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1. Introduction
In the last decades the importance of depth in-
formation has grown in many different appli-
cations of computer vision. Self driving cars
need depth information to generate 3D models
of their environment so they can avoid obstacles
and support the recognition of specific objects
and the ability of tracking them. There are to
ways digital devices deal with depth informa-
tion: depth map and 3D point cloud. The for-
mer is a two dimensional matrix with only one
channel of information related to the distance of
an interest object or a scene from a viewpoint.
Point cloud models a collection of individual
points plotted in 3D space, each one containing
several measurements: coordinates along the X,
Y, and Z-axes, color value stored in RGB format
and luminance, which determines how bright the
point is. The oldest method of 3D depth sens-
ing is the passive stereo cameras which operate
by calculating the disparity of pixels from two
sensors working in sync. However, passive tech-
nology had the disadvantage that these cameras
cannot be used in the dark. To overcome this is-
sue, active stereo vision technology is used. This
technology uses an IR pattern projector to il-
luminate the scene, which improves the perfor-
mance in low light and works well on scenes with

objects of less complex texture. However, stereo
cameras usually are not able to offer large depth
ranges (in the range of 10 meters) and do not
perform well if object texture is uneven. These
problems could be overcame using different tech-
nologies, such as LIDAR (Light Detection and
Ranging). LiDAR uses the light detection tech-
nique to calculate depth. It measures the time
it takes for each laser pulse to bounce back from
an obstacle. This pulsed laser measurement is
used to create 3D models (also known as a point
cloud) and maps of objects and environments.
Obstacle detection requires low latency to react
fast and, in many cases, a wider FoV. For vehi-
cles moving at high speed, a Lidar sensor is com-
monly used. Since LiDAR generates millions of
data points in real-time, it easily creates a pre-
cise map of its changing surroundings for safe
navigation of autonomous vehicles. Also, the
distance accuracy of LiDAR allows the vehicle’s
system to identify objects in a wide variety of
weather and lighting conditions. Many high end
depth estimation systems,though, could be very
expensive and depending of the application their
usage could not be available. The main contri-
bution of this thesis is to develop a combination
of cheaper low resolution depth sensors, high
resolution traditional cameras and Convolution
Neural Network(CNN). This configuration goes
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under the name of Super Resolution. We supply
high resolution RGB image of the same scene of
depthmap to the network in order to deal with
the high frequency details of the scene and recog-
nize more easily different objects. We are going
to show how we built and trained a Multiple In-
put Super Resolution (MISR) CNN fusing color
information.

2. State of the Art
Human beings use information from both eyes to
create a single visual image. This ability to con-
verge information from both eyes is called binoc-
ular vision. Each eye sees slightly different spa-
tial information and transmits these differences
to the brain. The field of view, which is the area
that you can see when you close one eye, overlaps
significantly between each eye also. The brain
then uses the discrepancies between the two eyes
to judge distance and depth. Depth perception
is technically called stereopsis or stereoscopic vi-
sion. There are variety of depthmap acquisition
digital system, passive stereo vision and active
stereo vision such as structured light(SL) and
time of light(ToF) technologies, each with its
pros and cons. Stereo vision is a machine vi-
sion technique that can provide full field of view
3D measurements using two or more machine vi-
sion cameras. The foundation of stereo vision is
similar to 3D perception in human vision and
is based on triangulation of rays from multiple
viewpoints. It achieves real-time depth percep-
tion by using two sensors a set distance apart to
triangulate similar pixels from both 2D planes,
Figure 1

Figure 1: 3D Rays Intersection

Stereo vision in machine vision is a passive tech-
nology, as it does not require any artificial illu-
mination to work. A stereo camera can simply
be plugged in, calibrated, and deployed. Some
stereo vision applications will, however, benefit

from artificial illumination or a structured light
source to aid visibility; This is known as active
stereo and has its pros and cons just as passive
stereo does. Stereo vision can be CPU intensive
when not hardware accelerated with FPGAs or
GPUs for example. Passive stereo camera sys-
tems can be deployed without the need for lasers
or LEDs and can generally perform effectively in
most ambient lighting conditions but if the sys-
tem is operating in low light, or scanning non-
textured scenes or objects with textureless sur-
faces, then stereo vision tends to underperform
as a 3D technology. With no lasers or expen-
sive lighting required, passive stereo vision can
be much more affordable compared with 3D ma-
chine vision technologies. Stereo vision can cope
well with long distances and moving objects,
something that other 3D imaging technologies
tend to fall short on. Once calibrated, a stereo
vision camera system can go on to detect depth
in real time. Considering all the difficulties men-
tioned above related to the use of the high res-
olution depth sensor, new ways has been taken
to deal with depthmap acquisition that exploit
the convolution neural networks. In 2014, Eigen
et al. [1] introduce CNNs to the SIDE problem
and achieve relatively good performance, when
compared to earlier methods. CNN based solu-
tions were already achieving quite satisfactory
results in different vision problems at that time.
Eigen et al. utilize the experience gained so far
on CNNs and combine it with problem-specific
knowledge to tackle the SIDE problem. They
formulate the problem as a supervised regres-
sion problem and solve it with their framework.
An evolution to this and what we base our model
on, is Multiple Image Super-Resolution (MISR),
where we feed a CNN for Super-Resolution of
depth images with its corresponding RGB high
resolution image; The detailed structures in the
RGB image can help the net dealing with the
high frequency components and recognizing eas-
ily different objects in the scene;

3. Methods
3.1. Architecture
Both 4x and 8x networks present the following
components:
• convolution block: we have a 2D convo-

lution operation and the Leaky Rectified
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Linear Unit (Leaky ReLU) which is an im-
proved version of ReLU function as it has
a it has a small slope for negative val-
ues instead of a flat slope in the negative
area. The slope coefficient is determined
before training and not learnt during train-
ing. This functions introduce non linear
real-world properties to artificial neural net-
works.

• subpixel convolution block: it takes as in-
put the scaling factor we want to perform.
The core of the subpixel convolution is the
depth to space function which consists of a
rearrangement of the pixel.

Figure 2: example of a subpixel convolution
function: depth to space shuffle

Each pixel from each one of the r2 feature
map of dimension W*H is mapped into one
r2 square area in the output image. This
means that the final image will have a total
dimension of r2 x WxH so that the total
number of pixels is consistent with the HR
image to be obtained.

• residual block: we have two branches: the
main branch and the skip branch. The
main branch is fed into a convolution layer
and subsequently into an activation layer.
The skip branch is basically the same ten-
sor used as input for the convolution layer.
Both are then summed together into the
output tensor.

• upsample block: the first operation is a con-
volution layer followed by a Leaky ReLU ac-
tivation, then we perform two subsequently
residual block operation; based on the scal-
ing factor we perform the actual upsample
activity and lastly we repeat the convolu-
tion block.

• downsample block: this is only applied
to color branch. we perform two subse-
quent convolution layers with their related
Leaky ReLU activation layers, then we have

the 2D max pooling layer which downsam-
ples the input along its spatial dimensions
(height and width) by taking the maximum
value over an input window for each chan-
nel of the input. The window is shifted by
strides along each dimension.

• composed block: is made up of one resid-
ual block, one upsample block with a two
scaling factor, which performs the depth to
scale function we discussed before, and one
last residual block.

Figure 3: architecture of the 8x upsample net-
work trained with NYU dataset

As you can see from Figure 3 we have two
branches, one primary, the depthmap branch,
dealing with depthmap manipulation and the
other one, the secondary, which deals with RGB
images manipulation. Seven times information
belonging to the color branch is fused with depth
information together into the primary depthmap
branch.
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3.2. Dataset
For training process we used three different
datasets. MVS-Synth Dataset [3] which is a
synthetic photo-realistic dataset that consists
of scenes with frames of urban outdoor set-
tings captured in a video game. Compared to
other synthetic datasets, MVS-Synth Dataset is
more realistic in terms of context and shading,
and compared to real-world datasets, it provides
complete ground truth disparities which cover
regions such as the sky, reflective surfaces, and
thin structures, whose ground truths are usu-
ally missing in real-world datasets. Since we use
a sigmoid as last activation layer we performed a
normalization preprocess operation before feed-
ing the network. Since we are dealing with out-
door scenes, we decided to compute a clamping
operation: all the object that has an indefinite
long distance, i.e. the sky in the background,
has a value we fixed at 0 which is translated into
a black color. This also helps creating a strong
contrast to make the silhouette of long distance
object emerge with respect to the background.
NYU dataset [10]. It consists of 1449 RGBD
images, gathered from a wide range of com-
mercial and residential buildings in three differ-
ent US cities, comprising 464 different indoor
scenes across scene classes such as bathrooms,
kitchens, libraries, living rooms. The original
high resolution RGB images and the high res-
olution depthmaps show a white frame. This
could be source of a problem for the network in
the learning process and when computing the in-
dexes for quantitative evaluation. When we do
upsample operation, some of the new pixel val-
ues could wrongly be influenced by them and
even when computing measure indexes, their
values are badly effected by these white pixel
which does not reflect the real scene. To deal
with this we decided to crop all those images
from 640x480 pixel to 624x464 pixel and then
we could perform the downsample operation, us-
ing bicubic algorithm, to obtain the 58x78 pixel
low resolution depthmaps fed to the network as
input. The low resolution depthmap and high
resolution depthmap are saved as .npy files. For
testing phase we also used Middlebury dataset;
we took a subset of 30 RGBD pairs from the
2001-2006 datasets provided by Lu et al. [8].
They are an enhancement of the original Mid-
dlebury dataset [9], since the original depthmaps

presented noise and multiple black colored area
which affected the depthmap values.

3.3. Training
For compiling process we used the Adam opti-
mizer and a custom loss function, which has the
combined action of two loss functions: L1 and
DSSIM. The L1 loss, also known as Absolute
Error Loss, is the absolute difference between a
prediction and the actual value, calculated for
each example in a dataset. The aggregation
of all these loss values is called the cost func-
tion, where the cost function for L1 is commonly
Mean Absolute Error (MAE). The Data Struc-
tural Similarity Index Measure (DSSIM) can be
applied directly to the floating point data; we
did not apply this loss on the whole picture but
first we extract some patches from it and then
we compute the ssim. This is done at batch
level and once we compute the ssim on all the
patches we compute the mean between them and
obtain a final loss value for that batch. Using
two loss functions allows us considering distinc-
tive aspects related to the discrepancy between
the groundtruth and the predicted value from
the network.
For training we implemented fit generator func-
tion, so we can keep high the number of learn-
able parameters without the drawback of mem-
ory video saturation. Furthermore we perform
some data augmentation. In our case we have
two random bit generators to perform either a
random vertical and horizontal flip.

3.4. Parameters
After several trials, a filter size of 32 is se-
lected, creating a wide network together with
the branches, although it increases the training
time after 70 epochs it achieves better results
than the 16 filter model. From the training re-
sults, we can observe that the error surface has
lots of error peaks in high parameter numbers.
This can be the result of the network’s residual
nature. The network residual part focuses on the
high frequency details; this might entail the net-
work to produce tons of high frequency details
that do not exist in the image resulting in high
error. This means that the network needs to be
trained using a lower learning rate as the net-
work gets deeper and wider. We found 2.5×10-4

to be a good value as starting learning rate value.
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Kernel size is another parameter deserved to be
noticed. One of the reason to prefer small ker-
nel sizes over fully connected network is that it
reduces computational costs and weight sharing
that ultimately leads to lesser weights for back-
propagation. 3x3 sized kernel has became a pop-
ular choice. 2x2 and 4x4 are generally not pre-
ferred because odd-sized filters symmetrically di-
vide the previous layer pixels around the output
pixel and if this symmetry is not present, there
will be distortions across the layers.
Epoch value is important to have a good balance
between the time of training and the quality of
the output. Depending also on the learning rate,
training for too long could lead to missing the
loss, bouncing back and forth the minimum we
are looking for but never reaching it, or even
exploding the value, meaning that we will keep
getting away from the minimum, increasing the
loss even more and never finding the minimum.
Based on all the test we run, we came up with
a sweet spot of 200 epochs for a regular train-
ing and additional 100 epochs when it comes to
finetuning.
It has been observed that smaller batch sizes not
only has faster training dynamics but also bet-
ter generalization on test dataset versus larger
batch sizes. Using small batch size means the
model makes updates that are all about the same
size. Because neural network systems are prone
overfitting, the idea is that seeing many small
batch size, each batch being a noisy representa-
tion of the entire dataset, will prevent the neu-
ral network from overfitting on the training set
and performing badly on the test set. Therefore,
smaller batch sizes means the model can find the
faraway better optima whereas large batch size
means the model cannot. With the other pa-
rameter fixed, we decided to maintain the batch
size equal to 1 in excahnge of a longer time of
training, since it gives us the best performance.

4. Results
Since we obtained similar result as far as con-
cern the 8x and the 4x upsample network , for
simplicity we show results related to the only 8x
network. Table 1 shows quantitative results of
our model trained with the syntethic dataset. As
you can see the model outperforms the standars
upsample algorithm. We had an improvement
of the 65% , 12% and 40% respectively on the

RMSE, SSIM and PSNR metrics if compared to
the bicubic method.

MVS dataset RMSE SSIM PSNR
Nearest 0.0960 0.8452 20.5823

Bilinear 0.0870 0.8540 21.4665

Bicubic 0.0826 0.8669 21.9263
Proposed Method 0.0297 0.9733 31.0944

Table 1: Table comparing our 8x network with
interpolation algorithm

We highlight the progress our model can perform
if a finetuning operation is carried out. Starting
from 200 epochs of training and Mean Square
Error(MSE) as loss function. Then we perform
a first finetune introducing the combined action
of MAE and DSSIM; we trained the network 100
times more. We gained a 5.6% on the RMSE,
meaning that similiraty loss takes into account
aspect that the MSE does not. We take a step
further and add 100 supplementary epochs of
training reducing the learning rate. The little
improvement shows hat the network has reached
its limit and it does not make sense to investigate
further with this configuration.

MVS dataset RMSE SSIM PSNR
Single Loss 0.0316 0.9693 30.4971

Double Loss 0.0298 0.9719 31.0221

Halved Learning Rate 0.0297 0.9733 31.0944

Table 2: Table comparing finetuning steps for
8x architecture

Now we take into exam the model trained with
the realistic indoor dataset NYU2. In the table
3 below, you can see the metrics related to the
CNN using 8 as scaling factor. Also in this case
our netowrk outperforms the standards upsam-
ple algorithms. We had an improvement of the
60% , 10% and 33% respectively on the RMSE,
SSIM and PSNR metrics of our network com-
pared to the bicubic method.

NYU dataset RMSE SSIM PSNR
Nearest 0.0932 0.7422 20.7804

Bilinear 0.0740 0.8746 22.7875

Bicubic 0.0676 0.8775 23.5404
Proposed Method 0.0284 0.9637 31.4272

Table 3: Table comparing our 8x network with
interpolation algorithm

We also compared our method to other previous
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state of the art works which used [10] dataset
as well in their testing phase, including recent
learning based methods such as DJFR [6] and
DKN [5]. Table 4 shows the detailed results on
the average RMSE which is measured in cen-
timeters.

RMSE on NYU dataset x4 upsample x8 upsample
DSMG[4] 3.02 5.38

DG[2] 3.68 5.78

DJF[6] 2.80 5.33
DJFR[7] 2.38 4.94
PAC[11] 1.89 3.33
DKN[5] 1.62 3.26

Proposed Method 1.52 2.84

Table 4: Quantitative comparison with the state
of the art on depthmap upsampling in terms of
average RMSE

Here in table 5 we show the results obtained in
the testing phase, using the Middlebury dataset
[8]. In the scenario the average RMSE is mea-
sured in the original scale of the provided dis-
parity. We compared both our 4x and 8x archi-
tecture to other previous state of the art works
as done before. Table 5 shows that our method
outperforms the existing one.

RMSE on Middlebury dataset 4x upsample 8x upsample
Bicubic 2.32 3.99

DSMG[4] 1.88 3.45

DG[2] 1.97 4.16

DJF[6] 1.68 3.24
DJFR[7] 1.32 3.19
PAC[11] 1.32 2.62
DKN[5] 1.23 2.12

Proposed Method 1.19 1.97

Table 5: Table comparing the RMSE index of
our network trained with Middlebury dataset to
some of the state of the art methods,both for the
x8 and 4x upsample model

In Figure 4 we show a qualitative comparison
between our model trained with NYU dataset
and other previous works. We used a plasma
colormap instead of the usual grayscale to bet-
ter emphasize the contrasts in the depthmaps,
since the low range of measurement in the in-
door scenes. We call the attention to the details
within the red and green rectangles. These are
related to the sides of a night table near the
sofa, which present empty gaps and so a sharp
change in the depth information. Going from the
bicubic interpolation to our method, a huge im-
provement takes place; the blurry effect reduces

(a) RGB image (b) bicubic (c) DJFR

(d) DKN (e) Ours (f) Ground truth

Figure 4: Qualitative comparisons of ×8 guided
depth map super-resolution on the NYU v2
dataset

and the edges become sharper. This happens
because in the other works a mean between the
depth values belonging to the night table and
the ones belonging to the floor behind is carried
out. The color information allows our network
to assign each pixel a more precise value.

5. Conclusions
In this work we propose two different deep learn-
ing based methods for depth map upsampling.
Both of these are proposed in order to exploit a
high resolution color image of the same scene si-
multaneously acquired. In particular, one is sug-
gested for training and testing with photorealis-
tic synthetic dataset in order to minimize pos-
sible acquisition errors and working with highly
accurate groundtruth data. On the other hand,
we have a network that deals with a real dataset
in order to see if our model behaves work well
also working with low quality groundtruth and
color images, taking into account possible ac-
quisition error from the camera. We tested
both model on 8x and 4x upsample scaling fac-
tor. Both qualitative and quantitative results,
highlight the massive impact of considering high
resolution color images while performing depth
map upsampling. In particular by using high
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resolution RGB images as additional input data,
deep learning based 8x upsampling can outper-
form 4x upsampling (also based on deep learning
but not using the auxiliary RGB image). This
is due to the high frequency details present in
the color images that could be efficiently trans-
ferred on the upsampled depth map by the pro-
posed network. Although further investigation
must be conducted on higher quality not syn-
thetic data, these results show that a system
composed by a cheap low resolution depth es-
timation device coupled with a high resolution
color camera could outperform more expensive
higher resolution 3D ranging devices.
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