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Abstract

This thesis aims at investigating some theoretical and numerical properties of the 2D Cahn-
Hilliard-Boussinesq equations with logarithmic potential. They consist in the coupling of
the Cahn-Hilliard equation for the concentration difference ¢ of two components of a binary
system to the heat-conductive Boussinesq equations for the (volume averaged) fluid veloc-
ity u of the mixture and the temperature 0. The resulting system models the interactions
between the thermodynamic transition and the hydrodynamic flow of a compressible binary
mixture in a phase separation process. We first prove the existence of weak solutions, with
standard boundary conditions for ¢ and u (i.e. no-flux and no-slip) and nonhomogeneous
Dirichlet boundary conditions for . Then we establish the existence of more regular solu-
tions. More precisely, the existence of a quasi-strong solution provided that the initial data
for ¢ and u are more regular, and the existence of a strong solution if the initial temperature
is enough regular as well. We also obtain some stability estimates in case of more regular
initial data: a continuous dependence estimate on the initial data which yields, in partic-
ular, the weak-strong uniqueness and a stronger stability estimate for strong solutions. In
particular, we also find the uniqueness of quasi-strong solutions. We then study the prob-
lem numerically by discretizing the equations. We first develop a numerical scheme that
we prove to be mass-preserving and stable with respect to the total energy, under suitable
conditions on the parameters. Furthermore, we exploit an adaptive timestep since the time
scales are quite variable over time. Finally, we implement the proposed algorithm and we
numerically simulate some scenarios with various initial temperature fields, by verifying the

stability and mass-preserving properties of the scheme.
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Sommario

L’obiettivo di questa tesi € quello di investigare alcune proprietd teoriche e analitiche delle
equazioni di Cahn-Hilliard-Boussinesq in 2D con potenziale logaritmico. Queste consistono
nell’accoppiamento dell’equazione di Cahn-Hilliard, per la differenza di concentrazione ¢ tra
due componenti di un sistema binario, con le equazioni di Boussinesq per la conduzione del
calore, per la velocita u (media sul volume) della miscela e per la temperatura 6. 1l sistema
risultante modellizza le interazioni tra transizione termodinamica e flusso idrodinamico di
una miscela binaria comprimibile durante il processo di separazione di fase. Per prima cosa
si dimostra l'esistenza di soluzioni deboli, con condizioni al bordo standard per ¢ e u (i.e.
assenza di flusso e no-slip) e condizioni di Dirichlet non omogenee per . In seguito si
stabilisce I’esistenza di soluzioni pin regolari. Piu precisamente, si prova l'esistenza di una
soluzione quasi-forte, purché i dati iniziali per ¢ e u siano pitt regolari, e ’esistenza di una
soluzione forte se anche la temperatura iniziale é sufficientemente regolare. Si ottengono
anche delle stime di stabilitd in caso di dati iniziali pit regolari: una stima di dipendenza
continua dai dati iniziali che garantisce, in particolare, I'unicita debole-forte e una stima di
stabilita per soluzioni forti. In particolare, si mostra anche 'unicita delle soluzioni quasi-
forti. Si studia poi numericamente il problema, discretizzando le equazioni: si sviluppa uno
schema numerico che si dimostra conservare la massa ed essere stabile rispetto all’energia
totale, sotto opportune condizioni sui parametri. Si sfrutta poi un passo temporale adattivo,
poiché le scale temporali sono piuttosto variabili nel tempo. In conclusione, si implementa
I’algoritmo proposto e si simulano numericamente vari scenari con diversi campi iniziali di

temperatura, verificando la stabilita e la proprieta di conservazione della massa.
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Introduction

In many scientific, engineering and industrial applications, for instance in hydrodynamics,
the study of the evolution in time of incompressible binary mixtures and their interfacial
dynamics plays an important role to understand the behavior of the systems. We can find
many applications where the modeling of mixtures of different fluids is needed, such as
phase separation, liquid crystals, image processing and, more recently, tumor growth (see,
for instance, [19], [33], [35], [36], [38], [47], [4]]).

One of the oldest approaches to multi-phase problems (i.e., problems with different
components of a mixture) is the phase-field method. According to [42], as early as 1873, the
work of Gibbs on thermodynamics already served as a foundation ([59]). The phase-field
method works with diffuse interfaces, which means that the transition layer between the
phases has a finite size. There is no tracking mechanism for the interface, but the phase
state is included implicitly in the governing equations. The interface is associated with a
smooth, but highly localized variation of the so-called phase-field variable.

In this introduction, we introduce the Cahn-Hilliard (CH) equation, which is proba-
bly the most known mathematical model, for phase separation and then we motivate and
formulate the Cahn-Hilliard-Boussinesq equation (CHB), which is the coupling of CH to the
heat-conductive Boussinesq equations, system whose analysis is the object of this thesis.

Consider a mixture of two incompatible substances A and B, which is homogeneously
distributed and isothermal. Under certain circumstances, namely if the temperature is above
a critical threshold T, this configuration is stable; however, if suddenly cooled down and
kept at T < T, , the initially (macroscopically) homogeneous alloy evolves in a way such

that A-rich and B-rich regions appear and grow.
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Figure 1: Phase diagram: on the z axis the concentration, on the y axis the temperature is

represented, as taken from [84].

We can better describe what happens with the aid of the phase diagram in Figure [T}
which is in good agreement with experimental evidence (see [12], [70]). On the z-axis the
relative concentration of one of the two substances is represented, while temperature is on
the y-axis. The state of the mixture is then efficiently described by the different locations
on the graph relatively to the two represented curves.

The coexistence curve, which is the external curve in the graph, separates the diagram
in regions where a homogeneous distribution is the only stable configuration (above the
curve) and where heterogeneous mixtures are allowed (under the curve); on the points along
the curve the mixed and unmixed states are in equilibrium with each other.

On the other hand, the spinodal curve, which is the inner curve in the graph, divides
the area under the coexistence curve in regions where the mixed configuration is metastable
(that is, stable with respect to small perturbations) and unstable. The distinction in these
two cases is due to a difference in the free energy of the configuration: the central region
is characterized by the spinodal decomposition phenomenon, which is the phenomenon we
want to observe in the numerical simulations of this thesis. It occurs for phases that are
thermodynamically unstable, and thus it is spontaneous. On the contrary nucleation hap-
pens in the metastable regions, but only if an external source is provided which makes it

possible to get over a local maximum in the free energy (see, e.g., [94]).
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Figure 2: Spinodal decomposition in time, as taken from a numerical simulation in [26].

The evolution in the spinodal decomposition region is that of wave-like concentration
fluctuations which in the end form zones of the two phases, with a subsequent coarsening;
the process comes to an end when the concentration lays on the intersection of the spinodal
curve with the line corresponding to the temperature T (see Figure . For more information
about the process of phase separation, we refer the interested reader to, e.g., [63] and [91],
and references therein.

The CH equation was introduced in [6] and [2I] to model phase transitions in iron
alloys and the thermodynamic forces driving phase separation, respectively. We now briefly
present it. Let € be a bounded domain in R, n = 2, 3, filled with a binary solution consisting
of A and B atoms. We define their relative mass fraction (assumed to be non-uniform) as
va(z) and ¢p(z), with ¢ : @ — [0,1], k = A, B and pa(z) + ¢p(z) = 1. Considering
@4 and relabeling it as ¢, if the mixture is isothermal and the molar volume is uniform and

independent on pressure, the system evolves in order to minimize the free energy functional
@ 2
£p) = [ (31V6P +¥(p)) da 1)
where U(y) is the Helmholtz free energy density
V() = 2kpTep(l — ) + kpT(pln(p) + (1 — ¢)In(1 — ¢))

with kp as the Boltzman constant, T, T, the temperature and the critical threshold, respec-

tively. The phase separation process takes place when T' < T, i.e. when ¥ is a double-well



function. As described in [85], the term with «, a constant called capillary coefficient, was
added in the definition of free energy in order to add concentration gradients to ¥, which
regularize the problem, otherwise ill-posed in the spinodal region, but it is also consequence
of experimental evidence, since in the experiments there is an intermediate diffusive stripe,
whose thickness is proportional to v/a. The capillary coefficient is assumed to be very small,
so the first term in (1)) is not negligible only where strong gradients of concentration, i.e.,
at interfaces, are present, as explained in [99]. In general for the mathematical treatment
of this kind of equations, it is used the order parameter, p(x) = pa(x) — ¢p(z), such that
¢ : Q — [—1,1], instead of the relative concentration. The values —1 and 1 represent
the pure phases. Nevertheless, in the numerical analysis section we shall use the relative
concentration, as done, e.g., in [64]. It can be shown that, with this substitution, up to a
multiplicative constant which therefore does not change anything in the description of the

problem, holds unchanged whereas the function ¥ can be rewritten as

U(s) =

N | QI

(1 +s)In(1 + ) + (1 — 8)In(1 — 5)) — %32 Vs € [-1,1] 2)

with @ such that 0 < & < agp, constants related to the temperature of the mixture, thus
related to T and T,.

The potential defined in this way is called singular, whereas many authors (see, e.g.,
[51]) considered a proper approximation, which avoids the fact that ¥ is unbounded at the
pure phases —1 and 1: namely, the significant potential is considered to be still a double-
well, but with the two local minima coinciding with the pure phases. The most common
choice is polynomial of even degree, like the case ¥(s) = 3(32 —1)?, which is compared with
the logarithmic potential in Figure However, in the case of polynomial potentials, it is
worth recalling that it is not possible to guarantee the existence of physical solutions, that
is, solutions for which —1 < p(z,t) < 1.

Following again [85], we get a differential description of the phenomenon of the phase
separation as

O+ divI =0 in Qx (0,7), (3)



Singular potential and regular potential: a comparison
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Figure 3: Logarithmic and polynomial potentials (the logarithmic potential is vertically
translated to have a more clear graphical representation): we see that the polynomial po-

tential gives rise to nonphysical solutions.

where ¢ is the order parameter and J is the diffusional flux given by Fick’s law,

6 ()

J = —M(SD)VW

= —M(p)V(—alp + ¥'(p)),

0E(p

op
substances and in this thesis it will be considered as a unitary constant (see, for instance,

~—

where

is the variational derivative of £(¢). The function M (y) is the mobility of the

[29] and [39] for an analysis of the case of non constant and degenerate, i.e., vanishing at
the pure phases).

In order to simplify the representation, which otherwise must contain the bilaplacian
operator, the equation is usually written introducing the chemical potential p, obtaining
the complete CH equation:

Orp =div (M(¢)Vp) in Q

(4)
p=—alp+¥'(p) inQ.

with the initial condition g and two boundary conditions, since the system is of fourth
order. In this thesis, as commonly done in the literature, the boundary conditions are the
following:

n-M(e)Vu=0, Onp =0 on 012, (5)



with n as the outer normal vector. These conditions are often used, since they guarantee
mass conservation. Since in this thesis we only considered the case of constant mobility, for
the sake of simplicity, from now on we will set M(p) = 1.

As introduced in [2], a system describing the flow of two viscous incompressible New-
tonian fluids of the same density but different viscosity can be described by means of the
coupling of CH equation with a hydrodynamic model. Indeed, although it is assumed that
the fluids are macroscopically immiscible, the model takes a partial mixing on a small length
scale measured by the aforementioned parameter o > 0. Therefore the classical sharp inter-
face between both fluids is replaced by an interfacial region and an order parameter related
to the concentration difference of both fluids is introduced, leading to the coupling with
CH equation. The model goes back to [67] and is known as model H. In [66], the authors
gave a continuum mechanical derivation based on the concept of microforces. These have
been successfully used during last years to describe flows of two or more fluids beyond the
occurrence of topological singularities of the separating interface (for example, coalescence
or formation of droplets). We refer to [7] for a review on that topic.

This model leads to the so called incompressible Navier-Stokes-Cahn-Hilliard (NSCH)
system

Op+u-Vo=Au
p= —alp+9'(p)
Ju+ (u-Vi)u+ Vp —div(v(p)Vu) = uVe

divu=0

in Q x (0,7, subject to the boundary and initial conditions

u=0, Ohp=0, Onu=0 ondQdx(0,T) 0
7
u(-,0) = uy, o(+,0) = vo in Q.
Here, u is the volume averaged velocity, p the pressure, ¢ the order parameter related to
the concentration of the fluids, ¥ is the double-well potential defined in ([2]), or a suitable

smooth approximation, and Q C R"™, n = 2,3, is a suitable bounded domain. Moreover,

v(p) > 0 is the viscosity of the mixture. We consider 7" > 0.



Now, assuming that v and v, are the viscosities of the two homogeneous fluids, the
viscosity of the mixture is modeled by the concentration dependent term v = v(yp). In the
unmatched viscosity case (11 # v2), a typical form for v is the linear combination (see, e.g.,
[77]):

1+2 1-=2

v(z) =1 5 T Vz € [-1,1] (8)

The particular case v; = v is called matched viscosity case, and v is a positive constant.
In this thesis we consider a coupling of the CH equation with a different hydrodynamic
model, which is represented by the heat-conductive Boussinesq equations. Such equations

account for the presence of a further variable: the temperature 6.

du+ (u-V)u+ Vp —div(v(p,0)Vu) = fe,
divu=0 ©)

80 +u -V — div(x(0)V0) = 0,

in Q x (0,7], where k > 0 is the thermal conductivity, possibly depending on 6. The
kinematic viscosity v could depend on the temperature itself and e, = (0,0,1) if n = 3, and
e, =(0,1)if n =2,

System @ describes the motion of an incompressible two-phase flow subjected to
convective heat transfer under the influence of gravitational force, which is closely related to
the studies of 3D incompressible flows (see, e.g., [11] and [88]) and has been widely studied
in the literature. We refer to [22|, [24], [25], [72], |[73] and the references therein for the
Cauchy problem on the whole space, and to [14], [79], [100] and the references therein for
initial-boundary value problems, where global existence and large time behavior of solutions
to 2D Boussinesq equations with full or partial viscosity terms are investigated, whereas for
a regularity analysis in bounded domains we recall [74].

In a bounded domain 2 C R", with n = 2, 3, with smooth boundary 02, the resulting



coupled system reads as follows:

Op+u-Vo=Au

p= —alp+¥(p)

du+ (u-V)u+ Vp — div(v(p,0)Vu) = uVe + e, (10)

0 +u- VO —div(k(6)V0) =0

divu=0

in  x (0,7}, equipped with the boundary conditions

u=0 0Ohp=0 0Onu=0 6=g(t) onodQdx(0,7) (11)

being n the outward normal to 0f), and the initial conditions

u0)=uo ¢0)=¢o p0)=p 6(0)=0 inQ (12)

where ¢ is a sufficiently regular function defined on 99 x [0, T.
The main focus of this thesis is the analysis of this system, called Cahn-Hilliard-Boussinesq
system (CHB), in a two dimensional bounded domain Q C R?.

We stress again that, as noticed in [86], hydrodynamic models like the CHB system
play an important role in the mathematical study of multi-phase flows, since the applications
of these systems cover a very wide range of physical objects, such as complicated phenomena
in fluid mechanics involving phase transition, two-phase flow under shear through an order
parameter formulation (see, e.g., [17]), tumor growth (see, e.g., [19],[33], [35] and [3§]), cell
sorting ([9]), and two phase flows in porous media (see, e.g., [30] and [75]).

We now give another interesting motivation to study system : indeed, apart from

the physical relevance of the system itself, it can be regarded as a suitable approximation



of the compressible Navier-Stokes-Cahn-Hilliard system, as obtained in [85] with a rigorous
physical derivation.

In particular, this system reads: in Q x (0,7), Q C R", n=2,3

Op+u-Vp+div(u) =0

poru+ p(u- Viu+ Vp —div(rv(e)Du) — V(div u) = —div(pVe @ Vo) + pg (13)

(6 2

pop +pu- Ve =A (—pdw(pvw) + W’(s@)) ,
with suitable boundary and initial conditions. Here p is the fluid density, u is the mean
velocity, ¢ the aforementioned order parameter, W is the double-well potential, « is the
capillary coefficient, and g = —ge,, is the gravitational force.

We can now apply a variational method in order to obtain a simpler system of equa-

tions ([62]). We consider the stationary solution:
pt=const #0, u* =0, ¢* =0, p*
and write the system for the perturbation
(p+p" u, ¢, p+p).
From the first equation in we obtain
dp+p)+u-V(p+p")=—(p+p)div u,

implying that
Op+u-Vp=—p“divu— pdiv u.
Now, since this equation holds for any p* = const € RT, we can decouple the following two

contributions, the first one which is a first order equation in p, the second one which is a

zero order equation in p and p*:

Op+u-Vp=—pdiv u

divua=0



and thus
Oop+u-Vp=0
(14)
divu=0.
From the second equation of , we deduce, after performing the perturbation argument,

that

(p+p")oa+ (p+p")(u- V)u+ V(p+p*) — div(v(p)Du) — V(div u)
= —div((p+p)Ve® V) + (p+p)8.

We recall that, being (p*, u*, ¢*, p*) a stationary solution of (L3)), it holds the hydrostatic
balance
Vp*' =p'g.

Thus we get, remembering that we found, in , divu =0,

(p+p")oa+ (p+p")(u-V)u+ Vp —div (v(p)Du)

= —p"div(Vp @ Vi) — div(pVep @ Vo) + pg.

Dividing by p* we reach

1
du+ (u-V)u+ %atu + £ (u-V)u+ EVP —div <Vlgf)Du>

= —div(Ve ® V) — div <;)*ch ® V(p) + %g.

Since p* is arbitrary, we can take it arbitrarily large, such that p << p*, namely p—p* ~ 0,
and we can neglect all the terms with this coefficient in front, except the gravitational one,

because it is linear and for an energy budget argument, finding:

1
du+ (u-Viu+ EVp —div <VI(0(f)Du> = —div(Vp ® V) + %g. (15)

In conclusion, from the third equation in , we obtain

* * (0%
(p+p" )00+ (p+p )U'V¢:A<—p+

—div (o)) + \w)) .

Dividing by p* we get

1 1
p p P+ p p

10



where we exploited the fact that

11
prpt prl+k

By using again that ﬁ* ~ 0, we find
P

1
dp+u-Vo=A (—;div(Vw) + p*‘lll((p)> ,

namely

1
o +u- Vi = A(—%Aw V() (16)

Putting together equations , and , we are then led to formulate an equivalent
version of system , always with suitable boundary and initial conditions:

;

Op+u-Vp=0

1
du+ (u- V)yu+ —Vp —div <V(f)DU> = ~div(Vp @ V) — L ge,

p . ’ P (17)
dp+u-Vo=A <_,0*A80 + mqﬂ(@))

divu=0.

Comparing it to the CHB system , we can find that, up to multiplicative constants,
irrelevant from the point of view of the mathematical analysis, considering € to be the
density p, we obtain the same system, for k = 0, i.e. for vanishing thermal conductivity.
Actually, the two systems differ for the term —div(Vp ® V), which substitutes the term
uV in , with p the chemical potential, but this is just an equivalent formulation, since
we have

pVe = (—alp + V'(9)) Ve

and

(6% .
pVe =V (§\V¢!2 + ‘If(w)) —a div(Ve ® Vi)

and then the weak formulations of the systems are the same, as we can see by a simple
integration by parts, taking into account the boundary conditions of . This is a further

strong motivation to study the CHB system, because it can give information about different

11



problems arising from different contexts, namely the solution to the system could be seen
as the limit of the solutions to the CHB system when x — 0 (considering the temperature as
the density): analyzing the properties of the CHB system solutions could thus give important
information also for this system.

We recall that the literature on the incompressible NSCH system is rather vast. For
instance, the system has been widely studied in the case of a regular approximation of the
logarithmic potential. In the matched viscosity case we refer the reader to [10], [17], [53],
[54], [55] and [60] (see also [16], [23] and [57] for the analysis of similar systems). In the
unmatched viscosity case, the author in [I7] proved the global existence of weak solutions
and the existence and uniqueness of strong solutions (global if n = 2, local if n = 3).
The NSCH system with unmatched viscosities and logarithmic potential has been studied
in [2], where existence of global weak (physical) solutions and existence and uniqueness of
strong solutions (global if n = 2, local if n = 3) are shown (see [2], Theorem 1 and 2),
and in [61], where in dimension two it is proven the uniqueness of weak (physical) solutions
and the global existence and uniqueness of strong solutions under regular initial conditions,
together with long time behavior properties, whereas in dimension three it is proven the local
existence and uniqueness of strong solutions when the initial data are sufficiently regular.
Finally, we refer to [I] for the existence of weak solutions for the corresponding compressible
model of NSCH, like system ([13]).

On the contrary, not so many papers have been devoted so far to the analysis of
the CHB system. In [I0I] the author proves, in two-dimensional bounded domains, the
global existence and uniqueness of smooth solutions to problem (10) with smooth initial
data ug, 6y € H?(Q) and oy € H°(Q), considering constant Dirichlet boundary conditions
for the temperature and no-penetration boundary condition for the velocity (u-n = 0 on
00 x (0,T)), since the fluid is considered inviscid (v = 0), together with a regular potential
¥ € C%(R) (see [I01], Theorem 1.1 for the details). The same author then studied in [102]
the large time asymptotic behavior of the solutions, under the same hypotheses. In [46] the
authors considered the vanishing limit for a 2D Cahn-Hilliard-Navier-Stokes system with

a slip boundary condition, and in a similar way they considered the inviscid CHB system

12



n [45], finding some blow-up criteria of smooth solutions for three dimensional bounded
domains, proving that a smooth solution of the 3D CHB system with zero viscosity in a
bounded domain breaks down if a certain norm of vorticity blows up at the same time.

They always consider in the analysis the regular polynomial potential

1

W(p) = 44— 12, (18)

where ¢ is the order parameter.

Few works dealing with the CHB system with nonzero viscosity are available in the
literature, though: in [86] the existence and uniqueness of a weak solution (u,,#), with
no-slip boundary conditions for velocity and homogeneous Neumann conditions for tempera-
ture, in two-dimensional bounded domains with smooth boundary, is established and proved,
together with some further regularity properties when the initial data are sufficiently regular
(namely when at least ¢g € H 4(Q) together with uy and 6y belonging to suitable spaces,
see [86], Theorem 1.2) and again the analysis is performed in the case of the polynomial
potential as in (I8). In conclusion, in [44], vanishing thermal conductivity  limit for the
2D CHB system in a bounded domain with no-slip boundary conditions for the velocity and
homogeneous Dirichlet boundary conditions for the temperature is studied, always consid-
ering the potential in the analysis. At this stage we note that so far some important
issues are still unsolved, in particular the analysis of the CHB system with the physically
relevant singular potential . No results about existence or uniqueness of weak solutions
or strong solutions are available. Moreover the nonhomogeneous Dirichlet conditions for the
temperature field has not been considered so far.

The aim of this work is to give an answer to the aforementioned open questions.
Namely, our main results for the CHB system in a two-dimensional bounded domain with

singular potential are the following:

(a) The existence of weak physical solutions in the unmatched viscosity case, with no-
slip boundary conditions for the velocity and nonhomogeneous Dirichlet boundary

conditions for temperature.

(b) The existence, in the matched viscosity case, of more regular solutions, namely of a

13



quasi-strong solution (see Definition [1.2)), and of a strong solution (see Definition [1.3)),

when the initial data are sufficiently regular.

(¢) In the matched viscosity case, we obtain some stability estimates in different norms,
depending on the regularity of the initial data, from which we obtain a weak-strong
uniqueness result and, in particular, the uniqueness of the quasi-strong and strong

solutions.

For what concerns the numerical analysis and approximation of the phase field model,
in the literature we can find a large number of studies: we refer to [§], [39], [40], [41], [64],
[87] and the references therein. About the NSCH system instead, we refer the reader to [27],
28], [49], [50], [71] and [95]: in particular stability and convergence analysis and numerical
simulations are performed. We then cite [77] for multicomponent fluid flows, [76] for a
multigrid approach applied to CH fluids and [I5] for a study on the advective CH equation
by means of Isogeometric Analysis. Nevertheless, to the best of our knowledge, results
concerning and specifically addressing the numerical approximation of the CHB system are
not available in literature yet. Here we propose a numerical scheme to address this not yet
studied system by means of finite elements, based on an extension of the one employed for
the only CH equation in [64]. Differently from the scheme in [64], in this scheme we consider
also the velocity u and the temperature . We prove that the scheme is mass-preserving and
energetically stable, under some conditions on the parameters x and v. The total energy is
defined as
B = 3lalP + SlI61P + STl + | wlods (19)
Q

Energy stability means that the total energy of the system does not increase in time, as it
is physically necessary, at least for the homogeneous Dirichlet boundary conditions for the
temperature. In order to reduce the computation time, we also introduce an adaptive time
step, which should exploit the different time scales characteristic of the CHB system. The
time adaptivity does not change the properties of the scheme, since they do not depend on
the size of the timestep. By means of the software FreeFem+-+ ([69]), we simulate five dif-

ferent cases, corresponding to five different initial conditions and verify the main properties
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of the scheme: conservation of mass and energy stability.

Thus, the plan of the thesis is the following:

e In Chapter 1 we introduce the functional spaces and the main assumptions on the
system, leading to the definition of weak formulation of the problem. We then conclude

with the definitions of quasi-strong and strong solutions.

e In Chapter 2 we state the theorems of existence of weak, quasi-strong and strong
solutions, together with the stability estimates leading to the uniqueness of the quasi-

strong and strong solutions.
e In Chapter 3 we give the proofs of the existence theorems stated in Chapter 2.

e In Chapter 4 we give the proofs of the stability estimates, and uniqueness theorems,

stated in Chapter 2.

e In Chapter 5 we realize the numerical approximation of the CHB system in space, by
means of Finite Elements Method, and in time. We perform the numerical analysis
of this approximation, concentrating on its stability, in terms of total energy, and

accuracy.

e In Chapter 6 we perform and discuss five simulations in order to verify the numerical

properties highlighted in Chapter 5.

e "Conclusions and future work" contains some issues which are worth investigating but

have not been explored in this thesis.

e Appendix A reports some basic tools from functional analysis used in the thesis. Ap-
pendix B is devoted to some results on three stationary problems which play a basic

role in the proofs.
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Chapter 1

Weak formulation and notions of

solution

1.1 Functional setup
Here we introduce notation and the functional spaces which are needed to introduce the
weak formulation of problem . Let Q be a smooth bounded domain of R

e For the velocity field we set:

Hl (Q)2

L2(Q)2

H, ={ue C§°(Q)?: div(u) =0} Ve={ue C°(Q)?: div(u) =0}

In the sequel, we denote by (-, -) and ||-|| the norm and the inner product, respectively,
in H, and we consider in V,, by means of Poincaré’s inequality (A.1), the inner

product (u,v)y, = (Vu, Vv) and the norm ||v||yv, = ||VV]].
e For the temperature field we define:
H=1*%Q), Vy=H;(Q) Vi=VynH*Q).
We denote by (+,-) and || - || also the norm and the inner product, respectively, in H.

e For the concentration field ¢ we set:

V=HYQ), Vo={veH*Q): dqv=0o0n 0N}
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We also denote by (-,-)1 and || - [|1 (or also || - ||y/) the inner product and the norm in

V ([o][} = [Jo]? +[|Vo][?).
- 1
e For any f € L'(Q) we define its spatial average f = |Q|/ fd.
Q

e We define, for any u, v, w € [H(Q)]*:

2
b(u,v,w) = Z /Qujggwi dzx.
J

ij=1
We take a slight generalization of the logarithmic potential ¥, namely a quadratic pertur-

bation of a singular (strictly) convex function in the closed interval [-1, 1].

More precisely, we consider
U(s) = F(s) — 202 (1.1)

where the convex part F, extended by continuity at —1 and 1, belongs to C([-1,1]) N
C?3(—1,1) and fulfills

lim F'(s) = —o0 lim F'(s) = +oo F'(s)>a Vse(-1,1),

s——1 s—1
namely we consider a double well potential (see the Introduction), assuming & = ag—a > 0.
This means that

U'(s)>—-a Vse(-1,1). (1.2)

We also extend F'(s) = +oo for any s ¢ [—1,1].

Notice that the above assumptions imply that there exists sy € (—1,1) such that
F'(s9) = 0. Without loss of generality, we assume that sg = 0 and that F(sg) = 0 as well.
In particular, this entails that F(s) > 0 for any s € [—1,1]. Moreover we require that F” is
convex and

F"(s) < CeCl"Ol ys e (=1,1) (1.3)

for some positive constant C. Also, we assume that there exists v € (0,1) such that F” is
nondecreasing in [1 —+, 1) and nonincreasing in (—1, —1 4 ~]. These hypotheses are fulfilled
by the potential in , which is

U(s) =

N | Qi

(14 s)n(1+s)+ (1 —s)ln(l — s)) — %32 Vs € [=1,1] (1.4)
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with @ such that 0 < & < ay.
We now consider the following properties for the kinematic viscosity v and the thermal
conductivity k:

let v : R? - R and & : R — R two globally Lipschitz functions, such that:
0 <wve <v(z1,22) <V* V (21,22) € R2 (1.5)

and

0<ki<k(z) <EkE* VzeR (1.6)

for some positive values vy, v*, k. and k*.

We notice that the viscosity function can be easily extended on the whole R in
such way to comply (L.5)).

We are now ready to define the weak formulation of the problem.

1.2 Weak formulation

We can now list the assumptions on the thermal conductivity k, the kinematic viscosity v,

the boundary values and the initial conditions.

(H1) k and v are globally Lipschitz functions fulfilling and ([L.6)),

(Hy) the boundary value g satisfies g € L*(0,T; H/2(8Q)) and 8;g € L*(0,T; HY/2(8%)),
(H3) o € VN L¥(Q) with [|gol| L= @) < 1, |@o| <1,

(Hy) up € Hy,

(Hs) 6p € H.

Definition 1.1. Weak solution

Let hypotheses be satisfied. Given T' > 0, a triple (u, ¢, 6) is a weak solution on
[0,T] if

e uc L®(0,T;H,) N L*0,T;V,) and dyu € L*(0,T; V');
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e 0 € L®0,T;V)NLY0,T;V5) c L*(0,T;V) and 0y € L*(0,T; V'),
p e L>®(Qx(0,T)) and |p(x,t)] < 1 a.e. (z,t) € Qx (0,T);

e 0 L®0,T;:H)NL*0,T;V), § = g ae. on 92 x (0,T) in the sense of traces and
00 € L*(0, T Vy);

< o, w > +b(u,u,w) + (v(p,0)Vu,Vw) = —(oVu,w) + (,e2-w) Vw eV,

(1.7)
<O, v > +H(Vp, Vo) + (u-Ve,v) =0 YoeV (1.8)
< Of,& > +H(Kk(O)VO,VE) + (u-VH,E) =0 VEe (1.9)
for almost every t € (0,7T);
o 1= —alp+ V' (p)ae in Qx (0,T) with u € L*(0,T;V);
e u(0) =ug ©(0) =po  0(0) = bo.
Remark 1.2.1. The initial conditions mean that, respectively, in L? norms,

lim u(t) — o] = 0 lim () — o]l = 0 tim [16(1) — 6ol| = 0. (1.10)

Indeed, u € C([0,7],H,), ¢ € C([0,T],H) and 6 € C([0,T], H) by continuous embeddings
of Lemma

Remark 1.2.2. Notice that any g in the class of admissible initial conditions has finite

energy (o) < co. Indeed, by [|¢ol|r~() < 1 we easily infer that W(ypg) € LY(2), where

&) = [ (GIVel + B(o))de. (111)

The assumption on the total mass |@pg| < 1, however, prevents the existence of the pure
phases (i.e. pg = 1or ¢9 = —1). Besides, we notice that any solution satisfies the mass

conservation property (by testing equation (1.8)) against v = 1), namely

@(t) =%o(t) vt =0.
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Remark 1.2.3. As customary, the pressure term is dropped in the weak formulation. The
pressure can be recovered (up to a constant) thanks to the classical de Rham’s theorem (see
[18], [93] or [97]): there exists, up to an additive constant, the pressure in L*(0, T, H) such

that, in the distributional sense, given
S =—0u— (u-V)u+div(v(p,0)Vu) + uVe + ey € L*(0,T; V%), (1.12)
since as will be clear from the proof, all the terms belong to L2(0, T, V'), we have
Vp=§8 (1.13)
in the distributional sense, meaning that
(Ou+ (u-V)u—puVe —bes, x) + (¥(p,0)Vu,Vx) — (p,divy) =0 V x € C5°(R)
due to the fact that

<S,v >( ,= 0 for every v € V,

[H§(@)]2)[Hg ()]
that is for every v € [Hg(Q)]? such that div v = 0.

Remark 1.2.4. Due to regularity estimates, since p € L*(0,T;V) we deduce from the defi-
nition of y itself and from (B.7) that ¢ € L2(0,T; W?P(Q)), where 2 < p < oo.

1.3 More regular solutions

If we require more regularity on the initial data, we are able to define other two notions of

solution: the first one is the quasi-strong solution.

Definition 1.2. Quasi-strong solution
A weak solution in the sense of Definition is a quasi-strong solution if the CH equation

and the NS system are satisfied almost everywhere and

e uc L®0,T;V,)NL*0,T;W,) N HY0,T;H,)
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o o L0, T;W*P(Q)) N L>®(0,T; V)N LY0,T; Vo) N H(0,T; V), with 2 < p < oo.

Remark 1.3.1. Since we have that u € L>(0,T;V)NL*(0,T; H3(Q)) N H' (0, T; V'), we also

get Opp = 0 almost everywhere in 9 x (0,7).

Further regularity of the initial temperature leads to the notion of:

Definition 1.3. Strong solution
A weak solution in the sense of Definition is a strong solution if it satisfies almost

everywhere all the equations of the CHB system, and

e uc L®0,T;V,)NL*0,T;W,) N HY0,T;H,);

o o € L0, T;W*P(Q)) N L>®(0,T;V) N L*0,T; Vo) N HY(0,T; V) with |p(z,t)] < 1
a.e. (z,t) € Qx(0,T), where 2 < p < o0;

e 0 e L>0,T;V)N L*0,T; H*(Q)), § = g a.e. on I x (0,T) in the sense of traces
and 0,0 € L*(0,T; H);

with 0, = 0 almost everywhere in 92 x (0,7").

In the following chapter we state the existence and uniqueness of solutions theorems,

which are the main results of the analytical part of this thesis.
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Chapter 2

Existence and stability estimates

2.1 Existence results

We can now state the existence theorems for weak and strong solutions, according to the
regularity of the initial and boundary data. Under hypotheses we can prove the

existence of a weak solution to the problem.

Theorem 2.1.1. Let hypotheses be satisfied. Given T > 0, there exists a triple
(u, ¢, 0) which is a weak solution on [0,T] according to Definition[1.1]

Remark 2.1.2. We notice that the existence of a weak solution can also be obtained in the
case of a bounded domain  C R3, with slight changes in the functional setting of the time
derivatives of velocity and temperature and in the proof of the estimates leading to the

exhibition of a solution candidate.

We now consider stronger hypotheses on the initial conditions, namely the additional

hypotheses are the following:

(I1) k and v are positive constants,

(I2) o € Va2 with [|@o||Le() < 1 and |@o| <1,
(I3) po = —alpo + V' (pg) €V,

(14) ug € V.
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In this case we can state the existence of a quasi-strong solution as in Definition [I.2] with

additional regularity for the velocity field and the phase field.

Theorem 2.1.3. Let be fulfilled. Given T > 0, there exists a triple (u, ¢, 0),
which is a quasi-strong solution on [0,T] according to Def. such that

e uc L™(0,T; V,)NL*0,T; W,) N H(0,T; H,)

e v € L0, T;W?P(Q)) N L0, T;V) N LY0,T; Vo) N HY(0,T;V) with |p(z,t)] < 1
a.e. (x,t) € Qx(0,T);

o = —alp +V(p) ae in Qx (0,T) with u € L>(0,T;V) N L*(0,T; H*(Q)) N
HY0,T; V).

o 0 e L®0,T;H)NL*0,T;V), 6 = g a.e. on I x (0,T) in the sense of traces and
00 € L2(07T7 ‘/6/);

where 2 < p < 0.

Remark 2.1.4. Due to the regularity of the solutions stated in the above theorem, since

w € L>(0,T;V) we deduce from the definition of p itself and from (B.7)) that
p € L0, T; W»P(Q)), with 2 < p < oc.

Remark 2.1.5. By the regularity of the solutions, we also have that equations for velocity
u and for ¢ also hold almost everywhere in  x (0,7") and dyp = 0 almost everywhere on
00 x (0,T). Moreover there exists a pressure m € LQ(O,T, V) such that also holds
almost everywhere in Q x (0,7"). Moreover, by the regularity for u and ¢ we have that
the initial conditions are satisfied pointwise, u(-,0) = ug and ¢(-,0) = ¢ in Q. Ounly the
temperature 6 is not regular enough to retrieve a strong solution according to Definition [I.3]

We now state the last theorem of existence of strong solutions. Since we look for
0 € H?(Q), we ask for a more regular Dirichlet boundary datum: g € L?(0,T; H*/?(9Q)) N
LY0,T; H'2(09)), 8,9 € L*(0,T; H'/?(0%)).
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We also ask for a more regular initial datum, say 6y € V. Then the additional

hypotheses to |(H1)K(Hs)| and |(11)H(14)| are the following:

(J1) The boundary value g satisfies g € L(0,T; H3?(0)) N L*(0, T; H/?(99)) and d,g €
L*(0,T; H'?(09)),

(J2) 6p € V and 0y = ¢g(0) on 0f in the sense of traces.

Theorem 2.1.6. Let hypotheses (11 )1(14)| and [(J1 H(J2)| be fulfilled. Given T > 0, there
exists a triple (u, @, 0) which is a strong solution on [0,T] according to Def. such that

e uc L™(0,T; V,)NL*(0,T; W,) N H'(0,T; H,);

e v € L0, T;W?P(Q)) N L0, T;V) N LY0,T; Vo) N HY(0,T;V) with |p(z,t)] < 1
a.e. (z,t) € Qx(0,T);

e 0 € L>®0,T;V)NL*0,T; H*()), § = g a.e. on Q x (0,T) in the sense of traces
and 0,0 € L*(0,T; H);

o = —alp +V(p) ae in Qx (0,T) with u € L0, T;V) N L*(0,T; H*(2)) N
HY0,T;V") and 9ppu =0 a.e. on 0 x (0,T).

where 2 < p < o0.

Remark 2.1.7. We recall that the strong solution satisfies the equations of problem ((10)
almost everywhere in Q x (0, 7).
2.2 Stability estimates and uniqueness

We can now state some continuous dependence estimates, according to the regularity of
the initial and boundary data, together with some uniqueness theorems, which are direct

consequence of the aforementioned estimates. We start with a weak-strong uniqueness result,
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which leads to a stability estimate in the dual norms, if we start from a weak solution
(Definition |1.1)) and a strong solution (Definition [.3). An immediate consequence is clearly

the uniqueness of a strong solution.

Theorem 2.2.1. Let k and v positive constants and let (u1,p1,01) be a weak solution
according to Def. with initial data o1 € V N L™ (Q) with |[po1]|L@) < 1 and |po1| < 1,
upr € H,, 01 € H, and let (ug,p2,02) be a strong solution according to Def. with
wo2 € Va N L=(Q), |leoallre@) < 1 and |@o2| < 1, poz = —alpoz + V' (po2) € V and
Onwo2 = 0 0n 0Q, upa € Vi, Oy € V and 03 = g(t) almost everywhere on 0Qx(0,T). Define
also the same Dirichlet boundary datum g € L*(0,T; H32(0Q)) N L*(0,T; H/?(09)) and
drg € L0, T; HY2(00)). If $o1 = @oz, then there exists a positive constant C depending

on T and on the norms of the initial data such that

() — ua(®)[| v+ lle1(t) — p2()][ar + [|01(8) — O2()]| v,

< Clluor — wo2|lvr, + Cllgor — o2l + Cllbor — Oo2lly,  VE€[0,T]. (2.1

Remark 2.2.2. We notice that if also the initial data coincide, we have (ui,p1,61) =
(ug, p2,09), implying that if the strong solution exists, it coincides with the weak one with
the same initial and boundary data. In particular, this implies the uniqueness of the strong

solution.

If we consider two quasi-strong solutions according to Definition[I.2] we find a stability
estimate with respect to stronger norms than the previous case: in particular we strengthen
the norms for the velocity field and the phase field, which are now the L? norms. Clearly,

as an immediate consequence, we deduce the uniqueness of the quasi-strong solution.

Theorem 2.2.3. Consider two sets of initial data (up1,po1,001) and (uo2, poz, 0o2) satisfy-

ing the assumptions and denote by (u1,¢1,01) and (ug, p2,62) the corresponding

quasi-strong solutions, according to Definition[1.2. We have the continuous dependence es-
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timate

[l () — w2 ()] + [[01(2) — w2 (D) + [101(2) — O2(2)[[v;

< Clluor — wo2|| + Clleor — poz|| + Cllfor — Oozlly; vt € 0,77, (2.2)
where C' is a positive constant depending on T and on the norms of the initial data.

Remark 2.2.4. From this theorem we immediately deduce that the quasi-strong solution is

unique.

As already noticed in Remark the uniqueness of the strong solutions is a conse-
quence of Theorem (and obviously of Theorem , nevertheless we state the follow-
ing theorem in order to show a continuous dependence estimate with respect to a stronger
norm for the temperature, compared to the one presented in Theorem , namely the L?

norm.

Theorem 2.2.5. Consider two sets of initial data (uo1,vo1,001) and (uo2, o2, 0o2) satisfy-

ing the assumptions (I3 H(14) and [(J1 H(J2) and denote by (w1, p1,601) and (uz,@2,02) the

corresponding strong solutions, according to Def. [I.3. We have the continuous dependence

estimate

[l (t) — wa )] + [l1(t) — @2(O)[] + [[61() — O2(2)]]

< COlluor — uo2|| + Cllwor — woz|| + Cl|001 — bo2||  Vt € [0,T7, (2.3)

where C' is a positive constant depending on T and on the norms of the initial data.
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Chapter 3

Existence of a weak solution

In order to prove the existence theorems, we firstly consider the same weak form (without
the condition of |p(z,t)] < 1 almost everywhere (z,t) € Q x (0,7), which will be required
only for the final system), but with an approximation of the logarithmic potential ¥, which
will be called ¥y, with A € RT, instead of ¥ and then show the convergence of the solutions
of the approximated sequences to the desired solution of the original problem. Thus, before
proving the theorems, we need to make explicit in the next section the construction of the
approximants W.

Moreover, in another section we introduce the lifting operator technique for the case
of the temperature 6, which is a standard way to be able to consider a solution with homo-
geneous Dirichlet boundary conditions, instead of nonhomogeneous conditions, which are

more difficult to be treated directly.

3.1 Approximating the logarithmic potential ¥

Let us recall some results in [56], and then in [34], concerning the existence of a sequence
of regular functions F) which approximate the singular function F. First of all, for any
A > 0 we introduce the quadratic perturbation of F\ by Uy (s) = Fi\(s) — %52, which is the
approximation on the potential as defined in (|1.1)).

Moreover, there exists a family F) : R — R (A > 0) such that F)(0) = F5(0) = 0 and
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1. FY is Lipschitz on R with constant 1/,

2. There exist 0 < A < v < 1, where v has been defined in Section and C > 0 such

that Fi(s) > ags®> — C, Vs € R, VA € (0, \].

3. As A = 0, F)\(s) — F(s) for all s € R, |F}(s)| — |F'(s)| for s € (=1,1) and F}

converges uniformly to £’ on any (compact) set [a,b] C (—1,1). We have also that

(see [56]) |FX(s)| — +oo for every |s| > 1. Moreover, we have
F\(s) < F(s) Vse[-1,1]

and

[EX(s)| < [F'(s)] Vs € (=1,1).

4 F!(s)>0VscR

Some other properties of the approximations F) are the following:

e From property , we have that, VA € (0, )] and Vs € R

(67) A

Uy(s) > ?(92 -C>-C.

e From property of I\ and from the convexity of F\ we deduce that:

1
Fx(s) = Fx(s0) < (s — s0)Fi(s) < [s — 80|2X Vs € R,

which implies, since so = 0, and F\(0) = 0, that
then we have the following property for Uy:

Ua(s) = Fi(s) — %32 < Fy(s) < Fyis* Vs R,

1
where F} = %
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e As proved in [52] and [56], there exists a positive constant C such that

/ F(p)ldz < C | / Fi()(¢ — @)de| + C, (3.3)
Q Q

that holds for C = C(p), independent of A\ € (0, \], with the hypothesis that ¢y €
(_1’ 1)

e From property , we deduce that

Ui(s) > —ap VseR. (3.4)

For the proofs of existence of more regular solutions, namely for the quasi-strong
and the strong solution, we consider a slightly different approximation of the logarithmic

potential (see [52]). In particular we define

FOMQ=N[s—1=N) Vs>1—A

T

i=0 "
F(s) = { F(s) Vs e [-14+A\1-) (3.5)
2
Zjl'F(j)(—l—i—)\)[s— (=14+ N} Vs < -1+
j=0""

In this case, ¥y € C? (R), and all the aforementioned properties hold, apart from 1) since
F} is not globally Lipschitz anymore. Moreover, property (3.4) holds for sufficiently small
A> 0.

3.2 The lifting operator

We analyze the case of nonhomogeneous boundary conditions for the temperature and we
follow the method of the lift operator presented in [83] and also used in detail for example
in [14]. We consider the problem

—Aby(t) =0in Qaa. t €(0,7) (3.6)

O4(t) = g(t) on 0N a.a. t € (0,T).

Thus it is well known that if Q is at least C™', as in our case, then ,(t) € V for g(t) €
H'Y2(8Q) and we have the estimate 10,011 < Cllg()]l1/2,00- When Q is smooth, as in
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our case, we can apply a duality argument, as in [83], to conclude that 0,(t) € H™ () for
g(t) € H™Y2(9Q) for every m > —1. Also, the following estimate holds:

105 ()llm < Cllg@®llm-1/200 Ym > -1 (3.7)

Moreover, 0;04(t) is a solution of the Dirichlet problem

—Adly(t) =0 € Qaa. te (0,7)

Oib4(t) = Org(t) on 0N a.a. t € (0,7T).
Thus 9;0,(t) is a function in V' and satisfies ||0;0,()[|1 < C||0rg(t)]]1 /2,00 for almost any ¢ in
(0,T). Analogously, we have 9,0,(t) € H™(Q) for d;g(t) € H™ Y/2(8Q) for every m > —1.

Also, the following estimates hold:
10:04 () [|m < Cl|0tg(E)llm—1/2,00  Vm = —1. (3.8)

Then, from these estimates, it is easy to see that if the original boundary datum ¢ sat-
isfies g € LP(0,T; H™ Y2(8Q)) for some m > —1 and some p € [1,00], and dyg €
L9(0, T; H*=1/2(8Q)) for some m > —1 and some ¢ € [1, oc], then 6, € LP(0,T; H™(Q)) and
Oy € LI(0,T Hk(Q)) In the case analyzed in the previous sections, it is thus sufficient to

consider the following regularity for the boundary value g:
g € L*0,T; H/?(09)) and 8,9 € L*(0,T; H'/?(0%)), (3.9)
implying at least that

0, € L*(0,T; H(Q)) and 0,0, € L*(0,T; H). (3.10)

3.3 Proof of Theorem 2.1.1

3.3.1 Galerkin approximations for the approximating problem

We can now prove that a weak solution exists. In order to do that, we firstly consider
the same weak form but with Uy instead of ¥ (without the condition of |p(z,t)| < 1 a.e.
(z,t) € Q x (0,T), which will be required only for the final system).

We say that (uy, y,0)) is a weak solution of the approximating problem if

30



e uy € L>(0,T;H,) N L*0,T;V,) and du € L*(0,T;V%);

e ©) € L>®0,T;V)NLY0,T; Vo)  L*(0,T;V) and dyp € L*(0,T;V');
e L™ x(0,7)) and |p(z,t)| < 1 ae. (z,t) € Qx (0,T);

e 0y € L>®(0,T;H) N L*0,T;V), 0y = g on 9Q x (0,T) in the sense of traces and
D10y € L*(0,T;Vp);

< atu)\aw > +b(u)\a u)nW) + (l/((/?)\, QA)Vu)n VW) = _(SOAV,U/\?W) + (0)\7 € - W)

Yw eV, (3.11)

< Oppr, v > +H(Vu, Vo) + (uy - Vo, v) =0 YoveV (3.12)
<00, & > +(k(02) VO, VE) + (ux - VO, §) =0 V€V (3.13)

for almost every t € (0,7);
o 1y = —alApy + U, (py) ae. in Qx (0,T) with u € L*(0,T;V);
e uy(0) =ug eA(0) =0 0x(0) = 0o.

We then show the convergence in A of the solutions of the approximated sequences to the
desired solution of the original problem.
The proof will be carried out by means of a Faedo-Galerkin approximation scheme: we
prove that the solution exists for the approximations and then we extract a converging
subsequence showing that the limit is a solution of the original problem. Then, letting, up
to subsequences, A — 0, we get the desired solution. For simplicity, from now on we omit
the subscript A on the variables.

First of all, we define the solution of the nonhomogeneous boundary Dirichlet problem
as § = O +0,, where O(t) belongs to Vp for almost any ¢t € (0,7") and 64(t) is the harmonic

extension of the boundary datum previously defined. We set ©g = 6y — 6,(0).
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We then introduce the family {w;};>1 of the eigenfunctions of the Stokes operator
(see Appendix and, e.g., [32] and [97]) as a Galerkin base in V, (orthonormal in H,
and orthogonal in V) and the family {1;};>1 of the eigenfunctions of the Laplace operator
with homogeneous Neumann boundary conditions as a Galerkin base in V' (orthonormal in
H and orthogonal in V'). In conclusion we introduce the family {v;};>1 of the eigenfunctions
of the Laplace operator with homogeneous Dirichlet boundary conditions as a Galerkin base
in Vjy (orthonormal in H and orthogonal in Vp).

We define the n-dimensional subspaces W, := Span(wy,...,wy),
Zy = Span(yn,...,¥,) (we consider as ¢ = 1/\/@, so that |[¢1|| = 1, since the
first eigenspace, of the eigenvalue A\; = 0, is made of the constant functions), V, :=
Span(vy,...,v,) and consider the orthogonal projectors on these subspaces in H, and H
(i.e. with respect to L? norm), respectively, i.e. P, := Py, , P, := Pz, and P, := Py,. We

then look for four functions of the form

w,(t) = ai(t)w; €Wy onlt) =Y Bi(t)hi € Zy, (3.14)
=1 =1

pn(t) = i) € Zn  On(t) =D Sit)vi € Vi, (3.15)
i=1 =1

where &;, f;, i, 0; are real valued functions of (we will see) C' Uclass and 0, = ©,, + tg, such

that

o u,(0) = Py(ug), ¥n(0) = Pu(p0), O,(0) = lf’n(@o), which means
un(0) = (0)wi € Wy 0,(0) = Bi(0)thi € Zy  ©,(0) = > 6:(0)v; € Vi,
i=1 i=1 '

o jin = Pp(—alp, + Wy(pn)) = —alp, + P (T (0n));

(Opuy, w) + b(uy, un, w) + (V(n, On)Vu,, Vw) = —(0n, Vi, w) + (0, + 04, e2 - w)

Vw e W, (3.17)

(Otpn,v) + (Vin, VU) + (uy, - Vo, v) =0 Yo € Z, (3.18)
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(010, ) + (1(0,) VO, VE) + (1, - VO, €) =
— < Oy, & > —(K(0,)V0,, VE) — (u- Vb, &) VE €V, (3.19)

for every t € (0,7).

We notice that pTL(—aAgon) = —alAp, because the linear operator —A commutes with
the orthogonal projector P,. Moreover we recall that, due to regularity theorems and
since the domain is supposed to have a sufficiently smooth boundary, the aforementioned
eigenfunctions are smooth functions, see [97], thus, for example, the duality in the time
derivatives can be considered as an L? inner product.

Since the function W (s) = F3(s)—aps is at least locally Lipschitz and &, v are globally
Lipschitz, one can easily see that this system of equations is equivalent to a Cauchy problem
for an ordinary differential equations system in the unknowns &;, 5;, ;. The Cauchy-
Lipschitz theorem ensures that this system has a unique solution into an interval [0, t,,), t, >
0: in fact, we have a system of equations for the unknowns & (¢) = [a1(t),. .., dn(t)],

B(E) = [Bi(t), ..., Bu(t)], 6™ (t) = [61(t), ..., 8n(t)], solving the system of ODE:
[ (1), B (1), S ()T = G(a™(#), (1), 6 ().

with G a locally Lipschitz continuous function of [d("), B, (5(”)}T and with the initial con-
ditions [@™(0), 3™ (0), 6™ (0)]” as shown in (3.16).

Then, the Cauchy-Lipschitz theorem entails the existence of a unique maximal solu-
tion & e C1([0,t,),R™), 8™ € C1([0,t,),R™), 6 e CL([0,t,), R™).

We now derive some uniform estimates in order to guarantee that t, = +oco. First of
all, we have the mass conservation property: from equation , considering v =1 as test

function (v € Z,, VYn > 1) and integrating by parts the third term we get

4n
Orpon = |Q——=0 3.20
| o =100 (320)

thus ¢, = const = /]5”(900)/|Q| = ¢ since the only component of the projection P,
Q
with respect to the basis, with nonzero mean, is the component with respect to 1, so

/(4,00, Y1)y = @p. That is to say that @, is independent of n and ¢ and depends only on
Q

the initial datum ¢g.

33



Now, we start from equation (3.18): with the classical procedure of applying the
equation for each element of the basis of Z,, then multiplying each equation by ; and
then summing up, we can use u, € Z, as a test function, integrate by parts applying the

boundary conditions and obtain:

(Oeon, pn(t)) + (Vi Virn) — (0p - Vg, ) = 0. (3.21)

Substituting the value for p, in the time derivative we obtain (by construction and orthonor-
n n

mality of the basis, for every v = Zaiwi we have (P, (V) (¢n)),v) = Z(\Ifx(gon)’,aﬂ/ﬁ) =

1=1 =0
\I/)\ ‘Pn Zazwz = \Ij, (@n) ))
=0
d  « 2. 9
SCITal+ [ )+ Vil = (0 Vi) =0, (322

From now on, for simplicity, we will omit the dependence of k and v from the variables
pn and 6,.

We analyze the equation for the temperature: by the same argument as before,
we can test the equation against £ = ©,, and, remembering property :

dto\@ 112+ k|| VO, 2 < — < 010,,0,, > —(kV0,,VO,) — (u, - Vb,,0,).  (3.23)

We then have, by Cauchy-Schwarz’s and Poincaré’s inequalities, the property of the lift

operator and Young’s inequality (we recall that |[0:0,|| < [|0:0,4[]1 < C||0rg(t)]l1/2,00):

— < 9y, On >< Col|0b|| || VO] < Cl[0rg(t)]]1/2,00]IVOR||
ky ~
< gHV@nHQ + Cllawg (D17 2,00

Then we have, by the same properties (in particular, by Young’s inequality, we make k,

appear and since we have k, > 0 - see hypothesis ([1.6]) - the constant C' is well defined)

—(KV0,, VO,) < *HV(9 12+ C|[V,|* < HV@ 17+ Cl16g]17

< =|VOI1* + Cllg(b)I13 j2.00-

§
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We recall that, for example by Lemma (A.1.4) together with Poincaré’s inequality, we obtain
that, given x € H}(Q) (the same holds for the vectorial case x € [Ha(2)]?):

Ixllza) < ClIXIM2 VX2, (3.24)

We can then apply the previous result together with the classical Sobolev embedding
Vo — L4(Q), the generalized Young’s inequality for three terms and the lift operator’s

properties:

—(un - Vg, 05) < |[un|| 14 [[VOg[| [|OnlL0)

IN

[[an [V w2V 6, | |V,

VAN

Vs Ky
SV + VO + O jun| ][V

Vs k. =
< 221V ual P + 902 + CllualPlg (15,50

Remark 3.3.1. If we considered the homogeneous Dirichlet case, the proof of this fact sim-
plifies a lot: we can use O, as test function in the equation for temperature to get, applying

the boundary conditions and property @
d
o 0,12 + 2k ||VO,| |2 < 0. (3.25)

Now, we can apply Poincaré’s inequality due to homogeneous Dirichlet boundary conditions:

10,7 < Co||VOL||?, with Cy = Cy(Q), to get

d
Z11@all? + Bol @nl> < 0 (3.26)

where By = 26, Then, applying Gronwall’s inequality (Lemmal|A.1.7), we get
0

1©]* < 11O (0)[[Pe™* < [|©0]|*e™* < [|©9]|* (3.27)

since B, is an orthogonal projector, thus ||P,(00)|| < ||Ool|. So, we can deduce that ©,, is
bounded in L>(0,T; H) for any T < t,.

We then look for a uniform estimate for VO, : starting again from equation , we
multiply by e%ot, knowing that

d BOt 2 ﬁO Boy 2 —0 2
detuenp = Leto, + e 2 o,

35



we have, using the bound

Ly
dt

o B0 Bo £ Bo _sa
21|05 |* + 2k, €2 ||V, < 5 e’ HOn|* < 5€ 2 100

Integrating in time the previous inequality, we obtain, remembering that || P, (00)|| < ||O0||
Sop 2 T s, 2 2 2 —boy 2
e ||On(D)]]" + 2ke [ e27[[VO,][” < [[O0]|” +[[O0||7(1 — e 27) < 2[|O]]7,
0
from which we get
g 2 T sy 2 1 2 _ A2
IVOL|[" < [ e27[|[VO[|” < —[[6]|" = C
0 0 ks
where C is independent of n: we have, by Poincaré’s inequality on Vp:
[1OnllL20,1v5) < C, (3.28)

obtaining directly the uniform boundedness of the norm in L2(0,T; Vo).

Now we can consider equation (3.17)): considering u,, as a test function, knowing that

the trilinear form b(-, -, ) is antysimmetric and applying the boundary conditions, we get:

d1

— — 2 .
72 llun|l* + (vVu,, Vuy,) + (uy, - Vi, ©n)

N

da
dt
= (Op,e2-uy) + (04, €2 - uy). (3.29)

Hun‘|2 + V*HvunHQ + (Wn - Vg, on) <

The terms (04, ez - u,,) and (©,, ez - u,) can be easily estimated by means of Cauchy-

Schwarz’s and Young’s inequalities and by lift operator’s properties:

1 1 1
2 2 2 2
6112 + 511> < S g1 200 + 5 lual?

1
(6, €2 - un) < [l6g]| [[unl] < [10g]11 [lunll < 3]

whereas for the second one we get:
K 2 2
(On, €2 - u,) < Co|[VO,|| [[un]| < §HVGHH + Cllun|[”.

We can then sum up all the terms, obtaining the following inequality, having defined

the total energy

1 1 « N
Bu(t) = 3llunl+ 5104l + SVl + [ (#r(0) + O, (3.30)
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where C is the positive constant such that lb holds:

d

k. 1
O} + Vil [* + v [Vun |2 + ke || VO, [ SgHV@nH2 + Cllunll* + SllgOII 2,00

1
+ §HunHz
ks ~
+§HV9nH2 + Cl1arg (D11 .00
ks -
+§HV@nH2 + Cllg®)I1F 2,00
ks 9 Uk 9

+ Cllual ()11 2,60
then, we obtain, having set:

Vs k.
Du(t) = [ Fpal? + 2 Vual P+ S [[VO, P (331)

d

_ 1 .
A} + Da(®) < Cllunl* + Sl 2,00 + ClIOg @) .00

+ CHQ@)H%/ZBQ + C_'Hun|\2|\9(t)||£11/2,a§z'
In conclusion, changing the constants, since /(\le(gon) + () > 0, we can get
Q

d

23 En(t)+Dn(t) < E1(1+]lg@)I11 j2,00) Bn()+EK2(1+l9()]1F 2,00 +10:9 (D13 12,00)- (3.32)

Thus, due to the regularity hypothesis made on the boundary datum g, we have that Q =
Ki(1+ HgHZiL/Z@Q) e L'(0,T)

and also R = K»(1 + ||g|\%/2739 + Hatg”%/za(z) € L'(0,T), we can apply Gronwall’s Lemma
(A.1.7), since E,, is at least continuous in time: for any t € (0,t,), for ¢, < T

t t t T T
En(t) < En(0)edo ) 4 / els QIR (s)ds < elo 2)(E,(0) + / R(s)ds).  (3.33)
0 0

We have now to estimate the value of E,(0): remembering that ©g = 6y — 0,4(0), we obtain

B(0) = 51Pu(uo)+ 5120 + SV )P+ [ (#2(Palion)) + O,
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Since all the projections are orthogonal in the spaces H, and V respectively, we can apply

1P (uo)l| < [[uol], [[Pn(©0)]] < [|0l| and ||V Py (g0)|| < [|Vipo||. We also have, form (3.2),
that

[ 0Puton) < [ Auo0)? = RllPuG)| < Allgol
again because P, is an orthogonal projector.

We can conclude that

1 1 o R
En(0) < Z|Jugl” + §||@o\|2 + §||V<Po|\2 + Fi|lol” + ClQ. (3.34)

Thus we can say, defining as K a generic constant depending on the initial data and A, but
not on ¢ nor n, we obtain:

1 1 a .
En(t) < 5 luol[* + S[180][* + S [[Veoo||* + Fillpoll* + C10| + ko = Ko

which implies, since /
Q

(3.35)
(Ux(pn) +C) > 0, that

1 1 Q
§Hun\l2 + §|I®nl\2 + §\|V¢n|\2 < Kp.

Now, since from Poincaré’s inequality (Lemma(A.1)) and from conservation of mass previously
shown we get

[lenll < llen = @nll + [|@nl] < CollVen|l + [|@0l| < Cov/ Ko + [|ol|- (3.36)

In conclusion we have that, for a generic constant C' independent of n and ¢:

lenll <C lunll <C IGn]I < C

Since we have that ||, || = |3™ #)], [Jual] = [« (t)] and ||©,]| = |6 (t)], by means again
of Gronwall’s Lemma (see, e.g., [68] for this kind of arguments) we deduce that ¢, = 400

for every n > 1, i.e. the problem (3.17)-(3.19)) has a unique global in time solution.
Furthermore, for every 0 < T' < +o00, we have that:

1Onl| Lo 0.1m) < C, (3.37)

[wnl| Lo 0,11,) < C. (3.38)
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But since we have that

leally < llen = @ally +[1@ally = llon = @ally +[1@ollv < ClIVen = Vull + [I@ollv < C

for some C independent of n and t, we deduce:

llenll oo o,rv) < C. (3.39)

Also, from (3.32), integrating in time over (0,T) and applying the inequality (3.34)) for E,,(0),
and since E,(t) > 0, we obtain that

T U T k T -
/|wn|2+*/ ||Vun||2+*/ VeI < C.
0 2 Jo 2 Jo

Thus, due to Poincaré’s inequality for velocity and temperature we also obtain, again for
some constant C' independent of n and T, that

lanlz2(0,75v,) < C

(3.40)
IV iall 200 < C (3.41)
and
1©nllL2(0,m;v) < C (3.42)
for any 0 < T' < +4o00.

Coming back to the equation for u,, we can get a further estimate for ,,, testing i,
by —Ay, and integrating by parts, using the boundary conditions:

(Vin: Von) = al|Agnl]? + (Y5 (0n) Vion, Von).

Then, remembering property (3.4) of ¥y, we have:

allApy||? = a0l Venll* < (Vin, Vion)

entailing, by Cauchy-Schwarz’s and Young’s inequality:

ol |Apnl? < aol [ Veul|* + [IVaall [l@nll < k1 - (1+[[Val])
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where we have used the uniform-in-n bounds on ||V, || and ||¢y||: k1 depends only on the
initial data, but not on n. We can then integrate in time from 0 to T, after elevating to the

square, getting, also using equation (A.2)):

T T T
o? /0 n = @nlllaq < CHa? /0 1 Agal* < 20T + 2%y /0 [Viml? < C(T),  (343)

where C(T') depends on T and initial data (due to (3.41))), but not on n. Thus we can say

enllLaor:ve) < llen — @nllraorve) + 120l Lao,mvs) < C(T), (3.44)

with C(T) dependent on initial data and T, but not on n. We then find an estimate for fi,:
multiplying the equation for u, by ¢, — @, ad integrating, after an integration by parts,
applying boundary conditions, we get

(s o — Pn) = a”v@nHQ + (F)/\(Son)a ¥n — Pn) — @0(Pn, Pn — Pn)-
Then we obtain, since (fin, ¢n — @n) = 0 and applying Poincaré’s inequality (A.1) for zero-

integral-mean functions and as usual Young’s inequality:

(F)/\(@n)y Pn — @n) :(Mn - ,Hm Pn — @n) - CVHV(PTLHQ + aO(‘Pny ©n — @n)
< GVl IV @nll) = allVen|1? + 2a0(]|nl* + [lon — all?)

< CL+ | Vinll)

by the previous bounds on ¢, in L*(0,T, V') (and by Poincaré’s inequality since ||¢n, —@n|| <
Co||Vn||), where C is independent of n. Considering now the mean value of i, we obtain,

since (App,1) = 0 and from property (3.3)) of Fy:

1
77’7/ = >y \PI n <7 F n n
|| ‘IQ!M Q|/! (¥n) _Q/|>\4p\+a0/\4p
1
sm(/Q!F§<son)!+a0\/@\|<an < = y/FA ©n)(Pn — @n)| +C +C)

< C(L+IVuall)
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due to the previous bounds on Fj and ¢,. The previous estimates entail that, due to

Poincaré’s inequality (A.1)) and Young’s inequality:

T T
mm;mﬂmszl;mm—ﬂm%+24|um@
T T
gm%/"uva?+MﬂmP/ 1+ [Vl ) < Ro, (3.45)
0 0

from the previous bound on ||Vu,||, we get that Ky is independent of n. From the equation
for p1,, we can study, for further use, the following estimate (since L*(0, T; Va) < L?(0,T; V5)
and V — H = L*(Q) for uy,):

T T
AHH@MWSCA{WM”HM%F+WMﬂSC (3.46)

with C independent of n, implying F3(¢,) € L*(0,T; H).
We have now to address the time derivatives of the variables. We start from the
temperature O,,: equation (3.19) can be rewritten as

do,,

R . do .
-+ Pi(un - VO, + A(On) + —% +u, -V, +A6,)=0 inV, (3.47)

dt

where ]5; : VI — Vj is the adjoint of the orthogonal projector P,: since HPnHL(Vg,Vn) <1,
being a projector, also HPJHE(V;”VH/) <1 for every n > 1, and the linear operator 4 = A, :
Vn, — VI, such that < A(0,,),£ >= (kVO,, V&) for every £ € V,,.

Then recalling hypothesis for k, we can start with

| < A(On),& > | < K[VO,|IIVE]L.
So, by Poincaré’s inequality, we can say
185 (A©)lly; < [[AO) v, < E*|[VOn]. (3.48)

We now consider the transport term in the equation (3.47), applying boundary conditions:
for every £ € V,,, applying Holder’s inequality

| <, - VO, > | = [(un - VO, )| = [ = (un - V&, On)| < [[un][ps(0)l[Onll 10 IVEI-
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Thus, applying Cauchy-Schwarz and Young inequality and (A.1.4]), we get

. 1
1Py (wn - VOL)|lvy < [[un - VO|lvy, < [[unllpyo)|[OnllLa@) < 5(”“71”%4(9) + HGHH%‘l(Q))
¢
2
< C(+|[Vup|| + ||[VO,]])

< < (luall [Vl + [[un]? + [|©al] VO] +[[©4])

where, due to uniform bounds (independent of time) on u, and ©,, (see (3.37 and (3.38))),
C is a generic constant independent from n.

Furthermore we have
155 (AB) vy < [IAWB) vy, < k*|[V8l < Cllgll1/2.00- (3.49)

We now consider the transport term in the equation (3.47): for every { € V,,, applying
Holder’s inequality and Sobolev embedding Vy < L*(Q)

| <un -V, &> [ = |(an - VO, §)| < [Junlra) [[VOy[| IEllzs) < Cllunllra) (VO[] [[VE]].
Thus, applying Cauchy-Schwarz’s and Young’s inequality and (3.24)) and considering the lift
operator’s properties, we get
P*(u, - V0 < |uy, - Vo,lly: < Vo,|| < V2|1V, ||Y?||ve
1B 1t 90l < 11t - Tl < 1l 1oyl V01| < [[1tal V2], /2][ 9|
< C(|IVunl| + [V [[unl]) < C([|[Vua|| + V6],
since, by previous estimates, ||u,|| < C.

The last extra term to be estimated is the time derivative of 6,: since by Poincaré’s

inequality | < 8fy,& > | < [|0:0|] [[€]| < Col[0:bg]| [[VE]| for every £ € Vi,
157 (960)llvg < 11010g]1v, < Colldby(t)l] < Cl1Drgl1/2,00

by the regularity properties of the lift operator.
Considering also the other terms and the lift operator properties, we obtain the fol-
lowing estimate:

H o,

= C+ [[Vup|| + VO] + VO] 1* + 1|0eglh 2,00 + 19111 /2,00)

at ||y,

< CA+|[Vunl| +[1VOn + lgOIIF 2,00 + 109111200 + [l9(D)]1/2,00)
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then, by Young’s inequality we obtain

r

do, ||?

dt

T
< C/O (14 [[Vual? + [IVO 2 + g @)1 2,00 + 10117 2,00 + l9OIIF 2,00)

Ve

< K(T)

since the right-hand side is bounded, indeed g € L*(0, T, Hl/g(ﬁﬁ)) — L*(0,T, Hl/z(aQ)))
and |[un|20.7:v,) < C. The constant K(T) is independent of n and ¢.

Then we obtain that
do,,
dt

e L*0,T,Vp). (3.50)

We now pass to consider an estimate for the time derivative of p,,. We can rewrite equation

den | 5 % .
% + P¥(u, - Vo, + A(un)) =0 in V/ (3.51)

with the same property as the previous case for the norm of the adjoint of the orthogonal
projector. Starting from A(uy,) : Z, — Z! such that < A(un), 1 >= (Vin, Vi) for any
P E Ly:

| < Alpn)s ¥ > | < IVl VI < IV pll 1],

thus we get
155 (Al )l < A (ua)llzr, < [Vl - (3.52)
We now consider the transport term: as before we have, applying the Sobolev embedding

V = HY(Q) — L*(Q) and Poincaré’s inequality for velocity field

| <y Von, > [ = [(un - Von, )| = | = (un - V), 0n)| < [[unllpsg)llenll o) IVl

< Clunllvllenllvilylly < O/ CF + L[V uall [l@nllve v,

entailing

155 (un - Veou)llvr < [lan - Veoullz, < C|[Vun|]

by using the uniform bound (independent of time) on ||¢,||y obtained before: C' is inde-

pendent of n (and t as all the previous constants). So we can find a constraint for the
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aforementioned time derivative:

d(Pn
dt

< O\ V|| + [|Vinl|;
V/

applying Young’s inequality and integrating in time we get

r

due to the estimates previously obtained for the terms in the right-hand side (as usual K

dpn

2 T T ~
<20 [ Va2 [ Vil < R, (3.53)

depends only on initial data and at most T but not on n). So, for every 0 < T < +o0

= < VK. (3.54)

L2(0,T;V")

We conclude the estimates with the analysis of the time derivative of velocity field: equation

(3-17) can be rewritten as

duy, .
% + P (B(tn, ) + A(Un) + 00 Viin — Ones — Oge3) =0 in V', (3.55)

where A = Ay, 9, : W, C V, = W, such that < A(u,),w >= (vVu,, Vw) for every

w e W, and B: W, x W,, — W such that < B(u,,u,),w >= b(u,, u,,w) for every

n’

w € W,,. Now, we have, recalling hypothesis for v,
| < Alap, w) > | < v¥[[Vugl| [[Vw]]
so that, by Poincaré’s inequality and, as usual, the property of orthogonal projector P,
1Py Aun)llvr, < [[A(un)[lw, < v7|[Vugl]. (3.56)

Also for B we obtain, from (A.6) and Poincaré’s inequality (Cp is the Poincaré’s constant),

for any w € W,

1 1 1 1 3
| < B, wp), w > | < [[wn2]|wn][F ||| |[ua]| |w]l < C (C§ +1)7 ||Vl [Jug|| [|Vw]]
so that always by Poincaré’s inequality and from previous bounds on u,, in L*>(0,7;H,):

* 3 _
1P (B, wn))llv, < [1B(wn, wn)llw, < C (CF+1)3 [Jun|| [[Vu,|| < C [[Vuy, (3.57)
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with C independent of ¢ and n. Then, we have for any w € W ,, using the Sobolev embedding

V < L*(Q) and Poincaré’s inequality for w,
| < @n Vi, w > | = [(@n Vi, W)| < [l@nllza@ Vil [1Wll21@) < Cllenllv ][Vl [[Vw]]
so that, by the bound on ¢, in L*(0,T;V)

1P (onVin)llve, < |lonVinllve, < Cllenllv]IVimll < ClIV | (3.58)

with C independent of n and t.
We are left to consider an estimate for the terms of temperature in (3.55)): for every

w € W,,, by Poincaré’s inequality
| < Onez,w > | =|[(On, ez w)| <|[|On]] [[w]| < Co [|On]] [[VW]];
therefore we get, by the estimate on ©,, in L>°(0,7; H)
127 (Ones)|lvr, < ||Ones|lw;, < CollOn|| < C (3.59)

with C independent of t and n.
We have now to consider the last remaining term: for every w € W,,, by Poincaré’s

inequality
| < —Ogez, w > [ =[(0g,ex- w)| <[|0]] |[[wl]| < Co [|0g]| [IVW]].
Therefore we get, using again the lift operator’s properties:
1P (8ge2)llv:, < |l6gezllwr, < Collfyll < Cl6gl11 < Cllg(D)ll1 /2,00 (3.60)

with C' independent of ¢ and n.
Since by assumption g € L0, T, H/2(09)) — L?*(0,T, H'/?(89)) we do not spoil

the estimate on the derivative of the velocity and we can then conclude that

which entails, by applying Young’s inequality, integrating in time and using the previous

du,

|l < 7+ OVl + ClIVill + Cllg®ll1 200 + C

Vo

obtained bounds, that:

T 2
/0

duy,

T T T
Sl <k [P [ a0l 00+ T) < K

VD'
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with K = K(T) generic constant independent of n and ¢.

We are ready to do the last step to conclude the first part of the proof. From all the

Thus we have:
du,,

— <VEK (3.61)

L2(0,T5V})

estimates above, which are independent of n, we deduce that the sequences u,, ¥n, tn, On
are bounded in the corresponding spaces, independently of n: thus, by properties of reflexive
spaces (apart from the cases L°°(0,7; X), with X general Hilbert space, for which we apply
the Banach-Alaoglu theorem) we obtain the following convergences, up to non relabeled

subsequences: for any 0 < T < oo

u, ~u in L>(0,T;H,) (3.62)
u, = u in L*0,T;V,) (3.63)
% - %‘t‘ in L?(0,T; V") (3.64)
On ¢ in L®(0,T; H) (3.65)
on — ¢ in LY0,T;V3) (3.66)
dc% — d% in L*(0,T;V") (3.67)
fn — o in L2(0,T;V) (3.68)
0,20 inL>(0,T;H) (3.69)
0, = 0O in L*(0,T;Vp) (3.70)
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o, _ do

I 2 R
p” o in L=(0,T;Vy) (3.71)

We recall that the weak convergence of time derivative to the derivative of the weak
limit of the sequence of variables can be easily proven by means of integration by parts in
time and due to the uniqueness of limit in distribution we get the result (see, e.g., [58]).
Uniqueness of limit guarantees also that all the weak convergences in different spaces are to
the same limit.

We notice that, defining § = © + 6, the solution (u, ¢, #) has the required regularity,

since, by the above convergences,
uc L>®(0,T;H,) N L*(0,T; V) and dyu € L*(0,T; V),
@ € L0, T;V) N L*0,T;Vs) and dyp € L?(0,T; V"),
6 c L>®0,T; H)N L*(0,T;V) and ;0 € L*(0,T;Vy + V'),

and the bounds on the corresponding norms are the same as for the approximating sequences,
thus depending only on 7' and the initial data. We recall that V; = H~'(Q) and an element

of V' can be seen, by restriction on Vj, as an element of Vj; thus we have
o0 € L*(0,T; V).

The fundamental step is now to derive strong convergences in order to pass to the limit for
the nonlinear terms in the equations and show that the candidate solution is indeed a real
weak solution to the problem: we exploit Theorem : since V, < H, = H, — V/,
from the previous weak convergences, up to a non relabeled subsequence (furthermore, strong

convergence implies convergence almost everywhere up to another subsequence), we get
u, »u in L*(0,T;H,) and a.e. in Q x (0,T). (3.72)

Also, since V. < H = H' < V' and since L*(0,T;V3) — L*(0,T;Vs) — L*(0,T,V), a
bounded sequence in L*(0,T; V5) is also bounded in L?(0,7,V) and then we can deduce by

compactness that

on — @ in L*(0,T; H) and a.e. in Q x (0,7T). (3.73)
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In conclusion, since Vp — H = H' — Vj we deduce, by the same Theorem that

O, = © in L*(0,T;H) and a.e. in Q x (0,T). (3.74)

By standard argument we can now pass to the limit in the weak formulation of the
problem; we start from equation (3.17): multiply the equation by w € C5°(0,T") and integrate

in time between 0 and T. We obtain, fixing ny <n
T
/ (< p, w > +b(up, up, w) + (vVu,, VW) + (0 Vi, W) — (O, + 6g,e2 - w))w(t) =0
0
Vw e W,,.

Exploiting the convergences already shown, as done, e.g., in [I8] and by the density of

{Wy, }n.>1 In Vi, equation (3.17) converges to the desired weak form:

T
/ (<a,w > +b(u,u,w) + (vVu, Vw) + (¢Vu, w) — (0,e2 - w))w(t) =0
0
Vw € V.

We now consider the equation (3.18)): multiply the equation by x € C§°(0,7) and

integrate in time between 0 and T, letting ny < n. We obtain
T
/ (< Orpn, v > +(Vip, Vu) 4+ (uy, - Vo, v))x(t) =0 Vv € Zy,. (3.75)
0

Again, by the density of {Z, }n,>1 in V, as n — oo the entire equation ([3.75]) converges as

expected to
T
/ (< O, v > +(Vu, Vo) + (u-Ve,v))x(t) =0 VYoeV. (3.76)
0

In conclusion, we are left to consider the equation for the temperature, (3.19): multiply the
equation by ¢ € C§°(0,T) and integrate in time between 0 and T, letting ny < n. We

obtain
T
/ (< 0,00, > +(kVO,, VE)
0

+ (Up - VO, O)+ < D4y, & > +K(V0y, VE) + (n - VO, O)(t) =0 VEEV,,.
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Defining § = © + 6,4, by the density of {V,, }»,>1 in Vjp, also this equation, as n — 400,

converges to
T
| (<006 > +(:96,99) + (u, - V0,00 =0 V¢ € Vh
0

We recall that the convergence is possible due to the strong (and almost everywhere) con-
vergences and to ©, and thus 0§ = © + 0,4, and of ¢. Indeed, since x and
v are globally Lipschitz functions, so they are continuous, we can reach the convergence
V(on,0n) = v(p,0) ae. in Q x (0,7) and x(6,) = x(0) a.e. in Q x (0,T) and then exploit,
e.g., Lebesgue Theorem to reach the convergence of the integrals in the weak formulation.

For example, in the case of x we obtain, in the temperature equation,
T
[ (n(6n)ven vOu() - (x(6) V0, Ve w(t)it
0
T
< [ ] 6.)76, - Ve - x(6,)76 - V| 1w dad
0 JQ
T
+/ / |k(0,)VO - VE — k(0)VO - VE| |U(t)|dxdt
0 Q

and the first term converges to zero since k(6,) < k* and ©,, = ©, whereas the second one
converges by Lebesgue Dominated Convergence Theorem. The same goes for the kinematic
viscosity v in the equation for velocity.

By the arbitrariness of w, x, ), since the space of functions of the kind ®(¢,z) =
N
an(t)wk(x), where N is an integer, nx(t) € C5°(0,T) and ¢ € S, with S = V,, V, Vj
k=1

re_spectively, is dense in CJ((0,7);S), thus in L*(0,T;S) (see [I8], Chap. V, Secs. 1-2, or
[43], Chap. 7, Sec. 7.1), we obtain that u, ¢, u, 0 satisfy:

T T T
/ < Opu,w > dt +/ b(u,u, w) +/ (vVu, Vw)dt
0 0 0

T T
= —/ (pVu, w)dt +/ (0,e3-w)dt Yw e L*(0,T;V,) (3.77)
0 0

T T T
/ < Opp,v > dt —i—/ (Vu, Vo)dt —i—/ (u-Ve,v)dt =0 Yoec L*0,T;V) (3.78)
0 0 0

T T T
/ < 00,6 > dt+/ (/@VG,VE)dH—/ (u-VO,0)dt =0 Ve e L20,T;Vy). (3.79)
0 0 0
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Then, by a standard argument (see, e.g., [18] or [93]), we obtain that u, ¢, u, 0 satisfy:

< Opu,w > +b(u,u,w) + (vVu,Vw) = —(¢Vu,w) + (0,e2-w) VYweV, (3.80)

< Op,v>+H(Vp, Vo) + (u-Ve,0) =0 YoeV (3.81)
< 0,6 > +(KVO,VE) + (u-VO,6) =0 VeV (3.82)

Since ¢ € L?(0,T;V3), we have from the equations, by integration by parts, that
Anp € H2(09) and 8a¢ = 0 almost everywhere on 99 x (0, 7).
We now consider the equation for u: we multiply the equation by x € C3°(0,T), test

against v € Z,, and integrate by parts in time between 0 and T, obtaining

T T T T
A(MWM@Z[;WW%VMMU+A(ﬂ@&@ﬂﬂ—é(%%wﬂ@-Cm$

Since ¢, — ¢ almost everywhere on Q x (0,T), by continuity of F we have also F}(p,) —
F3 () almost everywhere on Q x (0, 7). But from we know that the sequence F) ()
is uniformly bounded in L*(0,T; H) ~ L*(Q x (0,T)), therefore we can apply the weak
Lebesgue Theorem [A.1.§] to get that F}(p,) — Fi(y) in L*(0,T; H). We can then pass to
the limit in the equation ([3.83)), as done above, and then by the arbitrariness of x(t) and by
density of {Zy}n>1 in H:

(,v) = (—alp,v) + (F5(v),v) — (app,v) Vv e H foraa.te (0,7) (3.84)

where we could integrate by parts since ¢ € V3 for almost any ¢ € (0,7) and then, since the

equality holds Vv € H and all the other terms belong at least to H for almost any ¢ € (0,7,
p=—alp+ ¥\ (p) ae inQx (0,7T). (3.85)

In conclusion we are left to study the initial conditions.
First of all, due to the embeddings of Lions-Magenes Lemma we obtain that

the initial conditions are reached in the strong L? sense:

lim [[u(t) —u(0)|| = 0 lim [ (t) — £(0)]| = 0 lim [16(¢) —6(0)]| = 0. (3.86)

t—0 t—0 t—0
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Indeed, u € C([0,T],H,), ¢ € C([0,T],H) and 6 € C([0,T], H) by continuous embeddings
of the aforementioned lemma. We now study the value of such initial conditions: since the
method is the same for the three conditions, we analyze only one of them, for example the
one for temperature. Multiply equation by x(t) € C(]0,T]) such that x(0) = 1 and
x(T) = 0, integrating in time in (0,T) and apply integration by parts (Lemma [A.2.2), we

get:
T
/0 {=(0(1) 4+ 04(1), )X(1) + (VO + V,(t), VE)x(t) + (u- (VO(t) + VOy(1)), )x ()}
= (0(0) +64(0),8) V&V

We now recall that the formulation in (3.19) is equivalent to
T

/ (0On + 0:04,E(1)) + (KVO,, + VO, VE(L)) + (uy, - (VO, + VO,),E(t) = 0 V¢ €
0
LQ(O, T;V,,). Thus we obtain, from 1) applying the same procedure, with x(¢)¢ as test

function, that
T
/O {=(On(t) +04(1), )X(t) + (VOR(t) + VOy(t), VE)X(t) + (u- (VOL(t) + VO,(1)),E)x (1)}
= (pn(GO) + 99(0>7§) Vf € Vnk'

As done before, we can pass to the limit in the previous equation, then by density of

{Vy, Jng>1 in Vi we obtain
/OT{(Q(t) +04(1), )X () + (KVO + VOg(t), VE)X(t) + (u- (VO(t) + V(1)) ) x(1)}
= (00 +64(0),§) VEeVy
since P, is an orthogonal projector and thus:
(P(©0),€) = (80,)  for n — oo,

Comparing the two equations, we obtain that (©¢, &) = (©(0),&) V¢ € Vp, which by density
of Vy in H implies that
(©0,¢) = (6(0),§) V€ H.

Then, we get ©(0) = Op a.e in Q, i.e., since ©(0) = 6(0) — 6,(0) = ©g = by — 6,4(0),

0(0) =6y a.e. in .
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With an analogous argument, we get u(0) = ug and ¢(0) = o almost everywhere in €,
and this concludes the proof of the existence of a weak solution for any W, with A € (0, A].
From now on, we will call again uy, @y, ux, ©x a weak solution to the problem with the

substitution of ¥ with Wy, thus depending on A.

3.3.2 Convergence to the original problem

Now we need to find further estimates in order to pass to the limit as A goes to 0 (up to a
subsequence). Analyzing the previous proof, we see that the only part in which there is a
dependence on the value of A is in the initial approximating energy E,(0) in equation (3.33)),
therefore, if we change the estimation of this term we can consider all the other bounds as
valid independently of X itself. Proceeding as already done, we reach, changing subscript n
with \: E)\(t) = %Hu,\H2 + %H@,\H2 + %HVQO,\H2 + /Q(\Il,\(gm) + () and we have, exactly as

before,

d _ 1 -
G IEAD} D) < Cllux|]* + 5\!9@)\\?/2,39 + Cl13rg (DI .00
+ C’HQ@)H%/Q,@Q + C‘HUAHQHQ(t)M/z,an
where we recall that

Vs ky
DAt) = IVl + S IVaal[* + S [VOs[*.

In conclusion, changing the constants, since / (Ta(pr) +C) >0, we can get
Q

d

A +DA() < Ki(L+|lg()l[1 0,00) BAWD +EKa(1+]19(D)][F 2,00+ 109 (O[T /2,00)- (3-87)
Thus, due to the regularity hypothesis made on the boundary datum g, we have that Q =
Kr(1+ llglltjp00) € L'(0,7) and also R = Ka(1 + llglf2 00 + 1019112 5.00) € L'(0,7),
we can apply Gronwall’s Lemma (A.1.7)), since E) is at least continuous in time: for any
te(0,7):

t t t T T
E\(t) < Ex(0)edo €0 4 / el QIR (s)ds < elo 2 (Ey(0) + / R(s)ds).  (3.88)
0 0
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1
If we define the interface energy functional as €y(p) = §HV90H2 + /Q U, (p) and

E(p) = ;||V90||2—+—/Q U (), we obtain that E)(0) = Ex(¢o) + %||u0||2—|— %||@0||2. If we show
that (o) < E(po) we are done, since we have by hypothesis on the initial conditions that
E(po) < oo (see Remark and it does not depend on A, clearly. From the property
Section of F, we know that F\(s) < F(s), Vs € R (we recall that F(s) = +oo outside
the interval [—1,1]). Then we have that

1 1
En(sn) = [ (Fa0) = qoptlde < [ (Fleu) = eueflds = ()
as we needed. Thus, we have that
0 < Ex\(t) < Cy (3.89)

where Cy depends only on initial conditions, but not on .
Since all the other estimates are still valid, by means of this new estimate, we deduce

that the same convergences, up to subsequences, are valid: for any 0 < T < oo, as A = 0

uy ~u in L*(0,T;H,) (3.90)

uy—u in L*(0,7; V) (3.91)

uy - u in L*(0,7;H,) and a.e. in Q x (0,T) (3.92)
% - %‘t‘ in L2(0,T; V%) (3.93)

©x = ¢ in L®(0,T; H) (3.94)

ex— ¢ in LY0,T;Va) (3.95)

oy — ¢ in L*(0,T; H) and a.e. in Q x (0,7) (3.96)
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dox | den

yr o in L0, T;V") (3.97)

gy — p in L*(0,T;V) (3.98)

O, 2O inL>(0,T;H) (3.99)

O, — 0 in L*0,T;Vy) (3.100)

Oy, —© in L*(0,T;H) and a.e. in Q x (0,7T) (3.101)
% — % in L2(0,T;Vy). (3.102)

We notice again that, defining § = © + 6, the solution (u,,#) has the required

regularity, since, by the above convergences,
uc L>*(0,T;H,) N L*(0,T;V,) and dyu € L*(0,T; V")
@ € L®(0,T; V)N LY0,T;Vs) and 8y € L?(0,T; V"),
6 € L>(0,T; H)N L*(0,T;V) and 9;0 € L*(0,T; V) + V).

We recall that Vj = H'(Q) and an element of V' can be seen, by restriction on Vp, as an
element of V,; thus we have

o0 € L*(0,T; V).
Moreover, we get, with the same proof as for obtaining ([3.46)), that
4 2 4 2 2 2 A
|11 <0 [l + 18l + lleal?y < €, (3.109)

with C independent of \, implying F}(¢y) € L?(0,T; L*(2)).
We claim that the limit (u,¢,© + 6,) is a weak solution of the initial problem with

singular potential. This part is similar to [34]. The boundedness of ¢ can be proved by
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a standard argument as follows: for any fixed n € (0,1/2) we can introduce the set E,? =
{(z,t) € 2x[0,T] : |pa(z,t)| > 1—n}. From (3.103) we obtain, thanks to the monotonicity

of F (by the convexity of Fy), that, for some constant C' independent of \,

C
EA < - .
Byl < min{F} (1 —n),|F5(n—1)|}

By means of a double application of Fatou’s lemma, remembering, by property , that

|F5(s)| = +oo for every |s| > 1, we can pass to the limit as A — 0 and  — 0, obtaining
H{(x,t) € Ax[0,T] : |ea(x,t)] > 1}| = 0, meaning that ¢ € L>(Q2x (0,T)) with |p(x,t)] < 1
for almost any (x,t) € Q x (0,T).

We now study the convergence for u, in a similar way as done in the previous analysis.
From the pointwise convergence of ¢y, the previous property on its essential supremum, and

the uniform convergence of F3 to F’ on any compact set of (-1, 1), according to property

, Section we obtain:

[E5(p2) = F'(0)] < [FX () = F' ()| + [FX(02) = Fr()]

< sup  [Fi(s) = F'(s)| + [Fi(ea) = F(9)] = 0,

seKC(-1,1)

where the second term in the right-hand side vanishes as A — 0 since F} is continuous
(property (), Section [3.1), and the first one because we know that |¢(z,t)| < 1 almost
everywhere in Q x (0,7). This means that exists a compact set K C (—1,1) such that
|p| € K for every (z,t) in 2 x (0,7") (up to redefinitions of ¢ on a zero Lebesgue measure
set), and then we can apply the uniform convergence on K.

Therefore, this entails F3 () — F'(p) almost everywhere on Q x (0,7). From weak
Lebesgue theorem we then deduce that F3(py) — F'(p) in L2(0,T; L*(Q)). Then we

can conclude as in the previous part of the proof, that
p=—alp+9'(p) ae in Qx(0,T). (3.104)

In conclusion, extracting a subsequence A\, — 0, we can pass to the limit exactly as before
for the equations for the velocity, the temperature and ¢ and also the initial conditions can
be obtained in the same way. Therefore, we have concluded the proof of the existence of

weak solutions of the problem in analysis. The regularity of the solutions follows directly
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from the weak convergences above. Finally, it is easily verified (by integration by parts) that

d, = 0 for almost every (z,t) € 9Q x (0,T), since ¢ € H?(Q) for almost any t € (0, 7). [

3.4 Existence of more regular solutions

In this section we give the proofs of the existence of quasi-strong and strong solutions

(Theorems and respectively).

3.4.1 Proof of theorem [2.1.3

The properties of regularity of the weak solution, already proven in the previous sections, are
still valid (see Definition , but we need to come back again to Galerkin approximation,
in order to prove further regularity estimates, which are needed to obtain a quasi-strong
solution according to Definition This approximating procedure is necessary in order
to make the proof rigorous, since we need to exploit the regularity of the approximating
functions and then pass to the limit to get the same estimates on the candidate solution.
As explained in [61], we perform a cutoff procedure on the initial condition. The idea is
to carry out a three level procedure: the Galerkin approximation, the approximation of the
potential ¥ with Wy and the cut off procedure of the initial concentration. The solution
will be obtained extracting a converging subsequence in all the three levels, showing that it
converges to the solution of the original problem.

To perform the cutoff procedure, we introduce the globally Lipschitz function hy :

R — R, k €N, such that

—k, z < —k,
hi(2) =Sz, z e[~k k], (3.105)
k, z>k.
We define figx = hy o jig, where g = —alpo + F'(po) = po + app. Since fig € V,

the result on compositions in Sobolev spaces [96] yelds figr € V, for any & > 0, and

Viio = Viio - X[—k.k (fi0), which in turn gives

iokllr < llfoll1- (3.106)
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For k € N we consider the Neumann problem

—alApok+ F'(por) = ok inQ
(3.107)

Onpo i =0 on 0N.

Thanks to Lemma there exists a unique solution to this problem such that g €
Va, F'(pox) € H, which satisfies (3.107) almost everywhere in  and dnpp ) = 0 almost
everywhere on 9€2. In addition, by (B.3) and from (3.106) we get

llpokllve < C(1+lfiol])- (3.108)

Since figr — fio in H, Lemma also entails that ¢g — ¢o in V. As a consequence

there exist an 7 € (0, 1), independent of k, and k sufficiently large such that

leokllt <1+ [leoll,  |@okl <m <1 Vk>k. (3.109)

In addition, from Theorem with f = fip 1, we obtain
E" (o) Lo ) < okl Lo () < F-

In conclusion, since we know that F” goes to infinite if the argument is greater than or equal

to 1, we can say that there exists 6 = §(k) > 0 such that
e0kllLoo) <1 —0. (3.110)
Now since F” is continuous on (—1, 1), thus bounded on compact sets (see, e.g., [92]):
VF' (por) = F"(por)Veor € H.

Then, being F'(¢or) € H, we deduce that F'(por) € V. Due to aApor = —jfior +
F'(pox) € V, we obtain that @) € H?(Q). Finally, for any A € (0,\*), where \* =
min {;50@), 5\} (X defined in the properties of F), Section , since F'(z) = F)\(z) for all
z € [-14+ A, 1— )], we infer from that —aApg k + Fy\(po,k) = [lo,k, which entails

| = algor + Fi(vor)ll < llioll1- (3.111)

We now introduce the Galerkin approximation, having considered § = © + 60, (so O¢ =

6o — 04(0) € H), as already done in the previous case with weaker assumptions on initial
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conditions. With the same finite dimensional spaces introduced for the previous case, i.e.,

Theorem [2.1.1] we obtain the following problem depending on n, k, A
o ul1(0) = Pu(uo), @i (0) = Puloi), OF(0) = Pa(0)
(O 5, w) + b(u,ug \, W) +v(Vug ,, Vw) = (3.112)
— (PrAVHE W) + (O) 5,82 - W) + (Og,e2- W) Vw e W,
(Oepp 2, v) + (Vg , VU) + (uf \ - VR, v) =0 Vo € Zy, (3.113)
(0:0F 1, €) + K(VOR 5, VE) + (ug - VO 5, §) = (3.114)
— <00y, > —K(V0,,VE) — (uy - VO, E) VE€V,
for every t € (0,7).
o [y = Pa(—alpiy + UA(0F0)) = =@y + Pa(Wh(4] )

Let us notice that the basis chosen for V is still a basis for H(£2), then we have that

©rA(0) = @or in H3(Q).
In turn, by the embedding H3(Q) — L>®(Q), we get
PrA(0) = o in L=(Q)
Hence there exists n = n(k), such that
. 1 1 _
68O loe < 2306) + ol < 1= 20() ¥ > (3.115

For any k > k we fix A € (0,A\*(k)) and n > @(k). The existence of a solution
and the first energy estimates are exactly the same as in the less regular case: the only
difference is the choice of the approximations ¥y (chosen to be (3.5)) and the choice of the
initial condition for ¢ \: not a real problem due to the previous analysis. Indeed, the only
difference in the proof already shown is in the term E,(0) (see (3.30)). This term is now

estimated in the following way: introducing again the approximated energy

- N 1 « 1
BA(v.1.0) = Bult) = € = IMP + SIV6lE + 5161° + | waw)ie
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Since Uy(z) < ¥(z) Vz € [-1,1] and from we have that, being the essential
supremum of ¢} ,(0) bounded in a compact set contained in [~1, 1], since the function V¥ is
bounded on [—1.1], W) (¢} 1(0)) < ¥(p)1(0)) < K (here we do not exploit the property of
being globally Lipschitz, since this choice of approximations Wy does not enjoy this property).
Thus we have, by the well known properties of the orthogonal projectors, and from :

n n n 1 o D
Ex(uj 1 (0), 5 7 (0), O 1(0)) = || Pa(wo)|[* + S|V Palpor)l1?
2 2

LiB.@o)2 + / U (f 2 (0))de
Q

T3

« 1
< S lluol* + 5\|V¢Z,A|\2 + §H@o\|2 + K|Q
« 1 _
< =|luol]* + §||<P0||% + §||@0\|2 + K < K.
where K does not depend on n, \, k. After this technical passage, the first part of the proof

goes identical, producing the following results (the constants defined here do not depend on

n, A\, k).

0% All Lo,y < C (3.116)
[y oo (0,71,) < C (3.117)
g\l L20.75v,) < C (3.118)
ekl oy < C (3.119)
1Okl L2017 < C (3.120)
ol |Agal[2 < aollFnll2 + 1V aall lpall < K1 - (1+ [V jaall) (3.121)
entailing

[kl za0,1v5) < C. (3.122)

Then we have
gl 2o,y < C (3.123)
el < CA+ [V All) (3.124)
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dey _
H hA <C (3.125)
dt Al z20.7,vy)
ngZ’A ~ n n
Hdt < ClVug | + [V g All- (3.126)
V/
Then
do? _
H P\ <C (3.127)
dt L2(0,T;V")
du? _
‘ il <C (3.128)
dt lr20,m5v7)

where C' = C(T) for any 0 < T' < +oc.

We now pass to analyze higher order energy estimates: taking v = Oyuy; 5, we obtain

1 d n n n n n n
gaHvﬂk,A’F + (Ot 2, Orpr 2) + (Orpa asug x - Vo ) = 0. (3.129)

Since @y, 5 is constant in time, by the regularity of the eigenfunctions we have di¢} | =
Oy @y.n = 0, then dypp \ € Vo and thus dyp) \ € Vj for all ¢ € [0,7], then we can use the
equivalent norm on V{, || - ||« (see the Appendix, (B.18]).
Thus we get by Cauchy-Schwartz’s and Young’s inequality:
-1 - 1
aol|Bipi AP = a0 (Vo n, VAo 9t ) < aol VoAl VAo~ e Al
2
(0% 0% - —1
< §\|V3t<ﬂz,,\|’2 + ﬁHVAO AP
2
o o
= g\lvatw?,-,xl!? + ﬁHatSDZ,AHz-
Then, from property (3.4) of ¥y, we deduce
(Octt x> Or Pl ) = aHV@th,AHQ + (PN (kA 00k 2, Oe ki)
> af Vo \lI? = aolleep AlI?

(%
> al[ Voo AP — SV Oog °

2
ao 2
— — |0}
2aH tSDk,,\H*

(0%
= S IVapkall* = Klloiek Iz

Moreover we observe:

d
@uﬁ,» UE,A : V‘PZ,,\) = at [(uZ,A : V‘PZ,,\y MZ,,\)] - (8tuZ,A : V(PZ,,\, MZ,A) - (UZ,A : Vatdlz,,\, MZ,,\)-

(3.130)
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From Holder’s inequality, the embedding of V < L5(Q) and (3.124)), we then have:

(ke o wix - Vi n) <l allooo) [ allzs@) [[VOeg Al

(6%
< ZHV&%OZ,)\’F + Cl|pg ﬁ'ﬁ(ﬂ) ||UZ,A||%3(Q)

(6%
< ZHV&S@Z,AHQ + C(1 + [ 5

’2)HUZ,AH%3(Q)~

Since on V{ the norm || - ||« is equivalent to the natural norm and since || - vy < (I v,

because Vy C V, due to (3.126)) we also have that

|« < C([Vug

||Orpk; |+ Vi AlD)- (3.131)

The overall result, summing up (3.129|and (3.130)), is the following:

d 1
%{(Mz,m uﬁ,,\ : V‘PZ,/\) + §HVNZ,,\HQ} = (6tuz,>\ : V@Z,)n MZ,,\)
+ (Ui - VOpi as i) — (Oehty; x> Orok 2)

(6]
< S IVOR A + OO+ Al Al s )

«
- §\|V3t¢z,,\|’2 + KHat‘PZ,,\Hz + (Oeug \ - Vg Ao Lk )-

Then we obtain, by (3.131) and Young’s inequality for H@tgpg/\Hf:

d 1 o
%{(Mz,m ug V) + §HVMZ,AH2} + ZHvat‘PZ,AHz
< Co(1+ [[uf A7) (1 + Vg AP + [Vl A7)

+ (Opa \ - Vi ns 1k 2)- (3.132)
Now, taking w = dyuy, , in the equation for the velocity we obtain

H@tu}hﬂg + b(uZ,Aa uﬁ,» atuZ,A) + V(VUZ,,\a V(‘?tuﬁ,x)

= (L \Verr» Oruy 3) + (O 5, €2 - Opu) + (04, €2 - Opu).
(3.133)

Now, we have, by (3.24) applied to both uy ), and Vuy , the Sobolev embedding V, —
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[L4(92)]? and then (B.10):

ol IVugllza) [10rug |l

’b(uzw UZW 3tuz,x) >

1/2
< O ug |12 7ag |12 [Fag o |12 g o1 dru o

1/2
< Cffuf a2V Al gl 2 g 10l

< C_’HUZ,AHIQ [10rui ]

A n n |1/2

1
6”atuk N& +C(|Wuk>\\|4 + HAUk,\H )s

where in the last two passages we exploited (3.117) and the generalized Young’s inequal-
ity. We then analyze, integrating by parts and applying Cauchy-Schwartz’s and Young’s

inequality and then again (B.10):

1
(Va5 VO ) = v(Auf 5, 0 ) < |

+ Ol 51320

1 _
< gHatuZ,)\HQ + Cl|Aug ||

Then, by Holder’s inequality, the Sobolev embedding V' < L°(Q) and V5 — W3(Q) and
the estimate (3.124)), we have:

o)l IVeoll syl [Orag ||

(MZ,AVSOZ,A,@UZ,,\) >
< Ol ally 1Lz oy 1oL
<C(1+ IV i A 0k Al 2 () 100 Al
< l0 P + Kl L+ VAR (3139

We are now left with the terms in temperature: by Cauchy-Schwartz’s inequality and Young’s

inequality we get, since we know (3.116|):
1
|(OF \ €2 - Oruy )| < ||3tuk AP+ ClleR AHQ < EHatUE,AHQ + K. (3.135)

Analogously we obtain, by the regularity of the lift operator:

—_

n 1 n n
[(0g, €2 - Dpuy )| < gHatuk,,\HQ + 1641 1* < Z110cuf AP + CllgD1] o,00- (3.136)

(=}
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To sum up, we can estimate:

IN
= =N

100t A7 < Zl0ug 5112 + C([Vug [1* + || Aug 5 |)

+ 2o A2 + O | Aug [

1

+ 20 + Kl Al ey (1 V60 ]1)
1

+ gHatuZ,,\Hz + K

1
+ g\lé’tUZ,AHQ +CllgOIIF 2,00

implying, that

%) + g 2,00 + 13-
(3.137)

[10pait A17 < CLUNUR A + JAWE AP+ [[9f Al 720 (1 + [V 15

Let now w = Auy , in the same equation for the velocity. Since we know that Auy , €
L*(0,T,H,) (see [97]): there exists Pk € L*(0,T; V) such that —Auy ,+Vpp , = Auy, al-
most everywhere in Q% (0, 7). Then, since (dpug 5, Vpj; ) = 0, being the velocity divergence

free,

1d

§£HVUZL,AH2 +b(ug \, up . Auy ) — v(Aug y, Aug ) = (ug A Ver \, Auy )

+ (OF r €2 - uy ) + (04, €2 - 1y ).

But, since —Auy , + Vpy \ = Aug , and (=Vpy 5, Auy ;) = 0 (to see this, it is enough to

integrate by parts and exploit Auy , € H, for almost any ¢ in (0,7')), we obtain
(—vAug,, Aug ) = v||Auf ,|*

For the transport term we apply the same inequalities as the previous case, to reach (3.137)
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obtaining

@IVagallza) [[Aug ||

[b(uy 5, ug s Aug )| <
1/2
< C||uk )\H1/2||vuk )\H1/2||vuk )\H1/2||vuk /\|| / ||Au’,§7,\||

< O \[|'?)

< Offug [/

< O[|Vup || [[Aug 5[/

v
§||Auk AP+ ClIVug [
Proceeding in the analysis, as done in the case of (3.134)):

(EAVEE Aug ) < [lpgallzs@ I Vel s [|Aug ||
< Cllpg Al legallmz) [|Aug ||

< CA+[Vagall)

1%
< gllAug AP+ K|k )\”HZ ( + Vg Al

Again in the case of the terms for temperature we repeat the same analysis as in (3.135))

and (3.136)):
n n v n 2 2 v n |12
|(OF\ €2 Aug )| < g”Auk,,\H + ClOFA° < gHAuk,,\H + K. (3.138)
Analogously we obtain, by the regularity of the lift operator:
v
(05, €2+ Auf)| < ZlIAWE 2+ ClIO,IP < AW+ CllgOlR o0 (3:139)

To sum up we can estimate:

1d

v
5 oIV + vl [Aug ]2 < 2| Aug 5|2 + Ol Vg ]|

I/

\AUMI\2 + K|l Al i) (1 + Vi A1)

+ gHAUZ,,\HZ + K

1%
+ gHAUz,AHQ + CHQ@)H%/?,@Q’
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1d

2dtllvllk AP+ ||Auk AP < CUNUR A+ 107l 20 )+ 19O 200 +1)-
(3.140)
If we then multiply (3.137) by w = 42 3.140):
ld 2 2 2 4
thHVUkAH HAuk,\H + ][Oy 5|7 < K(Hvuk,\H + HS%,\HIP (1+ HVMI@AH )

9D 2,00 + 1)-
If we add equation (3.132]) and we set
1 1
A(t) = (e oy - Vg ) + §HVMZ,,\|’2 + §HVUZ,,\H27

then we get

d v B «
SN + Ll + lonf A + TV Ol

< Cy(1 +Huk,\HL3(m 1"‘HVMZ,,\HQ+HVUZ,,\HQ)
+ (Oeuy ) - Vi, bEx)

(Hvuk,\\|4+|\90kA’|H2 (1+Hvﬂk>\” )
+lg®I 2,00 + 1)- (3.141)

We are now left to estimate one last term: we have by Holder’s inequality, the Sobolev

embedding V — L°(Q) and Vo < W13(Q) and the estimate (3.124):

(Oeuag x - Veor s, i) < 00ag | Vel s @lleeallzs@)

IN

w
5”‘%“2,,\”2 + CH@Z,)\HJZLIQ(Q)HMZ,)\H%

IN

w
5\\3tu2,,\\|2 + KHSDZ,AHJZLﬂ(Q)(l + HVMZ,)\HQ)'

Then we reach from (3.141)):

d

v w o
th( )+ §HAUZ,AH2 + §HatuZ,AH2 + ZHV@(PZ,AHQ

< Co(1 + [Ju \lFs0) (1 + [V AllP + [[Vuf A1)
+ K(||Vup, >\H4 + [lek ,\HH2 (1 + |V, NB

+ 9Ol 2,00 + 1)- (3.142)
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We now show that A is bounded from below: we have, since uj y € L>(0,7T;H,) and using

(3.24), the Sobolev embedding V < L*(Q), (3.124) and generalized Young’s inequality:

(g - Veor s b y) < lagallna@IVerall gl
e NIRRT
S QI IVE 0+ V1)
< IV A+ VAR + O

Then we have

1 1
— (g - VR o ) < (g - Vi xs e p)| < levuﬁ,xl\{z + ZHVMZL,AHQ +C

obtaining
n n n 1 n 2 1 n 2 /
(g ) - Vg s Hiy) = —ZHVUk,,\H - ZHVM@,AH -C.

We now get
1 1
A(t) > ZHVUZ,/\HQ + ZHVMZ,,\HQ -’

and in the end, defining A(t) = A(t) + C” we obtain
A 1 n (|12 1 n |12
A(t) > ZHVUk,,\H + ZHV/%,,\H > 0.

Then, from the previous estimates, it easily seen that

A(t) < C( +[[Vug A1)

Since

. 1
A(t)? 2 *6(||VUMII4+2IIV11m|| IV kAP + 1V Al

and since, by previous estimate (3.121)) and Young’s inequality,

ek allfrz) < CA+ ViRl < CO+ VAl < C"(L+[[Vug AP,

we are able to deduce, from estimate |3.142| (%A( t) = th( t)), exploiting the Sobolev em-
bedding [H'(Q)]? — [L3(92)]? together with Poincaré’s inequality for the term [[ay; | |[2L3(Q)]2,
that

SR < KO+ 1o 0 + A1), (3.143)
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Moreover, A € L'(0,T), since

T T T
/ A < CT+/ |w;;A|\2+/ Va2 < € < oo (3.144)
0 0 0

where the last term is due to (3.123]) and (3.118). We can then apply Gronwall’s Lemma
A 1.7 to (3.143) with @ = KA € L'(0,7) and b = K (1 +[|g[[} j5.00) € L'(0,T) obtaining

- t .-
R(t) < R(0)eK i Ads + / LA (14 lg()]1 5 p0)ds
0

IA

EKC []\(0) + KT + K’|g| |iQ(0,T;H1/2(89))]' (3145)

Since g € L*(0,T; H'/?(89)) we are only left to estimate A(0): since the projectors are
orthogonal, by Holder’s inequality and Sobolev embeddings V, < [L3(Q)]? and V — L5(Q):

A(0) = (A (0, WA (0) - Vo a(0)) + IO + IV s O] + "
< (147.(0), Palt0) - T Palip0,)) + 3 IVIEAO)I + 511V Pa (o) 2 + €
< 11Pa o)z 1A O) | ooyl IV Balpo )l + SIVIEAOIP + 3 [ ol + €
< IV Puo)l| 11Ol 0]l + SV AO)? + 51V oll? + "
< 1190l 1A Ol 90041l + 5IViEAO) + 5[ Vugll> + "

now from (3.109)) and by Young’s inequality we get

AN

[V uol| [ A O} 1V okl < [Vuaol| [l A O] (1 + [l@oll1)

1
5IVaoll* + C I A O)IF (1+ lleollD)-

IN

The only term to be handled is then the last one in the previous inequality. Indeed we have,
by the orthogonality of the projector Py, by definition of ¥y and triangular inequality, using
definition figx = —aAwo . + F)(pox) with ||fiokll1 < [|foll1 (see (3.106))

1A (O) 1 = [ Pa(—alpf 5 (0) + WA (0 A(0)))] 1

1+ aollei A (0)[

(VAN
|
o
>
S
3
>
=
_l_
S
>3
>
=

<l = @B A (0) + FX(2A(0) + algor — Fi(or)ll + [1fio.k][1 + ol [0F 1 (0) 1

< ek A(0) = okl 3@y + [[FX(@rA(0)) = Fa(wor)ll1 + C ([|foll1 + [loll1).
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Since ¢y ,(0) = P, (o), we know that ©kA(0) = wo in H3(Q) as n — oo, thus the first
term in the right-hand side is bounded and |[|¢; ,(0)||gs@) < C Vn > 0. For the second

one we have

1EA(#EA(0)) = Fx(po)llr < [IFA(EA(0) = FX (o)l + [IV(FX(2FA0) = Fi(or))]-

The second term in the right-hand side (and in a similar way the first term) can be estimated
as follows, exploiting the fact that F) and its first and second derivatives coincide with F'

on [—1 4\, 1= \:

|V (F5(25.1(0)) = Fx(wor )l < [1FX (05 A(0)Ver 1 (0) = FY (¢o,k) Voo k|l
< |FY (00,6)V(2k A(0) — okl
+ [I(FX (9% A(0)) = FX(¢0.k)) Voo k|

< C( max |F"(2)]
ZE€[—14A*,1—=\*]

+ yakd o) — )
Ze[_gggfl_m\ (2)DI#EAO) = porllr

The quantity between brackets is finite because F' € C3(—1,1) and it depends only on \*
and thus only on k. We recall that, even though the maxima of F” and F" could explode
as k — +oo, if A* — 0, the presence of the norm ||y \(0) — ¢o /|1, which goes to zero as
n — +oo (we have convergence in H>(Q) and thus in V'), allows the possibility of choosing a
sufficiently large n so that the estimated difference ||V (F(¢f ,(0)) = F)(¢o,))|| is arbitrarily
small for every k.

In conclusion, we can infer that for any fixed k > k, A € (0, \*) and n > @ (where @

is sufficiently large, as already noticed):

A(0) < C(uo, 0,00) < 00

In view of (3.145) we deduce that

sup [|[Vug ||+ sup [[Vig |l < Gy (3.146)
te0,T] t€[0,T]

where C > 0 depends on T and on initial data, but not on k, A\, n. Moreover an integration

in time of the ODE for A(t), leads to

T
/0 (A A1 + [0 AP + [V Ok A7) dt < Cs (3.147)
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where C3 > 0 depends on T and on initial data, but not on k, A, n. Then, we have, besides
the other uniform estimates obtained from the weaker case (which are already enough to

pass to the limit, as we have seen), we have also that
e u; , is uniformly bounded in L>(0,7;V,) N L*(0,T;W,) N HY(0,T; H,)
* ¢}y is uniformly bounded in L>(0,7V) N L*(0,T;V2) N H'(0,T5V)
® (i y is uniformly bounded in L>(0,75V).

We notice that, defining § = ©+60,, the solution (u, ¢, i, #) has the required regularity,

since, by the above convergences,
uc L>(0,T;H,) N L*(0,T;V,) and dyu € L*(0,T; V'),

€ L0, T;V) N L*0,T; Vs) and dyp € L?(0,T; V"),
6 € L>®(0,T; H)N L*(0,T;V) and 9;0 € L*(0,T; V) + V'),

and the bounds on the corresponding norms are the same as for the approximating sequences,
thus depending only on 7' and the initial data. We recall that V; = H~'(Q) and an element

of V' can be seen, by restriction on Vj, as an element of Vj; thus we have
o0 € L*(0,T; V).

By standard methods and by the uniqueness of weak limits, we deduce that the candidate
solution is indeed a solution to the weak problem, passing to the limit in k£, A and n, up to
subsequences. Clearly, by the same argument, (for A small enough, F) is convex, see [52],
Lemma 2) as for the existence of weak solutions (Section[3.3.2), we deduce that |¢(z,t)] < 1
almost everywhere in Q x (0,7).

By the regularity for u and ¢ we have also that the initial conditions are reached
in the pointwise sense, u(-,0) = up and ¢(-,0) = ¢ in Q. We can now deduce the last
regularity issues.

Since dyp +u- Vo € L*(0,T;V), we infer from classical regularity theory of ho-

mogeneous Neumann operator that p € L?(0,T; H3(Q)), Oup = 0 almost everywhere on
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00 x (0,T) and 0yp + u- Vo = Ap holds almost everywhere in © x (0,7"). Finally we can
recover the pressure, arguing as in [97], since we have (we can use the global 0, since by the

regularity of © we deduce its regularity, due to 6 = © +6,)
f= Ve —du— (u-V)u+ ey € L2(0,T; [L*(Q)]?);

then we deduce that the pressure 7 satisfies

T T
/O 7] s < K/o 1812 < oo,

therefore 7 € L*(0,T;V) and Vi = fa.e. in Q x (0,7).

From the regularity p € L>(0,7;V), Theoremimplies that o € L0, T; W2P(Q))
and F'(¢) € L>=(0,T; LP(Q2)) for any 2 < p < oo. Furthermore, thanks to the growth condi-
tion we deduce, by Theorem [B.1.2] that F”(p) € L>(0,T; LP(R)) for any p € (2, 00).

In conclusion, arguing as in [61] with the incremental quotients we deduce that Oyu
exists and belongs to L*(0,T;V").

Thus by Lemma [A.2.2] we deduce that p € C([0,T]; H). O

3.4.2 Proof of Theorem 2.1.6

To prove the existence of strong solutions, most of the proof is already done in the previous
section. Indeed the hypotheses on the initial data and on boundary datum g fulfill the ones
needed in the aforementioned theorem.

Passing again through the Galerkin setting, we can reproduce the proof of that the-
orem, adding further higher-order bounds for the temperature approximation, and then
passing to the limit in k, A (extracting, as usual, a subsequence A\; — 0) and n, up to
subsequences, in the same way. In particular, we add the following estimates.

We recall that ©g = 0y — 6,(0), therefore ©¢ € V.

Let £ = 0, QA as a test function in the equation for the temperature:

k d

§$’W92,,\|’2 + |10 Z,/\HQ = (UZ,A : V@Z,A,é?t@Z,A) - (UZ,,\ Vg, 0 Z,,\)

+ H(Aag, 875927)\) — (87509, 8,5(9279. (3148)
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Now, O}, , solves the following elliptic problem:
—kAOE = [ ae in Qx(0,7T)
Z,)\ =0 on 39,

where f summarizes all the terms present in the equation for the temperature. We can then

apply elliptic regularity estimates (see e.g.[20]) and obtain that

1Ok Al m20) < CIISII;

meaning, by Young’s inequality, that
107 Allr2(0) < CUIBOR AP +[1uft x - VOR A1+ [y - V|2 + [| A * +[[0:64] ). (3.149)

By Holder’s inequality, a standard Sobolev embedding and from the uniform bound on

Vuy y, we have (cf. proof of Theorem [2.1.3)):

[Tk x VORI < i AlFpa 02 VOR Al () < CHIVUEAIPIVOR A[Fa () < KIIVOR L)
(3.150)
From Lemma [A.1.4] in a similar way as done in [101] and [102], we deduce by Young’s

inequality, for a fixed § > 0

K||V@Z,,\H%4(Q) < KC(||[VOF »

| [[D?OF A+ [IVORAIP) < 81107 AllFr2 () + ClIVOR A
(3.151)

1
From this estimate we then deduce, choosing § = 5 that

1% All7r2(0)

~ n n n 1 n
< C(|0OF A1 + VO A + [ - VO |I* + [[A6]1 + [18:8,]*) + §H®k,AH?p<Q)-

We are left to consider only one term, which is estimated by means of Holder’s inequality,
Sobolev embedding and estimate (which implies [|VO|| 1) < C||0g]|m2()) and from
the uniform estimate (3.146) on Vuy, 5, which was derived in Theorem and is still valid

in this context:

[k x - VOg|[* < [laft sl 02 V0170 () < IIVUE AP0l 72 (0) < CllOlIZ2 (0)-
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We are ready to use the regularity of the lift operator, to get
107 all7r2(0) < 2CU10OF AP + VORI + [1uf - VO[> + [|A0]|* + [12:011)
< K([10:0F \lI” + VO A1 + 110911720y + [186][* + 110:6,] 1)
< K([10OF 512 + VORI + gl F7/2(00) + 109312090 (3-152)

Coming back to the equation for temperature (3.148)), since, by Young’s inequality and the

same estimates as before, |[Ad,|| < [0, rr2(0) < Cllg()]] r3/2(90), We obtain:

HV@ AP+ 00k AP <l 5 - VORI 110:O5

2dt ug x - V][ [|0:0% 5|l
+ 110811 10O A1 + 511201 1067,

< IO + C(llu - V6,

- VO + 1104811 + 1246, 1)

< 10O + Ol - VORI

+ K (|92 06 + 1009 31/2(00))- (3.153)

1
Considering § = Ok in (3.151)), substituting in (3.150) and then in (3.153|) we obtain

4y ver AP+ lloeg 17

IN

1
n 2 n 2
th 10:0% Al +E‘|®k,AHH2(Q)

(VORI + 193572 0y + 10 771/2(50))

1
Hﬁt@Z,AHQ + ZHé’t@Z,AHQ

IN
N Nn |

E'([IVOR AP + gl F/2 00 + 10913120
(692) (69)

Rearranging the time derivative, we are left with

1 n n
* VORI + FIAOR A < KNIVOR AR + K (lg(t) o oy + 106D 2o

Since, by assumption on g, the second term in the right-hand side belongs to L'(0,T), we

can apply Gronwall’s inequality (the term in the time derivative is absolutely continuous,

/
indeed) with a(t) =

K K’
and b(t) = =—(Ilg(®|IFa/2(a0) + 1019(1)l[311/2(a0))- to get, by the

orthogonality of the projector on Vp:
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!/

2K’ 2K

||V@Z,A(t)||2 <ex= T[HV®0”2 + p (||g”%2(0,T;H3/2(8Q)) + ||atg||iQ(0,T;H1/2(BQ))] < KN?
(3.154)
with K" independent of k,n, \. Integrating in time in (0,7") the previous equation we also

obtain that
T
/0 1007 \|I? < K,

with K independent of k£, n, \. Then we also deduce from that ©F , € L*(0,T; H*(Q))
and that it is uniformly bounded also in this norm.

To sum up, differently from the less regular case, we also have these estimates:

O} is uniformly bounded in L>(0, T; Vy) N HY0,T; H)N L*(0,T; V).

Then we can pass to the limit and conclude the proof of the existence of a strong
solution, because we have reached the needed regularity and the equation for temperature
also holds almost everywhere in Q x (0,7"). Being the weak limit in the right convergence,
also the limit © € L>(0,7T;Vy) N H*(0,T; H) N L?(0, T} VQQ). Since 0 = © + 04, the same
regularity holds for 6, because by construction 6, € L*(0,T; H*(Q)) and 8,0, € L*(0,T;V):
we have 6 € L°>°(0,T; V)N H'(0,T; H)N L*(0,T; H*(Q)). Thus the solution (u, ¢, 1, §) has

the sufficient regularity to be a strong solution. [
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Chapter 4

Stability estimates and uniqueness

In this chapter we deal with the proofs of the continuous dependence estimates presented in
Chapter 2. These estimates are important to guarantee the stability of the solutions, and
thus the well-posedness of the problem, since from these estimates the uniqueness of the
solution can be derived as an immediate corollary.

The first estimate proved is the one leading to weak-strong uniqueness, and it gives
the possibility of controlling the norms of u, ¢, and € in the respective dual norms, when
a weak solution in the sense of Definition and a strong solution (Definition are
given.

The second estimate can be achieved when dealing with quasi-strong solutions (see
Definition . It controls the L? norms of u and ¢, whereas it controls only the dual norm
of 6.

The third estimate is a higher order estimate and can be achieved when dealing with
strong solutions (see Definition . This estimate controls the L? norms of u and ¢ and

also the L2 norm of 6.

4.1 Proof of Theorem 2.2.1

We now prove the stability estimate (2.1)) from which the weak-strong uniqueness is a direct

consequence. Let us consider the weak form also for the strong solution and perform the
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difference between them.
We define u =1y —ug, ¢ = ¢1 — 2, 0 = 01 — O and = —alp + V(1) — ¥ (p2).
Then, having 6; = g(t) on 92 x (0,7T), we get

< du,w >+ b(u,u,w) + b(u,uz, w) + v(Vu, Vw) (4.1)

=a(Vp1 @ Vp, Vw) + a(Ve @ Vs, Vw) + (0,e2-w) YweV, (4.2)

< Opp,v > +(Vp, Vo) + (u1 - Vo, v) + (u- Vg, v) =0 YoeV (4.3)

< 00,6 > +K(VO,VE) — (u -0, VE) —(u-62,VE) =0 VEeT (4.4)
where in the last term we exploited the fact that u = 0 on 9Q and div u = 0 in Q to say
(u;-V0,8) = —(u1 - 0,V¢) and (u-Vby, &) = —(u- 02, VE).

First of all, since

Ve = (—alp +¥'(¢)) Ve,

we have

(03 .
Ve =V (SIVel? + W(p)) — a div(Ve © Vi);

therefore the aforementioned weak formulation is equivalent to the one used up to now.

We then recall that, due to the previous regularity properties, we have for i = 1, 2,

[[w ()| < Co,  lwi®)llv < Co,  wi(®)|lpe@) <1 [|02(t)[]1 < Co. (4.5)

for almost any t € (0,7, for some constant Cj depending on the initial data energy. We
start with the equation (4.3). Remembering the zero divergence of the velocity and its

no-slip boundary conditions, we rewrite it by integration by parts as
< Opp,v > +H(V, Vo) — (urp, Vo) — (upe, Vo) =0 Yo e V. (4.6)

We have also, as already noticed many times, that (it is enough testing against v = 1,
remembering that all the integrals apart from the first one vanish due to boundary conditions
and zero divergence of velocity) ¢(t) = @(0) = 0 (since by assumption @1 = @g2) for all
t €[0,T]: then ¢ € Vj (see (B.16)), and then also ¢ € V. With this remark in mind, we
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can test the equation with v = Ay Lo, which is now well defined, obtaining (remembering

that, exactly as in 1) we have (Vp, Vflalap) = (u,9)):
1d

SsalIPlE+ () =T+ T (4.7)

with
Ty = (u1p, VAg '¢)
T = (upa, VAG ' ).
Now by Lagrange theorem, from the properties of regularity of ¥, we have, for some £ =
&(s1,82) € (—1,1), from property , that
U'(s9) — W(s1) = 0" (&)(s2 — s1) > —a(sa —s1) Vs1,82 € (—1,1)

which means, since @1, p2 € (—1,1) almost everywhere in Q x (0,7), that, always almost

everywhere,
V(1) — W' (p2) > —a(p1 — p2) = —aep.
We then are able to say that, by integrating by parts the first term, due to homogeneous

Neumann boundary conditions,

(1, 0) = —a(Ap, 0) + (¥ (1) — ¥'(p2), @) = 0| [Vl — allg| *. (4.8)

From definition of Ay we also get, from Cauchy-Schwartz’s and Young’s inequalities:
- - _ @
dllel® = a(Ve, VA;p) < SIVell® + Cligl (4.9)

We can now write

ld 2 2~ o _1d 2
577 - < - =T+ 7
eIl + all Vel — allel < 2 Zllel? + (n,9) = T + T,
implying
1d o
5 gllells + SIVell” < Clipllk + T + To.

We now estimate the last two terms in the inequality, by Cauchy-Schwartz’s and Young’s
inequalities and the Sobolev embeddings V < L5(Q) and V, < [L3(Q)]? and by Poincaré’s
inequality:

(07
Ty <|lellzs@llulls @llell« < g\lW)ll2 + C1l Va3
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Whereas for the other term, by Cauchy-Schwartz’s and Young’s inequalities, we obtain,
applying estimates (4.5)):
v
Iy < l@2lleo (o llull [lells < gllull2 + Collpl[3-

We now pass to estimate the equation 1} testing it against v = A lu (where A is the
Stokes operator defined in Appendix [B.2) remembering that (Vu, VA~ u) = [|u||?, we get

1d

2dt||u||b +vlul® = T3 + Ty + T, (4.10)

with
T3 = —b(uy,u, A~ u) — b(u, uz, A" tu)

Ty = (Vi @ Vo, VA7) + a(Ve ® Vs, VA1)

Zs = (0, e - A_lu).

By Holder’s and Young’s inequalities and by LemmalA.1.4| and (]B.l()[), since [VA_lu]ij €

H'(Q) for each component and by (4.5):

< ([lwi]l @) + llu2llza)) [l || VA~ al|zaq)2

— — 1/2
C([ ||V [[/2 + [ /2|72l 2) [[u]| |V A~ Y2V Al

_ _ — 1/2
C( [ [*/2)| T |2 + s [/2] Vo [/2) [Ju]| |V A || A a2

A

IA

Cllw |21 7u 2 + [Jua|[Y2]|Vus||2) [[u]| [[VA~ u|/2]| A~ u] |y
= Ol |2V [[72 + [Jus|[Y2]| V|| 2) [[u]| 2 [[VA™ ul[/2

1% 1% _
Sg\IUH2+K|\u|\b(HVu1II1/2+HVqul/z) g\IUH2+K|\u|\§(HVU1II2+HVUzH2)-

About Zy, acting in a similar way, we have by Holder’s and Young’s inequalities and

by Lemma estimates (4.5) and Sobolev embedding V < L*(1):
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Iy < (IVerllpa + 1IVerllza@) IVell [IVA™ ul|pao2
Clllerllm + lle2llaz@) 1Vell VA~ a3V A~ /2

Cllleillaz ) + lleallmz@) 1Vl (VA ul]/?||u]'/2
(0%

ININ

IA

ZIIVell + Clllerllzeq) + 12l o) VA | [ful]

(0% v
7IIVell + il + K (el + lealle @)l

IN

In conclusion, we are left with the last term, estimated again by means of Cauchy-

Schwartz’s, Young’s and Poincaré’s inequalities:
K _ K
T <TI0 + CI A ul? = F1j6] + ClJull2 (411)
In conclusion, we tackle equation 1} substituting { = Ay 19, where operator Ay is

defined in Appendix [B.3] we get:

Ld

5 2 1011% + w0l = To + Tr (4.12)

where
T = (u1 - 0,VA;10)
Tr = (u- 69, VA 10).
Then, for the last two terms we get, by Holder’s and Young’s inequalities and by
Lemma and (B.15)), since VA;'0 € [H'(Q)]? and by (4.5):
Zo < |16]] lusll pa) IV AT 0l 10
< Ollel] flus| 21V [2][VA7 6121V Ag 611
_ _ —1p(1/2
< C1[6]] w27 |2V Ag 0] [/2]| Ag 6] 11 g
< KJJ0IP [[Vw |2 [V A o) < gHHH2 +C|IVAF I ||V |2
K ~
= SlOI17 + ClOIE. [[Vw]?
and in conclusion by similar arguments, remembering Sobolev embedding 6y € V < L*(Q)

and u € V, < [L*(Q))* and remembering (4.5), where we exploited the more regularity of
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the strong solution (it is exactly at this point that we need more regularity for ), we are

left with
T < [6a]| oy lul] [[VAG 0] (1402
_ —14111/2
< K021 ul| ||V AG 012V A5 0l
_ —14111/2
< K02l full 117456117217 45611142,

< K[[6a]1[Jul| [V A5 6|2 116112

v K _
< Sl + SH1012 + ClIoa 1 1V A5 011"

IN

1% 2 K 2 = 2
- —110 o

where in the last steps we have used the Young’s inequality for three terms (with exponents

2,4, 4).
We define
1 9 1 9 1 2
H(E) = Sl + 5 el + 511011,
and
«
R(t) = v||ul|]® + &[|6]]* + §||V90H2

and then sum up all the three inequalities, obtaining

7
d «
2 )+ vl[ul|* + «[[6]]* + QHV@HQ <CllplZ+> 1,
j=1

and substituting all the estimates we get

d «
7O +R({) < Cllell? + gHVSOHQ + Co|[ V| P[]l 2
v
+ 2l + ol

v _
+ gl + Kl (V| + [ Vua|[%)

« 14
+ 2119612 + Zl1ll? + K (o1 ey + Izl i

K
+ 216112 + Cljul?
K ~
+ 216112 + ClIBI (|9

1% K =
+ 2Jlull? + El612 + ClIBIE..
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Thus, we can define
D(t) = 1+ || Vur] 2 + Vsl + 1l + 2l e (4.15)

and manipulating the constants we are led to

d v K «
o ) + §|\UH2 + §H9H2 + §||V<PH2 < KoD(t)H(t). (4.16)

We now observe that D € L*(0,T), since uy, ug € L*(0,T;V,,) and p1, @ € L*(0,T; H*(2))
and T' < +o0. Then
T
/ D(t) < C(T).
0

We can now apply Gronwall’s Lemma (indeed, we know by Lemma by (B.9), (B.13)
and (B.19) that H is absolutely continuous and a,b € L*(0,T)) to (4.16)), obtaining

H(t) < KoePH(0)

and this implies the desired estimates, since the norms considered are equivalent to the

classical dual norms in the right spaces (see Appendix [B.3)). [J

4.2 Proof of Theorem 2.2.3

To prove the stability estimate stated in Theorem [2.2.3] we define u = u; — ug, ¢ =
p1— 2 and 0 = 01 — O3, where (uy, ¢1,01) and (usg, 2, 02) are two solutions departing from
(uo,1,%0,1,00,1) and (ug2, ¢o.2,60,2), respectively and satisfy ug; € Vo, @o; € Vo such that
llvoilleo < 1, |@oi| <1, po,; = —aA900,i+\I/’(<p07i) € ¥y and Onpo,; = 0 on 012, and b ; € H
and 6; such that 6; = g(t) on dQ x (0, T). We recall that this means that 6 € Vy = H}(Q)
for almost any ¢ € (0,7).

We define p = —alAp + ¥'(¢1) — ¥'(p2) and we get

< O, w >+ b(ug,u,w) + b(u,uz, w) + v(Vu, Vw)

=a(Ve1 @ Vo, Vw) + a(Ve @ Vo, Vw) + (0,62 - w) Yw eV,

< Opp,v > +H(V, Vo) + (ug - Vo, v) + (u- Vg, v) =0 YoeV (4.17)
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<O, > +Kr(VO,VE) — (11 - 0,VE) — (u-02,VE) =0 VE€V, (4.18)
where in the last term we exploited the fact that u = 0 on 9 and div(u) = 0 in Q to say
(u;-V0,8) = —(uy - 0,VE) and (u-Vhy,&) = —(u- 02, VE). Then we can test with w = u,
v=¢pand { = A 19 (the operator Ay is defined in Appendix . Using the property
1} and the property that (V#, VAEIG) = ||6]|* (see (B.14))) and summing up the three

resulting equalities we find

6

d
SHW) + vl Vull? 4+ Rl + (TaVe) = T,
i=1

having set

1 2 1 2 1 2
t —_ - - oy 0 .
H(t) = Il + 5llel? + 51612,

Since b(up,u,u) = 0:

Z; = —b(u,uz,u)
Iy = (V1 © Vo, Vu) + a(Ve © Vg, Vu)
I3 = —(u1 - Vo,v) — (u- Vipg,v) = (a1, Vo) + (upz, Vo)
Zy = (0,e2-u)
Zs = (1 - 0,VA;'0)
I = (u- 0, VA;'0).
In light of the regularity of the solutions, and since we have proven in Theorem that
F' (@) = 9" (g;) + ag € L*°(0,T; L3(Q)), there exists a positive constant Cy such that
[illLoeo,r3v,) + Wil oo 0,123 (12) + @il Lo 0,13v)
+ @il Loc (o.mw23(0)) + " (@)l Lo o,rp30)) < Co i=1,2  (4.19)

where C depends on 7', on the initial energy and on the norms of the initial data (indeed,
all the estimates obtained in the Galerkin setting are still valid also for the solutions). Due

to homogeneous Neumann boundary conditions, integrating by parts the term ||V||, from

(A.4) we obtain the inequality (already used in [61]):

lell} < Naellllell + el (4.20)
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where || - || represents the L? norm.
Integrating by parts and using the embedding V' — LG(Q), together with (4.19| we

observe that
(Vi, Vo) = (—p, Ap) = o [Ve||* = (¥ (1), Ap) + (¥ (2), Ag).

Since F" is convex in (—1,1) and |||l < 1, also ¥ = F” — qg is convex, by and by

Holder’s inequality and the aforementioned Sobolev embedding, we deduce
(T'(p1) = W'(02), Ap) = (1 — 2) /01 U (p15 + (1= s)p2)ds, Ap)
< (¢ /01{8‘1’"(901) + (1= 5)¥"(02) }ds, Ap)
= %(‘I’"(cm) — U (p2), pAp)
< 19" (01) = ¥ (w2)ll L3 lleell s (@) | Al
< (19" ()l L3y + 1" (02) s @)1l Lo @y | Al

< 2Co| Il oo | Al

< CllglhillAgl|
now, since obviously a > —|a|, we obtain, using (4.20) and Young’s inequality twice:

(Vi, Vo) > al|Apl|* = Cllell1]|Agl]
a —
> al|Apl||? — ZHA@HQ — Ollel}

(07 o 10 ~
> allAg|? - ZHAwIIQ —|leelf? - ZHA@H? — Cllel]? > §\|A<ﬂll2 — Cllel*.

We now need to estimate the terms in the right-hand side: by Holder’s inequality an then

Young’s inequality, together with the Sobolev embedding V, < [L%(92)]? and from (4.19) :
v
I < [ull [[Vuall@ye | lullzs@yz < |Mall [[Vuallza @yl Vull < ZIVlP+Cllul || Vusl[fs g

Then, by (4.19), the embedding W?23(Q) — W1>(Q), valid in dimension two (see, e.g.,
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[20]), Holder’s and Young’s inequalities and in the last step by (4.20) we get:

Iy < (IVerlloo + [[Vrlloo) IVl [[Vul| < K[Vl |[Vull

v _
< S IVul* + Ol Vel

14 « ~
< S IIvull® + S 1Al + Cllgl .

Then, again by Sobolev embeddings, Holder’s and Young’s inequality and (4.20) we get,
since for (1.19) [|u1l[(z3(a)2 < Co,

o _
Is < [l ool lullns@zl [ Vell + llezllcol[ull [[Vel| < g!IASOHQ + K ([l” + |2l [3[ul?).
For the next term, by Holder’s and Young’s inequalities we get
K
Iy < 161> + Cllu|f*.

Then, for the last two terms we get, by Holder’s and Young’s inequalities and by Lemma

[A.1.4]and (B.15), since VA;'0 € [H(Q)]? and by (1.19):

s < [101] [[urll 2|1V AG | s
— — 1/2
< C110I] w27 |2V Ag 0] 2|V A5 011
_ _ — 1/2
< 1101|272V Ag 0] [/2| Ag 16 13

_ K ~ _ K ~
< K|[0]P2(IVAG 0l < 210117 + CIIVAG 0I* = 11611 + ClIfI[2.

and in conclusion by similar arguments, remembering Sobolev embedding 6, € V < L*(Q)

and u € V, — [L}(Q))?

_ 1% _ v
s < 102l o llullzae [V AG Ol < LIVl P+CII0 ]V A 01 = I Vul[*+C110s [ ]16]]%.
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Then, to sum up we have

d a .
—H®) +|[Vull® + w1017 + SlAgll” = Cllel* <

- 1V + Ol a2V a0

i
4
+ IVl + SllAgl + Cllpl

+ SlAel? + Kl + ezl lul?)
+ 11612 + Cllul

+ 116112 + ol 2,

+ ZII5ul* + C1[6s 1612,

we then obtain, by rearranging the terms, and considering less constants and setting

Qt) = 1+ VualZs oy + llpall% + (163

d v K « _
SH() + 2NVul? + S0 + S AlP < KO()H). (4.21)

We now observe that Q € L*(0,T), because by Sobolev embedding we get by means of

1} since uy € W, (see Appendix for the definition of this space), HVuQ\|[2L3(Q)]2 <
CHVuQH%p < K||Auy||? and uy € L*(0,T; W,), but also ||@a]|ee < l[p2|[r2(q) and o €
LY0,T;Va) < L*(0,T; V) and in conclusion 6y € L*(0,T;V). Then

T —
| em<c
0
We can now apply Gronwall’s Lemma (indeed, we know by Lemma and by
(B.13) that H is absolutely continuous and a,b € L'(0,T)) to (4.21), obtaining

H(t) < KeCH(0)

and this implies the estimates (2.2)). From these estimates, clearly we immediately deduce
the uniqueness of the solution. The constants appearing in the stability estimates only

depend on T, the initial energy and on the norms of the initial data. O

4.3 Proof of Theorem 2.2.5

Here we show a stability estimate for strong solutions. With respect to the previous one,

the difference is that a higher order norm of the temperature can be controlled.
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The proof is similar to the one in the previous section, apart from the following higher

order estimates.

First of all, we test the equation for the temperature against £ = 6 € Vy. In this way,
we get
d
101+ £l VOI* = (u6,, V6) = 0. (4.22)
Then we have only to estimate the following, since H2(Q) < L°°(Q) ([]), by Young’s

inequality:

(ub, VO) <||02]]co [|ul] VO]
< C02] 2oy [l [[VO]

K _
< 21190112 + Cllul 1102l B

Considering the other equations, the only change is in the term called Zy = (6, e3-u) with the
numbering of the proof of Theorem since 6 € Vjy, we can apply Poincaré’s inequality

to get
K
Zy < [16]] [[u]] < Col[VO| [ful] < Z[IVOI[* + K |[ulf*.

If now we sum up all the terms and consider the other ones estimated in the previous proof,
we obtain, setting
Ha(t) = 2l + 3 llel” + 5161
= — || —_ —_
2 9 2 2 2 9
that

d a .
o Ha(t) + vl|Vul[* + sl [ VO + S[1A]? = Cllell” < LIIVull® + Cllul || Vus|lfs o)

+

(0% ~
[Vl + Al + Cllel

ORI

+ 2118012 + B (191 + sl
K: —
+ ZUI01 + ClJul P16 e

K 2 2
+ VOl + K lull
We then obtain, by rearranging the terms, and considering less constants and setting

R(t) =1+ ]|Vu2||[2L3(Q)]2 + llpal I3 + ||92H§12(Q)’
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that
d v o _
EHat) + 21Vl + S0P + S 1Al < KR()Ha). (4.2)

We now observe that R € L'(0,T), because by Sobolev embedding we get by means of 1}
since uy € Wy, HVUQH[QLg(Q)P < CHVUQH%_Il < K||Auy||? and uy € L*(0,T; W,), but also,
by Sobolev embedding, ||¢2|lc < C|lp2|lg2() and @2 € LY0,T;Va) — L2(0,T;Vs) and

in conclusion 6y € L%*(0,T; H*(Q)), whose regularity is the reason why we need a strong

solution for this estimate. Then
/ ! R(t) < C.
0
We can now apply Gronwall’s Lemma (indeed, we know by Lemma that Ha is
absolutely continuous and a,b € L'(0,T)) to , obtaining

Ha(t) < KeCHy(0)

and this implies the estimates (2.2]). All the estimates obtained in the Galerkin setting are
still valid also for the solutions, then the constants appearing in the stability estimates only

depend on T, the initial energy and on the norms of the initial data. O
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Chapter 5

Numerical approximation

5.1 Discretization and numerical scheme

We now discuss a numerical approximation of the Cahn-Hilliard-Boussinesq system. As we
have seen in the Introduction, there are not present any numerical schemes for this kind of
systems, even though there are studies for similar schemes such as the CH equation (e.g.,
[64]) and the NSCH system (see, e.g., [95]). We start from the space discretization by means
of finite elements, then passing to time discretization. We analyze the properties of the
resulting numerical scheme, in terms of stability. This means that, in case of homogeneous
Dirichlet boundary conditions for the temperature €, we obtain that the total energy, defined
in , does not increase in time. Moreover, we show that the scheme preserves the total
mass of the system, which is a fundamental property of the CHB system with homogeneous
Neumann boundary conditions for ¢ and the chemical potential u.

In conclusion, the development of an adaptive time step gives the possibility of re-
ducing the number of time steps in the simulations since, for small times, the time step
needed for the solution of the CH equation is very small, whereas it could increase in the
next time steps, since the characteristic time of the NS equation is larger than the former.
We linearize the numerical scheme, by means of the Newton’s method and then, in Chapter

6, we perform some numerical tests.
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5.1.1 Semidiscrete formulation

For the discretization of the equations we followed the discretization of the CH equation
proposed in [64]. The semidiscrete formulation reads as follows, by a Galerkin method (see
e.g. [89] for a referenece). We will consider v and k as positive constants.

Let VA c [HY(Q)]?, Qn € L*(Q), Vi, € HY(Q) and Y}, € H}(Q) be finite dimensional
spaces.

For every t > 0, find (up, pr, ©n, pn, On) € VZthxththYh (or ©p € Y, C HY(Q),
Y}, finite dimensional space, for the nonhomogeneous Dirichlet boundary conditions) such

that

< Opup, wy >+ b(up, up, w) + v(Vuy, Vwy) — (pp, divwy,) =

— (enVin, W) + (O, €2 - wy)  Vwy, € VI
(div up, qn) =0 Van € Qn
< Opn,vp > +H(Vup, Vop) + (up, - Vop,vp) =0 Yo, € V
< phy g >=a < Vop, Van > + < (pn),qn > VYan € Vi,
< OO, & > +r(VOR, V&) + (up, - VO, &) =0 V&, €Y.

Remark 5.1.1. We used the same spaces for the approximate components of the solution ¢y,

and pp,.

Remark 5.1.2. The approximate components of the solution can be expressed by means of

the bases of the finite dimensional spaces adopted:

Ny, Np No
u(t) = ZQ(t)Wz‘ eV)  pu(t) = Zpi(t)@ €Qn nt)= Zﬁi(t)xz' eV, (5.1)
l;: Z;; i=1
pa(t) =D %)xi € Vi On(t) =) di(t)v; € Y, (5.2)
=1 =1

where Vf; = Span(wi,...,wny,), Qn := Span(ér,...,én,), Vu := Span(xi, ..., xn,) and
Y}, := Span(v1,...,vng), and {Gi}i, {piti, {Biti, {7i}i and {0;}; are the coordinates of the
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variables with respect to the corresponding basis of the finite dimensional space they belong

to.

As a particular choice of Galerkin method, we choose the Finite Elements Method
(FEM) and we now define the finite dimensional spaces.

Namely, in the sequel we will adopt the following choices for the finite element approx-
imations. We define 7}, as a finite regular triangulation, which is a covering of the domain
Q,, a polygonal approximation of the domain € R? (if it is not polygonal itself, otherwise
Qp, = Q). Namely, we define

Qp = int U ,
KeTh K
where K is each triangle of the triangulation, and, given a set A, int(A) is the interior of A
(see, for instance, [89] and references therein, for a more detailed description of FEM).

We then introduce (V" Qy) = (IPy, finite elements, PP; finite elements), where
P, finite elements = {v;, € C°(Q) : vp|x € Py VK € Tp},

representing the space of the globally continuous functions that are polynomials of degree 1
on each triangle K of the triangulation 7p,.

Moreover Py, finite elements is the classical Py bubble space, where the linear velocity
space is enriched by additional degrees of freedom (the bubbles) which are zero at each
element boundary and is either cubic or piecewise linear inside the element (see, e.g., [89]

for a reference).
Remark 5.1.3. We notice that the choice of the previous two spaces is inf-sup stable (see
[13]).

Then we will consider V;, = Py finite elements and Y}, = P finite elements, in order
to reduce the computational costs.

5.1.2 Fully discrete scheme

Following [64] for the CH equation, we then approximated all the other time derivatives by

means of backward Euler approximation (see [37] for a reference).
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For the treatment of the nonlinearities we use a semi-implicit scheme only for the
convective term in the velocity equation and for the term whose indexes are highlighted
with a x in the following (they should all be n + 1 if we followed a fully implicit scheme).

Moreover we introduced the trilinear forms ¢;(u,v,w) = b(u,v,w) + %(u divw, v),
with u, v, we [H}(Q)]? and c2(z,0,€&) = —(z - VE,6) — %(divz 0,¢), with ze [H}(Q))?,
6, ¢ € H(Q), in order to obtain antisymmetric trilinear forms, following the ideas, e.g.,
in [81] and [97], which are used to guarantee energy stability (see Theorem [5.1.4). Clearly,
if w,z € V,, the forms coincide with the original ones, because the divergence of these
functions is zero. The scheme thus reads: for At, > 0 and for all n such that ¢, < T, with

T > 0 fixed value, find (UZvaZH’ @ZH, NZH’ @ZH) € VI x Qp x Vi, x Vj, x Y}, such that

1 h h h h
At (un+1 — Up, Wh) + b(u*,n7 Uyt Wh)
n

1 ) .
b il i) (Tl V) — (9l divws)

= _(@Z,nVNZHyWh) + (®Z+1792 “wp)  Vwy € VZ (5.3)

(divul,i,q,) =0 Van € Qn (5.4)

L h h
Ttn(@n—f—l — Pno Uh)

+ (V,LLZH, Voup) — (uZngi‘m, Vup) =0 VYo, €V (5.5)

h _ ,,h\2
(1h11.0) = (qs; (W) + ¥ - W\v”’w))

+a(Ve, Vel  VoeV, (5.6)
1
E(QZ—H — O &)+ “(V@Zﬂa Vén)
1, .
— (O, ulyy - V&) — i(le ul 0 1,6) =0V, €Y, (5.7)
where we chose gpff’n = goZ, uin = uﬁ and
1
ﬁ - 5 + n,
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with n a real-valued parameter to be chosen and
%02+,5 = oh + 5(902+1 —oh).

For the case of homogeneous Dirichlet boundary conditions for temperature, we have
Sl +1 € Hj(9), whereas for a suitable nonhomogeneous datum g at the boundary (see
Chapter 2 for a detailed description of the necessary regularity of the boundary datum) we
ask for O, | € H'(Q) such that O, | = g(t,11) on 9Qy, for every time step n, where g
is a suitable projection or interpolation of g on the finite dimensional space of the traces of
functions in Y}, on 9%Y,.

For the homogeneous case we propose the following theorem, having fixed 7' > 0 and
N € N the maximum value such that the last time step ty <T. We define At,, as the time
step at each time t,, in order to highlight its dependence on each step n.

The numerical scheme adopted is the following: for At, > 0 and for all n such that

t, < T, withT > 0 fixed value, find (u2+1ap2+1a‘PZ+1>MZ+1762+1) € VZXthththYh

such that
Ly h hooh
H(un—‘rl — Up, Wh) + b(unv Uit Wh)
n
1 ) .
+ §(UZ+1d1V up, wy) + V(Vufz-s-la Vwy) — (pilz—i-l, divwy,)
= —(ehVul 1, wh) + (08 62 wy)  Vwy, € VI (5.8)
(diV uZH, qh) =0 th € Qh (5.9)

L h h
E(Son—i—l — Pno ’Uh)

+ (VEb 1, Vo) — (Ul el Vo) =0 Vo, €V, (5.10)

1 R _hy2
(i1, 9) = <¢, S (Ve +veh)) - W\wm)

+a(Ve,Veh.g) Voel, (5.11)
1
E(GZH -0l &)+ K‘(VGZ—Ha Vén)
1,
(G T v/ 5(dw u Ol ,6) =0V €Y, (5.12)
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where

1
5-5"‘777

with 1 a real-valued parameter to be chosen and
h h h

Theorem 5.1.4. Consider the scheme @—: in case of homogeneous Dirichlet con-

ditions on the temperature and velocity fields, defining
1 2 1 2 @ 2
En = Sllun||” + S1Onll” + S[[Ven|" + | ¥(pn)dx (5.13)
2 2 2 Q
enjoys the following properties, Yn =0,..., N — 1:

o Mass conservation:

/¢Z+1dx:/<p3 dx
Q Q

e Nonlinear stability condition (for At, sufficiently small),with Cy ad C the Poincaré’s

constants for the homogeneous Dirichlet condition for temperature and velocity respec-

tively:
At,C}
En+1 S (1 + 4ny L )En
202
In particular, if kv > —1=9 we have, independently of At,,,
Epp1 <E, VYn=0,....N—1 (5.14)

Proof. The mass conservation property is immediate, substituting v, = 1 as a test function
for (5.10).

In [64] the following quadrature formula is introduced and proven:

Let f: [a,b] — R be a sufficiently smooth function. Then

(b—a)t
24

f"(x)  xe€(a,b). (5.15)

b —u )
[ s = 250w + 50 - C5 ) -

This formula in [64] is then used to show the energy stability of a numerical scheme for
the approximation of CH equation, whereas here we exploit it for the numerical scheme

approximating the CHB system.
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As done in [64], we apply the quadrature formula (5.15)) to the right-hand side of
the identity ® = ¥’ (such that ®” = W!V > 0, as it is for the case of the physically

relevant logarithmic potential defined in the Introduction) in integral form, defining

[[a]] = aly, — ol h h
v = [ wma = [ s, 5.16
(k)] / v / e (5.16)
We obtain, for the right-hand side:
[l [t [t
[, ea = TRl +aeha) -yt e ie - Fe @, a7

where £ = SQDZH + (1= &)ph = gofH_g, with £ € (0,1). After some algebraic manipulations,
from (5.16]) we can write, dividing by [[¢"]]:

2 (em)ll | [lonll® g, Lo n h 102
) =—( ) — =P : 1
Now we follow a similar proof as in [64], but in a more general context than the only CH
h
equation, testing equation ([5.10)) against v = ,uZH and ([5.11)) against ¢ = HK:H We obtain
(W30, Vi) = (Vi g, Vg )
12 R R 29| R 3 [022) R
_ d — = 1
(e T+ e o) —a (VAL Vet =0 69

1
Using the relation gpzﬂ/z = 5(@2 + ¢l 1), we obtain

902+,8 = <PZ+1/2 +[[el]].
Therefore it follows from (5.19)) that

h h h113
(i Vi) = (e, Vi) - (U0, ol Bealigmer )

— VH()OZH \V4 h —a VH h]] LV[[ h]] -0
At, ’ (pn-f—l/? ¥Yn ’Atn Pn -
and, making use of the identity,

o (VIREL Vehia) = 5 [V o
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we get
A;{;“/Qu Ven|® ]]d:w/ﬂ[[m(%)]]m} — (ul ot vl )

h114
=i Vi) - (5, et ) - o (VI A VIRN) . 520

Since ®” > 0 in the case of logarithmic potential, all the terms in the right-hand side
of (5.20) are negative, thus

Altn{(;/g[[ Veonl® Hdw—i—/ﬁ[[\ll(goﬁ)]]dx} —(uh o vl ) <0

for any n > 0.
Now, we test the equation for the velocity against wy, = uZH, the continuity equation

against qp = pZH and the equation for the temperature against &, = @ZH. Since

1, .
—(uiiﬂ : V@ZJAJ G)ZH) - §(d1V uii+1@ii+1v @ii+1) =0

and
1
h .k h h . b R
b(um Up i1, un+1) + §(Un+1dlv Uy, un+1) =0,
due to homogeneous Dirichlet boundary conditions for velocity and temperature, we obtain,

summing up all the equations, simplifying the term At, (¢! V", u” ), which cancels out

in the summation:

([l wh ) + vAL|[ Vg |2

+ SV D+ [ [eehe

([[O7)), ©Ons1) + £AL VO |12

< Aty (O)1,e2-uty). (5.21)
To reach the first stability result, we can apply Cauchy-Schwartz’s and Young’s inequalities

1
*Huh\l2+§llu7'1+1|!2 and (07, ©7;,1) < *Il@hlig *H@ all?)
to get for the right-hand side:

(also to obtain (u”, uZH)

A Ct

At (O 41,2 - up 1) < Aty |OF 4| [Jug 4[] < 105 1l1” + VAL [[Vuy 4 [P (5.22)

94



Analyzing the equation for the temperature lb testing it against @Z 11, we easily get
that ||©F, ]| <||©%||. Thus substituting it in inequality 1' and rearranging the terms,

we get
At, C?
4

En+1 < (1 + )En

Applying Poincaré’s inequality also to the temperature in (5.22)), we obtain

At,C2

02
h h h h
Atn(@n+17 €2 - un+1) S Ay ! Hv®n+1”2 + VAtn”vunJrlH2

212

and we observe that if K > %

14

or, in other words, if

CiCs

KV > (5.23)

we have

Eni1 <E, ¥n=0,...,N,

because we exploit the dissipative term related to thermal conductivity in the left-hand side

to compensate the remaining extra term in (5.22)), and this concludes the proof. O

Remark 5.1.5. The condition (5.23)) on the physical parameters, which depends only on the
domain €2, has a physical interpretation: since in the NS equation a new forcing term due
to temperature, fes, which is the gravitational force, is present, either the viscosity v in
the NS equation or the thermal conductivity « have to be sufficiently large to be able to
dissipate in time a sufficient amount of the total energy, in order to prevent it from non
physical increase. To quantify this condition on the parameters, we consider the rectangle
(0,2) x (0,1), which is used in the simulations of Chapter 6: a computation by means of the
MATLAB command pdeeig shows that the best Poincaré’s constants for the mesh chosen
are Cp = C1 ~ 0.28 (indeed the first eigenvalue of the Dirichlet laplacian is \y ~ 12.34
and Cp = C = )\fl/ 2). Therefore we obtain, thanks to Theorem , that the sufficient

2,2
condition is kv > % ~ 0.0015.

We can now pass to analyze the linearization of the above numerical scheme, in order

to solve it, by means of the FreeFem++ software (see [69)] for a reference).
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5.1.3 Linearization

We first linearize the two coupled problems, i.e. the equations for temperature, the NS
equations and the CH equation, by decoupling them following a fixed point iteration scheme.
We fix a maximum number of fixed point iterations for each time step, indicated by S, > 0.

Again we define At,, the time step at time ¢,, which can vary at each iteration. The

method thus becomes:

For At,, > 0 and for all n such that ¢,, < T, with 7" > 0 fixed value, solve the following

iterative scheme:
e Set the initial condition for n = 0:
(ug, P, ¢6, 16, ©8) = (uh, by, s piy, O7). (5.24)
and set the initial time step Atg.
e For every n such that ¢, < T
1. Set s = 0 and initialize
(UZ+1,07PZ+1,07 <P2+1,07MZ+1,07@Z+1,0> = (uZaPZ#PZ,MZ’@Z)

2. While 0 < s < S, do:

(a) Compute @Z+1,5+1 such that
1
E(®¢L+1,S+l - G)Zafh) + ﬁ(veerl,erl? Vén) — <@Z+1,s+17 UZH,s V&)
n
1, ..
— 5 (div w1 O &) =0 VE, € Y. (5.25)

(b) Compute (W1 41, P)+1,611) Such that

Ly h hooh
At (un—‘,-l,s—i-l — Uy, Wh) + b(urw Upt1,s+1> Wh)
n

1 .
+ *(UZ+1,5+1d1V uZaWh) + V(VUZ+1,s+1’ Vwy)

2
- (p2+1,s+1>diVWh) = _(@Zv:u2+1,svwh) + (624-1,8—&—1762 ‘W) Vwy € V?—
(5.26)

and
(div ultyy s41,qn) =0 Yan € Qn.- (5.27)
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(c) Compute (u,’}LH’SH, SOZH,sH) by means of Newton’s method, such that

Altn(@fwrl,sﬂ - 9027 vp)

+ (VHZH,SHa Vup) — (UZ+1,5+1<PZ» Vup) =0 VYo, €V (5.28)
and
(MZJrl,erla ¢) = <¢, % (‘I’/(@Z) + ‘I’/(SOZH,SH)) - ((pZH’SJ{; —on)” ‘I’”/(SOZ)>
+a(Ve, Vniss) Vo€V (5.29)

3. Set s=s+1

h h h h ho\_ (.h h h h h
o Set (Wyi1,Pnt1s Prtts Mot Ont1) = (U, 1,8, —1, 8, —1, 18,15 O, —1)-

e Set n =n+ 1 and compute Aty 1.

Remark 5.1.6. Notice that, in step 2.(b), the right-hand side is completely known from the
previous step and can be computed. The same goes for step 2.(c), which is decoupled from
the other equations, since uZ +1,5+1 has already been computed in the previous steps. We

can visualize the numerical scheme in the flowchart in Figure [5.1

Remark 5.1.7. In the simulations of Chapter 6, we will sistematically use S,,, = 1, since we
found it enough to get the desired properties of the solution: this means that it is equivalent
to solve the linearized problem without fixed point iterations. For further investigations,
the fixed point iterations could be implemented, for example with the following stopping
criterion based on the increment, instead of the maximum number of iterations: fixed a

tolerance tol, stop the iterations when

HUZH,SH - u2+17sH + H‘PZ+1,5+1 - @Zﬂ,sH + HGZ‘FLS-‘F]. - @’Z'f‘l,SH < tol.
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Figure 5.1: Flowchart of the numerical scheme adopted.

Start

n=0, set initial condition (ull, pf, of, uk, O)

s=s+1

Stop = t, <T tn = tn + Aty,, compute Aty
yes
s=0
s < Sn —

yes l

h h h h h _
Set (W 41,00 Prt1,00 Prt1,00 Mnt1,00 Ont10) =

h
(u)y, ph, ok, b, OF)

Compute ®Z+1,s+1 from 1) given u,ZJrLS

Compute (u2+1,s+17p7’1+1,s+1) from (5.26)
- h h
and " given @n+1,s+1 and Hnt1,s

Apply Newton’s method to (5.28) and (5.29)):

h h : h
Compute (Mn+1,s+17 (pn—i—l,s—‘rl) given un+1,s+1
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We can now consider the bases for the finite element spaces previously defined: since we
have chosen the same spaces for p, @, u and 6, we have the same number of basis functions,
denoted by M:; therefore we have VZ = Span(wi,...,wn,), Qn = Span(p1,...,on),
Vi, = Span(xi, ..., xm) and Yy, = Span(vy,...,var) and test the previous equations against

each element of the bases.

We obtain

Ny M

up(tn) R ul =Y Unwi € VS pu(ty) ~plh =D Paigi € Q" (5.30)
i=1 1=1
M

Sph(tn) ~ 902 = Z Pn,iXi € %
=1
M M

:U’h(tn) ~ NZ = Zﬂn,i){i € Vy @h(tn) ~ 92 = Z én,ivi €Yy,
i=1 =1

and we define U,, P,, @,, [, and ©,, as the vectors of coordinates with respect to the
corresponding bases. Therefore we obtain:
For At,, > 0 and for all n such that ¢,, < T, with 7" > 0 fixed value, solve the following

iterative scheme:
e Set the initial condition for n = 0:
(Uo, Po, @0, fio, ©0) = (Un, P, G, fin, On).- (5.31)
and set the initial time step Atg.

e For every n such that ¢, < T

1. Set s = 0 and initialize

(Un+1,0> Pn+1,07 @n-i-l,()a ﬂn—l—LOv @n-i-l,O) = (Um an Py P @n)

2. While 0 < s < 5, do:
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(a) Compute (:)n+17s+1 such that Vi=1,..., M

M M
1 _ _ _
AL D AOnrist1y = O} (v, 00) + £ Onprsrr(Voy, Voy)
et =
M LM
Z On1,541,j (v, Wy - Vi) — = Z Opt1,541,5(div ulyy vj,v5) =0
7j=1 J 1
(5.32)
(b) Compute (Upi1,s41, Pnt1s+1) such that Vi=1,..., N,
1 Nu Ny
AL > {Unirsr1g = Ungb (Wi, wi) + Y Unirspab(ul, wi, wi)  (5.33)
st =
1 ol
+ 3 Z Un+1,s+1,5(wjdiv Um wi) + v Z Un+1,s+1,;(VWj, Vw;)
.7 1 7=1
NP
= Porrarn(¢g, divws) = —(@h Va1 o W) + (O 11 541, €2 - Wi)
j=1
and
Ny,
Z Un+175+17j(diVWj, ¢1) =0 Vi = 1, ce ,M. (5.34)
=1

(c) Compute (,EZH’SJFh @Z—&-Ls—l—l) by means of Newton’s method, such that they

solve (5.28)) and ([5.29).

3. Set s=s+1
e Set (U™, PrHh g+l it @™t = (Us,, 1, P, 1, $5,0 -1, /5,1, O5,, 1)
e Set n =n+ 1 and compute At,1.

We are left to tackle the last nonlinear step 2.(c), whose expanded formulation reads:
Vi=1,...,.M

M M

Z{‘PnJrl s+1,5 — SOTLJ}(Xja Xi) + Z Hnt1 8+1,](VX]7 Vxi) — (UZ+1,5+1SDZa Vxi) =0
= =

1
At,

(5.35)
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and

M
D st (6 Xi) (5.36)
j=1
1 1 h I (902-&-1,5—&—1 - 902)2 "y h - -
= (Xiv 5(\1/ ((pn) + ¥ ((pn+1,s+1)) - 12 v (@n)) ta Z (pn+/87j(vXj7 VXZ>

j=1
where @nip5 = @nj + B(Prt1,s+1,5 — Pnyj) Vi=1,..., M.
We apply Newton’s method (see, e.g., [90]) to linearize the equations: in order to

use it, we rewrite the equations in an algebraic form, introducing the following vectors and

matrices:
1 o
Aij = 506X, bi=1...M (5.37)
Kij =(Vx;,Vxi), dj=1....M (5.38)
g ={Agn}i + (UZ+1,5+19027 Vxi), i=1,....M (5.39)
Dy =, xi), 4ji=1,....M (5.40)
3 1 (Oh 541 = 90)° .
hi (@nt1,5+1) = (Xi, 3 (‘I’/(@Z) + \III(SDZ+17S+1)) — ’SJ{Q gy ) i=1,..., M.
(5.41)
In this way, the system of equations becomes
_ A Kl [
o |7 ) = Pt ; =0 (542

We clearly see in this way that to apply Newton’s method we need to linearize the term —h.

In particular, the corresponding Jacobian reads:

Oh; 1
- L=y i Xj)+
e 5V (@) (xi x5)

(a— )

S ) xg), =1, M (5.43)

I}i(q) =

and we can conclude with another iterative loop indexed by r > 0:

A K| |65 EX
, VY i (5.44)
J (@nJrl,erl,r) - OZBK D 5ﬁ _ﬁn+1,s+1,r
@n—&-l,s—&—lm—‘rl _ @n—i—l,s—i—l,r T 5@ (545)
Pn41,5+1,r+1 Hn41,s+1,r _5ﬁ
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As a stopping criterion we decided to use the one based on the residual: stop the

iterations when

@n—&-l,s—i—l,r—‘rl

[19( )2 < tol,
ﬂn+1,s+1,r+1
Ny
with tol = 107%, where ||q||3 = Z q? is the classical Euclidean 2-norm.
i=1

For the solution of the linear system we used LinearGMRES as a solver, with a fixed
tolerance of 1079, which is 100 times smaller than the tolerance adopted as stopping criterion
for the Newton’s method.

In order to reduce the computational effort, we used a suitable block diagonal precon-
ditioner, namely a Jacobi block preconditioner, for the iterative solver GMRES: in particular

we made use of the following one

A 0
P = (5.46)
0 D

where A and D are the matrices introduced in and , respectively, used in the
discretization of the CH equation. In this way we reduced the GMRES iterations for the
solution of the linear system to about 4 or 5 and the computational time is sensibly reduced,
whereas the number of Newton’s steps needed is about 1 or 2 for each step s.

We can thus restate the final algorithm to be solved in this way:

For At, > 0 and for all n such that t, < T, with T' > 0 fixed value, solve the following

iterative scheme:

e Set the initial condition for n = 0:
(Uo, Po, %0, fi0;: ©0) = (Up, Pr, @i, fin, On).- (5.47)
and set the initial time step Atg.
e For every n such that ¢, < T

1. Set s = 0 and initialize

(Un+1,0, Pn+1,07 95n+1,07 ﬁn+1,07 6n+1,0) = (Um Pna @m ﬂna @n)
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2. While 0 < s < .5, do:

(a) Compute ©,,11 41 such that Vi=1,..., M

M M
1 ~ _ _
A ;{@nH,SH,j = O Hvj,vi) + K ; Ont1,541,(Vj, Vy)
M | M
= Ontrarr (v, uhy . Vi) — 3 D Onirsrni(div up g v, 0) =0
j=1 j=1
(5.48)
(b) Compute (Up41,641, Ppt1,s41) such that Vi=1,..., N,
1 N Nu
AL D {Unsvrstrg = Ungt (Wi, wi) + > Ungasprb(ult, wi,wi)  (5.49)
" =1 j=1
1 Ny Ny
+5 Z Uns1,541,5 (Wdiv ul, wi) + v Z Unt1,5+1,5(VWj, Vw;)
7=1 7j=1
NP
= Porrern(¢, divws) = —(@h Vi1 o W) + (O 1 541,€2 - Wi)
j=1
and
Ny,
> Unirsi(divwg, ) =0 Vi=1,...,M. (5.50)
j=1
(¢) Set r =0 and
@n—l—l,s—l—l,(} o @n—l—l,s
ﬂnJrl,erl,O /]nJrl,s
While
Pn+1,5+1,
le(| ™" ]2 > tol
ﬁn+1,s+1,r
repeat iteratively to find (fn+41,641, Pnt1,s41):
A K| |dp 5
) @ _ —(b( Pn+1,5+1,r (551)
J (@n—i—l,s-l—l,r) —OéﬁK D 5ﬂ ﬁn+1,s+1,r
ii.
@n—&-l,s—‘rlm—‘rl _ @n—f—l,s—i—l,r I 6@ (552)
ﬂn+1,s+1,7‘+1 ﬂn-&-l,s—i—l,r 5/7'
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i, r=r+1
3. Set s=s5+1

e Set (Un+1> Pn+17 @n—i-l, ﬁn+1’ (:)n-i-l) = (USm—b PSm—la @Sm—la /]Sm—ly (:)Sm—l)-

e Set n =n+ 1 and compute At,1.

5.1.4 Time step adaptivity

As we have already noticed, in order to reduce the number of time steps in the simulations,
since at the very beginning of them the time step needed for the solution of the CH equation
is very small, whereas it could increase a bit in the next steps, we used an adaptive time

step in the following iterative procedure, in order to compute At, 11, given uﬁ, gpz, MZ:

o Set
AtL(()) = Ato

e For every n > 0 do:

For 1 > 0:

1. Compute ¢pg 1y, solution of equation (5.5 with a Backward Euler scheme (thus

a linear equation):

1

———(pBEa) — Prvn) + (Vul, Vo) — (ulel, Vo) =0 Vo, € V.
Aty

2. Compute QOZ_,’_L(Z) (and all the other variables) with the algorithm proposed in
Section and using At, 1 ) as time step.

||‘PBE,(Z) - SOZH,(l)HQ

3. Calculate ent1,(l) = Hcph Il
n+1,(1)

4. Update the time step

Alpi1,ar1) =p
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5. If en41 > TOL then | = [+ 1 and return to step 1., otherwise set @ZH = 9024—1,(0
(and in the same way all the other variables), At, 11 = At ) and Atpy20 =

Atpy1,i41)

e n=n-+1.
This kind of update of the time step is frequently used in adaptive time-stepping
algorithms (see, e.g. [64] and [15]): we chose the safety coefficient p = 0.9 and TOL = 1073,

as suggested in [80]. Moreover we set Aty = 6 X 1072, In this way, in the simulations that

we present in Chapter 6, we reach a range of time steps from about 1072 to 107°.
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Chapter 6

Numerical tests

In this Chapter we present five simulations performed implementing the numerical scheme
presented in Chapter 5, by means of FreeFem-+4. We verify the mass conservation of
property and the stability of the scheme. We observe the phase separation phenomenon
and, in particular, the effects of different initial conditions for the velocity and temperature

fields on the concentration field.

6.1 Choice of parameters

In the numerical tests performed we decided to consider the concentration field in [0, 1], as
proposed in [64] (the theory obtained for the concentration field in [—1,1] is exactly the

same as in this case, up to a rescaling), with the logarithmic potential defined as

U(p) = 2(p log(p) + (1 = ¢) log(1 — ¢)) + 2a0p(1 — @)

with ag = 2.4, in order to obtain the double well potential in Figure [6.1} it is non-convex,
with two local minima to which the concentration is driven, at about 0.16 and 0.84. The

derivatives necessaries for the computations of the Newton’s method are then the following

() = 2(log(p) — log(1 — ¢)) + 2a0(1 — 2¢)

1 1
U (p) = 2(; - ﬁ) —4dag
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Double well potential

-0.05

-0.1¢

-0.15¢}

-0.2¢

-0.25 : : : :
0 0.16 0.4 0.6 0.84 1
Concentration

Figure 6.1: Double well potential: we can see the two local minima

20—-1
(p) =25 —5
P*(1 = ¢p)?
3?2 —3p+1
UV (p) =475 ———
P (1 =)

Remark 6.1.1. We can observe that WV (o) > 0 for ¢ € (0,1), thus Theorem is valid.

The domain Q chosen is the open rectangle (0,2) x (0,1) ¢ R%. We then choose
the computational mesh, from which we will derive the value of «, the other parameter in
the CH equation: we use a structured mesh with 26’080 triangular cells and 13’041 nodes,
corresponding to a mean diameter of each cell of about h = 0.009, as we can see in Figure
6.2

We then chose the parameter « to be a = 8 x 107° ~ h%. The other parameters to be
chosen are 5 = 0.6, the kinematic viscosity v for the velocity and the thermal diffusivity &
for the temperature. These two coefficients will be chosen in different ways, but respecting

the limitation shown in Remark B.1.5

Remark 6.1.2. Clearly, being in a continuous finite elements setting and using only regular
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Figure 6.2: Computational mesh

functions, the hypotheses of Theorem [2.1.6] at a continuous level in infinite dimensional

spaces, are fulfilled, thus we expect the existence of a solution.

6.2 Initial conditions

For what concerns the initial conditions to be set, we now focus the attention on the con-
centration field, since for temperature and velocity the initial conditions will vary between

the different numerical tests. We decided to consider two different possible initializations:
e Symimnetric initialization with zero mean perturbation of a uniform field ¢ = 0.63:
wo(z,y) = 0.63 4 0.1sin(167x)cos(127y

which leads to the initial condition in Figure with a total initial mass of m =

wodx = 1.26000.

e Nonsymmetric initialization with nonzero mean perturbation of a uniform field ¢ =

0.63: we used the FreeFem-+-+ commands
wo(x,y) = 0.63 + 0.05(—0.5 4+ randreall ()

We recall that, since we have set the initial seed for the command randreall, this

initial condition is actually deterministic and can be reproduced identically at any
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Figure 6.3: Symmetric initialization with zero mean perturbation of @
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Figure 6.4: Nonsymmetric initialization with nonzero mean perturbation of ¢

time. This condition is represented in Figure and the total initial mass is m =

/ podz = 1.26036.
Q

The initial condition on pg is computed from the initial condition on g, by means of
the definition:

o = —alpg + ()

We can now pass to analyze the numerical tests.
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Figure 6.5: Test 1. Initial temperature field in 3D representation.

termmperature

6.3 Numerical test 1

First, we fixed the remaining parameters: v = 0.01 and « = 5: in this way the sufficient
condition is satisfied, since kv = 0.05 > 0.0015. As initial condition for ¢ we chose the
one in Figure [6.3] the symmetric one with zero mean perturbation of @, whereas for the

temperature we initialized the field solving the equation:
k(VOq, VE) = / 2000&dx V¢ € HY(Q)
Q

With homogeneous Dirichlet boundary conditions for ©g. This initial condition simulates
a sudden injection of a source of heat in the system, which acts as a forcing term in the
equation. The resulting symmetric initial condition is shown in Figure [6.5]

We then initialize the last field, i.e. the velocity field, by solving a Stokes equation for
(ug, po) € [HE()]? x L*(Q) keeping into account g, o and Og:

v(Vug, Vw) — (po, div(w)) = (=0 V (o), W) + (©0, wy)  ¥w € [H;(2))?
(div(ug),q) =0 Vg e L*(Q)
always with no slip boundary conditions, obtaining the velocity field in Figure [6.6]

For this test we reached T ~ 0.024. The resulting concentration field in time is
represented in Figures [6.76.10] where we can see the spinodal decomposition at the very
beginning and then the phase separation leads to the formation of larger and larger bubbles.

The advective effect of the velocity field is clearly visible: we can see that the motions

in the concentration field are regulated by the advection of the velocity field. To see this
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velocity_magnifude
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Figure 6.6: Test 1. Initial velocity field.

effect, we can observe Figure [6.11] in which two different time steps are superimposed
(t=0.018 and t=0.0223, the former in the background, the latter in the foreground) together
with streamlines for the velocity field: we can see that the droplets follow the streamlines.

As it is physically reasonable, the concentration is driven to the two local minima of
the double well potential previously shown.

For what concerns the velocity field, in Figure [6.6] we can see the evolution of stream-
lines in time: it is much slower than the evolution of the concentration, having longer
characteristic time, nevertheless we can see a difference in the shape of the vortices. Indeed
we clearly see the formation of smaller vortices at the corners and in the middle of the
domain.

In conclusion, in Figures we see the temperature field in time: the effect of
the temperature is to generate the convective cells (i.e, the two vortices in the velocity field)
and as a feedback the temperature tends to become stratified in time, due to the motion of
the hot fluid from bhottom to top. Moreover, we can see that the range of values decreases

in time, because most of the energy has been dissipated in time.
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Figure 6.7: Test 1. Time t = 6 x 1072,
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Figure 6.8: Test 1. Time ¢t = 0.0081.
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(a) Temperature field (b) Velocity field

(c) Concentration field

Figure 6.9: Test 1. Time ¢ = 0.012.
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(a) Temperature field (b) Velocity field

(c) Concentration field

Figure 6.10: Test 1. Time ¢ = 0.0223.

113



8.4e-01

—-07

—06
04
[u‘a

166-01
|

concentration

Figure 6.11: Test 1. Superimposition of time steps (in the background the old time step
t = 0.018, in the foreground time ¢ = 0.223): we see that the droplets follow the streamlines.

We can now analyze the properties highlighted in Theorem [5.1.4} first of all, in Figure
we see the plot of the total mass in time: it is always constant (up to the fifth significant

digit) m = 1.26000.

1 1
If we now compute the total energy for each time step E, = éHunHQ + §H@nH2 +

%HV(an? + / U(pp)dz, we obtain, as expected from Theorem [5.1.4) that the energy is
Q

nondecreasing, and in particular it is decreasing, as we can see in Figure Indeed, the
sufficient condition on v and k is respected. Moreover, in Figure [6.15] we computed the
derivative of the total energy by means of backward finite differences, obtaining that the
derivative is always negative, confirming the decrease of the total energy. In conclusion, the
time step ranges from 6 x 10712 at the beginning to 3.0224 x 1075, as we can see in Figure
[6-16t actually, we can consider it constant, since the oscillations are around approximately

the same mean value.

114



Figure 6.12: Test 1. Streamlines in time, a comparison: we clearly see the formation of

smaller vortices at the corners and in the middle of the domain.
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Figure 6.13: Test 1. Total mass of the system: we see that it is constant in time, as expected.
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Figure 6.14: Test 1. Total energy E,: it is always decreasing as expected.
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Figure 6.15: Test 1. Derivative of the total energy F,: it is always negative as expected.
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Figure 6.16: Test 1. Semi-log plot of the adaptive time step in time.
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Figure 6.17: Test 2. Initial velocity field.

6.4 Numerical test 2

We fixed the parameters: v = 0.01 and x = 5: in this way the sufficient condition is satisfied,
since kv = 0.05 > 0.0015. As initial condition for ¢ we chose the one in Figure [6.4] the
nonsymmetric one with nonzero mean perturbation of @, whereas for the temperature we

initialized the field solving the equation:
x(VOp, V&) = / 2000&dx V€ € HY (),
Q

exactly as in test 1, with homogeneous Dirichlet boundary conditions for ©¢. The resulting
symmetric initial condition is already shown in Figure [6.5

Also the velocity is initialized exactly as in the previous test, obtaining the velocity
field in Figure [6.17]

For this test we reached T' = 0.03. The resulting concentration field in time is rep-
resented in Figures [6.1846.21] where we can see the spinodal decomposition at the very
beginning and then the phase separation leads to the formation of larger and larger bubbles.
The advective effect of the velocity field is clearly visible also in this nonsymmetric case:

we can see that the motions in the concentration field are regulated by the advection of the
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velocity field. To see this effect, we can observe, as done in the previous simulation, Figure
in which two different time steps are superimposed (t=0.021 and t=0.03, the former
in the background, the latter in the foreground) together with the streamlines: we can see
that the droplets follow the streamlines.

As it is physically reasonable, the concentration is driven to the two local minima of
the double well potential previously shown.

For what concerns the velocity field, in Figure we clearly see the formation of
smaller vortices at the corners and in the middle of the domain.

In conclusion, in Figures [6.18/6.21] we see the temperature field vs. time: we can see
as in the previous test that the range of values decreases in time, because most of the energy
has been dissipated.

We can now analyze the properties highlighted in Theorem first of all, in Figure
we see the plot of the total mass in time: it is always constant (up to the fifth significant
digit) m = 1.26036.

If we now compute the total energy for each time step E, = %HunH2 + %H@nHZ +

%\\thnHQ + / U(p,)dx, we obtain, as expected from Theorem [5.1.4] that the energy is
Q

nondecreasing, and in particular it is decreasing, as we can see in Figure Indeed, the
sufficient condition on v and k is respected. Moreover, in Figure [6.26] we computed the
derivative of the total energy by means of backward finite differences, obtaining that the
derivative is always negative, confirming the decrease of the total energy. In conclusion, the
time step ranges from 6 x 1072 at the beginning to 6.77 x 107°, as we can see in Figure
6.27r actually, we can consider it constant, since the oscillations are around approximately

the same mean value.
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Figure 6.18: Test 2. Time ¢ = 0.0015.

178401

(a) Temperature field (b) Velocity field

[Bdem

06
[04
16e-01

concentration

(c) Concentration field

Figure 6.19: Test 2. Time ¢t = 0.012.
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Figure 6.20: Test 2. Time ¢ = 0.021.
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Figure 6.21: Test 2. Time ¢ = 0.03.
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Figure 6.22: Test 2. Superimposition of time steps (in the background the old time step
at time t = 0.021, in the foreground time ¢ = 0.03): we see that the droplets follow the

streamlines.
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(b) Time t=0.03

Figure 6.23: Test 2. Streamlines vs. time, a comparison: we clearly see the formation of

smaller vortices at the corners and in the middle of the domain.
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Figure 6.24: Test 2. Total mass of the system: we see that it is constant in time, as expected.
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Figure 6.25: Test 2. Total energy E,: it is always decreasing as expected.
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Figure 6.26: Test 2. Derivative of the total energy F,,: it is always negative as expected.
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Figure 6.27: Test 2. Semi-log plot of the adaptive time step in time.
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termperature

Figure 6.28: Test 3. Initial temperature field in 3D representation.

6.5 Numerical test 3

We fixed the parameters: v = 0.05 and £ = 10: in this way the sufficient condition is
satisfied, since kv = 0.5 > 0.0015. As initial condition for ¢ we chose the one in Figure
[6.4] the nonsymmetric initialization with nonzero mean perturbation of @, whereas for the
temperature we initialized the field solving the equation:
k(VOyq, VE) = /Q 1000sin(z)(0.5 — 2?)édx V& € H(Q)

With homogeneous Dirichlet boundary conditions for ©¢. This initial condition simulates
a sudden injection of a source of heat in the system, which acts as a forcing term in the
equation. The resulting nonsymmetric initial condition is shown in Figure [6.28]

We then initialize the last field, i.e. the velocity field, by solving a Stokes equation for
(a9, po) € [HE()]? x L*(Q) keeping into account g, o and Og:

v(Vug, Vw) — (po, div(w)) = (—=poV(uo), w) + (B0, wy) Vw € [Hg(2))
(div(ug),q) =0 Vqe Lz(Q)

always with no slip boundary conditions, obtaining the velocity field in Figure [6.29]
For this test we reached T = 0.05, a larger value than before, since the effect of velocity
field is less relevant and thus the time step can be a bit larger (in this test it ranges from

6 x 10712 t0 4.9 x 1075 as we can see in Figure [6.38)). The resulting concentration field in
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time is represented in Figures[6.31}[6.34] where we can see the spinodal decomposition at the
very beginning. The advective effect of the velocity field is not clearly visible: indeed the
velocity field is not so strong and thus the advection is limited. As it is physically reasonable,
the concentration is driven to the two local minima of the double well potential previously
shown.

For what concerns the velocity field, in Figure [6.30, we can see the evolution in time:
it is much slower than the evolution of the concentration, we can only notice the formation
of smaller secondary vortices in the corners of the domain.

In conclusion, in Figures [6.31 we see the temperature field vs. time: the high
value of the thermal diffusivity x quickly dissipates most of the energy and it also makes
the field syminetric, spreading it into the whole domain.

We can now analyze the properties highlighted in Theorem [5.1.4] as done in the
previous tests: in Figure [6.35] we see the plot of the total mass in time: it is always constant
(up to the fifth significant digit) m = 1.26036.

If we now compute the total energy for each time step FE, = %HunH2 + %H@nHQ +
%HV(anQ + /Q\I/(cpn)dx, we obtain, as expected from Theorem |5.1.4| that the energy is

nondecreasing, and in particular it is decreasing, as we can see in Figure Indeed, the

sufficient condition on v and & is respected. In Figure[6.37 we computed the derivative of the
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(b) Time t = 0.053

Figure 6.30: Test 3. Velocity field vs. time with streamlines.

total energy by means of backward finite differences, obtaining that the derivative is always
negative, confirming the decrease of the total energy. We can notice that the decrease in
the energy is more stressed in this test, since both the coefficients k and v, responsible for

the dissipation, are larger.
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Figure 6.31: Test 3. Time ¢ = 0.0011.
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Figure 6.32: Test 3. Time ¢ = 0.015.
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Figure 6.33: Test 3. Time ¢t = 0.031.
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Figure 6.34: Test 3. Time ¢ = 0.053.
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Figure 6.35: Test 3. Total mass of the system: we see that it is constant in time, as expected.
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Figure 6.36: Test 3. Total energy E,: it is always decreasing as expected.
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Figure 6.37: Test 3. Derivative of the total energy F,: it is always negative as expected.
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Figure 6.38: Test 3. Semi-log plot of the adaptive time step in time.
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Figure 6.39: Test 4. Initial temperature field in 3D representation.

6.6 Numerical test 4

We fixed the parameters: v = 0.02 and £ = 20: in this way the sufficient condition is
satisfied, since kv = 0.4 > 0.0015. We recall that in this case we have a nonhomogenoeus
boundary condition for the temperature, but the dissipation, as we will notice, is enough to
prevent the energy from increasing also in this case. As initial condition for ¢ we chose the
one in Figure [6.3] the symmetric initialization with zero mean perturbation of @, whereas
for the temperature we initialized the field solving the equation:

K(Vlo, VE) = /Q 12 x 10%sin(z)(0.5 — 2?)édx  VE € HE(Q)

with non homogeneous Dirichlet boundary conditions g for € and 6y:
g="5x 107122y on 9Q x (0,T) (6.1)

The initial condition simulates a sudden injection of a source of heat in the system, which
acts as a forcing term in the equation. Moreover, the presence of a boundary datum for
the temperature means that there is a continuous injection of energy also during time. The

resulting nonsymmetric initial condition is shown in Figure [6.39]
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Figure 6.40: Test 4. Initial velocity field.

We then initialize the last field, i.e. the velocity field, by solving a Stokes equation for
(19, po) € [HY()]? x L*(Q) keeping into account g, o and y:

v(Vug, Vw) — (po, div(w)) = (—poV (10), W) + (6o, wy)  Vw € [H ()]
(div(ug),q) =0 Vg€ L*(Q)

always with no slip boundary conditions, obtaining the velocity field in Figure [6.40]

For this test we reached T' &~ 0.02 and the time step can be a bit larger (in this test
it ranges from 6 x 107! to 4.99 x 10™°: actually, we can consider it constant, since the
oscillations are around approximately the same mean value). ). The resulting concentration
field in time is represented in Figures[6.41H6.44] where we can see the spinodal decomposition
at the very beginning. The advective effect of the velocity field is visible, since the bubbles
move during time. The concentration is driven to the two local minima of the double well

potential previously shown.
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Figure 6.41: Test 4. Time ¢ = 0.0007.
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Figure 6.42: Test 4. Time ¢t = 0.007.
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Figure 6.43: Test 4. Time ¢t = 0.015.
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Figure 6.44: Test 4. Time ¢t = 0.022.
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(a) Time t=6 x 102

(b) Time ¢t = 0.022

Figure 6.45: Test 4. Velocity field vs time with streamlines: we see the formation of a

secondary vortex under the principal one.

For what concerns the velocity field, in Figure [6.45] we can see the evolution in time:
the principal vortex changes its shape and other secondary vortices appear, differently from
test 3, since the velocity magnitude is larger.

In Figures [6.31}6.34) we see the temperature field vs. time: the very high value of
the thermal diffusivity x quickly dissipates most of the energy and it also makes the field
symmetric.

Moreover, in Figure [6.46] we see the plot of the total mass in time: it is always constant
(up to the fifth significant digit) m = 1.26000.

1 1
If we now compute the total energy for each time step E, = §||un||2 + §||@n||2 +

o
§|\V<pn]|2 + / U(py,)dx, we obtain that the energy is nondecreasing, and, in particular, it
Q

is decreasing, as we can see in Figure[6.47] In Figure[6.48] we computed the derivative of the
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Figure 6.46: Test 4. Total mass of the system: we see that it is constant in time, as expected.
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Figure 6.47: Test 4. Total energy E,: it is always decreasing as expected.

total energy by means of backward finite differences, obtaining that the derivative is always
negative, confirming the decrease of the total energy. The decrease of the energy is still
observable, even though we have imposed nonhomogeneous Dirichlet boundary conditions
for the temperature. This means that the dissipation is still enough to compensate the extra

energy injected in the system from the boundary of the domain.
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Figure 6.48: Test 4. Derivative of the total energy FE,: it is always negative as expected,

and it tends to zero as time increases.
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Figure 6.49: Test 5. Initial temperature field in 3D representation.

6.7 Numerical test 5

We fixed the parameters: v = 0.01 and £ = 1: in this way the sufficient condition is satisfied,
since kv = 0.01 > 0.0015. As initial condition for ¢ we chose the one in Figure the non-
symmetric initialization with nonzero mean perturbation of ¢, whereas for the temperature
we initialized the field solving the following equation, which is completely different from all

the previous cases:

k(VOy, V&) = /95 x 10°sin(32z)cos? (32y)édx V& € H(Q),

With homogeneous Dirichlet boundary conditions. The resulting nonsymmetric initial
condition is shown in Figure [6.49 we can observe that the range of values is much larger
than the previous tests. This will lead to much larger velocity in magnitude.

We then initialize the velocity field, by solving a Stokes equation for (ug,pg) €
[H3()]? x L*(Q) keeping into account g, o and Og:

v(Vug, Vw) — (po, div(w)) = (—goV(uo), w) + (B0, wy) Vw € [Hy(2))
(div(uo),q) =0 Vg € L*(Q)
always with no slip boundary conditions, obtaining the velocity field in Figure [6.50F we

notice that the velocity field magnitude is much larger than the previous cases, and also the

138

temperature



&

1.2e+02
l.
— &0
60
40

20

85e-03

Figure 6.50: Test 5. Initial velocity field.

field is completely different, since it strongly depends on the temperature field ©¢ already
initialized.

For this test we reached T ~ 0.017 and the time step ranges from 6 x 1072 to
5.4 x 1075 as a matter of fact, we can consider it constant, since the oscillations are
around approximately the same mean value. The concentration field in time is represented
in Figures 6.54] where we can see the spinodal decomposition at the very beginning.
The advective effect of the velocity field is strong, since the bubbles move during time and
their shape is sensibly distorted, since it is very elongated. The concentration is driven to

the two local minima of the double well potential.
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Figure 6.51: Test 5. Time ¢ = 0.0011.
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Figure 6.52: Test 5. Time ¢ = 0.0088.
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(a) Temperature field
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Figure 6.53: Test 5. Time ¢t = 0.012.
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Figure 6.54: Test 5. Time ¢t = 0.017.

141

(b) Velocity field

l 84001

Loz

—06

05
04
03
16201

velociy_magnitude

velocty_magnituda



1.1e+02

I:WUU

60

velocity_magnitude

40
20

1.2e-02

[ 1.0e+02

— 80

velocity_magnitude

(b) Time t=0.017

Figure 6.55: Test 5. Velocity field vs. time with streamlines: we see the formation of new

vortices and the change of shape of the principal one.

For what concerns the velocity field, in Figure [6.55] we can see the evolution in time:
the principal vortex completely changes its shape and other secondary vortices appear.
Moreover the range of values of velocity magnitude is reduced.

In Figures [6.3116.34] and, more in detail, in Figure [6.56] we see the temperature field
vs. time: the distribution in space completely changes due to two different phenomena.
Firstly, the dissipation effect progressively reduces the range of values and tends to homog-
enize the field, by consuming energy. Secondly, the strong advective effect makes the area

with lowest value move quickly across the domain.
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Figure 6.56: Test 5. Temperature field vs. time: the space distribution completely changes

due to diffusion and advection.
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Figure 6.57: Test 5. Total mass of the system: we see that it is constant in time, as expected.

Moreover, in Figure [6.57| we see the plot of the total mass in time: it is always constant
(up to the fifth significant digit) m = 1.26036.
1 1
If we now compute the total energy for each time step E, = éHunHZ + §H@nH2 +

%||V<pn||2 + /Q U(p,)dx, we obtain that the energy is nondecreasing, and, in particular, it
is decreasing, as we can see in Figure [6.58] We notice that in this test the energy is much
larger than the one in the previous tests. In Figure [6.59] we computed the derivative of the
total energy by means of backward finite differences, obtaining that the derivative is always

negative. This fact confirms the decrease of the total energy, as we expected from Theorem

LI
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Figure 6.58: Test 5. Total energy E,: it is always decreasing as expected.
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Figure 6.59: Test 5. Derivative of the total energy FE,: it is always negative as expected,

and it tends to zero as time increases.
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Conclusions and future 1ssues

In this thesis we have investigated the 2D Cahn-Hilliard-Boussinesq system, characterized
by a logarithmic potential. More precisely, we have proven the existence of a global weak
solution as well as the existence of more regular solutions (quasi-strong and strong). Also, we
have obtained some stability estimates. These estimates yield, in particular, the weak-strong
uniqueness and the uniqueness of quasi-strong solutions.

However, from the theoretical viewpoint, there are still several issues which deserve
to be analyzed.

First of all, having already found a result of existence of strong solutions, on account of
the dissipativity properties of the system one could prove the regularization of weak solutions
in finite time, that is, any weak solution gets a strong solution instantaneously. Moreover,
following what was done in [61] for the case of NSCH, the regularity of the solutions to the
CHB system when the viscosity is not constant, but depends on both the concentration and
the temperature, could be studied. We recall that here we have proven only the existence
of weak solutions for a non-constant viscosity.

Regularity results should allow us to establish the so-called phase separation property

from the pure phases. This means that for every 7 > 0 there exists § = d(7) > 0 such that

sup [|¢(t)[ o) <1 0.
t>T1

This property has already been shown for the NSCH system with logarithmic potential (see

[61]).
On account of the dissipative nature of the system, a further aspect that could be

investigated is the longtime behavior of a given solution, the goal being to establish the
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convergence to a single stationary state (see, e.g., [3] and [54] for the NSCH system). The
longtime behavior can also be studied from a global viewpoint within the theory of dissipative
dynamical systems, proving, for instance, the existence of global and exponential attractors
(see, e.g., [52] and [55] for the NSCH system).

Other challenging theoretical issues are the study of the inviscid CHB system, which
has been studied, e.g., in [102] for a regular potential, but not in case of the logarithmic
potential. Moreover, it could be interesting to see whether the solutions of such a system
could be regarded as the limit of the solutions of the viscous CHB system as v — 0.

Furthermore, it would be particularly meaningful to analyze the system with vanishing
thermal conductivity x and to establish if the solutions of such a system could be obtained
from the CHB system when x — 0. We stress again that the system with k = 0 is the
compressible NSCH system ([L7)), thus it could be a way of finding results about existence
and regularity of the solutions for this completely different system of equations, starting from
the analysis of the CHB system. Note that, in this context, the equation for the temperature
becomes a pure transport equation, namely, the continuity equation for the fluid density.

Aiming at the numerical solution of the CHB system, we have introduced a discretiza-
tion of the equations in space, by means of finite elements, and in time. We have proved
that the proposed numerical scheme preserves the mass of the system and it is stable, in
the sense that the total energy does not increase in time, which is fundamental from the
physical viewpoint. By means of the simulations that we performed, we have verified that
these properties are effectively respected: namely, the total energy decreases in time and
the mass is conserved. We have also used an adaptive timestep, but in the simulations it
has not presented noticeable variations in magnitude. Thus a possible direction of improve-
ment could be finding a better time step adaptivity algorithm, in order to effectively exploit
the different characteristic times of the equations and investigate numerically the long-time
behavior of the solutions, in particular the possibility of having stationary solutions.

Moreover, in order to better capture the interface phenomena, some kind of mesh
adaptivity could be introduced, together with different basis functions for the Galerkin

approximations: Isogeometric Analysis could be a valid alternative, as shown, for instance,
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in [15] and [64].
In conclusion, it could be interesting to study the numerical simulations of some of the
above mentioned systems, namely the vanishing viscosity case and the vanishing thermal

conductivity case, in order to obtain a sort of verification of the analytical results.
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Appendix A

Basic tools of Functional Analysis

A.1 Basic tools used in the proofs

In this Appendix we state some results that were often used throughout proofs. In the
following 2 is a bounded domain in R? with a sufficiently smooth boundary.

We first recall the well known Poincaré’s inequality (see, e.g., [20], Corollary 9.19).

Lemma A.1.1. For any ¢ € V it holds

e — @llv < Col|Vell. (A.1)

Then we state another inequality, consequence of the Poincaré’s inequality and the

elliptic regularity (see, e.g., [98], Chap.2).
Lemma A.1.2. For any p € V5 it holds
e — @l ) < CllAg]]. (A.2)

From [20], Chap.8, Sec.6, we have the following inequalities, known as Gagliardo-

Nirenberg interpolation inequalities for Q@ C R? regular bounded open set:

Theorem A.1.3. Let 1 < g <p<oo. Then

lullrgy < Cllulllatylulling  Yu € H'(Q), wherea=1—(¢/p).  (A3)
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A similar classical inequality of Ladyzhenskaya type (see, e.g., [78], Theorem 2.2)

which will be useful is:

Lemma A.1.4. Let Q C R? be any bounded domain with smooth boundary Q. Then
1) < C (AL IVAL+ AP Ve HY(Q) (A4)
for some constant C = C(2), implying that
1 fllzsey < K [AM2NAR? vF e HYQ) (A.5)
for some constant K=K(Q).

We then define, for any u, v, w € H(Q):
2
ov;
b vow) = /Q g de
1,7=1
from which we obtain the following inequality (from Gagliardo-Nirenberg interpolation in-

equality, see Theorem and from Poincaré’s inequality) for a bi-dimensional domain,

as exploited also in [32]:

Lemma A.1.5. For any u, v, w € V, it holds

1 1 1 1
[b(w, v, w)| < Cl[Vaul[2[[u][2[[Vo]| [|w][>]|Vw||2 (A.6)

and by the antysimmetry of the trilinear form b(-, -, -) it also holds, for any u, v € H*(Q) and w €

V., that

1 1 1 1
[b(w, v, w)| < [[ul[2]|ul|{ |[o||2[[v]|{ |[w]]1- (A7)

We will also make use of the following estimate ([2], Sec.2), which comes from the

Agmon’s inequality (see, e.g., [], Lemma 13.2):

Lemma A.1.6. For every u € H*(Q), Q € R? it holds

1 3
IVull L) < [lull7l|ullf2q)-
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We also recall the following version of the well known Gronwall’s Lemma (see, e.g.,

[65], Sec.2, or [93], Chap.10, Lemma 10.8):

Lemma A.1.7. Let I = [to,t1]. Suppose a : I — R and b : I — R are continuous (or
a,b € LY0,7)), and suppose u : I — R is in CL(I) (or even in C(I)) and satisfies (it is
enough in weak sense)

u'(t) < a(t)u(t) +b(t) fort € I, and u(to) = uo.

Then
fay ("o
u(t) < wuge’to” + els “b(s)ds. (A.8)

to

Another important theorem is the following weak form of Lebesgue theorem (see [82],

Lemma 1.3):

Theorem A.1.8. Let {f,} be a sequence in L?(Qx (0,T)) such that it is uniformly bounded,
sup [|full = M < +oo, and f, — f almost everywhere in Q x (0,T). Then f, — f in
neN

L3 x (0,7)).

A.2 Embedding theorems

Here we recall the Aubin-Lions Lemma (see [82], Lemma 1.2 or [83], Chap.1):

Lemma A.2.1. Let X — Y < Z three Hilbert spaces, and suppose that the embedding of

X into Y is compact.

1. For any p1, p2 € (1,,+00) the embedding

{f e LP(0,T; X), Z—J; e LP(0,T; Z)} — LP1(0,T;Y) (A.9)
18 compact.
2. For every p > 1 the embedding
{fGLOO(O,T;X), % ELP(O,T;Z)} — C([0,T];Y) (A.10)

15 compact.
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We have another important Lemma (see, e.g., [83], Vol.I, Chap.1) for the case of a
Hilbert triplet:
Lemma A.2.2. Let (V,H,V’) a Hilbert triplet, with V and H separable spaces. Then

HY(0,T; V. V') = {f € L*(0,T;V), fli; € L*(0,T: V’>} = C([0,T}; H).

Moreover it holds the following integration by parts rule:

for every u,v € H(0,T;V, V'), for every s,t € [0,T]:

/ {<a(r),v(r) >+ <u(r),o(r) >} dr = (u(t),v(t)) — (u(s),v(s)).
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Appendix B

Further estimates and lemmas
Here we report some well-posedness and regularity results about some stationary problems

related to our system.
B.1 A Neumann problem with logarithmic nonlinearity

(B.1)

We start from the Neumann problem: F is the same logarithmic potential as the potential
Vs e (—1,1)

defined in (2)):
(14 s)In(1+s) + (1 — s)In(1 — s))
(B.2)

| Qi

F(s) =
—Au+ F'(u) = f in Q
Opu =20 on €2

under the assumptions of the potential made in the previous sections, we have the following

lemmas (see [61], Lemma A.1):
Lemma B.1.1. Let 9Q be a bounded domain in R?, with smooth boundary. Assume that
f € L*(Q). Then there exists a unique solution u to problem such that u € H*(S),

F'(u) € L*(Q) and satisfies —Au + F'(u) = f for almost every x € Q and dpu = 0 for
(B.3)

T <@+,

almost every © € 9Q. Moreover we have
[|ull 2q) + 1 F" (u)
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where || - || is the L* norm.

Let us assume that the sequence f, C L*(Q) and f € L*(2). We consider the solutions
up and u to the problem corresponding to fi and f, respectively. Then, fr — f in
L*(Q), as k — oo, implies

llug —ull1 =0 as k— 0. (B.4)

We then report other elliptic estimates, already stated and proven, e.g, in [34], from

Lemma A.1 to Lemma A.6 or in [2], Lemma 2.

Theorem B.1.2. Let Q be a bounded domain in R? with smooth boundary. Assume that u
1s the solution to problem . We have the following:

o Let f € LP(2), where 2 < p < oo. Then we have
F ()| o) < 1f1le)-
o Let f € HY(Q). Then we have

1 1
| Aul] < [[Vul|2[[Vf]]> (B.5)

o Let f € HY(Q). Assume that F satisfies
F'(s) < CIFOIHC ys e (-1,1)

for some positive constant C. Then for any p > 1, there exists a positive constant
C = C(p) such that
[1F" ()| r(y < C(1+ V), (B-6)

In addition, there exists a positive constant C=C(p) such that
[ullw2p @) + [1F" ()| o) < CA+ [ f]1) (B.7)

for any p > 2.
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B.2 The homogeneous Dirichlet problem for the Stokes equa-
tion
Considering now the Stokes problem

—Au+Vp=finQ
divu=0 in Q (B.8)

u=20 on Of).

First we introduce the Stokes operator as the map A : V, — V/ such that
< Au,v>=<Vu,Vv> VuvevV,

namely, A is the canonical isomorphism from V, onto V.
We can denote by AL V! — V, the inverse map of the Stokes operator. That is,

given f € V,, there exists a unique u = A~'f € V,, such that
(VAT Vv)=<fv> VveV,.

It follows that ||f|], := ||[VAT'f]| =< f, A™'f >7 is an equivalent norm on V.. In addition,

for any £ € H'(0,T; V.) we have the chain rule (see [97], Chap.3, Lemma 1.1)

1d

£.(t), ATH(t) >= = —
< fi(t), (t) > 57

)2 ace. t € (0,T). (B.9)

After the already mentioned De Rham’s theorem, which was already exploited to
retrieve the existence of pressure, up to a constant, in L*(0,T, L?(Q)) (see Remark
on Definition , we have more regular properties: we have that A is also a positive,
unbounded, self-adjoint operator in H,, with compact inverse and domain D(A) = {u €
V, : Au € H,} = [H*(Q)]? NV, := W,. As in [97], Chap.2, Prop.2.2, we have, due to

regularity results, defining (u,v) = (Au, Av) and HVH%;VU = (Av, Av):

3C >0 st |[ullgz) < Cllullw, Yue W,. (B.10)
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B.3 The homogenous Dirichlet problem for the Laplace equa-
tion
We need to introduce the classical Riesz isomorphism Ay from Vp to Vj:
< Agu,v >= (Vu, Vo) Y u,v € V. (B.11)

Then, denoting by Aal its inverse map, we have that f € Vp, Aalf is the unique u € Vjy
such that < Agu,v >=< f,v > for all v € Vj. On account of the above definitions, we

observe that that
< Ay g >= (V(AS' ), V(Alg) Vf.geVy. (B.12)

Owing to 1} it can be proved that ||f||. := [|[VA; ' f|| =< f, Ay ' f >7 is a norm on vy
equivalent to the usual and natural one. In addition, for any u € H'(0,T;Vy) we have the

chain rule (see [97], Chap.3, Lemma 1.1):

1d
< wuy(t), Agtu(t) >= §a||u(t)||f* a.e. t€(0,7). (B.13)
We also have that, since L?(Q) < Vj:
(Vu, VA 'u) =< Ag(Aytu), u >=< u,u >= |Ju||*. (B.14)

Furthermore, as can be found in [98], Chap.II, Secs.2.1-2.2, we obtain, due to regularity
theorems, that Ay is an isomorphism also from D(Ag) = H*(Q) NVp to H = L*(Q). We
then have that

145" fllm20) < CIIfII VS € H. (B.15)

B.4 The homogenous Neumann problem for the Laplace equa-
tion
In conclusion, we have to make similar considerations for the Neumann problem as domne,
e.g., in the Appendix of [61]): for any A > 0 we consider the system
—Au+du=f inQ

Onu =0 on €.
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We introduce the operator By € L(V,V’) defined by
< Byu,v >= (Vu-Vov+ \uv) Yu,v € V.

We consider the space

Vo={veV:o=0} (B.16)

and its dual V{. The restriction Ag of By to Vp being an isomorphism from V{ onto V{, we
denote Agfl : Vy — Vjp its inverse map. It is well known that for all f € V), Aoflf is
the unique u € Vj such that < Agu,v >=< f,v > for all v € V. On account of the above

definitions, we observe that
< f, Ay lg>= (VA f,VAg) VfgeVy (B.17)
And owing to it is straightforward to prove that
£l =1V A0 Sl =< £, A0 f >2 (B.18)

is a norm on VJ equivalent to the natural one. In addition, for any « € H'(0,T}; V) we have

the chain rule (see [97], Chap.3, Lemma 1.1)

< u(t), Ag u(t) >= = —|[u(®)|]?> a.e. t € (0,T). (B.19)
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