
Executive Summary of the Thesis

Market Timing Strategies with Fitted Q-Iteration and Action
Persistence

Laurea Magistrale in Mathematical Engineering - Ingegneria Matematica

Author: Nicola Paghera

Advisor: Professor Marcello Restelli

Co-advisor: Lorenzo Bisi, Pierre Liotet, Antonio Riva

Academic year: 2022-2023

1. Introduction
Artificial Intelligence (AI) has revolutionized the
financial sector, particularly through the ap-
plication of Reinforcement Learning (RL) algo-
rithms [16] to develop automated systems capa-
ble of solving sequential decision problems such
as trading, market timing and optimal execu-
tion. Their ability to continuously learn and
adapt to changing market conditions is crucial
in the fast-paced financial landscape [12].
The goal of this project is to develop a mar-
ket timing model for a set of thirteen financial
indexes through RL algorithms. Market data
from 2000 to 2022 were analyzed, and each index
was treated independently to generate tailored
buy, sell, or neutral signals. The Fitted-Q Itera-
tion [5] algorithm was implemented and trained
to learn profitable market timing strategies and
different action persistence was tested to find
the optimal control frequency. The model’s per-
formance was evaluated on out-of-sample data,
achieving positive results for most of the indexes
considered.

2. Reinforcement Learning
Reinforcement Learning [16] focuses on the
training of an agent to engage with a specific
system, referred to as the environment, with
the ultimate goal of optimizing a reward signal.
This process involves a continuous sequence of
decision-making or action-taking by the agent,
based on its observations of the current state of
the environment.

2.1. Markov Decision Process
The theory of Reinforcement Learning is
founded upon the framework of Markov Decision
Processes (MDPs), which are stochastic mathe-
matical systems capable of modeling the agent-
environment interaction. An MDP is defined as
a tuple < S,A,P,R, γ, µ >, where: S repre-
sents the set of all possible states; A the set
of all possible actions; P denotes the stationary
transition probability matrix, defining the prob-
ability of transitioning from state s to state s’
when taking action a; R represents the reward
function; γ is the discount factor, a value rang-
ing from 0 to 1; and µ represents the distribution
of the initial state of the environment.
In RL, the agent selects its actions based on a
policy, denoted as π(|s), which assigns a prob-

1

Executive summary Nicola Paghera

ability distribution over the action space A for
each state s. Most RL algorithms revolve around
estimating the action-value function, denoted as
Qπ, which describes the expected future reward
for taking a specific action a in a given state s
while following a certain policy π. This function
can be expressed as:

Qπ(s, a) := Eπ

[
T∑

k=t+1

γk−t+1Rk|St = s,At = a

]
.

The objective of the agent is to find the optimal
action-value function, which is defined as:

Q∗(s, a) := max
π

Qπ(s, a),

which allows us to determine the optimal policy.

2.2. Fitted Q-Iteration
Fitted Q-Iteration [5] is a RL algorithm that ap-
proximates the optimal action-value by using a
chosen regression method, in our case XGBoost
[6]. It is a batch algorithm that iteratively in-
creases the optimization horizon to learn the op-
timal policy. The training set used for regression
is updated in each iteration, starting from the
agent’s past experience, and it is defined as:

D = {(skt , akt , skt+1, r
k
t+1) | k = 1, 2, ..., |D|}.

FQI tries to generalize over the whole space
S × A applying regression techniques over D.
Once the regressor is trained, it can estimate
the value function. Specifically, at each itera-
tion of the algorithm, the horizon considered in-
creases by one step; given Q∗

N−1(s, a)∀(s, a), the
training set TS = {(ik, ok)|k = 1, 2, ..., |D|} is
built, where each input is equivalent to the state-
action pair (i.e. ik = (skt , a

k
t)) and the target

is defined as ok = rkt+1 + γmaxaQN−1(s
k
t+1, a).

In this way, the regression algorithm adopted is
trained on TS to learn Q∗

N (s, a). Note that, it-
erating the Q-function fitting procedure leads to
the propagation of estimation errors. Therefore,
we have to deal with the trade-off between ex-
tending the optimization horizon considered and
accumulating estimation errors through training
iterations.

2.3. Persistent Action
In RL for continuous-time control problems, a
common approach is to discretize time-based on
a chosen control frequency. The selection of this

control frequency is crucial as it offers advan-
tages but also presents drawbacks. A higher
control frequency provides more opportunities
for control, which is particularly important in
trading where optimal execution timing is cru-
cial. In the context of training an agent to trade,
considering a persistence parameter ρ > 1 forces
the agent to open trades that will only be evalu-
ated after ρ time steps and, importantly, cannot
be closed before that time.

3. Related Works
In recent years, the financial trading world has
been highly interested in AI applications, with a
particular focus on RL. This section provides a
concise overview of policy-based and value-based
RL approaches applied to financial trading.
Policy Based Approaches
In [4], the execution problem in trading is an-
alyzed, focusing on market impact and price
risk. The authors propose a sub-class of exe-
cution strategies called "deep execution," which
utilizes deep RL to achieve optimal execution.
They compare value-based RL (using DDQN,
[17]) and policy-based RL (using PPO, [14])
agents trained against the TWAP benchmark.
PPO was observed to converge to the TWAP
strategy in optimal environments, while DDQN
struggled or required longer training. [10] uti-
lizes advanced deep learning algorithms, includ-
ing LSTM [18], Temporal Convolutional Net-
work [9], and Transformer [7], to predict Bitcoin
prices. LSTM is selected for building a deep RL
agent using PPO. Experimental results demon-
strate that the constructed policy generates pos-
itive returns.
Value Based Approaches
[2] apply the double Q-learning algorithm to
Forex trading, using ReLU activation functions
and a gradient descent algorithm. They inte-
grate experience replay and auxiliary Q-network
from previous works to improve training the
neural network. The study focuses on the
EUR/USD pair and demonstrates the effective-
ness of the adapted algorithm for short-term
speculation in the Forex market. [3] investi-
gates the application of DQN and Deep Recur-
rent Q-network (DRQN [8]) in automated stock
trading. They replace the fully connected layer
with an LSTM layer to handle variable-size in-
put data. Both DQN and DRQN outperform

2

Executive summary Nicola Paghera

benchmarks, with DRQN performing better due
to its ability to discover profitable patterns in
time-related sequences.
[11] apply RL techniques to foreign exchange
trading: they employ FQI to train an artificial
agent for learning profitable trading strategies.
The concept of action persistence is introduced
to optimize trading frequency, and the results
emphasize the importance of determining the
optimal one. [1] employs the FQI algorithm in
Forex trading and introduces the concept of risk
aversion as a risk measure. The authors adopt
Multi-Objective Fitted Q-Iteration to handle
the multi-objective optimization problem, bal-
ancing profit maximization and risk minimiza-
tion.

4. Problem Formulation
To effectively utilize RL algorithms for identify-
ing the optimal investment strategy, the initial
step involves modeling the trading dynamics as
an MDP and defining the concepts of state, ac-
tion, and reward. In order to effectively do that,
we first introduce some fundamental financial
concepts.

4.1. Financial Preliminaries
Most of financial assets are traded on the market
during the so call trading session, which is an in-
terval of time that is typically aligned with the
operating hours of the market itself. The closing
price of an asset denotes the final price at which
the instrument is traded before the trading ses-
sion ends. The performance of an asset over a
period of ρ trading sessions is usually evaluated
by calculating its returns over this time interval
as follows:

rt,ρ =
ClosePricet+ρ

ClosePricet
− 1

Based on its market expectations, an investor
has the option of buying, selling, or holding
financial assets. Therefore, three are the
possible portfolio allocation: Long, Flat, and
Short. A Long position is taken when the
investor expects that the value of a financial
asset will increase by buying a certain number
of shares of the asset. On the other hand, a
Short position involves selling a financial asset
that the investor does not own, with the expec-
tation that its price will decrease in the future.

Finally, the investor has a Flat position when
it has not bought nor sold any share of the asset.

4.2. Environment Formulation
State
The state in an MDP contains all information
needed to select the best action to maximize fu-
ture rewards. In our project, we have chosen
to consider a broad set of financial variables as
state features to effectively capture the dynam-
ics of the market. Then, for each combination of
traded index and persistence, we have applied a
Recursive Feature Addition algorithm to select
the optimal subset of features for that specific
combination. Given that, we build the state
space considering both the original features and
the transposition in deciles of the features them-
selves.
Action
Given an action persistence equal to ρ, the ac-
tion consists of the allocation the agent wants to
keep for the next ρ days. Therefore, the set of
possible actions is defined as:

A(s) :=

{
{0} if s ∈ ST

{−1, 0,+1}, otherwise,

where ST is defined as the set of terminal states
(i.e., the states corresponding to the last avail-
able day to take an action).
For each of the traded indexes, the action per-
sistence ρ is set to three values: 10, 20, or 60
days. This choice aligns with the desired time
horizon for signal generation.
Reward
In our project, we assess the performance of in-
dividual assets using a reward function, rather
than treating the portfolio as a whole. We have
chosen to invest a unitary amount of money in-
stead of trading a fixed number of shares. This
choice not only impacts the reward function but
also establishes a standardized framework for
evaluating and comparing the performance of
different assets. We define the reward as follows:

Rt+1 :=
(pt+1 − pt)

pt
at − f

∣∣∣∣atpt − at−1

pt−1

∣∣∣∣
where: pt is the closing price of the asset at
time t, at ∈ A is unitary fixed investment,
qt =

at
pt

is number of shares at time t, ϵ is equal

3

Executive summary Nicola Paghera

to sign(qt−1 − qt), and f represents transaction
costs, fixed at 0.0005. The first term of the re-
ward reflects the price change relative to the ac-
tion taken, the second term represents transac-
tion costs associated with market entry and exit.

4.3. Algorithm Selection
To choose the most suitable RL algorithm, we
prefer a value-based approach over a policy-
based approach. Although the policy-based ap-
proach is more efficient in terms of sample us-
age, it tends to be less stable and more sensitive
to the quality of the function approximator and
the choice of hyperparameters, which can result
in sub-optimal solutions. We opt for the FQI
algorithm because it is more robust compared
to other value-based methods like DQN which
is more sensitive to noise or inaccuracies in the
data. Furthermore, FQI is more interpretable
as it utilizes XGBoost or Extra Trees instead of
neural networks, which are considered a black-
box approach.

5. Data Analysis
After the selection of indexes to trade, a meticu-
lous process of feature selection was performed.
The starting point of this phase was the target
variable we wanted to analyze: returns. For each
index, returns were calculated for 10, 20, and 60
days, resulting in a total of 39 possible combi-
nations.
In our project, we have chosen algorithms such
as ExtraTrees and XGBoost because, in addition
to effectively performing regression or classifica-
tion tasks, they also offer the capability of fea-
ture selection through feature importance anal-
ysis. We tackled a classification task where the
labels are based on the intensity level of returns
in terms of the standard deviation (std) of re-
turns:
• Class 0 = {rt|rt < −1 ∗ std}
• Class 1 = {rt| − 1 ∗ std ≤ rt < −0.4 ∗ std}
• Class 2 = {rt| − 0.4 ∗ std ≤ rt ≤ 0.4 ∗ std}
• Class 3 = {rt|0.4 ∗ std < rt ≤ 1 ∗ std}
• Class 4 = {rt|rt > 1 ∗ std}

For each of the 39 possible combinations consid-
ered, we use the Recursive Feature Addition
algorithm to select the optimal subset of fea-
tures: it starts with an empty set of features and
evaluates the model’s performance. In each iter-
ation, it adds the second most important feature

(according to its Feature Importance) to the sub-
set and re-evaluates the model’s performance.
If the added feature improves the performance
above a certain threshold is retained in the sub-
set. Since this algorithm uses a classification
model to select the subset of optimal features,
we need to tune its parameters. Therefore, a
Grid Search algorithm was implemented for
this purpose. Using XGBoost as the classifica-
tion method, we have tuned min_child_weight
and learning_rate. The first parameter is a reg-
ularization parameter that prevents overfitting
by penalizing the creation of child nodes with
low weights. The second one determines the step
size at each boosting iteration in XGBoost, a
smaller value makes the boosting process more
conservative, improving generalization but re-
quiring more iterations for accuracy. To run
the hyperparameter tuning and the feature se-
lection procedure in parallel, an evaluation al-
gorithm called grid-RFA was created. Essen-
tially, for each combination of XGBoost param-
eters selected from the grid search, we assess the
performance of the classification after executing
the RFA. In this way, we can choose the optimal
combination of parameters based on the perfor-
mance obtained by the classifier on the optimal
set of features. The performance evaluation is
not based on a classic accuracy score: we de-
fined a new metric called Custom Weighted
Accuracy in order to tackle the problem of im-
balanced classes and the misclassifications of ex-
treme classes to be penalized more heavily. To
address this issue, the new metric is based on
a 5x5 Weight Matrix (WM) where the element
wi,j represents the penalty assigned to the model
if the predicted class is j while the true class is
i. The Weight Matrix that contains the penal-
ization is defined as follows:

WM =

0 0.25 1.25 1.5 1.5

0.05 0 0.5 0.75 0.75
0.25 0.25 0 0.25 0.25
0.75 0.75 0.5 0 0.05
1.5 1.5 1.25 0.25 0

The elements on the main diagonal of the weight
matrix are set to zero to avoid penalizing cor-
rect classifications. Moreover, misclassifications
of classes that are further apart are penalized

4

Executive summary Nicola Paghera

more than misclassifications of classes that are
closer. Once this matrix is established, it is mul-
tiplied element-wise with the confusion matrix
generated by the classifier and, to obtain the
metric value, we sum up all the elements of this
new matrix and normalize it through a min-max
normalization.
For the same unbalanced class problem, we de-
veloped a new objective function Guess-Averse
Loss Function, replacing the traditional Soft-
max loss function. This new function incor-
porates the matrix WM for differential penal-
ties for different types of classification errors.
Following the paper [13], we have defined the
Guess-Averse Loss Function as follows:

L(M, z, S(x)) = log(1 +

C∑
j=1

WMz,je
Sj(x)−Sz(x))

where WM is the matrix presented in Section
5, C is the number of classes, z is the true class,
S(x) is the score given by the classifier to each
class for the data point x. All these phases
were carried out using a Walk-Forward Cross-
Validation methodology, suitable for handling
time series data.

Figure 1: Walk-Forward Cross-Validation

As it can be seen in Figure 1, it is constructed
with a shifting window, moving forward in time,
instead of the typical time-series cross-validation
where an expanding window is used. This shift-
ing window keeps the training and test sets of
fixed size and shifts over time which can be par-
ticularly useful if the underlying series are non-
stationary, as in our case. The test folds are
not overlapping in order to have a robust per-
formance evaluation.
Basing our considerations on all the 39 assets,
three persistence for each of the thirteen indexes,
the most significant result is the fact that the
RFA algorithm consistently tends to select the

features transformed into decile values, support-
ing the hypothesis that such a transformation
provides greater robustness for the classifier.

6. Experimental Results
During the training process of FQI, the dataset
was divided into three periods: a training set
(2003-2016), a validation set (2017-2019), and a
test set (2020-2022). The training set was uti-
lized to train the FQI algorithm, enabling the
agent to learn sequential decision-making and
optimize actions based on observed rewards and
feedback. The validation set was crucial for
fine-tuning parameters and assessing the per-
formance of FQI’s regressors, where XGBoost
outperformed ExtraTree in terms of results and
computational efficiency. Through systematic
experimentation, we explored different combi-
nations of regressor parameters and FQI iter-
ations to identify the optimal model. After se-
lecting the best-performing combination of re-
gressor parameters and FQI iteration, the agent
was retrained using the entire training period
from 2003 to 2019. The model’s performance
was then tested on the remaining years, 2020-
2022.
This methodology aimed to ensure a comprehen-
sive and unbiased evaluation of the FQI algo-
rithm’s performance. By using separate train-
ing, validation, and test sets, we assessed the
agent’s effectiveness in different time periods
and validated its ability to perform well on un-
seen data. However, the non-stationarity of
financial time series poses a significant chal-
lenge in model selection since they are character-
ized by fluctuating patterns, trends, and regime
shifts, making it difficult to identify models that
consistently capture the complexities of the mar-
ket. Therefore, dividing the dataset into train,
validation, and test sets can lead to the exclusion
of assets that may perform well in unseen data.
Hence, relying on an offline validation procedure
for model selection has limitations that need to
be considered.

6.1. Model Selection
After the hyperparameters tuning, we test dif-
ferent FQI datasets, each one characterized by
a different set of features. More specifically, six
alternatives were considered: using the features
selected by RFA, using the five probabilities ob-

5

Executive summary Nicola Paghera

tained from the classifier, or using both of them.
Moreover, for each of these possibilities, we also
include the last ten disjoint returns, computed
with the same horizon as the persistence consid-
ered. So, in conclusion, we test six different sets
of features which are reported in Table 1.

Features
D1 RFA-Feat
D2 Probs
D3 RFA-Feat, Probs
D4 RFA-Feat, Returns
D5 Probs, Returns
D6 RFA-Feat, Probs, Returns

Table 1: FQI Datasets

To select the best set of features that will de-
fine the state space, we adopted the following
methodology. For each training set, we eval-
uated the performance of FQI for each combi-
nation of traded asset and action persistence.
Then, for each index, we selected the best per-
sistence value in each training set based on the
cumulative reward results during the validation
period. Finally, we summed up these perfor-
mances, which are reported in Table 2, and chose
as the optimal training set the one associated
with the highest results.

D1 D2 D3 D4 D5 D6
2.885 3.494 4.557 4.35 4.874 4.932

Table 2: Cumulative Rewards Sum; Validation
Set

From the results collected in Table 2, the fol-
lowing observations can be made: the use
of classifier probabilities in defining the state
space improves the agent’s performance, includ-
ing disjoint returns significantly enhance the
agent’s decision-making process, and combining
RFA-selected features with classifier probabili-
ties yields improved performance, leveraging the
strengths of both components.

6.2. FQI Results
After selecting the FQI training set, and deter-
mining the optimal combination of FQI hyper-
parameters and action persistence based on val-
idation results, we assess then the performance
on the test set. Table 1 presents both the val-

idation and test results. The results obtained
on the test set reveal that more than half of the
assets demonstrate positive outcomes.

Index Persist. Valid. Test
S&P 20 0.449 0.359
EX50 20 0.429 0.078
FTSE 10 0.443 0.475

TOPIX 20 0.378 0.195
Ger7-10 20 0.307 -0.063
UK7-10 10 0.141 0.037
Treas10 20 0.185 -0.306

HY 10 0.113 0.251
Ener 10 0.731 -0.403
Ind 10 0.365 0.233
Met 10 0.468 0.225
USD 10 0.295 -0.161
JPY 10 0.628 0.016

Table 3: Cumulative Rewards; Validation and
Test Sets

From Table 3, we can assess the impact of per-
sistence: lower values (10 and 20 days) result
in better performance, capturing shorter-term
market trends and maximizing profit opportu-
nities. In contrast, a higher persistence value
of 60 days leads to poorer performance, poten-
tially due to delayed responses to market fluc-
tuations. Choosing the appropriate persistence
value is crucial for aligning the agent’s decisions
with market dynamics and optimizing trading
outcomes.

6.3. Baseline Strategies
In this section, we compare the performance of
our FQI agent with three baseline strategies: the
first two are the classical "Buy & Hold" and
"Sell & Hold", the third one is a deterministic
trading strategy based on the classifier probabil-
ities defined as follows: a buy signal is generated
if the predicted class is 4, a sell signal is gener-
ated if the predicted class is 0, a flat signal is gen-
erated if the predicted class is 2. If the predicted
class is 1 or 3: if there are no open positions, we
do not enter the market; if we are already in a
position, we do not close it. By comparing these
strategies, we aim to assess the effectiveness of
our agent in generating higher returns and mak-
ing informed investment decisions. We present
the results for two assets, FTSE and Ener, both
with a persistence of 10.

6

Executive summary Nicola Paghera

(a) FSTE_10.

(b) Ener_10.

Figure 2: Cumulative Reward and Trades, Test
Set.

The first asset, FTSE_10, shows positive cumu-
lative returns on the test set, indicating success-
ful learning and improvement by the FQI agent.
It demonstrates adaptability and active par-
ticipation in the market, outperforming static
strategies but falling short of the probability-
based strategy. The second asset, Ener_10, ex-
hibits negative cumulative rewards on the test
set, likely due to high volatility in its histori-
cal series. Consequently, the agent faced chal-
lenges during the training phase. The FQI agent
performs worse compared to buy-and-hold and
probability-based strategies, suggesting the need
for further refinement. Additionally, the FQI
agent demonstrates agility by frequently adjust-
ing its positions, which is a positive aspect of its
behavior. Despite the presence of transaction

costs, the agent actively seeks position changes
to maximize returns. Overall, the FQI agent
shows promise in generating favorable returns
and reacting to market conditions, but improve-
ments are necessary to align its performance
with the probability-based strategy.

7. Conclusions
The main objective of the thesis was to develop
a highly effective RL algorithm for generating
market timing signals. After the feature selec-
tion phase, which allows us to determine the set
of financial features with the highest predictive
power on the return, we trained the FQI algo-
rithm considering different values of action per-
sistence. We implemented XGBoost as FQI’s
regressor because it offers great interpretability
and accurate performance.
The results of the FQI agent indicate positive
performance for the majority of the assets. This
can be attributed to accurate feature engineer-
ing and the consideration of varying action per-
sistence tailored to each asset. These find-
ings highlight the importance of these phases in
achieving successful outcomes in Reinforcement
Learning-based financial modeling.
However, there are several future developments
that could enhance this work, including:
• Currently, the signals are generated every

persistence-days. An interesting alterna-
tive is the generation of daily signal, each
one the contributes on the overall allocation
with a weight of 1 / persistence. This aggre-
gated signal could then serve as a more ro-
bust and representative input for decision-
making processes.

• Considering the use of a regressor to esti-
mate the Q-function, an intriguing avenue
for further improvement lies in incorporat-
ing a higher-level algorithm, such as Confor-
mal Prediction, to enhance the validation of
the agent’s choices [15].

• Adopting a more dynamic approach in se-
lecting optimal hyperparameters and per-
sistence values would yield better perfor-
mance. In this regard, multi-expert algo-
rithms offer a promising solution due to
their online model selection procedure [12].

7

Executive summary Nicola Paghera

References
[1] Lorenzo Bisi, Pierre Liotet, Luca Sabbioni,

Gianmarco Reho, Nico Montali, Marcello
Restelli, and Cristiana Corno. Foreign ex-
change trading: A risk-averse batch rein-
forcement learning approach. In Proceed-
ings of the First ACM International Con-
ference on AI in Finance, pages 1–8, 2020.

[2] João Carapuço, Rui Neves, and Nuno
Horta. Reinforcement learning applied to
forex trading. Applied Soft Computing,
73:783–794, 2018.

[3] Lin Chen and Qiang Gao. Application of
deep reinforcement learning on automated
stock trading. In 2019 IEEE 10th Interna-
tional Conference on Software Engineering
and Service Science (ICSESS), pages 29–
33. IEEE, 2019.

[4] Kevin Dabérius, Elvin Granat, and Patrik
Karlsson. Deep execution-value and pol-
icy based reinforcement learning for trading
and beating market benchmarks. Available
at SSRN 3374766, 2019.

[5] Damien Ernst, Pierre Geurts, and Louis
Wehenkel. Tree-based batch mode rein-
forcement learning. Journal of Machine
Learning Research, 6, 2005.

[6] M Ester, HP Kriegel, and X Xu. Xgboost:
A scalable tree boosting system. in proceed-
ings of the 22nd acm sigkdd international
conference on knowledge discovery and data
mining (vol, pg 785, 2016). GEOGRAPHI-
CAL ANALYSIS, 2022.

[7] Kai Han, An Xiao, Enhua Wu, Jianyuan
Guo, Chunjing Xu, and Yunhe Wang.
Transformer in transformer. Advances
in Neural Information Processing Systems,
34:15908–15919, 2021.

[8] Matthew Hausknecht and Peter Stone.
Deep recurrent q-learning for partially ob-
servable mdps. In 2015 aaai fall symposium
series, 2015.

[9] Colin Lea, Michael D Flynn, Rene Vidal,
Austin Reiter, and Gregory D Hager. Tem-
poral convolutional networks for action seg-
mentation and detection. In proceedings

of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 156–
165, 2017.

[10] Fengrui Liu, Yang Li, Baitong Li, Jiaxin
Li, and Huiyang Xie. Bitcoin transaction
strategy construction based on deep rein-
forcement learning. Applied Soft Comput-
ing, 113:107952, 2021.

[11] Antonio Riva, Lorenzo Bisi, Pierre Liotet,
Luca Sabbioni, Edoardo Vittori, Marco
Pinciroli, Michele Trapletti, and Marcello
Restelli. Learning fx trading strategies with
fqi and persistent actions. In Proceedings of
the Second ACM International Conference
on AI in Finance, pages 1–9, 2021.

[12] Antonio Riva, Lorenzo Bisi, Pierre Liotet,
Luca Sabbioni, Edoardo Vittori, Marco
Pinciroli, Michele Trapletti, and Marcello
Restelli. Addressing non-stationarity in fx
trading with online model selection of of-
fline rl experts. In Proceedings of the Third
ACM International Conference on AI in Fi-
nance, pages 394–402, 2022.

[13] Francesco Sammarco. Non-stationary rl for
forex trading with automatic market regime
clustering. 2022.

[14] John Schulman, Filip Wolski, Prafulla
Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

[15] Glenn Shafer and Vladimir Vovk. A tu-
torial on conformal prediction. Journal of
Machine Learning Research, 9(3), 2008.

[16] Richard S Sutton and Andrew G Barto.
Reinforcement learning: An introduction.
MIT press, 2018.

[17] Hado Van Hasselt, Arthur Guez, and David
Silver. Deep reinforcement learning with
double q-learning. In Proceedings of the
AAAI conference on artificial intelligence,
volume 30, 2016.

[18] Yong Yu, Xiaosheng Si, Changhua Hu, and
Jianxun Zhang. A review of recurrent neu-
ral networks: Lstm cells and network archi-
tectures. Neural computation, 31(7):1235–
1270, 2019.

8

	Introduction
	Reinforcement Learning
	Markov Decision Process
	Fitted Q-Iteration
	Persistent Action

	Related Works
	Problem Formulation
	Financial Preliminaries
	Environment Formulation
	Algorithm Selection

	Data Analysis
	Experimental Results
	Model Selection
	FQI Results
	Baseline Strategies

	Conclusions

