
Towards Real-Time Inference: A
Fusion of Pose Estimation and
Object Tracking

Tesi di Laurea Magistrale in
Computer Science and Engineering - Ingegneria In-
formatica

Author: Greta Corti

Student ID: 970485
Advisor: Prof. Matteo Matteucci
Co-advisors: PhD. Francesco Lattari

PhD. Simone Mentasti
PhD. Riccardo Santambrogio

Academic Year: 2022-23

i

Abstract

In the rapidly evolving field of computer vision, accurate object pose estimation models
have exhibited exceptional prowess in predicting spatial orientations. However, seamlessly
integrating these models into real-time scenarios, particularly on resource-constrained
wearable devices, poses a formidable challenge due to their computational demands. This
work addresses this challenge through a multi-faceted approach, offering a novel framework
that unifies pose estimation and object tracking to enhance inference speed to real-time.
Noteworthy contributions include a comprehensive quantitative analysis of diverse em-
bedded platforms, the introduction of this innovative framework, and the development of
a flexible, lightweight deep-learning-based network for object tracking. The framework
strategically leverages both pose estimation and object tracking, with the latter exempli-
fied by SwiftTrack, an innovative model ensuring high-speed and precise pose estimation
for wearable devices.

Keywords: 6D pose estimation, object tracking, real-time inference, embedded plat-
forms

Abstract in lingua italiana

Nel dinamico campo della computer vision, i modelli accurati di stima della posa degli
oggetti hanno dimostrato eccezionali capacità nel predire orientamenti spaziali. Tuttavia,
l’integrazione fluida di tali modelli in scenari in tempo reale, specialmente su dispositivi
indossabili con risorse limitate, rappresenta una sfida considerevole a causa delle loro es-
igenze computazionali. Questa tesi si propone di affrontare questa sfida attraverso un
approccio innovativo, presentando un nuovo framework che unisce la stima della posa e
il tracciamento degli oggetti per migliorare la velocità di inferenza in tempo reale. Tra i
contributi significativi, troviamo un’analisi quantitativa completa di diverse piattaforme
embedded, l’introduzione di questo innovativo framework, e lo sviluppo di una rete deep-
learning leggera e flessibile per il tracciamento degli oggetti. Il framework sfrutta strate-
gicamente sia la stima della posa che il tracciamento degli oggetti, con quest’ultimo es-
emplificato da SwiftTrack, un modello innovativo che garantisce una stima della posa ad
alta velocità e precisa per i dispositivi indossabili.

Parole chiave: stima della posa 6D, tracciamento degli oggetti, inferenza in tempo
reale, piattaforme embedded

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1
0.1 Problem statement . 1
0.2 Contribution . 2
0.3 Document structure . 2

1 State of the Art 5
1.1 6D Object Pose Estimation . 5

1.1.1 An Extensive Review of Techniques Based on Input Modalities . . . 6
1.1.2 A Comprehensive Exploration of Two 6D Object Pose Estimation

Algorithms: GDR-Net and DenseFusion 8
1.2 Object Tracking . 10

1.2.1 Types of Object Tracking . 11
1.2.2 Deep Learning-based Approaches 12

1.3 6 Degrees of Freedom Pose Representation 14
1.3.1 Projective Geometry . 16

1.4 Challenges in 6D Pose Estimation and Object Tracking 17
1.5 Unveiling some of the Core Datasets Driving Progress in 6D Pose Estima-

tion and Object Tracking Research . 18

2 Proposed Method 21
2.1 Enhancing the Efficiency of Pose Estimation Networks for Real-Time Ap-

plications . 21
2.2 SwiftTrack . 22

vi | Contents

2.2.1 Network Input . 23
2.2.2 Model Structure . 24
2.2.3 Structured Dissection of 3D Transformation Components 25
2.2.4 Object Detection and Pose Estimation Loss 30

3 Preliminary Analysis on Embedded Platforms Timing 33
3.1 Diving into GDR-Net and DenseFusion Models 33
3.2 Comparison between CPU and GPU . 35
3.3 NVIDIA Jetson Developer Boards . 37

3.3.1 NVIDIA Jetson Nano . 37
3.3.2 NVIDIA Jetson TX2 . 39
3.3.3 NVIDIA Jetson AGX Xavier . 41

3.4 Final Remarks . 43

4 Experiments and Results 45
4.1 Utilizing YCB-Video Dataset for Model Training and Evaluation 45

4.1.1 Training Dataset . 46
4.1.2 Validation Dataset . 51

4.2 Evaluation metrics . 53
4.2.1 Intersection over Union . 53
4.2.2 3D Object Pose Estimation Accuracy 55

4.3 Implementation Details . 56
4.4 Results . 57

4.4.1 Striking the Right Balance: A Deep Investigation into Loss Functions 57
4.4.2 Unveiling the Impact of Data Augmentation Technique 64
4.4.3 Multi Task Learning . 68
4.4.4 Comparative Analysis of Backbone Architectures 74
4.4.5 Unleashing the Power of GDR-Net and SwiftTrack 79

5 Conclusions and Future Developments 81
5.1 Future Developments . 82

Bibliography 83

List of Figures 87

List of Tables 89

Acknowledgements 91

1

Introduction

In this chapter, we provide a comprehensive introduction to the key topics explored in this
thesis. By highlighting the challenges we faced and the subsequent solutions proposed, we
aim to address a pertinent problem in the field. This research contributes substantially
to existing knowledge, and we will outline the main achievements. Finally, we offer an
overview of the entire paper structure, guiding readers through the organized presentation
of our findings.

0.1. Problem statement

In recent advancement in computer vision, object pose estimation models have demon-
strated exceptional accuracy in capturing and predicting the spatial orientations of various
objects. Despite these improvements, the practicality of implementing such highly accu-
rate models in real-time scenarios, particularly on wearable devices, presents an impressive
challenge.

The issue lies in the complex computational processes that are integral to these sophisti-
cated models. Models designed to recognize detailed spatial information often come with
a high parameter count, resulting in computationally intensive processes. In the context
of real-time applications, especially those demanding rapid decision-making or interac-
tion, this computational demand becomes a critical bottleneck. The delay introduced by
these intricate models hampers their ability to provide timely results, a crucial factor in
applications such as robotics, augmented reality, or automated manufacturing. Further-
more, deploying accurate pose estimation models in resource-constrained environments,
like edge devices or embedded systems found in wearables, proves challenging. These
wearable devices typically lack the computational power required for real-time pose esti-
mation, creating a gap between accurate models in controlled settings and their practical
application in dynamic, real-world scenarios.

This challenge is particularly pronounced in wearable applications, such as augmented re-
ality glasses, where rapid and precise spatial information is paramount for user experience
and functionality.

2 | Introduction

0.2. Contribution

The main contributions of this work are as follows:

• A quantitative analysis and comparison of different GPU hardwares available on the
market.

• A novel definition of a framework that unify a pose estimation method with an
object tracking algorithm to increase the speed of inference to real time.

• A flexible and lightweight deep-learning based network for object tracking that is
capable of predicting bounding box and pose exploiting RGB images and performs
at high time inference.

0.3. Document structure

The thesis is organized as follow:

1. State of the Art: In Chapter 1, we explore existing deep neural network models
for 6D object pose estimation and object tracking. We describe their main structure
and their characteristics. Then, we present the different pose representations utilized
in computer vision and provide information about the geometry of a camera. Lastly,
we address the challenges and identify key datasets that drive progress in the fields.

2. Proposed Method: Chapter 2 introduces our new deep learning-based framework,
which serves as the solution to our problem statement. We describe in detail the
architecture, input, and output of the object tracking model within the general
framework.

3. Preliminary Analysis on Embedded Platforms Timing: Chapter 3 presents
an analysis of two deep-learning neural networks for pose estimation on embedded
platforms. We begin by comparing their efficiency and on the same dataset and
then asses their performance on CPU, GPU, and NVIDIA Jetson boards.

4. Experiments and Results: Chapter 4 details all the experiments conducted to
make our object tracking model efficient and fast. We begin by discussing the dataset
utilized and its subdivision on training and validation datasets. We then explore
the metrics used to evaluate the experiments and provide technical details about
the implementation. In conclusion, we delve into variations in loss function, data
augmentation, multi-task learning, backbone comparison and offer final remarks on
the proposed framework.

| Introduction 3

5. Conclusions and Future Developments: Chapter 5 summarizes the key findings
with reflections on the entire study and proposes potential areas for future research
and development.

5

1| State of the Art

In this chapter we present an overview of state-of-the-art methods for 6DoF object pose
estimation and tracking. In the next sections, we describe how 6D object pose estimation
and tracking algorithms work, the main classifications in which they are distinguished, and
some examples of existing implemented frameworks. After that, we define and analyze
the possible representations of the 6 DoF pose. Then we investigate the main challenges
that can be encountered when dealing with these types of algorithms. Finally, we get an
insight into some of the datasets used in this area.

1.1. 6D Object Pose Estimation

6D object pose estimation refers to the task of determining the precise position and
orientation (pose) of a three-dimensional object in a six-dimensional space, as represented
in Figure 1.1. The six dimensions represent the object’s translation along the X, Y, and
Z axes, as well as its rotation around these axes.

The goal of 6D object pose estimation is to accurately estimate the position and orien-
tation of an object in the real world based on the information provided by sensors such
as cameras or depth sensors. This task is essential in various fields, including robotics,
augmented reality, virtual reality, and autonomous navigation.

Typically, 6D object pose estimation involves several steps:

1. Object detection: detecting and localizing the object of interest within the sen-
sor’s field of view.

2. Feature extraction: extracting relevant features from the object, such as keypoints
or descriptors, to represent its appearance and geometry.

3. Pose estimation: estimating the object’s pose by matching the extracted features
to a known model or template of the object.

4. Refinement: iteratively refining the pose estimation using optimization techniques
to minimize the difference between the observed features and the model’s

6 1| State of the Art

Figure 1.1: 6 DoF pose estimation with 3D bounding box representation (from [26])

predictions.

Various algorithms and techniques can be used for 6D object pose estimation, including
geometric methods [6], template matching [35], machine learning-based approaches [42],
and deep learning methods [37]. These techniques leverage the information from sensors
to solve the estimation problem, often relying on computer vision algorithms and mathe-
matical models. In this thesis, we focus especially on deep learning methods by depending
on computer vision methods to obtain meaningful information from digital RGB images
without utilizing depth information.

1.1.1. An Extensive Review of Techniques Based on Input Modal-
ities

6 Degrees of Freedom (DoF) object pose estimation can be achieved using various tech-
niques, traditional approaches [35] or deep learning-based methods [26]. The literature
distinguishes and classifies the methods employed based on the input received by the
network:

1| State of the Art 7

RGB-based methods: First methods rely on detecting and predicting 2D keypoints and
then use the PnP algorithm [9] to calculate the poses. Nowadays, thanks to the advent
of deep learning and the rise of Convolutional Neural Networks (CNNs), monocular 6D
pose estimation achieved promising results. The main challenge of these networks is the
lack of depth information: they have to estimate the 3D pose of an object from a single
2D image. This is an ill-posed problem because many possible 3D poses could correspond
to a given 2D image. The lack of depth information makes it difficult for the network to
disambiguate between these possibilities. Exists different kinds of approaches to overcome
this problem. GDR-Net [37] introduces a network architecture that combines geometric
guidance - the geometric relationship between object keypoints and their 3D model coor-
dinates obtained by CAD models - and direct regression of the 6D pose parameters from
the input image; while the network described in [26] leverages 3D bounding box anno-
tations without requiring depth information. Other works such as [6] instead propose a
method that exploits object aspect classification: they categorize objects based on shape
and appearance, providing additional information for pose estimation.

Point Clouds-based methods: Point clouds are dense collections of 3D points in space
that represent the shape and geometry of objects. With the reduction in cost and im-
provement in the accuracy of depth sensors, numerous techniques based on point clouds
have been introduced. Typically, popular approaches employ 3D ConvNets [34] or 3D
point cloud network [31] to extract the feature and estimate the 6D pose. However, these
methods have limitations due to exorbitantly expensive computation, and inherent noise
and deficiencies in point cloud data. They struggle to achieve satisfactory results with
sparse and poorly textured point clouds, highlighting the importance of incorporating
RGB data.

RGB-D-based methods: These neural networks are trained on images that contain
both color and depth information. Classical methods extract 3D features from the in-
put RGB-D data, group together points that belong to the same object (correspondence
grouping), and verify if these groups of points correspond to an object in the scene or
not (hypothesis verification) [1]. Instead of using hand-coded features, most data-driven
methods now use deep neural networks to extract features due to the development of deep
learning and their ability to deal with unstructured data. Some methods such as [36] fuse
3D data to 2D appearance features preserving the geometric structure of the input space.
They use 2D CNNs for RGB images and point cloud networks for depth data considering
the data diversity between them. Then, they fuse these features into one to predict poses.
Unlike the previous approach, [18] proposes a method named Uni6D which takes both
UV data and RGB-D images as explicit inputs. This way they do not need two different

8 1| State of the Art

networks to extract the RGB and depth information, but they simply need a single CNN
with two extra heads for directly predicting 6D pose.

1.1.2. A Comprehensive Exploration of Two 6D Object Pose

Estimation Algorithms: GDR-Net and DenseFusion

In this section, we provide a detailed examination of GDR-Net, an RGB-based network,
and DenseFusion, a strong RGB-D-based model, which are two important algorithms
utilized in the field of 6D object pose estimation. Through our analysis, we elucidate each
algorithm’s intricate methodologies, structural nuances, and performance characteristics.
Chapter 3 expands on this exploration by thoroughly assessing the accuracy and inference
speed of these algorithms on various embedded platforms. Our discussion of GDR-Net
and DenseFusion delves into their distinct methods for managing input data, differences
in architecture, and the effects of depth information on pose estimation precision. We
specifically chose to evaluate these two algorithms to investigate whether the variation in
input data provided to the network has a significant impact on enhancing efficiency and
speed during inference.

Geometry-guided Direct Regression Network (GDR-Net)

The model presented in [37] learns the 6D pose in an end-to-end manner from dense-
correspondence-based intermediate geometric representations. Given an RGB image and
a set of N objects along with their corresponding 3D CAD model, the goal is to estimate
the 6D pose of each object with respect to the camera (Figure 1.2). First, all objects in the
scene are surveyed and zoomed in corresponding Region of Interest (RoI) which is given as
input to the proposed network to infer several intermediate geometric feature maps. From
there, the network derives the 6D pose of the object. For each zoom-in, the model infers
three intermediate geometric feature maps with size 64x64: the first one is called Surface
Region Attention (MSRA), the second one is Dense Correspondence Map (M2D−3D) and
the last one is named Visible Object Mask (Mvis). The Dense Correspondences Map
M2D−3D encodes the 2D-3D correspondence and information about the geometric shape
of the object while the Surface Region Attention MapMSRA represents the symmetry of an
object, thus using MSRA not only mitigates the influence of ambiguities but also facilitates
M3D learning by first locating coarse regions and then regressing finer coordinates. Using
M2D−3D and MSRA the network obtains the 6D pose of the object thanks to the Patch-
PnP 2D convolutional module: it consists of three 3x3 kernel convolutional layers followed
by a Group Normalization [40] and ReLU activation.

1| State of the Art 9

Figure 1.2: Framework of GDR-Net (from [37])

Two Fully Connected layers are applied to the flatten layer to reduce the size to 256. In
the end, two parallel fully connected layers output rotation and translation of the object.

DenseFusion

Wang et al. [36] describes a generic framework for estimating the 6d pose of a set of known
objects present in RGB-D images with cluttered scenes. Given the different nature of the
color and depth information in the image, they are processed in two separate networks.
The architecture (Figure 1.3) contains two stages: in the first one the network performs
a semantic segmentation (encoder-decoder architecture) for each known object category
present in the input color image, then for each object, the model uses the cropped image
from the bounding box and the masked point cloud for the second step. The second step
goes to estimate the 6d pose of the object. It consists of 4 components:

• A fully convolutional network that takes as input the cropped image of the object
and extracts features on the color per pixel so that 3D point features and image
features can be matched.

• A PointNet-based network [30] that processes each point in the point cloud to obtain
geometric features of the object.

• A pixel-wise fusion network that combines the dense features obtained from the
RGB image and the point cloud, and estimates the 6D pose of the object based on
an unsupervised confidence score.

• An iterative self-refinement methodology to train the network in a way that learns
and refines the estimation result iteratively.

10 1| State of the Art

Figure 1.3: Overview of DenseFusion model (from [36])

The main difference between these two approaches is the type of data input: the first one
needs only an RGB image, while the second one also needs depth information. Another
difference is the presence of a refinement stage on the DenseFusion network to have a
more accurate pose estimation of the object. According to the authors of the papers, both
algorithms can be used for real-time object pose estimation and are robust in estimating
the pose of objects in occluded ambient. In the following chapter, we will analyze and
discuss the distinctions between these two approaches, specifically focusing on the speed
of estimation with varying hardware.

1.2. Object Tracking

Object tracking is the procedure of precisely determining the position and monitoring the
movement of a particular object or multiple objects in a sequence of images or frames
captured by a camera or sensor. It involves identifying and monitoring the movement of
the object of interest over time as it changes position, size, and orientation.

Like 6D object pose estimation, object tracking is frequently used in several fields such
as robotics, surveillance, autonomous vehicles, and augmented reality.

The process of object tracking usually involves the following steps:

1. Object initialization: once the object is detected in the first frame or image
of the sequence, its location and features are extracted to create an initial target

1| State of the Art 11

representation. This representation could include characteristics like color, texture,
shape, or a combination of these.

2. Target localization: in subsequent frames, the task is to locate the object by
searching within a specific region of interest (RoI) or the entire frame.

3. Target re-identification: object tracking also involves maintaining the identity of
the object across frames, especially in scenarios where multiple objects are present.

4. Motion prediction and filtering: to handle occlusions, scale changes, or abrupt
object movements, motion prediction and filtering techniques are employed. These
methods estimate the future position of the object based on its previous motion
patterns, enabling smoother tracking results.

5. Track maintenance: object tracking systems often incorporate mechanisms to
handle situations where an object is temporarily lost due to occlusions or other
challenges.

Object tracking algorithms can vary depending on the specific requirements of the appli-
cation, the type of objects being tracked, and the available sensor data. Machine learning
techniques, such as deep learning and online learning, have significantly advanced the field
of object tracking in recent years, enabling more precise and robust tracking in complex
scenarios.

1.2.1. Types of Object Tracking

Object tracking encompasses various methodologies and techniques that can be employed
to achieve accurate and reliable tracking of objects. The first way to distinguish object
tracking algorithms is to consider the nature of the data being processed:

• Image tracking: these algorithms analyze a single image at a time and determine
the presence and position of the object(s) of interest within that image. The image’s
trajectory within the surrounding space is persistently monitored and traced.

• Video tracking: these models investigate the temporal dimension by tracking the
object(s) across frames, estimating their motion, and maintaining their identity and
position over time.

Both image and video object tracking methods can further be classified based on the
number of objects they are tracking:

• Single object tracking (SOT) [14]: it aims to track only one target at a time
during a sequence of images or a video. The target bounding box is defined in the

12 1| State of the Art

first image or frame of a video, and it is tracked in the rest of the images or frames.
SOT algorithms should be able to track any detected object that is given, even an
object on which no available classification model was trained.

• Multiple object tracking (MOT) [43]: it aims to track every single object of
interest in a video. First of all, MOT algorithms must determine the number of
objects in each frame; keep track of each object’s identity from one frame to the
next one until they leave the frame.

1.2.2. Deep Learning-based Approaches

Object tracking has been around for nearly 20 years, and numerous methods and ideas
have been developed to increase the accuracy and efficiency of tracking algorithms. Some
of these methods [12, 15, 17] used classical machine learning approaches such as k-Nearest
Neighbour [21] or Support Vector Machine (SVM) [4]. These strategies are effective for
predicting the target object, but they require the extraction of important and distinctive
features by professionals.

(a) A single object (i.e. the car) being tracked. [32]

(b) Multiple people tracked. [10]

Figure 1.4: Examples of single object and multiple objects tracking.

1| State of the Art 13

On the other hand, deep learning models extract these features and representations on
their own increasing the accuracy of object tracking in the scene.

In recent years, researchers extensively studied the utilization of deep learning for improv-
ing accuracy in object tracking. Several methodologies have been suggested by researchers,
including [11, 14], that focus primarily on the detection of an object’s position in an im-
age. Nevertheless, in specific circumstances, it is necessary to track both the position and
pose of the object. Researchers have proposed object pose tracking methods [23, 44] that
find application in practical areas such as robotic grasping, autonomous driving, and aug-
mented reality. Accordingly, object pose tracking has emerged as a vital aspect of object
tracking. The precision and speed of techniques used for tracking the position and orien-
tation of objects are exceptionally crucial in real-world scenarios. Most current methods
rely on RGB-D-based approaches, such as BundleSDF [38], or 3D models for precise 6D
pose estimation. However, these methods only function when depth information, point
clouds, or CAD models are accessible. In certain extreme scenarios, depth information
may be imprecise or absent, while RGB images remain stable. Therefore, it is critical
to identify efficient ways to accurately estimate object poses and track them using only
RGB images, which is a challenging and valuable pursuit.

Many algorithms in the literature, including [11, 14, 23, 44], exclusively use RGB images
as input for object tracking, showing promising outcomes in terms of both speed and
accuracy. Held et al. [14] present GOTURN, one of the first offline object trackers that
can operate at 100 fps (frame per second).

Figure 1.5: Architecture of GOTURN (from [14])

14 1| State of the Art

The tracker learns offline a generic correlation between an object’s appearance and move-
ment utilizing two basic chains of convolutional layers, followed by fully connected layers
as shown in Figure 1.5. These layers compare the features of the target object with the
characteristics in the current frame to detect the target’s position after movement. The
authors of [11] enhance the previous work by integrating a recurrent network (LSTM)
post fully connected layers, introducing Re3. This modification captures more intricate
object transformations and maintains longer-term relationships than a standard convo-
lutional network. As a result, this architecture improves accuracy and speed, enabling
tracking of objects at 150 fps. Both models specialize in object position tracking and do
not include pose tracking. Instead, tracking only the object pose is the specialization of
[23] and [44]. MOTION-NETS, described in the first paper, is quite similar to the archi-
tecture of [11]: two branches for extracting features of the two images via convolutional
layers, a 1x1 convolutional layer, an LSTM and fully connected layers. The second paper
proposes CatTrack, a model that incorporates a temporal information capture module
based on transformers to utilize the positional information of keypoints from the previous
frame, and the PnP algorithm [9] to compute the poses.

There are limited studies available that present an architecture which can simultaneously
track both position and pose.

1.3. 6 Degrees of Freedom Pose Representation

In computer vision, the 6 degrees of freedom pose is represented describing the position
and orientation of an object in three-dimensional space. It involves six independent pa-
rameters that represent the object’s movement and orientation relative to a reference
frame. The 6 DoF are typically divided into two components:

1. Translational degrees of freedom: these three parameters define the object’s
position in the three-dimensional space along the X, Y, and Z axes.

2. Rotational degrees of freedom: these three parameters represent the object’s
orientation or rotation in 3-dimensional space around the X, Y, and Z axes.

The translation is often represented by a vector t = [tx, ty, tz]
T ∈ R3; the rotation, which

belongs to the set

SO(3) = {R ∈ R3x3|RTR = I3x3, det(R) = 1}, (1.1)

instead can be described by several different parameterizations.

1| State of the Art 15

Common choices are Euler angles, unit quaternions, and rotation matrices.

Euler angles are a set of three angles used to represent the rotations around the three
axes of a fixed coordinate system (X, Y, Z). They are referred to as:

• Roll angle (φ): rotation around the X-axis.

• Pitch angle (θ): rotation around the Y-axis

• and Yaw angle (ψ): rotation around the Z-axis.

By applying the rotations sequentially, the object’s orientation can be represented uniquely.
However, using Euler angles has some drawbacks, notably the phenomenon called "gimbal
lock", which occurs when two of the angles align, leading to a loss of one degree of free-
dom. To avoid gimbal lock problems and provide better numerical stability, Euler angles
are converted to quaternions or rotation matrices.

Quaternions are versors written in the following way:

q = w + ix+ jy + kz, where w, x, y, z ∈ R

with i2 = j2 = k2 = −1

and w2 + x2 + y2 + z2 = 1.

(1.2)

However, the representations with four or fewer dimensions for 3D rotation have discon-
tinuities in Euclidean space.

Lastly, the rotation matrix is a square matrix 3x3 that can be written as:

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (1.3)

To apply a rotation to a point p = [px, py, pz]
T , the resulting rotated vector p’ can be

calculated using matrix multiplication:

p′ = R · p (1.4)

Rotation matrices provide a concise and computationally efficient way to represent 3D
rotations.

16 1| State of the Art

1.3.1. Projective Geometry

When we look around, the three-dimensional world becomes optically projected onto our
retinas. The luminance is then detected by numerous photosensitive cells present in the
retina. These measurements compile to produce an image that similarly resembles how
a group of pixels on a screen forms an image. The optical principle of the human eye
is identical to that of any optical camera, whether it is a photo or video camera. When
projecting the 3D world onto the 2D retina, information regarding the 3D structure is
lost.

One can model geometry in 3D space by utilizing the three-dimensional Euclidean vector
space R3. For plane geometry (images), R2 is the equivalent choice. To represent a 2D
point, a "fictitious" third coordinate is added to make it a 3D point. When dealing with
projective geometry in 2D, we use homogeneous coordinates:

p =

[
x

y

]
p′ = k

xy
1

 =

x
′

y′

z′

 (1.5)

By convention, we can recover the 2D point p given the 3D point p’ as

x =
x′

z′
y =

y′

z′
(1.6)

The initial step in transforming a 3D world point into a projected 2D pixel coordinates
involves converting the world coordinates U, V, W (Figure 1.6a) into the camera coor-
dinate system through a rigid transformation. This process comprises a rotation and a
translation of the system. A 3D vector T represents the translation and describes the
relative displacement between the origins of the two reference frames. Meanwhile, a 3x3
matrix R represents the rotation, aligning the axes of the two frames with each other.
These parameters are known as the extrinsic camera parameters. To convert a point
in the world frame (PW) to its counterpart in the camera frame PC , the following formula
must be applied:

PC = R(PW −T) (1.7)

1| State of the Art 17

(a) Representation of the different coordinates sys-
tems [3]

(b) Representation of the perspective projec-
tion [3]

Figure 1.6: Geometry involved in computer vision

As illustrated in Figure 1.6b, if the real-world coordinates of point P in the camera system
- X, Y, Z - are known, then it becomes feasible to compute the image coordinates on the
image plane for the projected point p, which are x and y :

x = fx
X

Z
y = fy

Y

Z
, where f =

[
fx

fy

]
is the focal distance (1.8)

The focal distance mentioned earlier is a parameter in matrix K that reflects the intrinsic
characteristics of a camera’s optical, geometric, and digital properties.

1.4. Challenges in 6D Pose Estimation and Object

Tracking

Working on both pose estimation and object tracking algorithms presents numerous chal-
lenges. Firstly, it is easy to estimate and track an object in a simple environment, but
this never happens in reality. In a real-world scenario, the target object will go through
different difficulties, e.g. deformation, occlusion, background noise, etc. In this section,
we explore some of the common issues that arise in 6D pose estimation and object track-
ing. In any machine learning or deep learning task, one of the main issues is caused by
the background of the images. It is problematic to extract features, detect, esteem the
pose, or even track an object when the background is densely populated: it intro-
duces more redundant information and noise that makes the network less receptive to

18 1| State of the Art

important features.

In addition to the background clutter, another common challenge is the occlusion of
objects. This phenomenon refers to a situation where multiple objects are so close to
obscured one to each other or the background interferes with the target object causing
the algorithms to mispredict the object’s pose.

In a real-life scenario, the illumination on a target object changes drastically as the
object moves making its localization more challenging to track and estimate.

Some challenges for the algorithms are caused by the type of object that is considered.
They have problems if the object at issue is symmetric or reflective: in the first case,
the object appears the same from multiple viewpoints, making it difficult for the model to
determine its correct orientation or direction of movement; while, in the second case, the
object can have an ambiguous appearance caused by lightning conditions and the angle of
observation and lacks distinct features. One particular challenge faced by object tracking
networks is the rapid motion of the object, which can significantly affect their ability to
maintain accurate tracking across frames and images.

1.5. Unveiling some of the Core Datasets Driving

Progress in 6D Pose Estimation and Object Track-

ing Research

Benchmarks are crucial for advancing research and development in augmented reality,
as they offer a structured and measurable means of assessing the effectiveness and per-
formance of diverse AR technologies and applications. Augmented reality is a multidis-
ciplinary field with applications ranging from gaming and entertainment to education,
healthcare, and industrial settings. The variety of potential applications and the com-
plexity of the technology involved can make benchmarking and performance evaluation
challenging. Different AR systems may be optimized for specific scenarios or tasks, mak-
ing it crucial to have standardized benchmarks that cover a wide range of use cases. The
majority of current algorithms rely on two main datasets for benchmarking: the LineMOD
dataset [16] and the YCB-Video dataset [2]. The LineMOD dataset contains 15 objects,
as illustrated in Figure 1.7, with low texture captured from different viewpoints in 15
videos, with each sequence featuring over 1,100 real images. However, only 13 of the 15
object sequences are used in the most recognized research.

1| State of the Art 19

Figure 1.7: LineMOD dataset objects

On the other hand, the original Yale-CMU-Berkeley (YCB) set includes 75 different ob-
jects selected to represent diverse scenarios and everyday objects with varying shapes,
sizes, textures, weights, and rigidity. Xiang et al. [42] created the YCB-Video dataset
that includes 21 out of the 75 original YCB objects (as shown in Figure 1.8). The dataset
offers precise 6D pose annotations for 92 RGB-D videos with a total of 133,827 frames.
The objects in the dataset possess various symmetries and are positioned in different poses
and spatial arrangements, resulting in significant occlusions between them. As indicated
in Table 1.1, we trained the model on 80 videos and reserved the remaining 12 for testing
purposes. The sequences differ in the quantity of objects, ranging from a minimum of four
to a maximum of nine. In the dataset, there are five symmetrical items (bowl, wooden
block, large and extra-large clamp, and foam brick).

Number of objects 21

Total number of videos 92

Held-out videos 12

Min objects in a scene 3

Max object in a scene 9

Mean object in a scene 4.47

Number of frames 133,827
Resolution 640 x 480

Table 1.1: Statistics of YCB-Video dataset.

20 1| State of the Art

Figure 1.8: The subset of 21 YCB objects selected to appear in YCB-Video dataset (from
[42])

21

2| Proposed Method

In this chapter, we present a method intended to solve the problem of real-time inference
of pose object estimation algorithm.

The objective of an object pose estimation method is to determine an object’s three-
dimensional position and orientation in space relative to a specific coordinate system:
this involves obtaining detailed information about the object’s translation and rotation.
However, object pose estimation algorithms face a challenge of limited real-time infer-
ence. Several algorithms under this category are computationally intensive, leading to
slower inference speeds. This limitation warrants significant consideration in contexts
where real-time processing is crucial, e.g., robotics or interactive systems, and highlights
the necessity for a judicious trade-off between accuracy and computational efficiency in
method development. Our proposed approach seeks to surpass the limitations of balanc-
ing accuracy and computational efficiency by integrating a pose estimation model with a
customized object tracking network to estimate object poses accurately and in real-time.

This chapter is divided into two parts: the first section provides a comprehensive outline
of the proposed method, highlighting both its benefits and our objectives; the second
section provides an in-depth description of our deep neural network object tracking. We
begin the second section by describing the process of obtaining the two images that are
used as inputs, and then presenting the network architecture for estimating the bounding
box and pose. Subsequently, we present a simplified approach to let the network learn to
forecast relative transformation, along with a description of the output regression losses.

2.1. Enhancing the Efficiency of Pose Estimation Net-

works for Real-Time Applications

In the realm of pose estimation algorithms, a formidable challenge arises from their con-
siderable computational cost, leading to sluggish inference times that hinder their applica-
bility in real-time scenarios. The compromise between prediction accuracy and real-time
performance becomes necessary, posing a substantial obstacle in the field. In response,

22 2| Proposed Method

our proposed approach addresses this critical issue by introducing a novel framework and
refining existing methodologies, aiming to boost the efficiency of pose estimation networks
without sacrificing accuracy.

The method proposed involves the integration of a pose estimation algorithm and an
object tracking algorithm, leveraging the strengths of both neural networks. While pose
estimation algorithms excel in accuracy, they often lag in speed during inference. On the
other hand, object tracking models are designed for real-time applications with high infer-
ence speed but may compromise accuracy over time. Our innovative model, represented in
Figure 2.1, strategically utilizes the pose estimation neural network at a lower frequency
for accurate initial pose estimation. Simultaneously, at a higher frequency, it employs the
object tracking model, called SwiftTrack, to track the object’s pose in subsequent frames.
This dynamic interplay ensures that the object tracking network continuously benefits
from the pose estimation network’s accurate predictions, avoiding delays and providing
real-time performance.

GDR-Net is chosen as the pose estimation algorithm, with a new developed object tracking
model, SwiftTrack, discussed in detail later. The proposed framework’s flexibility allows
for the incorporation of various pose estimation models, provided they output both the
object’s 2D bounding box and 3D pose.

2.2. SwiftTrack

The objective of object tracking is to locate and monitor the movements of a designated
object or target with consistency over time.

Figure 2.1: Structure of the proposed framework

2| Proposed Method 23

To maintain their swift inference times, these models should avoid excessive size or com-
plexity, as such attributes may compromise their efficiency. On the flip side, it’s crucial
for them to possess the capability to accurately estimate poses; otherwise, the risk of
mispredictions in subsequent frames becomes pronounced. Bearing these considerations
in mind, we present SwiftTrack, a novel object tracking model designed to estimate frame
poses at an impressive speed of approximately 256 frames per second. SwiftTrack stands
out for its innovative approach, overcoming size-complexity trade-offs and ensuring both
speed and precision in pose estimation. Given two RGB images, one at time t − 1 and
another at time t, our network directly outputs the relative transformation needed to
obtain the new 3D pose and object bounding box from the initial pose and bounding box.

2.2.1. Network Input

When a video contains multiple objects, the network needs to receive specific information
about the tracked object. To accomplish this, only a portion of the image containing the
target is inputted. A pair of crops from the image sequence is fed to the network at each
frame. The first crop is centered on the object’s location in the previous image, while the
second crop is in the same location in the current image, as illustrated in Figure 2.2. This
input enables our network to detect new objects that it has not previously encountered
since the network tracks the object being input within these crops. To provide the network
with contextual information concerning the surrounding area of the target object, we pad
both crops with dimensions equal to the size of the object’s bounding box incremented
by 50%.

For instance, if the object’s bounding box centers at

ct−1 = (ct−1
x ; ct−1

y) (2.1)

with width wt−1 and height ht−1 in frame t− 1, both crops will be centered at ct−1 with
width and height equal to 1.5wt−1 and 1.5ht−1, respectively. As long as the target is
not occluded or moving too fast, it will remain in this region. However, for fast-moving
objects, the search region may be expanded, which increases the network’s complexity.
Providing two crops to the network directly compares differences between two frames and
learns the effects of motion on image pixels. Before they are input in the network, the
crops are scaled to 64x64 pixels. The initial crop is necessary for the network to recognize
the object and its starting position, while the second crop presents the search region to
locate the object. The objective of the network is to determine the location of the target

24 2| Proposed Method

object within the search region.

Figure 2.2: Example of cropped images at time t− 1 and t of the YCB-Video dataset

2.2.2. Model Structure

Convolutional neural networks (CNNs) trained with backpropagation have demonstrated
excellent performance in large-scale image classification and have also been widely ap-
plied in other areas such as semantic segmentation, depth prediction, edge detection, and
keypoint prediction. CNNs are highly effective in learning input-output relations when
sufficient labeled data is available. We thus adopt an end-to-end learning strategy for fore-
casting object bounding boxes and poses. To achieve this, we utilize a dataset comprising
of image pairs and their corresponding ground truth positions.

2| Proposed Method 25

Figure 2.3: Network architecture for tracking.

We train a network to precisely predict the positions from the images. Figure 2.3 presents
our network architecture utilized to track a single object within a scene. The two RGB
images, which were cropped and scaled according to the instructions given in section 2.2.1,
are concatenated to form a six-channel tensor input for the network (three channels for
each image). The backbone network used is the FlowNetSimple architecture from Doso-
vitskiy et al. [8], trained to predict optical flow between two images. FlowNetSimple
primarly consists of a succession of convolutional layers. The initial set of convolutional
layers extracts feature representations, which capture details about the spatial and tem-
poral variances present in both input images. The ultimate convolutional layers process
the feature map and extract more intricate features associated with motion, while also
predicting the optical flow vectors for every pixel in the input images. Our input tensor
undergoes the first ten convolution layers of the FlowNetSimple. This processing gener-
ates a feature map that encapsulates valuable information pertaining to the motion of
the object under consideration. These features are first flattened and then fed through
two fully connected layers, each with a dimension of 512. Following this, four more fully
connected layers are then used to predict the object’s relative center transformation, as
well as the target bounding box dimensions, translation vector, and rotation matrix.

In total, the model comprises about 39,5 M trainable parameters.

2.2.3. Structured Dissection of 3D Transformation Components

To reduce complexity and enhance network performance, we choose to employ a disen-
tangled representation as described in [24]. By using this type of representation, we gain
an advantage in which the individual components of relative transformations are maxi-
mally disentangled, thus eliminating the need for the network to learn intricate geometric
relationships between translations and rotations.

26 2| Proposed Method

The most common choice for representing object poses and transformations are camera
coordinates. Given an initial object pose [Ri|ti], the transformed final pose would be as
follows:

Rf = R∆Ri,

tf = R∆ti + t∆,

(2.2)

(2.3)

where Rf and tf indicate the final pose resulting from the transformation, R∆ represents
the relative rotation, and t∆ represents the relative translation. One problem with this
representation is that the object rotation also impact the final translation due to the
R∆ti term in Equation 2.2, even when the translation vector t∆ is zero. Another issue is
that the network must remember the real size of each object to convert discrepancies in
images to distance offsets. This is because the translation t∆ of an object is in the 3D
metric space (for example, meters), which ties object size to distance in the metric space.
An example can be observed in column (b) of Figure 2.4. The upper row displays the
rotation center at the image’s center, leading to an unwanted translation alongside the
object’s rotation. Additionally, in the bottom row, one can note the additional translation
necessary to offset the translation caused by the rotation. To overcome these problems,
Li et al. [24] suggests decoupling the estimation of R∆ and t∆.

Figure 2.4: Behavior of the rotation of an object in different reference systems (from [24]).
The upper row panels demonstrate the impact of a 90-degree rotation along the image
plane axis on the object displayed in column (a). The bottom row displays the rotation
vectors that a network ought to provide to achieve in-place rotation using the different
coordinate systems.

2| Proposed Method 27

The initial step is to shift the center of rotation from the camera’s origin to the object’s
center in the camera frame, as indicated by the current pose estimate. This adjustment
ensures that object translation in the camera frame does not change upon rotation. The
next stage involves employing axes that are parallel to those of the camera frame when
calculating the relative rotation. By using this method, the network can be trained to
estimate the relative rotation independently of the coordinate frame of the 3D object
model. This is illustrated in column (d) of Figure 2.4. This axes configuration is chosen
because if the axes were specified in the 3D object model, the network would be required to
learn and memorize the coordinate frames of each object in order to determine the correct
rotation axis and angle. This would make the training process more difficult. This concept
is demonstrated in column (c) of Figure 2.4. In this example, the object model can be
defined arbitrarily, allowing for rotation along any axis with the same rotation vector.
Despite the clockwise rotation shown in the image, the same axis could also result in an
out of plane rotation if the object coordinate frame is defined differently.

Translation Estimation from 2D Images

Based on the previous section’s discussion of separating transformation components, we
now describe our method for predicting three-dimensional translation.

A clear method for representing relative translation is

t∆ = (∆x,∆y,∆z) = tf − ti,

where tf = (xf , yf , zf) and ti = (xi, yi, zi).
(2.4)

Estimating relative translation in the 3D metric space using only 2D images lacking depth
information poses a challenge for the network. The network must identify the object’s
size and translate its movement from 2D space to 3D based on that size. Rather than
directly training the network to regress the vector in 3D space, we regress to the changes
in the object’s positioning on the 2D image plane. In particular, we train the network to
regress to the relative translation t∆ = (vx, vy, vz), where vx and vy represent the number
of pixels the object should move along the image x-axis and y-axis, respectively, and vz

pertains to the object’s scale modification. To derive vector t∆, we combine Equation 1.6
and Equation 2.4 to obtain the following relationship:

28 2| Proposed Method

vx = fx(
xf
zf
− xi
zi
),

vy = fy(
yf
zf
− yi
zi
),

vz = log(
zi
zf

),

where fx and fy are the focal lengths of the camera

(2.5)

The scale change vz is defined as independent of the absolute object size or distance
by utilizing the ratio between the distances of the two observed images. The logarithm
utilized to compute vz guarantees sure that a value of zero denotes no alteration in scale
or distance.

Thanks to the utilization of Equation 2.5, the network has the capability to predict the
novel translation vector tf of the object in the recently allocated position.

Rotation Estimation

There are multiple well-known approaches to illustrate general SO(3) rotations for deep
models, as discussed in Section 1.3. Nevertheless, we can expect that the motion between
two successive frames will be relatively small, and thus our representation should focus on
small rotations. As a result, we implement the gnomonic projection as discussed in [13].
This method utilizes a quaternion sphere S3, which is represented in the four-dimensional
space R4, to project points from a three-dimensional sphere onto three-dimensional space
R3. The projection originates from the sphere’s center, (0,0,0,0), and extends to a tangent
hyper-plane in R3, a plane that touches the sphere at a single point, as illustrated in
Figure 2.5. The gnomonic projection is a 2-to-1 mapping of S3, meaning that opposite
points on the sphere are projected to the same point in R3. However, our network does not
use quaternions but instead employs rotation matrices. This is not problematic because,
as is explained in [13], there is an equivalent mapping of the gnomonic projection called
Cayley transform. The Cayley transform on matrices is defined as the mapping

A −→ AC = (I − A)(I + A)−1. (2.6)

This mapping is valid for any square matrix as long as (I +A) is invertible. In addition,
the Cayley transform is its own inverse, so (AC)C = A.

2| Proposed Method 29

Figure 2.5: Gnomonic projection of a sphere (from [13]).

Proposition 2.1. The Cayley transform of a rotation matrix R ∈ SO(3) is a skew-
symmetric matrix, and vice versa. Thus the correspondence R C←→ [v]× is a one-to-one
correspondence between skew-symmetric matrices and rotations R, excluding rotations
through an angle of π.

This proposition highlights two primary benefits of the transformation:

• It is highly effective for infinitesimal rotations because it yields a skew-symmetric
matrix.

• A one-to-one correlation exists between skew-symmetric matrices and 3D space ro-
tation, meaning that each skew-symmetric matrix represents a distinct rotation.

The only disadvantage is that this correspondence does not hold for angles of π (180
degrees). The importance of the Cayley transform in rotations is extensively explained
in [39], where Wu demonstrates that this transformation is an effective technique for
improving the numerical stability of algorithms.

Once the relative rotation is obtained, Equation 2.2 is used to calculate the final rotation
of the object.

In conclusion, this method of representing relative transformation has numerous advan-

30 2| Proposed Method

tages:

1. Rotation no longer affects the estimation of translation, which eliminates the need
to offset the movement caused by rotation around the camera center.

2. The intermediate variables of vx, vy, and vz represent basic translations and scaling
alterations in the image plane.

3. This representation does not need any previous knowledge of the object.

2.2.4. Object Detection and Pose Estimation Loss

The network outputs four elements: the center and dimensions of the bounding box, the
translation vector, and the rotation matrix of the object in the frame at time t. If we
consider this configuration, the total network loss is

Lnetwork = αLcenter + βLwh + γLtrans + δLrot. (2.7)

To calculate how far the various predictions are from the target, we can use the L1 distance
for all four measurements:

L∗(y, ŷ) = |ŷ − y|. (2.8)

However, employing four distinct loss functions for the four outputs results in difficulties
in balancing the various losses. This is due to the fact that the four components are on
different scales. The component error associated to the bounding box are calculated in
pixels, while translation and rotation are measured in millimeters and radians, respec-
tively. Thus, we opt to merge the components two by two into two separate losses to
address partially this issue:

Lnetwork = αLbbox + βLpose. (2.9)

Again, the problem of balancing losses arises, but a loss with four components is certainly
more challenging and less explored than a loss with two components. Additional details
on this topic are elaborated on later in the thesis. Due to the distinct characteristics of
the bounding box and pose, developing a single loss that covers all four outputs was not
feasible.

2| Proposed Method 31

Unified Bounding Box Loss Calculation

Since we have the center coordinates c = (cx; cy) and the dimensions w, h of the bounding
box and aim to merge them into a single loss, we compute the upper left corner coordinates
and lower right corner coordinates to obtain the final predicted bounding box b̂ as follow:

b̂ =

xleft

yup

xright

ydown

 =

cx − w

2

cy − h
2

xleft + w

yup + h

 (2.10)

Subsequently, we determine the mean absolute error between the predicted and target
bounding boxes through the utilization of L1 loss, also known as Absolute Error Loss:

Lbbox(b, b̂) =
1

N

N∑
n=1

|b̂n − bt
n|, where N is the batch size. (2.11)

Unified Pose Regression Loss

To create a unified loss function for pose regression that combines the translation vector
and rotation matrix, we employ the geometric reprojection error introduced by Kendall
and Cipolla et al. [19]. This loss calculates the mean distance between the 2D projections
of 3D points in the scene, using both the estimated pose and the ground truth pose. Given
the true pose of an object, represented as p = [R|t], and the estimated pose, represented
as p̂ = [R̂|̂t], the loss is calculated as:

Lpose(p, p̂) =
1

n

n∑
i=1

||(R̂xi + t̂)− (Rxi + t)||2, (2.12)

where xi represents a randomly selected 3D point on the object model and n is the total
number of points. As our dataset only includes the real dimensions of each object, 3D
bounding boxes are calculated, resulting in n = 8. This formulation is also used to
compute the average distance (ADD) metric in Equation 4.4.

33

3| Preliminary Analysis on

Embedded Platforms Timing

One of the most important aspects related to this research is performance. For this rea-
son first of all we have conducted an investigation of how the algorithms proposed in
Section 1.1.2 perform. In particular, in this chapter we analyze and discuss the perfor-
mance obtained by different embedded devices when performing 6D pose estimation.

The chapter begins with a general introduction to the two algorithms under study, out-
lining the rationale for our selection, and our overall goals. In the following section, we
conduct a comparative analysis of several devices from the NVIDIA Jetson linup.

We explain their technical features, identify potential issues encountered during tests,
and present their performance in predicting pose estimation. In the final section, we
conduct a comparable analysis that includes a standard central processing unit (CPU)
and a graphics processing unit (GPU).

3.1. Diving into GDR-Net and DenseFusion Models

In Section 1.1.2, we extensively examined the architecture of two 6D pose estimation
models, namely GDR-Net and DenseFusion. The key distinction that we find relevant
between these algorithms is in the nature of their input. Specifically, GDR-Net is a neural
network built for processing RGB images, while DenseFusion utilizes both RGB images
and depth information to estimate the pose of an object. We examine these two models
to evaluate whether the input given to the network has a significant impact on timing
and accuracy. The goals of this investigation are:

• Assessing whether there is a significant decrease in performance when using a stan-
dard RGB camera compared to an RGB-D camera in a practical application.

• Estabilishing whether using lower-performing hardware results in a significant per-
formance decrease in inference times on embedded systems. Such hardware, though,

34 3| Preliminary Analysis on Embedded Platforms Timing

is ideal for real-world applications with limited available space.

GDR-Net (MiB) DenseFusion (MiB)

Memory usage 834 766

Table 3.1: Memory used by GDR-Net and DenseFusion models.

As shown in Table 3.1, the GDR-Net model occupies more memory than DenseFusion.

Both neural networks perform accuracy and inference calculations on the LineMOD
dataset. This dataset consists of 15 objects, as explained in Section 1.5. However, dur-
ing model training or testing, only 13 of these objects are utilized. Table 3.2 illustrates
the 13 objects included in the dataset and provides insight into the accuracy of each
model’s estimation of the 6D pose for each object. As can be seen, the DenseFusion
model achieves the highest average accuracy of 95.23%, achieving an astonishing level of
accuracy exceeding 98% in objects such as eggbox, glue, and iron.

Accuracy (%)

GDR-Net DenseFusion

Ape 76.29 92.76

Benchvise 97.96 93.89

Camera 95.29 96.57

Can 98.03 94.00

Cat 93.21 96.61

Driller 97.72 87.91

Duck 80.28 93.05

Eggbox 99.53 99.81

Glue 98.94 99.81

Holepuncer 91.15 92.48

Iron 98.06 98.16

Lamp 99.14 96.83

Phone 92.35 96.06

Average 93.69 95.23

Table 3.2: Accuracy of the GDR-Net and DenseFusion models on the 13 LineMOD objects.

3| Preliminary Analysis on Embedded Platforms Timing 35

However, GDR-Net also performs well and even surpasses Densefusion’s accuracy for
certain objects like benchvise, can, and lamp.

Moving forward, we conduct a thorough analysis of time inference on various embed-
ded platforms. In addition to their disparate inputs, DenseFusion and GDR-Net exhibit
another difference. Specifically, DenseFusion performs an inference step to estimate the
object’s pose and a subsequent post-processing step to refine it. On the other hand, GDR-
Net solely executes the inference step. As a result, the post-processing row for GDR-Net
in all subsequent tables reads "−".

3.2. Comparison between CPU and GPU

The Central Processing Unit and Graphics Processing Unit are the first hardware com-
ponents used to test the two models. Both the CPU and GPU are microprocessor types,
yet they have distinct functions. CPUs execute instructions and are optimized for serial
processing, enabling swift task switching while handling a single task at a time. On the
other hand, GPUs are specialized processors designed to handle complex mathematical
calculations and render graphics. They are optimized for parallel processing, enabling
them to handle multiple tasks simultaneously.

To deploy them, we utilize Docker [7], an open platform for building, transmitting, and
executing applications. Docker enables the packaging and execution of applications in
a loosely isolated environment, commonly referred to as a container. Docker allows for
the segregation of applications from their underlying infrastructure, facilitating expedited
delivery of software. This feature permits the utilization of the Dockerfile included in
the DenseFusion repository to construct an image that is utilized by the container to
execute its code. DenseFusion, released in 2018 with PyTorch version 0.4.1, presents
some issues nowadays as few of its functions are deprecated, so we adjust the code to
ensure functionality in an environment with a PyTorch version greater than 1.0.

On the other hand, the GDR-Net repository does not contain a Dockerfile ready to be used,
necessitating the need to craft one from scratch considering all the different requirements
and compatibilities of packages necessary to create a proper environment to run the model.
Subsequently, we utilize four CPUs for each model to predict the object’s pose estimate
from the acquired image. Using the time library in Python, we can compute the duration
required by the models to determine the position for each image in the LineMOD test
dataset. At the conclusion of the inference process, we can store those values in a CSV
file. Subsequently, we import the CSV file into Excel to assess the average and variance of
the values over the entire dataset. The average inference time is converted into fps using

36 3| Preliminary Analysis on Embedded Platforms Timing

GDR-Net DenseFusion

Average Inference (s) 0.11192 0.16817

Average Post-processing (s) − 0.03675

Total Average Inference (s) 0.11192 0.20492

Total Inference Variance (s) 0.00002 0.00443

Total Average Inference (fps) 9 5

Table 3.3: Time inference calculated using 4 CPUs.

the formula

Tfps =
1

Ts
, (3.1)

where Ts represents the time in seconds. The total average inference of both algorithms
is shown in Table 3.3, proving a time of 9 fps for GDR-Net and 5 fps for DenseFusion.

After conducting experiments using CPUs, we employed graphics processing units, specif-
ically the NVIDIA GeForce GTX 1080 for GDR-Net and the NVIDIA RTX 6000 for
DenseFusion, to conduct further tests. Again, we apply the identical method to deter-
mine the times as previously outlined for the CPU. As indicated in Table 3.4, both models
experienced significant time reductions compared to CPU calculations. This is reason-
able since GPUs are specifically designed for executing complex mathematical operations
simultaneously. From the table, we can see that GDR-Net operates at approximately 70
fps, while DenseFusion operates at around 52 fps.

GDR-Net DenseFusion

Average Inference (s) 0.01447 0.00959

Post-processing (s) − 0.00947

Total Average Inference (s) 0.01447 0.01907

Total Inference Variance (s) 0.00019 0.00010

Total Average Inference (fps) 70 52

Table 3.4: Time inference calculated using GPU.

3| Preliminary Analysis on Embedded Platforms Timing 37

3.3. NVIDIA Jetson Developer Boards

NVIDIA Jetson [28] comprises embedded computing platforms designed to enhance ar-
tificial intelligence (AI) and deep learning applications at the edge with acceleration.
NVIDIA, a renowned technology corporation famous for its GPUs and AI innovations,
developed these platforms. Jetson devices are compact, energy-saving, and formidable,
rendering them suitable for implementing artificial intelligence and computer vision ap-
plications in a range of settings where real-time processing and inference are vital. Jetson
devices encompass NVIDIA’s GPU technology, which accelerates AI workloads, allowing
them to function effectively and execute intricate tasks, such as object detection, image
recognition, and robotics control. Jetson platforms are equipped with software libraries,
tools, and frameworks that facilitate the development of AI-powered applications. The
NVIDIA Jetson series comprises several widely used devices such as Jetson Nano, Jetson
Xavier NX, Jetson AGX Xavier, and Jetson TX2.

The thesis compares the performance of the t models on Jetson Nano, Jetson AGX Xavier,
and Jetson TX2 devices. The performance of each module is analyzed in detail in the
subsequent sections.

3.3.1. NVIDIA Jetson Nano

The initial embedded platform selected from the Jetson series is the NVIDIA Jetson
Nano, displayed in Figure 3.1. The Jetson Nano is a cost-effective and portable single-
board computer (SBC) designed for AI and machine learning purposes. It includes a
quad-core ARM Cortex-A57 CPU that can handle ordinary computing tasks, in tandem
with a Maxwell architecture GPU equipped with 128 CUDA cores for improving the
efficiency of AI and deep learning operations. It efficiently multitasks due to the 4GB of
LPDDR4 RAM. The Jetson Nano employs a customized Linux-based operating system,
known as NVIDIA JetPack, that’s specifically optimized for machine learning tasks while
providing essential software libraries and tools for development. It provides numerous
connectivity options, such as USB ports and GPIO pins, making it ideal for interfacing
with external devices and sensors. The compact form factor, copious documentation, and
robust developer community support of this SBC make it a favored option for a diverse
array of projects, spanning from robotics and smart cameras to Internet of Things (IoT)
and educational applications. This empowers users to explore and implement real-time
AI solutions at the edge with ease.

38 3| Preliminary Analysis on Embedded Platforms Timing

Figure 3.1: NVIDIA Jetson Nano

Table 3.5 displays the inference times acquired from two deep learning models on the
Jetson Nano using the same process described in the previous section. In this instance,
GDR-Net achieves inference speeds of approximately 7 fps, whereas DenseFusion operates
at around 5 fps. Acquiring these results proved to be quite challenging, particularly
during our attempts to execute GDR-Net. As previously explained in Section 3.2, we
relied on Docker to develop ad hoc environment for running our algorithms. This was
possible due to the availability of both Dockerfiles. The process of generating the Docker
container for DenseFusion was relatively unproblematic. The sole obstacle encountered
concerned the incompatibility of the CPU’s ARM architecture with the .so file (short for
Shared Object) contained within the original repository, which was designed for an x86_64
architecture. Once the new .so file was created, inference times could be calculated on
the LineMOD dataset without encountering any further issues. In contrast, the issue
encountered during the GDR-Net project was dissimilar. The project’s requirements state
that GDR-Net runs on Python versions greater than 3.5, which is compatible with the
latest JetPack version for the Jetson Nano that utilizes Python 3.6. However, numerous
features of Detectron2 [41], Facebook AI Research’s advanced library that offers up-to-
date detection and segmentation techniques, are utilized in this project, necessitating a
minimum of Python version 3.7.

3| Preliminary Analysis on Embedded Platforms Timing 39

GDR-Net DenseFusion

Average Inference (s) 0.15013 0.14918

Post-processing (s) − 0.05517

Total Average Inference (s) 0.15013 0.20435

Total Inference Variance (s) 0.05718 0.10773

Total Average Inference (fps) 7 5

Table 3.5: Time inference calculated using NVIDIA Jetson Nano.

This has posed a challenge as there have been no JetPack releases beyond 3.6 for the Jetson
Nano. Fortunately, a hardware-specific image [29] was discovered, featuring Ubuntu 20.04
and updated editions of Python, PyTorch, and TorchVision. The microSD card was
flashed with the image utilizing a dedicated software and reinserted into the Jetson Nano.
Following a few concluding system configurations, all requisite packages for the algorithm’s
correct operation were installed.

3.3.2. NVIDIA Jetson TX2

The NVIDIA Jetson TX2, shown in Figure 3.2, is a member of the Jetson family of pow-
erful and feature-rich single-board computers designed for high-performance edge com-
puting and embedded AI applications. It boasts a formidable six-core CPU comprising
a dual-core ARM Cortex-A57 and a quad-core ARM Cortex-A53, in addition to a Pas-
cal architecture GPU with 256 CUDA cores, delivering ample processing power for AI
and deep learning tasks. With 8 GB of LPDDR4 RAM and 32 GB of eMMC storage,
the Jetson TX2 efficiently handles complex workloads. Although slightly larger than the
Jetson Nano, the Jetson TX2 is also a compact SBC. Like all hardware in the Jetson
series, it offers numerous connectivity options and runs on the customized Linux-based
NVIDIA JetPack operating system. Its combination of a potent CPU, GPU, and sufficient
RAM make it ideal for intricate AI and computer vision tasks. It has gained recognition
in professional and research applications that demand more computational power when
compared to the Jetson Nano.

For this particular hardware, the only available data on performance pertains to the
DenseFusion project, with a recorded speed of approximately 6 fps. As shown in Ta-
ble 3.6, the inference row of GDR-net displayed a value of "−", which we attribute to
incompatibility between the Jetson and project packages, hindering our ability to run the

40 3| Preliminary Analysis on Embedded Platforms Timing

model effectively. NVIDIA has not released versions above 5.0 of the JetPack containing
Python above 3.7 for this device, as we anticipated in Section 3.3.1 for the Jetson Nano.
Due to installation errors with Detectron2 and other software packages, such as OpenCV,
the creation of a necessary Docker image for running GDR-Net was unsuccessful. Despite
our efforts, the problem remained unresolved, leading us to ultimately abandon the pos-
sibility of obtaining inference times for this project on this device. On the other hand,
we encountered no difficulties and accomplished our intended outcomes for DenseFusion,
owing to the established procedure of constructing the Docker ecosystem employed in the
Jetson Nano.

Figure 3.2: NVIDIA Jetson TX2

3| Preliminary Analysis on Embedded Platforms Timing 41

GDR-Net DenseFusion

Average Inference (s) − 0.09965

Post-processing (s) − 0.05770

Total Average Inference (s) − 0.15735

Total Inference Variance (s) − 0.00834

Total Average Inference (fps) − 6

Table 3.6: Time inference calculated using NVIDIA Jetson TX2.

3.3.3. NVIDIA Jetson AGX Xavier

The NVIDIA Jetson AGX Xavier, displayed in Figure 3.3, represents the peak of the
Jetson line of single-board computers, delivering outstanding computational power and
AI features. It features a custom eight-core CPU melding ARM Cortex-A57 and Cortex-
A53 cores, accompanied by a Volta architecture GPU containing 512 CUDA cores that
offer remarkable GPU acceleration for AI and deep learning workloads. It is capable of
competently handling even the most intricate assignments thanks to 16GB of LPDDR4x
RAM and 32GB of eMMC storage. The board supports well-known AI frameworks and
provides significant hardware acceleration, making it fitting for challenging neural net-
work inference tasks. Its compact size and connectivity choices enable it to be included
in a range of uses, such as robotics, self-governing automobiles, medical imaging, indus-
trial automation, and sophisticated research projects. NVIDIA’s abundance of developer
resources, such as those available for Jetson Nano and Jetson TX2, make it an excellent
candidate for professionals and researchers actively involved in AI and computer vision
endeavors on the front lines, where top-notch performance remains of utmost importance.

42 3| Preliminary Analysis on Embedded Platforms Timing

Figure 3.3: NVIDIA Jetson AGX Xavier

Calculating the inference times of both algorithms posed no difficulties on this hardware.
The device already had JetPack 4.6.4 with embedded Python 3.6 installed; thus, we uti-
lized it to execute DenseFusion as it complied with all necessary prerequisites. Moreover,
we could install all the packages and libraries required to operate the model properly,
thanks to the Dockerfile and the established process.

GDR-Net DenseFusion

Average Inference (s) 0.04025 0.02625

Post-processing (s) − 0.02071

Total Average Inference (s) 0.04025 0.04696

Total Inference Variance (s) 0.00468 0.00071

Total Average Inference (fps) 25 21

Table 3.7: Time inference calculated using NVIDIA Jetson AGX Xavier.

3| Preliminary Analysis on Embedded Platforms Timing 43

After obtaining the inference times of DenseFusion, we upgraded the JetPack on the
Jetson AGX Xavier to the newest version featuring Python 3.8. This was necessary to
allow GDR-Net to run due to the challenges discussed in detail in Sections 3.3.1 and 3.3.2.
Table 3.7 shows that GDR-Net has an inference speed of approximately 25 fps, while
DenseFusion achieves a speed of 21 fps.

3.4. Final Remarks

In this chapter, we compared the accuracy and timing performance of GDR-Net and
DenseFusion algorithms for object pose estimation on various embedded platforms.

DenseFusion achieves high accuracy by estimating a good pose for most objects in the
dataset and utilizes less memory compared to GDR-Net. However, GDR-Net, while hav-
ing good average accuracy, is unbalanced in its performance, showing high accuracy for
some objects but not for others. Looking at the inference time results obtained by each
individual device (CPU, GPU, Jetson Nano, Jetson TX2, and Jetson AGX Xavier), it
is evident that GDR-Net achieves faster inference times than DenseFusion. Also, as ex-
pected, the best timings are obtained using a GPU, and inference times improve whenever
a Jetson device with better hardware specifications is used. Finally, it is evident that the
inference timings are very similar when using a CPU and a Jetson Nano, so if we perform
an inference analysis on one of the two devices, we can get an idea of what the timings
will be on the other hardware.

This analysis shows that the best times are obtained by using GDR-Net, an algorithm
that only takes RGB images as input, but with the consequence that you have a decrease
in accuracy. In addition, depending on the required speed of inference for a real-world
application, the optimal embedded platform can be determined.

45

4| Experiments and Results

In this chapter, we provide a detailed account of the experiments conducted to arrive
at the final model. We also address the encountered problems during the algorithm’s
development and the solutions we implemented.

The first section elaborates on the dataset used for training, including the restructuring
process to satisfy our specific needs and how we tackle the associated challenges. In the
following section, we address the general implementation of the model and the adjustment
of hyperparameters along with other technical details. After that, we elaborate on the
performance metrics utilized to evaluate the algorithm’s efficiency. Lastly, the subsequent
section presents the executed experiments followed by a comprehensive analysis of the
acquired results.

4.1. Utilizing YCB-Video Dataset for Model Train-

ing and Evaluation

YCB-Video is the dataset chosen to train and evaluate the model proposed in this research.
As mentioned in Section 1.5, the YCB-Video dataset includes 21 objects, represented in
Figure 1.8, characterized by their size and texture, and comprising both real-world and
synthetic images. The real-world folder of the YCB-Video dataset contains 92 videos
filmed using an RGB-D camera in diverse locations. We follow prior investigations and
use 80 videos for training while designating the remaining 12 for testing. We select 15 out
of the 80 training videos randomly to create a validation dataset, which constitutes 20%
of the total. These 15 videos are separated from the training dataset to ensure they are
not used for training. On average, each video contains 1,500 frames with 4 to 9 observable
objects. Hence, when creating the customized training dataset, we crop each image of
the 65 videos for each object, resulting in over 400,000 samples. We apply the same
procedure to the validation dataset but obtain a smaller subset with over 70,000 samples
due to only considering 15 videos in this case. It is evident that the number of samples
in a dataset is considerably high, resulting in a significant increase in the time required

46 4| Experiments and Results

for model training, with a conclusion reached only after 48 hours of training. To expedite
our progress and reduce time spent, we opt to minimize our sample sizes. To achieve this
goal, the data pre processing algorithm randomly select only 100 frames from each image
sequence of the videos, which is used for both the training and validation datasets. To
ensure that all subsequent experiments can be compared with one another, it is imperative
that the 100 random frames selected for each video are consistent throughout. Therefore,
we generate a JSON file that includes the ID numbers for both the selected validation
dataset videos and the 100 chosen random frames. The training set, thus, comprises
28,954 samples, while the validation set comprises 6,459 samples.

In addition, the YCB-Video dataset comprises approximately 80,000 synthetic images
utilized to create 3D models of objects within the simulated environment. Furthermore,
the dataset includes atypical images, specifically those depicting challenging scenarios,
such as object occlusion within the scene, blurred images, and those with high or low
illumination levels, depending on the environmental context of image acquisition.

4.1.1. Training Dataset

The training dataset comprises 28,954 samples acquired by clipping the objects from the
100 randomly selected frames belonging to the 65 videos. Each frame is aligned with the
following one in the dataset since a pair of objects is required at time t-1 and time t to
provide input to the network. The models trained on this type of dataset exhibit abnormal
behavior: despite being trained, the neural network fails to recognize the movement of
objects from one image to another, and instead, replicates the input information.

A detailed inspection of the primary dataset reveals that the input image pairs are almost
indistinguishable, with a shift so slight that it is barely detectable to the human eye. If it
were not for the distinct timestep and ID, it would appear that the two images depict the
same scene at the exact moment in time. An example is shown in Figure 4.1: Figure 4.1a
displays a frame at time t of video ID 2 from the YCB-Video dataset, while Figure 4.1b
depicts the subsequent frame. Although they appear identical at first glance, these images
are not the same. Figures 4.1c and 4.1d show the starting frame at time t+10 and t+20,
respectively, and it is evident that the objects in the scene are already moving at time
t+10.

4| Experiments and Results 47

(a) Frame at time t (b) Frame at time t+1

(c) Frame at time t+10 (d) Frame at time t+20

Figure 4.1: Comparison of frames at different time distance from the first image 4.1a of
the video ID 2 of the YCB-Video dataset.

Noticing the visual similarity between successive frames, we choose to construct a his-
togram representing the amount of pixel scale shift between the two. With over 120,000
images in the dataset, it is unfeasible to visually examine every frame to determine if
consecutive images are indistinguishable. Therefore, the most effective method to show-
case this is to calculate the Euclidean distance between the centers of the objects in two
frames and create a histogram of the distances. This allows for easy identification of the
most frequent distance. From the dataset, we extract information on the bounding boxes
of the objects [xleft; yup;w;h]. Using the following formula, we derive the centers of each
object in two frames

48 4| Experiments and Results

cx = xleft +
w

2

cy = yup +
h

2

(4.1)

from which we calculate their distance

d(c, c̃) =
√

(c̃x − cx)2 + (c̃y − cy)2. (4.2)

After plotting the obtained data using the matplotlib library, we create a histogram.
Figure 4.2 displays the distances calculated between two consecutive frames, showing that
over half of the image pairs have a distance of less than 2 pixels. This result validates our
earlier observation that the input images are so closely aligned that the neural network
cannot determine any motion between them. Then, we create histograms using the same
method for two images separated by 10 and 20 frames. This allows us to observe changes in
distance. Figure 4.3 illustrates that the most common distance between images separated
by 10 frames is 6 pixels. Additionally, the number of image pairs with distances less
than 2 pixels significantly decreases compared to those calculated in the histogram with
consecutive frames. Finally, Figure 4.4 shows the plotted distances between two frames
that are 20 units apart. Similar to the previous figure, a general increase in distances
is observed, resulting in larger distances occurring more frequently and the number of
image pairs separated by less than 2 pixels decreasing. Noting a significant increase
in distance between two images 10 frames apart, we use this configuration to generate
custom dataset image pairs. Specifically, we no longer take two consecutive images from
the original dataset, but rather two images with a 10-frame interval.

When dealing with pairs of images at greater distances, a new issue arises. As stated in
Section 1.1.1, we need to crop the images based on the size of the bounding boxes, which
a certain percentage has increased. This increase in bounding box size serves the pur-
pose of providing context about the object’s surroundings while also locating the object’s
movement in the next frame. Initially, the percentage was established at 10%. However,
according to Table 4.1, when the distance between the two frames is increased, the like-
lihood of not discovering the object in the subsequent image also increases. Suppose we
contemplate a pair of sequential images and only a 10% increase. In that case, there is
a 99% probability of discovering the object in the following frame, of which only a small
portion will partially detect the object. On the other hand, if we analyze two images 10
frames apart, the likelihood of locating the entire object significantly reduces, and the
likelihood of not finding it increases.

4| Experiments and Results 49

Figure 4.2: Distances between two frames at time t and time t+ 1, measured in pixels.

Figure 4.3: Distances between two frames at time t and time t+ 10, measured in pixels.

50 4| Experiments and Results

Figure 4.4: Distances between two frames at time t and time t+ 20, measured in pixels.

This situation worsens when analyzing pictures 20 frames apart. Consequently, we adjust
this hyperparameter utilizing various values, as shown in Table 4.2, to discover a setting
with a higher likelihood of finding the object completely in the next image. A good
solution is achieved with a 50% enlargement of the initial bounding box: the likelihood of
failing to locate the object in the subsequent image 10 frames away is less than 1%. This
boosts the model’s chances of obtaining the associated input data accurately in training,
without necessitating a major crop size increase.

1 frame 10 frames 20 frames

Objects found (%) 97.31 48.95 32.02

Objects partially found (%) 2.62 43.51 52.17
Missed objects (%) 0.07 7.54 15.81

Table 4.1: Statistics on the number of objects detected with a bounding box increased of
10% in images taken at various frames.

4| Experiments and Results 51

10% 30% 50%

Objects found (%) 48.95 66.44 83.93

Objects partially found (%) 43.51 29.33 15.15
Missed objects (%) 7.54 4.23 0.92

Table 4.2: Statistics on the number of objects detected with a bounding box increased by
various percentages in a 10-frame interval.

Our model is specifically designed for object tracking and in practice, its input at time
t is its prediction at time t − 1. However, due to the algorithm’s inability to achieve
a 100% level of accuracy, errors accumulate over time, causing increasingly inaccurate
predictions. To improve its resilience to this issue, we implement data augmentation
into our custom dataset. The sole data augmentation we apply to the images involves
translation because other transformations would not serve our ultimate goal. We initially
assumed that the object would always be perfectly centered within the bounding box
during the model’s design phase. However, this is not the case if the model receives as
input a prediction from an earlier instance. Further details on data augmentation will be
presented in Section 4.4.2.

4.1.2. Validation Dataset

In the field of data science and machine learning, validation step is essential in neural
network model development process. In particular, validation is a crucial step to ensure
the model generalization ability, detect overfitting, tune hyper-parameters and implement
early stopping. To gain insights into the model’s behavior but above all to create robust
and accurate models, researchers and professionals must rely on a well-constructed vali-
dation dataset.

As said, unlike training datasets that enable the learning process, validation datasets test
a model’s capacity for generalization. This means that the dataset chosen for this porpuse
allows for the evaluation of the model’s performance on unseen data, helping to deter-
mine its effectiveness and identify potential problems such as overfitting or underfitting.
Therefore, comprehending the intricacies of validation datasets is crucial in refining the
models and ensuring their relevance beyond the boundaries of the training data.

That being said, we have chosen to utilize four diverse datasets with varying settings to
assess the algorithm’s resilience and precision in different scenarios. The four validation

52 4| Experiments and Results

datasets can be classified into two primary groups based on the number of frames of
distance between image pairs (i.e., 1 frame and 10 frames). These groups can then be
further divided into two subgroups that depend on whether or not data augmentation is
applied to the input. Therefore, the four validation datasets include the following:

1. 1-frame distance between images without data augmentation applied to
the input: In this dataset, there are pairs of images that are 1 frame apart, which
represents the real setting of an object tracking algorithm. Additionally, the image
pairs are cropped according to the specifications detailed in Section 2.2.1, with no
modifications to the input, in order to represent the ideal conditions that one would
like to have in the real application, i.e., the object placed perfectly in the center of
the bounding box and aligned with the pose estimate. Given its characteristics, we
refer to it as the "Static Single Frame" (SSF) validation dataset.

2. 1-frame distance between images with data augmentation applied to in-
put: As in the previous dataset, the images in each pair are one frame apart.
However, in this case, translation is applied to both the bounding box and the
pose in the input before cropping the images. The purpose of this procedure is to
examine the algorithm’s behavior in situations where the bounding box and pose
estimate are not aligned with the center of the object in the image. Therefore,
the evaluation assesses whether the model can rectify its prediction if an error oc-
curred in the previous frame. Once again, we utilize the term "Single Frame" in this
dataset’s name. However, instead of "Static", we opt for "Dynamic" given the use
of data augmentation, thus resulting in the name "Dynamic Single Frame" (DSF)
validation dataset.

3. 10-frame distance between images without data augmentation applied to
input: In this dataset, the pair of images under consideration are 10 frames apart
to evaluate the model’s generalization ability over the same distance of frames used
for training and to ensure that training successfully learns to estimate the required
tasks. Similar to the initial dataset, no alterations are made to the input data to
assess its accuracy with exact input data. For ease of reference, we refer to this
dataset as the "Static 10 Frames" (S-10F) validation dataset.

4. 10-frame distance between images with data augmentation applied to
input: The latter dataset combines features from the second and third datasets.
The image pairs utilized are 10 frames apart and have undergone some translation
applied to the bounding box and pose, followed by image cropping. This dataset
is utilized to assess the model’s efficacy in rectifying the error resulting from the

4| Experiments and Results 53

previous imprecise forecasting across 10 frames. As with the other datasets, we
name it the "Dynamic 10 Frames" (D-10F) validation dataset.

4.2. Evaluation metrics

When evaluating model’s performance, it is crucial to take a multifaceted approach that
goes beyond a single metric. To reflect the diverse goals we aim to achieve and the
multifarious nature of the problem we are addressing, we have selected three distinct
evaluation metrics: Intersection over Union (IoU), average distance (ADD), and average
distance symmetric (ADD-S).

Each of the metrics provides a distinct view of our model’s capabilities and comprehen-
sively measures its effectiveness in addressing different facets of the task. The metrics
are employed across all four validation datasets to systematically assess the model’s per-
formance by examining pairs of images in diverse configurations. To evaluate the effec-
tiveness of our object tracking model in real-world scenarios, SwiftTrack is applied to
three sequences of 1000 images with ground truth updates at 30 frames per second. In
these three videos, we take in consideration three different objects: the sugar box in video
1, the bleach cleanser in video 2, and the power drill in video 3. These three objects
are arranged in various settings as represented in Figure 4.5. Subsequently, the identical
metrics are computed to gauge the model performance.

In the following sections, we will examine the intricacies of each metric, highlighting their
unique strengths and how they offer insights into the performance of our model.

4.2.1. Intersection over Union

Intersection over Union, or IoU, is a vital evaluation metric widely implemented in the
fields of computer vision and object recognition. IoU calculates the level of intersection
between two areas, generally a predicted bounding box and its corresponding ground
truth. This measure is crucial in tasks such as object detection and tracking, where it
is used to evaluate the accuracy and precision of model predictions. It is computed by
dividing the overlap of the predicted bounding box A and the ground truth bounding box
B by their union. Precisely, IoU is given by

IoU(A,B) =
|A ∩B|
|A ∪B|

. (4.3)

54 4| Experiments and Results

(a) Example of a frame of video 1

(b) Example of a frame of video 2

(c) Example of a frame of video 3

Figure 4.5: Examples of frames of three videos taken in consideration to evaluate Swift-
Track performance on output propagation.

4| Experiments and Results 55

Figure 4.6: Exemples of Intersection over Union score (from [22])

As shown in Figure 4.6, a higher IoU score signifies a more precise and well-aligned
prediction, as it gauges the proportion of overlap between the predicted area and the
actual object.

Since the bounding box of the detected object is one of the model’s key outputs, it is the
most suitable metric to assess the model’s effectiveness in achieving this objective.

4.2.2. 3D Object Pose Estimation Accuracy

Average Distance (ADD) and its counterpart, Average Distance Symmetric (ADD-S), are
essential metrics in computer vision, particularly in the field of 3D object pose estimation
and tracking. These metrics play a central role in quantifying the accuracy and precision
of 3D pose estimation for objects in real-world scenes.

The ADD metric measures the average Euclidean distance between points on the model
and their corresponding points on the estimated pose, providing an indication of how
closely the model matches the predicted position. The formula for calculating ADD is

ADD =
1

m

∑
xi∈M

||(R̂xi + t̂)− (Rxi + t)||2, (4.4)

where M is the set of points in the 3D model, m is the number of points, R and t are the
ground truth rotation and translation, R̂ and t̂ are the predicted rotation and translation.
In our case, the set M consists only of the eight points representing the edges of the 3D
bounding box, since the only information available to us was the actual dimensions of the
objects in the dataset. The accuracy of our ADD is not comparable to one with a larger
set M, but it is enough to get an idea about the behavior of our model.

56 4| Experiments and Results

Conversely, ADD-S, a symmetric variant of ADD, evaluates the alignment between the
estimated pose and the ground truth by using the closest point distance to compute the
average distance between the two sets of points as in [16]:

ADD − S =
1

m

∑
x1∈M

min
x2∈M
||(R̂x2 + t̂)− (Rx1 + t)||2, (4.5)

where x1 and x2 are the points on the 3D module, R and t are the ground truth rota-
tion and translation, R̂ and t̂ are the predicted rotation and translation. Again, set M
comprises the eight points of the 3D bounding box of the object under consideration, as
previously described.

These two metrics are invaluable for evaluating the performance of algorithms and models
responsible for estimating the position and orientation of objects. A lower ADD and ADD-
S scores signify a more precise and well-aligned predictions. For this reason, we decided
to use them for our model as well, since its other output is related to 3D pose estimation.

4.3. Implementation Details

We train the model on the YCB-Video dataset, as explained in Section 4.1 of the thesis,
utilizing the pre-trained FlowNet-Simple to initialize the model’s weights. New layer
weights, including fully connected layers, are initialized randomly. The specific design
of the network we train is presented in Figure 2.3. Here we detail the implementation
of the network, which consists of ten convolutional layers, with a stride of 2 in six of
them, utilizing the simplest form of pooling. Additionally, a LeakyReLU non-linearity is
applied after every layer and the size of convolutional filters reduces towards deeper layers
of neural networks. The convolutional neural network architecture utilizes a 7x7 kernel
for the first layer, and 5x5 for the following two layers, then 3x3 starting from the fourth
layer. The number of feature maps exhibits an increase in the deeper layers, roughly
doubling after each layer with a stride of 2. Following the flattening of the features, two
fully connected layers with an output dimension of 512 are present. At the end, there are
four fully connected layers that are separated and have dimensions of 2, 2, 3, and 9: they
output the center and dimensions of the bounding box, as well as the translation vector
and rotation matrix, respectively.

The project is implemented using the PyTorch framework with the use of additional li-
braries such as Numpy, PyTorch Lightning, and OpenCV. The training batches contain
512 image pairs, whereas the validation batches contain 64 image pairs. NVIDIA GeForce

4| Experiments and Results 57

GTX 1080, backed by 4 CPUs, is used to train the network owing to the workload’s com-
plexity. We use the Adam optimizer, setting the learning rate at 10−4. The percentage
increase of the bounding box is fixed at 50% after conducting multiple experiments out-
lined in Section 4.1.1, and the dimensions of the input model images are set to 64 pixels in
width and height. To prevent overfitting during the training process, we utilize the early
stopping method with a patience of 20 epochs. This callback examines the validation
dataset’s loss for image pairs that are 10 frames apart and has no data augmentation, as
described in Section 4.1.2. If the loss does not decrease further, the training is terminated.

4.4. Results

In this section, we thoroughly analyze the results of our experiments to gain a comprehen-
sive understanding of the factors that affect our model’s performance. During this anal-
ysis, we compare the impact of several loss functions, contrasting the outcomes achieved
when four components contributes to the loss computation to those achieved with two
loss components. Delving further, we examine the role of data augmentation in boosting
the resilience of our model in different kinds of situations. In addition, we delve into
the complexities of multi-task learning to reveal the interplay and compromises involved
in training our model for simultaneous multiple objectives. The evaluation of various
backbone architectures is paramount in determining their individual impact on overall
performance. This allows for an assessment of the nuanced strengths and weaknesses
inherent in each design.

In addition to analyzing these components, we delve into the integration of GDR-Net and
our model, revealing the synergistic effects of their combination. Each subsection reveals
new insights that contribute to a comprehensive understanding of the effectiveness of our
approach to address the challenges at hand. They each provide a thorough account of the
experiments conducted before analyzing their results through comparison.

4.4.1. Striking the Right Balance: A Deep Investigation into

Loss Functions

We conduct a comparative analysis of the use of four losses versus two losses to determine
the subtle effects of different loss functions on our model’s overall performance. The loss
function serves as a vital indicator when training machine learning models. Its essential
function is to measure the extent to which the model accurately predicts in comparison
to the training data. By minimizing loss, the goal is to enhance the model’s capacity to

58 4| Experiments and Results

produce precise predictions. Therefore, it is crucial to have a simplified and well-organized
loss function that enables the model to better learn and make precise predictions.

Section 2.2.2 highlights that the model outputs four components:

1. The coordinates of the bounding box center (cx;cy).

2. The dimensions of the bounding box (w and h).

3. The translation vector (t).

4. The rotation matrix (R).

The most straightforward method for creating the loss function of the model with these
four outputs is to add up the losses of each component. This loss which we will henceforth
call Multifaceted Loss (Lmul) is illustrated by the equation:

Lmul = αLC + βLWH + γLT + δLR, (4.6)

where LC indicates the loss of the center of the bounding box, Lwh the loss of the bounding
box’s size, LT the loss of the pose’s translation vector, LR the loss of the pose rotation
matrix, and the coefficients α, β, γ, and δ are utilized to balance these losses. Each loss
is calculated by taking the l1 norm between predicted ŷ and actual y values, as shown in
the formula:

L∗(y, ŷ) =
1

N

N∑
n=1

|ŷn − yn|, where N is the batch size. (4.7)

The varying nature of the components causes the singular loss contributions to affect the
total loss in different ways: this is due to the center and dimensions of the bounding
box being measured in pixels, while the translation vector is measured in millimeters and
the rotation matrix is measured in radians. An example can be observed in Figure 4.7a,
displaying the values of various components throughout an unbalanced training session.
As depicted in the figure, the loss of the bounding box center greatly outweighs the loss
of pose translation, which has minimal impact on total net loss. As a result, the training
process prioritizes center loss over translation loss.

To ensure equal training of all components, the network loss must be balanced. We
initially set α = 1, ensuring that the center loss commences at an equal starting point
for all other losses to be balanced according to the latter. We then add the various losses
iteratively, experimenting with different coefficients for β, γ, and δ until we obtain a

4| Experiments and Results 59

combination of values that equally impact all four losses. After conducting several trials
and errors, we have determined that β = 4.75, γ = 1495, and δ = 1200. The changes
in loss values for this configuration are illustrated in Figure 4.7b. Initially, the losses
are consistently similar. However, at around epoch 40, there is a significant drop in the
bounding box center loss and the translation loss, indicating the model has learned to
recognize object motion.

In contrast, the other two losses slightly fluctuate throughout the epochs.

Noting this trend, we decide to set the coefficients to prioritize higher losses for center
and translation at the beginning, as we observed that improvements in predictions were
only noticeable once these losses decreased significantly. In contrast, the bounding box
size and rotation losses do not decline as much initially, so we adjust their coefficients to
have a greater impact later in the training process. Our initial aim is for the network to
learn the essence of motion between two images and behave appropriately. Subsequently,
the focus will shift towards fine-tuning the specifics of rotation and bounding box size.
The optimum coefficient values are β = 1.6, γ = 900, and δ = 460. Figure 4.7c displays
how the components interact under this configuration.

To determine the optimal coefficients for the four components of total loss, we conducted
multiple experiments, but we cannot definitively conclude that these are the best values.
To simplify our objective, we seek a loss representation for all network outputs with fewer
components. We consolidate the center and size of the bounding box into a single vector
that signifies the top-left and bottom-right corners of the bounding box. Thus, we combine
two previously uncorrelated measures into a single overall measure. Instead of using the
translation vector and rotation matrix separately, we opt to compute the 3D dimensions
of the object’s bounding box in the real world by combining them. As a result, we obtain
3D coordinates for the points in space that share the same unit of measurement. Thanks
to the two unions, we are able to reduce the number of loss components from four to two.
Therefore, the new formula for the network’s overall loss is

Less = θLbbox + (1− θ)Lpose, (4.8)

where Lbbox corresponds to the loss of the bounding box and Lpose to the loss of the
pose, and from now on we will call it Essential Loss (Less). The Lbbox component is
calculated utilizing the L1 loss, as described in Equation 4.7, however, we utilize vectors
that represent the top left corner and bottom right corner of the object bounding box as
predicted and ground truth values. On the other hand, the Lpose component is obtained by

60 4| Experiments and Results

(a) Representation of the Multifaceted Loss components during an unbalanced training session.

(b) Representation of the Multifaceted Loss components when starting with similar values.

(c) Representation of the Multifaceted Loss components when initially learning the movement and
subsequently other aspects.

Figure 4.7: Comparison of the Multifaceted Loss components utilizing varying balancing
coefficients.

4| Experiments and Results 61

projecting the 3D points using the estimated and ground truth pose, and then computing
their L2 distance as in Equation 4.4.

Due to the shift from four to two components for the total loss, we only need to tune
one coefficient now, making the loss balancing process easier. Furthermore, the bounding
box loss takes priority over the pose loss as the values for both losses significantly differ
as shown in Figure 4.8a. As described above, to balance this loss, we implement two
approaches:

• Setting θ = 0.17 so that the two components of the network loss have equal contri-
butions from the start, as illustrated in Figure 4.8b.

• With θ = 0.3 to enable the network’s initial learning of movement recognition prior
to concentrating on determining the optimal pose. The trend of these losses is
represented in Figure 4.8c.

Now let examine the specifics of each experiment, analyzing the results presented in Ta-
ble 4.3. The study indicates that unbalanced Multifaceted Loss performs effectively in
estimating the bounding box. This is due to the high values of LC and Lwh, which we
have previously mentioned affect the training process to a greater extent compared to the
other two factors. However, it is not successful in estimating the 3d pose. In contrast,
when the Lmul components are balanced in the two experiments, we observe a signifi-
cant improvement in the ADD metric, although there’s a slight decline in the IoU. This
consistency is expected as the training focuses on both estimating the bounding box and
recognizing pose estimation simultaneously. While the two experiments yielded similar
metric values, it is clear that they excel at opposite tasks. Specifically, the experiment
that programmed the components of Lmul to start from a common value is superior at
estimating pose compared to the experiment programmed as a scheduler. One benefit of
implementing balancing with a scheduler-like behavior is the significant reduction in train-
ing time compared to other balancing method. Therefore, the preferred type of balancing
can be chosen on the basis of the individual requirements.

Switching from Lmul to Less resulted in significant improvements in both metric qual-
ity and training speed. The table illustrates that in general all three Essential Loss
experiments are more accurate than the Multifaceted Loss experiments. Additionally,
the balanced coefficient experiments produce more significant results and exhibit similar
behavior to the two Multifaceted Loss balanced experiments.

In Table 4.4, we compare the metrics calculated on three videos composed of 1000 images
and the predictions are propagated between frames with ground truth updates every 30

62 4| Experiments and Results

(a) Representation of the Essential Loss components during an unbalanced training session.

(b) Representation of the Essential Loss components when starting with similar values.

(c) Representation of the Essential Loss components when initially learning the movement and subse-
quently other aspects.

Figure 4.8: Comparison of the Essential Loss components utilizing varying balancing
coefficients.

4| Experiments and Results 63

Experiment SSF DSF S-10F D-10F

Loss Weights IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

Lmul

α = 1
β = 1
γ = 1
δ = 1

95.54 22.52 92.89 24.57 86.73 39.63 85.52 41.09

Lmul

α = 1
β = 4.75
γ = 1495
δ = 1200

94.27 4.10 92.06 11.27 86.22 8.83 84.86 14.02

Lmul

α = 1
β = 1.6
γ = 900
δ = 460

94.68 4.12 92.45 10.33 86.30 9.31 85.14 13.70

Less θ = 0.5 94.91 3.72 92.67 10.08 86.50 8.77 84.46 13.26
Less θ = 0.17 94.62 3.62 92.44 10.05 85.92 8.63 84.88 13.20
Less θ = 0.3 94.78 3.76 92.54 10.13 86.31 8.76 85.12 13.23

Table 4.3: Comparison between Multifaceted Loss and Essential Loss models and various
balancing configurations.

frames. In each video, different objects have been taken into consideration. Although in
the previous table, we observed that the IoU metric is very similar among experiments
with the same balance, in this table, it is noticeable how experiments with Essential Loss
are generally better than those with Multifaceted Loss, especially in video 1. Instead, if
we consider the ADD metric, it is possible to notice that both in the previous table and
in this table, there is a noticeable improvement with experiments using Essential Loss.

Among the experiments with Essential Loss, we don’t have one experiment that stands
out significantly compared to the others. The two experiments with balanced coefficients
perform better in different videos: the experiment with θ = 0.17 has the best results in
video 2 and is the best at estimating the pose in video 1, while the experiment with θ = 0.3

is better at estimating tasks in video 3 and the bounding box in video 1. The best metrics
are obtained by the Essential Loss experiment with θ = 0.17 in video 2: a sequence of
images from the video of the experiment is shown in Figure 4.9. We can observe that
the initial image provides a reliable estimate of both the 2D bounding box and the pose,
benefiting from the input of the ground truth from the previous frame. However, in the
subsequent images, we notice a slight deviation in the estimates from the object’s ground
truth, resulting in a loss of precision achieved in the first image. This discrepancy arises

64 4| Experiments and Results

Experiment Video 1 Video 2 Video 3

Loss Weights IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

Lmul

α = 1
β = 1
γ = 1
δ = 1

78.50 333.63 85.80 265.12 82.69 250.85

Lmul

α = 1
β = 4.75
γ = 1495
δ = 1200

77.56 30.27 81.72 27.04 77.42 42.63

Lmul

α = 1
β = 1.6
γ = 900
δ = 460

78.90 35.97 84.45 31.94 81.84 41.13

Less θ = 0.5 82.39 29.97 78.19 26.75 73.22 49.24
Less θ = 0.17 78.90 25.70 85.38 23.24 73.85 41.56
Less θ = 0.3 80.82 31.59 82.78 24.61 80.56 39.64

Table 4.4: Comparison between Multifaceted Loss and Essential Loss models and various
balancing configurations on three videos, each composed of 1000 frames and with ground
truth updates every 30 frames.

from the accumulation of errors over time as predictions are propagated.

In conclusion, the shift from Multifaceted Loss to Essential Loss not only improves accu-
racy and performance but also accelerates the training process. This transition proves to
be advantageous on multiple fronts. Furthermore, emphasizing the importance of balanc-
ing coefficients emerges as a critical factor in achieving even more refined and superior
results. Indeed, we will delve into a detailed analysis of this aspect in Section 4.4.3. In
summary, the combination of transitioning to Essential Loss and carefully balancing co-
efficients presents a robust approach for enhancing both accuracy and efficiency in the
model.

4.4.2. Unveiling the Impact of Data Augmentation Technique

In this section, we delve into the intricate use of translation as a method for augmenting
data as introduced in Section 4.1.1. As a crucial aspect of model training, data augmen-
tation, and specifically translation, plays a pivotal role in enhancing the robustness and
adaptability of our model against spatial variations. Our goal is to not only understand
the impact of translation on performance but also to uncover its unique contributions to

4| Experiments and Results 65

Figure 4.9: Sequence of 8 frames taken from video 2 of experiment with θ = 0.17. The
top-left image represents the output of the model using the ground truth from the previ-
ous frame as input. Conversely, the subsequent images (from left to right, top to bottom)
illustrate estimates generated by the model using the propagated values from the pre-
viously calculated estimate. Ground truth for the 2D bounding box and object pose is
denoted by green and light blue, while the model predictions are indicated by red and
pink.

66 4| Experiments and Results

the model’s resilience. By isolating the technique of translation, we aim to discern its spe-
cific effects on the model. Throughout this section, we will detail how translation serves
as a key augmentation element, unraveling its distinctive impact and providing valuable
insights into its role in improving model performance.

We opt to solely use translation as a form of data augmentation, as it mirrors the most
accurate depiction of the real scenario where the prediction at instant t− 1 deviates from
the object’s center point represented in the image at instant t. The process of applying
this transformation is not straightforward as SwiftTrack operates on inputs with varying
dimensionality: the 2D bounding box in the image plane and the 3D pose in the real
world. The approach for data augmentation involves retaining the original image pairs
and translating the 3D object into world coordinates. Consequently, we derive a new
position in the 2D image plane, which is further utilized to select and crop the two input
images. During the process, a uniform distribution is introduced to the translation vector
t to account for any errors. Specifically, the formula used is

t̄ = t+ U(−a, a), (4.9)

where a indicates the maximum number of millimeters that can be shifted. After con-
ducting various experiments, we fine-tune the hyper-parameter and achieve optimal results
with a = 0.003, indicating a maximum displacement of approximately 6 pixels in the im-
age plane. Subsequently, we calculate the translation δc on the image plane by utilizing
the new translation vector t̄ through the following formulas:

δcx = fx(
t̄x
t̄z
− tx
tz
)

δcy = fy(
t̄y
t̄z
− ty
tz
)

(4.10)

where fx and fy are the focal length of the camera. Then, we calculate the new center of
the bounding box c̄ as

c̄ = c+ δc. (4.11)

We apply a uniform distribution error also to the rotation R using the following formula

R̄ = R + U(−b, b), (4.12)

4| Experiments and Results 67

where b represents the maximum number of degrees of error to be applied to the rotation
matrix. Additionally, for the size s of the bounding box, we introduce an error using the
uniform distribution with the formula

s̄ = s+ U(−c, c), (4.13)

where c represents the maximum number of pixels to be added as an error to the bounding
box. a, b, and c are hyper-parameters we tuned through experiments to determine that
the optimal setting is a = 0.003, b = 2, and c = 5. After introducing errors in the first
part, we added a final error to the translation vector using a uniform distribution with
hyper-parameter equal to 0.001 because it is uncertain if the error of the bounding box
estimate matches that of the pose estimate in reality. After completing the process, the
new center c̄ and dimensions s̄ of the bounding box values are utilized to crop a pair of
images that will serve as input for the network. This same procedure is applied to the
validation datasets such as Dynamic Single Frame and Dynamic 10 Frame, discussed in
Section 4.1.2, where data augmentation techniques are employed.

The experiments presented in Table 4.5 are executed with consistent hyper-parameter
configurations, with the sole distinction being the inclusion of data augmentation in the
training dataset. Analysis of the metrics indicates that the experiment without data aug-
mentation yielded slightly superior results compared to the experiment that employed
data augmentation. Nevertheless, upon scrutinizing Table 4.6, depicting metrics in re-
alistic scenarios, it becomes evident that data augmentation substantially enhances the
accuracy of the model’s predictions, making it notably more robust.

Experiment SSF DSF S-10F D-10F
Data

Augmentation
IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

No 94.91 3.72 92.67 10.08 86.50 8.77 84.46 13.26
Yes 94.05 3.84 92.41 10.12 86.11 9.30 85.25 13.70

Table 4.5: Comparison between models trained with and without the use of data aug-
mentation in the training dataset.

68 4| Experiments and Results

Experiment Video 1 Video 2 Video 3
Data

Augmentation
IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

No 82.39 29.97 78.19 26.75 73.22 49.24
Yes 87.50 26.21 87.12 25.79 87.41 41.14

Table 4.6: Comparison between models trained with and without the use of data augmen-
tation in the training dataset on three videos, each composed of 1000 frames and with
ground truth updates every 30 frames.

The most promising result in this comparison is observed in video 1, using the model
trained with data augmentation applied to the training dataset. A sequence of 8 images
from this video is shown in Figure 4.10: it is noticeable how, even in frames where the
prediction from the previous frame is propagated, the estimates of the bounding box and
pose are quite close to the corresponding ground truths of the object, although some error
is still present.

In conclusion, we can assert that the incorporation of data augmentation into the train-
ing dataset has yielded exclusively positive effects on the model’s task estimation. This
enhancement has further fortified the model’s ability to accurately determine the 2D
bounding box and object pose, even in the presence of potential errors introduced by the
propagation of predictions. The augmented dataset has proven instrumental in fostering
a robust performance, contributing to the model’s resilience in handling various scenar-
ios. Consequently, the augmentation strategy emerges as a valuable tool in refining the
model’s capabilities and ensuring reliable predictions across diverse conditions.

4.4.3. Multi Task Learning

Multi-task learning (MTL) is a paradigm in machine learning that differs from the tra-
ditional approach of training models for singular objectives. Instead of solely focusing
a model’s proficiency in one task, MTL involves simultaneously mastering multiple, fre-
quently related, tasks. This approach is inspired by the belief that learning numerous
tasks simultaneously can enhance a model’s overall performance and generalization capa-
bilities. By integrating data from diverse tasks during training, multi-task learning creates
models that exhibit a nuanced understanding of the underlying information and improved
adaptability to a range of challenges. As we explore multi-task learning, it’s clear that its
applications span various domains, presenting a promising approach to solving complex

4| Experiments and Results 69

Figure 4.10: Sequence of 8 frames taken from video 1 of experiment with data augmen-
tation applied to the training dataset. The top-left image represents the output of the
model using the ground truth from the previous frame as input. Conversely, the sub-
sequent images (from left to right, top to bottom) illustrate estimates generated by the
model using the propagated values from the previously calculated estimate. Ground truth
for the 2D bounding box and object pose is denoted by green and light blue, while the
model predictions are indicated by red and pink.

70 4| Experiments and Results

problems through a unified and interconnected learning framework.

The model specializes in two tasks: estimating the 2D bounding box in the image and
estimating the 3D pose in the object’s world. Additionally, as discussed in Section 4.4.1,
the model requires balance on the loss components to prevent learning imbalance towards
one task. As discussed, we attempted to manually balance the weights, but this method
presents various challenges. Model performance is highly sensitive to weight selection and
this can significantly impact the results. Tuning weight hyper-parameters can be a costly
and time-consuming process, often requiring several days for each trial. Consequently, it
is preferable to devise a more convenient technique that can learn the optimal weights.
Therefore, we attempt to apply MTL techniques to find the optimal weights and evaluate
if there are substantial improvements in the estimation accuracy of our tasks compared
to manual loss balancing.

Table 4.7 presents four types of multi-task learning experiments for comparison purposes:

1. No balance: It utilizes loss equation 4.8, in which θ is set to 0.5 to ensure equal
weight for both components on the final loss. This baseline experiment allows us to
assess the effectiveness of the other experiments.

2. Random Loss Weighting (RLW) [25]: It is a technique that uses randomly sam-
pled loss weights from a distribution to train a Multi-Task Learning model. The
general loss weights λ = (λ1, ..., λT) ∈ RT are treated as random variables and
are sampled from a random distribution during each iteration. Thus, the training
process employs dynamic loss weights, resembling existing loss balancing methods.
However, RLW distinguishes itself by using randomized weights as opposed to the
carefully designated ones used in previous works. The article contends that RWL
exhibits greater potential to overcome local minima, leading to improved general-
ization skills. For this reason, RWL ought to be viewed as a more viable benchmark
than the usual unbalanced approach.

3. Uncertainty [20]: It is a multitasking technique that assigns weights to multi-
ple loss functions by taking into account the homoscedastic uncertainty of each
task. Firstly, to better understand this approach, we must introduce the concept
of aleatoric uncertainty. It refers to uncertainty regarding information that our
data is unable to account for. Sequentially, we can explain that homoscedastic or
task-dependent uncertainty is an aleatoric uncertainty that does not depend on the
input data. It is not an output from the model, but rather a constant quantity for
all input data that varies across different tasks. The level of uncertainty associated
with a task reflects the relative confidence in its outcome, considering the inher-

4| Experiments and Results 71

ent uncertainty in both regression and classification tasks. It will also depend on
how the task is measured and defined. This allows for the simultaneous learning of
various quantities with different units or scales in both classification and regression
settings.

4. Conflict-Averse Gradient Descent (CAGrad) [27]: It is a method that manipu-
lates task gradients to alleviate the problem of conflicting gradients. When gradients
of different task objectives are not well-aligned, following the average gradient direc-
tion can be detrimental to specific task performance. In practice, it minimizes the
average loss function by utilizing the worst local improvement of individual tasks to
regulate the algorithm, therefore promoting a consistent trajectory. The method’s
concept is straightforward: it searches for an update vector that maximizes the
greatest local improvement of any objective within a neighborhood of the average
gradient, automatically balancing different objectives and smoothly converging to
an optimal point of the average loss.

All three experiments utilizing multi-task learning methods show an improvement in per-
formance compared to the experiment with unbalanced loss coefficients, though with
varying degrees of enhancement. The model employing Conflict-Averse Gradient Descent
demonstrates enhancements in the estimation of the object’s bounding box, but signifi-
cantly worsens the pose estimation. This suggests that this method is more focused on
learning the bounding box rather than the pose.

On the other hand, the algorithm using homoscedastic uncertainty has exhibited improve-
ments in bounding box estimation across all datasets. Regarding pose estimation, there
have been slight enhancements in datasets with pairs of 1 frame (SSF and DSF). This
indicates that this approach balances the losses related to both bounding box and pose,
striving to improve both tasks, in contrast to the previous experiment.

Experiment SSF DSF S-10F D-10F

Balancer
IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

No Balance 94.05 3.84 92.41 10.12 86.11 9.30 85.25 13.70
RLW 94.76 3.55 92.73 9.98 86.48 9.12 85.48 13.49
Uncertainty 94.87 3.64 92.76 10.05 86.77 9.48 85.67 13.88
CAGrad 94.53 5.19 92.70 10.78 86.04 11.66 85.17 15.33

Table 4.7: Comparison between models with different Multi-Task Learning algorithms

72 4| Experiments and Results

Lastly, the experiment that improved all metrics across all datasets is the one where
Random Loss Weighting was employed, demonstrating its superior effectiveness compared
to a model without coefficient balancing and other multi-task learning methods

Examining the metrics obtained from experiments assessing the model’s effectiveness in
propagating the output from the previous frame, as outlined in Table 4.8, reveals that
experiments with Uncertainty and RLW show a decrease in the IoU score. This outcome
is logical since both algorithms aim to balance learning between the two tasks, unlike the
experiment with unbalanced coefficients, which specializes in estimating the bounding
box, as its loss predominates over the pose.

On the other hand, considering the ADD metric, distinct behaviors are observed between
Uncertainty and RLW. RLW exhibits improvement in all three videos, while Uncertainty
experiences a deterioration in pose estimation. This suggests that RLW is better able to
balance the losses compared to the model with Uncertainty. Finally, the experiment with
CAGrad demonstrates improvements in bounding box estimation in the first two videos
but shows a decline in pose estimation.

In Figure 4.11, a sequence of 8 images from video 1 is depicted using the model with
Random Loss Weighting as the method for balancing the components of the loss Less. It
is noticeable how the predictions of the subsequent frames get progressively closer to the
targets, demonstrating the model’s robustness in handling the propagation of prediction
errors.

Experiment Video 1 Video 2 Video 3

Balancer
IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

No Balance 87.50 26.21 87.12 25.79 87.41 41.14
RLW 86.00 22.16 86.78 23.18 88.00 47.12
Uncertainty 80.07 34.17 87.09 49.15 85.85 46.99
CAGrad 89.20 34.54 88.46 43.93 86.11 52.93

Table 4.8: Comparison between models with different Multi-Task Learning algorithms
on three videos, each composed of 1000 frames and with ground truth updates every 30
frames.

4| Experiments and Results 73

Figure 4.11: Sequence of 8 frames taken from video 1 of experiment with Random Loss
Weighting method. The top-left image represents the output of the model using the
ground truth from the previous frame as input. Conversely, the subsequent images (from
left to right, top to bottom) illustrate estimates generated by the model using the propa-
gated values from the previously calculated estimate. Ground truth for the 2D bounding
box and object pose is denoted by green and light blue, while the model predictions are
indicated by red and pink.

74 4| Experiments and Results

Therefore, the present analysis indicates that Random Loss Weighting is the most effec-
tive method, and Multi-Task Learning approaches are beneficial for multi-tasking neural
networks as they enhance model performance and include an automatic means to avoid
the need to search for optimal coefficients for loss network balancing.

4.4.4. Comparative Analysis of Backbone Architectures

The selection of a network backbone holds significant importance in the development
of deep learning architectures, impacting both computational efficiency and the overall
performance and adaptability of the model. Since the backbone acts as the foundational
structure on which intricate neural networks are constructed, it becomes imperative for
practitioners and researchers to grasp and compare different backbones. This comparative
analysis examines different network backbones, analyzing their strengths, weaknesses, and
impact on the proposed tasks. Through dissecting these intricacies, valuable insights are
gained into the trade-offs between computational efficiency and model expressiveness,
ultimately aiding in informed backbone selection for deep learning tasks.

The initial network utilized as the backbone of the model is VGG16. VGG16, also known
as Visual Geometry Group 16, is a convolutional neural network architecture that was
developed by the Visual Geometry Group at the University of Oxford.

First introduced in [33], VGG16 is known for its depth, comprising 16 layers, 13 of which
are convolutional and 3 are fully connected, as shown in Figure 1.8. The architecture
utilizes 3x3 convolutional filters with ReLU activation functions and same padding to re-
tain spatial dimensions. It employs max-pooling layers with 2x2 filters for downsampling.
VGG16 is specifically designed to handle 224x224 pixel images and serves as a popu-
lar pre-trained model for image classification tasks, especially on the ImageNet dataset.
While newer architectures have surpassed VGG16’s performance, it still remains a popu-
lar choice for transfer learning and serves as a foundational model in the field of computer
vision. Although VGG16 has many positive qualities for transfer learning, we were unable
to utilize it due to its limitation of accepting only a single RGB image as input.

Figure 4.12: VGG16 architecture (from [5])

4| Experiments and Results 75

Since our model relies on two concatenated images, this caused an incompatibility with
the number of channels. Nevertheless, we decided to utilize its architectural design to
evaluate its performance in object tracking and the time taken for inference.

FlowNet Simple [8] is the second network used as the backbone of the model. FlowNet
Simple is a computer vision model specifically created to estimate optical flow. Optical
flow is the apparent movement of objects in an image due to the relative motion between
the observer and the scene. FlowNet’s objective is to predict dense optical flow fields
between two input frames. FlowNet Simple maintains the essential elements of convolu-
tional neural networks for extracting features and regression layers for forecasting optical
flow, as depicted in Figure 4.13. FlowNet Simple and VGG16 are different computer vi-
sion architectures designed for specific tasks and the architectural design constitutes the
second discrepancy between the two models: FlowNet Simple employs a shallower net-
work to ensure real-time performance. Unlike VGG16, transfer learning is utilized in this
case due to the compatibility between the input information of the model and FlowNet
Simple. Additionally, our proposed model utilizes only the initial 10 convolutional layers
of FlowNet Simple, as predicting optical flow is unnecessary for our tasks.

The last backbone neural network we have tested is Light Flow, as presented in [45]. This
model is a lighter variant of the previously mentioned FlowNet Simple. In the encoder
section, the conventional 3x3 convolutions are substituted with 3x3 depthwise separable
convolutions. In addition, in the decoder part, every deconvolution action is replaced with
nearest-neighbor upsampling followed by depthwise separable convolution. Furthermore,
the technique takes inspiration from Fully Convolutional Networks (FCN) for making
multi-resolution predictions. Unlike some methods that rely solely on the most accurate
optical flow prediction during inference, this study implements a technique of upscaling
multi-resolution predictions to the same spatial resolution and averaging them for the
final prediction. Again, only the encoder part of the general architecture was utilized in
the proposed model.

Figure 4.13: FlowNet Simple architecture (from [8])

76 4| Experiments and Results

VGG16 FlowNet Simple Light Flow

Number of parameters (M) 42.0 39.5 3.3

Parameters size (MB) 168.007 157.872 13.344

Table 4.9: Comparison of memory usage across various backbone models.

In these analyses, we not only evaluate the accuracy of the three architectures in predicting
the 2D bounding box and 6D pose of the object, but also assess the amount of memory
utilized and inference times.

As presented in Table 4.9, the Light Flow-based model has a significantly lower number
of parameters, only occupying 13 MB of memory. In contrast, the other two models have
a similar number of parameters, with FlowNet Simple being slightly lighter than VGG16.

All experiments in Table 4.10 are conducted with identical hyper-parameter settings to
ensure comparability. VGG16 performed the worst among the three models in almost all
metrics, with only slightly better values in IoU in the two datasets where data augmenta-
tion is employed. FlowNet Simple generally performed better than the other two models,
but none of the three stood out as significantly better than the others.

Upon scrutinizing Table 4.11 in the context of real-world scenarios, it reaffirms the pre-
viously stated observation that none of the three architectures significantly impacts the
accuracy of the estimation. Notably, Light Flow exhibits a relatively lower Intersection
over Union (IoU) compared to its counterparts, namely VGG16 and FlowNet Simple,
which demonstrate comparable values. Turning our attention to the Average Distance of
Error (ADD), Light Flow outperforms in Video 1 and 3. However, a closer inspection
of the videos reveals that these results stem from its tendency to mimic the input pose.
In contrast, the remaining experiments, while displaying slightly less accuracy, exhibit a
nuanced understanding of rotational aspects.

FlowNet Simple outperforms the other two models in terms of speed, with an inference
time of 256 fps as demonstrated in Table 4.12. Although Light Flow ranks second, it has
the least number of parameters, leading us to speculate that there may be a bottleneck
in our model that’s causing it to slow down. VGG16 is the slowest among all.

In contrast to earlier chapters, this section diverges from showcasing the sequence of
eight images extracted from the best-performing video. Instead, it shows in Figure 4.14
frames from the Light Flow experiment to underscore the less-than-accurate nature of the
predictions.

4| Experiments and Results 77

Experiment SSF DSF S-10F D-10F

Backbone
IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

VGG16 94.07 3.30 92.04 10.51 85.32 9.34 84.47 13.86
FlowNet Simple 94.76 3.55 92.73 9.98 86.48 9.12 85.48 13.49
Light Flow 95.17 3.14 92.80 10.00 86.19 9.35 85.07 13.96

Table 4.10: Comparison between models with different backbones.

Experiment Video 1 Video 2 Video 3

Backbone
IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

IoU
(%)

ADD
(mm)

VGG16 87.28 20.93 87.23 24.10 87.41 41.14
FlowNet Simple 86.00 22.16 86.78 23.18 88.00 47.12
Light Flow 81.45 17.58 85.44 23.88 86.25 27.80

Table 4.11: Comparison between models with different backbones on three videos, each
composed of 1000 frames and with ground truth updates every 30 frames.

Despite possessing the correct dimensions, it’s evident that the pose is not accurately
centered.

In conclusion, the ideal foundation for our model is FlowNet Simple, which surpasses
all others in terms of inference speed, a crucial element for a real-time object tracking
algorithm. Additionally, it provides accurate estimations for object bounding boxes and
3D poses. However, it has the drawback of utilizing slightly more memory than a Light
Flow model, although not to an excessive degree. If minimum memory usage is a necessity,
selecting Light Flow as the model’s backbone is essential. Despite a slight decrease in
efficiency and performance, the model is still capable of running in real-time, even if
slower than FlowNet Simple.

78 4| Experiments and Results

Figure 4.14: Sequence of 8 frames taken from video 3 of experiment with Light Flow
architecture as backbone. The top-left image represents the output of the model using
the ground truth from the previous frame as input. Conversely, the subsequent images
(from left to right, top to bottom) illustrate estimates generated by the model using
the propagated values from the previously calculated estimate. Ground truth for the
2D bounding box and object pose is denoted by green and light blue, while the model
predictions are indicated by red and pink.

4| Experiments and Results 79

VGG16 FlowNet Simple Light Flow

Average Inference (s) 0,00519 0,00391 0,00498

Inference Variance (s) 0,00039 0,00040 0,00022

Average Inference (fps) 193 256 201

Table 4.12: Time inference of the three backbones calculated using GPU.

The majority of the experiments discussed in the preceding chapters were replicated with
a change in the hyperparameter: the input size of the SwiftTrack model was adjusted
from 64, as detailed in Section 4.3, to 128 pixels. This modification resulted in an en-
hancement of metrics across the four datasets. However, upon closer examination of
metrics related to video sequences, it became apparent that the improvement is not as
pronounced, particularly in addressing rotation, which still poses challenges for accurate
learning.

Furthermore, as part of the data augmentation strategy, random adjustments for satura-
tion and brightness were applied to frames during training. Despite incorporating these
measures, noteworthy improvements were not observed.

4.4.5. Unleashing the Power of GDR-Net and SwiftTrack

In this conclusive section, we unveil the outcomes derived from the proposed methodol-
ogy expounded in Section 4.4.5. Our findings distinctly showcase that the integration of
an object tracking algorithm significantly contributes to the improvement of pose esti-
mation method inference times, rendering it well-suited for real-time applications. The
fundamental architecture of our proposal involves employing GDR-Net, the selected pose
estimation model, at a lower frequency of 30 frames per second, while SwiftTrack assumes
the role of predicting every frame at a higher frequency.

As illustrated in Table 4.13, SwiftTrack exhibits a noteworthy superiority in inference
speed compared to GDR-Net, highlighting its exceptional efficiency in real-time task es-
timation. This rapid processing capability positions SwiftTrack as a primary choice for
continuous use, allowing it to handle a majority of tasks seamlessly. Meanwhile, GDR-Net
is strategically employed at a lower frequency to optimize pose predictions periodically.
This dynamic utilization strategy not only harnesses the real-time processing prowess
of SwiftTrack but also capitalizes on the specific strengths of GDR-Net, enhancing the
overall accuracy of pose estimations. The flexibility in alternating between these two mod-

80 4| Experiments and Results

GDR-Net SwiftTrack

Average Inference (s) 0.01447 0.00391

Inference Variance (s) 0.00019 0.00040

Average Inference (fps) 70 256

Table 4.13: Time inference of GDR-Net and SwiftTrack calculated using NVIDIA GeForce
GTX 1080.

els based on their distinct advantages contributes to an adaptive and efficient workflow,
showcasing the practical versatility of the proposed framework

81

5| Conclusions and Future

Developments

In this concluding chapter, we bring together the key findings and insights gleaned from
our exploration of 6D object pose estimation, object tracking, and the development of a
novel deep learning framework.

In our exploration of embedded platforms, a key revelation emerges: the NVIDIA Jetson
Nano, distinguished as the most economical, compact, and user-friendly developer board,
surprisingly exhibits a performance akin to that of the CPU. This revelation implies
that an inference analysis on either device can provide a reliable estimate of timings on
the counterpart hardware. As anticipated, platforms endowed with superior hardware
specifications demonstrate faster processing capabilities compared to their less capable
counterparts. This insight underscores the importance of hardware considerations in
optimizing performance across embedded platforms

Despite its straightforward structure, SwiftTrack has exhibited remarkable proficiency
in accurately predicting both the bounding box and 3D pose of an object using solely
RGB images. Notably robust over short intervals, the model operates at an impressive
speed of 256 frames per second, ensuring real-time functionality. Additionally, SwiftTrack
stands out as a lightweight model, with the flexibility to swap its backbone, FlowNet
Simple, for the lighter Light Flow. While this substitution results in a slight decrease
in efficiency and performance, the model remains fully capable of real-time operation.
This versatility underscores SwiftTrack’s adaptability to varying computational demands
without compromising its core strengths.

In conclusion, our study establishes the effectiveness of the novel framework comprising
GDR-Net and our object tracking algorithm, showcasing its capability to operate seam-
lessly in real-time scenarios. Notably flexible, this framework exhibits adaptability by
accommodating various pose estimation methods utilizing RGB images. Its versatility
extends to enhancing the velocity of real-time operations, positioning it as a robust solu-
tion applicable across a spectrum of pose estimation techniques. This flexibility not only

82 5| Conclusions and Future Developments

underscores the framework’s efficacy but also opens avenues for widespread utilization in
diverse applications requiring real-time processing.

5.1. Future Developments

As we navigate through the conclusions drawn from our experiments and analyses, we
contemplate potential directions for future research and development in this ever-evolving
field.

The proposed framework, as well as the object tracking model, serves as a foundational
structure open to numerous enhancements for increased accuracy and efficacy. One such
improvement involves the exploration of alternative datasets beyond YCB-Video. As ex-
tensively discussed in the thesis, the complexities and limitations of this dataset have
posed challenges in model training. Introducing a different dataset not only addresses
these issues but also broadens the algorithm’s generalization capabilities, enabling it to
recognize a more diverse range of objects. Further enhancements could involve experi-
menting with Recurrent Neural Networks to boost prediction accuracy over time, ensuring
stability and reducing the frequency of pose estimation algorithm usage. Additionally, ef-
forts can be directed towards fortifying the object tracking model in scenarios with sudden
changes in light and high occlusion, enhancing its robustness. Ultimately, an additional
avenue for improvement lies in refining the training of the object tracking system to
adeptly identify changes in pose, with a particular focus on rotation. We have observed
a notable increase in error, especially during propagation, emphasizing the need for a
more nuanced approach. Despite incorporating data augmentation for rotation, the an-
ticipated improvements did not materialize. Therefore, there is a need for a more in-depth
exploration of the application of data augmentation specifically tailored to enhance the
algorithm’s resilience against propagated errors in rotation.

83

Bibliography

[1] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and C. Rother. Learn-
ing 6d object pose estimation using 3d object coordinates. In D. Fleet, T. Pajdla,
B. Schiele, and T. Tuytelaars, editors, Computer Vision – ECCV 2014, pages 536–
551, Cham, 2014. Springer International Publishing. ISBN 978-3-319-10605-2.

[2] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar. The ycb
object and model set: Towards common benchmarks for manipulation research. In
2015 International Conference on Advanced Robotics (ICAR), pages 510–517, 2015.
doi: 10.1109/ICAR.2015.7251504.

[3] R. Collins, 2020. URL https://www.cse.psu.edu/~rtc12/CSE486/lecture12.

pdf.

[4] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20:273–297,
1995.

[5] S. Das. CNN Architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet
and more — medium.com. https://medium.com/analytics-vidhya/

cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5,
2017.

[6] M. A. Dede and Y. Genc. Object aspect classification and 6dof pose estimation.
Image and Vision Computing, 124:104495, 2022.

[7] docker. Home — docker.com. https://www.docker.com/, 2023.

[8] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van
Der Smagt, D. Cremers, and T. Brox. Flownet: Learning optical flow with convo-
lutional networks. In Proceedings of the IEEE international conference on computer
vision, pages 2758–2766, 2015.

[9] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM, 24:381–395, 1981.

https://www.cse.psu.edu/~rtc12/CSE486/lecture12.pdf
https://www.cse.psu.edu/~rtc12/CSE486/lecture12.pdf
https://medium.com/analytics-vidhya/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
https://medium.com/analytics-vidhya/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
https://www.docker.com/

84 | Bibliography

[10] GLuon, 2018. URL https://cv.gluon.ai/build/examples_tracking/demo_

smot.html.

[11] D. Gordon, A. Farhadi, and D. Fox. Re3: Re al-time recurrent regression networks
for visual tracking of generic objects. IEEE Robotics and Automation Letters, 3(2):
788–795, 2018.

[12] R. H. Güting, T. Behr, and J. Xu. Efficient k-nearest neighbor search on moving
object trajectories. The VLDB Journal, 19:687–714, 2010.

[13] R. Hartley, J. Trumpf, Y. Dai, and H. Li. Rotation averaging. Int. J. Comput. Vis.,
103(3):267–305, July 2013.

[14] D. Held, S. Thrun, and S. Savarese. Learning to track at 100 fps with deep regression
networks. In European Conference Computer Vision (ECCV), 2016.

[15] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploiting the circulant
structure of tracking-by-detection with kernels. In Computer Vision–ECCV 2012:
12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012,
Proceedings, Part IV 12, pages 702–715. Springer, 2012.

[16] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab, and V. Lep-
etit. Multimodal templates for real-time detection of texture-less objects in heavily
cluttered scenes. In 2011 International Conference on Computer Vision, pages 858–
865, 2011. doi: 10.1109/ICCV.2011.6126326.

[17] S. Hong, T. You, S. Kwak, and B. Han. Online tracking by learning discriminative
saliency map with convolutional neural network. In International conference on
machine learning, pages 597–606. PMLR, 2015.

[18] X. Jiang, D. Li, H. Chen, Y. Zheng, R. Zhao, and L. Wu. Uni6d: A unified cnn
framework without projection breakdown for 6d pose estimation, 2022.

[19] A. Kendall and R. Cipolla. Geometric loss functions for camera pose regression with
deep learning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5974–5983, 2017.

[20] A. Kendall, Y. Gal, and R. Cipolla. Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7482–7491, 2018.

[21] O. Kramer and O. Kramer. K-nearest neighbors. Dimensionality reduction with
unsupervised nearest neighbors, pages 13–23, 2013.

https://cv.gluon.ai/build/examples_tracking/demo_smot.html
https://cv.gluon.ai/build/examples_tracking/demo_smot.html

| Bibliography 85

[22] S.-H. Lee and H.-C. Chen. U-ssd: Improved ssd based on u-net architecture for end-
to-end table detection in document images. Applied Sciences, 11(23):11446, 2021.

[23] F. Leeb, A. Byravan, and D. Fox. Motion-nets: 6d tracking of unknown objects in
unseen environments using rgb. arXiv preprint arXiv:1910.13942, 2019.

[24] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox. Deepim: Deep iterative matching for
6d pose estimation. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 683–698, 2018.

[25] B. Lin, F. Ye, Y. Zhang, and I. W. Tsang. Reasonable effectiveness of random
weighting: A litmus test for multi-task learning. arXiv preprint arXiv:2111.10603,
2021.

[26] Y. Lin, J. Tremblay, S. Tyree, P. A. Vela, and S. Birchfield. Single-stage keypoint-
based category-level object pose estimation from an rgb image, 2022.

[27] B. Liu, X. Liu, X. Jin, P. Stone, and Q. Liu. Conflict-averse gradient descent for
multi-task learning. Advances in Neural Information Processing Systems, 34:18878–
18890, 2021.

[28] NVIDIA, 2023. URL https://developer.nvidia.com/embedded/

jetson-modules.

[29] Qengineering. Qengineering/jetson-nano-ubuntu-20-image: Jetson nano with
ubuntu 20.04 image, 2023. URL https://github.com/Qengineering/

Jetson-Nano-Ubuntu-20-image#update-7-30-2022.

[30] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation, 2017.

[31] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frustum pointnets for 3d object
detection from rgb-d data, 2018.

[32] A. Rosebrock. Opencv object tracking, Jun 2023. URL https://pyimagesearch.

com/2018/07/30/opencv-object-tracking/.

[33] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[34] S. Song and J. Xiao. Deep sliding shapes for amodal 3d object detection in rgb-d
images, 2016.

[35] R. Vock, A. Dieckmann, S. Ochmann, and R. Klein. Fast template matching and
pose estimation in 3d point clouds. Computers & Graphics, 79:36–45, 2019.

https://developer.nvidia.com/embedded/jetson-modules
https://developer.nvidia.com/embedded/jetson-modules
https://github.com/Qengineering/Jetson-Nano-Ubuntu-20-image#update-7-30-2022
https://github.com/Qengineering/Jetson-Nano-Ubuntu-20-image#update-7-30-2022
https://pyimagesearch.com/2018/07/30/opencv-object-tracking/
https://pyimagesearch.com/2018/07/30/opencv-object-tracking/

86 5| BIBLIOGRAPHY

[36] C. Wang, D. Xu, Y. Zhu, R. Martín-Martín, C. Lu, L. Fei-Fei, and S. Savarese.
Densefusion: 6d object pose estimation by iterative dense fusion, 2019.

[37] G. Wang, F. Manhardt, F. Tombari, and X. Ji. Gdr-net: Geometry-guided direct
regression network for monocular 6d object pose estimation, 2021.

[38] B. Wen, J. Tremblay, V. Blukis, S. Tyree, T. Müller, A. Evans, D. Fox, J. Kautz,
and S. Birchfield. Bundlesdf: Neural 6-dof tracking and 3d reconstruction of un-
known objects. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 606–617, 2023.

[39] F. Wu, Z. Wang, and Z. Hu. Cayley transformation and numerical stability of cali-
bration equation. International journal of computer vision, 82:156–184, 2009.

[40] Y. Wu and K. He. Group normalization, 2018.

[41] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick. Detectron2. https:

//github.com/facebookresearch/detectron2, 2019.

[42] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural
network for 6d object pose estimation in cluttered scenes, 2018.

[43] J. Yin, W. Wang, Q. Meng, R. Yang, and J. Shen. A unified object motion and
affinity model for online multi-object tracking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6768–6777, 2020.

[44] S. Yu, D.-H. Zhai, Y. Xia, D. Li, and S. Zhao. Cattrack: Single-stage category-level
6d object pose tracking via convolution and vision transformer. IEEE Transactions
on Multimedia, 2023.

[45] X. Zhu, J. Dai, X. Zhu, Y. Wei, and L. Yuan. Towards high performance video object
detection for mobiles. arXiv preprint arXiv:1804.05830, 2018.

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

87

List of Figures

1.1 6 DoF pose estimation with 3D bounding box representation (from [26]) . . 6
1.2 Framework of GDR-Net (from [37]) . 9
1.3 Overview of DenseFusion model (from [36]) 10
1.4 Examples of SOT and MOT . 12
1.5 Architecture of GOTURN (from [14]) . 13
1.6 Imaging geometry and perspective projection 17
1.7 LineMOD dataset objects . 19
1.8 The subset of 21 YCB objects selected to appear in YCB-Video dataset

(from [42]) . 20

2.1 Structure of the proposed framework . 22
2.2 Example of cropped images at time t− 1 and t of the YCB-Video dataset . 24
2.3 Network architecture for tracking. 25
2.4 Behavior of the rotation of an object in different reference systems. 26
2.5 Gnomonic projection of a sphere (from [13]). 29

3.1 NVIDIA Jetson Nano . 38
3.2 NVIDIA Jetson TX2 . 40
3.3 NVIDIA Jetson AGX Xavier . 42

4.1 Comparison of frames at different times . 47
4.2 Distances between two frames at time t and time t+ 1, measured in pixels. 49
4.3 Distances between two frames at time t and time t+ 10, measured in pixels. 49
4.4 Distances between two frames at time t and time t+ 20, measured in pixels. 50
4.5 Examples of frames of three videos . 54
4.6 Exemples of Intersection over Union score (from [22]) 55
4.7 Comparison of the Multifaceted Loss components 60
4.8 Comparison of the Essential Loss components 62
4.9 Sequence of 8 frames taken from video 2 of experiment with θ = 0.17 . . . 65
4.10 Sequence of 8 frames taken from video 1 of experiment with data augmen-

tation . 69

88 | List of Figures

4.11 Sequence of 8 frames taken from video 1 of experiment with Random Loss
Weighting method . 73

4.12 VGG16 architecture (from [5]) . 74
4.13 FlowNet Simple architecture (from [8]) . 75
4.14 Sequence of 8 frames taken from video 3 of experiment with Light Flow

architecture . 78

89

List of Tables

1.1 Statistics of YCB-Video dataset. 19

3.1 Memory used by GDR-Net and DenseFusion models. 34
3.2 Accuracy of the GDR-Net and DenseFusion models on the 13 LineMOD

objects. 34
3.3 Time inference calculated using 4 CPUs. 36
3.4 Time inference calculated using GPU. 36
3.5 Time inference calculated using NVIDIA Jetson Nano. 39
3.6 Time inference calculated using NVIDIA Jetson TX2. 41
3.7 Time inference calculated using NVIDIA Jetson AGX Xavier. 42

4.1 Statistics on the number of objects detected with a bounding box increased
of 10% in images taken at various frames. 50

4.2 Statistics on the number of objects detected with a bounding box increased
by various percentages in a 10-frame interval. 51

4.3 Comparison between Multifaceted Loss and Essential Loss models and var-
ious balancing configurations. 63

4.4 Comparison between Multifaceted Loss and Essential Loss models and vari-
ous balancing configurations on three videos, each composed of 1000 frames
and with ground truth updates every 30 frames. 64

4.5 Comparison between models trained with and without the use of data aug-
mentation in the training dataset. 67

4.6 Comparison between models trained with and without the use of data aug-
mentation in the training dataset on three videos, each composed of 1000
frames and with ground truth updates every 30 frames. 68

4.7 Comparison between models with different Multi-Task Learning algorithms 71
4.8 Comparison between models with different Multi-Task Learning algorithms

on three videos, each composed of 1000 frames and with ground truth
updates every 30 frames. 72

4.9 Comparison of memory usage across various backbone models. 76

90 | List of Tables

4.10 Comparison between models with different backbones. 77
4.11 Comparison between models with different backbones on three videos, each

composed of 1000 frames and with ground truth updates every 30 frames. . 77
4.12 Time inference of the three backbones calculated using GPU. 79
4.13 Time inference of GDR-Net and SwiftTrack calculated using NVIDIA GeForce

GTX 1080. 80

91

Acknowledgements

Here you might want to acknowledge someone.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Problem statement
	Contribution
	Document structure

	State of the Art
	6D Object Pose Estimation
	An Extensive Review of Techniques Based on Input Modalities
	A Comprehensive Exploration of Two 6D Object Pose Estimation Algorithms: GDR-Net and DenseFusion

	Object Tracking
	Types of Object Tracking
	Deep Learning-based Approaches

	6 Degrees of Freedom Pose Representation
	Projective Geometry

	Challenges in 6D Pose Estimation and Object Tracking
	Unveiling some of the Core Datasets Driving Progress in 6D Pose Estimation and Object Tracking Research

	Proposed Method
	Enhancing the Efficiency of Pose Estimation Networks for Real-Time Applications
	SwiftTrack
	Network Input
	Model Structure
	Structured Dissection of 3D Transformation Components
	Object Detection and Pose Estimation Loss

	Preliminary Analysis on Embedded Platforms Timing
	Diving into GDR-Net and DenseFusion Models
	Comparison between CPU and GPU
	NVIDIA Jetson Developer Boards
	NVIDIA Jetson Nano
	NVIDIA Jetson TX2
	NVIDIA Jetson AGX Xavier

	Final Remarks

	Experiments and Results
	Utilizing YCB-Video Dataset for Model Training and Evaluation
	Training Dataset
	Validation Dataset

	Evaluation metrics
	Intersection over Union
	3D Object Pose Estimation Accuracy

	Implementation Details
	Results
	Striking the Right Balance: A Deep Investigation into Loss Functions
	Unveiling the Impact of Data Augmentation Technique
	Multi Task Learning
	Comparative Analysis of Backbone Architectures
	Unleashing the Power of GDR-Net and SwiftTrack

	Conclusions and Future Developments
	Future Developments

	Bibliography
	List of Figures
	List of Tables
	Acknowledgements

