
Executive Summary of the Thesis

Enhanced Graph Reconstruction using Graph Neural Networks

Laurea Magistrale in Computer Science Engineering - Ingegneria Informatica

Author: Francesco Puddu

Advisor: Prof. Giacomo Boracchi

Co-advisor: Prof. Mauro Sozio

Academic year: 2021-2022

1. Introduction
Graphs are data structures that model a set of
items connected by relationships, represented by
nodes and edges respectively. Each node or edge
can be described by a set of properties, called
features. The graph structure is typically used
to model a large number of systems from areas
such as natural sciences, social networks, web
search, recommendation systems and others.

Due to the high expressive power of graphs and
their widespread use, there is growing interest
in analysing them with Machine Learning tech-
niques. This research area has proposed var-
ious successful applications, but recently great
attention is being paid to the introduction of
the class of models known as Graph Neural Net-
works (GNNs). Thanks to their effective results,
they have quickly established themselves as the
benchmark for graph analysis.

Models such as GNNs generally assume that the
feature set associated with the graph is fully ob-
servable. However, this is often not the case in
real-world scenarios, where each feature is gener-
ally only available in a subset of the nodes. For
this reason, effective missing data estimation (an
operation known as "imputation") for graph-
structured data is now a critical topic to enable

the widespread adoption of Machine Learning al-
gorithms in this domain. The goal of this thesis
is to present a novel unsupervised and paramet-
ric approach to graph-structured data imputa-
tion. The proposed solution learns directly on
the graph from the available part of information
- both structural and semantic - to reconstruct
the missing features.

2. Problem Formulation
In this thesis, we tackle the task of feature im-
putation for graph-structured data. Given as
input:
• An attributed graph G composed of N

nodes. The connections are encoded by the
adjacency matrix A ∈ {0, 1}N×N .
• A feature matrix X ∈ RN×F , where F is the

number of features, composed of a descrip-
tion vector for each node. Missing values
are filled with a placeholder µ.
• A binary mask M ∈ {0, 1}N×F that speci-

fies whether feature values are available (1)
or not (0).

The goal is to produce a new feature matrix X ′

in which the originally missing features are im-
puted by the proposed model. Critically, the set-
ting is unsupervised, as we do not require fully
observable data even in the training phase.

1

Executive summary Francesco Puddu

Figure 1: To optimize a reconstruction model for the first feature (on the left), a subset of the known
(blue) values is hidden (yellow) to extract ground truth labels for training. At inference time, the
model imputes actual unknown values (red).

Without loss of generality, we assume the miss-
ing mechanism of node features to be missing at
random (MAR) and the missing pattern to be
non-monotonic and multivariate. For our exper-
iments, we create synthetic masks to derive X
from the ground-truth feature matrix X̃:

xij =

{
µ, if mij = 0
x̃ij if mij = 1

(1)

The reference metrics for the experiments are:
• The reconstruction loss measured between

real and imputed values.
• The performance loss in the downstream

task. We evaluate this metric by measur-
ing the difference in accuracy between in-
ferences of the same model trained on X̃
and X ′.

3. Related Work
Imputation solutions typically concentrate on
the case where there are no defined relation-
ships within the set, i.e. where the items are
not graph-structured. For instance, probabilis-
tic approaches based on explicitly learning the
joint distribution of features [11]. Examples of
local regression methods from the field of Ma-
chine Learning include K-Nearest Neighbors [1].
But more recently, Deep Learning-based solu-
tions have established themselves. While ap-
proaches based on Generative Adversarial Net-
works [13] train the model to produce imputa-
tions that are undetectable by a discriminator
from real data, autoencoder-based approaches
aim to learn a functional data representation to
impute missing data [5].

Although these solutions are directly applica-
ble to the feature set of graph-structured data,
they completely ignore the available structure of
the graph, which intuitively constitute a valu-
able source of information for the imputation.
Techniques that aim to use structure to improve
the quality of reconstruction (such as the one
presented in this work) include mainly inter-
polation algorithms derived from signal theory
[7], and various methods based on the smooth
propagation of known information on the graph
structure. One of them, Feature Propagation [8],
presents an interpolation process using messages
exchanged iteratively across the graph edges.

Moreover, a family of methods addresses the
problem of missing data by adapting the learn-
ing process rather than aiming at imputing the
missing entries. The "sparsity normalisation"
technique revisits zero imputation, the most
straightforward and natural approach in this
field of study [12]. Among the methods adapt-
ing the GNNs to the issue at hand, GCNmf [10]
computes the expected activation of input layer
neurons using a Gaussian Mixture Model to rep-
resent the missing data.

4. Background
The primary tasks in the field of Graph Machine
Learning (GML) can be classified as supervised
or unsupervised. The tasks - primarily classifi-
cation or property regression - for the supervised
methods can be at the level of a single node, an
edge, or the entire graph. The emphasis of the
work presented in this thesis is on supervised
node-level tasks.

2

Executive summary Francesco Puddu

Graph Neural Networks, which serve as the main
technology for the proposed solution, essentially
consist of an iterative process which propagates
the node representations on the graph structure
until equilibrium; followed by a neural network,
which produces an output for each node based
on its final representation. A single propagation
step updates the i-th node’s latent vector hi:

h
(l+1)
i = σ

∑
j

1

cij
h
(l)
j W (l)

 (2)

In order be consistent with the nomenclature
used in the literature, we use the abbreviations
xi for the original node features and hi for the
subsequent latent representations. The combi-
nation of the vectors of each neighbour j, nor-
malised by the factor c, is passed through a sin-
gle layer neural network, where W are the layer
weights and σ the non-linear activation.

A key distinction between Graph Neural Net-
works and previous solutions in the field of graph
analysis is precisely how they incorporate the
structural information of the graph into the
learning process.

5. Proposed Solution
We present a novel approach to the feature re-
construction problem for graph-structured data.
This will be articulated mainly in two aspects:

• A new formulation of the problem as an un-
supervised node-level task.
• A GNN architecture to impute node fea-

tures, called Graph Reconstruction Net-
work (GRN) that employs custom convo-
lutional layers aware of the partial lack of
node features.

The learning procedure for the feature imputa-
tion task entirely relies on the input graph with
partially observable features, as was mentioned
in Section 2. To target the reconstruction of a
(partially missing) feature f on G, a subset tf
of its known instances is used to obtain ground
truth labels for training purposes. The elements
of tf are hidden from the training data, thus
defining a new mask matrix Mf . Note that the
set complementary to tf remains available to the
model as a source of information. Figure 1 rep-
resents an example of the setting just described.

The rationale behind selecting GNNs for the im-
putation of node features is to exploit the dual
nature of the information present in the input
data:

• Semantic: encoded in the descriptive fea-
tures of each node.
• Structural: encoded in the connections

between nodes.

As discussed in Section 4, this family of models
can indeed learn complex feature patterns on the
graph for prediction.

Similar to CNNs in computer vision, this search
is intrinsic to the iterated operation of updating
the latent representations of nodes. Critically,
the general form of graph convolution shown in
(2) is not directly applicable to the case where
we have missing features in the graph. This
calls for the need to use a mask-aware variant
in the input layer that takes the incomplete fea-
ture matrix X as input. We can define a masked
convolution derived from the one proposed in [4]:

h
(l+1)
i = σ

∑
j

(
mj ⊙ h

(l)
j

)
∑

j mj
W (l)

 (3)

By allowing the known information on the graph
to propagate and subsequently update the vec-
tor representations of the nodes, this variant
aims to eliminate the contributions of non-
observable channels. This is achieved through
the hadamard product between each feature vec-
tor hj and the corresponding mask mj at the
numerator, which excludes the contribution of
the missing entries from the process. Note that
this is fundamentally distinct from, for instance,
what we could accomplish by imputing missing
values with zero: since neighbourhood aggrega-
tion typically involves averaging values, consid-
ering null entries would introduce noise into the
process. In practice, this layer has been imple-
mented using the matrix form of the previous
equation:

H ′ ← σ[(A(M ⊙H)⊘AM)W] (4)

Where ⊙ and ⊘ denote element-wise multipli-
cation and division respectively. Since both M
and A are sparse matrices, the overall operation
is computationally efficient.

3

Executive summary Francesco Puddu

The multi-layer architecture proposed for the
model follows the typical structures of the Con-
volutional Neural Networks. The first phase is
aimed at feature extraction and consists of a
stack of convolutional layers that progressively
update the latent representation of each node in
the graph. In the second phase, a neural net-
work (shared between the nodes) computes the
actual prediction for each target node, taking
the representation as input. The two phases are
trained end-to-end.

As anticipated, only the first convolutional layer
has to process representations from partially
missing data and thus requires the mask-aware
operator (3). A standard graph convolution (2)
is implemented in subsequent layers.

The number of stacked convolutional layers,
each with a dedicated set of weights W , is a
hyper-parameter that is directly related to the
concept of the receptive field. As mentioned in
Section 4, each layer represents the aggregation
of representations at a distance of 1-hop for each
node. It makes intuitive sense that the stacking
of l layers provides latent representations that
are influenced by nodes located l hops away.

Although a dedicated predictive model must be
trained for each feature to reconstruct, our ex-
periments suggest that using lightweight archi-
tectures is sufficient in practice to ensure a com-
petitive trade-off between training time, infer-
ence time, and prediction quality. In order to
further lighten the training process, in this work
we present an exploratory analysis of the efficacy
of subgraph sampling techniques. Our first re-
sults suggest that the predictive model can gen-
eralize after being trained on a relatively small
subset of nodes and the edges connecting them.
We argue that this is due to the recurrence and
locality of the most significant patterns in the
neighbourhoods of the nodes.

6. Experiments
6.1. Datasets
We apply artificial masks to real-world datasets
(graphs) in order to test the reconstruction per-
formance. The domain of the chosen graphs is
social networks, one of the areas of greatest in-
terest for the task at hand.

We use publicly available data from the MUSAE
project [9] database:

• GitHub: nodes (37k) stand for developers,
and the edges (289k) represent the connec-
tions between them. The professional pro-
file of the developer is encoded in the node
features. Labels show whether a node rep-
resents a specialist in the field of machine
learning based on the job title.
• Facebook: official Facebook pages are

represented by nodes (22k), and site-to-
site mutual likes are represented by edges
(171k). The site descriptions that the page
owners provided to summarize the purpose
of the site are the source for node features.
Labels such as "company" and "government
organization" identify the category to which
the page belongs the social platform.
• Twitch: nodes (7k) represent users and

edges (35k) are mutual follower relation-
ships between them. Vertex features are
extracted based on the activity of the spe-
cific user on the platform. Labels indicate
whether the user has been flagged for the
use of explicit language.

As anticipated in Section 2, we apply synthetic
masks on these datasets, for which we have the
complete feature matrix. The use of artificial
masks allows us to measure the quality of the re-
construction against ground truth values. The
procedure we used to produce masks that are
consistent with the data assumptions and that
represent various missingness scenarios is essen-
tially based on two probabilistic distributions: a
skew-normal ϕ1 and a Bernoullian ϕ2. For each
feature, a first sample from ϕ1 specifies the miss-
ingness rate, which serves as parameter for ϕ2.
Finally, we sample from the Bernoullian whether
each value is available (1) or not (0). As required
by the MAR hypothesis, the result is indepen-
dent of the value of the single features.

We are able to flexibly investigate various miss-
ingness scenarios thanks to the shape parameter
of ϕ1. In this thesis, we thoroughly discuss this
aspect to assess the robustness of GRN in var-
ious scenarios. For the sake of brevity, in this
summary we only present the results obtained
in the intermediate scenario in which the pa-
rameter is set to 0 and ϕ1 is thus equivalent to
a normal distribution.

4

Executive summary Francesco Puddu

Reconstruction Loss Downstream Loss
GitHub Facebook Twitch Github Facebook Twitch

GM 0.488 0.375 0.530 0.354 0.283 0.412

NM 0.429 0.318 0.422 0.292 0.258 0.331

VAE 0.313 0.239 0.350 0.225 0.202 0.267

GAN 0.307 0.240 0.341 0.242 0.210 0.253

FP 0.226 0.201 0.258 0.196 0.185 0.224

KNN 0.231 0.195 0.243 0.201 0.184 0.236

GRN 0.172 0.211 0.208 0.165 0.186 0.191

Table 1: Comparison of feature reconstruction models

Downstream Loss
GitHub Facebook Twitch

GCNmf 0.168 0.169 0.178

GRN & GCN 0.165 0.186 0.191

GRN & Spline 0.119 0.179 0.160

Table 2: Comparison of complete node classifi-
cation pipelines

6.2. Network Architecture
For each dataset, we carry out a tuning process
of hyper-parameters such as the number of graph
convolutions, latent dimensions, weight decay,
and the dropout rate. Adam serves as our SGD
optimizer. Although it makes intuitive sense
that the complexity of the architecture tends to
rise as the complexity of the reconstruction task
rises, it is interesting to note that in the pro-
posed experimental setting, the competitiveness
of lightweight models emerges empirically. In
particular the optimal number of model param-
eters does not exceed 400k for any of the three
benchmarks under consideration.

6.3. Metrics
As anticipated in Section 2, we assess various
experiments in light of two relevant dimensions:
• Reconstruction Loss: similar to most

studies, we report RMSE, with the error be-
ing |X̃ − X ′|. The measure is normalised
with respect to the loss corresponding to
zero imputation, for ease of interpretation.
• Downstream Loss: since this is a node

classification task, we report the difference
in terms of average class accuracy score.

6.4. Compared Methods
We compare the proposed Graph Reconstruc-
tion Network to various state-of-the-art fea-
ture imputation solutions applied on graphs.
Moreover, as a baseline for each experiment,
we report the results obtained with naive
statistical methods like as global (GM) and
neighbourhood-based (NM) mean imputation.
The representative imputation approaches we
select from Section 3 are Variational Autoen-
coder (VAE), Generative Adversarial Network
(GAN), and Feature Propagation (FP).

We also compare against GCNmf, a method
that extends GNN architectures to directly train
on incomplete graphs for the downstream task
(such as node classification) without an explicit
intermediate feature imputation step. As it aims
directly at the downstream task, GCNmf is not
directly comparable with GRN. However, we can
achieve a comparison by combining GRN with
downstream classification models that complete
the pipeline.

Finally, to further enrich the experimental set-
ting, we present an approach that extends the
KNN approach to the graph domain by defining
a similarity function based on the graph struc-
ture. The rationale of this method is to exploit
known node embedding techniques (in this work
we resort to Node2Vec [3]) to project each node
of the graph onto a continuous space in which
distances encode graph proximity. This allows
to exploit a KNN regression strategy based on
Euclidean distances between nodes. To the best
of our knowledge, this is the first such approach
in the context of imputation on graphs.

5

Executive summary Francesco Puddu

6.5. Results
The first set of experiments compares imputa-
tion models. To assess the performance loss, we
employ a standard GCN [6], which we train for
the downstream classification task. The results,
in Table 1, demonstrate a competitive perfor-
mance on both metrics. In terms of comparison,
the proposed solution slightly outperforms the
other models on the GitHub and Twitch bench-
marks. The KNN-based method performs best
in both metrics on the Facebook dataset and
demonstrates alignment with FP, with whom it
shares the iterative local smoothing approach.

For the second set of experiments, aimed at com-
paring the proposed solution against GCNmf, we
resort to two downstream classification models,
again a standard GCN and a Spline [2] architec-
ture, which employs a more sophisticated convo-
lution strategy based on B-splines. The results,
in Table 2, once more demonstrate a competitive
reconstruction quality by the proposed solution
on the benchmarks. The best results, in particu-
lar, are obtained against GCNmf on the GitHub
and Twitch datasets. Empirically, the resulting
performance appears to be strongly influenced
by the selected downstream classification model:
the pipeline using Spline consistently reports the
best results.

7. Conclusions
In summary, we addressed the problem of imput-
ing missing node features in a graph by framing
it as a node-level Machine Learning task. The
proposed solution consists of a novel GNN ar-
chitecture in which convolutions exploit both the
graph structure and available features to predict
the missing ones. Such architecture is trainable
independently of the availability of a complete
graph. We tested the proposed solution on real-
world benchmarks in various conditions showing
a consistent competitive performance in terms of
imputation quality against the actual state-of-
the-art solutions. The results indicate that ap-
plying Graph Neural Networks to the problem
of imputing missing node features on a graph is
a promising research direction to enable higher
quality estimations.

References
[1] Batista and Monard. A study of k-nearest

neighbour as an imputation method. 2002.

[2] Fey, Lenssen, Weichert, and Müller.
Splinecnn: Fast geometric deep learning
with continuous b-spline kernels, 2018.

[3] Grover and Leskovec. node2vec: Scalable
feature learning for networks, 2016.

[4] Jiang and Zhang. Incomplete graph rep-
resentation and learning via partial graph
neural networks, 2021.

[5] Kingma and Welling. Auto-encoding varia-
tional bayes. 2013.

[6] Kipf and Welling. Semi-supervised classifi-
cation with graph convolutional networks.
2016.

[7] Narang, Gadde, and Ortega. Signal
processing techniques for interpolation in
graph structured data. 2013.

[8] Rossi, Kenlaya, Gorinova, Chamberlain,
Dong, and Bronstein. On the unreason-
able effectiveness of feature propagation in
learning on graphs with missing node fea-
tures, 2022.

[9] Rozemberczki, Allen, and Sarkar. Multi-
scale attributed node embedding, 2021.

[10] Taguchi, Liu, and Murata. Graph convolu-
tional networks for graphs containing miss-
ing features. 2020.

[11] van Buuren and Groothuis-Oudshoorn.
Mice: Multivariate imputation by chained
equations in r. 2011.

[12] Yi, Lee, Hwang, and Yang. Sparsity nor-
malization: Stabilizing the expected out-
puts of deep networks. 2019.

[13] Yoona, Jordon, and van der Schaar. GAIN:
missing data imputation using generative
adversarial nets. 2018.

6

	Introduction
	Problem Formulation
	Related Work
	Background
	Proposed Solution
	Experiments
	Datasets
	Network Architecture
	Metrics
	Compared Methods
	Results

	Conclusions

