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Abstract

Side-Channel Attacks (SCAs) represent a serious threat to data security, offering a non-
invasive way of retrieving secrets processed by a microcontroller during the execution
of cryptographic algorithms. Recent research enhanced SCAs exploiting Deep learning
(DL) networks to retrieve the secrets. The usage of multiple devices for training showed
how DL-based SCAs can be effective even in real-world scenarios against an unprotected
implementation of the Advanced Encryption Standard (AES), being able to successfully
attack a device that is different from the ones used for training. In addition to multiple
devices, this work considered several training-phases with multiple encryption keys and
different amount of data, showing how these three variables affect the performance of
DL-based SCAs in real-world scenarios. Device-Key Trade-off Analysis (DKTA) has been
introduced to study the trade-off between number of devices and number of keys, while
Device-Trace Trade-off Analysis (DTTA) to investigate the trade-off between number of
devices and number of traces. Targeting an unprotected implementation of the AES,
DKTA highlighted that the number of keys does not influence the attack, while DTTA
showed how important it is to consider as many train-data as possible. Both analyses
confirmed that the attack performance increases if multiple train-devices are considered.
On the other hand, this is not true when attacking a masked implementation of AES,
since the addition of a device, on average, makes the attack unfeasible. In this scenario,
DKTA highlighted the importance of considering multiple keys, while DTTA showed that
the enlargement of the training dataset can highly boost the performance of the attack.
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Abstract in Lingua Italiana

Gli attacchi di tipo Side-Channel (SCA) rappresentano una seria minaccia per la si-
curezza dei dati, in quanto permettono di recuperare, in maniera non invasiva, un segreto
elaborato da un microcontrollore durante l’esecuzione di un algoritmo di cifratura. Re-
centemente, l’efficacia di questi attacchi è stata aumentata sfruttando tecniche di Deep
Learning, come le reti neurali, per estrarre il segreto. L’utilizzo di più dispositivi durante
la fase di training permette alle reti di essere efficienti anche in scenari reali, riuscendo
a recuperare il segreto di AES, l’algoritmo standard per la cifratura, attaccando un dis-
positivo diverso da quelli utilizzati durante il training. Questo studio ha dimostrato,
considerando molteplici attacchi e fasi di training, che la performance di un attacco SCA
realistico con reti neurali non è influenzata solo dal numero di dispositivi, ma anche dalla
presenza di più chiavi di cifratura e dalla quantità di dati utilizzati durante il training.
L’introduzione di un’analisi del trade-off tra numero di dispositivi e numero di chiavi
(Device-Key Trade-off Analysis, DKTA) e tra numero di device e quantità di dati utiliz-
zati durante il training (Device-Trace Trade-off Analysis, DTTA), ha permesso di studiare
il ruolo che queste variabili hanno durante un attacco. Attaccando un’implementazione
non protetta di AES, tramite DKTA è stato possibile evidenziare come il numero di chiavi
non influenzi l’attacco, mentre con DTTA è stato possibile dimostrare quanto sia impor-
tante considerare più dati possibile durante la fase di training. Entrambe le analisi hanno
confermato che l’utilizzo di più di un dispositivo durante la fase di training permette
di aumentare l’efficacia dell’attacco. Quando invece l’implementazione di AES attaccata
prevede una contromisura di tipo masking, l’aggiunta di un dispositivo non permette di
recuperare la chiave di cifratura. In questo caso, DKTA ha evidenziato quanto sia im-
portante considerare più di una chiave, mentre DTTA ha mostrato come l’utilizzo di una
grande quantità di dati durante il training permetta di avere alte prestazioni nella fase di
attacco.

Parole Chiave: Crittografia, Attacco Informatico, Deep Learning, Attacco Side-Channel
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Introduction

Today’s digital world highly relies on data and their security is one of the most crucial
aspects. Encryption is fundamental to ensure data security, as it hides the information
contained in the data, protecting them from unauthorized access.
Everyday-life presents multiple examples of encryption applications. For instance, credit
card information is encrypted during every transaction, text messages are encrypted when
sent through instant-messaging applications, and Solid State Drives (SSDs), which are
used to store data in the vast majority of computers, mount a microcontroller that per-
forms encryption in order to fulfill device and system-level security requirements.

Even if encryption algorithms are proven to be mathematically secure, poor implementa-
tions can make them vulnerable to a specific type of attack.

Side-Channel Attacks (SCAs) [35, 36] allow to retrieve a secret encryption key from a
device in a non-invasive way. Statistical methods are exploited to extract the correlation
(leakage) between device-related physical variables (e.g., Power Consumption, Electro-
Magnetic emissions) and processed sensitive information (e.g., intermediate values of the
target algorithm), making it possible to retrieve the key.

In Profiled-SCAs [16], the attacker owns a sample of the target-device. In a preliminary
phase, called Profiling Phase, the attacker exploits the sample-device to generate a model
of the correlation between a physical variable and the secret key. Next, in the Attack
Phase, the attacker applies the model to the actual target-device and retrieves the secret
key.

One of the emerging trends in SCA field is the extension of Profiled-SCAs through the
usage of Deep Learning (DL) techniques [11, 39]. During the Profiling Phase, Artificial
Neural Networks (ANNs) are trained to recognize the leakage patterns from the sample-
device and later, in the Attack Phase, they are exploited to retrieve the secret key from
the target-device. This kind of attacks is known as Deep Learning based Side Channel
Attack (DL-based SCA).

The absence of assumptions about the distribution of the noise in the measurements
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and the ability of correctly retrieving the secret with few attack samples are the main
advantages of DL-based SCAs over traditional Profiled-SCAs. In addition, the ability of
ANNs to perform automatic feature extraction from data allows to completely automate
the Profiling Phase.
On the other hand, the usage of ANNs in real-world scenarios makes this approach affected
by the so-called Portability Problem: if the network focuses only on recognizing noise and
details from the sample-device, rather than learning its general behavior, then it would
provide wrong predictions during the Attack Phase against a different device. Therefore,
the goal is to build a network that is general enough to successfully attack a device which
is different from the one used during training.

The Multiple Device Model (MDM) [7] is the state-of-the-art solution to the Portabil-
ity Problem. It aims at adding diversity to the training dataset considering at least 2
sample-devices during the Profiling Phase. This makes the network more general and
able to attack a different, unseen device. In [7], MDM is validated only against 8-bit
microcontrollers while targeting an unprotected implementation of the 128-bit version of
the Advanced Encryption Algorithm (AES) [21].

Differently from [7], the novel methodology introduced by this work considers DL-based
SCAs dependent on three main variables, being the number of sample-devices, the number
of keys used during the Profiling Phase and the size of the training set. The idea is that
all these variables, and not only the number of devices, influence the attack performance.
Studying the impact that the three most important variables have on the attack, this work
is able to provide an efficient training configuration to mount effective realistic DL-based
SCAs. In particular, the performed experiments consider at most 2 sample-devices, up to
10 keys and a number of measurements that goes from 50,000 to 500,000.
Additionally, for the first time, this work applies the MDM over data coming from 32-bit
microcontrollers and against a software masked implementation of AES-128.

More precisely, focusing on a complete characterization of the Profiling Phase of realistic
DL-based SCAs, two techniques are introduced:

• Device-Key Trade-off Analysis (DKTA): studies the trade-off between number of
devices and number of keys;

• Device-Trace Trade-off Analysis (DTTA): studies the trade-off between number of
devices and size of the training set.

Considering multiple attacks with different train-configurations, DKTA and DTTA high-
light possible scenarios where the number of keys or the size of the training set can enhance
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the performance of the attack in presence of limited number of devices. This can be use-
ful in practice, since keys can be automatically generated with a script for free and the
measurements can be collected even if a single device is available, while the consideration
of multiple sample-devices implies the purchase of additional hardware.

This volume is structured as follows.
Chapter 1 provides a detailed background about Deep Learning, in particular the Multi-
Layer Perceptron network, Side-Channel Attacks and masking countermeasures. Chapter
2 focuses on the methodological approach adopted in this work, providing a detailed
description of the pipeline followed to mount DL-based SCAs and introducing DKTA
and DTTA. Chapter 3 offers a detailed overview of the experimental setup of this work,
while the results of the two trade-off analyses are shown and discussed in Chapter 4. In
the end, Chapter 5 summarizes the relevant achieved results and suggests possible future
developments.
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1| Background and

State-of-the-Art

This chapter presents the theoretical and mathematical background needed to mount
Deep Learning based Side-Channel Attacks.
Starting from a detailed description of the Multi-Layer Perceptron network, this section
proceeds with introducing the Advanced Encryption Standard cipher, Side-Channel At-
tacks and their countermeasures, and explaining how Deep Learning based Side-Channel
Attacks work.

1.1. Deep Learning and Multi-Layer Perceptron

Machine Learning (ML) is a sub-field of Artificial Intelligence (AI) that focuses on au-
tomatically extracting relevant information from data, and on using it to make informed
decision on new, unseen data. Indeed, ML programs are said to learn from data, as
highlighted by Mitchell [46]:

"A computer program is said to learn from experience E with respect to some
task T and some performance measure P, if its performance on T, as measured
by P, improves with experience E."

This learning ability of ML programs (also called models) is exploited to solve problems
that would be too complex to address with traditional programming. For example, the
automation of all those actions that humans do without being able to explain how (e.g.,
tell if a picture shows a cat or a dog) can be performed with ML algorithms, due to the
lack of a fixed set of operations that, given an input, produces the desired output.

There are multiple learning approaches in Machine Learning, and they depend on the
type of problem to solve:

• Supervised Learning, used to estimate an unknown function that maps known inputs
to known outputs;
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• Unsupervised Learning, used to learn a more efficient representation of a set of
unknown inputs;

• Reinforcement Learning, where agents interact with the environment and try to
reach a specified goal maximizing the reward that the environment provides them
as feedback to each performed action.

Deep Learning (DL) is a sub-field of Machine Learning which focuses more on emulating
how humans learn: DL algorithms (known as Artificial Neural Networks (ANNs), or
simply networks) do not need the input to be refined by removing noise and highlighting
only the most relevant features (as done in ML), because they are able to autonomously
extrapolate important information directly from raw data.
Indeed, ANNs are proven to be universal approximators [30].

Neural Networks can be divided into two main categories:

• Feed Forward Neural Networks (FFNNs): the structure of the network is linear,
from an input layer to an output layer, forcing information to be processed only in
one direction;

• Recurrent Neural Networks (RNNs): the structure of the network presents loops,
which allow information to be stored and used in later iterations.

Multi-Layer Perceptron (MLP) [19, 43, 55], Convolutional Neural Networks (CNNs) [25,
37, 59] and AutoEncoders (AEs) [41] are typical examples of FFNNs, while Long-Short
Term Memories (LSTMs) [29] are popular RNNs.

Lately, DL has been applied to multiple domains. Among others, Computer Vision and
Natural Language Processing are two of the most popular.

1.1.1. Perceptron

Artificial Neural Networks (ANNs) were introduced to emulate biological neural networks,
which constitute the human brain.
As in biological brains, the basic data-processing unit of an ANN is called neuron: artificial
neurons, known as Perceptrons were originally introduced by McCulloch and Pitts [43]
and later implemented by Rosenblatt [55].

Figure 1.1 compares a biological neuron and a Perceptron.
A biological neuron, depicted in Figure 1.1a, works by collecting electrical signals and
propagating them to the next neuron. Specifically, signals are collected through the
dendrites, accumulated inside the nucleus and propagated through the axon if the total
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(a) Biological Neuron
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(b) Perceptron

Figure 1.1: Comparison between biological neuron and artificial neuron. Subfigure (a), on the left, shows a biological
neuron [9], highlighting its principal components, such as dendrites, nucleus, axon and synapses. Subfigure (b), on the
right, shows the Perceptron, an aritficial neuron.

accumulated signal exceeds a fixed threshold. The resulting signal is then transmitted to
another neuron through the synapses
Figure 1.1b shows how this process is emulated artificially: a Perceptron receives a vector
x = [x1, x2, ..., xI ] of I input signals, accumulates them through a linear combination
considering the vector w = [w1, w2, ..., wI ] of weights, adds a the fixed bias term x0 with
weight w0, evaluates the result of the accumulation with an activation function h(·) and
propagates the final outcome to the next neuron.
The following equation summarizes the functioning of a Perceptron:

h(x|w, x0, w0) = h(
I∑

i=1

wixi + w0x0) = h(
I∑

i=0

wixi) = h(x|w) (1.1)

The bias value x0 is usually set to +1 and considered as implicit element of vector x. At
the same time, w0 is considered part of vector w.

A Perceptron can be used as simple binary classifiers (able to say if an input belongs to
class +1 or to class −1) if the following activation function is used:

h(x) = sign(x) =

+1 if x > 0

−1 otherwise
(1.2)

Examples of functions that can be approximated by a Perceptron are logical OR and
logical AND.

Equation 1.1 shows that the output of a Perceptron (its prediction) is dependent only
on the input x and on the weights w. Since the input is an external signal and can not
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be controlled by the Perceptron, it can be said that the weights are the only variable
responsible for enabling the learning ability of an artificial neuron.

For this reason, the learning process of a generic Deep Learning network is identified as
the tuning of its weight. This procedure is knonw as network training.

In the particular case of a Perceptron used as classifier, the learning process penalizes the
weights only in case of misclassification. Referring to Figure 1.1b, it follows the Hebbian
Rule [14]:

wk+1
i = wk

i + η · xk
i · tk (1.3)

In Equation 1.3, xk
i identifies the ith input at time-step k, wk

i refers to the weight associated
to it, η is a constant known as learning rate and tk is the desired output at time-step k.

Note that:

• Weights need to be initialized before training, even randomly;

• η sets the speed of the learning process, setting the amount of penalization per
iteration;

• The presence of tk during the training suggests that Perceptrons are trained in a
supervised way.

1.1.2. Multi-Layer Perceptron

The Hebbian Rule used to train Perceptrons as classifiers presents a limitation: it always
converge only if the input data-points belong to a linearly separable dataset. This means
that a single Perceptron will always be able to classify only datasets whith two classes,
where the decision-boundary is a linear function.
As practical example, while both logic OR and logic AND can be approximated by a
single artificial neuron, logic XOR can not.

To solve this problem, multiple layers of Perceptrons with non-linear activation func-
tions have been stacked and connected together [19], building a fully-connected ANN
denominated Multi-Layer Perceptron (MLP).

The general structure of a MLP is shown in Figure 1.2. A MLP is composed by a single
input layer, multiple hidden layers and a single output layer, where a layer is defined as
a set of Perceptrons that share the same activation function:

• Input Layer: exactly I neurons, where I is the number of inputs, modeled as
vector x = [x1, x2, ..., xI ];
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Figure 1.2: Structure of a Multi-Layer Perceptron. Input layer, hidden layers and output layers are highlighted in different
colors. Inside each neuron, a generic activation function is represented.

• Hidden Layers: variable both in number and size. Their amount and their size
determine the network complexity;

• Output Layer: exactly K neurons, where K is the number of outputs.

The connections between neurons (which model the axons of biological neurons) are
weighted. If neuron i of layer l − 1 is connected with neuron j of layer l, then the
connection i → j is weighted with wl

ji. Therefore, matrix Wl = {wl
ji} contains all the

weights present between layer l − 1 and layer l.
The bias related to neuron j of layer l is interpreted as additional element of layer l − 1,
as depicted in Figure 1.2. Conventionally, it is located at the first position of layer l − 1,
and considered as its 0th neuron. As a consequence, its weight is denoted by wl

j0 and
considered part of matrix Wl.
As in the case of the simple Perceptron, all biases are set to +1.

Following the same convention, the activation function of layer l is denoted with function
hl = hl

j(h
l−1,Wl), where j indicates the jth neuron of layer l.

Usually, the activation function of the output layer is denoted with g = {gk(x|W)}, where
k indicates the kth output neuron and W represents the dependence of this function on
all the weights of the network, which are combined due to the hidden activation functions.
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Figure 1.3: Most popular Non-Linear Activation Functions. Subfigure (a), on the left, shows the sigmoid activation function,
an s-shaped function in the interval [0; 1]. Subfigure (b), in the center, depicts the tanh activation function, an s-shaped
function in the interval [−1; 1]. Subfigure (c), on the right, shows the ReLu activation function. All the functions are
presented in the interval [−10; 10] for clarity.

Figure 1.3 shows the most popular non-linear activation functions:

• Sigmoid: S(x) = 1
1+e−x

• Hyperbolic Tangent (tanh): tanh(x) = ex−e−x

ex+e−x

• Rectified Linear Unit (ReLU): relu(x) = max(0, x)

All these functions are suitable for an MLP, as they are not linear. Indeed, they make it
possible to exceed the limit imposed by simple Perceptrons, thus allowing the recognition
of more complex patterns.

MLP Training

Consider the simple MLP depicted in Figure 1.4a: it features an input layer, a single
hidden layer and an output layer with a single neuron.
Its training process can be modeled as follows: given a labeled training set of N data-
points (MLPs are supervised algorithms) D = {(x1, t1), (x2, t2), ..., (xN , tN)}, where xn

is a data-point and tn its desired output, the goal is to find MLP weights such that
g(xn|W) ≈ tn for n ∈ {1, 2, ..., N}.
To solve this problem, the error between g(xn|W) and tn must be minimized with respect
to W.

Usually, to address this task, the gradient of the function to minimize is computed and
then set to zero. Due to the lack of practical closed-form solutions to this problem, the
iterative technique known as Gradient Descent (GD) [13] is used.
The kth step of GD applied to function f(x) is defined as follows:

xk+1 = xk − α∇f(xk) (1.4)
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Figure 1.4: Structure of a simple MLP with only one hidden layer and only one output-neuron. Subfigure (a), on the left,
depicts the complete representation of a simple MLP, showing every single connection between neurons. Subfigure (b), on
the right, present a compressed representation of the simple MLP of Subfigure (a), showing the weights in matrix form. In
addition, Subfigure (b) shows when the desired output relative to the input is used to compute the error function.

The intuition is given by Figure 1.5: the gradient of a function gives the direction of the
steepest ascent of the function, so, to find the minimum, one should move in the direction
of the steepest descent, opposite to the gradient. Constant α, called learning rate, sets
the step of this movement.
Even if this process allows to start from random values and proceed finding the optimal
ones, sometimes it can converge to a local minimum, usually due to a too high or too low
value of the learning rate. To solve this problem, several algorithm, called optimizers,
have been proposed, with the goal of reducing, dynamically, the value of the learning rate
during training. Among these algorithms, Adam [34] and RMSprop [27] are two of the
most popular and effective.

Let E(g, tn) be the error function between MLP output g(xn|W) and true target tn related
to input xn.
In practice, it is too complex to compute its gradient directly. To solve this problem, the
so-called Backpropagation algorithm has been introduced [56]: the gradient of the error
function of a MLP is computed backwards, starting from its output layer and proceeding
to the input one, exploiting the Chain Rule of derivatives.
The Chain Rule states that if function y depends on z and z depends on x, then the
derivative of y with respect to x is given by:

dy

dx
=

dy

dz
· dz
dx

(1.5)

The Chain Rule is suitable for the MLP case because the activation function of each layer
depends on the output of the previous layer and the weights.
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𝑓(𝑥)

∇𝑓(𝑥)

Figure 1.5: Graphical representation of the Gradient Descent technique. Starting from a random point of a curve (black
point in the figure), it is possible to reach its minimum (green point) through iterative update of its variables. It may
happen that the result of the minimization is a local minimum of the function (red points).

Remembering that each neuron accumulates the inputs through a linear combination and
then applies the activation function to it, as described by Equation 1.1, the Backpropa-
gation algorithm applied to the simple MLP depicted in Figure 1.4a and schematized in
Figure 1.4b computes the gradients of the error function as follows:

∂E(g, tn)

∂W2 =
∂g(xn|W)

∂W2h1(xn,W1)
· ∂W

2h1(xn,W1)

∂W2

∂E(g, tn)

∂W1 =
∂E(g, tn)

∂g(xn|W)
· ∂g(xn|W)

∂W2h1(xn,W1)
· ∂W

2h1(xn,W1)

∂h1(xn,W1)
· ∂h

1(xn,W1)

∂W1xn

· ∂W
1xn

∂W1

(1.6)

Note that Equation 1.6 refers to the simplest MLP structure depicted in Figure 1.4a,
which was chosen for clarity. However, Chain Rule and Backpropagation are general
algorithms and can be applied to any Neural Network structure.

Summarizing, the training process of the MLP depicted by Figure 1.4a can be schematized
as follows:

1. Define a labeled dataset D = {(x1, t1), (x2, t2), ..., (xN , tN)}

2. Initialize MLP weights, even randomly;

3. Feed the MLP with data-point xn;
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4. Compute the error function E(g, tn);

5. Compute the gradient of E(g, tn) through Backpropagation;

6. Update the weights through a GD technique;

7. Repeat the process until all data in D has been scanned once.

Each complete scan of the training set is known as epoch. A single training process involves
multiple epochs, to better tune the weights.

Note that both the desired output tn and the MLP output function g(·) can be represented
as vectors (e.g., when the MLP has multiple output neurons). In that case, also function
E is expressed in vectorial form.
However, the overall training process remains the same.

Note also that the presented approach involves the computation of Backpropagation after
a single data-point is processed (Online Backpropagation).
In is possible to compute it after a subset of data-points are processed (Batch Backprop-
agation.

Overfitting and Hyperparameter Tuning

The goal of the training process is to produce a MLP that is able to correctly approxi-
mate an unknown function. Therefore, the network should be neither to simple, nor too
complex: a too simple network would not recognize the function, while a too complex one
would replicate it exactly with respect to the training data.
Both behaviors are not recommended for practical application. Indeed, in presence of
new, unseen data, both a too simple MLP and a too complex one would provide wrong
results: the former, due to the lack of learning during the training phase, the latter, due
to its specialization on training data.
A too simple MLP is said to underfit the data, while a too complex one is said to overfit
them. The desired MLP is the one that is general enough to learn the unknown function
during training and successfully apply it to new, unseen data. Figure 1.6a shows the
behavior of an underfitting classifier, Figure 1.6b the behavior of a an overfitting classifier
and Figure 1.6c the desired general behavior.

Since the complexity of a MLP is dependent on parameters that are external to the net-
work (e.g., number of hidden layers, number of hidden neurons), it can not be adjusted
during training, as it only concerns the update of the weights.
Those external parameters are known as hyperparameters, and are fixed before training
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(a) Underfitting Classifier (b) Overfitting Classifier (c) Desired Classifier

Figure 1.6: Possible Behaviors of a Classifier. Subfigure (a), on the left, shows an underfitting classifier which is unable
to approximate the equation of the decision boundary between the two classes, resulting in lots of misclassified points.
Subfigure (b), in the center, depicts an overfitting classifier which specialized on the training data and perfectly represents
the decision boundary between the classes without generating any misclassified point. Subfigure (c), on the right, presents
the desired behavior expected from a classifier, because the two classes are clearly identified and the decision boundary is
only approximated: the presence of some misclassified points suggests that the classifier is general and flexible enough to
classify a new, unseen data-point, even if it is slightly different from the training ones.

by the programmer of the network. The process of selecting the most suitable hyperpa-
rameters is called Hyperparameter Tuning.

In order to face the problem of Underfitting/Overfitting the data and the process of Hy-
perparameter Tuning, the available dataset is usually partitioned into three independent
subsets:

• Training set : dedicated to the update of the weights;

• Validation set : useful to provide unbiased evaluations during Hyperparameter Tun-
ing. It is usually considered inside of the training process;

• Test set : useful to have a final, unbiased evaluation of the trained model with respect
to new, unseen data.

The partitioning process must pay attention to generate independent subsets (without
sharing data) and must ensure that the three subsets present the same data-distribution:
data-sharing or distribution-mismatch would make MLP predictions biased and not ro-
bust, invalidating the training process.

Concerning Hyperparameter Tuning, the following list presents the most popular tech-
niques used to find the best configuration among a manually-defined space:

• Manual Search: test only few configurations from the hyperparameter space, ad-
justing them manually;

• Grid/Exhaustive Search: exhaustively test each single configuration of hyperparam-
eters. Efficient only if the hyperparameters space is small;

• Random Search: test only a randomly-selected subset of all possible combinations
of hyperparameters. Preferred when the hyperparameter space is big.
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• Genetic Algorithm [22, 45]: emulate Natural-Selection Principle considering popu-
lations of hyperparameters which evolve during time. From each population, only
some configurations of hyperparameters, the ones that allowed to build the most-
performing models, are selected and used to generate offsprings for the next popu-
lation. The goodness of hyperparameters is assessed with a fitness function which
can measure model performance. Mutations and selection of poor-performing con-
figurations are added to the procedure to increase the diversity of the population
and better simulate natural evolution. After a fixed number of generations, or
when a fixed value of model performance is reached, the algorithm stops and the
best-performing hyperparameters at that time are selected as final result.

MLP performance and generalization is measured through its error over the validation
set, known as validation error/loss. Indeed, it provides a measure of how much the MLP
is wrong over new, unseen data.

Concerning Underfitting and Overfitting, one should always start with a very simple MLP,
and then adjust it according to its performance.
If the MLP starts overfitting, the following techniques can be considered:

• Increasing training-set size: more train-data can make the MLP able to better
understand data-patterns;

• Early Stopping [49]: the training phase is stopped before its natural end (determined
by a fixed number of epochs) if there is evidence that the MLP starts overfitting;

• Data Augmentation [64]: noisy data are added to the training set in order to make
the network robust even in presence of non-ordinary patterns.

• Regularization: the addition of a penalty in model computations during training
allows to avoid the generation of too big parameters, simplifying the model.

• Batch Normalization [32]: normalize layers inputs by re-centering and re-scaling. A
dedicated layer, called BatchNormalization layer, is usually added where normaliza-
tion is intended to take place.

Regularization is one of the most popular overfitting-limiting techniques, and in the par-
ticular case of the MLP, it can be implemented in multiple ways:

• L1-Regularization [8]: the penalization term 1
2
λ
∑
∥w∥ = λ

∑N−1
i=0 |wi| is added di-

rectly to the error/loss function of the MLP (for vector of weights w of N elements);

• L2-Regularization [8]: the penalization term 1
2
λ
∑
∥w∥22 = λ

∑N−1
i=0 w2

i is added di-
rectly to the error/loss function of the MLP (for vector of weights w of N elements);
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• Dropout [28]: during training, disable each neuron of layer l with probability dl,
called dropout rate. The goal is to avoid that hidden neurons rely on other neurons.
During validation/testing, all neurons are used, but weights are scaled accordingly.

The difference between L1 and L2 Regularization is that while L2 only shrinks the values
of the weights towards zero without ever reaching it, L1 let some weights reach zero,
providing a sort of automatic feature selection, which makes some inputs irrelevant to the
computation of the output.

Both variable λ in L1 and L2 Regularization and variable d in Dropout are considered
hyperparameters and should be carefully tuned.

1.1.3. Multi-Layer Perceptron as Classifier

Classification can be defined as the problem of identifying which category, from a fixed
set, a given input belongs to. In ML jargon, categories are also known as labels.

Mathematically, considering a set of C possible classes {c0, c1, ..., cC−1} and an input data-
point x belonging to class ci, with i ∈ {0, ..., C − 1}, a classification problem is defined as
the search of the function f(·) such that:

f(x) = ci (1.7)

Function f(·) is therefore an unknown function that maps known inputs to known outputs.
As a consequence, supervised learning is the most suitable approach to solve a classification
problem.
In particular, a MLP can be used to approximate function f(·).

A MLP for classification must feature a specific output activation function and a specific
error/loss function. Indeed, the activation function of the output layer defines what the
MLP produces, while the loss function computes the error over a prediction, and it is
crucial in the Backpropagation algorithm for weights update. Both these tasks depend
directly on the problem the MLP is addressing.

For a the generic C-class classification problem defined in 1.7 where each input belongs
to exactly one class, the considered output activation function is the softmax function,
defined as:

σ(z)k =
ezk∑C−1
j=0 ezj

, for k ∈ {0, 1, ..., C − 1} (1.8)

In Equation 1.8, z ∈ RC is a vector of C real numbers and k is the class-index.
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The peculiarity of the softmax is that it receives as input a vector of real numbers (even
negative) and produces a probability distribution as output. This means that the complete
output of a softmax is a vector of C probabilities, whose sum gives 1.
By implementing it as last layer of a MLP classifier, it provides the probability that the
given input belongs to each class. The prediction of the MLP is the class with highest
probability.

Concerning the loss function, the considered one is the Cross-Entropy (CE), defined as

CE(t, s) = −
C−1∑
j=0

tj ln(sj) (1.9)

Equation 1.9 is general and refers to the error between a true-distribution t and a score
distribution s.

In the MLP case, t is an encoded representation of the class of a general input data-point.
The most popular encoding technique for classification problems is One-Hot Encoding,
which, applied to the problem defined by Equation 1.7, would label x with a C-long
binary vector with exactly C− 1 zeros and a unique one, at position i (i ∈ {0, ..., C− 1}).
For example, in a problem where the possible classes are {Red,Green,Blue}, class Red

would be represented by [1, 0, 0], class Green with [0, 1, 0] and class Blue with [0, 0, 1].

On the other hand, s is the class probability computed in the output layer of the MLP,
being it a vector of probabilities relative to the input.

Therefore, summarizing, in the case of MLP classifier with input x, the Cross-Entropy
function involves t, the vector representing the one-hot encoded class of x, and s, the
predicted class probability vector for x.
In this case, CE takes the name of Categorical Cross-Entropy, and it is the usual choice
for MLPs while solving a classification problem.
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1.2. Side-Channel Attacks

Cryptography is defined as the study of methods and techniques used to ensure secure
communications between two endpoints. Its goal is to protect the information that is
shared during a communication, even in presence of an adversary, whose intention is to
retrieve such information.
Encryption is the cryptographic technique that allows to hide information contained in
data. One of the first applications of encryption is Caesar Cipher [38]: Julius Caesar
used to encrypt military-related messages shifting each letter of the alphabet 3 positions
to the right (or to the left).

Modern encryption processes present four main elements:

• Plaintext : the input of the process, the data to be obscured;

• Ciphertext : the output of the process, the obscured version of the plaintext;

• Algorithm: the sequence of mathematical operations used to generate the ciphertext
starting from the plaintext;

• Key : the cryptographic secret used by the algorithm to generate the ciphertext.

Encryption algorithms are divided into two main categories: symmetric-key algorithms
and asymmetric-key algorithms.
In symmetric-key encryption algorithms, such as the Advanced Encryption Standard
(AES) [21], the same secret key is used for both encryption and decryption. In a sce-
nario where a communication is secured with symmetric encryption, all the endpoints
must share the same secret key. This can be difficult in practice, because an additional
trusted channel is needed. For this reason, symmetric encryption is usually adopted to
secure static information, such as disk data.
On the other hand, asymmetric-key encryption algorithms, like Rivest-Shamir-Adleman
(RSA) [54], require a pair of keys per endpoint. Each pair of keys is composed by a public
key, which is visible to everyone and used to encrypt, and a private key, which is kept se-
cret and used to decrypt. This method allows to solve the symmetric-encryption problem
of sharing the secret key, making this kind of algorithms more suitable for communication
security.

Modern encryption algorithms are implemented following the Kerckhoffs’ Principle [33],
which states that a cryptographic system should be secure even if everything about it, ex-
cept the key, is public knowledge.
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• Power Consump�on
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CiphertextPlaintext

Secret Key

Figure 1.7: Scheme of a Side-Channel Attack. While the target-device is generating the ciphertext starting from the
plaintext and the secret key, phisical variables such as Power Consumption, Electromagnetic Emissions, Heat or Time can
be measured and later used to recover the secret key. The icons of this picture are taken from the open-source project
Bootstrap [48]

Moreover, they are also proven to be mathematically secure against brute-force attacks.
Indeed, the secret key is designed specifically to be long enough to make unfeasible, with
the current technology, the exhaustive search of its correct value.

Side-Channel Attacks provide a non-invasive way to retrieve a secret encryption key with-
out relying exclusively on brute-force methods.
A Side-Channel Attack (SCA), schematized in Figure 1.7, targets an electronic device
(referred to as target-device) that is running an encryption algorithm, with the aim of
retrieving its secret key, by exploiting the correlation between a physical variable and the
secret key itself.

Physical variable refers to any measurable quantity produced by the device during the
encryption, such as its Power Consumption (PC), its Electro-Magnetic (EM) emissions,
the heat generated throughout the process or the time taken to complete it. Indeed, due
to the widely-used Complementary Metal-Oxide-Semiconductor (CMOS) logic, the Power
Consumption of an electronic circuit is proportional to the processed data, in particular
to its bit-switching activity [47].
As a consequence, targeting the most sensitive operations of an encryption algorithm,
it is possible to extrapolate information about the secret key. Therefore, the measured
physical variables are called traces, while their correlation with the secret key is known
as leakage, since it exposes the secret outside the device.
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In practice, SCAs rarely target directly the secret key. Rather, they focus on predicting
the value of a leakage model, defined as a function able to approximate the leakage of a
device. A following step is dedicated to key-recovery, starting from the predicted leakage
model.
The possible leakage models are Hamming Distance (HD), defined as the number of
different bits between two binary numbers, Hamming Weight (HW), where HW (x) =

HD(0, x) and Identity (ID), defined as ID(x) = x.
The leakage model involves also an intermediate value of the targeted algorithm. This
value is the result of a sensitive operation in the encryption process. In SCA, an operation
is sensitive if it causes some memory change (e.g., change the value of a register), for the
reasons mentioned before.

The most popular metric used to evaluate a SCA performance is the so-called Guessing
Entropy.
The Guessing Entropy (GE) is defined as the average rank of the correct key among
attack predictions [60]. The underlying idea is to consider the result of the SCA as a
list of probabilities, one for each possible value of the secret key, structured in decreasing
order, and select the position-index of the correct key. Since the list of probabilities is
ordered largest to smallest, it is considered as a ranking of the possible key values and,
therefore, the position index is called rank. The value of GE is computed as average over
a fixed number of independent experiments involving disjoint sets of traces to attack.
The amount of attack-traces considered in a SCA is crucial for the exploitation of the
leakage, since too few traces could make the leakage non-recognizable. Therefore, it can
happen that the same SCA presents different GE values for different amounts of traces.
A SCA is said to be successful if it reaches GE = 0, meaning that its most probable
prediction coincides with the correct key. On the other hand, a SCA that reaches GE =

N ̸= 0 suggests the correct key as the (N + 1)th most probable value: in this case, the
secret key can not be directly retrieved with the attack, but the eventual brute-force space
has been reduced.
For this reasons, given multiple SCAs, the best one is the attack that reaches the lowest
GE in the least number of traces.

1.2.1. Details on the Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) [21] has been the standard algorithm for data
encryption since 2001, when it was chosen by the U.S. National Institute of Standards
and Technology (NIST).
AES encrypts a fixed-sized plaintext of 128 bits using a secret key of 128, 192 or 256 bits.
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Figure 1.8: AES-128 Algorithm Structure. A 128-bit plaintext is encrypted with a 128-bit secret key, generating a 128-bit
ciphertext.

The algorithm is structured on multiple rounds, where 4 main operations are performed
sequentially. The number of rounds depends on the the length of the key: 10 rounds for
128-bit key, 12 rounds for 192-bit key and 15 rounds for 256-bit key.

Figure 1.8 shows the structure of AES-128, the version of AES where the key is 128-bit
long.
At the beginning of the algorithm, the KeyExpansion operation generates 11 round-key
starting from the main secret key. The number of round-keys is exactly n_rounds + 1,
where the first (K[0] in the figure) is the main secret key without modifications.
AES operates on a 4 × 4 matrix called state. The 16 bytes b0, b1, ..., b15 of the plaintext
are stored in the state in column-major order as follows:

b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

 (1.10)

The four main operations of AES are:

• AddRoundKey : Each byte of the state is XORed with the corresponding byte of the
round-key;
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• SubBytes : Each byte of the state is replaced with another, according to a lookup
table called SBox ;

• ShiftRows : The last three rows of the state are shifted cyclically with increasing
offset;

• MixColumns : The columns of the state are mixed using an invertible linear trans-
formation.

The SubBytes operation is crucial for AES, since it adds non-linearity to the algorithm.
This operation is performed over the whole state, proceeding byte-by-byte, indexing the
SBox: the table row-index is given by the first 4 bits of the considered byte, while its
column-index is given by the remaining 4.

After an initial AddRoundKey where the plaintext is XORed with the main secret key,
the first 9 rounds feature the same sequence of operations: SubBytes → ShiftRows →
MixColumns → AddRoundKey. The last round presents the same order, but without
the MixColumns operation.

AddRoundKey and SubBytes are the most sensitive operations of AES, since the former
handles both plaintext and key, and the latter adds non-linearity through the SBox-
lookup. This makes them suitable targets of a SCA. Indeed, the most popular interme-
diates when attacking AES are the result of AddRoundKey, known as sbox-in, and the
result of SubBytes, called sbox-out.

1.2.2. Direct Side-Channel Attacks

Traditional Side-Channel Attacks see the attacker applying statistical methods to traces
collected directly from the target-device, in order to highlight the leakage.
This approach is called Direct, because the attacker focuses straight on the target-device.

Simple Power Analysis and Differential Power Analysis are the most popular Direct SCA
techniques. Both were introduced by Kocher et al. [35, 36].

Simple Power Analysis (SPA) consists in directly interpreting side-channel traces to gain
information about the operations performed by the target-device. For example, the visual
inspection of a power-consumption trace collected from a device running AES-128 without
countermeasures reveals the presence of exactly 10 peaks, one for each round of the
algorithm.
SPA Attacks usually do not reveal directly the secret key, but can be very helpful as
preliminary analysis when performing more sophisticated attacks.
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On the other hand, Differential Power Analysis (DPA) is a statistical method used to
identify data-dependent correlations from power-consumption traces and it can be ex-
ploited to directly recover the secret key of an encryption algorithm.
A basic DPA Attack consists in partitioning a set of traces into subsets, calculating the
average trace of each subset and finally computing the difference of the average traces,
often called differential trace. If the partitioning-method is correlated with the measure-
ments, then the resulting difference tends to be a non-zero value, otherwise, it approaches
zero.
In order to recover the secret key, the basic DPA procedure is exploited considering traces
generated with multiple key-candidates: the candidate which leads to a differential trace
with the highest non-zero values (visible spikes) is the guessed key value.

Differential ElectroMagnetic Analysis (DEMA) [3, 50] and Correlation Power Analysis
(CPA) [10] are other common Direct SCA techniques, variants of DPA.

1.2.3. Profiled Side-Channel Attacks

A different Side-Channel Attack approach sees the attacker not only accessing the target-
device, but also having complete control over a copy of it (i.e., a physically different device
that comes from the same manufacturer). The copy is often called clone-device.
This approach is known as Profiled, because a characterization phase exploiting the clone-
device precedes the actual attack against the target-device.
Indeed, Profiled-SCAs consist of two steps:

1. Profiling Phase: The attacker collects traces from the clone-device and uses them
to generate a model of the leakage, characterizing its behavior.

2. Attack Phase: The attacker applies the produced model to some traces collected
from the target-device in order to retrieve its secret key.

The Template Attack (TA) [16] is an example of Profiled-SCAs.
The model of the leakage generated in a TA is called template, and consists in the mean
and the covariance matrix of the measurements collected from the clone-device. Indeed,
every measured signal is considered as a random variable, result of the composition of
a constant value and a random noise. The hypothesis that the random noise follows a
Multivariate Gaussian distribution allows the computation of the template. During the
Profiling Phase, a template is generated for each possible value of the considered target
(e.g., key-byte value).
In the Attack Phase, considering traces collected from the target-device, the values of
the Probability Density Function (PDF) relative to each possible target are computed,
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exploiting the templates and the Multivariate Gaussian distribution hypothesis. In the
end, following the Maximum Likelihood approach, the target which leads to the highest
PDF value is the result of the attack.

Recently, the search of a more general and distribution-agnostic solution to Profiled-SCAs
led to the usage of Machine Learning (ML) techniques during the Profiling Phase [6, 26,
31]. This technique, which mainly exploits Support Vector Machines (SVMs) [18, 63],
makes no assumption about the distribution of the noise and approaches a SCA as a
classification problem where the classes are represented by the possible values of the
targeted intermediate.
This particular Profiled-SCAs are known as ML-based SCAs.

1.2.4. Side-Channel Attack Countermeasures

Section 1.2 highlights how side-channels such as PC or EM-emissions are strictly related
to the operations performed by the device.
Therefore, in order to avoid the presence of leakage, countermeasures can be developed
both in hardware and in software.

SCA countermeasures can be divided into three main categories:

• Hiding [40]: random delays and noise are manually added during the computation
to eliminate/reduce sensitive information contained in the leakage;

• Masking [15, 53]: per-execution arbitrary values are used to randomize key-related
data, eliminating the correlation between traces and secret;

• Morphing [2]: dynamic changes are added to the encryption code, keeping semantic
conformity.

In particular, a software Masking countermeasure is implemented as follows.
Every sensible variable x of the cryptographic algorithm to secure is split into d + 1

quantities x0, x1, ..., xd, also known as shares. In particular, shares x1, ..., xd are called
masks, while x0 is the masked value. When d masks are considered, the masking technique
is said to be of order d.
The shares are generated in such a way that, for a group operation ⊥, the following
relation holds:

x0 ⊥ x1 ⊥ ... ⊥ xd = x (1.11)

Masking countermeasures for AES feature the XOR operation (denoted by ⊕) as group
operation [57].
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The presence of masks allows to make the intermediate results of the considered algorithm
independent of sensitive variables. Therefore, a SCA targeting a single intermediate
variable is no more effective against this kind of implementation.
As a consequence, in order to reveal the actual leakage, an attacker should exploit, at the
same time, information about both the masks and the masked values [44, 53, 57].

More generally, to break a masking countermeasure of order d, an attacker needs to exploit
information about all d masks and the masked values at the same time. For this reason,
a masking countermeasure of order d is said to be vulnerable to an attack of order d+ 1.
This kind of attacks is theoretically possible, but high values of d can make it unfeasible.

To perform an attack of order d+ 1, one must preprocess the traces to individuate d+ 1

points of interest, where the leakages can be exploited. With classical statistical methods,
this task may require a long time, and surely a huge amount of traces.
DL networks, on the other hand, can automatically perform feature selection without the
need of an explicit preprocess in search of points of interest. This speeds up the attack,
both in terms of time required to collect the traces and in terms of manual operations to
perform.

1.3. Deep Learning based Side-Channel Attacks

As briefly introduced in section 1.2.3, one of the recent trends in SCA field focused on
the extension of Profiled-SCAs through the usage of Machine Learning techniques.
This approach relaxes the assumption of Multivariate Gaussian noise in the traces, pro-
viding a way to develop distribution-agnostic attacks.
On the other hand, ML-based SCAs do not provide the possibility of completely auto-
mate the Profiling Phase. Indeed, ML techniques fit data successfully only if a preliminary
feature-extraction phase has been performed manually. In SCA terms, the attacker needs
to manually extrapolate the sections of the trace where the leakage is present (usually
performed considering the Pearson Correlation Coefficient between a trace and its relative
leakage model [10]) and provide them as input to the ML algorithm.

One of the emerging trends in Profiled-SCA field aims precisely at automating the Pro-
filing Phase keeping a distribution-agnostic approach. This trend involves Deep Learning
Artificial Neural Networks (ANNs) in order to model the leakage of the device [11, 39].
As a consequence, this new class of attacks is knonw as DL-based SCAs.

The following characteristics make ANNs particularly suitable for the aforementioned
goal:



26 1| Background and State-of-the-Art

• Their layered structure allows to automatically detect the most relevant features
from data without being explicitly programmed to do so, but learning from data
themselves and improving with experience;

• Their ability of approximating complex functions allows to relax the assumption of
Multivariate Gaussian noise in the traces.

How DL-based SCAs Work

DL-based SCAs approach a SCA as a classification problem, similar to the one described
by Equation 1.7.
The data-points to be classified are the traces, while the classes are the possible value
that the targeted leakage model can assume.

An ANN is trained to associate to each trace the value of the relative leakage model. There-
fore, the only difference between DL-based SCAs and traditional classification problems
is that DL-based SCAs need an additional step to retrieve the secret key, since it is not
the target of the classification performed by the network.
Therefore, the accuracy of the ANN can be misleading: as pointed out in [11], in a DL-
based SCA the accuracy tells how good a network is in presence of a single attack trace.
Indeed, it is computed with respect to the predictions of the network, which are not the
actual target of the attack. As a consequence, it can happen that good attacks feature
a poor network accuracy. For these reasons, accuracy should not be considered when
mounting DL-based SCAs.

In practice, a DL-based SCA can be seen as a Profiled-SCA where:

• The Profiling Phase involves the training of the ANN over traces coming from the
clone-device

• The Attack Phase involves the usage of the trained ANN to make predictions over
new, unseen traces coming from the target-device

The additional key-recovery step needs to combine the predictions related to each single
trace coming from the target-device. Indeed, the secret key is the same for each attack-
trace, and it is the actual target of the attack.

Concerning the evaluation technique, GE is the usual choice for DL-based SCAs.
However, GE should be avoided while assessing network performance during the Profiling
Phase: it requires too much time and resources to be computed multiple times during
network training. For this reason, network-related metrics such as the prediction error
over validation data [42] are exploited to assess network performance.
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The Portability Problem

In a realistic DL-based SCA, clone-device and target-device are two physically different
devices, usually coming from the same manufacturer. In addition, they encrypt with
different keys, being the targeted secret key unknown to the attacker.
As a consequence, the considered network is trained over data coming from a given device-
key configuration, and expected to classify traces coming from a different one.

From a Machine Learning point of view, this approach can be prone to overfitting, since the
network may specialize in correctly classifying only traces coming from the clone-device,
providing wrong predictions for new, unseen data during the Attack Phase.

For this reason, DL-based SCAs are said to be affected by the Portability Problem, defined
as the challenge of building a general enough ANN which is able to successfully attack a
device-key configuration that is different from the one used in the Profiling Phase.
The state-of-the-art solution to the Portability Problem is the Multiple Device Model
(MDM) [7], which aims to increase the diversity of the training set considering traces that
come from at least two devices, in order to develop a more general ANN.

1.4. Related Work and Contribution

Related Work

Deep Learning was applied for the first time to Side-Channel Attacks by Maghrebi et
al. [39]. They not only defined the DL-based SCA pipeline, but also provided a detailed
comparison between Template Attacks (TAs) [16], existing SCAs based on Machine Learn-
ing techniques [6, 26, 31] and their novel methodology involving several types of neural
networks (AutoEncoders [41], Convolutional Neural Networks, Multi-Layer Perceptron
and Long-Short Term Memory [29]). The proposed approach was innovative, since it
completely automated the Profiling Phase by exploiting the ability of the networks to
perform automatic feature-extraction from the traces: the manual selection of the leak-
age points is not necessary anymore. DL-based SCAs have been proven to outperform
both TAs and ML-based SCAs. The same work reported analogous results repeating the
experiments against a masked implementation of AES.

A different approach to attack masked implementations of AES with neural networks was
proposed by Gilmore et al. [23] and Bae et al. [5]. Assuming that the attacker knows
the value of the mask during the Profiling Phase, a network can be trained to retrieve
the masked version of an intermediate value, while a different network can be trained to
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recover the value of the mask. Combining the two results, it is possible to obtain the
unmasked intermediate value and consequently the key.

Cagli et al. [11], instead, showed that Convolutional Neural Networks are able to re-
trieve the secret key even in presence of trace-misalignment, thanks to their ability of
perform automatic feature-extraction. In particular, the authors underlined the possibil-
ity of completely automate the Profiling Phase eliminating the manual feature-selection
phase usually performed before the attack, and pointed out the importance of data-
augmentation [64] when the targeted traces present consistent misalignment.

The Portability Problem was tackled for the first time by Bhasin et al. [7]. They pointed
out that the performance of a DL-based SCA drops significantly by going from attacking
the same device used for training to attacking a different one.
The authors identified the cause of this behavior as overfitting, highlighting how a neural
network can easily specialize on the provided training set and therefore provide wrong
results for data coming from a different source. The proposed solution aims at increasing
the generalization of the considered neural network by diversifying the training set with
traces coming from multiple sample-devices. This method is known as Multiple Device
Model (MDM), and it is considered the state-of-the-art solution to the Portability Prob-
lem.
In particular, MDM suggests to structure a DL-based SCA in the following way:

1. Consider a total of n ≥ 3 devices;

2. Dedicate t ≥ 2 devices (train-devices) to the Profiling Phase and 1 (test-device) to
the Attack Phase;

3. Build the training set collecting k traces from each train-device;

4. Build the validation set collecting j traces from each train-device, paying attention
to generate a disjoint set with respect to the training one;

5. Train and validate a neural network with the collected traces;

6. Build the test set collecting traces from the test-device;

7. Attack the test-device with the trained network.

Contribution

The novel methodology introduced by this work aims at providing efficient training-
configurations to mount effective realistic DL-based SCAs against AES-128. In order
to do so, three main variables are considered: the number of train-devices, the number
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of keys provided during the Profiling Phase and the number of train-traces. Therefore,
differently from [7], this work addresses the Portability Problem not only in terms of
number of devices, but also considering the impact of other two variables. Moreover, the
proposed methods repeat the attacks considering all the possible device-key or device-
trace combinations with the available setup, computing, in the end, the average result:
this is an additional difference with respect to [7], where MDM was tested only for specific
device-key configurations.

In addition, for the first time, this work applies MDM to 32-bit microcontrollers and to a
masked implementation of AES-128. Indeed, the effectiveness of MDM was only validated
on 8-bit CPUs targeting an unprotected implementation of AES-128 [7, 62].

In the end, the followed approach to attack a masked implementation of AES is the same
explained in [39]: the traces are collected and provided as input to the network without
performing any manual feature-selection procedure. This automates the Profiling Phase
and lets the network recognize and exploit the relevant features. In addition, the attack
is made even more realistic since no knowledge about the value of the masks is needed.
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This chapter presents the methodological approach adopted in this research work.
At the beginning, the addressed problem is described, alongside the proposed solution.
The following sections are dedicated to explain some practical details of the proposed
solution, highlighting relative choices and motivations.

2.1. Addressed Problem and Proposed Solution

As previously introduced in 1.3, the Portability Problem is the major concern when mount-
ing high-performance realistic Deep Learning based Side-Channel Attacks. Its state-of-
the-art solution, known as Multiple Device Model (MDM) [7], involves the usage of mul-
tiple devices during the Profiling Phase in order to make the DL network more general.

This research work considers the Profiling Phase of DL-based SCAs dependent on three
main variables, identified in the following quantities: number of devices, number of keys
and number of traces.
Therefore, with respect to the State-of-the-Art [7], the following questions remain unan-
swered:

• How does the number of keys used in the Profiling Phase influence the attack per-
formance?

• How does the number of train-traces influence the attack performance?

Moreover, the relationship among variables can be explored, introducing the following
questions:

• Are there possible scenarios where the number of keys used during the Profiling Phase
can enhance the attack performance in case of limited number of devices?

• Are there possible scenarios where the number of train-traces can enhance the attack
performance in case of limited number of devices?

Finally, the effectiveness of MDM has only been validated on 8-bit microcontrollers [7, 62].
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This suggests another question:

• Does the MDM solution work also on microcontrollers that do not feature an 8-bit
architecture (e.g., 32 or 64-bit)?

This research work, taking inspiration from the work of Bhasin et al. [7] about the MDM,
aims at answering all the previous questions, not only in the case of DL-based SCA against
a software unprotected version of AES-128, but also targeting a software implementation
with masking countermeasures. The considered target-device is a 32-bit microcontroller.
Moreover, this work intends to provide efficient train-configurations to mount effective
DL-based SCAs in the considered scenarios.

In order to achieve its goals, this work completely characterizes the Profiling Phase of
DL-based SCAs, in terms of a trade-off between its most important variables.
This technique is formed by two trade-off analyses, one between the number of devices
and the number of keys, called Device-Key Trade-off Analysis (DKTA), and one between
the number of devices and the number of traces, called Device-Trace Trade-off Analysis
(DTTA).

Since they consider different variables, DKTA and DTTA present different motivations:

• DKTA relies on the practical aspect of the attack: considering multiple keys is sim-
pler than considering multiple devices, since the keys can be automatically generated
via software for free, while the devices must be purchased.

• DTTA relies instead on the Machine Learning rule-of-thumb that involves the ad-
dition of train-data to prevent overfitting: with more data available it should be
easier, for the network, to recognize the targeted general patterns.

From a conceptual point of view, however, the two analyses are equivalent: starting from
a fixed number of of train-devices, they track the performance of multiple attacks in terms
of Guessing Entropy, where the number of keys (for DKTA) or the number of traces (for
DTTA) is gradually increased.
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Figure 2.1: DL-based SCA Pipeline. A DL-based SCA is structured in 4 main phases: Dataset Construction, Profiling
Phase, Attack Phase and Attack Evaluation.

2.2. Attack Pipeline

This section describes in detail the steps that this work followed in order to mount a
DL-based SCA.
Figure 2.1 summarizes the attack pipeline. The first step involves the construction of the
datasets, both for training and attack, done by collecting the traces and labeling them.
Next, the Profiling Phase is performed: it includes the choice of the DL network, the
search of its optimal hyperparamters and its training. Then, during the Attack Phase,
the trained network is applied to new, unseen traces coming from the target-device in
order to retrieve its secret key. The final step is the evaluation of the attack, performed
computing its Guessing Entropy.

2.2.1. Dataset Construction

The first step in the development of a DL-based SCA is the collection of the traces. How-
ever, before starting the trace capture, it is important to define the target of the attack
in terms of encryption algorithm, sensitive operation and intermediate value, and leakage
model.
This work targets AES-128 with and without SCA masking countermeasures. The con-
sidered sensitive operation is the first round SubBytes operation, and the targeted inter-
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mediate value is its output, known as sbox-out. Concerning the leakage model, Identity
(ID) is preferred. The underlying motivations to these choices are the following:

• AES is the standard algorithm for encryption and therefore widely used in a variety
of different devices (e.g., SSDs, smart cards);

• When attacking AES with a SCA, the only rounds that can be targeted are either
the first or the last. Indeed, from a practical point of view, a SCA should target only
those operations that are invertible, allowing the computation of the key starting
from the intermediate. The first round is a suitable choice because it involves directly
the plaintext, which is known by the attacker. The last round is suitable as well due
to the presence of the ciphertext, which is itself known to the attacker. Intermediate
round i, with 1 ≤ i ≤ 9, should not be attacked because, in order to recover the key
(round-key referring to Figure 1.8), the output of round i − 1 is needed, and it is
unknown to the attacker.

• The SubBytes operation is one of the sensitive operations of AES. It adds non-
linearity to the algorithm performing the SBox-lookup and, therefore, it makes the
leakage to be uniformly distributed.

• The Identity leakage model allows a simpler key-recovery step, allowing to target
the actual value of the intermediate.

Regarding the type of side-channel to exploit, this work considers the power consumption
of the device.
It is important to point out that the traces considered by this work are aligned: the
oscilloscope exploits a trigger signal coming from the device during the encryption to know
when the targeted operation starts. More details about this feature are in Section 3.1.
This scenario can be considered realistic since DL-based SCAs are Profiled-SCAs and so,
during the Profiling Phase, the attacker has full control of the device, being able to set the
trigger at will. Speaking of the positioning of the trigger, in this work it depends on the
presence of the SCA masking countermeasure: when the countermeasure is not present,
the attack considers short traces involving the measurements of the power consumption
during the first round SubBytes operation only, while when the countermeasure is in place,
the traces are enlarged considering also measurements related to adjacent operations.

This work considers a single preprocessing operation, the scaling of the traces. In par-
ticular, the traces are scaled to 0-mean and unit-variance to make the Gradient Descent
technique converge faster during training, sometimes increasing the perfromance of the
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Figure 2.2: Forward Computation of AddRoundKey and SubBytes operations. Starting from known plaintext and key, it
is possible to calculate the value of sbox-in through the XOR operation. The value of sbox-out is computed performing
SBox-lookup with the value of sbox-in.

network [32]. The following equation defines how the scaling is performed:

xnew =
x− µ

σ
(2.1)

In Equation 2.1, x is a raw-trace, xnew is its scaled counterpart, µ is the mean value of
the trace-set and σ is its standard deviation.
In this work, great attention is paid to the computation of µ and σ. Indeed, they must
refer to the training data only, since considering the whole dataset would cause a sort of
information leakage between training set and validation/test sets, while they should be
independent.

The collected traces need also to be labeled with the relative value of sbox-out. Indeed, a
DL-based SCA is essentially a classification problem where the network has to predict the
correct value of the targeted intermediate, and therefore it is handled with a Supervised
Learning approach. Each attack of this work, for simplicity, targets a single byte of the
key, so also the labels need to refer to a single byte of sbox-out.
Figure 2.2 shows how to generate the sbox-out label for a given trace emulating the first
round AddRoundKey and SubBytes operations of AES: knowing plaintext and key, sbox-in
can be easily computed XORing them, while sbox-out is retrieved indexing the SBox. In
particular, the first four bits of sbox-in form the row-index, while the last four form the
column one.

Even though scaling and labeling are conceptually executed just after the collection of the
traces, in the workflow of this research they are performed on-the-need while reading data
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Hyperparameter Space

Hyperparameter Values
Number of Hidden Layers {1, 2, 3, 4, 5}

Number of Hidden Neurons {100, 200, 300, 400, 500}
Dropout Rate {0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

L2-Regularization Coefficient {0.0, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05]
Gradient Descent Technique {adam, rmsprop, sgd}

Learning Rate {0.0, 0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005]
Batch Size {128, 256, 512, 1024}

Table 2.1: Hyperparameter Space. For each hyperparameter, this table provides the
possible values that it can take. This space is used as reference by the Genetic Algorithm
that performs the Hyperparameter Tuning.

from the traces. Concerning scaling, this is done because different attacks can consider
different amounts of traces, thus causing a variation in µ and σ. On the other hand,
concerning trace-labeling, this is done to reduce the time needed to load entire trace-sets
from file.

2.2.2. Profiling Phase

The Profiling Phase starts with the choice of the DL network. This work prefers a Multi-
Layer Perceptron (MLP) over a Convolutional Neural Network (CNN) since the traces
are already aligned [11] and therefore there is no need of further computations. The MLP
features an input layer with as many neuron as the number of samples in the traces,
and an output layer of exactly 256 neurons, one for each possible value of the targeted
intermediate, which is a byte (and therefore its value is in [0; 255]).

Multiple experiments revealed that the network is prone to overfit the data, highlighting
the need of regularization techniques. In particular, the simultaneous employment of
BatchNormalization layers, Dropout layers, L2-Regularization an a dynamic learning rate
that decreases when the network starts showing an overfitting behavior appeared to be
the best-performing one.

After the choice of the network, Hyperparameter Tuning is performed to define the optimal
structure of the network.
The hyperparameters considered in this work are shown in Table 2.1, alongside their
possible values. As a consequence, Table 2.1 is known as hyperparameter space, since it
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Figure 2.3: Genetic Algorithm Block Diagram. This diagram shows the main operations performed by a Genetic Algorithm.
The stopping criterion, the fixed number of generations (nGen), is the one considered by this work.

represents the space where to perform the search during Hyperparameter Tuning. The
considered hyperparameters of this work are:

• Number of hidden layers : depth of the network and its complexity (together with
the number of hidden neurons);

• Number of hidden neurons : how many neurons consider in each hidden layer, influ-
encing the complexity of the network (together with the number of hidden layers);

• Dropout rate: percentage of neurons to turn-off per layers during training;

• L2-Regularization coefficient : λ coefficient of L2-Regularization [8];

• Gradient Descent technique: technique to compute Gradient Descent;

• Learning Rate: controls the speed of the learning process;

• Batch size: how many traces to provide to the network at once during the training
process.

The search of the optimal hyperparameters, in this work, is performed with a Genetic
Algorithm [22, 45], in particular adapting the work of Matt Harvey et al. [24].
Figure 2.3 summarizes how a Genetic Algorithm works, while Algorithm 1 provides the
pseudocode of the Hyperparameter Tuning process.

The algorithm is initialized generating a population of hyperparameters. The size of the
population (popSize) is an input to the algorithm and never changes. Every configuration
belonging to this population features random hyperparameters: their values are randomly
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Algorithm 1 Genetic Algorithm for MLP Hyperparameter Tuning.
1: pop← Populate(hpSpace, popSize)
2: for i← 0 to nGen− 1 do
3: sortedPop← Evaluate(pop)
4: parents← Select(sortedPop, popSize, selPerc, scProb)
5: pop← Evolve(parents, popSize, hpSpace, mProb)
6: end for
7: bestHPs← sortedPop[0]
8: return bestHPs

chosen from the hyperparameter space (hpSpace) defined by Table 2.1. Then, each con-
figuration of the population is used to build a MLP, which is trained on the training set
and evaluated on the validation one. The validation loss of each network is stored. Once
all the networks are evaluated, the stored validation losses are compared in order to select
only part of the configurations, the ones that led to the best-performing MLPs. In order
to add diversity to the next population (emulating the natural process of evolution), even
some bad-performing configurations are considered. Both the percentage of configurations
that are selected (selProb) and the chance for a bad-performing configuration to be among
the best (scProb) are input parameters to the algorithm. The selected configurations are
known as parents and are combined, in couples, to generate offsprings, which compose the
new population. An offspring is a configuration of hyperparameters where the values are
randomly chosen from the parents. In order to add diversity to the new population, each
offspring has a small chance to be mutated, meaning that some random hyperparameters
can be replaced by a random value taken from the hyperparameter space. The mutation
probability (mProb) is an input parameter to the algorithm.
This process of evaluation, selection and evolution is repeated for a fixed number of gener-
ations (nGen), which is a parameter of the algorithm. The best-performing configuration
at the end of the process is the selected set of hyperparameters.

Throughout this work, the process of Hyperparameter Tuning is performed every time
a train-device is added or when the target algorithm is changed. In addition, since in
DL-based SCAs a single network attacks a single byte of the key, the search is performed
also if the targeted byte is changed.
This choice is aligned with the idea of realistic attacks, because it emulates the behavior
of an attacker who tries to take full advantage of the available training-setup.
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Figure 2.4: Backward Computation of SubBytes and AddRoundKey operations. Starting from the predicted sbox-out, the
value of sbox-in is retrieved performing table-lookup over the Inverse-SBox. XORing the value of sbox-in and the known
plaintext it is possible to retrieve the value of the secret key.

2.2.3. Attack Phase

The peculiarity of DL-based SCAs is that what the networks are trained to predict is
not the actual target of the attack. Indeed, in this work the MLP predicts the value of
sbox-out relative to each trace, but the attack aims at recovering the value of the key.
For this reason, the Attack Phase is composed by two steps: network prediction and
key-recovery.

During network prediction, the trained network generated during the Profiling Phase is
applied to the traces coming from the target-device: for each trace, the network provides
a probability vector over the values of the targeted intermediate, since a DL-based SCA
is treated as a classification problem.
On the other hand, during the key-recovery step, the generated probability vectors are
combined to retrieve the secret key.

In this work, the key-recovery step is performed by first converting the probability vectors
over the sbox-out into probability vectors over the key-byte, and then combining them
together.
This conversion step makes the predictions comparable, being all relative to the same
key. Without conversion, the probability vectors would be relative to a different value of
sbox-out, resulting non-comparable.

The conversion step is feasible because it is possible to compute the key starting from
the sbox-out, as shown in Figure 2.4: first, the Inverse-SBox is indexed with the value of
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Figure 2.5: From Network Prediction to Attack Result. Subfigure (a), on the left, shows how sbox-out probabilities are
converted into key-byte probabilities through sorting. Subfigure (b), on the right, summarizes the procedure that allows to
combine the predictions over different traces to define the result of the attack, the final prediction.

sbox-out to generate sbox-in and then, thanks to the fact that the XOR operation is the
inverse of itself, the key can be generated XORing sbox-in and plaintext, which is known
to the attacker.

Figure 2.5a shows how the conversion step is performed, and can be summarized as follows:

1. Consider a probability vector over sbox-out (so);

2. Associate to each element of the vector the value of the relative key-byte (kb), fol-
lowing the procedure depicted in Figure 2.4;

3. Sort the probability vector with respect to the computed key-byte;
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4. Leave the key-byte values out and consider only the sorted probability vector over
sbox-out ;

Even if the result of this procedure is a sorted version of the starting probability vector
over sbox-out, it can be considered a full-fledged probability vector over key-byte.

On the other hand, Figure 2.5b shows the combination process of the key-recovery step:
the log-probabilities are computed and summed up.
The underlying idea is the following: a DL-based SCA over N attack traces can be
thought of as a set of N independent events of type the targeted key-byte has value x,
with x ∈ [0; 255], because the act of predicting sbox-out for trace j is independent of the
act of predicting sbox-out for trace k, with j ̸= k. Therefore, since the MLP provides a
probability vector over the values of sbox-out for each trace and the joint probability of
independent events is the product of the probabilities of the single events, the network
outputs related to each single trace can be multiplied. The log-probabilities are computed
to consider the sum over the product, avoiding possible multiplications by 0, which would
produce inconsistent results.

In this work, the vector resulting from the key-recovery step is called final prediction,
since it is the probability vector over the key-byte that is produced at the end of the
attack, with the considered number of traces. Element i (zero-based) of this vector is the
total probability (pTOT), with respect to the considered amount of attack traces, that the
targeted key-byte assumes value i, with i ∈ [0; 255].
The most probable key-byte is the actual result of the attack, with the considered number
of traces.

2.2.4. Attack Evaluation

The final prediction vector is usually sorted in decreasing order, creating a ranking among
the possible values of the targeted key-byte. This is very useful in order to evaluate the
attacks with Guessing Entropy (GE), the state-of-the-art metric for SCA [60]. It is defined
as the average position (rank) of the correct key-byte among the final prediction.

In this work, the Guessing Entropy is computed as average over 100 independent ex-
periments, where an experiment is defined as the generation of a final prediction vector,
starting from a set of traces. In particular, the 100 sets of traces are disjoint, being a
partition of the attack dataset.

Usually, the value of GE tends to vary if different amounts of traces are considered.
Therefore, GE is computed for incremental number of traces, starting from a single one.
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Figure 2.6: DKTA and DTTA Block Diagram. The diagram shows the steps that both analyses implement. Variable var2
represents the number of keys for DKTA and the number of traces for DTTA.

The final result is a curve which indicates, for every amount of traces, the relative average
rank of the correct key-byte among the final prediction.
Given two attacks, the one that reaches the lowest GE in the less number of traces is the
best. In particular, this work considers a 0-based ranking, meaning that the goal of an
attack is to reach GE = 0.

2.3. Trade-off Analysis

This section is dedicated to explain the details of the trade-off analyses introduced by this
work to completely characterize the Profiling Phase of DL-based SCAs, the Device-Key
Trade-off Analysis (DKTA) and the Device-Trace Trade-off Analysis (DTTA).

The block diagram in Figure 2.6 shows how both DKTA and DTTA work.
In the figure, var2 refers to either the number of keys (for DKTA) or to the number of
traces (for DTTA), while nDev refers to the number of train-devices, common in both
approaches.
The block diagram explains how DKTA and DTTA allow to completely characterize the
Profiling Phase of DL-based SCAs: they allow to track the performance of several attacks,
mounted with all possible train-configurations available with the considered setup, making
it possible to highlight the trade-off, between the three most important variables, that
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leads to the best performance.

The following comments better explain most crucial aspects of DKTA and DTTA, always
referring to Figure 2.6.

All train-device(s)/target-device combinations are considered. Both DKTA and
DTTA start fixing the number of train-devices, nDev. In this way, all the possible train-
device(s)/target-device configurations are fixed as well. For example, if the available
devices are denoted as A, B and C and the analysis is performed fixing nDev = 1,
then the possible scenarios are AvsB, AvsC, BvsA, BvsC, CvsA, CvsB, which are the
combinations of two devices (train + target) from set {A, B, C}. Similarly, when nDevs =

2, the possible scenarios are ABvsC, ACvsB and BCvsA. This peculiar notation identifies
an attack, specifying the devices used for training on the left of the vs symbol, and the
target device (always one) on its right, and it will be extensively used in the next chapters
to refer to specific attacks.

Number of keys and number of traces are constantly increased throughout
the process. Once the train-device(s)/target-device configurations are fixed, multiple
attacks are performed exploiting them. In particular, within the same attack-scenario,
multiple attacks are performed, constantly increasing the value of var2, being number of
keys, for DKTA, or number of traces, for DTTA. For example, fixed the attack-scenario
AvsB and the number of keys as second variable, the analysis proceeds considering first
the attack AvsB with 1 key, then AvsB with 2 keys, and so on until the max number
of keys is reached. At that point, the attack-scenario is changed and the experiments
repeated. The only devices that are affected by the change of the second variable are the
training ones, being the target fixed for all the experiments. In addition, the keys used
with the target-device is never present in the training traces, neither in DKTA, nor in
DTTA.

The considered results are averages over all experiments. Since all possible attack-
scenarios that can be generated with the available setup and a fixed number of devices
are tested, DKTA and DTTA need to average their results. In particular, the results are
averaged only with respect to the attack-scenarios, meaning that the differences between
attacks with different values var2 (number of keys or number of traces) are still intact.
This approach allows to have an unbiased outcome, useful when multiple scenarios must
be compared.
The only downside is that the average is a sort of high-level metric, which sometimes can
be misleading. For example, the dependency of the attack on a specific train-configuration
is almost impossible to spot without considering all possible experiments separately.
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The mounted DL-based SCAs are realistic and independent The adopted ap-
proach of considering all possible attack-scenarios with the available setup and using a
dedicated key for the target-device makes the DL-based SCAs of both DKTA and DTTA
realistic, since the train-configuration is always different from the attack one. At the same
time, they are made independent by the fact that the considered DL network is re-built
and re-trained every time. These precautions allow DKTA and DTTA to better emulate
what an attacker would do in practice in a real-world scenario.



45

3| Experimental Setup

This chapter is dedicated to the description of the experimental setup considered during
the research.
A Capturing Setup is dedicated to the collection of the traces, performed with an oscillo-
scope that is able to measure the power consumption of the target-device.
A Deep Learning Setup, on the other hand, is dedicated to the execution of Deep Learning
scripts, providing all the necessary computing power.

An additional section dedicated to the validation of the Hyperparameter Tuning technique
implemented in this work is included. Indeed, this procedure allows also to validate the
entire setup, from the acquisition of the development of the networks.

All experiments were executed in a laboratory, which is a controlled environment. In
particular, both temperature and humidity were constant during the tests.

3.1. Capturing Setup

The Capturing Setup includes all the software and hardware tools that make the collection
of traces possible.

Figure 3.1 presents a model of the Capturing Setup, showing how it is structured. The
instrumentation involves an acquisition machine, an oscilloscope and the Device Under
Test (DUT).
The acquisition machine is connected with both the DUT and the oscilloscope. A con-
nection is present also between oscilloscope and DUT. The collection process is controlled
by the acquisition machine, which first sets up the oscilloscope providing all the needed
information to collect the desired traces, and then starts the encryption processes on the
DUT. While the DUT is encrypting, the oscilloscope measures its power consumption. At
the end of the encryption processes, the oscilloscope transmits the collected power traces
to the acquisition machine, which stores the results.
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Figure 3.1: Model of the Capturing Setup. The acquisition machine is connected with both the oscilloscope and the Device
Under Test. The acquisition machine initializes the oscilloscope to start the capture and then begins the encryption process
sending plaintext, key and start-encryption signal to the Device Under Test. The Device Under Test starts encrypting and
the oscilloscope measures its power consumption, aligning the traces thanks to the trigger signal controlled by the Device
Under Test. Once the traces are collected, they are transmitted to the acquisition machine, which stores them. The icons
of this picture are taken from the open-source project Bootstrap [48].

3.1.1. Acquisition Machine

More in detail, the acquisition machine is a workstation running Windows 10. It features
an Intel Xeon W-2125 CPU @ 4GHz and 512GB of RAM.
It runs the Riscure Inspector application [51], version 2022.1, which allows the user to
have full control over the trace-collection process.

Through Inspector, the oscilloscope is initialized with the number of traces to collect,
their length and the sampling frequency. In addition, the desired encryption algorithm,
plaintext, secret key and start-encryption signal are provided to the DUT. While the ac-
quisition machine and oscilloscope exchange data through a network cable, the communi-
cation between the acquisition machine and the DUT exploits the Universal Asynchronous
Receiver-Transmitter (UART) protocol. In particular, a Universal Serial Bus (USB) port
of the acquisition machine is dedicated to send data to and receive data from the UART
pins of the DUT. A USB → UART adapter cable enables the communication.

Inspector generates .trs files as output: this format allows to save not only the raw
measurements, but also some metadata, such as plaintext and key. In addition, the In-
spector allows the user to customize its internal modules to solve more specific problems,
exploiting the Java programming language.
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In this work, three new modules have been introduced:

• custom_changeKey.java: allows to change the secret key stored in the DUT with
a user-defined value, saving it in an external file;

• custom_encrypt.java: forces the DUT to consider the key from an external file
while encrypting with unprotected-AES. The key is also stored as metadata in the
output .trs file;

• custom_maskedEncrypt.java: forces the DUT to consider the key from an external
file while encrypting with masked-AES. The key is also stored as metadata to the
output .trs file;

Inspector offers also built-in modules which perform all sorts of SCAs, from the tradi-
tional ones like Differential Power Analysis and Template Attacks, to the most recent
one involving Deep Learning. These modules are useful when different setups need to be
tested.
Moreover, it allows to preprocess the collected traces. For example, it is possible to re-
sample them to a different frequency or trim them in order to consider specific sub-traces.

3.1.2. Oscilloscope

Concerning the oscilloscope, it is a Tektronix MSO58, with 1GHz as input bandwidth,
6.25GS/s as maximum sample rate and a 12-bit Analog-to-Digital Converter (ADC).

It measures the power consumption of the DUT through a current probe. The probe is
used as a resistor: it is connected on one side to the DUT, and on the other to the power
supply, making it possible to compute the value of the current that flows through it.
In practice, the current probe does not involve resistors, as they may lead to incoherent
results, depending on the intensity of the current. Indeed, inductors are preferred, since
they lead to consistent measurements both when the current intensity is low and when it
is high.

Moreover, the oscilloscope is able to provide aligned traces. In order to do so, it exploits a
probe, called trigger probe, to constantly track the activity of a specific General-Purpose
Input/Output (GPIO) pin of the DUT, known as trigger pin. The signal present at the
trigger pin is controlled by the DUT, which can raise it or lower it. Usually, the trigger
signal is raised right before the considered encryption operation, and lowered right after
it, allowing to individuate such operation among all the measurements.

Another useful feature of the considered oscilloscope is the so-called Fast-Frame Mode: the



48 3| Experimental Setup

Figure 3.2: Riscure Piñata Board with CSAM. The figure shows a Piñata board, on the left, and a Confocal Scanning
Acoustic Microscopy (CSAM) of its CPU, on the right.

user can control how many traces are collected before each transmission to the acquisition
machine. By default, this quantity is set to 1, meaning that each single trace is collected
by the oscilloscope and immediately forwarded to the acquisition machine. A value of
N allows to communicate with the acquisition machine only once N traces have been
collected. Considering a value N > 1 speeds up the process, because it reduces the
number of times data is transferred to the acquisition machine. On the other hand,
however, sometimes a too high value of N can lead to data loss. This work considers
Fast-Frame Mode with N = 1000, the maximum value possible for the configuration
Inspector-Tektronix MSO58.

3.1.3. Device Under Test

Regarding the Device Under Test, the target of the attacks, it is an STM32F4 with an
ARM Cortex-M4 CPU. It features a 32-bit architecture and 168MHz clock-frequency.
More in detail, it is a Riscure Piñata [52], version 2.3.1, and it is produced by the same
company which develops Inspector.
It is depicted in Figure 3.2, alongside a Confocal Scanning Acoustic Microscopy (CSAM)
of its CPU. The CSAM, performed with a Sanoscan Gen6, is a non-destructive method
that uses ultrasonic waves to visualize microscopic structures. Indeed, it is possible to
clearly distinguish the die of the CPU, which appears like a small square in the middle of
the picture, and all the bounding wires, which connect the die to the outside.

In total, this work considers 3 Piñata boards, denoted by D1, D2, D3: they are shown in
Figure 3.3.

The peculiarity of Piñata boards is that they are intentionally modified by their manu-
facturer in order to be targeted by Side-Channel Attacks. Indeed, using it in cooperation
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Figure 3.3: Devices considered during the Experiments. The figure shows the three samples of Riscure Piñata, produced
by the same manufacturer, which were used during the experiments.

with Inspector, it is possible to perform a variety of different attacks, considering either
power consumption traces or electro-magnetic ones. In addition, it is possible to attack
both software and hardware implementations of AES, with and without countermeasures,
besides other encryption algorithms. This work only focuses on software implementations
of AES-128, both unprotected and masked.

Regarding AES, by default the Piñata firmware sets the trigger signal around the whole
algorithm: the trigger is raised right before starting the encryption, and it is lowered after
the ciphertext is generated. This means that, by default, the traces produced by a Piñata
comprehend a complete encryption, formed by all the rounds of AES.
This work considers specific operations related either to the first round only, or to the
masks. For this reason, the firmware, which is written in C language, is customized
changing the positions of the trigger signals. In particular, for unprotected-AES, the
trigger is set to go up right before the SubBytes operation of the first round, while it is set
to go down right after it is completed. For masked-AES, the trigger is raised during mask
handling before the first round and it is lowered right before the MixColumns operation
of the first round.
Every modification of the firmware is followed by the so-called flashing of the board: the
existing firmware inside the flash memory of the device is overwritten with the customized
version. In order to perform this operation, this work uses the dfu-util [61].

Figure 3.4 shows the Piñata while it is connected to both the acquisition machine and
the oscilloscope. In the upper-left of the picture, it is possible to see the end of the
USB → UART adapter (orange, yellow and black cables) which connects the acquisition
machine to the board, while in the upper-right the terminals of the current probe can
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Figure 3.4: Piñata Under Test. This figure shows a Piñata while it is connected to the acquisition machine and the
oscilloscope. The final section of the USB → UART adapter is visible in the upper-left of the picture, while the terminals
of the current probe can spotted in the upper-right. In the lower-right there is the trigger probe, connected to the trigger
pin of the Piñata. Ground cables can be seen in the middle of the upper part of the figure.

be spotted (white, blue and grey cables). In the lower-right, instead, the trigger probe
(black tool) is clearly visible while it is connected to the trigger pin of the Piñata. The
two black wires visible in the middle of the upper part of the image are ground cables.

3.1.4. Details about Trace Collection

This research considers 3 devices, D1, D2, D3, and 11 keys, K0, K1, ..., K10. Multiple
trace-sets are collected, one for each device/key configuration (Di,Kj), with i ∈ {1, 2, 3}
and j ∈ {0, 1, ..., 10}. In total, 66 trace-sets are considered, 33 per targeted algorithm
(AES with and without countermeasures). Each trace-set features 50,000 traces and can
be generated in about 30 minutes.

The 11 keys are randomly-generated with a Python script. It generates a 128-bit hexadec-
imal value for 11 times, saving the result in a JSON file. The keys were produced before
any experiments, and have been kept unchanged for the entire work.
K0 is only used as target-key: it is never used in the training configurations.

The plaintext is randomly-generated before every single encryption. The underlying idea
is that, by attacking the SubBytes operation and collecting a considerable amount of
traces, it is possible to observe the leakage of each possible outcome of the SBox-lookup.
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Figure 3.5: Sample Power Consumption Traces. Subfigure (a), on the left, shows a trace collected during an encryption with
unprotected-AES: it refers to the execution of the first round SubBytes operation only. Subfigure (b), on the right, presents
a trace collected during an encryption with masked-AES: it refers to several computations, some relative to operations over
the mask, others relative to the first round of AES, such as AddRoundKey, SubBytes, ShiftRows. Both traces are captured
from device D1, considering key K0.

The traces are captured with a frequency of 500MHz by the oscilloscope and then manu-
ally re-sampled at 168MHz using Inspector.
The initial sampling frequency of 500MHz satisfies the condition imposed by the Nyquist-
Shannon Sampling Theorem [58] to avoid information-loss while converting a continu-
ous signal into a discrete sequence of samples, being at least 2× the target frequency
of 168MHz, the clock-frequency of the DUT. Re-sampling, on the other hand, aims at
reducing the number of samples per trace minimizing the information-loss. Indeed, too-
long traces would either exceed the physical memory limit or exponentially increase the
training time of the MLP.

Figure 3.5 shows samples of collected power consumption traces from the configuration
(D1, K0). Figure 3.5a presents a trace acquired during an encryption with unprotected-
AES. On the other hand, Figure 3.5b shows a trace acquired during an encryption with
masked-AES. It is clearly visible that the unprotected trace is shorter than the masked
one: specifically, an unprotected trace is formed by 1183 samples, while the masked one by
7700. This happens because the masked traces refer to more operations with respect to the
unprotected ones: in order to attack a masked implementation, one needs to exploit the
leakage of multiple operations, specifically the ones involving the masks and the masked
value [44, 57].
More in detail, each major peak shown in Figure 3.5b coincides with the start of a different
operation. In order, from left to right, those operations are:

• MixColumns applied to the mask: useful to keep the AES-state protected;



52 3| Experimental Setup

• Key-reshaping: the key is reshaped from 1× 16 to 4× 4 to match the AES-state;

• Plaintext masking: application of the mask to the plaintext;

• Initial AddRoundKey ;

• First round SubBytes ;

• First round ShiftRows with an additional operation over the mask to maintain
consistency during the rounds.

These operations have been precisely mapped through several experiments, each one con-
sidering the trigger around a specific operation.

3.2. Deep Learning Setup

Deep Learning models need an high computational power in order to be trained. For
this reason, a dedicated desktop computer is considered. It runs Ubuntu 20.04 LTS and
features an Intel Core i7-10700K CPU @ 3.8GHz, 66GB of RAM and an Nvidia GeForce
RTX 2080 Ti GPU, with 11GB of dedicated GDDR6 memory.

This machine runs also a JupyterLab Server instance, which can be accessed remotely.
JupyterLab has been used as test environment, as it offers the possibility of running
independent code cells. Mainly, it has been exploited to validate multiple network archi-
tectures over the available data. Initially, also some manual Hyperparameter Tuning has
been performed, to validate the setup and the feasibility of the proposed solution.

Since Device-Key Trade-off Analysis and Device-Trace Trade-off Analysis both take quite
some time, it was not possible to run them on JupyterLab, since it is a web application
and needs constant access to Internet to work. Therefore, the main scripts of this work
have been run directly on the Linux machine.

All DL networks have been trained within a dedicated Python virtual environment, which
contains all the required libraries. In particular, the considered Deep Learning libraries
are:

• Tensorflow 2.8.0 [1]: end-to-end platform for Machine Learning;

• Keras 2.8.0 [17]: simple API to develop Deep Learning networks.

In particular, Keras is used as interface mounted on top of Tensorflow, to simplify the
development of DL models.
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3.3. Validation of the Hyperparameter Tuning

Process

This section discusses the effectiveness of the adopted Genetic Algorithm for Hyperparam-
eter Tuning described in Section 2.2 when describing the Profiling Phase of a DL-based
SCA. In particular, a comparison between it and the exhaustive-search used by the author
of [7] is shown.
Moreover, this section allows to validate the entire experimental setup, from the collection
of the traces to the training and testing of the networks.

A Genetic Algorithm is particularly suitable for Hyperparameter Tuning because it allows
to start from random hyperparameters and gradually improve them, eventually finding
the optimal ones.
In order to reach this goal, the procedure must be initialized with multiple parameters, as
shown in Algorithm 1. Each parameter influences the performance of the hyperparameter-
search as follows:

• hpSpace: defines the possible values that the hyperparameters can take;

• popSize, scProb, mProb: control the exploration level of the algorithm, allowing it
to range within the hyperparameters space;

• nGen: is considered the stopping criterion for the algorithm;

• selPerc: controls the exploitation level of the algorithm, making it focus on the best
configurations.

Moreover, popSize and nGen influence also the execution time of the search. Indeed,
increasing the population size leads to train and validate more networks each iteration,
while increasing the number of generations means increasing the number of iterations,
repeating the algorithm several times.

Table 3.1 presents the value of the Genetic Algorithm parameters chosen in this work. The
table shows that the considered parameters slightly change from attacking unprotected-
AES to attacking masked-AES: the only difference is that the second-chance probability
is decreased from 20% to 10%. This choice has been made to avoid algorithm divergence
from consistent hyperparameter configurations, which was visible with higher values of
scProb.

Appendix A reports the value of all the hyperparameters obtained with the Genetic Al-
gorithm. Indeed, it is computed every time the targeted algorithm, the number of devices
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Genetic Algorithm Parameters

Parameter Value for Unprotected-AES Value for Masked-AES
popSize 15 15
nGen 20 20
selPerc 30% 30%
scProb 20% 10%
mProb 20% 20%

Table 3.1: Genetic Algorithm Parameters. This table provides the chosen value of each
input-parameter to the Genetic Algorithm used for Hyperparmeter Tuning. The param-
eters used both while targeting unprotected-AES and masked-AES are reported. The
only difference is the value of scProb, decreased when attacking masked-AES to ensure
algorithm convergence.

or the targeted byte is changed.

The Hyperparameter Tuning technique of this work is totally different from the one con-
sidered by the authors of the Multiple Device Model [7]: they exploited an exhaustive
search over a smaller hyperparameter space.
More in detail, their hyperparameter space was formed by only two variables, being
the number of hidden layers l ∈ {1, 2, 3, 4} and the number of hidden neurons n ∈
{100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}. All the other hyperparameters were fixed
and not tuned: the considered Gradient Descent Technique was RMSprop, the Learning
Rate was set to 0.001 and the Batch Size was fixed at 256. Due to the presence of a small
hyperparameter space and some fixed values, in the following this approach is referred to
as simplified Exhaustive Search (sES).
In addition, regularization techniques are not mentioned in the Hyperparameter Tuning
of [7]. On the other hand, the new proposed solution considers Dropout, BatchNormal-
ization and L-2 Regularization during training, alongside a learning rate reduction when
the network starts diverging and Early Stopping.

The proposed Hyperparameter Tuning approach with a Genetic Algorithm is surely slower
than the one used in [7], but, at the same time, it offers more flexibility by avoiding fixed
values and by considering a bigger hyperparameter space. However, the consideration of a
small hyperparameter space is a forced choice when the tuning algorithm is an exhaustive-
search and, as shown in [7], in some cases it can still provide excellent results.

In order to compare the approaches, the following experiment has been performed target-
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ing unprotected-AES:

1. Perform Hyperparameter Tuning with the Genetic Algorithm;

2. Perform Hyperparameter Tuning with the exhaustive-search approach descibed in [7],
considering also the same fixed hyperparameters;

3. Train two networks, one with the hyperparametrs from point 1., the other with
hyperparameters from point 2., on the same train-set;

4. Attack with both networks the same target-device, which is not used during training;

5. Repeat adding a device to the hyperparameter tuning and to the training phase of
the attacks (max 2 devices).

For simplicity, referring to the notation introduced in Section 2.3, the procedure involve
only attack D1vsD3 and attack D1D2vsD3, without averaging the results of multiple
experiments. Moreover, the target of the attacks is the 6th byte, randomly-chosen.

Table 3.2 shows the resulting hyperparameters. Table 3.1a provides the results obtained
considering one train-device, while Table 3.1b presents the ones relative to two train-
devices. The highlighted values are fixed and not tuned. The same configuration of
layers and neurons is considered by the Genetic Algorithm (GA) in both scenarios. The
same happens with the semplified Exhaustive Search (sES). The networks resulting from
GA are more complex than the ones resulting from sES, since the former feature 4 hidden
layers of 500 neurons, and the latter only 1 hidden layer of 100 neurons. The deep
network structures resulting from the application of GA present also regularization, both
in terms of L2-Regularization and Dropout in the case of only one device, and in terms
of only Dropout in case of two devices: this technique allows to avoid overfitting even
if the structure of the networks is quite complex. Gradient Descent technique is always
different between GA and sES, while learning rate and Batch Size differ only when two
train-devices are considered.

Figure 3.6 shows the training history of the best networks of the two approaches. The
train history refers to the trend of the training error and the validation error during the
training of a network. In this case, the tracked network is the one generated with the best
hyperparameters of each approach.
A robust and general-enough network exhibits a validation error that follows the trend
of the training one, which decreases. In addition, the lower the validation error is, the
better the network performs in classifying new, unseen traces.
Figure 3.6a and Figure 3.6b show the training histories produced by the best hyperpa-
rameters found with GA, while Figure 3.6c and Figure 3.6d show the training histories
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Resulting Hyperparameters

(a) 1 Train-Device

Hyperarameter Results from GA Results from sES
Number of Hidden Layers 4 1

Number of Hidden Neurons 500 100
Dropout Rate 0.2 −

L2-Regularization Coefficient 0.001 −
Gradient Descent Technique adam RMSprop

Learning Rate 0.001 0.001
Batch Size 256 256

(b) 2 Train-Devices

Hyperarameter Results from GA Results from sES
Number of Hidden Layers 4 1

Number of Hidden Neurons 500 100
Dropout Rate 0.4 −

L2-Regularization Coefficient 0.0 −
Gradient Descent Technique adam RMSprop

Learning Rate 0.005 0.001
Batch Size 128 256

Table 3.2: Resulting Hyperparameters, Genetic Algorithm (GA) and simplified Exhausive
Search (sES). Table (a), up, shows the resulting hyperparameters when considering only
one train-device. Table (b), down, shows the resulting hyperparameters when considering
two train-devices.

referred to sES. It is visible that the validation loss related to the hyperparameters found
with GA follows the respective training losses, while the ones relative to sES diverge.
This divergent trend can indicate the presence of overfitting, since the network seems to
misclassify unknown traces.
Overall, the loss achieved by GA is lower than the one achieved by sES.
The number of epochs is different between GA and sES: this is because GA considers 100
as maximum number of epochs, while sES only 50. This value has been taken from [7],
like the other fixed values of the sES approach.

Figure 3.7 shows the results of the attacks performed with the selected hyperparameters.
The plots show the Guessing Entropy (GE) of the attacks for an increasing number of
attack-traces: the attack that leads to GE = 0 in fewer traces is considered the best.
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Figure 3.6: Training History of the Best-Performing Hyperparameters with both Genetic Algorithm and simplified Exhaus-
tive Search Approaches. Subfigure (a), on the upper left, shows the training and validation loss trends of the best-performing
network obtained through Hyperparameter Tuning with Genetic Algorithm and only one train-device. Figure (b), on the
upper right, shows the same quantities, but obtained with two train-devices. Subfigure (c), on the lower left, presents both
best training loss and best validation loss obtained through Hyperparameter Tuning with semplified Exhaustive Search
and only one train-device. Figure (d), on the lower right, tracks the trend of the same variables, but obtained with two
train-devices.

Moreover, the plots show the point in which GE ≤ 0.5, marking it with a dashed vertical
line: it is a good approximation for GE = 0, so it can be considered as a metric here.
Figure 3.7a shows the results of the attack D1vsD3: the attack performed with hy-
perparameters found with the Genetic Algorithm is able to recover the 6th byte in 9
attack-traces, while the one which considers hyperparameters found with the simplified
Exhaustive Search is successful in 12.
Figure 3.7b shows the results when considering two train-devices, in particular the sce-
nario D1D2vsD3: also in this case, GA leads to the best attack, reaching GE ≤ 0.5 in 7
attack-traces, while sES needs 11 of them.
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Figure 3.7: Attack Comparison between Genetic Algorithm and simplified Exhaustive Search. The attacks are evaluated in
terms of Guessing Entropy over increasing number of attack-traces. Subfigure (a), on the left, shows the results achieved
with only 1 train-device. Subfigure (b), on the right, presents the results achieved with two train-devices. The dashed lines
indicate the point in which GE ≤ 0.5, good approximation for GE = 0. The Genetic Algorithm allows to reach GE = 0
with fewer attack-traces in both cases.

In order to search for the best hyperparameters and therefore perform the proposed at-
tacks, the two considered algorithms took the following times:

• simplified Exhaustive Search: about 15 minutes;

• Genetic Algorithm: about 7 hours.

Despite taking much more time, the Genetic Algorithm outperformed the simplified Ex-
haustive Search in both scenarios.
Since this work aims at proposing efficient training configurations to mount effective DL-
based SCAs, the Genetic Algorithm is preferred because it leads to the best performance.
Therefore, it is used also as Hyperparameter Tuning method to search the best hyperpa-
rameters when targeting masked-AES.
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This chapter presents the results obtained throughout this work targeting AES-128 with
and without masked countermeasure.
In addition to the outcomes of DKTA and DTTA, all information needed to reproduce
the results are provided.

4.1. Results Targeting Unprotected-AES

This section shows the results obtained performing Device-Key Trade-off Analysis (DKTA)
and Device-Trace Trade-off Analysis (DTTA) against an unprotected software implemen-
tation of AES-128. Since DKTA was executed first, its results were considered and ex-
ploited while performing DTTA.

All the hyperparameters considered for the experiments are visible in Table A.1 of Ap-
pendix A. As pointed out in Section 3.3, the considered networks are quite complex,
presenting multiple hidden layers with many neurons, but they do not overfit thanks to
regularization, present in terms of Dropout, BatchNormalization and L2-Regularization.

4.1.1. DKTA Results

For simplicity, DKTA was performed targeting byte 0, 5, 11 and 14 only (0-based num-
bering). Indeed, since a single DKTA alone involves multiple attacks, the time needed to
repeat it 16 times in order to target all bytes of the key would have been too long.
The considered bytes were chosen with the constraint of covering all columns and all rows
of the AES-state. The following representation shows their position in the AES-state:

b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

 (4.1)
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Figure 4.1: DKTA Results Targeting Byte 0 against Unprotected-AES. Subfigure (a), in the upper-left, shows the DKTA
results obtained with a single train-device. Subfigure (b), in the upper-right, displays the outcome of DKTA when two
train-devices are considered. Subfigure (c), in the middle, overlaps the previous results, highlighting the importance of
adding a device.

Each of the the following attacks was performed with a total of 50,000 train-traces, where
45,000 compose the training set and the remaining 5,000 form the validation set. GEs
were instead computed as average over 100 experiments.

Results Targeting Byte 0

Figure 4.1 shows the DKTA results for byte 0 when considering up to 10 attack-traces.
Here and in the following results, 10 is considered as threshold for a very effective attack,
since GE = 0 in 10 or fewer traces means that the attacker, on average, needs to collect
at most 10 traces to directly obtain the correct key-byte from the network, and the time
taken to complete this operation is very short (assuming that the attacker is able to
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physically connect to the target device).
Figure 4.1a focuses on the attacks with only one train-device: it is visible that GE does not
reach 0 in 10 traces. Despite this, the number of keys seems to influence the performance
of the attack: the values of the GE curves obtained considering at least 3 keys during
the training phase are lower than the respective ones obtained with 1 or 2 keys, for any
number of attack-traces.
On the other hand, Figure 4.1b shows the results obtained when two train-devices are
considered. In this case, GE seems to go below 1 with 7 attack-traces, reaching 0 in 8.
Moreover, the improvement given by the number of keys is even more visible than before:
considering only a single key during the training phase does not allow to reach GE = 0

within 10 attack-traces, while the addition of a key makes it possible. Considering more
than 2 keys seems to be worthless, since the performance does not improve anymore.
Regarding the number of devices, it highly influences the attacks, since GE reaches 0
only when 2 devices are considered. In general, the overall performance of the attacks
improves when considering 2 devices. This can be seen comparing visually Figure 4.1a
and Figure 4.1b or by observing Figure 4.1c, which overlaps the previously-discussed GEs:
the values of the curves obtained with two train-devices are lower than the respective ones
obtained with only a single train-device, for any number of attack-traces. The only outlier
is the attack performed with two devices and only a single key: its behavior is more similar
to the attacks performed with a single train-device, showing a GE that does not reach 0.
Summarizing, targeting byte 0, the performance of the attack increases with both the
number of keys, though not monotonically, and the number of devices.

Results Targeting Byte 5

Figure 4.2 presents the results obtained targeting byte 5.
Here the influence of the number of keys over the attack performance is quite low, almost
null. Indeed, it can be seen that the GE curves form a single bundle, both when considering
one and two train-devices. To be precise, observing Figure 4.2a, when only a single train-
device is considered, it can be seen that the performance slightly increases monotonically
when more keys are used. This small difference in performance is visible only when using
fewer than 6 attack-traces, then all curves overlap. In the end, all GEs reach 0 at the same
time in 9 attack-traces, so the number of keys does not really impact the performance.
On the other hand, considering two train-devices as in Figure 4.2b, the curves appear
almost overlapped from the beginning: the number of keys does not influence the attacks.
However, targeting byte 5 it is possible to reach GE = 0 within 10 attack-traces, even with
a single train device. The addition of a second device improves the performance, lowering
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Figure 4.2: DKTA Results Targeting Byte 5 against Unprotected-AES. Subfigure (a), in the upper-left, shows the DKTA
results obtained with a single train-device. Subfigure (b), in the upper-right, displays the outcome of DKTA when two
train-devices are considered. Subfigure (c), in the middle, overlaps the previous results, highlighting the importance of
adding a device.

the number of attack-traces needed to directly obtain the key-byte from 9, required with
a single device, to only 6.
Also in this case, the performance improvement given by the addition of a device applies
for any number of attack-traces. This can be seen from Figure 4.2c, where the results
of Figure 4.2a and Figure 4.2b are overlapped: all the curves obtained with two devices
feature values that are lower than the respective ones obtained with a single device.
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Figure 4.3: DKTA Results Comparison targeting Uprotected-AES. The plots in this figure overlap all the obtained DKTA
results, including the ones relative to byte 11 and 14. Subfigure (a), on the left, shows the comparison between byte 0, 5, 11
and 14 when only a single train-device is considered. Subfigure (b), on the right, displays the results of the attacks against
the same bytes, but when two train-devices are used.

Results Comparison: Byte 0, Byte 5, Byte 11 and Byte 14

Figure 4.3 offers a compacted overview of all DKTA results. Indeed, in addition to the
results obtained targeting byte 0 and byte 5, here also the ones relative to byte 11 and 14
are shown. Figure 4.3a shows the results obtained when a single train-device is considered,
while Figure 4.3b displays what happens when two train-devices are used.
It can be seen that these figures do not distinguish the GE curves with respect to the
number of keys used in the training phase: this choice has been made to highlight the
difference in attack performance when targeting different bytes. Indeed, byte 11 and byte
14 behave almost like byte 5: the number of keys does not influence the attack, because
once a certain number of attack traces is considered, the curves overlap. This is clearly
visible because the attacks against byte 5, 11 and 14 exhibit a compact bound of GE
curves, while byte 0, the only one affected by the number of keys, shows some outliers.
In Figure 4.3a, it can be seen that the attacks targeting byte 5 and 14 reach GE = 0

within 10 attack traces, while the ones targeting byte 0 and 11 do not, even if they are
very close to it. This is not the case for Figure 4.3b, where, despite the only outlier
generated by the usage of a single key attacking byte 0, all GE converge within 10 traces.

Figure 4.3 also highlights a pattern: the attack performance decreases passing from tar-
geting byte 5 to targeting byte 14 and from targeting byte 14 to targeting byte 11. Indeed,
the bundle of GE curves relative to byte 5 presents values that are lower than the ones
related to byte 14 for any number of attack traces, and the same happens between byte
14 and byte 11. This behavior can be observed for any number of devices.
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Figure 4.4: Jitter Effect Visualization. Subfigure (a), on the left, shows the Jitter Effect as partial misalignment of the
traces over a small dataset of 20 traces. Subfigure (b), on the right, shows the Jitter Effect quantifying the trace divergence
in terms of samples standard deviation.

This performance-drop can be strictly related to the jitter phenomenon. In general, the
jitter is defined as small deviation from the true-periodicity of a signal, in particular the
clock one. The effect of this small deviation is the partial misalignment of the traces,
since they appear aligned and overlapped right after the reception of the trigger signal,
but then they start diverging.
Figure 4.4 allows to visualize the jitter effect over a small dataset of 20 traces. Fig-
ure 4.4a shows that at the beginning, for the first 100/150 samples, the traces appear
aligned and almost overlapped, while towards the end, they are completely misaligned.
The highlighted trace in the middle is the average of the dataset, and it is exploited to
to visualize the divergence among the traces. Figure 4.4b quantifies the misalignment in
terms of samples standard deviation: the jitter effect is confirmed by the fact that, start-
ing from the beginning of the trace and reaching its end, the standard deviation increases
monotonically.

This partial misalignment of the traces makes it harder to recognize the leakage patterns
related to those quantities that are computed towards the end of the trace. Since different
bytes are handled in different moments in time during the encryption, their computation
can be affected by the jitter with various extents, making easier or harder their recovery
through an SCA.
In particular, even if the AES-state stores the bytes in column-major order as shown in
Section 4.1.1, the considered SubBytes operation scans it in row-major order with a for

loop, proceeding row-by-row.
Therefore, focusing only on the targeted bytes and referring to the AES-state depicted in
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Figure 4.5: Pearson’s Correlation Coefficient between Trace and SBox-out. This plot shows the intensity of the leakage
related to each byte of the key, in terms of Pearson Correlation Coefficient between the trace and the relative sbox-out

Section 4.1.1, byte 0 is computed before byte 5, byte 5 is computed before byte 14 and
byte 14 is computed before byte 11. This order of computation suggests that byte 0 is
the least affected by the jitter effect, followed by byte 5, byte 14 and, last byte 11. As
a consequence, the leakage related to byte 0 should be stronger than the one related to
byte 5 and so on, following the previous order, as far as byte 11. Figure 4.5 confirms
this hypothesis, showing how the leakage intensity, calculated as Pearson’s Correlation
Coefficient between a trace and the relative sbox-out [10], decreases almost monotonically
while scanning the AES-state by row.
So, the performance drop visible passing from targeting byte 5 to targeting byte 14 and
then to targeting byte 11 is likely to be caused by the jitter effect, which affects byte 11
more than byte 14, and byte 14 more than byte 5.

Following this reasoning, byte 0 should be the easiest to retrieve, and therefore provide the
best-performing attacks. Surprisingly, observing Figure 4.3, this is not the case, since the
attacks against byte 0 perform worse than all the others when only a single train-device
is considered, and worse than the ones related to byte 5 when two train-devices are used.
This unexpected result can be explained by the warm-up problem of the instruction cache
of the processor. Indeed, byte 0 is computed first at the beginning of the for-loop

implementing SubBytes, and in that moment the loop-instructions are loaded directly
from the flash memory of the device, being not yet stored in the instruction cache. From
the second iteration on, those instructions are already present in cache and loaded from
there. The fact that the instructions need to be loaded directly from the flash memory
may alter the power consumption during the computation of byte 0, making it slightly
harder to recover it with a SCA.
This process is known as warm-up problem since the at the beginning of the loop the
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cache does not contain any loop-iteration, resulting empty, cold, while from the second
iteration on, it results warmed-up, being full of instructions.

DKTA Summary

In summary, DKTA shows that the number of devices highly influences the attack, be-
cause the addition of a device always leads to a performance improvement. On the other
hand, on average, the number of keys appears almost irrelevant, since it influences the
performance of the attack in a consistent way only in the specific case of attacking byte
0 with two train-devices.

However, the overall performance of the attacks is very good, because, on average, it
is possible to retrieve the targeted key-byte within only 10 attack-traces. In particular,
targeting byte 5 and 14, this is achieved even performing the training phase with a single
train-device, showing that, with the considered setup, the networks are very little affected
by the Portability Problem.
In addition to the considered setup, the presence of a moderate Portability Problem
with respect to the experiments shown in [7] may be explained also considering the uti-
lized MLPs: they are very different from the one used in the considered state-of-the-art
paper [7], since they feature Dropout, BatchNormalization and L2-Regularization. The
addition of these countermeasures to overfitting may have increased the generalization
level of the networks, making it possible to attack with more effectiveness a device-key
configuration which is different from the one used during training.

Moreover, even in presence of a moderate Portability Problem, the Multiple Device Model
is proven to boost the performance of the attacks, allowing to retrieve the targeted key-
byte in few attack-traces. This result validates the effectiveness of MDM also on 32-bit
microcontrollers.

4.1.2. DTTA Results

For simplicity, DTTA was performed targeting only byte 5, since it does not represent a
particular case:

• it belongs to the 2nd row, so neither the first, computed at the very beginning of
SubBytes, nor to the last, computed at the end;

• it is relatively affected by the jitter effect ;

• its leakage is neither too visible, nor negligible.
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Figure 4.6: DTTA Results Targeting Byte 5 against Unprotected-AES. Subfigure (a), in the upper-left, shows the DTTA
results obtained with a single train-device. Subfigure (b), in the upper-right, displays the outcome of DTTA when two
train-devices are considered. Subfigure (c), in the lower-left, and Subfigure (d), in the lower-right, provide the trend of the
minimum number of attack-traces needed to achieve GE ≤ 0.5, showing Subfigure (a) and Subfigure (b), respectively, from
another perspective.

In addition, relying on DKTA results, 10 keys are used during training. Indeed, by at-
tacking byte 5, the number of keys does not influence the performance, so it makes no
difference to use 1 or 10 keys.
On the other hand, since the collection of the traces was performed per device-key con-
figuration, the higher the considered number of keys, the higher the number of available
traces. As a consequence, considering two devices, the available traces are doubled: in
order to provide comparable results, both DTTA with a single train-device and DTTA
with two train-devices were performed considering the total amount of traces available
with 10 keys and a single device, being 500,000.

Figure 4.6 shows the results of DTTA with the number of train-traces ranges from 50,000



68 4| Experimental Results

to 500,000, every 50,000. To be precise, only the size of the training set varies, while the
amount of traces dedicated to the validation set is always constant at 5,000. In addition,
also in this case GEs are computed as average of 100 experiments.
Figure 4.6a shows the DTTA results obtained when only a single train-device is considered,
while Figure 4.6b presents the DTTA results obtained with two train-devices. In both
cases, the attacks are very good, since all of them reach GE = 0 in less than 10 traces. In
particular, in both situations, the attack performance increases with the number of train-
traces, almost monotonically. There is a quite big performance-boost when passing from
50,000 to at least 100,000 train-traces, since a gap is clearly visible in the plots between
the GE curve obtained with 50,000 train-traces and the bundle of GE curves generated
with a number of train-traces which ranges between 100,000 and 500,000.
Figure 4.6a and Figure 4.6b show an additional important result: the GE curve obtained
with a single device and 100,000 train-traces is very similar to the one obtained with two
train-devices and only 50,000 traces. This suggests that in case of constraints about the
number of devices, the performance can still be boosted considering more train traces.

In order to quantify and better understand the influence that the number of train-traces
has on the attack performance, especially when the GE curves form a single bundle,
like when the number of train-traces ranges between 100,000 and 500,000, the number
of minimum attack-traces needed to reach GE ≤ 0.5 can be exploited. Figure 4.6c and
Figure 4.6d show the trend of this quantity with respect to the number of train-traces.
GE ≤ 0.5 provides a good approximation for GE = 0, since it indicates that GE is closer
to 0 than to 1. In particular, a threshold is necessary because GE refers to a position in
a ranking and, in practice, it makes sense only if it is an integer value.
Figure 4.6c shows the minimum number of attack-traces to reach GE ≤ 0.5 when a single
train-device is considered. With 50,000 train-traces, it is possible to retrieve the correct
key-byte in 8 attack-traces, but considering only 50,000 train-traces more, the same goal
is achieved in only 5 attack-traces. The performance remains constant until 450,000 or
500,000 train-traces are considered, when the number of needed attack-traces drops to 4.
Figure 4.6d, on the other hand, focuses on the case of two train-devices. Here the number
of attack-traces needed to obtain GE ≤ 0.5 decreases monotonically with the increase of
the number of train-traces when it ranges from 50,000 to 150,000, passing from 6 to 5 to
4. It then remains constant at 4 until 500,000 train-traces are used, where it drops to 3,
achieving the best overall result.
In both cases, with a 10× increase in the number of train-traces there is a 2× increase in
attack-performance, since the number of attack-traces needed to reach GE = 0 is halved.
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DTTA Summary

In summary, DTTA shows that the number of train-traces highly influences the attack,
because the enlargement of the training set usually leads to a performance-boost. In
addition, the number of devices is again shown to be crucial in DL-based SCA against
unprotected-AES, since the addition of a device always leads to better and quicker attacks.
The combination of more train-traces and multiple train-devices allows to mount high-
performing attacks, able to recover the targeted key-byte in only 3 attack-traces.

Also DTTA highlights the presence of moderate Portability Problem and validates the
Multiple Device Model on 32-bit microcontrollers: the attacks are very good even if a
single train-device is considered, but their performance can still be improved adding a
second train-device.

Moreover, the previous considerations about the considered MLPs hold also in the case
of DTTA: it is possible that the added overfitting-countermeasures, Dropout, BatchNor-
malization and L2-Regularization increased the generalization of the models, reducing the
impact of the Portability Problem.
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4.2. Results Targeting Masked-AES

This section shows the results obtained performing Device-Key Trade-off Analysis (DKTA)
and Device-Trace Trade-off Analysis (DTTA) against a software masked implementation
of AES-128. Also in this case, DKTA was executed first, so its results were considered
and exploited while performing DTTA.

In this case, the targeted byte are byte 5 and byte 11.
In particular, byte 11 was attacked in order to validate the results obtained with byte 5.

All the hyperparameters considered for the experiments are visible in Table A.2 of Ap-
pendix A. Comparing Table A.2 and Table A.1, it is visible that the networks dedicated
to attack masked-AES are much simpler than the ones used against the unprotected im-
plementation. The most likely hypothesis is that more complex network structures were
discarded due to overfitting in favour of more more general, and consequently simpler,
ones. Indeed, it can be seen that regularization is still present, in terms of Dropout,
L2-Regularization and BatchNormalization.

4.2.1. DKTA Results

This section shows the DKTA results against a software masked implementation of AES-
128, targeting byte 5.
The results of the same analysis performed targeting byte 11 are reported as validation
support to the ones relative to byte 5.

Average Results Targeting Byte 5

Figure 4.7 shows the DKTA results for byte 5 in the cases of training with both one and
two devices.
From Figure 4.7a, it can be seen that the considered MLP, trained with data coming
from a single device, can successfully retrieve byte 5 from a masked implementation of
AES, since the GE curve obtained with 9 keys reaches 0 within 300 attack-traces. It is
important to point out that the MLP was able to perform the attack without the need of
manual feature-extraction from the traces.
The number of attack-traces needed to succeed against a masked implementation is quite
high, if compared to the unprotected scenario. This is due to the masking countermeasure:
it eliminates the first-order leakage, forcing the network to collect information from much
more traces before being able to recognize any leakage-pattern.
This result suggests that, also when targeting a masked implementation of AES, the
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Figure 4.7: DKTA Results Targeting Byte 5 against Masked-AES. Subfigure (a), up, shows the DKTA results obtained
with a single train-device. Subfigure (b), down, displays the outcome of DKTA when two train-devices are considered.

involved networks are very little affected by the Portability Problem, with the considered
setup.

Unfortunately, when two train-devices are considered, all the attacks fail, as depicted
in Figure 4.7b. This behavior suggests that when attacking a masked implementation
of AES, adding a train-device not only decreases the performance of the attack, but
makes it unpractical. The most likely hypothesis is that considering both the masking
countermeasure and a second data source as the second train-device, too much diversity
is added to the training set, making the network unable to fully recognize the leakage
patterns.

Regarding the number of keys, the attacks are highly influenced by it, especially in the
single-device scenario. Indeed, referring to Figure 4.7a, the attack performance depends
on the number of keys, though the increase is not monotonic with it: for example, 1 or
2 keys lead to an attack performance that is much worse than the one obtained with 5,
6 or 7 keys, even if there is not convergence to GE = 0; at the same time, while 9 keys
allow to retrieve the correct key-byte, 10 keys do not.
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On the other hand, when considering the two-device scenario, this dependence is less
visible, since all the performances are quite low. The best result, however, is achieved
with a total of 7 keys, even if GE reaches a minimum value close to 50 in 300 attack-traces.

Analysis of the Single Attacks Targeting Byte 5

Figure 4.7 represents the average result of the attacks against the masked implementation
of AES. A more detailed analysis, involving the study of each single attack performed to
execute DKTA, revealed that there is a strong dependency between the choice of the
train-devices and the attack performance. In particular, if the train-devices coincide with
the ones used to during Hyperparameter Tuning, then the attacks perform better. This
result can be interpreted as different manifestation of the Portability Problem, which is
not related to the difference between train-device and target-device, but to the difference
between train-device and device used to perform Hyperparameter Tuning.
In this work, Hyperparameter Tuning is always performed with D1 for the one-device sce-
nario and with D1, D2 for the two-device case: this choice was made randomly, without
any constraint.
Figure 4.8 and Figure 4.9 prove the highlighted dependency providing the results ob-
tained with the attacks D1vsD2, D2vsD1 and D3vsD2 for the single-device scenario and
D1D2vsD3, D1D3vsD2 and D2D3vsD1 for the two-device scenario, respectively.

Considering the attack D1vsD2, reported in Figure 4.8a, it is possible to perform a very
good attack against a masked implementation of AES, reaching GE = 0 in about 50
traces. Here, the number of keys highly influences the attack. With 1 or 3 keys, the
network behaves like a random classifier, providing the correct key-byte in a position
between 120 and 140, with 2 keys the performance slightly increases, but GE ends up at
90 even if 300 attack-traces are used. With 4 keys or more, the convergence to GE = 0

is almost immediate, since it takes about 50 attack-traces. In this case the train device,
D1, coincides with the device used during Hyperparameter Tuning. On the other hand,
in a scenario where D1 is no more used as train-device, such as D2vsD1 in Figure 4.8b
and D3vsD2 in Figure 4.8c, the performance drops and, in particular, there is no more a
monotonic increase of performance when adding keys.

Regarding the two-device scenario, attack D1D2vsD3 reported in Figure 4.9a, where the
train-devices are exactly the ones used during Hyperparameter Tuning, shows that it is
possible to mount a successful DL-based SCA with two train-devices against a masked
implementation of AES. In particular, the correct key-byte can be retrieved in 150 attack-
traces, 3× the amount needed, in the best case, with a single train-device. Also in this
case, however, the attack performance does not increase monotonically with the number
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Figure 4.8: Single Attacks Targeting Byte 5 with a Single Train-Device, Masked-AES. This figure displays three of the six
attacks performed during DKTA targeting byte 5 with a single train-devices. Subfigure (a), up, shows the results of the
attack D1vsD2. Subfigure (b), in the middle, shows the results of the attack D2vsD1. Subfigure (c), down, shows the
results of the attack D3vsD2.

of keys, but considering more than 1 or 2 keys usually ensures convergence to GE = 0,
even if divergent outliers are obtained with 5 and 8 keys.

On the other hand, in any scenario where either D1 or D2 is not considered as train-device,
as depicted in Figure 4.9b, relative to attack D1D3vsD2 and in Figure 4.9c, relative to
attack D2D3vsD1, the performance drops considerably: the networks always behave like
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Figure 4.9: Single DKTA Attacks Targeting Byte 5 with Two Train-Devices, Masked-AES. This figure displays all the
attacks performed during DKTA targeting byte 5 with two train-devices. Subfigure (a), up, shows the results of the attack
D1D2vsD3. Subfigure (b), in the middle, shows the results of the attack D1D3vsD2. Subfigure (c), down, shows the results
of the attack D2D3vsD1.

a random-guesser, providing the correct key-byte between position 120 and 140. The only
outlier is the attack D1D3vsD2 with exactly 7 keys, visible in Figure 4.9b, where GE
reaches a value less than 20 in 300 attack-traces.

From the attacks with a single train-device, one may deduce that D1 and D2 are more
similar than D1 and D3 or D2 and D3, as the attacks D1vsD2 and D2vsD1 perform
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Figure 4.10: DKTA Results Targeting Byte 11 against Masked-AES. Subfigure (a), up, shows the DKTA results obtained
with a single train-device. Subfigure (b), down, displays the outcome of DKTA when two train-devices are considered.

better than D3vsD2. Even if it is plausible since they are physically different devices and
therefore underwent the same manufacturing process in different moments, this seems not
the case, as the only successful attack with two train-devices is obtained just exploiting
traces coming from both D1 and D2 to target D3: in case of almost complete similarity
between only D1 and D2, this attack would have failed, since the train-traces would have
been so different from the attack-ones that no leakage pattern would have been recognized
during the attack phase.
In addition, since the devices are never changed during the research, in case of strong
differences between them, also the results related to unprotected-AES would have been
affected by this behavior.

Average Results Targeting Byte 11

The results relative to DKTA targeting byte 11 are reported in Figure 4.10.
Regarding the case of a single train-device, shown in Figure 4.10a, the results obtained
targeting byte 11 are quite similar to the ones obtained with byte 5. Indeed, also in this
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case the MLP is able to retrieve the correct key-byte from a masked implementation of
AES, showing that the Portability Problem is minimal with the considered setup. In ad-
dition, the attack performance can be enhanced, as before, by considering multiple keys.
The results are very similar also when considering two train-devices, as depicted in Fig-
ure 4.10b: the attacks are not able to reach GE = 0, even if 300 attack-traces are
exploited.
These results validate the hypothesis of performance-drop when multiple devices are con-
sidered targeting a masked implementation of AES.

DKTA Summary

In summary, an MLP is shown to be able to recover the correct key-byte from a masked
implementation of AES-128 running on a 32-bit microcontroller without the need of man-
ual feature-extraction from the traces. In particular, it is possible to break the masking
countermeasure with about 300 traces if a single train-device and 9 keys are considered.
The addition of a device during training decreases the performance of the attack, making
it impossible to retrieve the correct key-byte.
The number of keys influences the attack, but the performance does not increase mono-
tonically with it.

The Portability Problem is still present, but it appears not to be caused by the consider-
ation of a target-device which is different from the train-one. Indeed, it is more related to
the choice of the train-devices: if they coincide with the ones used during Hyperparameter
Tuning, then the attack performs better, otherwise, it may become unfeasible.
Indeed, considering the same devices for both training and Hyperparameter Tuning, suc-
cessful attacks are performed both with one and two train-devices, recovering the correct
key-byte in about 50 and about 150 traces respectively.

However, in the case of two train-devices, when the same devices are used both in training
and Hyperparameter Tuning, even if the attack is successful, the achieved performance
is still lower than the one achieved with a single device. Therefore, the MDM technique
should be avoided when targeting a masked implementation of AES. However, the MDM
technique should be avoided when targeting a masked implementation of AES: even if it
allows to perform successful attacks considering as train-devices the same ones used during
Hyperparameter Tuning, their performance is still much lower than the one achieved with
a single train-device.
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4.2.2. DTTA Results

This section shows the DTTA results obtained against the software masked implementa-
tion of AES-128, targeting byte 5 and byte 11.

Relying on the results of DKTA, the attacks with a single train-device were performed
considering 9 keys, while the attacks with two train-devices used 7 keys. Indeed, 9 keys
and 7 keys led to the best performance, on average, when training the MLP with traces
coming from a single device and two devices, respectively.
Since the collection of the traces was performed per device-key configuration, in order to
provide comparable results, a total of 350,000 traces was considered, as it is the maximum
achievable with 7 keys and a single device. The number of traces starts at 50,000 and
reaches 350,000, increasing with step 50,000.

Average Results Targeting Byte 5

Figure 4.11 shows the DTTA results when targeting byte 5 against a software masked
implementation of AES-128.
Figure 4.11a presents the case of single train-device: all the attacks are very good, con-
verging to GE = 0 within 300 attack-traces. In particular, the performance of the attack
appears to increase monotonically with the number of traces, highlighting how the size of
the training set influences the attack.
On the other hand, Figure 4.11c shows the DTTA results in a scenario where two train-
devices are considered. In this case, the attacks are not able to reach GE = 0, even
if 300 attack-traces are exploited. The number of traces does not influence the attack
performance, since all GE curves, in the end, converge to a value close to 40.

Figure 4.11b explains the DTTA results obtained with a single train-device in terms of
minimum number of attack-traces needed to achieve GE ≤ 0.5, which is a good ap-
proximation for GE = 0. It can be seen that, similarly to the case of DTTA against
unprotected-AES, the overall performance-boost given by the addition of train-traces is
about 2×: considering 350,000 train-traces it is possible to achieve GE ≤ 0.5 with only
190 attack-traces, close to half the total amount needed to achieve the same goal with
50,000 train-traces. Moreover, it can be seen that the trend of the minimum number of
attack-traces decreases when the number of train-traces increases, confirming that the
attack performance monotonically increases with the size of the training set.
The first four points in the plot of Figure 4.11b present value higher than 300, while the
plot in Figure 4.11a only shows the trend of the GEs for a maximum of 300 attack-traces:
actually, the total amount of attack-traces considered while computing the GEs was 500,
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Figure 4.11: DTTA Results Targeting Byte 5 against Masked-AES. Subfigure (a), up, shows the DTTA results obtained
with a single train-device. Subfigure (b), in the middle, shows the minimum number of attack traces needed to perform a
successful attack with a single train-device. Subfigure (C), down, displays the outcome of DTTA when two train-devices
are considered.

so it is possible to have values greater than 300. The choice of plotting the values of GEs
for only 300 attack-traces is only graphical, since after this threshold there are no major
differences in the results.
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Figure 4.12: Single DTTA Attacks Targeting Byte 5 with Two Train-Devices, Masked-AES. This figure displays all the
attacks performed during DKTA targeting byte 5 with two train-devices. Subfigure (a), up, shows the results of the attack
D1D2vsD3. Subfigure (b), in the middle, shows the results of the attack D1D3vsD2. Subfigure (c), down, shows the results
of the attack D2D3vsD1.

Analysis of the Single Attacks Targeting Byte 5

Considering once again Figure 4.11c, it is important to point out that it shows the average
result obtained with two train-devices. Figure 4.12 shows the single attacks mounted to
execute DTTA in case of two train-devices.
Figure 4.12a depicts the results related to D1D2vsD3, where the train-devices coincides
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with the ones used during Hyperparameter Tuning: increasing the number of train-traces
it is possible to successfully retrieve the correct key-byte in about 50 attack-traces. In
particular, the most important performance-boost is obtained passing from 50,000 or
100,000 train-traces to at least 150,000, since GE = 0 is reached with about 50 attack-
traces instead of 150/200.
Figure 4.12b is relative to attack D1D3vsD2. The baseline for this attack, obtained with
50,000 traces, does not reach GE = 0 even with 300 attack-traces. However, it was the
best result achieved with this device-configuration during DKTA: it is the visible outlier
in Figure 4.9b. DTTA shows that it is possible to enhance its performance considering
more train-traces. In particular, with 100,000 of them it is possible to obtain GE = 0

in 60/70 attack-traces, while with at least 150,000 the performance is further increased,
converging to 0 in less than 50 attack-traces.
Concerning attack D2D3vsD1, depicted in Figure 4.12c, it can be seen that it is not
influenced by the addition of train-traces, altering, in fact, the average result of DTTA
int the two-device scenario. The network acts like a random-guesser, providing the correct
key-byte around position 128 among prediction. Indeed, it appears unable either to learn
the leakage pattern, or to transfer the information gained during training to the attack.
In the end, the high performance of attack D1D2vsD3 compared to the low performance
of attack D2D3vsD1 confirms that the Portability Problem can manifest also in terms
of train-device choice, highlighting the importance of considering the same devices used
during Hyperparameter Tuning also in the case of DTTA. However, as pointed out by
attack D1D3vsD2, sometimes it is possible to achieve excellent results even with different
train-devices, as long as the size of the dataset is increased.

Average Results Targeting Byte 11

The results relative to DTTA targeting byte 11 can be seen in Figure 4.13.
When a single train-device is considered, as shown in Figure 4.13a, the results obtained
targeting byte 11 are very similar to the ones obtained with byte 5, since the the MLP is
able to quickly recover the correct key-byte and, at the same time, the attack performance
can be enhanced by considering more of train-traces. Actually, the attacks to byte 11
converge to GE = 0 faster than the ones targeting byte 5, recovering the key-byte in just
about 50 traces on average when at least 100,000 train-traces are considered. In addition,
the results show that considering more than 100,000 train-traces is worthless in this case,
since the relative curves are almost overlapped from the beginning.
On the other hand, considering the case of two train-devices depicted in Figure 4.13b, the
results are almost identical, since in both cases the attacks are not able to recover the
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Figure 4.13: DTTA Results Targeting Byte 11 against Masked-AES. Subfigure (a), up, shows the DTTA results obtained
with a single train-device. Subfigure (b), down, displays the outcome of DTTA when two train-devices are considered.

correct key-byte, even if 300 train-traces are considered. In addition, even the convergence
point of the GE curves is almost the same, being around 40.
Therefore, also considering DTTA, the results obtained targeting byte 11 validate the
ones obtained with byte 5, once again highlighting the presence of minimal Portability
Problem with the considered setup and demonstrating that considering multiple device
decreases the performance of the attacks against a masked implementation of AES.

DTTA Summary

In summary, DTTA shows how the number of train-traces highly influences the perfor-
mance of the attack, even in presence of masking countermeasure.
On average, the best performing train-configuration involves a single device and 350,000
traces, which makes it possible to recover the correct key byte in 190 attack traces, in-
creasing the performance by a factor of almost 2× if compared to the result achieved
with only 50,000 traces. In particular, in this case, it can be observed that the attack
performance increases monotonically with the number of train-traces.
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On the other hand, if an additional train-device is considered, then the average perfor-
mance drops consistently, since attacks do not reach GE = 0 even if with 300 attack-traces.

The importance of considering, during the attack, the same train-devices used during
Hyperparameter Tuning is highlighted also by DTTA: the attack D1D2vsD3 reaches
GE = 0 once again, and its performance is further increased by the addition of train-
traces. Moreover, DTTA showed how it is possible to limit the dependence on the train-
devices used during Hyperparameter Tuning by increasing the training set size, as visible
from attack D1D3vsD2.

In the end, the Portability Problem is clearly visible only in the specific scenario D2D3vsD1.
Even if this is an isolate case, it confirms the unreliability of the MDM technique in case
of masking countermeasure: adding a device, on average, makes the attack unfeasible.
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4.3. Reproducibility

The collected traces are available on Zenodo [12].
Since a total of 3 devices, 11 keys and 2 implementations of AES were considered, the
data is provided as 2 sets of 33 datasets, one per device-key configuration. Each dataset
contains 50,000 traces.
The length of the traces depends on the targeted algorithm: the traces related to unprotected-
AES involve 1183 samples, while the ones relative to masked-AES are formed by 7700
samples.
The size of the validation set was fixed to 5000 traces, both in DKTA and DTTA. More-
over, the Guessing Entropy was computed always as average over 100 independent exper-
iments, each one involving 500 attack-traces: the sets of traces were built partitioning the
test set, meaning that no traces were repeated among the experiments.
The targeted key was always K0, meaning that it was never used during training.

The code used throughout the research is available at
https://github.com/luca-castellazzi/EfficientTraining_DLSCA.
The project was developed in Python 3.8.10. The requirements.txt file present in
the linked repository contains all the considered libraries, with the specific version used
throughout this work.
The code repository features also a JSON file containing the secret encryption keys used
in the experiments, since they were randomly-generated with a Python script.
Moreover, also two Jupyter Notebooks are provided together with the code. The first
one shows how to retrieve the 6th byte of K0 (byte 5) with a DL-based SCA, expalining
it step-by-step, starting from model training and terminating with the key-byte recovery.
The second one, instead, performs a complete attack against K0, training 16 networks and
attacking each byte of the secret key. Both attacks are performed against the unprotected
implementation of AES, validating the setup and the attack pipeline.

The machine used to run all the Python scripts presents the following specifications:

• Operating System: Ubuntu 20.04;

• CPU : Intel Core i7-10700K CPU @ 3.8GHz;

• RAM : 66GB;

• GPU : Nvidia GeForce RTX 2080 Ti with 11GB of dedicated GDDR6 memory.

Therefore, a different setup may lengthen or shorten the time needed to execute the
experiments, mainly the process of Hyperparameter Tuning.

https://github.com/luca-castellazzi/EfficientTraining_DLSCA
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This work provides a complete characterization of Deep Learning based Side-Channel
Attacks against software implementations of AES-128, both with and without masking
countermeasures, running on 32-bit microcontrollers, in terms of trade-off between the
most important variables of the Profiling Phase, being the number of devices, the number
of keys and the number of traces.
Device-Key Trade-off Analysis (DKTA) is introduced to study the influence that number
of devices and number of keys have on the attack performance, while Device-Trace Trade-
off Analysis (DTTA) to focus on the impact that number of devices and number of traces
have during the attack.

Considering a software unprotected implementation of AES-128, the number of devices
and the number of traces are shown to highly influence the attack, since a considerable
performance improvement can be achieved either by adding a device or increasing the
number of traces. In particular, a 10× increase in the number of train-traces leads to
a 2× performance improvement, highly reducing the time taken to complete the Attack
Phase.
On the other hand, the number of keys appears to be much less relevant, influencing the
performance only in the specific case of an attack targeting byte 0 with two train-devices,
where the consideration of multiple keys gives a visible performance-boost.

Considering a software masked implementation of AES-128, instead, all the variables in-
fluence the attack: while an increase in terms of number of keys or number of traces
usually increases the performance, the usage of an additional train-device makes it unfea-
sible, on average, to recover the correct key-byte.
Increasing the number of keys appears to be useful when the training set size is fixed and
a single train-device is used, even if the attack performance does not increase monoton-
ically. On the other hand, a monotonic performance improvement can be achieved by
increasing the number of traces when the number of keys is fixed and a single train-device
is considered. In particular, a 2× performance improvement has been observed with a 7×
increase in the number of train-traces.
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Furthermore, a detailed analysis of each single attack performed with both one and two
train-devices highlighted that there is a performance improvement if the train-devices
coincide with the ones used during Hyperparameter Tuning.

The obtained results allow to advance in the research field of DL-based SCAs.
First of all, it is proven that an increase in the number of train-devices leads to a per-
formance improvement also attacking a software unprotected implementation of AES-128
running on a 32-bit microcontroller: this fact validates, for the first time, the MDM
introduced in [7] on architectures more complex than the 8-bit ones. In addition, the
effectiveness of this technique is consistently validated by averaging the results obtained
with all the possible combinations of train-devices/target-device available with the con-
sidered setup.
Then, the successful attacks against the software masked implementation of AES-128 show
for the first time that the approach introduced in [39] of automatic feature-extraction when
SCA-countermeasures are in place works even if the traces come from 32-bit microcon-
trollers.
Furthermore, it is proven that DL-based SCAs depend on three main variables, being the
number of train-devices, the number of keys and the number of train-traces. The number
of devices and the number of traces, among the three, are the most influencing, since their
increase usually makes the attack better.
Moreover, the fact that it was possible to perform successful realistic DL-based SCAs even
considering a single train-device suggests that the Portability Problem may be dependent
on the considered setup. However, it is also possible that the Hyperparameter Tuning
process influences the attack performance in portability scenarios: indeed, the hyper-
paramter search of this work considers also regularization coefficients and Early Stopping,
increasing the complexity of the process with respect to the one used in [7].
Finally, this work highlights a possible different manifestation of the Portability Problem
in case of attack against a software masked implementation of AES-128: it is no more
dependent on the difference between the train and the target device, but rather between
the train-devices and the ones used during Hyperparameter Tuning. In particular, the
best performance is achieved by using the same devices for both the tuning process and
the training during the Profiling Phase.

Even if this work focuses only on attacking the most basic AES implementation alongside
its masked version, the proposed methodology can be applied to any encryption algo-
rithm.
Therefore, future developments related to this work can target different and even more
complex versions of AES.
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For example, DKTA and DTTA can be applied to:

• Hardware implementations of AES;

• AES with different modes of operation [4, 20];

• Pipelined implementations of AES.

In addition, this work can be further extended considering a different side-channel, such
as Electro-Magnetic (EM) emission. This scenario would allow to relax the assumption,
for the attacker, of physical access to the pins of the target-device, needed to connect the
current probe. Indeed, in order to capture EM emissions, one can simply put a probe
close to the device, without the need of accessing the pins. In this case, the noise present
in the measurements may be the major concern, especially if the attack is performed in a
non-controlled environment.
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A| Selected Hyperparameters

This appendix shows all the results of the Hyperparameter Tuning processes performed
throughout this work with the Genetic Algorithm.

Hyperparameters to Attack Unprotected-AES

(a) 1 Train-Device

Hyperarameter Byte 0 Byte 5 Byte 11 Byte 14
Number of Hidden Layers 4 4 4 4

Number of Hidden Neurons 500 500 200 300
Dropout Rate 0.1 0.2 0.2 0.4

L2-Regularization Coefficient 0.01 0.001 0.001 0.0
Gradient Descent Technique adam adam adam adam

Learning Rate 0.001 0.001 0.005 0.005
Batch Size 128 256 1024 128

(b) 2 Train-Devices

Hyperarameter Byte 0 Byte 5 Byte 11 Byte 14
Number of Hidden Layers 3 4 4 3

Number of Hidden Neurons 400 500 500 300
Dropout Rate 0.2 0.4 0.4 0.5

L2-Regularization Coefficient 0.0005 0.0 0.005 0.0
Gradient Descent Technique adam adam adam RMSprop

Learning Rate 0.005 0.005 0.0005 0.005
Batch Size 128 128 512 1024

Table A.1: Hyperparameters to Attack Unprotected-AES. These tables show the hyper-
parameters selected by the Genetic Algorithm to attack unprotected-AES targeting byte
0, 5, 11 and 14. Table (a), up, shows the result of Hyperparameter Tuning when a single
train-device is considered. Table (b), down, presents the hyperparameters selected in case
of two train-devices.
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Hyperparameters to Attack Masked-AES

Hyperparameter 1 Train-Device 2 Train-Devices
Byte 5 Byte 11 Byte 5 Byte 11

Number of Hidden Layers 2 3 2 4
Number of Hidden Neurons 100 100 200 100

Dropout Rate 0.3 0.3 0.5 0.5
L2-Regularization Coefficient 0.001 0.001 0.005 0.05
Gradient Descent Technique RMSprop adam adam adam

Learning Rate 0.005 0.0005 0.0005 0.0005
Batch Size 128 256 256 256

Table A.2: Hyperparameters to Attack Masked-AES. This table shows the hyperparam-
eters selected by the Genetic Algorithm when targeting byte 5 and byte 11 against a
masked implementation of AES, both with a single train-device and two train-devices.
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