
Dipartimento di Elettronica, Informazione e Bioingegneria

Master Degree in Computer Science and Engineering

Tranformer Networks for the
modelling of Jazz Harmony

by:
Giovanni Agosti

matr.:
928366

Supervisor:
Augusto Sarti

Co-supervisor:
Clara Borrelli

Academic Year
2020-2021

Abstract

Music is a multi-layered form of art and a language of its own.
It can in fact be considered one of the most ancient forms of communi-
cation between humans and can therefore be studied with the same tools
we use to study natural languages. In order to define a clear linguistic
framework and to properly apply it to the musical phenomenon we need
to separate music into its atomic components, which can be considered as
melody, harmony and rhythm, and then take into account their mutual
interactions.

In this work we mainly focus on harmony and on its interaction
with rhythm and musical structure which creates the so-called harmonic
rhythm. Harmonic rules and praxis are widely recognized to be very
much culturally dependent and it is well known that some chord pro-
gression can sound very weird for someone with a specific cultural back-
ground and at the same time very familiar for someone with a different
one. In this thesis we specifically focused on Jazz harmony, which is
a harmonic framework mostly based on the traditional western music
harmonic rules.

In this context we investigated how to define the perceived complexity
of an harmonic sequence and we tried to relate it to its unpredictability.
Predictable sequences should be the ones for which the listener could
easily guess in advance the next chord thanks to the presence of some
previously heard common pattern. In this framework we can define as
complex a sequence which is hard to predict and which creates in the
listeners a sense of unsatisfied expectation. On the other hand, simple
sequences are the ones which completely fulfill the expectation for the
next chords and which should be simple to predict, both for a human
listener and for a language model. Furthermore, we investigated the
existence of a correlation pattern between the perceived complexity an-
notated from a set of listeners and the ability of a deep learning model
to predict the next chord in a sequence.

For the purpose of this work we trained a Neural Network (NN) model
based on the Generative Pretrained Transformer (GPT) architecture pro-
posed by OpenAI in 2019. This architecture is a state of the art model
for Natural Language Processing (NLP), a field of study which investi-
gates how to model natural languages using NNs. The innovative aspect

Abstract ii

of the Transformer resides in its specific attention mechanism which al-
lows it to capture long term dependencies within the input sequences
without the use of recurrency. We trained the model with two versions
of a novel dataset containing more than 100 000 chord annotations taken
from the well known Real Book of Jazz, a collection of lead sheets of the
so-called Standards of jazz music. Furthermore, we validated the model
complexity estimates exploiting perceptual complexity ratings by means
of a listening test.

Even though a strong correlation between the cross-entropy calcu-
lated from the model and the perceptual ratings of a group of listeners
was shown in [1], we actually did not observe this correlation in our ex-
periments. This could be due to the high level of musical sophistication
implied in the repertoire that we used for the training, resulting in dif-
ficulties for most non music trained listeners in decoding the sequences
by ear and in properly evaluating their complexity. Furthermore, the
Jazz vocabulary is not as widely diffused as the Pop or Rock ones, so
listeners, on average, lack the necessary amount of experience of this
particular music genre that is needed in order to properly identify what
is a common jazz sequence and what is a very uncommon one.

As far as chord prediction is concerned, we can confirm that a GPT
based architecture can produce coherent sequences of chords and that
can learn harmonic rhythm patterns as well, a feature which can be used
in interesting ways as a composition assistant tool.

Sommario

La musica è una forma d’arte che si esprime su vari livelli e rappresenta
un linguaggio a sé stante.
Infatti, può essere considerata una delle più antiche forme di comuni-
cazione tra essere umani e può quindi essere studiata con gli stessi stru-
menti con cui si approcciano i linguaggi naturali. Per definire un chiaro
approccio di studio linguistico alla musica, è necessario separarla nei suoi
aspetti fondamentali, che possiamo considerare come melodia, armonia e
ritmo, e studiare le rispettive interazioni.

In questo lavoro ci concentriamo principalmente sull’armonia e sul
suo legame con il ritmo. Le regole e le prassi dell’armonia sono univer-
salmente riconosciute come essere in gran parte dipendenti dalla cultura
di appartenenza. E’ infatti risaputo che la stessa sequenza di accordi
possa suonare come assolutamente banale per un individuo e contempo-
raneamente come completamente imprevista per un altro appartenente
a una diversa cultura. In questa trattazione ci siamo concentrati sull’ar-
monia Jazz, una prassi armonica che può a grandi linee essere inscritta
all’interno dell’insieme della cultura musicale occidentale, ma che pre-
senta comunque alcune caratteristiche molte specifiche e peculiari.

In particolare, abbiamo investigato come definire il concetto di comp-
lessità armonica associata a una sequenza di accordi e abbiamo cercato di
legarlo alla sua imprevedibilità. Infatti, sequenze prevedibili dovrebbero
essere percepite come poco complesse, mentre sequenze molto improba-
bili dovrebbero essere percepite come estremamente complesse. Inoltre,
abbiamo investigato la presenza di una correlazione tra la complessità
percepita di una sequenza e l’abilità di un modello informatico di predirla.

Per la scrittura di questa tesi abbiamo implementato un modello
basato sull’architettura GPT-2 proposta da OpenAI nel 2019. Questo
modello rappresenta una delle ultime proposte nel campo del NLP, una
branca dell’informatica che studia i linguaggi naturali. Durante il pre-
sente lavoro abbiamo allenato il modello con un database originale di
nostra proposta trascritto dall’applicazione iRealBook creata da Mas-
simo Biolcati nel 2010. Il database utilizzato contiene più di 100 000
sequenze di accordi in tutte le tonalità tratte dai vari volumi del noto
Real Book, uno storico archivio di trascrizioni dei cosiddetti Standards
della musica Jazz. Inoltre abbiamo valutato la capacità del modello di

Sommario iv

predire la complessità percepita delle sequenze di accordi tramite un test
di ascolto.

Anche se una forte correlazione negativa tra capacità predittiva del
modello e complessità percepita era stata dimostrata in [1], non abbiamo
trovato la suddetta correlazione all’interno dei nostri dati. Questo può
essere dovuto a varie ragioni, tra cui il più alto grado di sofisticazione
del repertorio incluso nel database usato e la minore diffusione del Jazz
rispetto ad altri generi come il Pop o il Rock.

Per quanto invece riguarda l’obiettivo di modellare le regole e le prassi
dell’armonia jazz possiamo confermare che il modello GPT-2 produce se-
quenze di accordi coerenti con il database con cui è stato allenato. Inoltre
abbiamo evidenziato come il modello abbia efficacemente imparato anche
il concetto di ritmo armonico, caratteristica che potrebbe essere efficace-
mente sfruttata come strumento di composizione assistita.

Acknowledgments

I would like to thank my supervisor Prof. Augusto Sarti and my co-
supervisor Clara Borrelli for their guidance in the making of this project
and for pushing me in investigating such a beautiful field of study.

My biggest thanks goes to my parents for their endless support during
these many years of studies in conservatories and universities around the
globe.

A sweet thank you goes to my girlfriend Martina for her everyday
support and love.

A special thanks goes out to Gianluca Elia for being one of the most
brilliant individuals I know and for being a friend, always willing to help
and share his knowledge.

Contents

Abstract i

Sommario iii

Acknowledgments v

List of Figures ix

List of Tables x

Glossary xi

1 Introduction 1

2 Background 5
2.1 Harmony Fundamentals 5

2.1.1 Pitch and Pitch Classes 5
2.1.2 Scales, Chords and Keys 6
2.1.3 Harmonic Progressions 10

2.2 Time Series Forecasting Fundamentals 11
2.2.1 Auto-Regressive Models 11
2.2.2 Exponential Smoothing Models 12
2.2.3 Hidden Markov Models 12
2.2.4 Finite Context Models 14

2.3 Neural Networks Fundamentals 14
2.3.1 Feed Forward Neural Networks 15
2.3.2 Recurrent Neural Networks 17
2.3.3 Long-Short Term Memory 18
2.3.4 Transfomer . 18

2.4 Conclusive Remarks . 22

3 State of the Art 23
3.1 Harmonic Complexity 23

3.1.1 Functional Harmony Definition 24
3.1.2 Information Theory Definition 25

3.2 Machine Learning for Chord Prediction 26
3.2.1 Finite Context Models 26
3.2.2 Hidden Markov Models 27

vi

Contents vii

3.3 Deep Learning for Chord Prediction 27
3.3.1 Recurrent Neural Networks 27
3.3.2 Transformer . 28

3.4 Conclusive Remarks . 29

4 Problem Formulation and Methods 31
4.1 Chord Prediction . 32
4.2 Harmonic Complexity Estimation 32
4.3 Neural Network Model 33
4.4 Conclusive Remarks . 36

5 Experiments and results 37
5.1 Dataset . 37

5.1.1 Harmonic Framework Definition 38
5.1.2 Data Extraction 39

5.2 Metrics . 41
5.3 Training Details . 43
5.4 Experiments setup . 45

5.4.1 Sequences Generation 45
5.4.2 Participants . 45

5.5 Results . 46
5.5.1 Chord Prediction 47
5.5.2 Complexity Estimation 51

5.6 Conclusive Remarks . 53

6 Conclusions and Future Works 55

List of Figures

2.1 Circle of fifths. 7
2.2 Voice leading of the perfect cadence in C major: the 4th

resolves on the 3rd and the 7th resolves on the tonic. . . . 8
2.3 Hidden Markov Model with two states S = {Happy, Grumpy}

and two hidden states Q = {Sunny, Rainy}. 13
2.4 Feed Forward Neural Network with two Hidden Layers. . 15
2.5 Some of the most common activation functions used in

Neural Networks . 16
2.6 Recurrent Neural Network (RNN) with two Hidden Layers. 18
2.7 An Long-Short Term Memory (LSTM) unit with its inter-

nal gating mechanism. 19
2.8 Encoder-Decoder architecture of a Transformer for lan-

guage translation. 20
2.9 Stack of layers within the Transformer. (Figure taken from

[2]) . 21

3.1 Complexity measure based on the circle of fifths. Figure
taken from [3] . 25

4.1 Simple outline of the chord prediction problem. Being the
transformer an auto-regressive model, it produces one to-
ken at a time given all the previous ones and than add the
generated symbol to the input in order to further generate
new tokens. 32

4.2 GPT-2 token generation based on past tokens. Each de-
coder block consists of a masked self-attention block and a
FFNN layer. Figure taken from [4] and modified according
to our case of study. 33

4.3 Visualization of a stack of decoder layers. 34
4.4 Self attention as used in the original Transformer model

and masked self-attention as used for the Generative Pre-
trained Transformer. 35

5.1 Chord changes of the tune "Autumn Leaves" as visualized
in the iRealPro application. 39

5.2 Chord changes of the tune "In A Sentimental Mood" as
visualized in the iRealPro application. 40

viii

List of Figures ix

5.3 Chord changes of the tune "26-2" by John Coltrane and
"Infant Eyes" by Wayne Shorter. 41

5.4 Custom learning rate scheduler. 44
5.5 Example of voice leading of a sequence taken from the

dataset where the movement of the soprano part is mini-
mized. 45

5.6 Goldsmiths Musical Sophistication Index (Gold-MSI) of
the subjects involved in the listening test.. 46

5.7 Probability distributions of each next token when prompt-
ing the model with a C7 chord and sampling with k=0 . 48

5.8 Probability distributions of each next token when prompt-
ing the model with a Gmaj7 chord and sampling with k = 0 49

5.9 Probability distributions of each next token when prompt-
ing the model with the first two bars of a C major blues
and sampling with k = 0 50

5.10 Relationship between complexity estimates and perceptual
ratings obtained with our listening test. 51

5.11 R2 scores for different orders of polynomial regression mod-
els. 52

List of Tables

2.1 Pitch classes and some of their related frequencies on dif-
ferent octaves . 6

2.2 Interval pattern of the major scale 7
2.3 C major scale harmonization with triads and seventh chords. 8
2.4 A minor natural harmonization with triads and seventh

chords. 9
2.5 A minor harmonic harmonization with triads and seventh

chords. 9
2.6 A minor melodic harmonization with triads and seventh

chords. 10

5.1 Columns of the database used during training. 40
5.2 Loss, Accuracy and Pearson correlation coefficient over the

test set for the training of the dataset without harmonic
rhythm. 47

5.3 Loss, Accuracy and Pearson correlation coefficient over the
test set for the training of the dataset with harmonic rhythm. 47

5.4 Examples of sequences generated with k-top sampling where
k=0 and prompted with one random chord. 48

5.5 Pearson coefficient of correlation between the model’s es-
timates and the perceptual ratings. 52

5.6 Equivalence between our alphabet and the MusicXML chord
types. 54

x

Glossary

AR Auto-Regressive. 11

ARIMA Auto-Regressive Integrated Moving Average. 12

ARMA Auto-Regressive Moving Average. 11

BPTT Back Propagation Through Time. 18

CNN Convolutional Neural Network. 22

CV Computer Vision. 18

DAW Digital Audio Workstation. 28

DBN Dynamic Bayesian Network. 27

ES Exponential Smoothing. 11, 12

FFNN Feed Forward Neural Network. 15, 17–19, 34, 35

Gold-MSI Goldsmiths Musical Sophistication Index. ix, 46, 53

GPT Generative Pretrained Transformer. i–iv, 1, 2, 22, 29, 31, 33–35,
43, 45, 55, 56

GRU Gated Recurrent Unit. 2, 27, 28

HMM Hidden Markov Models. 11–13, 18, 27, 28

LSTM Long-Short Term Memory. viii, 2, 14, 18, 19, 26–29

MA Moving Average. 11

NLP Natural Language Processing. i, iii, 1, 2, 4, 14, 17, 18, 23, 30–32

NN Neural Network. i, 14, 15, 17, 27, 28

PPM Prediction by Partial Matching. 14, 26, 28

RNN Recurrent Neural Network. viii, 2, 14, 17–19, 26–29

xi

1
Introduction

In this thesis we focus our attention on the analysis of jazz chord se-
quences, specifically on chord prediction and perceived complexity esti-
mation. First, we want to evaluate the ability of the GPT-2 model for
NLP to correctly predict future tokens within an harmonic sequence in
the jazz context. Moreover, we approach the problem of complexity esti-
mation of an harmonic progression and we aim at evaluating the ability
of our model to correctly estimate what would be the perceived complex-
ity of a sequence of chords. Furthermore, we investigate the hypothesis
proposed in [1] that these two tasks can be related, as they demonstrated
that the perceived complexity of a sequence can be linked to the ability
of a NLP model to correctly predict it.

Automatic composition of chord sequences and the estimation of their
complexity are tasks which belong to the field of study known as Mu-
sic Information Retrieval (MIR). MIR is a branch of music engineering
born in order to extract high level information that can be descriptive
of some musical content, directly from the data. This approach is made
possible because of the existence of huge databases of music, both in
audio format and in symbolic representation. Manually extracting infor-
mation from this kind of sources would be nearly impossible, therefore it
is necessary to provide tools able to automatically analyze these datasets
and extract useful features. In this context, estimating the complexity
of a chord sequence can be a tool for music recommendation systems
and genre classification while chord prediction can be used for automatic
composition.

Giving a formal definition of harmonic complexity is a challenging

Chapter 1. Introduction 2

task and can be approached both on a musicological level and on an in-
formation theory level. The first approach consists in relying on a prior
theoretical musical knowledge and exploits the rules of harmony to eval-
uate how much and in which ways two sequences can be compared based
on their complexity. Following this approach we can exploit traditional
western musical concepts such as tonality, functionality and cadences to
assess the value of the complexity of a sequence [3, 5, 6, 7, 8, 9].

The second approach links the problem of harmonic complexity es-
timation to information theory, in particular to the concept of cross-
entropy, considering as more complex sequences with high cross-entropy
values. These sequences, in fact, bring a higher level of new or unlike
information to the listening context and should then result in a more
complex musical progression. Following this approach we aim at extract-
ing the rules which govern music composition and perception straight
from the data [1, 10, 11].

For what concerns the problem of chord prediction, we can define
it as the task of estimating the most likely next token in a sequence
of chords, given all the previous ones. Specifically, we can base our
choice of the next token on its cross-entropy value. Chords which are
very likely will exhibit a low cross-entropy while chords with high cross-
entropy values are less prone to be chosen for a correct forecasting. In
this framework, at each time step we can sample the next token with a
k-top sampling algorithm, which means choosing the next chord based
on its cross-entropy value. Tokens which have the lowest cross-entropy
within the context of each prediction would correspond to a value of
k = 0, while increasing the value of k would lead to choosing a token with
increasing cross-entropy. This technique could lead to either sequences
which have a constant-through-time cross-entropy, and sequences which
follow particular cross-entropy envelopes.

State of the art solutions proposed in literature to tackle the chord
prediction problem are based both on machine learning techniques, such
as n-gram models [1, 12, 13, 10, 14] and Hidden Markov Models [1, 12, 15,
16], and on Deep Learning algorithms such as RNNs. Typically employed
RNNs for this task are the LSTM and the Gated Recurrent Unit (GRU)
[1, 17, 11, 18, 19, 20], which anyway, even if lead to good results, are
still limited to a short time context for the evaluation of the prediction.
Extremely better performances have been recently obtained exploiting
the newly introduced Transformer model [21, 22, 23] which can capture
dependencies from tokens which are very far from each other in the input
sequence.

In this thesis we propose a data-driven method that uses a Trans-
former based architecture proposed by OpenAI in 2019 called GPT-2
which is a state of the art model in the field of NLP. As a matter of fact
we model harmony as a language of its own where each chord represents

Chapter 1. Introduction 3

a word and each chord sequence represents a sentence in the language. In
this framework, we approach the harmonic complexity estimation prob-
lem as described in [1], comparing the model’s estimates of cross-entropy
to a set of perceptual ratings collected by means of a listening test. Our
goal is to evaluate the capability of our model to correctly estimate the
perceived complexity of a set of chord progressions.

As far as chord prediction is concerned we evaluated the performance
of our model both using objective metrics and experimenting in generat-
ing sequences using various orders of k-top sampling.

For our experiments we propose a newly retrieved database of jazz
chord annotations collected from the iRealPro application. The iRealPro
is a digitalization of the many volumes of the well known Real Book of
jazz which contains chord annotations of the so called Standards of Jazz
Music.

Both for evaluating our prediction results and for the problem of
complexity estimation, we propose an information-theory approach based
on cross-entropy, where low cross-entropy is associated to a good ability
of the model in predicting the next chord in the sequence, and accuracy,
defined as the number of chords that are correctly predicted by our model.

Although a very strong correlation between perceived complexity and
cross-entropy is shown in [1], our result did not show a clear correlation.
This can be due to many reasons. One of them can definitely be the fact
that the experiment proposed in [1] was specifically designed to deal with
tonal complexity while we proposed a test which contained progressions
in all the twelve keys and that were highly modulating as well. A sec-
ond reason can be the higher level of sophistication present within the
repertoire included in the database. In fact, jazz harmony is mainly char-
acterized by chords extended at least until the seventh, which might be
difficult to decode for a not musically trained listener. Furthermore, Jazz
music is not as widely diffused as Pop or Rock music, so listeners might
have had a hard time discerning what is more complex or uncommon
and what is a typical jazz sequence. Anyway, the sequences produced by
the model have shown to be appropriate within the jazz vocabulary and
some well known progressions have been clearly learned by the model
such as II-V-Is progression or blues progressions.

The outline of this work is the following.
In Chapter 2 we introduce the fundamental concepts implied in the rest
of the work. Specifically in Section 2.1 we introduce some basic harmonic
notions, with a specific stress on the extension of the chords until the 7th

as being a widely employed praxis in the jazz context, in Section 2.2 we
introduce the fundamentals or Time Series Forecasting and in Section
2.3 we introduce the most important Deep Learning models.

In Chapter 3 we offer an overview of some of the state of the art meth-
ods employed for the tasks of chord prediction and harmonic complexity

Chapter 1. Introduction 4

estimation both in the Machine Learning and Deep learning fields.
In Chapter 4 we formally introduce the methodologies that we em-

ployed for the chord prediction and complexity estimation tasks and we
present the NLP model that we used for our experiments.

In Chapter 5 we describe our experiments, their outcomes and the
metrics that we used for evaluating their results along with some quali-
tative observations.

In Chapter 6 we summarize the contribution of our work and propose
further development for this study.

2
Background

In this Chapter we present the concepts which are necessary to under-
stand the discussion presented in this work. In section 2.1 we introduce
the basic concepts of Western music harmony with a particular regard
to the extension of the chords until the 7th. In Section 2.2 we present
some classical techniques for time series forecasting while in Section 2.3
we introduce the most fundamentals Deep Learning architectures.

2.1 Harmony Fundamentals

2.1.1 Pitch and Pitch Classes
Pitch is a perceptual property of sounds that allows their ordering on the
frequency scale. Informally we can define pitch as the quality that makes
possible to distinguish two notes played on the same instrument. Pitch is
a major auditory attribute of sound, along with duration, loudness, and
timbre. An octave is the distance between a pitch and another one which
has either the double or the half of the frequency of the first. Due to its
mathematical and geometrical properties, the octave can be considered as
a pure natural interval. Different cultures divide the octave in a variable
number of pitch classes which can be arbitrarily placed within the octave
itself. In the contemporary Western tuning system, called Equal Tem-
perament System, each octave is divided into 12 logarithmically spaced
tones, following the formula:

fp = 21/12fp−1. (2.1)
Because the human hearing system perceives as equivalent two notes

played at the distance of one octave, the Equal Temperament System

Chapter 2. Background 6

Table 2.1: Pitch classes and some of their related frequencies on different
octaves

Pitch Class Octave 1 Octave 2 Octave 3 Octave 4
C 66 Hz 132 Hz 264 Hz 528 Hz
C#/Db 70 Hz 140 Hz 280 Hz 560 Hz
D 74 Hz 148 Hz 296 Hz 592 Hz
D#/Eb 78 Hz 156 Hz 312 Hz 624 Hz
E 83 Hz 166 Hz 332 Hz 664 Hz
F 88 Hz 176 Hz 352 Hz 698 Hz
F#/Gb 93 Hz 186 Hz 372 Hz 744 Hz
G 98 Hz 196 Hz 392 Hz 784 Hz
G#/Ab 104 Hz 208 Hz 416 Hz 832 Hz
A 110 Hz 220 Hz 440 Hz 880 Hz
A#/Bb 117 Hz 234 Hz 468 Hz 936 Hz
B 124 Hz 248 Hz 496 Hz 992 Hz

defines 12 pitch classes within an octave frequency range. Each pitch
class is related to different frequencies corresponding to the same note at
different octaves.

The distance between two notes its called interval and the smallest
possible interval is called semitone or half step. Musical objects like scales
and chords are defined by particular interval patterns. These patterns
create specific sounds which can be recognized as unique even when the
pattern is translated over the pitch class domain.

Since the most common scale patterns in Western music have seven
notes, even though 12 pitch classes are defined, note names are only 7
and special symbols such as the flat and sharp are used to refer to the
remaining 5 pitch classes. This issue creates an ambiguity in the proper
name to use to refer to the same pitch class which is called enharmony.
In this framework, the correct name to assign to a pitch is determined by
the current tonal context. Furthermore, performers who play instruments
which can reproduce a continuous set of pitches, such as strings and
horns, can slightly detune some notes from their assigned frequency, even
within the context of Equal Temperament, in order to better adjust to
the harmonic context and to better fit with the overtones produced by
the other players.

2.1.2 Scales, Chords and Keys
A scale is a subset of pitches that span the range of an octave. In Western
music the most important and widely used scales are composed of 7 notes.
Since, as said above, we have only 7 note names to cover 12 pitch classes,
it is common practice to enumerate the note names of a scale in such a
way that we use all note names in each scale.

Chapter 2. Background 7

Table 2.2: Interval pattern of the major scale

T T S T T T S

The most fundamental and used scale in western music is the major
scale. This scale is so important that it determines the logic of con-
struction of the keyboard of a piano: by playing all white keys from a C
note to the consequent one we are playing a C major scale. The interval
pattern of the major scale is the one displayed in Table 2.2.

By translating this pattern on all the pitch classes we can generate all
the major scales. Because of enharmony, some scales could be named in 2
different ways and it is common practice to choose the naming that min-
imizes the alterations needed for that scale. Furthermore, if we display
the scales by 5th intervals, we can observe that sharps increase clockwise
and that flats increase anti clockwise. This representation is known as
Circle Of Fifth and displays a sort of map of the tonal world. Keys which
are close in the circle are tonally close to each other even if they are not
on a keyboard, because they share all the notes except one.

In Western culture the major scale is commonly perceived with a clear
sense of direction toward the first note of the scale, which is called tonic
and which gives a sense of stillness and satisfaction.

Figure 2.1: Circle of fifths.

Given a major scale it is possible to build chords on it. Chords are
groups of three or more notes that follow specific patterns. In particular,
in Western culture, it is mainly used the so-called tertial harmony, which
defines a chord as a superposition of 3rd intervals. So, given a major
scale, we can construct 7 chords by superimposing 2 or more 3rd intervals
on each note of the scale. As we can see in Table 2.3, by harmonizing
a major scale we define 3 kinds of chords: major(maj7), minor(min7),
dim(half diminished).

Within these 7 chords, the one built on the 5th degree is commonly

Chapter 2. Background 8

Table 2.3: C major scale harmonization with triads and seventh chords.

Root Triad Seventh
C C Cmaj7
D Dmi Dmi7
E Emi Emi7
F F Fmaj7
G G G7
A Ami Ami7
B Bdim Bmi7(b5)

recognized as being the most tense and far from the tonic, especially if
extended with its seventh. This tension and the expectation for its release
on the tonic creates the well known V-I progression also known as Perfect
Cadence, representing the most important chord sequence in the context
of Western culture as it fully describes a tonal centre. Combining the

Figure 2.2: Voice leading of the perfect cadence in C major: the 4th resolves
on the 3rd and the 7th resolves on the tonic.

major scale interval pattern and the perfect cadence it is possible to define
3 kinds of minor scale which will all have their own chord harmonization.
The natural minor scale is defined as relative to a major scale and has the
same set of notes starting from its 6th degree. For instance the relative
minor scale of C major is A minor.

Because the 2 scales share the same notes, except for the fact that they
are shifted, they share the same harmonization as well. This determines
the fact that on the 5th degree of a natural minor scale a minor triad
arises, instead of a major one like in the major scale. Having a minor
triad on the 5th degree is not suitable for creating the perfect cadence
within the natural minor scale, which would require a major triad with
a minor seventh to create the so-called Dominant chord which plays a
key role in the V-I progression. In order to guarantee the existence of
the perfect cadence even in the minor key, an artificial adjustment of the
natural minor scale is needed, which can transform the chord on the 5th

degree into a dominant one. This adjustment is done by raising by a
semitone the7th note of the natural minor scale, creating the so-called
harmonic minor scale. This scale is called harmonic because it is defined

Chapter 2. Background 9

Table 2.4: A minor natural harmonization with triads and seventh
chords.

Root Triad Seventh
A Ami Ami7
B Bdim Bmi7(b5)
C C Cmaj7
D Dmi Dmi7
E Emi Emi7
F F Fmaj7
G G G7

for a harmonic reason: guaranteeing the existence of the perfect cadence
in the minor key.

In this way we are, as a matter of fact, building a previously unheard
interval pattern which leads to a new set of chords harmonizing the scale.
As we can see in Table 2.5, by harmonizing the harmonic minor scale we

Table 2.5: A minor harmonic harmonization with triads and seventh
chords.

Root Triad Seventh
A Ami Ami(maj7)
B Bdim Bmi7(b5)
C Caug Cmaj7(#5)
D Dmi Dmi7
E E E7
F F Fmaj7
G# G#dim G#dim7

define a new kind of triad, the augmented one, and 3 new kinds of 7th
chord: min(maj7), maj7(sharp5) and diminished 7.

Even if the minor harmonic scale solves the problem of guaranteeing
the existence of the perfect cadence, allowing the composers to properly
express the minor tonality, it presents some issue in its melodic interval
pattern. In fact by raising the 7th note of one semitone a new melodic
interval arises as well between the 6th and the 7th note of the scale. This
interval, which is composed of one tone and a half, is present between
2 consecutive notes in the scale and so it is still named as a 2nd instead
of a minor 3rd. This particular kind of 2nd interval its called augmented
second, and it is particularly difficult to sing and generally sounds weird
for a western listener. In order to solve this melodic issue, the minor
melodic scale is defined, which is constructed by raising of one semi-
tone the 6th note of the minor harmonic scale. This solution guarantees
both the existence of the perfect cadence in the minor key and a certain

Chapter 2. Background 10

Table 2.6: A minor melodic harmonization with triads and seventh
chords.

Root Triad Seventh
A Ami Ami(maj7)
B Bmi Bmi7
C Caug Cmaj7(#5)
D D D7
E E E7
F# F#dim F#mi7(b5)
G# G#dim G#mi7(b5)

melodic smoothness and singability. The harmonization of the minor
melodic scale generates a new pattern of consequent chord kinds with
respect to the previous scales, but does not define any new chord kind
of its own. The 4 types of scale described above are the most widely
used in the western musical culture and fully define the so-called Tonal
Harmonic Framework which is mainly characterized by a tension/release
movement between the dominant and the root of a key or of their substi-
tutes. Other harmonic frameworks are also in use, such as the modal one,
but are most of the time implanted in some kind of tonal or functional
context.

2.1.3 Harmonic Progressions
Even though the concept of western harmony firstly arose as a conse-
quence of a polyphonic form of writing, i.e. a composing style based
on melodies which would eventually be played or singed together and
so needed to be in harmony with each other, it is legit to say that in
most contemporary western music we can clearly separate harmony and
melody. Harmony is displayed by means of chord symbols or roman num-
bers which are referred to a subregion of the time of the piece, like for
instance one bar or half a bar. This means that the harmonic content of
a relatively long subregion of time can be described with just one symbol.

These symbols are called chord symbols and represent a compressed
version of the harmonic information which is implied by the notes con-
tained in a specific time subregion. A sequence of chord symbols is called
harmonic progression or chord progression. Widely used sequences of 2
or 3 chords are called cadences and represent pre-constituted sentences
in the language of harmony. As already mentioned, the most important
cadence in western music is the Perfect one (V-I), because it fully defines
a tonal centre. Another widely used cadence is the plagal one (VI-I),
which exhibits a smoother behaviour with respect to the perfect one.

Chord progression can also be longer than just 2 chord symbols. A
very well known progression in jazz harmony is the II-V-I progression,
which represents an expansion of the perfect cadence and which can be

Chapter 2. Background 11

encountered in almost every jazz tune.
Chord progressions can also be formed using chords which belong to

different keys. We refer to this phenomenon as modulation from one key
to another one. Usually, if the two keys involved in the modulation are
close on the circle of fifths, the modulation is perceived as plain and
natural, while, on the other hand, if the keys are far from each other, the
modulation sounds more complex or unexpected.

2.2 Time Series Forecasting Fundamentals
Time series forecasting is the process of analyzing time series data using
statistics and mathematical models in order to make predictions. Fore-
casting has a wide range of practical applications including economy,
weather forecasting, healthcare, social studies and more. In this section
we briefly present some of the most important time series forecasting
techniques such as Auto-Regressive (AR) Models, Exponential Smooth-
ing (ES) Models, Hidden Markov Models (HMM) and Finite Context
Models.

2.2.1 Auto-Regressive Models
Auto-regressive (AR) models consists of a representation of a type of
random process used to describe time-varying phenomenons in a number
of fields such as physics, economics, nature and more. The AR model
specifies that the output variable depends linearly on its own previous
values and on a stochastic term.

The simplest AR model defines the prediction of a variable as a lin-
ear combination of its past values. Mathematically we can define the
prediction at time t of a variable y as:

yt = α0 + α1yt−1 + α2yt−2...+ αpyt−p + ϵt (2.2)

where α0, α01, ..., αP are the linear regression coefficients, ϵt is the random
error, yt, yt−1, yt−p are past observations of the variable to predict and p
is the order of the model.

By expressing the forecast as a linear function of the past prediction
errors we obtain a variation on the basic model called Moving Average
(MA). In mathematical terms we can write:

yt = φ0 + ϵt + φ1ϵt−1 + φ2ϵt−2 + ...++φqϵt−q (2.3)

where φ0, φ1, ..., φq are the moving average coefficients and ϵt−1, , ϵt−q

are the prediction errors from the past, ϵ is the random error variable
and q is the order of the model.

To further expand the predictive performance of the model, AR and
MA can be combined obtaining an Auto-Regressive Moving Average

Chapter 2. Background 12

(ARMA) model that can be described as a linear combination of either
past prediction values or past prediction errors.

Moreover, in order to make our model capable of working with data
which present particular trends during history, the so-called Auto-Regressive
Integrated Moving Average (ARIMA) implementation has been intro-
duced [24].

2.2.2 Exponential Smoothing Models
Exponential smoothing is a technique used for smoothing time series data
using an exponential window function. Whereas in the simple moving av-
erage the past observations are weighted equally, exponential functions
are used to assign exponentially decreasing weights over time so that
events which are more far in the past get a smaller weight. Exponential
smoothing is often used for analysis of time-series data and represents
one of the many functions commonly applied to filter data in signal pro-
cessing.

Simple ES models compute predictions as a weighted average of past
data applying an exponential decay of the coefficients as the observations
go more far in the past. This weighting approach ensures to give less
importance to very old events while keeping a high attention on the
most recent ones.

We can define the prediction for time (t+1), given previous t demands
{d1, d2, , dt}, as:

ft+1 = αdt + α(1− α)dt−1 + α(1− α)2dt−2 + ... (2.4)

where α is in the range 0 ≤ α ≤ 1, and it is called smoothing constant.
Simple ES techniques do not perform well when there is a seasonality

in the data. In such situations, several methods were devised under
the name "double exponential smoothing" or "second-order exponential
smoothing," which consist in the recursive application of an exponential
filter [25, 26].

2.2.3 Hidden Markov Models
A HMM is a Markov model in which the system being modeled is assumed
to be a markovian process with non-observable states. The definition of
a HMM requires that there should be an observable process Y whose
outcomes are influenced by the outcomes of a hidden process X in a
known way. HMMs also require that the outcome of Y at time t = t0 can
be influenced only by the outcome of X at t = t0 and that the outcomes
of X and Y at t < t0 must not affect the outcome of Y at t = t0. This
requirement is known as limited horizon assumption.

HMMs applications span across various fields such as thermodynam-
ics, statistical mechanics, physics, chemistry, economics, finance, signal

Chapter 2. Background 13

Figure 2.3: Hidden Markov Model with two states S = {Happy, Grumpy} and
two hidden states Q = {Sunny, Rainy}.

processing, information theory, pattern recognition and musical score fol-
lowing.
In order to fully describe a HMM the following elements are needed:

• N , which represents the number of states in the model. Individual
states can be denoted as q = {q1, q2, .., qn} and the state at time t
as zt.

• M , is the discrete alphabet size of the problem. It corresponds to
the number of distinct observations for each symbol per state.

• The state transition probability distribution A = {aij} where:

aij = P (zt+1 = qj|zt = qi) (2.5)

for:
1 ≤ i, j ≤ N (2.6)

• The observation symbol probability distribution in state j denoted
as B = {bj(k)}, with:

aj(k) = P (xt = vk|zt = qj) (2.7)

for:
1 ≤ j ≤ N, 1 ≤ k ≤ M (2.8)

• The probability distribution of the initial state π = πi, with:

πi = P (z1 = qi) (2.9)

for:
1 ≤ i ≤ N (2.10)

Chapter 2. Background 14

2.2.4 Finite Context Models
In the fields of NLP and probability, an n-gram is a contiguous sequence
of n items from a given sample of text or speech. The items can be
events, syllables, letters or words according to the application. An n-
gram model is a type of probabilistic language model for predicting the
next token in a sequence in the form of a (n-1) order Markov model. N -
gram models are widely employed in probability, communication theory,
NLP tasks, computational biology and data compression. Two benefits
of n-gram models are simplicity and scalability. Considering a single-
event prediction ei, the probability of the event, given only the previous
n elements, can be expressed as:

p(ei|en0) = p(ei|ei−1
i−n) (2.11)

where eji is a sequence of symbols from i to j.
The main limitation of n-grams is that high-order models often suffer

from zero-frequency probability, which means that some n-grams do not
appear in the training dataset. In order to get around this issue, Pre-
diction by Partial Matching (PPM) algorithms have been introduced.
PPM is an adaptive statistical data compression technique based on con-
text modeling and prediction. PPM models use a set of previous sym-
bols in the uncompressed symbol sequence to predict the next symbol
in the stream. PPM algorithms can also be used to cluster data into
predicted groupings in cluster analysis. Specifically, to solve the zero-
frequency probability issue which affects n-gram models, PPMs employ
the so-called back-off smoothing technique, which allows to deal with the
sparsity of the context. Formally, the probability distribution of an event
ei can be written as:

p(ei|ei−1
(i−n)+1) =

{︄
α(ei|ei−1

(i−n)+1), if c(ei|ei−1
(i−n)+1) > 1

γ(ei−1
(i−n)+1)p(ei|e

i−1
(i−n)+2), otherwise

(2.12)

where α(ei|ei−1
(i−n)+1) is an estimate of the probability of an already seen

n-gram and γ(ei−1
(i−n)+1) is the probability weight assigned to all the novel

symbols in the current context in the training set [9].

2.3 Neural Networks Fundamentals
In this Section we introduce some of the most common deep learning
algorithms used to address the problem of the modelling of sequential
data, such as RNN, LSTM and Transformers.

NNs are networks composed of artificial neurons or nodes which aim
at simulating the connection present in a biological brain in order to solve
artificial intelligence problems. The connections of the biological neurons

Chapter 2. Background 15

are modeled in an artificial NN as weights between nodes. All inputs are
modified by a weight and summed. This activity is referred to as a linear
combination. Finally, an activation function, which is usually non-linear,
controls the amplitude of the output. NNs, as machine learning models,
rely on a training process to learn and improve their performances.

2.3.1 Feed Forward Neural Networks
Feed Forward Neural Networks (FFNNs) are an artificial NN implemen-
tation where connections between the nodes follow strictly a forward
fashion. FFNNs were the first and simplest type of artificial NNs ever
introduced. In this networks, the information moves in only one direc-
tion: from the input nodes, through the hidden nodes and to the output
nodes.
A FFNN is composed of:

• Input layer, the first layer of the network.

• One or more Hidden layers placed in between the input and the
output ones and sequentially connect with each other through sets
of weights W = {wl

ji}.

• Output layer, which is the last layer of the network and provides
the prediction for the input variable.

Figure 2.4: Feed Forward Neural Network with two Hidden Layers.

Given a set x of input variables, the activation values for each hidden
neuron can be written as a linear combination of the input variables:

aj =
N∑︂
i=1

w
(1)
ji xi + b

(1)
j (2.13)

Chapter 2. Background 16

where N is the dimension of the input vector, j = {1, ,M} and M is the
number of neurons in each layer, w(1)

ji is a set of weights that connect the
jth neuron in the hidden layers to the ith input variable and b

(1)
j is the

bias term of the jth hidden neuron.
Neurons in each layer apply a specific non linear function to the linear

combination of the inputs. Nonlinear activation functions allow such
networks to compute nontrivial problems using only a small number of
nodes, and such activation functions are called nonlinearities.

Some of the most used activation functions are the ReLU for re-
gression tasks, sigmoid, hyperbolic tangent and softmax for binary and
multiclass classification problems (Figure 2.6).

Figure 2.5: Some of the most common activation functions used in Neural
Networks

The output of each node in the hidden layer can be expressed as:

hj = Hj(aj) (2.14)

where Hj represents the activation function for the jth neuron. The
output of the output layer can then be expressed as a superposition of
the linear combination and of the activation function.

yk = Gk(
M∑︂
j=1

w
(2)
ki xi + b

(2)
k) (2.15)

where k = {1, .., K}, Gk are the activation functions of the output
layer, w(2)

jk are the weights interconnecting the output layer and the pre-
vious one and b

(2)
k are the bias terms.

Chapter 2. Background 17

It is possible to extend this model with an arbitrary number of hidden
layers. Specifically, we refer to the number of layers as depth, and to the
number of neurons in each layer as width of the model.

Optimization of FFNN is usually approached with a gradient descent
technique. Gradient descent is an algorithm that aims at finding the
minimum of a given cost surface by descending said surface following
the direction opposite to the gradient itself. Optimization can became
particularly difficult for cost functions which display multiple secondary
minima. This situations are particularly effected from the starting point
of the gradient descent algorithm.

Moreover, a number of generalization techniques can be employed in
order to achieve better performances on previously unseen data. Some
of the most common regularization methods are:

• L1 and L2 norms, which add a regularization term to the cost
function which aims at keeping small the value of the weights.

• Dropout, which consist of randomly turning off some neurons in the
network.

• Early Stopping, which automatically stops the training when there
is no improvement in validation loss or accuracy.

• Residual Connections, which helps improve performances for very
deep networks by adding shortcut connections between distant lay-
ers.

2.3.2 Recurrent Neural Networks
RNNs are a class of artificial NNs where connections between nodes form
a directed or undirected graph along a temporal sequence. This allows
the NN to display a temporal dynamic behavior. Derived from FFNNs,
RNNs can use their internal memory state to process variable length
sequences of inputs. This makes them applicable to tasks such or speech
recognition, handwriting recognition and token prediction within a NLP
framework. The process of optimization of RNNs is very similar to the
one of FFNNs. Formally, given an input vector x = {xn, , xn}, the hidden
vector h = {h1, , hj} and the output vector y = {y1, , yk} are computed
as shown in equations (2.16) and (2.17) for all time steps t from 1 to T

ht = H(Wxhxt +Whhht−1 + bh) (2.16)

yt = Whyht + by (2.17)
where W represents the weight matrices of the input-to-hidden connec-
tions (Wxh), (Whh) and (Wyh) represent respectively hidden-to-hidden
recurrent connection and hidden-to-output connection, while bh and by
are bias vectors and H is the hidden layer activation function.

Chapter 2. Background 18

Figure 2.6: RNN with two Hidden Layers.

Even if RNN could theoretically deal with a context which spans over
the whole history of inputs, they are in practice limited to a memory of a
few steps because of the so-called vanishing gradient issue. This problem
is due to Back Propagation Through Time (BPTT) as by going back
through time steps the gradient converges to zero, discarding possible
useful information.

2.3.3 Long-Short Term Memory
LSTMs are an RNN architecture introduced to overcome the vanishing
gradient problem of RNNs. Unlike standard FFNNs, the LSTM architec-
ture has feedback connections. It can process not only single data points,
but also entire sequences of data. A common LSTM unit is composed of
a cell, an input gate, an output gate and a forget gate. The cell remem-
bers values over arbitrary time intervals and the three gates regulate the
flow of information into and out of the cell. A detailed visualization of
the LSTM is proposed in Figure 2.7.

LSTMs are well-suited for classifying, processing and making pre-
dictions based on time series data, since there can be lags of unknown
duration between important events in time series. Relative insensitivity
to gap length is an advantage of LSTMs over RNN, HMMs and other
sequence learning methods in numerous applications.

2.3.4 Transfomer
The Transformer is a deep learning architecture introduced by Vaswani et
al. in [2] in 2017 that adopts the mechanism of self-attention, weighting
the significance of each part of the input data. It is used primarily in the
field of NLP and in Computer Vision (CV).

Like RNNs, Transformers are designed to handle sequential input

Chapter 2. Background 19

Figure 2.7: An LSTM unit with its internal gating mechanism.

data, such as natural languages, for tasks such as translation and text
summarization. However, unlike RNNs, transformers do not necessarily
process the data in order. In fact, the attention mechanism provides
context for any position in the input sequence. For example, if the input
data is a natural language sentence, the transformer does not need to
process the beginning of the sentence before the end. Rather, it identifies
the context that confers meaning to each word in the sentence. This
feature allows for more parallelization than RNNs and therefore reduces
training times.

Architecture

The Transformer model is composed of two main blocks:

• The Encoder, which is meant to encode the symbolic representation
of the input sequence into a sequence of continuous representations.

• The Decoder, which produces an output sequence of symbols given
the information present in the output of the encoder layer and
translates the input sequences into a second language. The Trans-
former is an auto-regressive model so symbols in the output se-
quence are generated one at a time.

The generic stack of encoders and decoders of the transformer network
is displayed in Figure 2.8.

Specifically, each encoder layer is composed of:

• A Multi-Head Self-Attention block, that aims at computing atten-
tion scores on each token in the input.

• A FFNN, that applies two linear transformations to its input with
a ReLU activation function placed in between.

Chapter 2. Background 20

Figure 2.8: Encoder-Decoder architecture of a Transformer for language trans-
lation.

• A set of regularization techniques including residual connections,
dropout and early stopping.

• Layer normalization, which aims at reducing training time by nor-
malizing the activity of the neurons.

The decoder layers follows the same structure of the encoder but
present two main differences:

• It uses the standard Multi-Head Self-Attention layers to compute
attention scores on the output, while it applies a Masked Multi-
Head Self-Attention block to the input of the decoder, to prevent
the flow of information from future tokens.

• A linear transformation and a softmax activation function are used
at the end of the decoder stack, to convert the output of the decoder
to a probability distribution.

Scaled Dot-Product Attention

The transformer building blocks are scaled dot-product attention units.
When a sentence is passed into a transformer model, attention weights
are calculated between every token simultaneously. The attention unit
produces embeddings for every token in context that contain information
about the token itself along with a weighted combination of other relevant
tokens each weighted by their attention coefficients.

Chapter 2. Background 21

Figure 2.9: Stack of layers within the Transformer. (Figure taken from [2])

Every token is projected onto three vectors: query, key and value.
Respective weight matrices W are learned during training in order to im-
plement said projections. While calculating the attention on a particular
word, a dot-product operation is calculated between the query vector and
the key vector of each word [2]. Dot-product attention is scaled with 1√

dk
to compensate large dot-product values. The value vectors are weighted
with weights from the dot product and then summed. In detail, the at-
tention function implemented within the transformer model is computed
as:

attention(q,k,v) = softmax(
qkT

√
dk

)v (2.18)

where q is the vector of queries, k and v are vectors of keys and
values and dk is the number of dimensions of the model. The softmax is
applied to the dot product in order to obtain the weights that correspond
to each input value.

For better results and for parallelization, multi-head attention is used.
Each head learns a different attention distribution, similar to having mul-

Chapter 2. Background 22

tiple filters in a Convolutional Neural Network (CNN). Furthermore, a
multi head and multi layer attention mechanism produces unique atten-
tion patterns for each layer and head, allowing to display how the model
learns and interprets the input tokens at each level of the stack.

Embedding and Positional Encoding

Attention layers see their input as a set of vectors, with no sequential
order. This model also doesn’t contain any recurrent or convolutional
layers. Because of this a positional encoding is added to the model to
give it information about the relative position of the tokens in the sen-
tence. The positional encoding vector is added to the embedding vector.
Embeddings represent a token in a d-dimensional space where tokens
with similar meaning will be closer to each other. But the embeddings
do not encode the relative position of tokens in a sentence. So after
adding the positional encoding, tokens will be closer to each other based
on the similarity of their meaning and their position in the sentence, in
the d-dimensional space. The positional encoding functions proposed by
Vaswani et al. are computed as sine and cosine of different frequencies:

PE(pos,2i) = sin(
pos

10000
2i

dmodel

) (2.19)

PE(pos,2i+1) = cos(
pos

10000
2i

dmodel

) (2.20)

where pos is the position in the input sequence and i is the dimension.
The result of the encoding is a vector of size dmodel where each dimension
corresponds to a sinusoid therefore the resulting vector implies a unique
encoding for each word’s position within a sentence.

2.4 Conclusive Remarks
In this chapter we briefly introduced all the main topics implied in the
following discussion with a particular focus on functional harmony, clas-
sic time series forecasting techniques and the most important and widely
used deep learning models for natural language processing. For the pur-
pose of this thesis in fact, we trained a GPT-2 model and exploited its
generative characteristics two approach a chord prediction task and a
complexity estimation task.

3
State of the Art

In this chapter we introduce some of the most important studies proposed
in literature regarding harmonic complexity estimation and chord predic-
tion. In our work we in fact investigated both these fields implementing
a Transformer algorithm for NLP with the purpose of employing it in
a chord prediction task and we evaluated its performance by means of
cross-entropy and accuracy. Furthermore, we investigated the relation-
ship between the cross entropy and perceived complexity of a sequence
of chords, under the hypothesis proposed in [1] that sequences that show
a high cross entropy level are also perceived as more complex or unfa-
miliar by the human ear. Within this framework, we present in Section
3.1 some definitions of harmonic complexity drawn both from the infor-
mation theory field and the functional harmony theory. In Section 3.2
we present some Machine Learning models which have been proposed to
deal with the chord prediction task and in Section 3.3 we focus on Deep
Learning algorithms applied to the same problem.

3.1 Harmonic Complexity
The definition and computation of complexity of a given piece of music
refers to the research field known as Music Information Retrieval. As
proposed in [27], in order to assess complexity on the various levels of
which music is composed of, we can apply the so-called divide at impera
approach, aiming at investigating the atomic components of music one at
a time. We can identify these constitutive components as being melody,
harmony and rhythm. Many definitions have been proposed concerning
the concept of complexity and specifically of harmonic complexity. In
this regard we can distinguish two main approaches proposed in litera-

Chapter 3. State of the Art 24

ture: one based on music rules and one based on information theory. The
first is related to the historical praxis that characterize a given musical
culture and recognize as complex musical pieces the ones which exhibit
uncommon characteristics with respect to the said cultural environment.
The second one aims at defining complexity using a number of mathemat-
ical tools among which the most commonly used is information theory’s
cross-entropy.

Some examples regarding these two approaches are discussed in Sec-
tion 3.1.1 and Section 3.1.2 respectively.

3.1.1 Functional Harmony Definition
Many studies have been conducted in the music field to give a definition
of harmonic complexity. The most straightforward definition of harmonic
complexity can be based on the tonal or functional harmonic framework
which is the most widely spread within the western musical culture. With
regard to this framework, tonal complexity can be analyzed by calculating
the distance on the circle of fifths of each subsequent tonal context. This
is the approach followed in [28], where the author introduces the concept
of harmonic complexity by computing scores based on traditional musical
rules. Specifically, he focus on:

• The rate at which chords are changed, also known as harmonic
rhythm.

• The number of chords on the weak beats.

• The number passing notes which connect notes belonging to the
same chord or to subsequent chords.

• The tonal distance of consecutive harmonies.

These scores are then employed to design a software model able to
output a complexity score for each given harmonic sequence.

A similar approach is used in [6] where the authors propose a defini-
tion of harmonic complexity which relies on simulating the same process
that a trained musician would employ to analyze a piece of music. Each
transition between two consecutive harmonies is rated and then these
values are combined to obtain the overall harmonic complexity of the
sequence. Results show that this feature can be effectively used for the
music genre classification task.

Weiss et al. in [3] again propose to link the complexity of each chord
to the distance from the previous key centre using a visualization method
based on the circle of fifths. A change in the tonal context of a small
number of fifths can be associated with smooth changes, while large
distances correspond to abrupt tonal changes.

In [29] Pachet addresses the problem of modelling jazz harmony.
Specifically, even if he never explicitly mentions harmonic complexity, the

Chapter 3. State of the Art 25

Figure 3.1: Complexity measure based on the circle of fifths. Figure taken
from [3]

author investigates the concept of musical surprise. In fact, he defines
surprise as linked to the presence or absence of previously heard peculiar
harmonic patterns such as II-V-Is, turnarounds and blues forms. He also
added to his scheme a set of substitution rules, thanks to which each
chord can be converted into another one which brings the same kind of
functional information. He then applies the Lempel-Ziv data compres-
sion algorithm and derives the so-called LZ tree, which is a representation
where each node corresponds to possible continuation of the sequence.
The results show that the system is able to learn jazz chord patterns and
create tension in accordance with the jazz harmonic theory.

3.1.2 Information Theory Definition
Information theory is the scientific study of the quantification, storage,
and communication of digital information. According to its rules, the
amount of information necessary to transmit a a sequence of data x from
a source to a receiver is formally quantified as:

I(x) = −log2p(x) (3.1)
where p(x) is the probability of the event and I(x) is measured in bits.

If an event is almost deterministic, the amount of information needed to
transmit it would be close to zero. On the other hand, for rare or almost
random events we need a lot of information in order to transmit it. A key
measure in information theory is entropy which mathematically defines
the amount of uncertainty in a probability distribution. Formally, its
definition can be written as:

H(x) = −E[log2p(x)] (3.2)
Distributions which are almost deterministic have very low entropy

while distributions close to the uniform have high entropy. We can also
define the cross-entropy of two distributions p and q over the same ran-
dom variable x as the average number of bits needed to identify an event
drawn from the set. Cross-entropy is formally defined as:

H(p, q) = −
∑︂
x

q(x)log2p(x) (3.3)

Chapter 3. State of the Art 26

In most applications the distribution of q is not accessible so we have
to rely on a Monte Carlo estimation of cross-entropy [30] as:

Hp(T) = − 1

T

∑︂
x∈T

log2p(x) (3.4)

where T represents the test data and Hp is measured in bits/symbol.
Di Giorgi et al. exploited in [1] the measure of the cross-entropy to

compute the complexity of harmonic sequences. Specifically, they define
the complexity of the harmonic sequence as its average Monte Carlo cross-
entropy. The authors also exploited the use of cross-entropy to evaluate
the performance of their models on a chord prediction task, assuming
that high cross-entropy would be related to highly complex sequences.

The same approach is used in [11], where the authors also exploit
cross-entropy to measure how well their models are able to predict the
continuation of chord sequences taken from their dataset.

3.2 Machine Learning for Chord Predic-
tion

Several techniques have been proposed during the last years for address-
ing the task of chord prediction and automatic composition. Here we
introduce the most relevant ones in the machine learning context.

3.2.1 Finite Context Models
A number of studies have been carried out in modelling harmony with
n-grams.

In [13] the authors researched on a model able to predict 12-bars blues
harmonic forms using controlled Markovian prediction. In particular,
they trained a Markovian model on a collection of blues transcribed from
Charlie Parkers Omnibook with an overall alphabet of 36 chords.

In [10] Sears evaluates finite context models with the use of PPM
algorithms for automatic composition. The author computed the perfor-
mance of his model as the average cross-entropy across the entire dataset.
The results show that fixed-length context models generate the lowest av-
erage cross-entropy with respect to other models like LSTMs and RNNs,
suggesting that context models are better suited for musical tasks.

Di Giorgi et al. in [1] trained a fixed-context model with PPM on a
large database of chord annotations retrieved from UltimateGuitar.com.
The authors used cross-entropy to evaluate the performance of the model
on a chord prediction task.

Chapter 3. State of the Art 27

3.2.2 Hidden Markov Models
Here we introduce some well known studies that address chord prediction
using HMM.

In [1] Di Giorgi et al. trained a number of HMMs, varying the number
of hidden states of the models. The results show that deeper models lead
to a decrease of the overall cross-entropy and to more flexibility.

In [31] the author built a HMM to generate music sequences based
on their probability distributions. Specifically, he trains his model with a
custom database of chord annotations and generates synthetic sequences
by prompting the model with the first chord. Results have shown that
the model effectively outputs chord progressions which resemble the ones
present in the training dataset.

In [12] the authors experimented with different architectures aiming
at modelling complex harmonies. Specifically, they compared standard
HMM with different numbers of hidden states and a feature-based Dy-
namic Bayesian Network (DBN) and showed that the overall predictive
power of the HMM is worse than the one of n-gram models but HMMs
are more robust to the problem of overfitting.

In [15] the authors worked as well on the chord prediction task using
HMM, training their model on a corpus of 66 Beatles songs in an audio
file format. In particular, they used HMM to model chord progression
dependencies on the metrical structure.

3.3 Deep Learning for Chord Prediction
In this section we present some examples of studies in the field of chord
prediction using NNs Models.

3.3.1 Recurrent Neural Networks
Here we present the main works conducted using RNNs with the aim
of predicting the next chord in an harmonic sequence. The most widely
used models to address this task are LSTM and GRU.

In [32] the authors trained a RNN model with a dataset retrieved
from the Yamaha e-Piano Competition which contains MIDI files of pi-
ano performances of more than 1400 professional performers. Being this
MIDI dataset generated from actual human performances introduces a
great amount of dynamics and timing realism into the database. Re-
sults show that the model is able to produce piano performances which
sound like coherent improvisations. Furthermore, the user can condition
the output in a number of ways such as textural density, key, scale and
dynamics.

In [1] Di Giorgi et al. used RNNs too to model harmony and predict
the next token in a sequence of chords. Specifically, the authors trained
a number of RNNs with the LSTM extension. They trained their models

Chapter 3. State of the Art 28

experimenting in varying the number of neurons per layer and varying
the number of hidden layers. The results show that bigger models lead to
an overall decrease in the cross-entropy evaluated over the whole dataset.
They also demonstrated that RNN models outperform PPMs and HMMs
because of the larger size of their hidden space.

In [33] the author created a browser 2-D game based on a RNN model
which automatically generates music in real time while the user is playing
the game. Furthermore, the user can control two avatars at the same time
in order to produce counterpoint-like musical results.

In [18] the authors propose XiaoIce Band, an algorithm able to pre-
dict both melody and harmony. They implemented an encoder-decoder
GRU architecture trained with a dataset of more than 14000 pop songs
transcribed in a MIDI file format which include various categories of
instruments.

In [34] the author proposes an encoder-decoder architecture for the
purpose of creating improvised-like piano performances controlled with a
device with only 8 keys. A bidirectional LSTM encoder maps a sequence
of piano notes to a sequence of controller buttons. A unidirectional LSTM
decoder then decodes these controller sequences back into piano perfor-
mances. After training, the encoder is discarded and controller sequences
are provided by user input. The model is trained with the same set of
piano performances used in [32] and results show that the algorithm is
able to output performances which closely mimic the melodic contours
entered with the controller.

Hild et al. in [20] introduced HarmoNet, an algorithm built as a com-
pound of NNs for the purpose of generating the harmonization of a given
melody in the style of Bach chorales. The models are trained with two
separate sets of chorales containing either major or minor compositions.
Results have been evaluated by a group of experts as being on the level
of an improvising performer.

In [35] the authors propose a bundle of Ableton Live plugins based
on various NN models among which RNNs. Specifically, the first re-
lease includes 5 apps called Generate, Continue, Interpolate, Groove, and
Drumify with which the user can generate MIDI files straight into the
Digital Audio Workstation (DAW). Specifically, Continue uses an RNN
based structure to extend a melody or drum pattern prompted by the
user, and Interpolate can combine features of from the user’s inputs to
produce new ideas or create musical transitions between phrases.

3.3.2 Transformer
In this section we provide some examples of studies which have been done
in the field of chord prediction and sequence generation using transformer
based neural networks.

OpenAI introduced in [22] a transformer-based model called MuseNet.
MuseNet is a GPT-2 model which is able to create minutes long chorent

Chapter 3. State of the Art 29

composition in a MIDI file format with 10 instruments and in a number
of styles. The authors trained their model with hundreds of thousands of
midi files retrieved from different sources such as ClassicalArchives, the
MAESTRO dataset and BitMidi.

In [36] the authors created a custom Transformer based model for the
modelling of piano performances. Specifically, they employed the concept
of relative self-attention which explicitly modulates attention based on
how far apart two tokens are. Relative self-attention also allows the
model to generalize beyond the length of the training examples, which
is not possible with the original Transformer model. Results show that
this model outperforms the RNN and LSTM in producing coherent long
sequences which convey a clear sense of structure.

In [37] the author proposes a GPT-2 architecture for the modelling
of folk music. Specifically, he trained his network on the Session dataset
including more than 200 000 music pieces. Results show that the model
can produce satisfying music pieces including lyrics.

In [21] the authors propose an upgrade of the algorithm introduced in
[38] with the aim of generating minute long coherent piano compositions.
They trained their model with a database of 48 hours of piano music
transcribed in a MIDI file format.

In [39] the author trained a Mini GPT-2 model on the Doug McKen-
zie Jazz Piano dataset with the purpose of generating improvised-like
performances. He processed the MIDI files transforming them into a pi-
ano roll representation which includes a maximum of 128 MIDI notes for
time intervals not shorter than a 16th note. Results show that the model
efficiently learned the basics of the jazz idiom.

In [23] the authors present the Jazz Transformer, a GPT model able
to mimic jazz lead sheets. The aim of the project is to design a model
which is able to generate both harmonic and melodic content at the same
time as it is presented in common lead sheets. To evaluate the results, the
authors proposed a subjective listening test to collect information about
the perceptual qualities of the compositions and a set of quantitative
metrics.

3.4 Conclusive Remarks
In this chapter we proposed an overview of the corpus of studies pro-
posed to address the task of chord prediction and harmonic complexity
estimation using a number of models and different datasets including au-
dio files, lead sheets and MusicXML files. Specifically we distinguished
between approaches based on information theory and approaches based
on prior musical knowledge. For the purpose of this work we addressed
the problem of chord prediction by training a GPT-2 model exploiting
the chord symbols annotation contained in the dataset of the iRealPro
app. In this framework we consider each chord symbol as a word in
the jazz harmonic language and a sequence of chords as a sentence in

Chapter 3. State of the Art 30

the language. This approach allows us to model the problem using NLP
techniques. We then assessed the quality of our model by measuring
the accuracy of the chord prediction with respect to the actual chord
sequences. Furthermore, we linked the chord prediction problem to the
one of complexity estimation and investigated the correlation between
the ability of the model to predict the next chord in a sequence and the
perceived complexity of that sequence.

4
Problem Formulation and Methods

As previously mentioned, Di Giorgi et al. in [1] demonstrated a close
link between the perceived complexity of a sequence of chords and the
cross-entropy of the sequence computed using a NLP model. In this the-
sis we replicated some of the experiments proposed in [1] with the aim
of testing a more recent algorithm for language modelling on a newly
proposed dataset of jazz chord annotations. Moreover, we assessed our
model performance in terms of cross-entropy and accuracy. For the pur-
pose of our work, we propose a data driven approach linking the problem
of complexity estimation to the chord prediction task. Specifically, we
trained a GPT-2 model on two versions of a newly proposed database of
jazz chord annotations retrieved from the iRealPro app including more
than 100 000 jazz chord sequences considering each chord as a word in
the language of jazz harmony and each sequence of chords as a sentence.
Our goal is to model the rules of jazz harmony directly from the data,
without any prior harmonic assumptions. Specifically, we employed a
version of the dataset including only chord changes and a second version
where we included information about the duration of each chord by re-
peating the chord symbols for each quarter note it belonged to in the
original music sheets.

Moreover, we analyzed how perceived harmonic complexity is influ-
enced by the quality of the chord prediction computed by our model. In
this chapter we describe how we approached the chord prediction task,
the problem of harmonic complexity estimation and the model that we
employed for our experiments.

Chapter 4. Problem Formulation and Methods 32

4.1 Chord Prediction
Chord prediction is the task of estimating the most likely future chord
in a sequence. Because of the inherent multi-layered nature of music the
next chord in a harmonic sequence could be determined from the previ-
ous chord symbols, from the present and past melodic content and also
from the duration of the chords themself. For the purpose of our exper-
iment we decided to consider the harmonic information only, discarding
any melodic information but we tried nonetheless to include information
about the duration of each chord. As a matter of fact, we consider jazz
harmony as a language of its own, thus we can think of chords as words
in a language and to chord sequences as sentences in the language. This
framework allows us to use NLP tools to model the underlying rules of
jazz harmony.

In our experiments we trained our model on two versions of a newly
proposed database of jazz chord sequences. Specifically, in one version
we included only the chord changes, while in the other one we tried to
include information about the duration of each chord by repeating its
symbol for all the quarter notes it belonged to in the original scores.

In particular, we evaluated the results of our training both with ob-
jective metrics and with perceptual evaluations based on our prior knowl-
edge of jazz harmony.

Figure 4.1: Simple outline of the chord prediction problem. Being the trans-
former an auto-regressive model, it produces one token at a time given all the
previous ones and than add the generated symbol to the input in order to
further generate new tokens.

4.2 Harmonic Complexity Estimation
The task of harmonic complexity estimation aims at evaluating the ca-
pability of the model to correctly estimate the perceived complexity of
a given sequence of chords. This problem is extensively discussed in [1]
where the authors validate the results with a perceptual listening test.
In our work we adopt the same approach proposed in [1] evaluating the
harmonic complexity estimated over a set of test sequences. First, the

Chapter 4. Problem Formulation and Methods 33

goal of the experiment is to compute the harmonic complexity of a set of
chord progression generated by the model. In particular, we prompt our
model with the first chord of each sequence and let it predict the next 3
chords. Then, the harmonic complexity of each progression is computed
as its average cross-entropy:

Hp(M) = − 1

M

M∑︂
i=2

log2p(ci) (4.1)

where M represents the length of the progression and p(ci) corre-
sponds to the models estimated probability for each chord ci in the orig-
inal sequence.

4.3 Neural Network Model
For the purpose of this thesis we implemented the original GPT-2 model.
GPT-2 is a Transformer based algorithm presented by openAI in 2019
and it is a natural language model which aims at predicting the next word
in a sentence given all the previous ones. This model differs in its struc-
ture from the traditional Transformer because it lacks the encoder side
of the original model, as its purpose is to generate synthetic sentences by
means of k-top sampling instead of translating sentences from a language
to another. It has been demonstrated in [40] that GPT-2 outperforms
other language models by learning different tasks in an unsupervised
manner. OpenAI released in 2019 four types of GPT-2 characterized by
a different number of parameters. In July 2021 OpenAI released a new
model called GPT-3 which has a higher number of trainable parameters.
In this work we propose an implementation of the small version of the
GPT-2 model which we think is anyway big enough to address the chord
prediction problem on our dataset.

Figure 4.2: GPT-2 token generation based on past tokens. Each decoder block
consists of a masked self-attention block and a FFNN layer. Figure taken from
[4] and modified according to our case of study.

Chapter 4. Problem Formulation and Methods 34

Structure

The structure of the GPT-2 is very similar to the one of the Transformer
presented in [2] but it differs from it as being constituted of only decoder
stacks. In fact, this model aims at generating new sentences in a given
language while the original transformer is meant to translate sentences
from a language to another one.

The structure of our model is displayed in figure 4.2. Each decoder
layer is composed of:

• A masked self attention block, which allows the model to compute
attention scores only for the previous tokens in the input sequence.
This avoids the possibility for the model of accessing future tokens.

• A FFNN, which, as in the original Transformer, applies two linear
functions with a ReLU activation in between.

• Residual connections applied both around the attention head and
the FFNN block, followed by layer normalization.

• Input tokens are converted into vectors of dmodel dimension through
an embedding matrix. Moreover, positional information is incor-
porated into the input embeddings to give the model some infor-
mation about the relative position of each token.

Figure 4.3: Visualization of a stack of decoder layers.

Chapter 4. Problem Formulation and Methods 35

Masked Self-Attention

The main innovative aspect of GPT-2 with respect to the classic Trans-
former architecture relies on its attention mechanism. In fact, while both
in [2] and in [41] the authors present a left to right self attention, in [40]
the authors exploit the so-called masked self attention in each decoder
layer. Masked Self-Attention is used in order to prevent the flow of in-
formation from future tokens while calculating the attention scores on
the input sequence. A simple visualization of the difference between
Self-Attention and Masked Self-Attention is illustrated in Figure 4.4.

Figure 4.4: Self attention as used in the original Transformer model and
masked self-attention as used for the Generative Pretrained Transformer.

k-top Sampling

Being GPT-2 an auto-regressive model, it generates one token at each
time step on the basis of the previous tokens in the input sequence. The
generated token is then added to the input for the generation of the
next one and so on. When GPT-2 is used in a generative manner, the
choice of the next token is governed by k-top sampling. This technique is
used to inform the model on the subset of tokens among which the next
one should be selected. If k = 0, the model will always select the most
probable token. The choice of the optimal value of k can be difficult as
small values of k can lead to the generation of generic and bland text,
while large values could result in a loss of coherence and meaning [42].
Furthermore, a time varying value of k could be employed to generate
sequences with a time varying cross-entropy profile.

Parameters

In this work we propose exactly the same implementation described in
[43] thus we built our model as a stack of 12 decoder layers. The FFNNs
in each decoder layer are characterized by two hidden layers, contain-
ing respectively 3072 and 768 hidden units. Furthermore, we computed
attention with 12 distinct attention heads. Input embeddings and po-
sitional encodings are learned by the model during training using two
embedding layers which are tuned to minimize a specific loss function
with the chosen optimization method.

Chapter 4. Problem Formulation and Methods 36

4.4 Conclusive Remarks
In this chapter we proposed a detailed overview of the experiments that
we engaged for chord prediction and for complexity estimation and we
described the model that we used to tackle those tasks.

5
Experiments and results

In this chapter we propose a detailed description of the database
that we used and of the experiments that we carried out regarding the
problems of chord prediction and harmonic complexity estimation.

5.1 Dataset
For the purpose of our work we propose a new database of jazz chord
annotations retrieved from the iRealPro application. The iRealPro is an
application created by Technimo and Massimo Biolcati in 2010 which as
a matter of fact is a digitalization of the numerous volumes of the well
known Real Book of Jazz, a collection of handwritten lead sheets of the so
called Standards of jazz music. The iRealPro app is widely used within
the jazz community all over the world and beside the chord annotations
of a wide number of Jazz, Soul, Pop and Blues songs includes a number
of features for practicing such as automatic comping in a variety of styles
and automatic chords transposition. For the purpose of this thesis we
download all and only the transcriptions provided by the author of the
application himself in order to avoid using songs transcribed by other
users which would probably contain more annotation errors. Files were
exported in a MusicXML format from the application and a total number
of more than 2500 songs were collected. We proceeded at processing
the database in two ways: first we defined a finite set of allowed chord
symbols based on our prior knowledge of the jazz harmony rules, then
we separated each tune in its constitutive sections and transposed each
obtained sequence in all the twelve keys.

Chapter 5. Experiments and results 38

5.1.1 Harmonic Framework Definition
Jazz harmony is mainly characterized by the extensive use of seventh
chords. Within the context of western harmony chords are built as a
superposition of 3rd intervals, so seventh chords are composed of three
3rd intervals. Using the canonical naming for intervals definition we can
observe that within a seventh chord we can have 2 kinds of thirds (major
and minor), 3 kinds of fifth (diminished, perfect, augmented) and 2 kinds
of seventh (minor and major) for a total of 2 x 3 x 2 = 12 possible seventh
chords built as a superposition of 3rd intervals. By enumerating the 12
possible tetrads constructed over one root note we obtain:

1. C Eb Gb Bb = half-dim —-> half-dim

2. C Eb Gb B = NONE

3. C Eb G Bb = mi7 —-> mi7

4. C Eb G B = mi(maj7) —-> mi

5. C Eb G# Bb = NONE

6. C Eb G# B = NONE

7. C E Gb Bb = 7(b5) —-> 7

8. C E Gb B = maj7(#11) —-> maj7

9. C E G Bb = 7 —-> 7

10. C E G B = maj7 —-> maj7

11. C E G# Bb = 7(#5) —-> 7

12. C E G# B = maj7(#5) —-> maj7

Three of these chords do not have any functional interpretation and
can be immediately discarded while the remaining chords can be associ-
ated with five main chord families. Specifically, these five chord families
are strictly the ones necessary to express the II-V-I cadence in both the
major and minor keys. To these five categories we also had the dimin-
ished triad also associated with the diminished seventh chord obtaining
in total 6 possible chord kinds:

1. major or major seventh (related to a I or IV degree in a major key)

2. minor or minor sixth (related to a I or IV degree in a minor key)

3. diminished or diminished seventh (related to the VII degree of a
minor key)

Chapter 5. Experiments and results 39

4. dominant seventh (related to the V degree both in major and mi-
nor)

5. minor seventh (related to the II degree of a major key)

6. half diminished chord (related to the II degree of a minor key)

By using the letters from A to F in correspondence of the chord kinds
we just defined, we can define the equivalence with the MusicXML chord
kinds as displayed in Table 5.6.

5.1.2 Data Extraction
In order to create a database of coherent and short enough sequences
we splitted the song at each rehearsal mark. For example the tune Au-
tumn Leaves will generate three lines in the database. Furthermore we
transcribed each song converting it to a 4/4 meter, thus writing a chord
symbol for each quarter note in order to study dependencies due to har-
monic rhythm as well. This was possible because even if the dataset
contains tunes in 5/4 or 7/4 they actually never exhibit more than four
different chords per bar.

Figure 5.1: Chord changes of the tune "Autumn Leaves" as visualized in the
iRealPro application.

Chapter 5. Experiments and results 40

The resulting database is a table of more than 8000 data where each
line corresponds to a section of each tune and its columns are shown in
Table 5.1.

Table 5.1: Columns of the database used during training.

TITLE COMPOSER STYLE KEY SECTION CHORDS

The primary key of the database is then a combined key of TITLE
+ SECTION. Moreover, in the original database each tune is associated
with either a major or minor key which we transcribed as always as-
sociated with the relative major key. For instance, Autumn Leaves is
transcribed as being in B flat major even if it is actually in G minor.
This key signature is anyway associated with the whole composition and
not with the specific section. This creates an issue if we would like to
transpose all the sequences in one key only, like for instance C major, be-
cause most of the tunes in the database have B sections which modulate
with respect to the primary key of the tune.

Figure 5.2: Chord changes of the tune "In A Sentimental Mood" as visualized
in the iRealPro application.

For instance, In A Sentimental Mood by Duke Ellington and Billy

Chapter 5. Experiments and results 41

Strayorn is associated with the key of D minor or F major but its B
section is clearly in D flat major. Furthermore, within the repertoire of
jazz music are present also tunes affected by frequent modulation, like
26-2 by John Coltrane, or tunes which are constructed with a modal
approach rather than a tonal one, like Infant Eyes by Wayne Shorter.

Figure 5.3: Chord changes of the tune "26-2" by John Coltrane and "Infant
Eyes" by Wayne Shorter.

To overcome this issue and to mimic also the praxis of training of
a professional musician, we transposed the whole database in all the 12
keys, thus obtaining more than 100 000 chord sequences.

Moreover, we interpolated the obtained database in order to have two
different versions of it: one including the information about harmonic
rhythm and one without. Since, as mentioned above, we transcribed
the chords belonging to each quarter note in the original sequences we
obtained the version without the harmonic rhythm information by simply
removing chord symbols which are sequentially repeated.

5.2 Metrics
In order to assess the performance of our model in the chord prediction
and complexity estimation tasks we employed, as already partially dis-
cussed in Chapter 4, cross-entropy and accuracy. Specifically, we applied
the cross-entropy definition given in Equation 3.3, where q is the dis-
tribution in any corpus of chords and p is the distribution predicted by
our model. Since we do not have access to q we employed the Monte
Carlo estimation defined in Equation 3.4. For what concerns accuracy

Chapter 5. Experiments and results 42

we considered the number of chords that the algorithm is capable of cor-
rectly predicting when prompted with an initial chord. Formally, given
the original M-chords progressions c = {c1, .., cT} in the test set T , and
the sequences of predicted chords ĉ = {ĉ1, .., ĉT}, the accuracy can be
computed as:

a =
1

M ∗ T
∑︂
c∈T

M∑︂
i=1

C(ĉi, ci) (5.1)

where M ∗ T is the overall number of predicted chords, ci are the
original chords in the test harmonic progressions T , ĉi are the chords
predicted by the model and C(ĉi, ci) is the indicator function defined as:

C(ĉi, ci) =

{︄
1, if ĉi = ci

0, otherwise
(5.2)

Furthermore, to evaluate the nature of the relationship between ei-
ther the complexity estimates produced by the model and the percep-
tual ratings obtained with the listening test or the relationship between
cross-entropy and accuracy of the predictions we employ the Pearson
correlation coefficient defined as:

r =
cov(x,y)
σxσy

(5.3)

where x and y represent the two measures we want to estimate the
correlation of, cov is the covariance of the two variables and σx, σy are
the respective standard deviations. The Pearson coefficient evaluates if
a linear relation is present between the data and it ranges in the interval
[-1,1], where the extremes indicate either a positive or negative strong
correlation while values that are close to zero are associated to a very
low correlation between the two inputs.

Moreover, in order to assess the nature of the relationship between
the complexity estimates given by our model and the subjective ratings,
we consider the average of the ratings for each chord progression in the
test set over S = 21 participants. Specifically, we calculate the model’s
estimates according to Equation 4.1 and the average over the ratings for
the jth sequence is defined as follow:

cmpj =

∑︁S
i=i cmpi

j

S
(5.4)

where cmpi
j represents the complexity rating given by the ith sub-

ject to the jth sequence. In the following presentation we refer to the
average subjects’ ratings related to all the chord sequences as cmp =
{cmp1, ..., cmpJ} where J = 20 is the number of evaluated harmonic
sequences.

Chapter 5. Experiments and results 43

Furthermore, following the procedure proposed in [1] we performed
polynomial regression over our data, following the authors assumption
that the relation between the model’s estimates and the perceptual rat-
ings can be described as a polynomial function. Considering the complex-
ity estimates h computed by the GPT model as inputs, the polynomial
function that provides the estimation of the average perceptual ratings
ˆcmp provided by the subjects can be expressed as:

ˆcmp(h, ω) =
K∑︂
k=1

ωkh
k (5.5)

where k = {1, 2, ..., K} is the order of the polynomial function and
ωj are the regression weights. We experimented with different orders of
polynomials from 1 to 6. Since we aim at finding the polynomial model
that best fits the relationship between cross-entropy and perceptual rat-
ings, we evaluate the quality of polynomial regressions of different orders
using the R2 coefficient of determination, thanks to which we can asses
the quality of the regression. Specifically the R2 is defined as:

R2 = 1− RSS

TSS
(5.6)

where RSS represents the Residual Sum of Squares and it is computed
as:

RSS =
N∑︂
i=1

(cmpi − ˆcmpi)
2 (5.7)

where cmp are the observed ratings related to complexity, ˆcmp are the
estimates of the complexity ratings obtained using polynomial regression,
and N is the overall number of observed ratings.

TSS, instead, refers to the Total Sum of Squares defined as:

TSS =
N∑︂
i=1

(cmpi − cmp)2 (5.8)

where cmp represents the mean of the complexity ratings. We eval-
uated the R2 coefficient over 200 iteration on shuffle and split cross-
validation, each time using 20% of the examples in the test set.

5.3 Training Details
In this section we list some details regarding the training process of our
model.

The input tokens are embedded using an Embedding layer, which
transforms each input chord into a 768-dimensional vector, containing
the tokens’ continuous representation. A second Embedding layer is then
used to provide information about the position of each input chord in the

Chapter 5. Experiments and results 44

harmonic progression. We employed Adam optimizer, characterized by
the following parameters related respectively to the 1st and 2nd momen-
tum exponential decay rate, and to a constant for numerical stability:
beta1 = 0.9, beta2 = 0.98 and epsilon = 1e− 9.. We provided the Adam
optimizer with a custom learning rate scheduler, according to the formula
in [2].

lrate = d−0.5
model ∗min(stepNum−0.5, stepNum ∗warmupSteps−1.5) (5.9)

WarmupSteps are set to 40 000. The rate of change of the defined
learning rate within the training steps is shown in Figure 5.4.

We set the early stopping criterion to automatically stop the training
loop if the validation error does not decrease within 5 consecutive epochs.

Figure 5.4: Custom learning rate scheduler.

Moreover, since our aim is to check whether the results obtained in
[1] are valid also with our new database and since Di Giorgi et al. had
a collection of harmonic progression which did not include information
about the harmonic rhythm we choose to consider two separate versions
of our database.

Specifically, we trained two models, the first using the originally tran-
scribed version of the database which includes the information regarding
harmonic rhythm and a second one which we trained with an interpo-
lated version of the database which excludes harmonic rhythm. These
two versions simply differ from each other for the fact that in the one
containing the harmonic rhythm information each chord is repeated as
many times as the quarter notes that it belongs to in the original mu-
sic piece, while the second one considers a new chord symbol only when
the harmony actually changes. We used the version without harmonic
rhythm for repeating the same experiment conducted in [1] while we used
both the versions of the database for our chord prediction experiments.

Chapter 5. Experiments and results 45

5.4 Experiments setup
In these next sections we introduce how we organized the perceptual
test, how we generated the sequences employed during the listening ex-
periment and the profile of the participants.

5.4.1 Sequences Generation
As mentioned in Chapter 4, the GPT-2 is an autoregressive model which
generates the tokens of a sequence one after the other. Furthermore,
each next token is generated according to the k-top sampling principle.
This means that sampling using k = 0 will result in producing the most
probable next token and that increasing the value of k would lead to the
generation of sequences that are more unlikely as the value of k increases.
Since we followed the same guidelines that the authors applied in [1] we
generated our sequences based on their cross-entropy.

Specifically, we employed the model trained with the database with
no harmonic rhythm and we generated a total of 20 sequences of tokens,
each one produced with a value of k ranging from 0 to 4 so as to have
different levels of cross-entropy. More precisely, we produced 4 sequences
of 4 tokens for each value of k prompting the sequence with 4 different
chord kinds out of the 6 that we defined each time in a random key.

We then generated a MIDI file for each sequence employing a custom
voice-leading algorithm which given a sequence of token produces a 4
parts harmony midi file, trying to minimize the movement of the soprano
part and fitting the remaining chordal notes in a close voicing fashion like
shown in Figure 5.5.

Figure 5.5: Example of voice leading of a sequence taken from the dataset
where the movement of the soprano part is minimized.

We then employed a commercial piano library for generating the ac-
tual audio files.

5.4.2 Participants
Since we aim at verifying the relation discovered in [1] between cross-
entropy and perceived complexity of an harmonic sequence we collected
the perceptual complexity ratings from a set of subjects by means of a
listening test. Specifically, we asked each participant to evaluate 20 chord
sequences on five discrete levels of perceived complexity.

Chapter 5. Experiments and results 46

Furthermore, in order to better understand the musical background of
the subjects involved in the test, we asked them to answer a specifically
designed questionnaire which aims at evaluating their Gold-MSI. The
questionnaire consists of 38 questions with 7 possible answers each. The
results are then combined into 5 features [44]:

• Active musical engagement, which represents the degree to which
the participants prioritize music-related activities.

• Perceptual abilities, which represents the accuracy of the musical
listening skills.

• Musical training, which indicates the amount of formal music train-
ing received.

• Singing abilities.

• Emotional engagement, which represents the conscious use of music
to alter emotional states.

The musical expertise of the subjects involved in the listening test is
shown in Figure 5.6. The average Gold-MSI value for the subjects who
participated in the experiment is 63.

Figure 5.6: Gold-MSI of the subjects involved in the listening test..

5.5 Results
In this Section we present the outcome of our experiments regarding both
the chord prediction problem and the complexity estimation task.

Chapter 5. Experiments and results 47

5.5.1 Chord Prediction
Here we present the results obtained using both versions of the dataset
that we employed using objective metrics and by means of examples and
observations on the generated chord progressions.

5.5.1.1 Evaluation of chord prediction task

Here we present the outcome of our training with objective metrics re-
ferred to both the versions of the database employed.

Dataset without harmonic rhythm

To evaluate the results of our training on previously unseen datas we
calculated the average cross-entropy and accuracy on a test set obtain-
ing the results shown in Table 5.2, which prove that the training had an
effective result. Furthermore we evaluated the Pearson correlation coeffi-
cient between cross-entropy and accuracy of the sequences in the test set.
Results show a strong negative correlation between these two measures
as r = −0.903 for a p−value ≤ 0.001, which implies that sequences with
higher cross-entropy values lead to proportionally less accurate results.

Table 5.2: Loss, Accuracy and Pearson correlation coefficient over the
test set for the training of the dataset without harmonic rhythm.

RESULTS ON TEST SET
LOSS ACCURACY PEARSON COEF.
0.1121 0.9824 -0.903

Dataset with harmonic rhythm

For what concerns the dataset containing the harmonic rhythm infor-
mation we exploited the same model evaluation techniques mentioned
above. Specifically, to evaluate the model’s predictive performance on
previously unseen datas we calculated the measures of the loss and of
the accuracy on a test set of about 1700 sequences obtaining the re-
sults displayed in Table 5.3. We again evaluated the correlation between
loss and accuracy of the sequence in the test set employing the Pearson
coefficient and noticing again a strong negative correlation.

Table 5.3: Loss, Accuracy and Pearson correlation coefficient over the
test set for the training of the dataset with harmonic rhythm.

RESULTS ON TEST SET
LOSS ACCURACY PEARSON COEF.
0.2738 0.9001 -0.8973

Chapter 5. Experiments and results 48

5.5.1.2 Perceptual Evaluation

Here we introduce some observations on the outcome of the chord pre-
diction experiment for both the datasets employed based on our previous
musical background.

Dataset without harmonic rhythm

In order to assess the musical quality of the predictions of our model
we prompted the algorithm with various chord types letting it generate
sequences of variable length. Results show that by sampling with a value
of k = 0 the model efficiently generates common jazz harmonic patterns
such as the II-V-I pattern, the turnaround, or the blues. Furthermore,
the generated sequences present a certain degree of periodicity, as the
one reported below:

Table 5.4: Examples of sequences generated with k-top sampling where
k=0 and prompted with one random chord.

Cmaj7 Ami7 Fmaj7 Abmaj7 G7 Cmaj7
Fmi7 Bb7 Ebmaj7 Cmi7 Fmi7 Bb7
Abmaj7 Gmi7 Fmi7 Gmi7 Abmaj7 Gmi7
Dmi7(b5) G7 Cmi6 Fmi7 Ebmi6 Dmi7(b5)

Moreover, it is particularly interesting to notice that by prompting
the algorithm with a C7 chord and letting it generate the next tokens
the model outputs exactly the chords of a C major blues. By plotting
the probability distribution of each next token shown in Figure 5.7 we
can clearly see that these chords are clearly much more likely than other
ones. This could be due to the fact that the blues harmony is implied
in many sequences contained in the database, even in those which are
extracted from tunes which are not proper blues.

Figure 5.7: Probability distributions of each next token when prompting the
model with a C7 chord and sampling with k=0

Chapter 5. Experiments and results 49

It is also interesting to notice that as the sequence goes on the token
corresponding to k = 0 becomes more and more likely against the others
as the more a sequence is composed the more it’s direction becomes clear.

Dataset with harmonic rhythm

In this section we present some observations meant to understand if the
model efficiently learned the concept of harmonic rhythm by letting it
generate sequences prompted with various kinds of chords. The results
show that by using a value of k = 0 throughout the whole progression
the algorithm produces a sequence composed by only one chord. This
was actually expected as in the database each chord is repeated multiple
times for each quarter note that it belongs to. Anyway, by plotting the
distributions of each next token shown in Figure 5.8 we can see that
the tokens corresponding to a value of k = 1 become more likely in
correspondence of an even number of tokens.

Figure 5.8: Probability distributions of each next token when prompting the
model with a Gmaj7 chord and sampling with k = 0

From the Figure above we can see that even if the token corresponding
to a value of k = 0 is always Gmaj7, the token related to the value of
k = 1 change its likelihood through time, specifically increasing the value
of its probability in correspondence of an even number of chords. From
this observation we can suppose that our model learned effectively the
concept of harmonic rhythm.

To further explore this aspect we prompted the model with the first
two bars of a C major blues, i.e. C7,C7,C7,C7,F7,F7,F7,F7 and let the

Chapter 5. Experiments and results 50

model predict the continuation of the sequence by picking tokens corre-
sponding to the value of k = 0. Quite surprisingly the algorithm outputs
the chord of a C major blues changing the chords exactly where the
changes are supposed to be in a standard blues form. The output of the
model with each token distribution is visualized in Figure 5.9.

Figure 5.9: Probability distributions of each next token when prompting the
model with the first two bars of a C major blues and sampling with k = 0

This result clearly shows that the model is able to produce sequences
with a coherent harmonic rhythm behaviour even over a quite long con-
text. Moreover, the F7 prompt as the second bar corresponds to the token
related with a value of k = 1 in that specific point of the sequence. This
suggests the possible existence of cross-entropy envelopes across the se-
quence which could be exploited for generating chord progressions which
exhibit a similar complexity behaviour through time. This aspect could

Chapter 5. Experiments and results 51

be also exploited for studying whether chords with high cross entropy
occur in specific points of some sequences, determining the narrative as-
pects of the sequences themself.

5.5.2 Complexity Estimation
Here we present the results obtained in the complexity estimation task
and we propose some interpretations of the outcomes.

The obtained relationship between the model’s estimates and the per-
ceptual ratings is plotted in Figure 5.10 where the blue line represents
the ratings mean and the green area represents the standard deviation.

Figure 5.10: Relationship between complexity estimates and perceptual rat-
ings obtained with our listening test.

From the plot we can see that we actually got some very noisy results
which do not really overlap with the considerations made in [1]. Infact the
supposed relationship should appear as a highly correlated monotonically
decreasing curve, while our data look almost random.

To further investigate our results we calculated the Pearson correla-
tion coefficient between the model’s estimates and the perceptual ratings.
The obtained value of the Pearson coefficient is displayed in Table 5.5
which mathematically shows that almost no correlation is present be-
tween the perceptual ratings and the model’s estimates.

Moreover, following the procedure proposed in [1] we performed poly-
nomial regression over our data, following the authors assumption that
the relation between the model’s estimates and the perceptual ratings

Chapter 5. Experiments and results 52

Table 5.5: Pearson coefficient of correlation between the model’s esti-
mates and the perceptual ratings.

PEARSON COEF.
-0.018

can be described as a polynomial function. The polynomial regression
results are displayed in Figure 5.11 where emerges that the best linear
model for fitting our data is the one of the first degree.

Figure 5.11: R2 scores for different orders of polynomial regression models.

Considerations

As shown in the previous Section, our results do not match with the
hypothesis theorized in [1]. This can be due to many different reasons,
both related to how we implemented the listening test and to the dataset.
Here we try to discuss some of them.

First of all, the experiments carried out by Di Giorgi et al. were meant
to investigate how Tonal complexity is perceived while we extended the
problem beyond the tonal context. In fact, as already discussed in Section
5.1, we proposed a newly retrieved database which is intrinsically non
tonal and because of that we had to transpose it in all the twelve keys.
This results in generated sequences which are both modulating within the
sequences themself and that span over the whole possible keys domain.
This can lead to a harder complexity evaluation task for non musically
trained listeners both because of the modulating aspect of the sequences
and because of their varying tonal or modal context.

Furthermore, the Jazz harmonic language is quite more sophisticated
than the Pop and Rock ones, implying an extensive use of seventh chords
which might result in difficulties for the listeners in decoding what is
actually a common sequence against an uncommon one. Moreover, the
Jazz genre itself is way less widely diffused than the Pop one, so listeners
have, on average, less experience of listening to it.

Moreover, we generated the sequences with k-top sampling using val-
ues of k ranging from 0 to 4, which might have led to the synthesis of
sequences which are not too different from each other. Using more spread

Chapter 5. Experiments and results 53

values of k could have led to generating sequences with more clear and
distinct perceived complexity values.

Last, the evaluation of the Gold-MSI of the listeners showed that the
average level of the participant of our test is lower than the one retrieved
in [1]. This could have led, united with the previous considerations, to
data which might not be reliable for such an investigation. Given our
particular context, we presume that assessing the perceptual ratings of
professionally trained musicians only would result in data which would
show a higher correlation with the model’s estimates.

5.6 Conclusive Remarks
In this chapter we presented the experiment that we conducted for the
problems of chord prediction and complexity estimation. We analyzed
the different chord prediction results that we obtained on two different
versions of our database pointing out how our model effectively succeeded
in learning the basic rules of jazz harmony and the basic rules of harmonic
rhythm. Furthermore we evaluated the ability of our model to correctly
predict the perceived complexity of a sequence of chords by means of
a listening test. Despite a quite strong correlation between the model’s
estimate and the perceptual ratings was shown in [1] we didn’t find the
same results. We discussed why this could have happened within the
context of our experiment and we suggested how to further explore this
link in the field of jazz harmony.

Chapter 5. Experiments and results 54

Table 5.6: Equivalence between our alphabet and the MusicXML chord
types.

Triads
major (major third, perfect fifth) A
minor (minor third, perfect fifth) B
augmented (major third, augmented fifth) A
diminished (minor third, diminished fifth) C
Sevenths
dominant (major triad, minor seventh) D
major-seventh (major triad, major seventh) A
minor-seventh (minor triad, minor seventh) E
diminished-seventh (diminished triad, diminished seventh) C
augmented-seventh (augmented triad, minor seventh) D
half-diminished (diminished triad, minor seventh) F
major-minor (minor triad, major seventh) B
Sixths
major-sixth (major triad, added sixth) A
minor-sixth (minor triad, added sixth) B
Ninths
dominant-ninth (dominant-seventh, major ninth) D
major-ninth (major-seventh, major ninth) A
minor-ninth (minor-seventh, major ninth) E
11ths
dominant-11th (dominant-ninth, perfect 11th) D
major-11th (major-ninth, perfect 11th) A
minor-11th (minor-ninth, perfect 11th) E
13ths
dominant-13th (dominant-11th, major 13th) D
major-13th (major-11th, major 13th) A
minor-13th (minor-11th, major 13th) B
Suspended
suspended-second (major second, perfect fifth) A
suspended-fourth (perfect fourth, perfect fifth) +7E
Functional sixths
Neapolitan NONE
Italian NONE
French NONE
German NONE
Other
pedal (pedal-point bass) NONE
power (perfect fifth) NONE
Tristan NONE

6
Conclusions and Future Works

In this thesis we investigated the ability of the GPT-2 language model
to automatically compose chord sequences in the context of Jazz har-
mony and its capability of producing correct estimates for the perceived
complexity of a given chord progression.

As a matter of fact, we modelled jazz harmony as a language of
its own, where each chord represents a word in the language and each
sequence is considered as a sentence. For training our model we used
a newly proposed database of jazz chord annotations retrieved from the
iRealPro application proposed by Technimo and Massimo Biolcati in 2010
which is a widely diffused practicing tool within the jazz community all
over the world. We formalized how we transcribed this database using
an alphabet of 12 ∗ 6 = 72 chord symbols retrieving more than 100 000
chord sequences.

We evaluated the performance of our model in the chord prediction
task both by means of objective metrics and against our prior knowledge
of harmony and in the complexity estimation task by means of a per-
ceptual experiment. For what concerns the chord prediction problem,
we compared the results obtained from the training of our model on two
different versions of the dataset, one containing only chord annotations
and one containing information on the harmonic rhythm as well. We
showed that the model effectively learned the fundamentals of the Jazz
harmonic language and of the harmonic rhythm patterns both by means
of objective results and musical examples.

Considering the complexity estimation task, we devised a listening
experiment in which a group of listeners rated the perceived complexity
of 20 chord sequences generated by the model on the basis of their cross-
entropy. We investigated the relationship between the perceptual ratings

Chapter 6. Conclusions and Future Works 56

and the estimates of the algorithm and, despite a quite strong negative
correlation was demonstrated in [1], we didn’t find any meaningful rela-
tion between these two quantities. We proposed some reasoning about
the outcome of this test and suggested some future options for more
experiments.

Even if the model proved to have learned to compose sequences that
are quite resembling of the original sequences in the database some more
options remain open for future investigations.

First, the cross-entropy envelopes which appear within each single
sequence can be further explored investigating whether chords with high
cross-entropy correspond to specific points in the harmonic grid. In par-
ticular this aspect could be exploited for generating sequences based on
cross-entropy envelopes of a prompted sequence which is liked by the
user. This could represent a quite interesting composition assistant tool.

Moreover, the cross-entropy measure could be exploited for a classi-
fication task aiming at classifying the composer of a given sequence of
chords or at generating a new sequence in the style of a given composer.
In our opinion, even if the database includes a style attribute for each
tune, the classification task conducted on this attribute would not lead
to good results, since the annotated style is mainly referred to the groove
style of the original interpretation of the tune, rather than on the style
of the song itself.

For what concerns the complexity estimation task, it would be inter-
esting to repeat the test with a higher number of subjects with a stronger
musical background. Furthermore, the experiment could be also con-
ducted on professionally trained jazz musicians using chord annotation
instead of audio files. In our opinion this would probably lead to a bet-
ter correlation with the cross-entropy estimates, since the dataset used
for our training is retrieved from sequences which are meant to be read
rather than heard. In fact, the quality of the perceptual ratings using au-
dio files can be highly biased from the particular voice-leading algorithm
that we employed.

Finally, it would be interesting to repeat our work using the recently
proposed GPT-3 model.

Bibliography

[1] B. Di Giorgi, S. Dixon, M. Zanoni, and A. Sarti, “A data-
driven model of tonal chord sequence complexity,” IEEE/ACM
Transactions on Audio, Speech, and Language processing, vol. 25,
pp. 2237–2250, 2017.

[2] A. Vaswani, N. Shazeer, J. parmar, L. Uszkoreit, A. Jones,
L. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
arXiv preprint arXiv:1706.03762, 2017.

[3] C. Weib, J. Balke, J. Abeber, and M. Muller, “Computational corpus
analysis: a case of study on jazz solos,” ISMIR, pp. 416–423, 2018.

[4] J. Alammar, “The illustrated transformer,” 2018.

[5] D. Temperley, “The cognition of basic musical structures,” MIT
press, vol. 25, pp. 2237–2250, 2004.

[6] L. Marsik, J. Porkorny, and M. Ilcik, “Towards a harmonic complex-
ity of musical pieces,” Proceedings of the Annual International Work-
shop on Databases, Texts, Specifications and Objects (DATESO),
2014.

[7] C. Weiss and M. Muller, “Quantifying and visualizing tonal com-
plexity,” Conference on interdisciplinary Musicology (CIM 2014),
2014.

[8] C. Weiss and M. Muller, “Tonal complexity features for style classi-
fication of classical music,” 2015 IEEE International Conference on
Acoustics, Speech and Signal processing (ICASSP), 2015.

[9] I. Witten and T. Bell, “The zero frequency problem: estimating the
probabilities of novel events in adaptive text compression,” IEEE
Transactions on information theory, vol. 37, 1991.

[10] D. Sears, F. Korzeniowski, and G. Wildmer, “Evaluating language
models of tonal harmony,” 2018.

[11] F. Korzeniowski, D. Sears, and G. Widmer, “A large scale study
of language models for chord prediction,” 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 91–95,
2018.

57

Bibliography 58

[12] M. Rohrmeier and T. Graepel, “Comparing feature-based models
on harmony,” Proceedings of the 2008 ACM conference on Recom-
mender systems, pp. 179–186, 2012.

[13] F. Pachet and P. Roy, “Markov constraints:steerable generation of
markov sequences,” Constraints, vol. 10, pp. 148–172, 2011.

[14] R. Whorley, A. Wiggins, C. Rhodes, and M. Pearce, “Multiple view-
point systems: time complexity and the construction of domains for
complex musical viewpoints in the harmonization problem,” Journal
of New Music Research, vol. 42, pp. 237–266, 2013.

[15] H. Papadopoulos and G. Peeters, “Simultaneous estimation of chord
progresion and downbeat from an audio file,” IEEE International
Conerence on Acoustics, Speech and Signal Processing, pp. 121–124,
2008.

[16] A. Van Der Merwe and W. Schulze, “Music generation with markov
models,” IEEE Multimedia, vol. 18, pp. 78–85, 2010.

[17] O. Peracha, “Improving polyphonic music models with feature-rich
encoding,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage processing, 2019.

[18] H. Zhu, Q. Liu, N. Yuan, C. Qin, J. Li, K. Zhang, F. Zhou,
F. Wei, Y. Xu, and E. Chen, “Xiaoice band: a melody and arrang-
ment generation framework for pop music,” proceedings of the 24th
ACM SIGKDD international Conference on Knowledge Discovery
and Data Mining, pp. 2837–2846, 2018.

[19] H. Lim, S. Rhyu, and K. Lee, “Chord generation from symbolic
melody using blstm networks,” 2017.

[20] H. Hild, J. Feulner, and W. Menzel, “harmonet: a neural net for
harmonizing chorales in the style of j. s. bach,” Advanced in Neural
Information Processing Systems, 1991.

[21] Y. Huang and Y. Yang, “Pop music transformer: generating music
with rhythm and harmony,” 2020.

[22] C. Payne, “Musenet,” OpenAI, 2019.

[23] S. Wu and Y. Yang, “The jazz transformer on the front line: ex-
ploring the shortcomings of ai-composed music through quantita-
tive measures,” IEEE/ACM Transactions on Audio, Speech, and
Language processing, 2020.

[24] R. Hyndman and G. Athanasopoulos, “Forecasting: principles and
practice,” 2018.

Bibliography 59

[25] C. Holt, “International journal of forecasting,” Managment Science,
vol. 20, pp. 5–10, 2004.

[26] P. Winters, “Forecasting sales by exponentially weighted moving
averages,” Management Science, vol. 6, pp. 324–342, 1960.

[27] F. Foscarin, “Chord sequences: evaluating the effect of complexity
on preference,” 2017.

[28] S. Streich, “Music complexity: a multi-faceted description of audio
content,” 2006.

[29] F. Pachet, “Surprising harmonies,” International Journal of Com-
puting Anticipatory Systems, 199.

[30] P. De Boer, D. Kroese, S. Mannor, and Y. Rubinstein, “A tutorial
on cross-entropy method,” Annals of operations research, vol. 134,
pp. 19–67, 2005.

[31] A. Osipenko, “Markov chain for music generation,” Towards Data
Science, 2021.

[32] I. Simon and S. Oore, “Performance rnn: Generating music with
expressive timing and dynamics,” Magenta Blog, 2017.

[33] V. Thio, “Runn,” Magenta Blog, 2017.

[34] C. Donahue, “Pianogenie,” Magenta Blog, 2018.

[35] A. Roberts, C. Kayacik, C. Hawthorne, D. Eck, J. Engel, M. Din-
culescu, and S. Nørly, “Magenta studio: Augmenting creativity with
deep learning in ableton live,” in Proceedings of the International
Workshop on Musical Metacreation (MUME).

[36] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer,
C. Hawthorne, A. M. Dai, M. D. Hoffman, and D. Eck, “Music trans-
former: Generating music with long-term structure,” arXiv preprint
arXiv:1809.04281, 2018.

[37] G. Branwen, “Gpt-2 folk music generation,” Magenta Blog, 2016.

[38] C. Huang, A. Vaswani, M. Uszkoreit, N. Shazeer, I. Simon,
C. Hawthorne, A. Dai, D. Hoffman, M. Dinculescu, and D. Eck,
“Music transformer,” arXiv preprint arXiv:1809.04281, 2018.

[39] V. Pham, “Generating jazz music using gpt and piano roll encoding
methods,” Towards Data Science, 2021.

[40] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI
blog, 2019.

Bibliography 60

[41] J. Devlin, M. Chang, K. lee, and K. Toutanova, “Bert: pre-training
of deep bidirectional transformers for language understanding,”
2018.

[42] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious
cas of neural text degeneration,” arXiv preprint arXiv:1904.09751,
vol. 25, pp. 2237–2250, 2019.

[43] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Imrpov-
ing language understanding by generative pre-training,” IEEE/ACM
Transactions on Audio, Speech, and Language processing, 2018.

[44] D. Mullensiefen, B. Gingras, L. Stewart, and J. Musil, “Goldsmiths
musical sophistication index (gold-msi) v1.0: technical report and
documentation revision 0.3,” London: Goldsmiths, University of
London, 2013.

	Abstract
	Sommario
	Acknowledgments
	List of Figures
	List of Tables
	Glossary
	Introduction
	Background
	Harmony Fundamentals
	Pitch and Pitch Classes
	Scales, Chords and Keys
	Harmonic Progressions

	Time Series Forecasting Fundamentals
	Auto-Regressive Models
	Exponential Smoothing Models
	Hidden Markov Models
	Finite Context Models

	Neural Networks Fundamentals
	Feed Forward Neural Networks
	Recurrent Neural Networks
	Long-Short Term Memory
	Transfomer

	Conclusive Remarks

	State of the Art
	Harmonic Complexity
	Functional Harmony Definition
	Information Theory Definition

	Machine Learning for Chord Prediction
	Finite Context Models
	Hidden Markov Models

	Deep Learning for Chord Prediction
	Recurrent Neural Networks
	Transformer

	Conclusive Remarks

	Problem Formulation and Methods
	Chord Prediction
	Harmonic Complexity Estimation
	Neural Network Model
	Conclusive Remarks

	Experiments and results
	Dataset
	Harmonic Framework Definition
	Data Extraction

	Metrics
	Training Details
	Experiments setup
	Sequences Generation
	Participants

	Results
	Chord Prediction
	Complexity Estimation

	Conclusive Remarks

	Conclusions and Future Works

