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Abstract

Infrastructure-as-Code (IaC) is a system administration and software management para-
digm that gained relevance in the industry with the widespread adoption of cloud comput-
ing technologies. Although IaC theoretically opens up the possibility for automatic verifi-
cation of infrastructural specifications, available works on the subject focus on analysing
operational aspects of the infrastructure lifecycle, such as deployment, orchestration and
management. Little effort has been performed towards verifying structural and qualitative
aspects of infrastructural code. In this document, we present DOML-MC, a prototype
model checker back-end for DOML, an IaC language that is being developed as part of
the PIACERE project. Infrastructural elements, their attributes and associations be-
tween them are encoded as an SMT problem, which is solved by the Z3 SMT solver.
This approach proved useful to check critical or desirable properties of the analysed IaC
document, but also to seek ways in which the infrastructure could be enriched to meet
such properties.

Keywords: Infrastructure-as-Code, Satisfiability Modulo Theories, Model Checking





Abstract in lingua italiana

Infrastructure-as-Code (IaC) (in italiano “infrastruttura come codice”) è un paradigma di
amministrazione di sistema e gestione del software che ha acquistato rilevanza nell’industria
con l’adozione diffusa delle tecnologie di cloud computing. Sebbene l’IaC apra teorica-
mente alla possibilità di verificare formalmente specifiche infrastrutturali, i lavori disponi-
bili sull’argomento si concentrano sull’analisi di aspetti operazionali del ciclo di vita
dell’infrastruttura, come deployment, orchestrazione e gestione. Non molto è stato fatto
allo scopo di verificare aspetti strutturali e qualitativi del codice infrastrutturale. In
questo documento, presentiamo DOML-MC, un back-end di model checker prototipale
per DOML, un linguaggio di IaC che è in corso di sviluppo come parte del progetto
PIACERE. Elementi infrastrutturali, i loro attributi e le associazioni tra di essi sono
codificati in un problema di SMT, che viene risolto dal solver SMT Z3. Questo approccio
è risultato utile nel controllare proprietà critiche o desiderabili del documento IaC analiz-
zato, ma anche per ricercare modi in cui l’infrastruttura possa essere arricchita per andare
incontro a tali proprietà.

Parole chiave: Infrastructure-as-Code, Satisfiability Modulo Theories, Model Check-
ing
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1

Introduction

Infrastructure-as-Code (IaC) is a system administration and software management para-
digm that gained relevance in the industry with the widespread adoption of cloud com-
puting technologies. Cloud computing allowed the management of pieces of infrastructure
to be automated, and enabled the development of languages that a software developer or
system administrator can use to describe such automation as code. The resulting time
saving, configuration reproducibility and robustness to operational error caused IaC to
capture the interest of many companies that provide or employ cloud services.

Inevitably, in simplifying the management of infrastructure, IaC created room for the
development of progressively larger and more complex infrastructural architectures, in
which development errors became more frequent and harder to locate. This leads one
to imagine applying formal verification technologies, akin to those used to verify the
correctness of software programs, to infrastructural code. Nevertheless, little research has
been performed in this direction, and the existing works focus on verifying properties
of the process of deploying the infrastructure, rather than properties of the described
infrastructure itself.

In this work, we consider multiple approaches for the representation of descriptive prop-
erties of IaC models in logical systems, to enable the automated mechanical verification of
formally structured logical specifications. We produce two prototypes based on different
logical back-ends, namely Prolog and Z3, through which formal specifications written in
ad hoc DSLs can be verified against TOSCA infrastructural templates. The prototypes are
shown to be effective in analysing a simple TOSCA topology template; however, Prolog
is discarded as a back-end due to an inconvenience in its semantics for negation.

Finally, we arrive at the DOML Model Checker (DOML-MC), a model checker back-
end encoding infrastructural descriptions as Satisfiability Modulo Theories (SMT) prob-
lems for Microsoft’s Z3 solver. DOML-MC has been developed within the scope of the
Programming trustworthy Infrastructure As Code in a sEcuRE framework (PIACERE)
project, a research project funded as part of the European Union’s Horizon 2020 pro-
gramme. The aim of PIACERE is to investigate new technologies for DevOps, improving
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ease of development and vendor independence of IaC. In order to achieve this, within
the project, a new IaC language, the DevOps Modelling Language (DOML), is being
developed, together with a set of tools to operate with it. DOML-MC is among these
tools.

To evaluate the tool, we check simple structural properties of four DOML documents,
properties such as the fact that software packages that depend on one another should
be deployed on computing nodes that can communicate through a common network.
Verification times are not instantaneous, as is often the case with model checking, but
the approach is nonetheless interesting due to the expressiveness of SMT formulas used
to encode requirements, as well as the possibility of performing model synthesis.

The rest of this document is organized as follows: Chapter 1 discusses Infrastructure-as-
Code and provides a survey of works aimed at IaC verification; Chapter 2 illustrates our
approach to the problem, and the prototypes that were developed during its investigation;
Chapter 3 presents the DOML Model Checker and explains its functioning; finally, Chap-
ter 4 evaluates the conclusions and future developments of this work. Implementation
details of all software projects developed in the scope of this work are reported in the
appendices.
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1| Background

1.1. Infrastructure as Code

Infrastructure-as-Code (IaC) is an approach in the management of computing infrastruc-
ture according to which computing resources should be defined and automatically provi-
sioned, configured and managed in source code akin to that used to describe computer
programs. This allows system administrators to apply to infrastructural descriptions the
same tools and techniques that are used by developers for their code. Quoting K. Mor-
ris [20],

The premise is that modern tooling can treat infrastructure as if it were soft-
ware and data. This allows people to apply software development tools such
as version control systems (VCS), automated testing libraries, and deploy-
ment orchestration to manage infrastructure. It also opens the door to exploit
development practices such as test-driven development (TDD), continuous in-
tegration (CI), and continuous delivery (CD).

1.1.1. A brief history of Infrastructure as Code

A first known instance of using code to describe configuration before the spread of cloud
technologies was Mark Burgess’ tool CFEngine [8] in 1993, used to replicate configuration
on heterogeneous UNIX systems. The tool is described by the author as an interpreter
for a configuration language, so the intent to represent configuration as code emerges.
Although in its first presentation the “configuration program” was presented as a set
of actions, rather than a description of the desired configuration, Burgess proceeded to
develop the concept of convergent operators, i.e., actions that make the system converge
to a fixed point, which is its desired final state. This can be seen as a precursor to the
concept of idempotence, widespread in modern IaC technologies.

Configuration management tools gained traction in the first decade of the 2000s: some
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notable examples supporting IaC are Puppet1 (initially released in 2005), Chef2 (2009),
Salt3 (2011) and Ansible4 (2012). As an example of the modern approach in configu-
ration management IaC, Ansible modules, the functional atoms of the Ansible system,
are generally built to be idempotent, so that invoking them twice on the same system
has the same effect on it as one single invocation, which should be enough to reach the
desired configuration on the system. This also allows structuring module invocations to
have a declarative appearance, describing what the configuration should be rather than
the actions to be taken to reach it.

Listing 1.1: Example invocation of the ansible.builtin.file Ansible module. Notice
how the desired absence of a directory is described as a state, rather than for instance as
action: delete.

- name: Recursively remove directory

ansible.builtin.file:

path: /etc/foo

state: absent

With the advent of virtualization and cloud technologies, infrastructural entities such
as computers and network devices were replaced by their virtual counterparts, which
could be created, managed and destroyed programmatically. Cloud Service Providers
(CSPs) introduced interfaces with the main configuration management tools, that could
be then used to describe the state of infrastructural resources, i.e., they could be used
for provisioning. Additionally, the principal CSPs introduced IaC languages of their own
for provisioning on their platforms: Amazon Web Services CloudFormation5 was released
in 2011, Google Cloud Deployment Manager templates6 and Microsoft Azure Resource
Manager templates7 in 2014.

During the same years, pieces of software were released that allowed to control virtualized
environments through code. Vagrant8 (first version in 2010) uses Ruby scripts written in

1https://puppet.com/
2https://www.chef.io/
3https://saltproject.io/
4https://www.ansible.com/
5https://aws.amazon.com/cloudformation/
6Google Cloud Deployment Manager documentation:

https://cloud.google.com/deployment-manager/docs
7ARM template documentation:

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/
8https://www.vagrantup.com/

https://puppet.com/
https://www.chef.io/
https://saltproject.io/
https://www.ansible.com/
https://aws.amazon.com/cloudformation/
https://cloud.google.com/deployment-manager/docs
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/
https://www.vagrantup.com/
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a declarative DSL to pilot pre-existing virtual machine managers, such as VirtualBox and
KVM, allowing to manage the lifecycle of virtual machines with minimal user interaction;
in Vagrant practice, configuration management tools like Chef or Puppet can also be
leveraged to further automate the configuration of the managed VMs.

A short while after, in 2013, Docker 9 saw its first release. In contrast to virtual ma-
chines managed by Vagrant, Docker is used to run software in containers, virtualized
environments that provide OS-level virtualization, a form of virtualization in which all
virtualized units share the same operative system kernel, while the layers above, such as
the filesystem, are virtualized. Docker provides Dockerfiles as a way to script the creation
of container images, from which containers are then instantiated as needed. Container
instantiation, lifecycle management and virtual networking can also be specified in pieces
of code, interpreted by a tool called Docker Compose.

Using IaC to manage cloud infrastructure has historically been tied to the CSP or CSPs on
top of which the infrastructure is to be deployed. The API and language used to write IaC
scripts is highly specific to the CSP providing the interface; this causes service migration
between CSPs to require a new development phase, during which the infrastructural code
has to be rewritten to conform to the service structure of the new provider. An immedi-
ate consequence is vendor lock-in. In 2014 HashiCorp, the software company developing
Vagrant, released a new tool called Terraform10. Terraform interprets declarative infras-
tructure specifications written in a language called HashiCorp Configuration Language
(HCL), and interfaces with the Application Programming Interfaces (APIs) provided by
various CSPs to provision the described architectures. The advantage of Terraform is the
introduction of a syntactically uniform language to describe and materialize cloud infras-
tructures; however, below the syntactic layer, the code interface of the modules used to
communicate with different CSPs is still provider-specific, and vendor lock-in persists as
a major concern when using IaC to manage cloud infrastructure.

Being tied to the industry since its inception, IaC has mainly relied on proprietary lan-
guages and de facto standards. Establishing an open standard for cloud infrastructure
development through IaC is a goal of the Topology and Orchestration Specification for
Cloud Applications (TOSCA)11, developed and sponsored by the Organization for the
Advancement of Structured Information Standards (OASIS), that approved version 1.0
of the standard in 2014. Several projects targeting TOSCA have since been developed,

9https://www.docker.com/
10https://www.terraform.io/
11https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

https://www.docker.com/
https://www.terraform.io/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
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such as Cloudify12 and XLAB’s xOpera13. The latter originated as an improvement on
the DICER tool [2], produced within the scope of the DICE project, funded as part of
the Horizon 2020 European research and innovation programme14. While targeting an
open standard, Cloudify and xOpera suffer from a similar issue to that of Terraform, as
the contents of the infrastructural specifications must be written in a sub-language that
depends on the CSP chosen for deployment, impairing cross-provider portability.

1.1.2. Phases of infrastructure lifecycle targeted by IaC

Provisioning

Infrastructure provisioning is the act of making available infrastructural resources, such
as computing nodes, networks, storage etc. In a pre-cloud conception, this step consisted
in a host of manual operations, such as physically retrieving and powering computers,
cabling and setting up network devices and formatting drives. Cloud providers now offer
access to virtual resources like virtual machines and networks, and since these resources
are created and managed by software, their provisioning can be automated.

Configuration management

Once computing resources are available, they have to be set up, to create the operating
environment and install the dependencies needed for the deployed software to execute.
This is known as configuration management. Reaching the needed configuration requires
installing third-party software and editing configuration files in the operative system on
the computing resources that compose the infrastructure, and in the early days such tasks
were performed manually. This implied a difficulty in replicating the same configuration
in more than one instance. When reconfiguring a resource after resetting it to restore
an initial desired state, this leads to lack of reproducibility; when replicating the same
configuration in parallel on multiple simultaneously functioning resources, this leads to
a phenomenon known as configuration drift. Automation of configuration management
leverages IaC to address these issues.

Software deployment

Software deployment is the last step towards getting a software solution running on the
provisioned and configured infrastructure. This usually means transporting the software

12https://cloudify.co/
13xOpera is presented in XLAB’s blog:

https://www.xlab.si/blog/xopera-get-your-orchestrator-pitch-perfect/
14https://ec.europa.eu/programmes/horizon2020/en/home

https://cloudify.co/
https://www.xlab.si/blog/xopera-get-your-orchestrator-pitch-perfect/
https://ec.europa.eu/programmes/horizon2020/en/home
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artefact onto one or more computing resources, setting the necessary execution environ-
ment (environment variables, restart policies on failure, logging, etc.) and finally executing
the software. Once again, given the number of variables involved, this task benefits from
an automated workflow in terms of reproducibility and celerity.

An additional step can be taken by setting up what is called a Continuous Integration/-
Continuous Deployment (CI/CD) pipeline. In CI/CD the deployment automation is
taken all the way back to the software developer: an appropriate commit in a central-
ized software repository, usually a VCS repository, triggers a pipeline of functional and
integration tests, after which the software is automatically deployed.

Orchestration

Modern IT services are often characterized by volatile demand; while over-provisioning is
obviously wasteful in terms of cost and resources usage, dimensioning the capabilities of an
infrastructure according to the typical load leaves the possibility of service discontinuity
on the occasion of a demand spike. In the case of an infrastructure directly defined in
terms of physical resources, enacting the flexibility to accommodate a change in demand
means fetching and manually provisioning new machines, with the associated expenses,
then configuring the new execution environment and redeploying the software.

Virtualization and programmable interfaces for resource management allowed an ulterior
kind of automation, called orchestration, aimed at providing the desired flexibility with
minimal inconvenience. In a cloud setting, a piece of software called an orchestrator can
automatically ask the cloud service provider for a more capable machine and deploy the
software service on top of it (vertical scaling) or, where parallelism is more effective,
replicate the deployment on a number of machines (horizontal scaling). Once the service
demand has receded to its usual levels, the additional resources can be returned to the
cloud service provider, optimizing overall cost.

1.2. The PIACERE project

The work underlying this thesis was motivated within the scope of a project titled
Programming trustworthy Infrastructure As Code in a sEcuRE framework (PIACERE).
The PIACERE project has been funded as part of the Horizon 2020 European programme.
As stated in the project proposal [14] (Section 1),

The main objective of the PIACERE project is thus to provide means (tools,
methods and techniques) to enable most organizations to fully embrace the
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Infrastructure-as-Code approach, through the DevSecOps philosophy, by mak-
ing the creation of such infrastructural code more accessible to designers, de-
velopers and operators (DevSecOps teams), increasing the quality, security,
trustworthiness and evolvability of infrastructural code while ensuring its busi-
ness continuity by providing self-healing mechanisms anticipation of failures
and violations, allowing it to self-learn from the conditions that triggered such
re-adaptations.

To achieve the IaC DevSecOps concept, PIACERE will provide an integrated
DevSecOps framework to develop, verify, release, configure, provision, and
monitor infrastructure as code. The extensible architecture and modular ap-
proach of PIACERE will support the different DevSecOps activities. Using
a single integrated environment to develop (IDE) infrastructural code
will unify the automation of the main DevSecOps activities and will shorten
the learning curve for new DevSecOps teams. PIACERE will allow DevSec-
Ops teams to model different infrastructure environments, by means of ab-
stractions, through a novel DevOps Modelling Language (DOML), thus
hiding the specificities and technicalities of the current solutions and increas-
ing the productivity of these teams. Moreover, PIACERE will also provide
an extensible Infrastructural Code Generator (ICG), translating DOML
into source files for different existing IaC tools, to reduce the time needed for
creating infrastructural code for complex applications. The provided extensi-
bility mechanisms (DOML-E) shall ensure the sustainability and longevity
of the PIACERE approach and tool-suite (new languages and protocols that
can appear in the near future).

The most fundamental resulting artefact through which developers and other technicians
will interface with the PIACERE framework will be the DevOps Modelling Language,
an IaC language providing an abstraction over specific infrastructure management tools.
Quoting [14] again (Section 1.1), “the DevSecOps team will not be burdened by the wide
variety of underlying IaC languages and configuration protocols and will be able to reason
on the infrastructural stack needed by the applications in a more effective way”.

Another objective of PIACERE is to “[provide] the DevSecOps Teams with the tools to
verify the correctness of the infrastructural models and the trustworthiness and security
of the IaC and the associated software components”. This objective unfolds in three key
results (KRs), the first of which, KR5, shall be the Verification Tool (VT ). The VT “will
be a suite of static analysis and model checking tools aiming at verifying that models
and resulting pieces of code fulfill specific properties, ranging from consistency of the
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model (e.g., the characteristic of the resource selected for running a certain component
should match the required characteristics in terms of speed and memory) to non-functional
aspects such as safety, performance, and privacy properties related to the exchange of data
among software components (e.g., data cannot be transferred to a third party without
going through some filtering component)”. The model checking component of this KR is
the main focus of this thesis.

1.3. Formal verification of Infrastructure as Code

Verification of IaC, analogously to software verification, can be broadly divided in two
scopes, static analysis and dynamic analysis. Dynamic analysis consists of running the IaC
specifications in a controlled environment and observing the resulting behaviour looking
for faults, and is suited for discovering problems regarding the implementation of the tools
that interpret IaC, or the way the described infrastructure interacts with an environment
close to the real world. On the other hand, static analysis is concerned with the problems
that can be inferred from a specification in itself, and is more apt to discover faults in
the conceptual modelling of the infrastructure, or in the way it is described. The two
approaches are complementary to each other: while static analysis cannot fully predict
how the modelled infrastructure will react to a real running environment, dynamic analysis
can only test one scenario at a time, and thus in general no suite of dynamic tests can be
exhaustive enough to cover all corner cases that could be presented to the infrastructure
in a production setting.

Model checking [11] is a formal-verification approach where an engineered system is mod-
elled in a logical framework in which it is feasible to check that certain desired proper-
ties are guaranteed, or whether undesirable situations may occur. Traditionally, systems
are modelled with some kind of graph or transition system, which are natural represen-
tations for evolving stateful systems such as electronic devices or imperative programs.
Recently, techniques involving SAT (Boolean Satisfiability) and Satisfiability Modulo The-
ories (SMT) solvers appeared. They leverage advancements in algorithms for SAT (such
as DPLL) to provide tools that often are very fast on practical models, despite the theo-
retical complexity bounds.

The translation of the verification target into the modelling language can be performed
manually by a software architect, or automatically. Manual translation benefits from deep
knowledge of the target, but it can be laborious and error-prone. Devising an automatic
translator is seldom trivial, and often comes with a cost in generality.

Due to well-known results in Computer Science, there is no automatic procedure capable
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of singling out all and only the pieces of software, written in a Turing-complete program-
ming language, whose behaviour conforms to a given non-trivial property. Consequently,
automatic verification approaches must be more restrictive than it would be desirable in
guaranteeing that a program satisfies a requirement. This does not necessarily apply to
IaC, where the concern is rather about the capability of the logical framework to express
system properties. E.g., a model focused on relationships between cloud computing nodes
will not be able to predict an internal application malfunction on one of such nodes.

In this section, works in IaC model checking are described.

K. Jayaraman et al. [16] developed SecGuru, a tool that analyses firewall ACLs within
infrastructures deployed in the Azure cloud. SecGuru enables inspection of the differences
resulting from an ACL update in terms of network packets that are allowed or blocked
by the firewall, and to check the behaviour of the firewall against a given policy. This is
obtained by encoding the action taken by the firewall on packets and the policies into an
SMT problem, then solved by the Z3 SMT tool. The resulting instances correspond to
the network packets that are either blocked or allowed. The tool was evaluated on real
and synthetic policies, and is currently active in the Azure cloud, reportedly having a
“measurable positive impact in prohibiting policy misconfigurations”.

A. Brogi et al. [7] propose a tool to verify the validity of TOSCA management plans.
The user enriches each TOSCA node template with a set of compatible states. Then,
they characterize management operations and states by specifying the states in which
the nodes providing the required capabilities need to be for the execution of the plan to
be successful. The tool checks the validity of a plan by creating a state-representation
of the whole infrastructure. In this representation, a state is a valid combination of the
states of individual nodes, and a transition between states is a management operation on
a node such that the operation’s requirements are satisfied. The validity of the plan is
then equivalent to the existence of an operation-labelled path.

W. Chareonsuk and W. Vatanawood [9] present a toolchain to perform formal verification
of interacting web services in a TOSCA specification. The process relies on user-supplied
information describing the behaviour of the modelled services, written in the Web Services
Business Process Execution Language (WS-BPEL, or BPEL). The user provides a BPEL
description of services running on the infrastructure, and integrates it in the TOSCA
service template using ad hoc node and relationship types. This IaC is then compiled into
a PROMELA specification, against which Linear Temporal Logic (LTL) [11, Section 2.3]
formulas can be verified using the SPIN model checker [15]. As an example, the authors
propose checking safety properties, expressed as formulas of the form □¬P , i.e., “it is
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always true that P does not hold”, where P is some undesirable condition.

R. Shambaugh et al. [23] developed Rehearsal, a tool to analyse Puppet configurations
by compiling them into a formal language describing filesystem operations, and then
translating them into SMT specifications. The Z3 SMT solver is used to look for mod-
els representing executions that violate the principles of determinism and idempotency.
Rehearsal was tested on a small set of 13 Puppet configurations gathered from GitHub
and Puppet Forge, and found bugs in 6 of them. Benchmarks on the test set run on a
quad-core 3.5 GHz Intel Core i5 with 8 GB RAM measured average checking times within
3 seconds for all configurations.

J. Lepiller et al. [19] identified a class of cloud-related security vulnerabilities, called
intra-update sniping vulnerabilities. These occur when an infrastructure update opera-
tion, despite transitioning between secure states, traverses insecure intermediate states,
for instance because components are updated in the wrong order. To detect this vulner-
ability class in CloudFormation templates, the authors developed Häyhä, which models
the described infrastructure as a dataflow graph. Häyhä was evaluated on a set of open-
source CloudFormation templates: while no vulnerability was detected, the tool showed
performances acceptable for integration in a deployment workflow, as execution time was
within 1 second for all templates.

H. Yoshida et al. [24] propose a method for manual modelling of TOSCA service templates
in the formal specification language CafeOBJ. This method is useful for proving that
orchestration operations can reach the final state of the infrastructure while maintaining a
given invariant property in intermediate states. Proving a property modelled in CafeOBJ
is a form of formal verification, but it cannot be regarded as model checking since it
requires user interaction.

Within the scope of the RADON project, M. Law and A. Russo [18] developed a Verification
Tool (VT) for a subset of TOSCA that was devised for the project. The VT is operated
through a Constraint Definition Language (CDL), in which objects (complex values with
properties) can be specified together with logical properties regarding such objects. The
CDL also provides the capability to import RADON models, i.e. RADON TOSCA topol-
ogy templates, and automatically translate relevant parts of the imported models into
CDL objects. The VT then uses a constraint solving technique called Answer Set Pro-
gramming (ASP) to verify the resulting specification, and possibly search for a correction
among a number of user-allowed modifications to the target model.

A number of authors presented techniques for model checking of cloud infrastructure in
which the model is constructed manually. H. Sahli et al. [22] proposed bigraphical reac-
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tive systems as a suitable logical framework to model cloud infrastructure lifecycles, and
exemplified the use of the model checker BigMC to check relevant properties of elasticity
and plasticity. K. Klai and H. Ochi [17] presented a technique for model checking the
interaction of multiple cloud services accessing shared resources concurrently. The cloud
services are modelled as RCoWF (Resource-Constraint open WorkFlow) nets and trans-
lated into labelled Kripke structures, against which hybrid LTL formulae are checked, e.g.,
to detect deadlocks on a concurrently accessed resource. These works are not described
further here, because they do not address IaC directly.
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The work plan of the PIACERE project, illustrated in [14, Section 3], identifies a number
of tasks, which are organized in eight Work Packages (WPs).

As can be seen in [14, Section 3.2.2], the main WPs are scheduled to have their first release
simultaneously. This created difficulties due to the fact that often the development of
components depends on the definitive state of other components, developed in different
WPs. Most notably, the majority of the expected resulting tooling cannot be developed
without a final definition of the DOML (WP3). WP4, containing the Verification Tool,
is supposed to be developed alongside WP3, but developing a model checker for an IaC
language for which we had no solid definition or constraints was clearly a conundrum.
Many subtleties of model checking involve finding or developing a logic tool with exactly
the minimal expressive power required by the class of models to represent and inspect,
but in the absence of a DOML definition, which was especially late to appear during the
execution of the project, we could not follow an approach of this kind from the beginning.

While waiting for the DOML to reach a stage of definition that allowed us to develop
the final tool, we investigated the field with proofs of concept and prototypes. We chose
an IaC language that was close enough and at least as expressive as we expected DOML
to be, that is, OASIS TOSCA, and we conducted a few experiments towards performing
model checking on it.

Model checking is traditionally aimed at software verification, or more generally at the
verification of dynamic systems whose behaviour can be expressed in terms of states and
transitions among them.1 As presented in Section 1.3, model checking of cloud systems
and IaC also mainly focused on dynamic aspects of infrastructure, such as deployment and
management procedures. In our work, we wanted to inspect IaC in its declarative side,
e.g., analysing the relationships between infrastructural entities, rather than the order in
which the entities ought to be concretized by a CSP.

For this reason, we focused on modelling IaC and representing infrastructural specification
1For an extensive treatment of the techniques, see [11].
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in terms of constraint satisfaction, and using constraint programming technologies to
implement our target solution.

2.1. The TOSCA Prolog prototype

2.1.1. Logic programming and the Prolog language

Logic programming [3] is a programming paradigm founded on formal logic, in which a
program is given as a set of predicates acting on terms, together with a set of logical
constraints relating the predicates. In our first prototype, we used Prolog as our of logic
programming language. Prolog [12] is the most widely adopted programming language
concretizing the theory of logic programming, and several implementations exist.

In a Prolog program, elementary knowledge is represented by terms, which can be either
simple or compound. A simple term can be a number, such as 45, an atom, which is
a term which only represents or identifies itself, such as greg, or a variable, such as X.
Atoms start with a lowercase letter, variables start with an uppercase letter. Simple terms
can be combined in compound terms : given the simple terms above, we can create the
compound term person(greg, 45).

A predicate represents something that can be true of one or more terms, or a relationship
between terms. A Prolog program consists of a set of clauses, logical constraints relating
predicates and terms. A fact is an assertion that a predicate holds for certain terms
independently of external knowledge. As an example, considering the terms presented
above, together with the atom ppth, the fact:

works(person(greg , 45), ppth).

relates the predicate works, with arity 2, the term person(greg, 45) and the term
ppth, stating that the predicate holds for these two terms. This fact could represent the
knowledge that “The person named Greg who is 45 years old works at the PPTH”.

It is then desirable to express knowledge relating more than one predicate. This is done
via rules, which are clauses composed of a head predicate, and a body composed of one
or more logically combined predicates. A rule is used to assert that the head predicate
holds for certain terms if the body holds. For example:

employed(X) :- works(X, _).
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The sign ‘:-’, which is concrete syntax for the more formal ‘←’, should be considered
a reversed implication, and can be read as “if”. Together with the fact that ‘_’ is a
placeholder that stands for any term, the above rule can be read as “X is employed if X
works anywhere”.

The collection of clauses that constitute a Prolog program are also called its database. The
database can then be queried, a query being a predicate applied to some terms, possibly
including variables. Querying the Prolog instance results in asking whether it follows from
the clauses in the database that a predicate holds for certain terms. The Prolog instance
can reply negatively or positively; if the terms in the query contain variables, the response
to the query contains the values of the variables for which the predicate holds. If the two
clauses above are in our database, querying for the name of an employed person results
in the expected answer:

?- employed(person(X, _)).

X = greg.

On the other hand, specifying that the age of the person we are seeking should be 30, we
are met with a negative answer:

?- employed(person(X, 30)).

false.

The mechanism through which Prolog matches terms and variables is called unification.
For example, when determining whether a fact in the database is a satisfactory instance
of a query, Prolog checks that the two predicates are the same, and then tries to unify
the respective terms, i.e., checks if they can be equal for some assignment of the variables
that appear in them.

2.1.2. Representing IaC within Prolog

Unification being its central functioning mechanism, the Prolog language can be used for
constraint programming [1, Section 9.2.1]. Our approach was to encode infrastructural
elements and their metadata as follows:

• Scalar values such as integers, floating point numbers and strings were encoded as
their respective counterpart in Prolog;
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• Boolean values were encoded with two atoms, true and false;

• A usage of a TOSCA intrinsic function such as get_input was encoded with a term
with a corresponding structure, e.g., get_input(IName), where IName is the name
of the input;

• A TOSCA property definition was encoded with the term property(PName,
PType, Required), where PName is an atom identifying the name of the prop-
erty, PType is an atom for its type and Required is either true or false depending
on whether the property is defined to be required or not;

• A TOSCA capability definition within a node type definition was encoded with the
term capability(CName, CType), where CName is an atom identifying the name
of the capability and CType is an atom for its type;

• A TOSCA requirement definition within a node type definition was encoded with the
term requirement(RName, RCap, RNType, RRel , occurrences(ROccLB,

ROccUB)), where RName is an atom for the name of the requirement, RCap is an
atom for the required capability, RNType is an atom for the type of nodes admit-
ted as a target (including subtypes), RRel is an atom representing the relationship
underlying the requirement, and ROccLB and ROccUB are respectively lower and
upper bound for the number of occurrences of the requirement, ROccUB possibly
being the atom unbounded;

• A TOSCA node type definition was encoded with the fact node_type(NType,
EType, PDefs, CDefs, Reqs), where the predicate node_type relates the follow-
ing terms:

– NType, an atom identifying the node type;

– EType, an atom identifying the type extended by this node type, or none if no
type is extended;

– PDefs, a list of property definitions, encoded as defined above;

– CDefs, a list of capability definitions, encoded as defined above;

– Reqs, a list of requirement definitions, encoded as defined above;

• A TOSCA capability type definition was encoded with the fact cap_type(CType,
EType, PDefs), where the predicate cap_type relates the following terms:

– CType, an atom identifying the capability type;
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– EType, an atom identifying the type extended by this capability type, or none
if no type is extended;

– PDefs, a list of property definitions, encoded as defined above;

• A TOSCA property within a node template or capability was encoded with the term
property(PName, PValue), where PName is defined as above and PValue is the
term representing the value of the property;

• A TOSCA capability offered by a node template was encoded with the term capa-

bility(CName, Props), where CName is the atom representing the name of the
capability, and Props is a list of properties, encoded as defined above;

• A TOSCA requirement satisfied for a node template was encoded with the term re-

quirement(RName, RTarget), where RName is the atom representing the name
of the requirement, and RTarget is the node template provided to satisfy the re-
quirement;

• A TOSCA node template definition was encoded with the fact node(NName,
NType, Props, Caps, Reqs), where the predicate node relates the following
terms:

– NName, an atom identifying the node by its name;

– NType, an atom identifying the node type;

– Props, a list of properties, encoded as defined above;

– Caps, a list of capabilities, encoded as defined above;

– Reqs, a list of requirements, encoded as defined above;

• A TOSCA policy was encoded with the fact policy(PName, PType , PTargets),
where PName is an atom identifying the policy by its name, PType is an atom
identifying the policy type, and PTargets is a list of atoms identifying node templates
which are the targets of the encoded policy.

Information about infrastructural elements and their metadata was obtained by parsing
an example TOSCA template with a suitably modified third-party TOSCA parser2. A
Prolog instance was automatically populated with the information encoded as facts.

2The modified version can be found at https://github.com/mikidep/tosca-parser.

https://github.com/mikidep/tosca-parser
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Listing 2.1: A generated fact encoding a node type.

node_type(

'doml.nodes.Redis',

'tosca.nodes.SoftwareComponent ',

[property(component_version , version , false), property(

admin_credential , tosca.datatypes.Credential , false)],

[capability(redis_endpoint , 'doml.capabilities.Endpoint.

Redis'), capability(feature , 'tosca.capabilities.Node'

)],

[requirement(host , 'tosca.capabilities.Container ', 'tosca

.nodes.Compute ', 'tosca.relationships.HostedOn ',

occurrences (1, unbounded)), requirement(dependency , '

tosca.capabilities.Node', 'tosca.nodes.Root', 'tosca.

relationships.DependsOn ', occurrences (0, unbounded))]

).

After this, a file containing auxiliary Prolog predicates was loaded into the instance, to
provide the building blocks for knowledge base querying.

Listing 2.2: An auxiliary predicate, relating node types with their ancestors.

extends_node_type(TypeA , TypeA).

extends_node_type(TypeA , TypeB) :-

node_type(TypeA , ExtTypeA , _, _, _),

ExtTypeA \= none ,

extends_node_type(ExtTypeA , TypeB).

A user with some Prolog experience could then query the Prolog instance to obtain derived
facts about the encoded infrastructure. Nonetheless, we found that requiring a user
to know or learn Prolog to use the tool would be too intimidating, and that a small
specification language would be more approachable. Since the most recent versions of
TOSCA use YAML as a base language, we developed a YAML sub-language to express
logic specifications: we also expected the final version of the DOML to be a YAML-based
language, thus a similarly structured specification language would have been immediate to
embed. The language had a tree structure, in which the leafs of the trees corresponded to
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facts in the database, and the intermediate nodes were constructed with logical connectors
such as and, or and not. The full specification of the language can be found in the
appendix, in Section A.2.

Listing 2.3: A specification written in the YAML specification language, matching node
templates offering a certain capability, having a password property which is not provided
using the get_input intrinsic TOSCA function.

- name: hardcoded_password

description: Node $x has a hardcoded password.

check:

and:

- node:

$x:

type: $nodeType

properties:

password: $p

- predicate:

type_offers_capability:

args:

- $nodeType

- tosca.capabilities.Endpoint.Database

- not:

match:

- $p

- get_input:

args: [$_]

Specifications are then converted into Prolog predicates as follows:

• Scalar values are converted into the corresponding Prolog values;

• Variables (beginning with ‘$’ followed by a lowercase letter or underscore) are con-
verted into Prolog variables;

• Variables that are interpolated in the specification description, which is used to
generate the output of the query, become arguments of the resulting predicate;

• and, or and not connectors are converted in the corresponding connectors in Prolog,
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respectively ‘,’, ‘;’ and ‘\+’;

• Atomic formulas are converted into the relative predicate;

• Custom predicate invocations are also converted into the relative predicate;

• match atomic formulas are converted into unifications.

Listing 2.4: The Prolog predicate generated from the specification in listing 2.3.

hardcoded_password(X) :-

node(X, NodeType , Props0 , _, _),

subset ([ property('password ', P)], Props0),

type_offers_capability(NodeType , 'tosca.capabilities.

Endpoint.Database '),

\+ (P = get_input(_)).

Further implementation details can be seen in Appendix A.

2.1.3. Evaluation and shortcomings

When profiled, the Prolog prototype showed promising results for scalability. When run
on the included example topology, which included 26 infrastructural elements between
top-level and imported elements, and querying the three included example checks, on
an Intel i7-7700HQ machine with 16 GB of RAM, the tool showed running times below
one second. Furthermore, profiling showed that the most time-consuming operations
were loading third-party libraries and parsing the TOSCA topology; the time involved
in querying the Prolog instance for each result were in the order of magnitude of 10−5

seconds.

Considering the development process, Prolog lent itself well to fast prototyping, sharing
the same immediateness as many untyped programming languages: knowledge bases such
as the one we are considering are easily encoded in free terms and predicates relating
them.

Prolog is a Turing-complete language: while this fact implies that any computable search
can be potentially performed using it, it also implies that, without imposing structural
constraints on the predicates being used, we cannot guarantee termination. The predicates
resulting from the encoding of the specification language we developed are not recursive,
so queries involving them are bound to terminate, but in order to inspect properties which
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are recursive in their structure, such as node type inheritance relationships, the definition
of recursive auxiliary predicates is required.

As a logical back-end, Prolog was ultimately discarded due to the difficulty in encoding
quantifiers, and most importantly, due to its negation-as-failure semantics [12, sections
4.4 and 4.5]. Particularly, in our case, negation-as-failure meant that a user querying
¬(X = 3) would receive a negative answer instead of, e.g., a satisfactory model having
X = 4. We found this behaviour to be counterintuitive with respect to the results an
inexperienced user might expect, from a tool that allows them to express properties as
logical formulas.

2.2. The TOSCA Z3 prototype

Our dissatisfaction with Prolog’s negation-as-failure semantics led us to investigate logical
back-ends which would allow us to express properties in a more familiar logical language.

2.2.1. Satisfiability Modulo Theories, SMT-LIB and Z3

Satisfiability Modulo Theories (SMT) [6] is an approach in deciding the satisfiability of
sets of first-order formulas. First-order logic is undecidable in general3. However, one can
consider the satisfiability of formulas belonging to a sublogic of first-order logic (e.g., the
quantifier-free fragment), evaluated in a fixed theory (e.g., integer linear arithmetic). For
some combinations of sublogic and theory, decidability is recovered.

Several SMT solvers have been developed, each one supporting different logics and the-
ories, and implementing different algorithms, resulting in diverging solving performances
on specific problems. In order to provide a unified interface with a consistent set of
features, the SMT-LIB standard [4] was developed. Solvers implementing the SMT-LIB
standard support a subset of a set of standard logic/theory combinations, and accept SMT
problems specified in a DSL syntactically similar to a LISP language. The DSL features
type-like constructs called sorts, which are assigned to each term, and correspond to sets
in the underlying theory.

Starting with version 2.6 of the standard [5], the language supports the declaration of
algebraic data types, which, used in their simplest form, allowed us to declare enumeration
types. In the following SMT-LIB code, a sort is declared that allows only three values,
and then an uninterpreted function operating on this sort is declared and constrained so
that its image is always different from its argument:

3This was proved by A. Church [10] in 1936.
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Listing 2.5: Example SMT-LIB code.

(declare -datatypes (( Colour 0)) (((red) (green) (blue))))

(declare -fun f (Colour) Colour)

(assert (forall ((x Colour)) (distinct (f x) x)))

Among the available options, Microsoft’s Z3 [21] is a state-of-the-art SMT solver support-
ing version 2.6 of the SMT-LIB standard. Besides supporting the SMT-LIB interface,
Z3 also provides APIs for several programming languages, including a Python interface,
which is widely used. The following Python code describes the same SMT problem as
listing 2.5:

import z3

colour_sort , (red , green , blue) = z3.EnumSort("Colour", ["red

", "green", "blue"])

f = z3.Function("f", colour_sort , colour_sort)

solver = z3.Solver ()

x = z3.Const("x", colour_sort)

solver.append(z3.ForAll ([x], f(x) != x))

The following additional lines check the satisfiability of the specified SMT problem and,
if a satisfying model is found, print it to standard output:

is_sat = solver.check()

print(is_sat)

if is_sat == z3.sat:

print(solver.model())

The output follows:

sat

[f = [red -> green , else -> red]]

sat means that the problem is satisfiable, while [f = [red -> green, else -> red]]
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is the found model, containing a satisfying interpretation for the declared f function.

2.2.2. Representing IaC within Z3

Infrastructural elements were encoded as follows:

• Node types were encoded as the finite sort NodeType, also containing special value
none;

• Node templates were encoded as the finite sort Node, also containing special value
none;

• Node property names were encoded as the finite sort NodeProp;

• Strings found in the topology were mapped onto string symbols and encoded as the
finite sort StringSym;

• TOSCA intrinsic functions are encoded as the finite sort FuncSym;

• Property values and lists of values were encoded with the mutually recursive al-
gebraic data types Val and List_Val, with the following inductive definitions:

inductive Val :=

| int Int

| str StringSym

| float Real

| list List_Val

| func FuncSym List_Val

| none

inductive List_Val :=

| nil

| cons Val List_Val

• A function named node_type with signature Node → NodeType was declared, and
constrained to relate nodes with their node type;

• A function named node_prop with signature Node→ NodeProp→ Val was declared,
and constrained to assign nodes and property names to the relative property value;

As was the case with the previously presented prototype, although a user with basic
knowledge of SMT techniques could operate on the generated model to gather the desired
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information manually, we decided to develop a small querying language. This time, we
decided to deviate from the YAML structure, and developed a more traditional free-space
DSL, whose grammar is described in detail in Section B.2 of the appendix. The language
featured a number of primitives mapping the constructs used to encode the target IaC
code in an SMT problem.

2.2.3. Evaluation

During our work on this second prototype, a first definition of the DOML was reached.
This prompted us to abandon the prototype to work on a model checker that would target
the DOML instead of TOSCA, which we adopted as a temporary target while the main
language was not available. For this reason, in its current state, the Z3 TOSCA proto-
type is incomplete in its representation of infrastructural elements, and the specification
language is rather inexpressive.

To evaluate the prototype’s performance, the same example topology as the one included
in the Prolog prototype was used. The running time was once again below the second,
with most of the time being Python startup and imports loading. The times needed to
construct the infrastructural model representation, encode the specification and solve the
constraints were all in the order of magnitude of 10−2 seconds. Due to the incomplete
nature of the prototype, these results must be taken with care, as the solving time would
probably increase considerably with the complexity of the model representation.
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back-end for DOML

In this chapter, the DOML Model Checker (DOML-MC) is introduced. DOML-MC is
a DOML model checker back-end, targeting a provisional representation of the DOML,
encoding attributes of the described infrastructural elements and associations between
them in the Z3 SMT solver. The solver can then be leveraged to verify properties regard-
ing the constructed knowledge base, or to find ways in which the DOML model can be
extended in order to satisfy such properties. Implementation details about DOML-MC
can be found in Appendix D.

3.1. The chosen state of the DOML

At the time of this work, a final version of the DOML has not been defined. Still, in order
to achieve an operable version of the model checker, some form of DOML needs to be fixed.
Within the scope of WP3, the team responsible for Infrastructural Code Generation (ICG)
proposed a JSON-based language to represent DOML models, that would be more feasible
to parse outside the IDE framework (Eclipse1) chosen as a font-end interface to end users.
For an example demonstrating a small DOML model represented in this format, refer to
Appendix C.

Listing 3.1: Two application-layer elements as described in the DOML JSON format.

[

{

"typeId": "application_SoftwarePackage",

"name": "wordpress",

"consumedInterfaces ->postgres": [

"db_interface"

],

1https://www.eclipse.org/

https://www.eclipse.org/
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"exposedInterfaces": []

},

{

"typeId": "application_DBMS",

"name": "postgres",

"exposedInterfaces": [

{

"typeId": "application_SoftwareInterface",

"name": "db_interface",

"endPoint": "5432"

}

]

}

]

At about the same time, an abstract specification of the DOML was produced by WP3 [13,
Annex to D3.1 – DOML Specification]. This can be used as a metamodel describing the
structure of DOML models in terms of DOML elements, each belonging to a class among
those listed in the specification. The classes are arranged in a subclassing hierarchy, and
for each class there is a list of attributes that pertain to its elements, and associations re-
lating elements with other elements. Attributes and associations come with multiplicities
similar to those found across the Unified Modeling Language (UML).

In this version of the DOML, a model is divided in three layers: the application layer, the
infrastructure layer and the concretization layer. In the application layer, the model is
given in terms of its most abstract components, such as software components and external
Software-as-a-Service (SaaS), each providing and/or consuming a number of software
interfaces, defining the operational relationships between different components.

In the infrastructure layer, the model is described in terms of infrastructural components,
such as virtual machines, networks, storage, but in a format that is still independent of
the final CSPs involved.

In the concretization layer, one or more concretizations are provided. Each concretization
is an infrastructural specification describing the concrete infrastructural components as
offered by the CSPs, corresponding to the elements presented in the infrastructure layer,
as well as information regarding which CSP provides which elements, and CSP-specific
metadata.
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Amid these layers, deployments describe how elements map onto other elements in other
layers, as is for software components needing to be deployed onto virtual machines, or in
the same layer, as is for containers needing to be hosted onto virtual machines.

It must be noted that this JSON format was presented as an abstract proof-of-concept,
once again without a real specification, and that no software targeting it as a source
for ICG was ever actually developed. As a consequence, the provided examples had not
faced the validation that would have resulted from being automatically translated by ICG
software, and showed several criticalities. Among these, they did not express part of the
information specified in [13] for DOML models, such as the deployments. This will be
exploited further in this chapter, in Section 3.4.1, as the developed tool will be shown
capable of filling missing parts of the specification.

3.2. Metamodel and Intermediate Model

3.2.1. The metamodel and its YAML representation

As previously discussed, [13] specifies a class-based metamodel, in which DOML elements
belong to classes featuring attributes and associations. These features could be inherited
by a class from a superclass. This metamodel can be used as a basis to represent DOML
models in an intermediate model, serving as a starting point for the process representing
the model in the context of an SMT problem.

The metamodel is used to devise a simplified representation, in which the structure of
DOML models is flattened to a network of associations between elements. Additionally,
the metamodel can be used to derive constraints that must be satisfied by all DOML
models, and constitute both a baseline verification step to apply to complete models, and
a set of guides for the SMT solver for the task of model synthesis.

In DOML-MC, the metamodel is encoded as a YAML document, a format that can be
easily parsed by the software. For each class, the representation encodes class-superclass
relationship, as well as class attributes with the type of data they must be assigned to,
and class associations with the class of elements they must point to. Attributes can
also have default values, and both attributes and associations have multiplicity bounds.
Classes are referred to by their qualified name, which is obtained from their name by
prepending a prefix among commons_, application_, infrastructure_ and concrete_,
in order to disambiguate classes with the same name in different layers (for example,
both the infrastructure and the concrete layers have a Network class). Attribute and
association names are referred to by their mangled name, which is obtained by prefixing
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the qualified name of the class they belong to, followed by ‘::’, to their name (as in
application_SoftwarePackage::exposedInterfaces); again, this serves the purpose
of disambiguating attributes and associations with the same names featured in distinct
classes.

Listing 3.2: A DOML class encoded in the YAML metamodel document.

SoftwarePackage:

superclass: application_ApplicationComponent

attributes:

isPersistent:

type: Boolean

multiplicity: "1"

default: false

associations:

exposedInterfaces:

class: application_SoftwareInterface

mutiplicity: "0..*"

consumedInterfaces:

class: application_SoftwareInterface

mutiplicity: "0..*"

Occasionally, [13] also specifies constraints for the instances of a class, but these were not
encoded in this representation.

Some pairs of associations in the specification (such as infrastructure_NetworkInter-
face::belongsTo and infrastructure_Network::connectedIfaces) are evidently the
inverse of one another. This is specified in the YAML metamodel by marking one associ-
ation of the pair with the field ‘inverse_of:’, assigned to the mangled name of the other
association.

Network topologies are particularly relevant in specifications concerning IaC. For this rea-
son, although they are specified to be strings in the original specification, it is convenient
to represent IP addresses and address ranges as integers and integer bounds respectively.
In this manner, the model checker can represent the fact that an IP address belongs to a
network as the corresponding integer being within the upper and lower bounds associated
with the network.
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DOML-MC reads this YAML document encoding the metamodel, to obtain a convenient
representation as Python objects describing each class, together with a list of tuples
specifying which pairs of associations are inverses.

Listing 3.3: The Python object representing the class application_SoftwarePackage.

DOMLClass(

name='application_SoftwarePackage ',

superclass='application_ApplicationComponent ',

attributes ={

'isPersistent ': DOMLAttribute(

name='isPersistent ',

type='Boolean ',

multiplicity =('1', '1'),

default=False

)

},

associations ={

'exposedInterfaces ': DOMLAssociation(

name='exposedInterfaces ',

class_='application_SoftwareInterface ',

multiplicity =('0', '*')

),

'consumedInterfaces ': DOMLAssociation(

name='consumedInterfaces ',

class_='application_SoftwareInterface ',

multiplicity =('0', '*')

)

}

)

3.2.2. Converting DOML into the intermediate model

Comparing the JSON-based DOML format and the described metamodel, one can imagine
representing the target DOML model as an intermediate model based on the metamodel,
consisting in a set of elements belonging to classes and presenting attributes and associ-
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ations between them, in conformance with the specification in [13]. DOML-MC performs
this representation, obtaining a set of Python objects corresponding to the elements in
the model.

Listing 3.4: The Python object representing the software package wordpress in the
example in Appendix C.

DOMLElement(

name='wordpress ',

class_='application_SoftwarePackage ',

attributes ={'commons_DOMLElement ::name': 'wordpress '},

associations ={

'application_SoftwarePackage :: consumedInterfaces ': {

'postgres_db_interface '

},

'application_SoftwarePackage :: exposedInterfaces ': set

()

}

)

In compiling this intermediate model, if two elements are associated through an association
that is defined to have an inverse in the metamodel, DOML-MC automatically reciprocates
the relationship in the inverse association.

3.3. Z3 representation

As was shortly demonstrated in Section 2.2.1, an SMT problem can be formulated pro-
viding the following components:

• Sorts, which can be thought of as sets or types of elements appearing in the sought
model;

• Functions, including nullary functions or constants, operating between elements of
the declared sorts;

• Assertions, stating logical facts, concerning the available functions, that must hold
in the sought model.

Given a problem, the SMT solver can check its satisfiability: if the problem is satisfiable,
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the solver can then produce a model consisting of an interpretation for each declared
function. Additionally, assertions in the problem can be tracked, i.e. labelled; if the
problem is found to be unsatisfiable, the solver can provide an unsatisfiable core of the
problem, i.e. a subset of assertions that is sufficient to observe unsatisfiability. Of this
subset, the tracked assertions are then returned. Z3 in particular does not guarantee the
found unsatisfiable core to be minimal, hence there could be proper subsets of the found
unsatisfiable core that are sufficient for unsatisfiability.

3.3.1. Sorts and functions

DOML-MC formulates an SMT problem, representing the constructed metamodel and
intermediate model with SMT constructs as follows:

• The Class sort is a finite-valued sort representing classes in the metamodel;

• The Attribute sort is a finite-valued sort representing attributes in the metamodel;

• The Association sort is a finite-valued sort representing associations in the meta-
model;

• The Element sort is a finite-valued sort representing elements in the intermediate
model;

• String values in the intermediate model are mapped to atomic string symbols, rep-
resented with the finite sort StringSym;

• Attribute data are mapped to values of the tagged union sort AttributeData, hav-
ing three constructors:

– int : Int→ AttributeData, for integer attribute values;

– bool : Bool→ AttributeData, for boolean attribute values;

– ss : StringSym→ AttributeData, for string attribute values;

• The function elem_class : Element → Class relates DOML elements to their
classes;

• The function attribute : Element → Attribute → AttributeData →
Bool encodes the relation between elements, attributes and attribute values:
attribute(elem, attr, ad) is interpreted with true if and only if the DOML el-
ement represented with elem has the attribute represented with attr assigned to
an attribute value represented with ad;
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• The function association : Element → Association → Element →
Bool encodes the relation between elements, associations and other elements:
association(elems, assoc, elemt) is interpreted with true if and only if the DOML
element represented with elems is associated, through the association represented
with assoc, to the DOML element represented with elemt;

3.3.2. Metamodel assertions

From now on, the following conventions are employed:

• For every class, element, attribute, association or attribute value ξ, ρξ denotes a
constant evaluated to the above described representation of ξ;

• For every two classes C1 and C2, C1 <: C2 indicates that C1 is a subclass of C2.
In particular, <: is the reflexive, transitive closure of the inverse of the relation
specified in the metamodel relating each class to its direct superclass. Note that
this means that a class has always at least itself as a subclass, i.e. for every class C
in the metamodel, C <: C holds.

After the declaration of sorts and functions representing DOML entities, a series of as-
sertions is added to the SMT problem to ensure that found models are coherent with the
constraints in the metamodel.

• For every class C in the metamodel and for every attribute A defined for C, the
following is asserted:

∀(es : Element)(d : AttributeData).

attribute(es, ρA, d)→

( ∨
C′<:C

elem_class(es) = ρC′

)
∧ TypeCond

In the above, TypeCond is defined according to the value type τA specified for A in
the metamodel:

– If τA is Boolean, TypeCond := qbool(d);

– If τA is Integer, TypeCond := qint(d);

– If τA is String, TypeCond := qss(d);

– If τA is an enumeration type, TypeCond :=
∨

v∈τA d = ρv, where v ∈ τA signifies
that v is a string representing one of the possible values of τA;

For every datatype constructor c, qc is a function, called a tester for c, constrained to
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evaluate to truth if and only if its argument was constructed through c. In solvers
complying with the SMT-LIB 2.6 standard, as in Z3, testers are automatically
generated when datatypes are declared.

This assertion is added to the SMT problem to ensure that if an element has a value
for A in the sought model, the element belongs to a subclass of C, and the attribute
value is of type τA.

The assertion is tracked with the label ‘attribute_st_types A’;

• For every class C in the metamodel and for every attribute A defined for C, if the
lower bound on the multiplicity defined in the metamodel for A is 1, the following
is asserted:

∀(es : Element).( ∨
C′<:C

elem_class(es) = ρC′

)
→ ∃(d : AttributeData).attribute(es, ρA, d)

This assertion is added to the SMT problem to ensure that if an element belongs to
C, or a subclass of C, the element has at least an attribute value for A.

The assertion is tracked with the label ‘attribute_mult_lb A’;

• For every class C in the metamodel and for every attribute A defined for C, if the
upper bound on the multiplicity defined in the metamodel for A is 1, the following
is asserted:

∀(es : Element)(d, d′ : AttributeData).

attribute(es, ρA, d) ∧ attribute(es, ρA, d′)→ d = d′

This assertion is added to the SMT problem to ensure that every element has at
most an attribute value for A, i.e., concretely, any two attribute values that are
related to any single element through A are equal.

The assertion is tracked with the label ‘attribute_mult_ub A’;

• For every class C in the metamodel and for every association A defined for C, the
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following is asserted:

∀(es, et : Element).

association(es, ρA, et)

→

( ∨
C′<:C

elem_class(es) = ρC′

)
∧

( ∨
C′<:CA

elem_class(et) = ρC′

)

In the above, CA is the class specified in the metamodel for target elements of A.

This assertion is added to the SMT problem to ensure that if an element is associated
to a target element through A, the element belongs to a subclass of C, and the target
element belongs to a subclass of CA.

The assertion is tracked with the label ‘association_st_classes A’;

• For every class C in the metamodel and for every association A defined for C, if the
lower bound on the multiplicity defined in the metamodel for A is 1, the following
is asserted:

∀(es : Element).( ∨
C′<:C

elem_class(es) = ρC′

)
→ ∃(et : Element).association(es, ρA, et)

This assertion is added to the SMT problem to ensure that if an element belongs
to C, or a subclass of C, the element is associated with at least another element
through A.

The assertion is tracked with the label ‘association_mult_lb A’;

• For every class C in the metamodel and for every association A defined for C, if the
upper bound on the multiplicity defined in the metamodel for A is 1, the following
is asserted:

∀(es, et, e′t : Element).association(es, ρA, et) ∧ association(es, ρA, e′t)→ et = e′t

This assertion is added to the SMT problem to ensure that every element is asso-
ciated to at most an element through A, i.e., concretely, any two elements that are
targets of A for any single source element are equal.

The assertion is tracked with the label ‘association_mult_ub A’;
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• For every pair of associations A1 and A2 that are defined to be mutual inverses in
the metamodel, the following is asserted:

∀(es, et : Element).association(es, ρA1 , et)↔ association(et, ρA2 , es)

This assertion is added to the SMT problem to ensure that A1 and A2 behave as
inverses in the sought model, i.e. for all es and et, A1 associates es to et if and only
if A2 associates et to es.

The assertion is tracked with the label ‘association_inverse A1 A2’.

3.3.3. Intermediate model assertions

Another set of assertions is used to encode the intermediate model, derived from the
DOML document, in the SMT problem that is being constructed:

• For every element E in the intermediate model, the following is asserted:

elem_class(ρE) = ρCE

In the above, CE is the class to which E belongs according to the intermediate
model.

This assertion is added to the SMT problem to ensure that the found interpretation
for elem_class reflects the fact that E belongs to CE.

The assertion is tracked with the label ‘elem_class E CE’.

• For every element Es in the intermediate model, the following is asserted:

∀(a : Attribute)(d : AttributeData).

attribute(ρEs , a, d)↔
∨

A∈Attrs(Es)

a = ρA ∧ d = ρV al(Es,A)
(3.1)

In the above, Attrs(Es) denotes the set of attributes defined for Es in the interme-
diate model, while V al(Es, A) denotes the value assigned to attribute A for element
Es. It should be noted that the disjunction of zero clauses is taken to mean false-
hood.

This assertion is added to the SMT problem to ensure that the found interpretation
for attribute reflects the attributes declared for the elements in the intermediate
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model.

The assertion is tracked with the label ‘attribute_values Es’.

• For all elements Es and Et in the intermediate model, the following is asserted:

∀(a : Association).association(ρEs , a, ρEt)↔
∨

A∈Assoc(Es,Et)

a = ρA (3.2)

In the above, Assoc(Es, Et) denotes the set of associations through which Es is
associated with Et in the intermediate model. Again, it should be noted that the
disjunction of zero clauses is taken to mean falsehood.

This assertion is added to the SMT problem to ensure that the found interpreta-
tion for association reflects the associations declared between the elements in the
intermediate model.

The assertion is tracked with the label ‘associations Es Et’.

3.4. Usage

The so-constructed SMT problem can be solved as-is to check that the provided DOML
document is compatible with the constraints derived from the metamodel. If the answer
of Z3 is not sat, the unsatisfiable core is useful to understand what issues in the analysed
DOML model lead to unsatisfiability.

As an example, in the intermediate model derived from the example in Appendix C,
one could try to delete the attribute application_SoftwareInterface::endPoint set
for the element postgres_db_interface. Checking the satisfiability of the generated
problem with Z3 results in unsat, with an unsatisfiable core comprising the following
labels:

elem_class postgres_db_interface

application_SoftwareInterface

attribute_mult_lb application_SoftwareInterface :: endPoint

attribute_values postgres_db_interface

Referring back to Section 3.3, the labelled assertions can be interpreted as “the fact
that element postgres_db_interface belongs to class application_SoftwareInter-
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face, the lower bound on the multiplicity of attribute application_SoftwareInter-

face::endPoint and the attributes provided for postgres_db_interface are incompat-
ible”.

3.4.1. Additional constraints and model synthesis

The assertions derived from the metamodel constrain the model on an abstract, coarse
and structural level, but they are still compatible with situations that do not correspond
to realistic infrastructural configurations. For example, a satisfiable model could have a
network interface shared between two infrastructural elements.

The above instance can be fixed to adding to the SMT problem an additional assertion,
such as the following:

∀(e1, e2, i : Element).(association(e1, ρACN
, i) ∨ association(e1, ρAS

, i))

∧ (association(e2, ρACN
, i) ∨ association(e2, ρAS

, i))

→ e1 = e2

(3.3)

In the above, ACN is the association infrastructure_ComputingNode::ifaces, while
AS is the association infrastructure_Storage::ifaces.

Another assertion that will be referenced further is the following:

∀(i, n : Element).association(i, ρANb
, n)

→ ∃(a : Z).attribute(i, ρANe
, int(a))

∧ (∀(b : Z).attribute(n, ρANl
, int(b))→ b ≤ a)

∧ (∀(b : Z).attribute(n, ρANb
, int(b))→ a ≤ b)

(3.4)

In the above, ANb is the association infrastructure_NetworkInterface::belongsTo,
ANe is the attribute infrastructure_NetworkInterface::endPoint, ANl is the at-
tribute infrastructure_Network::address_lb, and ANu is the attribute infrastruc-

ture_Network::address_ub.

Assertion (3.4) states that if a network interface belongs to a network, its address is within
the bounds delimiting the address range of the network.

Adding additional assertions, constricting the found model to represent realistic infrastruc-
ture, is particularly useful when the SMT problem construction performed by DOML-MC
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Listing 3.5 The Python code, written using the Z3 Python API, adding assertion (3.3) to
the SMT problem, and tracking it with label iface_uniq. assoc is a Python dictionary
relating A to ρA for every association A.
e1 , e2 , ni = Consts("e1 e2 i", elem_sort)
assn = ForAll ([e1 , e2 , ni],

Implies(
And(

Or(
assoc_rel(

e1 ,
assoc["infrastructure_ComputingNode ::

ifaces"],
ni

),
assoc_rel(

e1 ,
assoc["infrastructure_Storage :: ifaces"],
ni

),
),
Or(

assoc_rel(
e2 ,
assoc["infrastructure_ComputingNode ::

ifaces"],
ni

),
assoc_rel(

e2 ,
assoc["infrastructure_Storage :: ifaces"],
ni

),
)

),
e1 == e2

)
)
solver.assert_and_track(assn , "iface_uniq")
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is leveraged to attempt model synthesis. This is achieved by allowing more elements to
the sorts described in Section 3.3.1 than the assertions in Section 3.3.3 constrain.

In particular, notice that assertions (3.1) and (3.2) constrain attributes and associations
only for Es and Et over which the relative assertion construction procedures iterate.
Hence, a number of unbound values can be added to the construction of the Element

sort, which are not iterated over in the procedures asserting (3.1) and (3.2) for elements
specified in the intermediate model. The interpretations of functions attribute and
association are not specified when these unbound values appear as arguments.

As an example, the following assertion can be added:

(3.5)

∀(sp, sc, is : Element).association(sp, ASe, i) ∧ association(sc, ASc, i)

→ ∃(n : Element).

(∃(c, d, in : Element).association(d,ADs, sp) ∧ association(d,ADt, c)

∧ association(c, ACi, in) ∧ association(in, ANb, n))

∧ (∃(c, d, in : Element).association(d,ADs, sp) ∧ association(d,ADt, c)

∧ association(c, ACi, in) ∧ association(in, ANb, n))

In the above:

• ASe is the association application_SoftwarePackage::exposedInterfaces;

• ASc is the association application_SoftwarePackage::consumedInterfaces;

• ADs is the association commons_Deployment::source;

• ADt is the association commons_Deployment::target;

• ACi is the association infrastructure_ComputingNode::ifaces;

• ANb is the association infrastructure_NetworkInterface::belongsTo.

Assertion (3.5) can be interpreted as “any two elements, that are connected through a
software interface, must be deployed onto computing nodes that are connected through
network interfaces to the same network”. Note that for elements instantiating the bound
variables in the assertion, the specified associations together with the assertions in Section
3.3.2 are sufficient to constrain the class they belong to. For instance, n must be a target
for association infrastructure_NetworkInterface::belongsTo, so it must belong to a
subclass of class infrastructure_Network.
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In Section 3.1, it was noted that the JSON format of the DOML, that was chosen as a
temporary target for DOML-MC, does not allow specifying how elements are deployed
onto other elements. In the metamodel, deployments are specified as elements belonging to
the class Deployment in the common namespace. Each deployment is associated through
association source to the source element, and through association target to the target
element.

To perform a synthesis experiment, after loading the DOML document in Appendix C,
elements unbound0 and unbound1 were added to the Element sort, and (3.5) was asserted.
In the example document, element wordpress uses a software interface provided by ele-
ment postgres, so one expects to have the two elements deployed on computing nodes
that see each other through a common network. Z3 was able to find a satisfying model,
and when checking the associations involving the added unbound elements, the following
tuples are found:

unbound0 commons_Deployment :: source postgres

unbound0 commons_Deployment :: target wpvm

unbound1 commons_Deployment :: source wordpress

unbound1 commons_Deployment :: target wpvm

Each line is in the format “<source element> <association> <target element>”. The
solver “deployed” both software elements on the same virtual machine, which is a possible
solution to the given constraints.

3.5. Performance evaluation

3.5.1. Metamodel assertions

The DOML metamodel redacted for the following evaluations contains 35 classes, and
the subclass relation among classes is composed of 92 tuples. In total, the classes in the
metamodel feature 24 attributes and 46 associations. For every attribute, DOML-MC
generates 3 assertions, so a total of 72 attribute related assertions are added to and
tracked by the solver. In turn, for every association, DOML-MC generates 3 assertions,
and moreover an assertion is generated for each pair of mutually inverse associations, so a
total of 142 association related assertions are added to and tracked by the solver. Hence,
the metamodel contributes 214 assertions to the solver state before the target DOML
model is analysed.
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3.5.2. Benchmark on DOML models

Table 3.1 portrays the results of a benchmark performed on DOML-MC on an Intel
i7-7700HQ machine with 16 GB of RAM executing macOS 10.15. The benchmark is
performed on four models, labelled M1 to M4. The SMT solving results are averages over
20 iterations for each configuration.

The model labelled M1 is available in the project source as example_json_models/word-
press_json_example.doml. It is also the model portrayed in Appendix C.

The model labelled M2 is available in the project source as example_json_models/-

wordpress_json_no_iface.doml. It is obtained from M1 by removing network interfaces
wpvm_niface and dbvm_niface, in order to test the solver’s ability to generate a network
interface in addition to the deployments, in order to satisfy assertion (3.5).

The model labelled M3 is available in the project source as example_json_models/nginx-
openstack_v2.doml. It is a minimal model that was obtained by translating a DOML
model, produced in the scope of an integration between the various WPs, into the JSON
provisional format. No synthesis was performed on the model, instead in the two last
solving tests only the additional assertions were added.

The model labelled M4 is available in the project source as example_json_models/POSI-
DONIA.doml. It is a larger model provided as a first example for the provisional DOML
JSON format.

The Construction statistics section of the table contains numerical measures regarding
the complexity of the intermediate model parsed from the JSON DOML model. The
metrics are:

• No. of elements is the number of constructed DOML elements;

• No. of attributes is the total number of attributes declared for the DOML ele-
ments;

• No. of associations is the total number of associations declared between the
DOML elements;

• No. of string symbols is the total number of strings extracted from both the
DOML model and the metamodel;

• No. of IM assertions is the total number of assertions constructed from the
intermediate model, which are then added to and tracked by the SMT solver.

The following table sections report the results for five different solving configurations.
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Table 3.1: DOML-MC benchmark results.

M1 M2 M3 M4
Construction statistics

No. of elements 16 14 11 49
No. of attributes 22 18 14 66

No. of associations 24 18 17 54
No. of string symbols 19 17 13 55
No. of IM assertions 288 224 143 2499

SMT solving, metamodel constraints
Time (s) 0.76 0.47 0.25 14

Quantifier inst. 1196 551 529 9616
Conflicts 185 102 74 1662

Memory (MB) 26 28 28 72
SMT solving, assertions

Time (s) 1.82 1.14 0.83 46.77
Quantifier inst. 3700 1645 1329 68986

Conflicts 208 146 92 1900
Memory (MB) 32 31 31 108

SMT solving, synthesis, incremental
Time (s) 1.88 1.56 0.23 42.43

Quantifier inst. 24043 19789 930 154338
Conflicts 1102 1143 117 6143

Memory (MB) 32 32 28 89
SMT solving, synthesis, non-incremental

Time (s) 2.41 1.62 0.27 50.85
Quantifier inst. 27779 17864 565 151978

Conflicts 1136 1126 85 6116
Memory (MB) 32 32 28 87

SMT solving, synthesis, all assertions
Time (s) 4.45 3.39 0.86 111.11

Quantifier inst. 46421 31476 1384 559239
Conflicts 1100 1250 98 6198

Memory (MB) 38 37 31 128
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In SMT solving, metamodel constraints, the SMT problem only contains the asser-
tions derived from the metamodel and the intermediate model.

In SMT solving, assertions, the problem contains the base assertions from the first
configuration, as well as assertions (3.3) and (3.4).

In SMT solving, synthesis, incremental, after solving the problem from the first
configuration, assertions (3.3) and (3.5) are added to the problem, and the solver is asked
to find a satisfying configuration again. In models M1, M2 and M4, additional values
are added to the Element sort, in order to synthesize elements that were not specified in
the original model such that the added constraints are satisfied.

In SMT solving, synthesis, non-incremental, the assertions used in the configuration
above are added all at the same time, without performing any intermediate solving. In this
configuration, solving is expected to require more time than the previous configuration,
since no preliminary restriction of the search space is involved.

In SMT solving, synthesis, all assertions, the problem contains the base assertions
used in the first configuration, as well as assertions (3.3), (3.4) and (3.5). Again, additional
values are added to the Element sort in order to perform synthesis.

For all five configurations, the same metrics are extracted:

• Time (s) is the time required by Z3 to perform the solving, in seconds;

• Quantifier inst. is the number of times a quantified formula was instantiated
during the solving;

• Conflicts is the number of times Z3 encountered a logical conflict while exploring
the model space, resulting in a pruning of the search space;

• Memory (MB) is the amount of memory employed by the solving procedure, in
megabytes.

It can be observed that solving time, quantifier instantiations and conflicts all increase
with the number and the complexity of the assertions composing the problem. The
assertions described in Section 3.4.1 are complex enough to cause solving time to increase
dramatically. It must also be noted that the number of assertions derived from the
intermediate model grows quadratically with the number of elements: this is due to
the fact that they are structured in such a way that they do not constrain associations
involving additional elements, that are not originally present in the intermediate model.
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3.5.3. Considerations

A procedure verifying the same properties as the second solving configuration was imple-
mented naively in Python, and took less than a second on model M4. It is evident that
SMT solving is an overly-complex tool for verifying such simple properties.

On the other hand, SMT formulas like the assertions used in the benchmark are an ap-
proachable target for the translation of an IaC property specification language. Moreover,
the possibility of performing model synthesis remains an interesting outcome of modelling
Infrastructure-as-Code as a set of constraints in an SMT problem.

Since the performances also depend vastly on the size of the model, a possible approach
for the mitigation of verification times might involve identifying parts of the model, that
are independent enough to allow separate checking of most of the properties.
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developments

The chosen approach to model checking of Infrastructure-as-Code proved to be useful
for the verification of structural properties of the targeted infrastructural descriptions.
Moreover, due to the model-finding capabilities of SMT solving, encoding a metamodel
describing the acceptable IaC models, and the IaC model itself as an SMT problem has a
dual advantage. By fully specifying the target model, one can check its coherency with the
metamodel assumptions, or with any additionally specified property; by underspecifying
the target model, the SMT solver can be used to complete the unspecified parts of the
model, and this result can be used to resynthesize an IaC description that satisfies the
provided assumptions, or to derive instructions for the user to produce the desired IaC
document.

The execution times resulting from the benchmark in Section 3.5.2 show that model
checking of medium-large models is not instantaneous, but model checking is traditionally
known to present long execution times. For a comparison with a tool undertaking similar
tasks, in [18] the Verification Tool is reported to take “seconds” for most of the models in
the example repository.

Since the beginning of this work, the JSON format of the DOML originally targeted
by DOML-MC has been put aside in the development of PIACERE. However, since
DOML-MC works on an intermediate representation based on a metamodel that encodes
an abstract specification for the DOML that should be close to final, adapting the tool to
the version of the DOML that will be ultimately adopted should only involve rewriting the
modules responsible for parsing the model. Similarly, by also modifying the metamodel,
this work could also be adapted to target IaC languages other than DOML.

As it stands, DOML-MC is only a back-end. In order to render it operable by the end-
user, some sort of user interface needs to be developed. This could be in the form of an
IDE integration, being that PIACERE also focuses on the development of an IDE, and of
a specification language, as was done in the prototypes described in Chapter 2. The IDE
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integration should have the duty of interpreting the result of the SMT solving procedure,
be it a satisfying model or an unsatisfiable core, and relate it to textual elements in
the infrastructural code, possibly generating human-readable suggestions to address a
negative result.

Lastly, the metamodel extracted from [13] is too abstract to ensure that synthesized
models correspond to realistic infrastructure. Additional assertions ought to be added to
the generated SMT problem to address this problem. An initial source for assertions can
be found in the constraints specified in [13] itself, but these will likely not be sufficient.
An expert user could be able to progressively refine the synthesized model by adding
assertions as needed, but this possibility should be considered a last resort, for the sake
of user experience.
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A| Appendix: the TOSCA

Prolog prototype

A.1. Implementation

A.1.1. Source code

The source code of the TOSCA Prolog prototype can be found at https://github.com/
mikidep/piacere-formal-verification/tree/master/doml_tosca_poc.

A.1.2. External dependencies

The prototype is implemented using Python 3.9 as the programming language.

The library used to parse YAML-based TOSCA service templates is called “tosca-parser”
and has been developed in the OpenStack project (https://opendev.org/openstack/
tosca-parser). The latest publicly available version of the library presents some bugs
that we had to solve for our prototype to work. The fixed version of the library can be
found at https://github.com/mikidep/tosca-parser.

The tool uses the PyYAML library (https://pyyaml.org/) for parsing user-supplied
requirements written in the YAML-based domain-specific language.

We use SWI-Prolog (https://www.swi-prolog.org/) as the Prolog implementation for
our tool. This choice is based on it being one of the most widely used and better supported
Prolog implementations. The Python-based core of the prototype uses the library PySwip
(https://github.com/yuce/pyswip) to interact with SWI-Prolog.

Dependency management in the Python development process is achieved using Poetry
(https://python-poetry.org/).

https://github.com/mikidep/piacere-formal-verification/tree/master/doml_tosca_poc
https://github.com/mikidep/piacere-formal-verification/tree/master/doml_tosca_poc
https://opendev.org/openstack/tosca-parser
https://opendev.org/openstack/tosca-parser
https://github.com/mikidep/tosca-parser
https://pyyaml.org/
https://www.swi-prolog.org/
https://github.com/yuce/pyswip
https://python-poetry.org/
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A.1.3. Project structure

The source code of the project is structured as follows:

• check2swipl.py: source code of the parser for user-defined requirements;

• checks.yaml: file containing example user-defined requirements;

• doml_tosca.yaml: example TOSCA service template;

• poc.py: main part of the tool;

• poetry.lock: file required by the packaging system;

• predicates.pl: file containing auxiliary Prolog predicates;

• pyproject.toml: settings file for the packaging system;

• README.md: brief user guide for the tool;

• tosca2swipl.py: source code of the module that translates TOSCA service tem-
plates into Prolog knowledge bases.

A.1.4. Installation and execution

As a prerequisite for the installation and execution of the prototype, Python, Poetry and
SWI-Prolog must be installed on the target system. On a UNIX system, the following
command installs the Python dependencies for the project:

$ poetry install

The following command executes the tool on the included example TOSCA topology:

$ poetry run python poc.py doml_tosca.yaml

The command generates the following output:

The required parameter db_user is not provided

The required parameter db_password is not provided

The required parameter ssh_pubkey is not provided



A| Appendix: the TOSCA Prolog prototype 53

node webapp has unsatisfied requirement(database_endpoint ,

tosca.capabilities.Endpoint.Database , tosca.nodes.Root ,

tosca.relationships.Root , occurrences (1, unbounded))

node webapp has a requirement with num_cpus =1 and mem_size =4

GB.

node redis has a requirement with num_cpus =1 and mem_size =16

GB.

The Prolog instance can be queried further by executing the Python interpreter in its
interactive mode:

$ poetry run python -i poc.py doml_tosca.yaml

In the so-opened Python prompt, the prolog object exposes a PySwip interface that can
be queried:

>>> results = prolog.query("node(X, T, _, _, _), extends_type

(T, 'tosca.nodes.SoftwareComponent ')")

>>> for r in results:

... print(r)

...

{'X': 'webapp ', 'T': 'myapp.nodes.WebApp '}

{'X': 'redis ', 'T': 'doml.nodes.Redis '}

>>>

A.2. The specification language

The Prolog PoC provides a language to query the knowledge base associated with the
TOSCA topology. The language is a subset of YAML and is translated into Prolog
predicates. An EBNF-like specification of the language follows: terminals are in red, non-
terminals are bold, character classes are in purple and follow common regular expression
syntax.

SpecDocument : :=
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(- Query) ∗

A specification document is composed of a list of queries.

Query : :=
name: ID
description: string
check: Formula

A query is composed of a name, a description that should interpolate a number of variables
and a formula to check.

ID : := [a-z_][A-Za_z0-9_] ∗

Variable : := $ID

Atom : := [^\'\n]+

A variable is an ID prefixed with a $. Variables are used to match terms in the knowledge
base and possibly report them in the output.

Term : := Atom | integer | Variable | PolicyDef | CompoundTerm

PolicyDef : :=
(- Term) ∗

CompoundTerm : :=
ID:

(- Term) ∗

Terms are the building blocks of the knowledge base. Atoms are elementary terms that
are only equal to themselves: they stand for the names of nodes, node types, and other
elements in the topology. Terms can be grouped into lists or compound terms.

Formula : := NodeFormula | NodeTypeFormula | CapabilityTypeFormula |
PolicyFormula | MatchFormula | PredicateFormula | NotFormula |
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AndFormula | OrFormula

Formulas are used to check the existence and contents of topology elements. They can be
combined into more complex formulas using logical operators.

NodeFormula : :=
node:

(Atom | Variable ): (NodeDef | {} )

NodeDef : :=
( type: (Atom | Variable ) ) ?

( properties: (Properties | Variable ) ) ?

( capabilities: ( Capabilities | Variable ) ) ?

( requirements: (Requirements | Variable ) ) ?

Properties : :=
( (Atom | Variable ): Term)+

Capabilities : :=
( (Atom | Variable ): Capability )+

Capability : :=
properties: Properties

Requirements : :=
(- (Atom | Variable ): (Atom | Variable ) )+

A node formula describes the existence and contents of a node template. Type, properties,
capabilities and requirements specifications are optional. A node formula matches a node
template if the type matches and all properties match some property contained in the
node template, and the same is true for capabilities and requirements.

NodeTypeFormula : :=
node_type:

(Atom | Variable ): (NodeTypeDef | {} )

NodeTypeDef : :=
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( derived_from: (Atom | Variable ) ) ?

( properties: (PropDefs | Variable ) ) ?

( capabilities: (CapDefs | Variable ) ) ?

( requirements: (ReqDefs | Variable ) ) ?

PropDefs : :=
( (Atom | Variable ):

( type: (Atom | Variable ) ) ?

( required: ( t rue | f a l s e ) ? ) )+

CapDefs : :=
( (Atom | Variable ):

type: (Atom | Variable ) )+

ReqDefs : :=
(- (Atom | Variable ): ReqDef)+

ReqDef : :=
( capability: (Atom | Variable ) ) ?

( node: (Atom | Variable ) ) ?

( relationship: (Atom | Variable ) ) ?

( occurrences: [unsigned_integer, (unsigned_integer | UNBOUND )] ) ?

CapabilityTypeFormula : :=
capability_type:

(Atom | Variable ): (CapTypeDef | {} )

CapTypeDef : :=
( derived_from: (Atom | Variable ) ) ?

( properties: (PropDefs | Variable ) ) ?

PolicyFormula : :=
policy:

(Atom | Variable ): (PolicyDef | {} )

PolicyDef : :=
( type: (Atom | Variable ) ) ?

( targets: [ ( (Atom | Variable ) (, (Atom | Variable ) ) ∗ ) ? ] ) ?
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Node type, capability type and policy formulas are defined similarly.

MatchFormula : :=
match:

- Term
- Term

A match formula tries to unify two terms, assigning values to the variables to make them
equal. For terms that contain no variable, this is the same as checking equality.

PredicateFormula : :=
ID:

(- Term) ∗

A predicate formula invokes a predicate defined outside the specification language, in the
Prolog file predicates.pl.

NotFormula : :=
not: Formula

AndFormula : :=
and:

(- Formula)+

OrFormula : :=
or:

(- Formula)+

The not formula succeeds if the contained formula fails. and and or formulas work as
one would expect. When a query is run, for every found result, the values of the variables
mentioned in the description are interpolated to generate the output.
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prototype

B.1. Implementation

B.1.1. Source code

The source code of the TOSCA Z3 prototype can be found at https://github.com/

mikidep/piacere-formal-verification/tree/z3/doml_tosca_z3.

B.1.2. External dependencies

Similarly to the Prolog-based prototype, this prototype is implemented using Python 3.9
as a programming language, using Poetry for dependency management and the same
modified version of tosca-parser to parse TOSCA topologies.

The tool uses Z3 (https://github.com/Z3Prover/z3) as its logical back-end, through
its publicly available Python API. The solver is automatically installed together with its
Python interface by Poetry.

In order to parse the specification language, the textX parser library (http://textx.
github.io/textX/) is used.

B.1.3. Project structure

The source code of the project is structured as follows:

• doml_tosca.yaml: example TOSCA service template;

• doml_tosca_z3: main module directory:

– __main__.py: an incomplete entrypoint script;

– tosca_utils.py: convenience functions processing TOSCA entities;

https://github.com/mikidep/piacere-formal-verification/tree/z3/doml_tosca_z3
https://github.com/mikidep/piacere-formal-verification/tree/z3/doml_tosca_z3
https://github.com/Z3Prover/z3
http://textx.github.io/textX/
http://textx.github.io/textX/
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– vtlang_model.py: source code of the module translating the user-defined spec-
ification into Z3 constants and assertions;

– z3toscamodel.py: source code of the module translating TOSCA service tem-
plates into Z3 constants, functions and assertions;

– z3_utils.py: convenience methods generating Z3 entities;

• poetry.lock: file required by the packaging system;

• pyproject.toml: settings file for the packaging system;

• README.md: brief user guide for the tool;

• setup.cfg: settings file for the Python linter;

• vtlang.tx: grammar description for the specification language;

• vttest.vt: example specification.

B.1.4. Installation and execution

As a prerequisite for the installation and execution of the prototype, Python and Poetry
must be installed on the target system. On a UNIX system, the following command
installs the Python dependencies for the project:

$ poetry install

The current version of the tool offers a Python-based interactive interface. To run and
inspect the results, the following lines can be input in the interpreter:

$ poetry run python -i -m doml_tosca_z3 doml_tosca.yaml

vttest.vt

>>> vtmodel.solver.check()

sat

>>> vtmodel.solver.model()

[x = some_db ,

node_prop = [( some_webapp , db_password) ->

func(get_input ,

cons(str(ss_5_db_password), nil)),

(some_webapp , db_user) ->



B| Appendix: the TOSCA Z3 prototype 61

func(get_input , cons(str(ss_6_db_user), nil)),

(some_db , user) ->

func(get_input , cons(str(ss_6_db_user), nil)),

(some_db , password) -> str(ss_2_p4ssw0rd),

else -> none],

node_type = [some_webapp -> some_myapp.nodes.WebApp ,

some_redis -> some_doml.nodes.Redis ,

some_db -> some_doml.nodes.SQLDatabaseService ,

some_load_balancer ->

some_tosca.nodes.LoadBalancer ,

none -> none ,

else -> some_tosca.nodes.Compute ]]

B.2. The specification language

The Z3 PoC provides a language to query the knowledge base associated with the TOSCA
topology. The language is a free-space Domain-Specific Language (DSL) and is translated
into Z3 sort declarations and assertions. An EBNF specification of the language follows.

⟨Spec⟩ ::= ⟨Statement⟩*

⟨Statement⟩ ::= (⟨NodeDecl⟩ | ⟨Assertion⟩) ‘;’

⟨Assertion⟩ ::= ‘assert(’ ⟨BoolExpr⟩ ‘)’

⟨Var⟩ ::= ‘$’ ⟨ID⟩

⟨QualId⟩ ::= ⟨ID⟩ (‘.’ ⟨ID⟩)*

⟨NodeDecl⟩ ::= ‘=’ ⟨Var⟩

⟨Ref ⟩ ::= ⟨TypeOfRef ⟩ | ⟨AccessRef ⟩ | ⟨integer⟩ | ⟨string⟩

⟨TypeOfRef ⟩ ::= ‘type(’ ⟨Ref ⟩ ‘)’

⟨AccessRef ⟩ ::= (⟨QualId⟩ | ⟨Var⟩) (‘->’ ⟨ID⟩)*

⟨BoolExpr⟩ ::= ⟨EqBoolExpr⟩ | ⟨NeBoolExpr⟩

⟨EqBoolExpr⟩ ::= ⟨Ref ⟩ ‘==’ ⟨Ref ⟩

⟨NeBoolExpr⟩ ::= ⟨Ref ⟩ ‘!=’ ⟨Ref ⟩

⟨ID⟩ ::= (‘A’|. . . |‘Z’|‘a’|. . . |‘z’|‘_’)(‘A’|. . . |‘Z’|‘a’|. . . |‘z’|‘0’|. . . |‘9’|‘_’)*

In the above grammar, ⟨integer⟩ represents an integer number, ⟨string⟩ matches a quoted



62 B| Appendix: the TOSCA Z3 prototype

string.
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JSON model

An example DOML model in the JSON representation used for this project follows:

{

"typeId": "commons_DOMLModel",

"name": "doml_json_example",

"modelname": "DOML␣JSON␣Example",

"version": "0.1",

"id": "doml_json_example",

"application": {

"name": "app_layer",

"typeId": "application_ApplicationLayer",

"children": [

{

"typeId": "application_SoftwarePackage",

"name": "wordpress",

"consumedInterfaces ->postgres": [

"db_interface"

],

"exposedInterfaces": []

},

{

"typeId": "application_DBMS",

"name": "postgres",

"exposedInterfaces": [

{

"typeId": "

application_SoftwareInterface",
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"name": "db_interface",

"endPoint": "5432"

}

]

}

]

},

"infrastructure": {

"typeId": "infrastructure_InfrastructureLayer",

"nodes": [

{

"typeId": "infrastructure_VirtualMachine",

"name": "wpvm",

"interfaces": [

{

"name": "wpvm_niface",

"belongsTo": "net1",

"endPoint": "10.100.1.1"

}

]

},

{

"typeId": "infrastructure_VirtualMachine",

"name": "dbvm",

"interfaces": [

{

"name": "dbvm_niface",

"belongsTo": "net1",

"endPoint": "10.100.1.2"

}

]

},

{

"typeId": "infrastructure_Storage",

"name": "stor1",

"interfaces": [

{
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"name": "stor1_niface",

"belongsTo": "net1",

"endPoint": "10.100.1.3"

}

]

}

],

"networks": [

{

"typeId": "infrastructure_Network",

"name": "net1",

"protocol": "TCP/IP",

"addressRange": "10.100.1.0/24"

}

]

},

"concretizations": [

{

"name": "conc_infra_1",

"typeId": "concrete_ConcreteInfrastructure",

"groups": [

{

"typeId": "concrete_ComputingGroup",

"name": "VPC"

}

],

"vms": [

{

"typeId": "concrete_VirtualMachine",

"name": "conc_wpvm",

"description": "t3a.large",

"maps": "wpvm"

},

{

"typeId": "concrete_VirtualMachine",

"name": "conc_dbvm",

"description": "m5a.large",
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"maps": "dbvm"

}

],

"storages": [

{

"typeId": "concrete_Storage",

"name": "conc_stor1",

"maps": "stor1"

}

],

"networks": [

{

"typeId": "concrete_Network",

"name": "conc_net1",

"maps": "net1"

}

],

"providers": [

{

"typeId": "concrete_RuntimeProvider",

"name": "AWS",

"description": "The␣Selected␣Runtime␣

Provider",

"supportedGroups": [

"VPC"

],

"providedVMs": [

"conc_wpvm",

"conc_dbvm"

],

"storages": [

"conc_stor1"

],

"providedNetworks": [

"conc_net1"

]

}
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]

}

]

}
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implementation details

D.1. Implementation

D.1.1. Source code

The source code of DOML-MC can be found at https://github.com/mikidep/doml-mc.

D.1.2. External dependencies

DOML-MC is implemented using Python 3.9 as a programming language and Poetry for
dependency management.

The tool uses Z3 (https://github.com/Z3Prover/z3) as its logical back-end, through
its publicly available Python API. The solver is automatically installed together with its
Python interface by Poetry.

The library NetworkX (https://networkx.org/), a Python library for graph and net-
work analysis, is used to manipulate graphs encoding the subclass hierarchy in the DOML
metamodel.

The tool also uses the PyYAML library (https://pyyaml.org/) for parsing the YAML
document encoding the DOML metamodel.

D.1.3. Project structure

The source code of the project is structured as follows:

• assets: directory containing auxiliary files:

– doml_meta.yaml: YAML document encoding the DOML metamodel;

• doml_mc: main module directory:

https://github.com/mikidep/doml-mc
https://github.com/Z3Prover/z3
https://networkx.org/
https://pyyaml.org/
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– intermediate_model: submodule containing class definitions for intermediate
model and metamodel, as well as code converting the parsed DOML model
into the intermediate model:

∗ application2im.py: code converting the application layer into the inter-
mediate model;

∗ concrete2im.py: code converting the concretization layer into the inter-
mediate model;

∗ doml_element.py: intermediate model class definitions;

∗ doml_model2im.py: entrypoint code converting the parsed DOML model
into the intermediate model;

∗ infrastructure2im.py: code converting the infrastructure layer into the
intermediate model;

∗ metamodel.py: metamodel YAML document parsing, class definitions and
related functions;

∗ types.py: type aliases;

– model: submodule parsing the DOML JSON provisional format into a Python
object structure:

∗ application.py: application layer class definitions and parsing;

∗ concretization.py: concretization layer class definitions and parsing;

∗ doml_model.py: DOML model class definitions and parsing entrypoint;

∗ infrastructure.py: infrastructure layer class definitions and parsing;

∗ optimization.py: optimization layer class definitions and parsing;

– z3: submodule encoding metamodel and intermediate model in Z3:

∗ im_encoding.py: procedures and functions encoding the intermediate
model in Z3;

∗ metamodel_encoding.py: procedures and functions encoding the meta-
model in Z3;

∗ types.py: type aliases;

∗ utils.py: utility functions and procedures to work with Z3;
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– _utils.py: utility functions;

• example_json_models: directory containing example models in the DOML JSON
provisional format;

• .flake8: configuration file for the Flake8 Python linter;

• .gitignore: configuration file for the Git version control system;

• example.ipynb: Jupyter Notebook file exemplifying the usage of the main module;

• poetry.lock: file required by the packaging system;

• pyproject.toml: settings file for the packaging system;

D.1.4. Installation and execution

As a prerequisite for the installation and execution of the prototype, Python and Poetry
must be installed on the target system. On a UNIX system, the following command
installs the Python dependencies for the project:

$ poetry install

An example usage of the DOML-MC back-end can be found in the Jupyter Notebook
named example.ipynb. To load a different DOML document, replace the path assigned
to the variable doml_document_path.
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