidden from whom will call the model for performing an inference on
some data. The implementation has been used to perform predictions
and tests on Amazon AWS environments, which shows the applicability
in real-world scenarios.

5.1 External libraries and dependencies

For the implementation of HErBERT the following external libraries
have been used:

• NumPy [89]: library used for performing advanced scientific com-
putation on the tensors flowing throughout the model during in-
ference.

• multiprocessing [90]: internal dependency of Python for enabling
the model of having the capability for parallel computations.

68 Implementation of the proposed solution

• Pyfhel [35]: Homomorphic Encryption library adding support for
the used BFV [21] scheme under SEAL [32].

• PyTorch [91]: Deep Learning Python library used in order to run
HErBERT with the correct weights and parameters.

5.2 Structure

HErBERT is implemented with the Python 3 language. It relies on
some libraries and dependencies previously listed. The Pyfhel library
2.3.1 [35], Laurent (SAP) and Onen (EUROCOM) licensed under the
GNU GPL v3 license for the tasks of HE; Pyfhel is a Python wrapper
of the C++ implementation of the Microsoft SEAL library [32] which
includes the BFV scheme [21] which has been used in this work. The
Numpy library is implementing in Python all the various matrix and
tensor operations required to perform inference in Neural Networks
and Deep Learning models, NumPy is essentially wrapping fast and
optimized C++ code for performing computationally intensive opera-
tions such as tensor multiplication. The PyTorch library is required in
order to use the trained models in PyTorch and make them run in HEr-
BERT, this library will fundamental in order to run the saved models
and extract the corresponding weights which will be then further en-
coded in order to enable the Homomoprhic Encryption operations to
take place accordingly. HErBERT can be divided into sub-packages:

• activations: code containing required activation functions for fi-
nal predictions.

• attention: code containing the Self-Attention approximated im-
plementation of HErBERT.

• core: fundamental code for making HErBERT work as desired.
It contains code for performing cryptographic operations such as
encrypting/decrypting and encoding/decoding tensors, the code
for the fundamental mathematical operations performed in par-
allel with the multiprocessing Python dependency through the
HE scheme and the base module code for the various HErBERT
Deep Learning layers.

5.2 Structure 69

• embeddings: code for performing the input transformation and
compression into a lower dimensional vector space from the pre-
trained weights.

• modules: fundamental code containing the various approximated
Deep Learning layers needed for HErBERT.

• utils: code containing the functions for loading accordingly any
required data from a certain dataset and the functions for load-
ing the trained PyTorch model which is desired to run. It will
load its weights, biases and any parameters present inside the file
containing the model.

• tests: code for running tests of the overall implementations and
sub-parts of it, fundamental during the implementation for mak-
ing sure of a correct model implementation.

HErBERT itself is able to handle various types of required layers in
the Transformer architecture:

• transformer: Transformer encoder implementation

• feed_forward: Transformer’s Feed Forward Neural Network layer
implementation

• linear_layer: Linear layer implementation

• pooler: Pooler linear layer for the classification

• batch_norm: Batch Normalization layer implementation for Layer
Normalization approximation

• activation_function: Activation function layer implementation
for performing approximated non-linear activation functions such
as Square function.

Every module in HErBERT has been built following the PyTorch
paradigm of having the two methods to be overridden:

• __init__: this functions builds a Layer object which will be
further initialized with correct parameters once loaded.

70 Implementation of the proposed solution

• __call__: this function receives in input the input tensor on
which a layer will make the corresponding computations on and
then returns the correct output.

Other than these two methods, the abstract Module class inside the
core package also includes the init_param method which it is used re-
cursively to initialize the entire HErBERT model parameters from the
outer container.

All this abstractions are required in order to make the code easier to
read, understand and maintain for future and further developments.

5.3 Model loading

The code contained in the utils package can retrieve all the parameters
of a PyTorch model regarding a Transformer, with restriction on the
layers name using the ones of the official implementation. It will load
all the model parameters, encode them accordingly and store them
in a data structure which will be used by HErBERT to initialize the
encoded Transformer model for HE inference. A Transformer model
made in PyTorch to be loaded in HErBERT has to respect the following
constraints:

• It must be a Transformer model;

• It must come from a compatible and already-trained approxi-
mated and reduced BERT model for HE;

• It must have been saved in PyTorch with the corresponding API
using the save() function;

• It must be a model saved with the .pt or .pth extension.

The load_model Python file under the utils package is built in order to
load the corresponding model parameters in a functional way, making
the code very understandable and more efficient. The general method
for parameters loading is the one presented in the Appendix A.

5.4 Model 71

5.4 Model

Given that SEAL [32] is a C++ implementation of the Homomorphic
Encryption scheme being used, we needed a Python wrapper in order to
make it work with the overall project being implemented using Python.
For this purpose, one of the most complete and supported wrapper li-
braries for SEAL, and especially BFV, is Pyfhel [35]. We chose it given
also that it has also implemented in it the Fractional Encoder needed
to scale float values into integer representation of BFV as described
in previous sections. While Homomorphic Encryption is gaining more
and more popularity, there is still a huge lack of support from major
Deep Learning frameworks like Pytorch [91], Tensorflow [92] and Keras
[93]. This is also due to the counterpart missing support of Homomo-
prhic Encryption schemes implementations for GPU and CUDA [10].
So, given the total absence of support, we had to implement completely
from scratch our model and each of its parts and its submodules.

Figure 5.1: HErBERT implementation

Pyfhel was also chosen because it eased the work for us, given that it
offers support for using Numpy [89] to perform various computation re-
garding tensors of homomorphically encrypted values. For the correct
implementation1 we followed the official implementation of the Trans-

1Code is available at https://github.com/comidan/HErBERT

https://github.com/comidan/HErBERT

72 Implementation of the proposed solution

former architecture provided by Pytorch [80], we completely refactored
the various operations from the lowest level using NumPy. As just said
we then had to re-implement everything starting from the base modules
made of Linear Layer, Batch Normalization, Feed Forward and Pooler.
Then of course in the module Attention we re-implemented, also here
following the official implementation [80], the Multi Headed Self At-
tention and the actual Self Attention. These are of course the main
parts of the Transformer in order to make it work. To give a glimpse
of the whole implementation we show here the code of the MultiHead-
edSelfAttention where it is shown how the code completely resembles
the original one from PyTorch but it is refactored with NumPy meth-
ods and the usage of Homomorphic Encryption, in the Appendix A
As you can see everything is completely independent of any PyTorch
code or any other DL framework, everything had to be made from
scratch. In the core modules instead we implemented the actual way
of handling data with the Homomorphic Encryption scheme: initializ-
ing, encrypting, decrypting and all the various pre-computation needed
operations. The important methods for handling encoding/decoding
and encrypting/decrypting are shown in the Appendix A. There is
also the operational part where the parallelization code is also imple-
mented, and we will talk about that in the following Chapter 6, where
the various processes are continuously created and run. Each process
during the computation will then call the actual NumPy primitive for
tensor multiplications using completely encrypted data and encoded
weights of the model. The overall implementation logic is summarized
in the Figure 5.1 where it can be seen that to actually make HErBERT
work with Homomorphic Encryption there are a lot of considerations
to be done.

5.5 Software testing

Given that the implementation had to be made fully from scratch using
NumPy for tensors operations and Pyfhel for handling HE operations,
it required a precise implementation to make sure everything worked as
expected making various tests on the developed classes and function-

5.6 Model training and testing 73

alities during their development was a must. The Transformer module
and the Homomoprhic Encryption operations are not directly straight-
forward to use, so implementing tests in parallel it favored their com-
plete and correct implementation, with respect to the original one in
PyTorch, while also debugging them. Three main classes for the tests
were made which focused on three different parts of the architecture:

• test_functions.py: testing class for the fundamental operations
such as tensor multiplications, activation functions and pooling.

• test_layers.py: testing class for the various layer of the model,
from the LinearLayer to MultiHeadedSelfAttention and Normal-
ization classes.

• test_loading.py: testing the encoding of the parameters and the
further loading of those encoded parameters into the HErBERT
model.

All the various tests have been made using the unittest library provided
under the IntelliJ IDE on which PyCharm is based on.

5.6 Model training and testing

The training of the models were performed using PyTorch and a com-
bination of the Google Colab resources and of the local available re-
sources, consisting in a Nvidia GTX 1060 3 GB GPU. The training pro-
cess has been performed taking in account the following summarized
characteristics in Table 5.1. For the weight initialization with Xavier
Initialization, we used GlorotNormal to better initialize weights W and
letting back propagation algorithm start in advantage position, given
that final result of gradient descent is affected by weights initialization.

W ∼ N
(
µ = 0, σ2 = 2

Nin +Nout

)

Other than the testing of the actual software implementation, also the
testing of the model was mandatory. In order to successfully test the
trained model, we used an evaluation set for the various models being

74 Implementation of the proposed solution

T
ab

le
5.
1
Tr

ai
ni
ng

pa
ra
m
et
er
s

Tr
ai
ni
ng

ar
gu

m
en
t

Pa
ra
m
et
er

D
et
ai
ls

lo
ss

C
at
eg
or
ic
al

cr
os
s
en
tr
op

y
it
is

a
m
ul
ti-
la
be

lc
la
ss
ifi
ca
tio

n.
ep

oc
hs

24
Em

pi
ric

al
ly

sh
ow

n
to

be
en
ou

gh
fo
rt

ra
in
in
g
th
es
e

re
du

ce
d
an

d
ap

pr
ox
im

at
ed

m
od

el
s.

st
ep
s_

pe
r_

ep
oc
hs

D
ep

en
ds

on
th
e
da

ta
se
t

U
sin

g
a
ba

tc
h-
siz

e
of

32
.

va
lid

at
io
n_

st
ep
s

D
ep

en
ds

on
th
e
da

ta
se
ts

U
sin

g
a
ba

tc
h-
siz

e
of

32
.

W
ei
gh

t
in
iti
al
iz
at
io
n

X
av

ie
r

To
ha

ve
be

tt
er

st
ar
tin

g
we

ig
ht
s,

w
hi
ch

sh
ou

ld
sp
ee
d
up

th
e
tr
ai
ni
ng

an
d
le
tu

sh
av
e
a
be

tt
er

fin
al

re
su
lt
of

gr
ad

ie
nt

de
sc
en
t.

op
tim

iz
er

A
da

m
W

In
[9
4]

it
is

sa
id

th
at

it
sh
ou

ld
gi
ve

be
tt
er

re
su
lts

th
an

A
da

m
w
hi
ch

is
th
e
de
-fa

ct
o
st
an

da
rd
.

le
ar
ni
ng

_
ra
te

dy
na

m
ic
al
ly

sc
he
du

le
d
st
ar
tin

g
fro

m
0.
00
1

Va
lu
e
w
hi
ch

al
lo
we

d
th
e
m
od

el
to

le
ar
n
co
rr
ec
tly

.
be

ta
_
1

0.
9

Va
lu
e
su
gg
es
te
d
in

[9
4]
.

be
ta
_
2

0.
99
9

Va
lu
e
su
gg
es
te
d
in

[9
4]
.

C
al
lb
ac
k

Ea
rly

St
op

pi
ng

To
st
op

th
e
m
od

el
w
he
n

it
re
ac
he
s
co
nv

er
ge
nc
e,

an
d
it
ac
ts

as
we

ig
ht

de
ca
y
w
hi
ch

he
lp
sp

re
ve
nt
in
g

ov
er
-fi
t.

de
lta

0.
00
1

A
sm

al
le

no
ug

h
va
lu
e,

it
is
≈

1 10
0
of

th
e
fin

al
lo
ss

of
th
e
m
od

el
s.

5.6 Model training and testing 75

trained on which we monitored whether the training process was going
on successfully. For visualizing the partial results and directly plotting
training and validation accuracy/loss epoch after epoch, it has been
used Tensorboard [95].
In order to get the best model during the training process we used
the Early-Stopping technique which saved the current best model and
stopped in case in the following epochs the loss was continuing to get
higher and higher without further improvements with respect to the
previous local minimal. The further final testing results were instead
performed on the pre-built tests set of the used Datasets described
in the Chapter 7. The training and testing process are particularly
important in this case because we don’t have an already pre-trained
model, but we must train from scratch a new kind of approximated
model, and so we have to monitor in a very peculiar way the progress
of these whole processes.

76 Implementation of the proposed solution

Chapter 6

Efficiency optimizations

6.1 Limitations

Homomorphic Encryption brings with it a lot of limitations and draw-
backs in terms of freedom, computational load and time. A multi-
plication between two tensors being performed under Homomorphic
Encryption is way slower than one performed in clear for a variety of
reasons:

• CPU-only support: no CUDA or GP-GPU code support is present
for the implementation of the HE scheme, this will result in slower
computation in general.

• HE cipher scheme: from how HE schemes work, they are in na-
ture slower in performing the same operations that in clear would
be way faster.

• HE Fractional Encoder: it enables to manage only one scalar en-
crypted value per operation, so we can’t speed up using a vector
representation because we would still have to explore the whole
vector of fractional values.

• With large models come large tensors: the larger the model and
the corresponding tensors, the way larger the execution time,
memory consumption and noise consumption will be.

• Missing parallelism in the used HE scheme implementation: the

78 Efficiency optimizations

HE scheme being used does not offer by itself any kind of paral-
lelism among the various cores of a multiprocessor.

6.2 Parallelizing computations

In order to optimize the overall execution and actually make HErBERT
possible, we decided to focus on the two last points. Regarding the
largeness of the Transformer architecture, we decided to sensibly reduce
the size of its parameters. Parameters with the same or similar size to
the one used by BERT [7] or by the original implementation are really
too large not just to perform inference in slower time but to actually
being able to decrypt the results without letting the noise budget reach
the 0 value. So we investigated one depth Transformers with small
embedding dimensions of 4, 8, 16 and 32 as we have shown in the
previous Chapter. The last point is about the missing parallelism. In
order to achieve it we exploited two properties, the first is to actually
perform in parallel on multiple cores the inference of various sample
in one batch. But in order to also reduce the execution of a single
sample among a batch of samples, or even in the case of batch size of
1, we decided to exploit the block properties of matrix multiplications
[96]. It is a technique which enables us to perform in parallel multiple
sub-matrix multiplication and combine all of them together at the end.
Even about that, more will be explained in the corresponding following
subsection.

Figure 6.1: Block matrix multiplication

The parallelization technique is based on dividing up in different
blocks the two matrices being multiplied, as shown in Figure 6.1 in
order to perform in parallel those sub-matrices multiplications. The

6.2 Parallelizing computations 79

level of parallelization is so dependent on the block sizes and so depen-
dent with the size of the two matrices. The above Algorithm 1 shows

Algorithm 1 Parallel Block Matrix Multiplication algorithm
Input: A, B, C, q
Output: C

function parallelBlockMatMul(A, B, C, q)
1: Reshape accordingly A,B
2: for i to q − 1 do
3: for j to q − 1 do
4: Initialize all elements of Ci,j to 0;
5: end for
6: end for
7: Reshape accordingly C
8: for k = 0 to q − 1 do
9: p := Process(target_function=matmul, args=(A[i, 0, :, :], B[0,

j, :, :], C[i, j, :, :]));
10: Processes_list.add(p);
11: p.start();
12: end for
13: for p in Processes_list do
14: p.join();
15: end for
16: return C

Input: A, B, C
Output: C

function matmul(A, B, C)
17: C := C + A ∗B;
18: return C

the pseudocode implementation of the parallelized through processes
block matrix multiplication involving in this example case two matri-
ces A and B of shape (n, n) with a block size of (n/q, n/q) where q
must be a divisor n, hence the dependence on the original shape. This
procedure will then memorize in C, the output matrix, the multipli-
cation result of the blocks done through different parallel instantiated

80 Efficiency optimizations

processes. The procedure ends with waiting all the processes to join
the main caller in order to be sure to return the correct computation
of the C output matrix. Now that theoretically we know what to do
to make things a little better, we have to face the problem that nei-
ther SEAL [32] nor Pyfhel [35] are providing any kind of support for
parallelized computation. So we needed to parallelize it on our own on
top of Pyfhel in Python. With the library wrapping SEAL in Python
there are different factors which creates the problem of not being able
to speed up the computation by scaling it to multiple cores:

• Python’s GIL [97] for CPython : it’s a necessary mutex used
mainly because CPython’s memory management is not thread-
safe and it will block concurrent threads accessing particular re-
sources like CPython code, which is indeed our case. Moreover,
according to python documentation and reports no one has man-
aged to get rid of it in a new Python release, unfortunately.

• No native tensor C++ classes in SEAL nor in the Pyfhel wrapper
parallelizing code a-priori before GIL.

• BFV being native for integers, while using Fractional Encoder
which just keeps track of the scale of fractional values repre-
sented in int64, won’t be parallelizable through Python BLAS
[98] libraries: they are not supporting integer types.

The real imposed limitation between these three factors is the Python
Global Interpreter Lock (GIL). The GIL is a mutex variable allowing or
disallowing threads to run their code through the CPU. It is a shared
mutex across multiple threads for which they are concurring to acquire
in order to lock it so that they are authorized to run and to do not
wait in the threads’ queue. The GIL must be acquired and released
accordingly as shown in the Figure 6.2 from [99] where each thread is
running only when has the GIL of the process managing those threads.

6.2 Parallelizing computations 81

Figure 6.2: Global Interpreter Lock in Python multi-threading

In Python source code [100] the GIL is represented as this shared
mutex:

s t a t i c PyThread_type_lock
i n t e r p r e t e r _ l o c k = 0 ; /∗ This i s the GIL ∗/

Each thread in order to run will have to run the blocking call of the
following primitive in order to run their code:

void PyEval_AcquireLock (void)
{

PyThread_acquire_lock (in t e rp r e t e r_ lock , 1) ;
}

And the following for releasing it:

void PyEval_ReleaseLock (void)
{

PyThread_release_lock (i n t e r p r e t e r _ l o c k) ;
}

So as it is shown, here we are dealing with a global mutex among
multiple thread, making it impossible to access the needed bytecode
of CPython in parallel from different threads. So this is a serious
limitation generated by how Python manages multi-threading. This
can be easily bypassed by thinking outside the threads’ realm and
without limiting us to one process only. As it is usually done in Python
for getting real parallelism, we move to multiprocessing where each
process won’t have the problem to wait for acquiring the GIL because
each one will have its own GIL, so no race condition for a single GIL

82 Efficiency optimizations

in order to acquire access to CPython code. So, in order to solve these
problems we just have to bypass the problem of threads for the GIL and
performing dot product of tensors using the block matrix multiplication
algorithm shown before. From multiple threads we have to move to
multiple processes, in this way we will bypass the limitation imposed
by GIL. we will be able to scale with multiple CPU cores, but the
memory won’t be shared anymore. There is the need of concurrent
structures which are able to work across the different virtual address
spaces of different stacks in memory for the processes. Python in the
multiprocessing module provides such data structure like the Queues.

6.3 Implementation

All the presented reasoning can now be shown as actually implemented
Python code enabling to have parallelism in Homomorphic Encryption
tensors operations through Pyfhel and directly by using Python.
def rebui ld_matr ix (a r r) :

rows , co l s , n , m = arr . shape
ar r = arr . swapaxes (1 , 2) . reshape (rows∗n , c o l s ∗m)
for i in range (a r r . shape [0]) :

for j in range (a r r . shape [1]) :
a r r [i] [j] . _pyfhel = cm.HE

return ar r

def block_matrix (arr , rows , c o l s) :
h , w = arr . shape
n , m = h // rows , w // c o l s
return ar r . reshape (rows , n , co l s , m) . swapaxes (1 , 2)

def dot_product (a , b , out , q , i , j) :
out [:] = np . matmul (a , b)
q . put ([out [:] , i , j])
q . task_done ()

def __pardot (a , b , nblocks , mblocks , func=dot_product) :
n_jobs = nblocks ∗ mblocks

6.3 Implementation 83

out = np . empty ((a . shape [0] , b . shape [1]) , dtype=PyCtxt)
out_block_matrix = block_matrix (out , nblocks , mblocks)
a_block_matrix = block_matrix (a , nblocks , 1)
b_block_matrix = block_matrix (b , 1 , mblocks)

p r o c e s s e s = []
q = JoinableQueue ()
for i in range (nblocks) :

for j in range (mblocks) :
p = Process (t a r g e t=func ,

args=(a_block_matrix [i , 0 , : , :] ,
b_block_matrix [0 , j , : , :] ,
out_block_matrix [i , j , : , :] , q , i , j))

p . s t a r t ()
p r o c e s s e s . append (p)

r e s u l t = []
for _ in range (n_jobs) :

r e s u l t . append (q . get (b lock=True))

for p in p r o c e s s e s :
p . j o i n ()
p . terminate ()

for data in r e s u l t :
out_block_matrix [data [1] , data [2] , : , :] [:] = data [0]

return np . expand_dims (rebui ld_matr ix (out_block_matrix) , ax i s =0)

From the above source code, we can see the implementation of the par-
allelized HE matrix multiplication operation directly in Python on the
Pyfhel HE library. The blockshaped method is required to adjust as
seen in the pseudo-code the 2-dimensional tensors being multiplied in
blocks that can be multiplied in parallel through the do_dot method
which is going to save partial results in the JoinableQueue, the shared-
memory data structure. After having performed the multiplication, the
unblockshaped is going to reshape the output matrix accordingly to
a 2-dimensional tensor and it is going to re-add the reference to the
HE Pyfhel object handling the HE operations on the various elements
present in the Numpy tensor. This is needed because when handling
the HE values in a different process than the original one, the reference

84 Efficiency optimizations

to the HE object is lost simply because in their process’ assigned mem-
ory that object does not exist anymore. In order to be able to perform
further operations, monitoring the noise budget values and any other
operation on encrypted values, there is the need to re-associate the
HE Pyfhel object reference to each one of the elements present in the
Numpy tensor. While this may seem not really efficient as a solution,
it is the only way given this implementation restriction of Pyfhel which
was not thought to handle multiprocessing for its operations through
Numpy. While it has been talked about parallelizing tensor multi-
plications and matrix dot-products, the parallelization technique had
also been applied to other layers of the model where it has been able
to reduce the computational time. Parallelization has been applied
also for the Square activation function and for the Batch Normaliza-
tion multiplication to the inverse of the square root of the variance σ.
The particular thing about parallelizing these other parts of the model
was that should have changed was just target function in the multiple
processes, to be adapted depending on the operation to be performed.

Chapter 7

Experimental results

In this Section, we show the evaluation of the accuracy and the compu-
tation load of the HE Deep Learning provided in various configurations.

7.1 Description of HErBERT settings

The HErBERT model being used have embeddings dimension of 4 and
8. Furthermore, for the heavy computational constraints imposed by
the use of HE, HErBERT will employ a 1-layered Transformer and one
attention head. Given that SEAL [32], one of the most important HE
frameworks, is a C++ implementation of the BFV scheme, a Python
wrapper is needed. One of the most complete and supported Python
wrappers for SEAL is Pyfhel [35]. While HE is gaining more and
more popularity, for now no major DL frameworks has support for
this technology. Additionally, HE libraries supporting the use of GPU
are at the very early stage. For these reasons, HErBERT has been
implemented from scratch using NumPy [89]. However, the reference
implementation of the various layers is PyTorch [80].

7.2 Datasets

Two datasets have been used to test our model:

• Yelp Polarity Review [16] is a dataset provided by Yelp contain-
ing reviews. It is extracted from the Yelp Dataset Challenge 2015

86 Experimental results

data. The Yelp reviews polarity dataset is constructed by con-
sidering stars 1 and 2 negative, and 3 and 4 positive. It contains
a set of 560000 samples for training, and 38000 for testing.

• Yahoo! Answers [16] is a dataset provided by the now closing
Yahoo! Answer platform. The dataset is the Yahoo! Answers
corpus as of 10/25/2007. It includes all the questions and their
corresponding answers. The Yahoo! Answers topic classification
dataset is constructed using 10 largest main categories equally
distributed. Therefore, with 10 different classes the total number
of training samples is 1,400,000 and testing samples 60,000 in this
dataset. From all the answers and other meta-information, only
the best answer content and the main category information were
kept.

A further analysis of these two datasets about their properties and
relevant information which were important for the choice of embedding
dimensions can be found in these works [101] [102] where other than
just providing the average review length in words, it was also provided
the size of the opinion vocabulary of the Yelp Polarity Review dataset
[102]: the size of the set of words which actually was relevant for the
Text Classification task.

7.3 Parallelization

In this section we show the interesting results provided with paral-
lelizing the dot product on a single encrypted-encoded multiplication
bypassing the GIL on two matrices with different square shapes (4, 8,
16 and 32). The parameters being used are 8192 for m and 2100000
for p. As we can see from the Table 7.1, we are always getting a useful
improvement from parallelizing the dot product. These results have
been sampled from the execution on a c5.18xlarge AWS istance using
72 cores (vCPU) and 144 GB of RAM for parallelizing. Note that
given the availability of 72 cores, the maximum q used to divide up in
blocks has been 8 so that no process of the 64 created was going to be
put in the waiting queue of the CPU. This means that higher number
of cores can furthermore increase performances.

7.4 Experimentation details 87

Table 7.1 HE multiplication timings comparison using m = 8192 and
p = 2100000

Shape Serial Parallel

(4,4) 0.235 s 0.058 s
(8, 8) 1.868 s 0.359 s

(16, 16) 14.939 s 2.006 s
(32, 32) 119.503 s 14.652 s

7.4 Experimentation details

The following subsection for the Results will show the empirical results
organized for various different metrics, which we considered important
to analyse for both Homomorphic Encryption and Deep Learning with
the type of task at hand. The following metrics are being considered:

• Model accuracy: we are running a model for Sentiment Analy-
sis and Text Classification, so accuracy over the test set is the
right metric for evaluating the goodness of the approximated and
encoded model.

• Inference time: the running time for making both a single review
inference and an overall test set inference is really important.
That’s because Homomorphic Encryption slows execution time
of the various operations more than just a bit. We are no more
talking about inference is milliseconds but in terms of seconds,
both for the fact of running encrypted operations where modular
arithmetic is impacting a lot and for not having available the
possibility of moving to very high performing GPUs.

• Main memory usage: memory occupation here is very important.
Using the large parameters we chose, the ring polynomials will be
very large, and so they will take a lot of memory: we are talking
of already a few GBs occupied for making one review inference
in the best case.

• Noise budget and its consumption: the noise budget will be fun-

88 Experimental results

Table 7.2 Transformer approximation accuracy in clear on Yelp Po-
larity Review dataset, in the columns the numbers are referring to
(embedding dimension, maximum utterance length)

Architecture 4, 32 4,64 8, 32 8, 64

Approximated Transformer
+ Self Attention with
BatchNorm

0,834 0,881 0,834 0,881

Approximated Transformer
(no lin tanh) + Self Atten-
tion with BatchNorm

0,836 0,882 0,839 0,884

Solution: Approximated
Transformer (no lin tanh)
+ Self Attention without
BatchNorm 1 head

0,835 0,88 0,839 0,882

Approximated Transformer
+ Self Attention with
BatchNorm 1 head

0,834 0,879 0,838 0,884

Original reduced Trans-
former

0,761 0,781 0,835 0,877

damental to track, monitor and record throughout a review in-
ference so that we can better understand how to better tune
parameters but also how much more we can potentially push the
model with larger parameters.

7.5 Results

On testing HErBERT we got interesting results. Before exploring the
main results we just want to show the results involving also other
approximations of the Transformer we took in consideration as stated
in 4, so here with the Table 7.2 we show these results. From this
experimental data, we inferred that:

• Max utterance length has more influence in having better results
for small dataset.

7.5 Results 89

• Small changes in small embeddings do not bring much change
[75] for small dataset in understanding and capturing words re-
lationships.

• The architecture without softmax or any substitutes performs
very well.

• The various types of reduced and approximated Transformer
models behave like the original, statistically speaking.

• Reducing to 1 attention head from 2 attention heads performed
well.

After having analysed the result we chose the model indicated as
the solution in the Table 7.2 and from further on we will consider
only that model architecture. The reason behind this choice was not
just regarding the obtained accuracy, but with a necessary eye to the
constraints imposed by HE. The chosen solution is performing better
or practically equal to other models while being essentially smaller in
terms of number of operations to be performed (1 attention head and
no Batch Normalization in the Self-Attention module) so we are able
to save further noise budget.
it is also interesting to see in reference to what has been analysed in
Section 4 that in the original model where there is the Softmax func-
tion inside Self-Attention we have a drop in accuracy when reducing
furthermore the embeddings dimension.

On both datasets, the model performed well while dropping a lot of
the available Noise Budget. The tested model were trained with the
corresponding training sets using 12 epochs and AdamW as optimiza-
tion algorithm with a weight decay of 0.01.
In Table 7.3 we summarized the results and compared them with
BERT-base, the approximated and reduced BERT and Logistic Re-
gression. Even with Logistic Regression, we used to perform training
and testing embeddings using Word2Vec in order to make a valid com-
parison on similar inputs given the size magnitude of our HE model in
terms of parameters and embedding sizes. In all the following results,

90 Experimental results

Table 7.3 Results accuracy on Yelp Polarity Review test set using
HErBERT (4, 32)

Model Accuracy

BERT 92%
Approximated and reduced BERT 83.4%
HErBERT 80.92%
Logistic regression 63.4%

the word embedding have been trained from scratch. While using al-
ready pre-trained word embeddings such as Glove [75], Word2Vec [74]
and furthermore could have helped in achieving better results, we did
not pursue this solution given that the smallest dimensional sized pre-
trained word embedding is Glove-50 with 50 dimensions, and it is way
larger than what we are able to compute without ending up our noise
budget. There is a really interesting work [103] which is successfully
reducing pre-trained embeddings dimension up to 50% their original
dimension. While reducing Glove-50 to 25 dimension still wasn’t a
solution, it has been tried to reduce the dimensions further more to 4
using the same proposed method consisting of successive application
of PCA. Unfortunately, after having reduced the embedding dimension
and loading them in the model for training, the model did not perform
well due to the high compression performed. So, it has been chosen
to optimize the results by sticking to training from scratch even the
embedding layer. In this first Table 7.3 results in terms of accuracy
on the test set are shown for the Yelp Polarity Review data set using
HErBERT with a word embedding dimension of 4 and the maximum
review length as 32. In this other second Table 7.4 results in terms
of accuracy on the same test set using instead HErBERT with a word
embedding dimension of 4 and the maximum review length as 64. As
we clearly see, there is an increment in accuracy for HErBERT. In
this other third Table 7.5 results in terms of accuracy on the test set
are shown for the Yahoo! Answers data set using HErBERT with a
word embedding dimension of 8 and the maximum review length as

7.5 Results 91

Table 7.4 Results accuracy on Yelp Polarity Review test set using
HErBERT (4, 64)

Model Accuracy

BERT 92%
Approximated and reduced BERT 88%
HErBERT 83.04%
Logistic regression 63.4%

Table 7.5 Results accuracy on Yahoo! Answers test set using HEr-
BERT (8, 32)

Model Accuracy

BERT 77.62%
FastText [76] 72.3%
Approximated and reduced BERT 60.9%
HErBERT 59.26%
Seq2CNN [104] 55.39%
Logistic regression 22.7%

32. Given the presence of a more difficult task (multi-class instead of
binary) we decided to provide better results moving to 8 dimensional
word embeddings but staying unfortunately as will be shown later very
close to 0 noise budget available. Lastly, in Table 7.6 results in terms
of accuracy are shown for the same test set using HErBERT with a
word embedding dimension of 4 and the maximum review length as
32. It was interesting to show what are the implications of reducing
furthermore the size of the model with respect to the required approx-
imations and the loss of accuracy during HE inference, while keeping
the right maximum word number constant (given the data set being
used). In this other Table 7.8 we summarize instead the noise budget
consumption sampled during the inference of a sample. It is interest-
ing to see how dependent is its consumption on how large the tensors

92 Experimental results

Table 7.6 Results accuracy on Yahoo! Answers test set using HEr-
BERT (4, 32)

Model Accuracy

Original BERT 77.62%
FastText [76] 72.3%
Approximated and reduced BERT 57.4%
HErBERT 55.42%
Seq2CNN [104] 55.39%
Logistic regression 22.7%

involved in the operations are, but also how there is a slightly more
consumption of noise in parallel than there is in serial execution, while
the output remains exactly the same.

The HE parameters being used here are again as in the previous tests
Θ = (p,m, s) = (2100000, 8192, 128) which were found from a parame-
ter search made on various different criteria as it is shown in the Figures
7.1 7.2 7.3, where a search of parameters for a set of encrypted-encoded
multiplications of square matrices were made ranging between a set of
p parameters (104, 3·105, 5·105, 2.1·106) and the m parameter switching
between 2048, 4096 and 8192. In these Figures representing a sample
of the benchmarks made for the HE parameters search, it is possible
to directly see the effect of those very parameters. While it may seem
that reducing the plaintext modulus will help in achieving more NB
and so a better HE computation, the other plots will instead prove that
a lower plaintext modulus is as good as an higher one only when you
are performing very few operations. Keeping the p parameter lower,
it will be possible to achieve low errors only with one or more multi-
plications. The Figure 7.1d shows that for p = 104 the computational
error after just five multiplication of small square matrices, it will be
quite high. The successive plots are showing the same benchmarks on
the other polynomial modulus degree parameters 4096 and 8192. It is
very interesting to see that for performing correctly multiple multipli-

7.5 Results 93

Noise Budget: Multiplicative depth: Execution time:

Computational error:

Θ1 = {2
11 , 104}

Θ2 = {2
11 , 3 · 105}

Θ3 = {2
11 , 5 · 105}

Θ4 = {2
11 , 2.1 · 1

06}
5

10

15

20

25

30

35

Encryption Parameters Θ = (m, p)

N
oi

se
bu

dg
et

(a) Noise budget using the indicated HE
parameters Θi

Θ1 = {2
11 , 104}

Θ2 = {2
11 , 3 · 105}

Θ3 = {2
11 , 5 · 105}

Θ4 = {2
11 , 2.1 · 1

06}
0

0.25

0.5

0.75

1

1.25

1.5

Encryption Parameters Θ = (m, p)

M
ul

ti
pl

ic
at

iv
e

de
pt

h

(b) Multiplicative depth using the indi-
cated HE parameters Θi

Θ1 = {2
11 , 104}

Θ2 = {2
11 , 3 · 105}

Θ3 = {2
11 , 5 · 105}

Θ4 = {2
11 , 2.1 · 1

06}
60

65

70

75

80

Encryption Parameters Θ = (m, p)

E
xe

cu
ti

on
ti

m
e

[m
s]

(c) Execution time using the indicated HE
parameters Θi

Θ1 = {2
11 , 104}

Θ2 = {2
11 , 3 · 105}

Θ3 = {2
11 , 5 · 105}

Θ4 = {2
11 , 2.1 · 1

06}
0

100
200
300
400
500
600
700
800
900

1,000
1,100

Encryption Parameters Θ = (m, p)

C
om

pu
ta

ti
on

al
er

ro
r

(d) Computational error using the indi-
cated HE parameters Θi

Figure 7.1: HE parameters benchmarks after five Encrypted-Encoded
multiplications between 4-dimensional square matrices using the indi-
cated HE parameters Θi = (211, p)

94 Experimental results

Noise Budget: Multiplicative depth: Execution time:

Computational error:

Θ1 = {2
12 , 104}

Θ2 = {2
12 , 3 · 105}

Θ3 = {2
12 , 5 · 105}

Θ4 = {2
12 , 2.1 · 1

06}
75

80

85

90

Encryption Parameters Θ = (m, p)

N
oi

se
bu

dg
et

(a) Noise budget using the indicated HE
parameters Θi

Θ1 = {2
12 , 104}

Θ2 = {2
12 , 3 · 105}

Θ3 = {2
12 , 5 · 105}

Θ4 = {2
12 , 2.1 · 1

06}
3

3.25

3.5

3.75

4

Encryption Parameters Θ = (m, p)

M
ul

ti
pl

ic
at

iv
e

de
pt

h

(b) Multiplicative depth using the indi-
cated HE parameters Θi

Θ1 = {2
12 , 104}

Θ2 = {2
12 , 3 · 105}

Θ3 = {2
12 , 5 · 105}

Θ4 = {2
12 , 2.1 · 1

06}
270

275

280

285

290

295

300

Encryption Parameters Θ = (m, p)

E
xe

cu
ti

on
ti

m
e

[m
s]

(c) Execution time using the indicated HE
parameters Θi

Θ1 = {2
12 , 104}

Θ2 = {2
12 , 3 · 105}

Θ3 = {2
12 , 5 · 105}

Θ4 = {2
12 , 2.1 · 1

06}
0

20
40
60
80

100
120
140
160
180
200
220
240

Encryption Parameters Θ = (m, p)

C
om

pu
ta

ti
on

al
er

ro
r

(d) Computational error using the indi-
cated HE parameters Θi

Figure 7.2: HE parameters benchmarks after five Encrypted-Encoded
multiplications between 4-dimensional square matrices using the indi-
cated HE parameters Θi = (212, p)

7.5 Results 95

Noise Budget: Multiplicative depth: Execution time:

Computational error:

Θ1 = {2
13 , 104}

Θ2 = {2
13 , 3 · 105}

Θ3 = {2
13 , 5 · 105}

Θ4 = {2
13 , 2.1 · 1

06}
180

185

190

195

200

Encryption Parameters Θ = (m, p)

N
oi

se
bu

dg
et

(a) Noise budget using the indicated HE
parameters Θi

Θ1 = {2
13 , 104}

Θ2 = {2
13 , 3 · 105}

Θ3 = {2
13 , 5 · 105}

Θ4 = {2
13 , 2.1 · 1

06}
7.5

7.75

8

8.25

8.5

Encryption Parameters Θ = (m, p)

M
ul

ti
pl

ic
at

iv
e

de
pt

h

(b) Multiplicative depth using the indi-
cated HE parameters Θi

Θ1 = {2
13 , 104}

Θ2 = {2
13 , 3 · 105}

Θ3 = {2
13 , 5 · 105}

Θ4 = {2
13 , 2.1 · 1

06}
1,200

1,205

1,210

1,215

1,220

1,225

1,230

Encryption Parameters Θ = (m, p)

E
xe

cu
ti

on
ti

m
e

[m
s]

(c) Execution time using the indicated HE
parameters Θi

Θ1 = {2
13 , 104}

Θ2 = {2
13 , 3 · 105}

Θ3 = {2
13 , 5 · 105}

Θ4 = {2
13 , 2.1 · 1

06}
0

20
40
60
80

100
120
140
160
180
200
220
240

Encryption Parameters Θ = (m, p)

C
om

pu
ta

ti
on

al
er

ro
r

(d) Computational error using the indi-
cated HE parameters Θi

Figure 7.3: HE parameters benchmarks after five Encrypted-Encoded
multiplications between 4-dimensional square matrices using the indi-
cated HE parameters Θi = (213, p)

96 Experimental results

Table 7.7 Noise budget consumption over using m = 214

Model (embeddings) Noise Budget reduction

HErBERT (4) 402 → 234

cations it is important to have an higher p parameter: while the noise
budget available after performing them will be slightly lower as seen in
Figures 7.1a 7.2a 7.3a, which is normal because it will consume more
noise budget a higher p parameter, the computational error is almost
zero and so it fits perfectly for HErBERT and other applications in DL
and ML where usually lower-than 1 numbers are being treated during
inference. Experimental data can be seen in Figures 7.1d 7.2d 7.3d it
is clear from 7.8 that larger models are at risk of not being able to be
computed given how close HErBERT is to 0 noise budget available:
using m = 213 was a choice to balance feasibility of the HE computa-
tion in HErBERT while minimizing the execution time. Increasing m
to 214 will give way much more noise budget at the cost of having way
more computational load, as can be seen from Table 7.7 the available
noise budget after the end of the inference is very high compared to
the chosen m parameter for HErBERT. Interestingly, there is a slightly
more consumption of NB when the computation is executed in paral-
lel w.r.t to the same operation executed with no parallelization, even
though the output remains exactly the same. A possible explanation
is the fact that the HE library currently used [35] does not support
parallelism, the reason behind the efficiency optimizations, and when
moving computation to multiple different processes (which created dif-
ferent isolated stacks in the RAM) the various encrypted elements lost
the reference to the main Pyfhel object handling the operation through
NumPy. This reference needed to be restored afterwards the parallel
computation for continuing the inference. This process may be the
reason behind a slightly more NB consumption. it is also important
to denote that differently from other works, HErBERT had to use such
a high parameter as polynomial modulus degree m = 8192, given the
type of operations which are present. Self-Attention together with the
Square Activation function are the most expensive operations being

7.5 Results 97

Table 7.8 Noise budget consumption over a single review of 32 words

Model
(embeddings)

Test set Serial Parallel

HErBERT (4) Yelp Polarity Review 182 → 22 182 → 17

HErBERT (8) Yahoo! Answers 182 → 10 182 → 7

Table 7.9 Comparison of inference output between various HErBERT
executions on a 32 word sample using the same Θ parameters

Modality Time Classification results

HErBERT serial 40 s [1.29405295, -1.30774493]

HErBERT parallel 15 s [1.29405295, -1.30774493]

HErBERT serial in clear 0.01 s [1.2215196, -1.2390065]

performed given that both operands are encrypted, and not just one
with the other encoded. So much expensive that the huge drop of the
noise budget is mostly related to these three operations and without a
baseline of 8192 as polynomial modulus degree we would not be able
to perform such computations and indeed as shown in the Tables 7.3,
7.4, 7.5 and 7.6 and in the following Table 7.9 the parameter m chosen
is actually the most correct.

From the above Table 7.9 we can clearly how close the results are,
we have a 0.96% difference between the output in clear and the out-
put from encrypted data: which is clearly well reflected from the good
results obtained in the overall accuracy on the datasets. Also, we can
clearly notice the computational overhead present during the usage of
Homomorphic Encryption scheme with respect to an in-clear execution.

The good results were also made better thanks to the usage of the
fractional bits of the Fractional Encoder, explained in the previous
sections. In the Table 7.10 we experimented on the influence of the
fractional bits on the final approximation error of the performed op-

98 Experimental results

Table 7.10 Fractional Encoder bits and their influence using the same
Θ parameters

Fractional bits Maximum matrix multipli-
cation error

int: 64 bits, frac: 32 bits 4.381428286137634e-05

int: 16 bits, frac: 80 bits 5.829292604175862e-11

Table 7.11 Inference time of a single review of 32 words

Model
(embeddings)

Test set Serial Parallel

HErBERT (4) Yelp Polarity Review 40 s 15 s

HErBERT (8) Yahoo! Answers 110 s 34 s

eration when changing their values. In this example we change the
values from the standard ones to a set where we give more importance
to the fractional part of the number, given that in Machine Learning
and Deep Learning we usually work with relatively small numbers. As
we clearly see, there is an improvement in the generated approximated
error after the computation is performed, while keeping all the other
HE parameters constant.

We also sampled and summarized in Table 7.11 the inference time of a
sample in order to give a glimpse of its usefulness during inference and
for further use in productions contexts. As it is clear the introduced
parallelism is further reducing the execution of a single sample, which
unfortunately before was not possible to do. Now we can parallelize not
just at multiple samples level but also at one sample level using Pyfhel,
which is good to further push the usage of Homomorphic Encryption
in Deep Learning and of privacy-preserving Machine Learning. it is
reminded as we said in the previous Optimizations Section that the
parallelism introduced at single sample level is strictly dependent on
the shapes of the tensor and given that they are not square shapes
the improvement introduced is not as high as the one showed in the

7.5 Results 99

Table 7.12 Memory peak consumption of a single review of 32 words

Model
(embeddings)

Test set Serial Parallel

HErBERT (4) Yelp Polarity Review 3.01 GB 3.51 GB

HErBERT (8) Yahoo! Answers 4.55 GB 6.64 GB

Table 7.1. In the last Table 7.12 there are summarized the results of
the sampling of the peak RAM consumption during inference of the
HE-model. It is interesting, and it is right, to see a slightly higher con-
sumption when parallelization is being performed. It is expected given
the overhead introduced in creating multiple processes and to manage
their results with proper safe data structures. Of course by increasing
how large the model is, the larger the memory consumption will be as
we can see in the Table 7.12 when moving to 8 sized embeddings from
4 sized embeddings.

100 Experimental results

Chapter 8

Conclusions

In this Chapter conclusions regarding the proposed architecture are
drawn (Section 8.1), and some ideas for future works are presented
(Section 8.2).

8.1 Conclusions

The aim of this work was to introduce HErBERT, a Deep Learn-
ing model for Natural Language Processing based on BERT able to
work on encrypted data, using Homomorphic Encryption. The design
process of HErBERT, which took into account the hard constraints
imposed by the use of HE, has been carefully detailed and a highly-
optimized open-source Python implementation is released to the sci-
entific community. A wide experimental campaign, shows its perfor-
mances on two different test set among the Sentiment Analysis and
Sequence Classification tasks, demonstrating the value of the proposed
solution. It has been seen that to get a working BERT under an HE
scheme we needed to come to various compromises, especially regard-
ing the model dimension, which is what HErBERT differs more with
respect to BERT model. This means that, currently, running a full or
even slightly smaller BERT model or Transformer model is not feasible
with Homomorphic Encryption for practical use, given the constraints
imposed by the noise budget on the very much larger tensors dimen-
sions which would have been used. While the HE schemes will further
improve in the years, enabling new achievement and making the goal of

102 Conclusions

running larger BERT models closer and closer, the application of HE
to DL tasks is gaining traction in the academic field, with industrial
solutions capable of offering privacy-preserving DLaaS expected to be
deployed in the next years.

8.2 Future Works

Future works will consider improving further more performances of re-
duced Transformers in order to get further good results when made
privacy-preserving and the use of different HE schemes capable of per-
forming also the operations of division and comparison, which could
succeed in moving also the embedding parts of the architecture on the
server. The very important next step is also moving not just to a
privacy-preserving inference of a trained model, but making one step
forward: privacy-preserving training. This is really important because
it would make it possible to preserve the privacy of the data used during
training while still being able to achieve a working trained model. This
research will involve the refactoring of the back propagation algorithms
behind Neural Networks in order to be compatible with Homomorphic
Encryption computations.
Also, future works will consider the automatic configuration of Ho-
momorphic Encryption parameters through AutoML. As seen in the
previous Chapters, wrong choices of encryption parameters can lead to
really poor results in terms of precision, accuracy and available Noise
Budget for further computations. Computational times are also heav-
ily affected together with memory occupation. An algorithm capable
to automatically find the best possible parameters in a quite reasonable
amount of time may help to mitigate this important issue, and making
HE usable by more and more users, lowering the learning barrier cur-
rently required even in the research field. Another field on which it is
important to focus on is the application of Homomorphic Encryption
to Internet-of-Things as client end-devices, where the concerns around
Privacy have to be addressed even there. These devices are character-
ized by having constraints on power consumption and memory, which
go against the constraint imposed by Homomorphic Encryption. This

8.2 Future Works 103

is an important research area to address, which will involve the trade-
off between the required HE parameters of a certain scheme and the
constraints imposed by the Internet-of-Things hardware.

104 Conclusions

Bibliography

[1] Microsoft Research. Intro to homomorphic encryption.
https://www.youtube.com/watch?v=SEBdYXxijSo&ab_
channel=MicrosoftResearch, 2019.

[2] 2018 reform of eu data protection rules.

[3] James E. Smith and Ravi Nair. Virtual Machines Versatile Plat-
forms for Systems and Processes. Elsevier, 2005.

[4] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim
Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield. Xen and the art of virtualization. In Michael L. Scott
and Larry L. Peterson, editors, SOSP, pages 164–177. ACM,
2003.

[5] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong
Tao, Maria Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and
S. S. Iyengar. A survey on deep learning: Algorithms, techniques,
and applications. ACM Computing Surveys, 51(5):92, 2018.

[6] Thomas Erl, Ricardo Puttini, and Zaigham Mahmood. Cloud
Computing: Concepts, Technology & Architecture. Pearson,
2013.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina N.
Toutanova. Bert: Pre-training of deep bidirectional transformers
for language understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 4171–4186, 2018.

https://www.youtube.com/watch?v=SEBdYXxijSo&ab_channel=MicrosoftResearch
https://www.youtube.com/watch?v=SEBdYXxijSo&ab_channel=MicrosoftResearch

106 BIBLIOGRAPHY

[8] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti.
A survey on homomorphic encryption schemes: Theory and im-
plementation. ACM Computing Surveys, 51(4):79, 2018.

[9] Flavio Bergamaschi and Eli Dow. Homomorphic encryption
comes to linux on ibm z. Technical report, IBM Research, July
2020.

[10] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron.
Scalable parallel programming with cuda. Queue, 6(2):40–53,
March 2008.

[11] Sai Sri Sathya, Praneeth Vepakomma, Ramesh Raskar, Ran-
jan Ramachandra, and Santanu Bhattacharya. A review of ho-
momorphic encryption libraries for secure computation. arXiv
preprint arXiv:1812.02428, 2018.

[12] Mark D Young. National insecurity: The impacts of illegal dis-
closures of classified information. ISJLP, 10:367, 2014.

[13] Harsh Kupwade Patil and Ravi Seshadri. Big data security
and privacy issues in healthcare. In 2014 IEEE International
Congress on Big Data, pages 762–765, 2014.

[14] Abhishek Mahalle, Jianming Yong, Xiaohui Tao, and Jun Shen.
Data privacy and system security for banking and financial ser-
vices industry based on cloud computing infrastructure. In 2018
IEEE 22nd International Conference on Computer Supported
Cooperative Work in Design ((CSCWD)), pages 407–413, 2018.

[15] Catherine Heeney, Naomi Hawkins, Jantina de Vries, Paula Bod-
dington, and Jane Kaye. Assessing the privacy risks of data
sharing in genomics. Public health genomics, 14(1):17–25, 2011.

[16] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-
level Convolutional Networks for Text Classification .
arXiv:1509.01626 [cs], September 2015.

BIBLIOGRAPHY 107

[17] R L Rivest, L Adleman, and M L Dertouzos. On data banks and
privacy homomorphisms. Foundations of Secure Computation,
Academia Press, pages 169–179, 1978.

[18] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Communi-
cations of The ACM, 21(2):120–126, 1978.

[19] Craig Gentry. Fully homomorphic encryption using ideal lat-
tices. In Proceedings of the forty-first annual ACM symposium
on Theory of computing, pages 169–178, 2009.

[20] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikun-
tanathan. Fully homomorphic encryption over the integers. In
EUROCRYPT’10 Proceedings of the 29th Annual international
conference on Theory and Applications of Cryptographic Tech-
niques, pages 24–43, 2010.

[21] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Lev-
eled) fully homomorphic encryption without bootstrapping. in-
novations in theoretical computer science, 6(3):13, 2014.

[22] Junfeng Fan and Frederik Vercauteren. Somewhat practical
fully homomorphic encryption. IACR Cryptology ePrint Archive,
2012:144, 2012.

[23] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song.
Homomorphic encryption for arithmetic of approximate num-
bers. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 409–437, 2017.

[24] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti.
A survey on homomorphic encryption schemes: Theory and im-
plementation, 2017.

[25] HElib. Helib. https://github.com/homenc/HElib, 2011.

[26] Shai Halevi and Victor Shoup. Algorithms in helib. Cryptology
ePrint Archive, Report 2014/106, 2014. https://ia.cr/2014/
106.

https://github.com/homenc/HElib
https://ia.cr/2014/106
https://ia.cr/2014/106

108 BIBLIOGRAPHY

[27] Shai Halevi and Victor Shoup. Design and implementation of
helib: a homomorphic encryption library. Cryptology ePrint
Archive, Report 2020/1481, 2020. https://ia.cr/2020/1481.

[28] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES
— the Advanced Encryption Standard. Springer-Verlag, 2002.

[29] Specification for the advanced encryption standard (aes). Federal
Information Processing Standards Publication 197, 2001.

[30] Craig Gentry, Shai Halevi, and Nigel Smart. Homomorphic eval-
uation of the aes circuit. Cryptology EPrint Archive, 7417:850–
867, 08 2012.

[31] Léo Ducas and Daniele Micciancio. Fhew: bootstrapping ho-
momorphic encryption in less than a second. In Annual Inter-
national Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 617–640. Springer, 2015.

[32] Hao Chen, Kim Laine, and Rachel Player. Simple encrypted
arithmetic library - seal v2.1. In International Conference on
Financial Cryptography and Data Security, pages 3–18, 2017.

[33] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika
Izabachène. Tfhe: fast fully homomorphic encryption over the
torus. Journal of Cryptology, 33(1):34–91, 2020.

[34] New Jersey Institute of Technology, Duality Technologies,
Raytheon BBN Technologies, MIT, University of California, San
Diego. Palisade. https://palisade-crypto.org/, 2017.

[35] M. O. Alberto Ibarrondo, Laurent Gomez. Pyfhel: Python
for homomorphic encryption libraries. https://github.com/
ibarrond/Pyfhel, 2018.

[36] Wei Dai and Berk Sunar. cuhe: A homomorphic encryption ac-
celerator library. In Enes Pasalic and Lars R. Knudsen, editors,
BalkanCryptSec, volume 9540 of Lecture Notes in Computer Sci-
ence, pages 169–186. Springer, 2015.

https://ia.cr/2020/1481
https://palisade-crypto.org/
https://github.com/ibarrond/Pyfhel
https://github.com/ibarrond/Pyfhel

BIBLIOGRAPHY 109

[37] Ayoub Benaissa, Bilal Retiat, Bogdan Cebere, and Alaa Eddine
Belfedhal. Tenseal: A library for encrypted tensor operations
using homomorphic encryption, 2021.

[38] TenSEAL. Tenseal. https://github.com/OpenMined/
TenSEAL/pull/285, 2021.

[39] Simone Disabato, Alessandro Falcetta, Alessio Mongelluzzo, and
Manuel Roveri. A privacy-preserving distributed architecture
for deep-learning-as-a-service. arXiv preprint arXiv:2003.13541,
2020.

[40] Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and Re-
becca N. Wright. Privacy-preserving machine learning as a ser-
vice. Proc. Priv. Enhancing Technol., 2018(3):123–142, 2018.

[41] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chan-
drakasan. GAZELLE: A low latency framework for secure neu-
ral network inference. In 27th USENIX Security Symposium
(USENIX Security 18), pages 1651–1669, 2018.

[42] Robert Podschwadt and Daniel Takabi. Classification of en-
crypted word embeddings using recurrent neural networks. Pri-
vateNLP@WSDM, pages 27–31, 2020.

[43] Maya Bakshi. Cryptornn - privacy-preserving recurrent neural
networks using homomorphic encryption. International Sym-
posium on Cyber Security Cryptography and Machine Learning,
pages 245–253, 2020.

[44] Bo Feng, Qian Lou, Lei Jiang, and Geoffrey C. Fox. Cryptogru:
Low latency privacy-preserving text analysis with gru. arXiv
preprint arXiv:2010.11796, 2020.

[45] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735–1780, 1997.

[46] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Cryp-
todl: Deep neural networks over encrypted data. arXiv preprint
arXiv:1711.05189, 2017.

https://github.com/OpenMined/TenSEAL/pull/285
https://github.com/OpenMined/TenSEAL/pull/285

110 BIBLIOGRAPHY

[47] Fabian Boemer, Anamaria Costache, Rosario Cammarota, and
Casimir Wierzynski. ngraph-he2: A high-throughput framework
for neural network inference on encrypted data. In Proceedings
of the 7th ACM Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, volume 2019, page 947, 2019.

[48] Intel. Intel ngraph deep learning compiler. https://www.
intel.com/content/www/us/en/artificial-intelligence/
ngraph.html, 2019.

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polo-
sukhin. Attention is all you need. In Proceedings of the 31st
International Conference on Neural Information Processing Sys-
tems, volume 30, pages 5998–6008, 2017.

[50] Priyam Basu, Tiasa Singha Roy, Rakshit Naidu, Zumrut Muf-
tuoglu, Sahib Singh, and Fatemehsadat Mireshghallah. Bench-
marking differential privacy and federated learning for bert mod-
els, 2021.

[51] Craig Gentry. A fully homomorphic encryption scheme. PhD
thesis, Stanford University, 2009. crypto.stanford.edu/craig.

[52] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal
lattices and learning with errors over rings. Journal of the ACM,
60(6):43, 2013.

[53] J. Liesen and V. Mehrmann. Linear Algebra. Springer Under-
graduate Mathematics Series. Springer International Publishing,
2015.

[54] Daniele Micciancio. The shortest vector in a lattice is hard to
approximate to within some constant. SIAM Journal on Com-
puting, 30(6):2008–2035, 2001.

[55] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter,
Michael Naehrig, and John Wernsing. Manual for using homo-
morphic encryption for bioinformatics. Proceedings of the IEEE,
105(3):552–567, 2017.

https://www.intel.com/content/www/us/en/artificial- intelligence/ngraph.html
https://www.intel.com/content/www/us/en/artificial- intelligence/ngraph.html
https://www.intel.com/content/www/us/en/artificial- intelligence/ngraph.html
crypto.stanford.edu/craig

BIBLIOGRAPHY 111

[56] Khalid El Makkaoui, Abdellah Ezzati, and Abderrahim Beni
Hssane. Challenges of using homomorphic encryption to secure
cloud computing. In 2015 International Conference on Cloud
Technologies and Applications (CloudTech), pages 1–7, 2015.

[57] Kristin E. Lauter, Michael Naehrig, and Vinod Vaikuntanathan.
Can homomorphic encryption be practical. IACR Cryptology
ePrint Archive, 2011:405, 2011.

[58] T. Elgamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Transactions on Information
Theory, 31(4):469–472, 1985.

[59] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. Efficient
homomorphic comparison methods with optimal complexity. In
International Conference on the Theory and Application of Cryp-
tology and Information Security, pages 221–256, 2020.

[60] David Cousins, Lloyd Greenwald, Yuriy Polyakov, Kurt Rohloff,
Steve Schwab, Shai Halevi, Andrey Kim, Daniele Micciancio,
Yuriy Polyakov, Vincent Zucca. Palisade. https://gitlab.
com/palisade/palisade-release, 2017.

[61] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and
Yongsoo Song. Heaan. https://github.com/snucrypto/HEAAN,
2016.

[62] Shai Halevi and Victor Shoup. Algorithms in helib. In 34rd An-
nual International Cryptology Conference, CRYPTO 2014, vol-
ume 2014, pages 554–571, 2014.

[63] Adrià Gascón and Oliver Strickson. Sheep. https://github.
com/alan-turing-institute/SHEEP, 2017.

[64] Eduardo Chielle, Oleg Mazonka, Nektarios Georgios Tsoutsos,
and Michail Maniatakos. E 3 : A framework for compiling c++
programs with encrypted operands. IACR Cryptology ePrint
Archive, 2018:1013, 2018.

https://gitlab.com/palisade/palisade-release
https://gitlab.com/palisade/palisade-release
https://github.com/snucrypto/HEAAN
https://github.com/alan-turing-institute/SHEEP
https://github.com/alan-turing-institute/SHEEP

112 BIBLIOGRAPHY

[65] Nicholas Mainardi, Alessandro Barenghi, and Gerardo Pelosi.
Privacy preserving substring search protocol with polylogarith-
mic communication cost. In Proceedings of the 35th Annual Com-
puter Security Applications Conference, pages 297–312, 2019.

[66] Nicholas Mainardi, Davide Sampietro, Alessandro Barenghi, and
Gerardo Pelosi. Efficient oblivious substring search via architec-
tural support. In Annual Computer Security Applications Con-
ference, pages 526–541, 2020.

[67] Nicholas Mainardi, Alessandro Barenghi, and Gerardo Pelosi.
Privacy-aware character pattern matching over outsourced en-
crypted data. Digital Threats: Research and Practice, 2021.

[68] TFEncrypted. tf-seal. https://github.com/tf-encrypted/
tf-seal, 2019.

[69] Paweł Budzianowski and Ivan Vulić. Hello, it’s gpt-2 - how can
i help you? towards the use of pretrained language models for
task-oriented dialogue systems. In Proceedings of the 3rd Work-
shop on Neural Generation and Translation, pages 15–22, 2019.

[70] Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope,
limits, and consequences. Minds and Machines, 30(4):681–694,
2020.

[71] Yusuf Aytar, Carl Vondrick, and Antonio Torralba. Soundnet:
Learning sound representations from unlabeled video. In Ad-
vances in Neural Information Processing Systems, volume 29,
pages 892–900, 2016.

[72] Qiuqiang Kong, Turab Iqbal, Yong Xu, Wenwu Wang, and
Mark D. Plumbley. Dcase 2018 challenge baseline with convolu-
tional neural networks. arXiv: Sound, 2018.

[73] Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael
Auli. wav2vec: Unsupervised pre-training for speech recognition.
In Interspeech 2019, pages 3465–3469, 2019.

https://github.com/tf-encrypted/tf-seal
https://github.com/tf-encrypted/tf-seal

BIBLIOGRAPHY 113

[74] Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector space. In
ICLR (Workshop Poster), 2013.

[75] Jeffrey Pennington, Richard Socher, and Christopher Manning.
Glove: Global vectors for word representation. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, 2014.

[76] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas
Mikolov. Enriching word vectors with subword information.
Transactions of the Association for Computational Linguistics,
5(1):135–146, 2017.

[77] Lena Voita. Word embeddings. https://lena-voita.github.
io/nlp_course/word_embeddings.html, 2020.

[78] Jay Alammar. The illustrated transformer. https://jalammar.
github.io/illustrated-transformer/, 2018.

[79] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and
Yann N. Dauphin. Convolutional sequence to sequence learning.
CoRR, 2017. cite arxiv:1705.03122.

[80] Pytorch. Transformer, pytorch official implementation.
https://pytorch.org/docs/stable/generated/torch.nn.
Transformer.html, 2019.

[81] A. Tuerk and S.J. Young. Polynomial softmax functions for pat-
tern classification. Technical report, Cambridge University En-
gineering Department Trumpington Street Cambridge CB2 1PZ
England, 2001.

[82] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-
celerating deep network training by reducing internal covariate
shift. In Proceedings of The 32nd International Conference on
Machine Learning, volume 1, pages 448–456, 2015.

[83] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer
normalization. arXiv: Machine Learning, 2016.

https://lena-voita.github.io/nlp_course/word_embeddings.html
https://lena-voita.github.io/nlp_course/word_embeddings.html
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html
https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html

114 BIBLIOGRAPHY

[84] Abien Fred Agarap. Deep learning using rectified linear units
(relu). arXiv preprint arXiv:1803.08375, 2018.

[85] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter,
Michael Naehrig, and John Wernsing. Cryptonets: applying neu-
ral networks to encrypted data with high throughput and accu-
racy. In ICML’16 Proceedings of the 33rd International Confer-
ence on International Conference on Machine Learning - Volume
48, pages 201–210, 2016.

[86] Kevin Patel and Pushpak Bhattacharyya. Towards lower bounds
on number of dimensions for word embeddings. In Proceedings of
the Eighth International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), volume 2, pages 31–36,
2017.

[87] Oren Melamud, David McClosky, Siddharth Patwardhan, and
Mohit Bansal. The role of context types and dimensionality in
learning word embeddings. In Proceedings of the 2016 Conference
of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 1030–
1040, 2016.

[88] Google, TensorFlow Team. Introducing tensorflow feature
columns. https://developers.googleblog.com/2017/11/
introducing-tensorflow-feature-columns.html, 2017.

[89] Stéfan van der Walt, S Chris Colbert, and Gaël Varoquaux. The
numpy array: A structure for efficient numerical computation.
Computing in Science and Engineering, 13(2):22–30, 2011.

[90] Python. multiprocessing, python. https://docs.python.org/
3/library/multiprocessing.html, 2008.

[91] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Na-
talia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,

https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html
https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html

BIBLIOGRAPHY 115

and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Infor-
mation Processing Systems, volume 32, pages 8026–8037, 2019.

[92] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geof-
frey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. Tensorflow: a system for large-
scale machine learning. In Proceedings of the 12th USENIX con-
ference on Operating Systems Design and Implementation, pages
265–283, 2016.

[93] François Chollet. Keras: The python deep learning library. As-
trophysics Source Code Library, 2018.

[94] Ilya Loshchilov and Frank Hutter. Decoupled weight decay reg-
ularization, 2019.

[95] Tensorflow. Tensorboard. https://github.com/tensorflow/
tensorboard, 2017.

[96] Liu Zhong, Chen Shuming, Dou Qiang, Guo Yang, Liu Hengzhu,
Tian Xi, Gong Guohui, Chen Haiyan, Peng Yuanxi, Wan
Jianghua, Liu Sheng, Chen Yueyue, Hu Xiao, and Wu Jiazhu.
Block matrix multiplication vectorization method supporting
vector processor with multiple mac (multiply accumulate) op-
erational units, 2013.

[97] Python. Global interpreter lock. https://wiki.python.org/
moin/GlobalInterpreterLock, 2007.

[98] Z. Xianyi, Wang Qian, and Zhang Yunquan. openblas: a high
performance blas library on loongson 3a cpu. Journal of Soft-
ware, 22, 2011.

[99] Vishal Kanaujia and Chetan Giridhar. Python threads: Dive
into gil! In Pycon India 2011, Sep 2011. https://in.pycon.
org/2011/talks/41-python-threads-dive-into-gil!/.

https://github.com/tensorflow/tensorboard
https://github.com/tensorflow/tensorboard
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://in.pycon.org/2011/talks/41-python-threads-dive-into-gil!/
https://in.pycon.org/2011/talks/41-python-threads-dive-into-gil!/

116 BIBLIOGRAPHY

[100] Python. Global interpreter lock implementation under
ceval.c. https://github.com/python/cpython/blob/
e62a694fee53ba7fc16d6afbaa53b373c878f300/Python/
ceval.c#L238, 2016.

[101] Dusit Niyato Ngoc Thanh Nguyen, suphamit Chittayasothorn
and Bodgan Trawiński (Eds.). Intelligent information and
database systems. In Intelligent Information and Database Sys-
tems: 13th Asian Conference, ACIIDS 2021 Phuket, Thailand,
April 7-10, 2021 Proceedings, pages 125–126, 2021.

[102] Ziqian Zeng and Yangqiu Song. Variational weakly supervised
sentiment analysis with posterior regularization. In Proceedings
of the 16th Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Main Volume, pages 3259–
3268, 2021.

[103] Vikas Raunak, Vivek Gupta, and Florian Metze. Effective
dimensionality reduction for word embeddings. In Proceed-
ings of the 4th Workshop on Representation Learning for NLP
(RepL4NLP-2019), pages 235–243, 2019.

[104] Taehoon Kim and Jihoon Yang. Abstractive text classification
using sequence-to-convolution neural networks. arXiv preprint
arXiv:1805.07745, 2018.

https://github.com/python/cpython/blob/e62a694fee53ba7fc16d6afbaa53b373c878f300/Python/ceval.c#L238
https://github.com/python/cpython/blob/e62a694fee53ba7fc16d6afbaa53b373c878f300/Python/ceval.c#L238
https://github.com/python/cpython/blob/e62a694fee53ba7fc16d6afbaa53b373c878f300/Python/ceval.c#L238

Index

Activation functions, 45
AES, 11
ANN, 41
approximation, 53
Artificial Intelligence, 34
Artificial Neural Networks, 41
Attention, 41
Average pooling, 48
AWS, 86

bag-of-words, 40
Batch encoder, 27
Batch Normalization, 60
BERT, 14, 36, 53
BFV, 11, 13, 18
BGV, 11
BLAS, 80
Bootstrapping, 10

Chebyshev polynomials, 62
Ciphertext coefficient modulus, 28
CKKS, 11, 13
classification, 35
Classified information, 5
Cloud Computing, 31
Convolutional Neural Network, 13
CPython, 80
CUDA, 71
cuHE, 12

decryption, 54

Deep Learning, 35
DNA sequencing, 33

Embeddings, 6, 39, 54
encoding, 25
encryption, 54

FastText, 40
Feed Forward Neural Networks, 47
FHEW, 12
Financial Services, 5
Fractional encoder, 26
Free Lunch theorem, 35
Fully Homomorphic Encryption scheme,

10, 17

garbled circuits, 14
Gazelle, 14
GeLU, 46
Genomics, 6
GIL, 80
Glove, 40
GRU, 13

Healthcare, 5
HEANN, 33
HElib, 11, 33
HErBERT, 54
Homomorphic Encryption, 2, 10,

15

infinite loop, 117

118 INDEX

instance segmentation, 2
Integer encoder, 25

Keras, 71
kernel, 35

language model, 36
Layer Normalization, 47
Leaky-ReLU, 46
Linear Regression, 35
Logistic Regression, 35
LSTM, 13
LWE, 18

Machine Learning, 13, 34
Machine Translation, 2, 37
Max pooling, 48
mean, 61
model, 34
Multi Headed Self-Attention, 72

Naive Bayes, 35
Named Entity Recognition, 37
National security, 5
Natural Language Processing, 6,

36
NER, 37
Noise, 17
Noise Budget, 17
normalization, 57
NumPy, 67
Nvidia, 73

object detection, 2
object tracking, 2
optimization algorithm, 34

PALISADE, 12
Palisade, 33

parallelization, 65
parser, 36
Part-Of-Speech tagging, 37
Partially Homomorphic Encryption

scheme, 10
Partially Homomorphic schemes, 16
Plaintext modulus, 28
polynomial function, 61
Polynomial modulus degree, 28
polynomial ring, 18
pooling, 62
Pooling layer, 48
POS tagging, 37
positional embeddings, 56
privacy-preserving Machine Learn-

ing, 13
Pyfhel, 12, 68
PyTorch, 33, 68
Pytorch, 6

Question Answering, 37

Recryption, 10
reduction, 53
regression, 35
Reinforcement Learning, 34
relinearization, 21
ReLU, 46, 61
residual connections, 57
ring, 18
RLWE, 18, 19
RNN, 13, 41
RSA, 16

SEAL, 12, 31, 32, 68
security, 66
Self-Attention, 42, 57

INDEX 119

Sentiment Analysis, 38
Seq2CNN, 92
Sequence Classification, 38
SGD, 34
sigmoid, 46
Softmax, 48
Somewhat Homomorphic Encryp-

tion scheme, 10
Sound Recognition, 38
Speech Recognition, 2, 38
summarization, 2
Supervised learning, 34
Support Vector Machine, 35

tanh, 46
Taylor series, 62
TenSEAL, 13
Tensorboard, 75
Tensorflow, 71
Text Classification, 38
text generation, 2
text-to-speech, 2
TFHE, 12
time complexities, 41
training, 53
Transformer, 6, 36, 41

Unsupervised Learning, 34

vanishing gradient, 46
variance, 61
Visual Question Answering, 37, 41

weight initialization, 73
word embeddings, 39
Word2Vec, 40

Xavier Initialization, 73

Yahoo, 86
Yelp, 85

120 INDEX

Appendix A

Source code

This appendix includes the referred source code section in the thesis.

A.1 Loading and encoding of model’s pa-
rameters

This first method is the general one for preparing the encoded loaded
parameters in order to initialize HErBERT.

def __load_params (s e l f , l ayer , params , enc) :
" " " Return reque s t ed parameters " " "
out = [s e l f . __load_tensor (module , enc) i f l a y e r i s None else

s e l f . __load_tensor (s e l f . l ayer_id + str (l a y e r) + " . "
+ module , enc)

for module in params]
return out [: : 2] , out [1 : : 2]

While the other following method is in charge of returning the HE
encoded version of the parameters’ tensor for each layer:

def __load_tensor (s e l f , module , enc=True) :

t en so r = s e l f . model . get (module)

i f t enso r i s not None :
return cm. encode (t en so r . cpu () . detach () . numpy ()) i f enc
else t enso r . cpu () . detach () . numpy()

else :

122 Source code

return None

A.2 HE Multi Headed Self-Attention im-
plementation

import numpy as np
from a t t en t i on . s e l f _ a t t e n t i o n import Se l f At t e n t i o n
from modules . l i n e a r _ l a y e r import LinearLayer
from modules . dropout import Dropout
from core . module import Module
from core . crypto import CryptoManager as cm

class Mult iHeadedSe l fAttent ion (Module) :
" " " Mult i Headed S e l f At ten t ion implementat ion f o r the encoder " " "

def __init__(s e l f , heads , model_features , dropout =0.1) :

s e l f . d_k = model_features // heads
s e l f . model_features = model_features
s e l f . h = heads
s e l f . tota l_h_size = s e l f . h ∗ s e l f . d_k
s e l f . pruned_heads = set ()

s e l f . a t t en t i on_ laye r s = LinearLayer (model_features ,
model_features)

s e l f . output_l inear = LinearLayer (model_features ,
model_features)

s e l f . s e l f _ a t t e n t i o n = S e l f At t e n t i o n (s e l f . d_k , s e l f . h)
s e l f . dropout = Dropout (p=dropout)

#Dropout implementat ion j u s t to resemble o r i g i n a l code
#but i t i s d i s a b l e d o f course

def init_param (s e l f , weights , b i a s e s) :
s e l f . a t t en t i on_ laye r s . init_param (weights [0] , b i a s e s [0])
s e l f . output_l inear . init_param (weights [1] , b i a s e s [1])

A.3 Fundamental HE tensor operations implementation 123

def __transpose_for_scores (s e l f , x) :
batch_size = x . shape [0]
return np . reshape (np . t ranspose (x , (0 , 2 , 1 , 3)) ,

(batch_size ∗ s e l f . h ,
s e l f . model_features ∗ s e l f . h , s e l f . d_k))

def __call__(s e l f , x , mask=None) :
batch_size = x . shape [0]
t , b , e = x . shape
s = e // s e l f . h
s c a l i n g = f loat (s e l f . h) ∗∗ −0.5

query , key , va lue = np . s p l i t (s e l f . a t t en t i on_ laye r s (x) ,
3 , ax i s=−1)

i f cm. l ogg ing () and cm. is_enabled () :
print (cm. get_noise (va lue))

query = np . t ranspose (np . reshape (query , (t , b ∗ s e l f . h ,
s e l f . d_k)) , (1 , 0 , 2))

key = np . t ranspose (np . reshape (key , (−1 , b ∗ s e l f . h ,
s e l f . d_k)) , (1 , 0 , 2))

va lue = np . t ranspose (np . reshape (value , (−1 , b ∗ s e l f . h ,
s e l f . d_k)) , (1 , 0 , 2))

Apply s e l f a t t e n t i o n us ing the s c a l e d dot product
x = s e l f . s e l f _ a t t e n t i o n (query , key , value , mask=mask ,

dropout=s e l f . dropout)

x = np . t ranspose (x , (1 , 0 , 2)) . reshape (t , b , e)

return s e l f . output_l inear (x)

A.3 Fundamental HE tensor operations
implementation

124 Source code

@staticmethod
def encrypt (t enso r : np . ndarray) :

try :
return np . array (l i s t (map(CryptoManager .HE. encryptFrac ,

t en so r)))
except TypeError :

return np . array ([CryptoManager . encrypt (t)
for t in t enso r])

@staticmethod
def decrypt (t enso r : np . ndarray) :

try :
return np . array (l i s t (map(CryptoManager .HE. decryptFrac ,

t en so r)))
except TypeError :

return np . array ([CryptoManager . decrypt (t)
for t in t enso r])

@staticmethod
def encode (t en so r : np . ndarray) :

try :
return np . array (l i s t (map(CryptoManager .HE. encodeFrac ,

t en so r)))
except TypeError :

return np . array ([CryptoManager . encode (t)
for t in t enso r])

@staticmethod
def decode (t en so r : np . ndarray) :

try :
return np . array (l i s t (map(CryptoManager .HE. decodeFrac ,

t en so r)))
except TypeError :

return np . array ([CryptoManager . decode (t)
for t in t enso r])

	Dedication
	Acknowledgments
	List of figures
	List of tables
	Introduction
	Motivation
	Applications of Homomorphic Encryption
	Classified information and National security
	Healthcare
	Financial Services
	Genomics

	Goal and Results
	Thesis Structure

	Related Literature
	First HE schemes and their evolution
	HE schemes and libraries implementations
	Use of HE in Machine Learning

	Background
	Homomorphic Encryption
	Classification of HE schemes
	The Noise
	Brakersi/Fan-Vercauteren scheme (BFV)
	Tuning HE parameters
	Homomorphic Encryption challenges

	Machine Learning
	Deep Learning
	Natural Language Processing
	Transformers

	Architecture of the proposed solution
	Embeddings, Encryption and Decryption
	HErBERT
	Approximated and encoded Deep Learning processing
	Dimensioning the embeddings
	Parallelizing computations
	Encryption parameters

	Implementation of the proposed solution
	External libraries and dependencies
	Structure
	Model loading
	Model
	Software testing
	Model training and testing

	Efficiency optimizations
	Limitations
	Parallelizing computations
	Implementation

	Experimental results
	Description of HErBERT settings
	Datasets
	Parallelization
	Experimentation details
	Results

	Conclusions
	Conclusions
	Future Works

	Source code
	Loading and encoding of model's parameters
	HE Multi Headed Self-Attention implementation
	Fundamental HE tensor operations implementation

