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Chapter 1

Introduction

Finding the location of unknown objects has been since a long time a topic
under investigation. The applications are vast and span many different
topics, from security, to discover unauthorized intrusions, to warfare, to
discover nearby opponents, or detecting submarines, but also to localize
someone who needs to be rescued, for example in disaster response. With
the recent advances in technology it has been possible to locate objects
using low-cost technology, available to almost every person in the world,
the Wi-Fi. The main purpose of this thesis is to tidy up a little the actual
state of the art of the RSSI-based localization algorithms. Here I will do
a revisitation of the most important algorithms, trying to mediate from
theory to application, without losing mathematical accuracy, by adapt-
ing the theoretical concepts in a form that is ready to be implemented
algorithmically in whichever language it is preferred. I will also add at
the top of the description of each algorithm which are the parameters
that one needs to know beforehand.

1.1 Environment settings
The main setting that will be presented is the most commonly used up to
now, which is a space filled with receiving/transmitting devices (anchor
nodes), each placed in a regular position (usually a grid) with known
positions, that can read the signal intensity of the other nodes. The
activity starts when a device with an unknown position is put in the
area and many (if not every) nodes are close enough to get the signal
intensity of that unknown node. For commercial devices with average
transmitting power and average amplification gain, this range of sen-
sitivity can be seen as a circle of radius of about 50 meters in open
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environment. At this point, each anchor node can communicate a tuple
like this (xi, yi, υ

u
i ), where xi, yi are the position of the node itself, and

υu
i is the signal strength intensity of the unknown node, measured by the

anchor node i. Usually, the data is sent to a central processing device
that makes the computations and outputs the estimated position.

This is not the only way however, the other way, which is lately be-
coming increasingly used is the employment of a mobile robot, e.g. a
ground or aerial drone, that given some bounds on the area to scan,
collects and outputs the samples, behaving as a “moving” anchor node.
This thesis is organized as follows. Chapter 2 describes the most com-
mon mathematical models of RSSI propagation. In chapter 3 we will see
which are the main disturbances that affects the RSSI measurement. In
Chapter 4 instead we will take a look on how to remove the noise of the
signal. Chapter 5 and 6 are the core of the thesis and consist of a review
of the state of the art of the main parameter estimation and localization
algorithms. In the final chapter there will be the conclusions of this work
along with some personal opinions.

2



Chapter 2

Mathematical models of RSSI
propagation

2.1 Path loss model
RSSI is an acronym for Received Signal Strength Indicator. It is mea-
sured in dbm (decibel-milliwatts). Given a transmitting device j and a
receiving device i, placed at distance dji to one another, the receiver de-
vice can measure the RSSI υj

i of the transmitting device. Those readings
(according to the log-normal propagation model [Mun+09]) are of the
form

υj
i = υj

0 − 10α log10

(
dji
d0

)
+ ξi, dji > d0 (2.1.1)

dji =
√
(xi − xj)2 + (yi − yj)2 (2.1.2)

where ξi is a zero-mean gaussian variable (N (0, σ2
i )) that represents the

noise, α is the path loss index (see Section 3.2), which can vary between 2
(open field) and 4 (environment fitted with obstacles) and υj

0 is the RSSI
read at d0. Commonly d0 is taken as 1 meter, so that we can simplify,
the (2.1.1) as:

υi = υ0 − 10α log10(di) + ξi, di > d0 (2.1.3)

where the letter j is usually dropped. Some algorithms don’t require high
precision, so they usually don’t take into account the noise, whereas for
some others it is necessary to rewrite the model as follows

υi = υ0 − β ln(di) + ξi (2.1.4)

with
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• β = 10α/ ln(10)

• ln(•) as the natural logarithm

and then deriving

νi = υi − υ0 = −β ln(di) + ξi (2.1.5)
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Chapter 3

Disturbances of RSSI

The RSSI noise has a great influence over the measurements, thereby
complicating the attempt to get a precise location. To give some num-
bers, the theoretical range within the RSSI can vary goes from −30 to
−120 however the available range of signal intensity that a common WiFi
device can measure varies in the interval −30÷−90 dbm. This is because
to establish a connection (and to retrieve at least the name of the trans-
mitting device), some packets must be sent, and if the signal strength is
too low, the quality of the packets degrades, therefore making impossible
communication. The value measured at the receiving end includes also
the noise, so the measurement deviates from the exact value generally by
at most 6 dbm which is as much as 10% over the range of measurement.
Due to its significant influence, this issue has been investigated many
times to discover something more, for example about its probability dis-
tribution, but up to now, few to no answers have been found. To cite
one, [Wu+08] showed that there are no significant patterns over the time
domain neither in the frequency domain. The causes of the noise are the
same that affect the propagation of any electromagnetic wave. We can
summarize the main sources of noise in the following sections:

3.1 Multipath Fading
As outlined in [Rub], multipath fading occurs when there are multiple
ways for the signal to reach the receiving device. This causes the signal
waves to reach the receiving end at two different times, that is, there is
a non-negligible delay between the time of arrival of the two (or more)
waves. This means phase shifting, leading to constructive/destructive
interference, therefore causing oscillations in the signal intensity read.
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This effect is very prominent in closed environments when there are many
surfaces able to reflect the signal. It is totally random [Rap01] which
means unpredictable by definition. Due to its nature, the alterations of
the signal caused are like spikes above or below the mean value. Therefore
it can be removed to some extent by filtering the outliers with some of
the methods presented later.

3.2 Shadow Fading
This effect is the attenuation of the signal caused by heavy and large
(w.r.t. the wavelength) obstacles between the receiver and the sender
that can adsorb the waves partially, or even totally. This is directly
related to NLOS (Non-Line Of Sight) environments that is, when the re-
ceiver cannot ”see directly” the sender. The shadow fading effect is taken
into account in the model as the path loss index α (see Section 5.1). This
parameter is easily obtained in an open field with no obstacles, whereas
it is quite a problem when some obstacles are obstructing the way. In the
latter case, the analytical way (by considering the absorption coefficients
of the obstacles) is rarely used, instead, a somehow correct path loss index
is usually estimated with some algorithms, one of them is presented later.

Shadow fading presents spatial correlation [LR92; ZG98], which is in-
tuitive, all the measurements taken in a certain position, with a certain
number of obstacles will be all affected by an almost equal shadow fad-
ing, whereas in another location it will not. The problematic effect of
this noise is that it shows a systematic behavior, in other words, each
measurement is affected by an almost equal amount, therefore trying to
remove it by removing outliers is not an effective way. If the path loss
index is taken wrong in the model for some reason, the estimated po-
sition will be altered with some significant errors, that may invalidate
the improvements taken to reduce the other sources of noise. Even more
complicated is when there are persons moving freely between the sender
and the receiver. The body of each passing person adsorbs the signal,
therefore altering the measure. The estimated position will bear some
non-negligible errors.
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Chapter 4

Noise removal

Here I will present some algorithms to remove outliers in a series of data.
Those methods, given their independence from the RSSI can be used to
remove outliers of any series of data.

4.0.1 IQR
This method, whose name is InterQuartile Range, is based, as the name
suggests, on the quartiles of a dataset. First, let’s start with an algorithm
that can be used to obtain the quartiles. I will assume some facts:

• Arrays index starts from zero

• Float numbers are cast to integer with truncation of the decimal
part, e.g.

1.2 → 1

−1.8 → −1

• Datasets

– d1, d2, d3

• Size of each dataset

– s1, size of d1
– s2, size of d2
– s3, size of d3
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Algorithm 1: Quartiles computation
Result: Q1, Q2, Q3

1 d1.sort(ascending);
2 Q1 = Q2 = Q3 = 0;
3 s1 = d1.size();
4 if s1 is even then
5 Q2 = (d1[s1/2 - 1] + d1[s1/2])/2;
6 d2 = d1[0 : s1/2 - 1];
7 d3 = d1[s1/2 : s1 - 1];
8 else
9 Q2 = d1[s1/2];

10 d2 = d1[0 : s1/2 - 1];
11 d3 = d1[s1/2 + 1 : s1 - 1];
12 end
13 s2 = d2.size();
14 s3 = d3.size();
15 if s2 is even then
16 Q1 = (d2[s2/2 - 1] + d2[s2/2])/2;
17 else
18 Q1 = d2[s2/2];
19 end
20 if s3 is even then
21 Q3 = (d3[s3/2 - 1] + d3[s3/2])/2;
22 else
23 Q3 = d3[s3/2];
24 end

A little explanation here is required. At the beginning, the algorithm
sorts the initial dataset d1 in ascending order. We will take the median
(Q2) of d1. Then we have two possible paths. If s1, size of d1, is odd,
then the median is at 1/2s, the central position (remind the assumption
about array indexing and decimal casting). If it is not, the median will
be the average of the two elements at the center. Either the cases, we
get two datasets, the upper half (d2) and the lower half (d3), separated
by the median. Then the operation is repeated for each one of d2, d3, to
obtain Q1 median of the upper half, and Q3 median of the lower half.
As can be seen, 25% of data is below Q1, 50% of data is below Q2, which
is the common median, and 75% of data is below Q3.
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Going back to the IQR method the algorithm goes through the following
steps:

Algorithm 2: Outliers removal with IQR
Result: The filtered dataset

1 Q1, Q2, Q3 known from the previous algorithm;
2 IQR = Q3 - Q1;
3 I = [Q1− 1.5 · IQR, Q2 + 1.5 · IQR];
4 k = 0;
5 while iter ∈ [0 : n− 1] do
6 if ! dataset[k] ∈ I then
7 dataset.remove(k);
8 k = k - 1;
9 end

10 k = k + 1;
11 iter = iter + 1;
12 end

Here it is given a numeric example. Suppose you have the following
dataset

dataset =



−1.9
0.3
3.7
4.1
6
6.1
7.2
9
19


already sorted, where the first seven numbers are extracted from −2+X,
where X follows the uniform distribution in [0, 10]. The latest two values
are possible outliers. Since the size of the dataset is odd, Q2 can be found
at the fifth position and is 6. We have then the first half and the second
half. Since the first half has an even number of data points, the median
of the first half (Q1) will be (0.3+3.7)/2 = 2, the same reasoning applies
to Q3 for the second half, which is equal to 8.1. Therefore the IQR will
be 8.1− 2 = 6.1 the interval I will be

I = [2− 1.5 · 6.1, 8.1 + 1.5 · 6.1] = [−7.15, 17.25]

As you can see, the number 19 will be treated as an outlier and thus be
removed. You can also choose how wide the interval you want it to be,
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for example, if you wanted to be more strict you could choose 1 instead
of 1.5 as a multiplying factor, obtaining the following interval

I ′ = [2− 1 · 6.1, 8.1 + 1 · 6.1] = [−4.1, 14.2]

4.0.2 Z-score
The Z-score is another method to find outliers. The procedure estimates
the sample mean and sample standard deviation as follows

µ̂ =
1

n

n∑
i=1

xi (4.0.1)

σ̂ =

√√√√ 1

n− 1

n∑
i=1

(xi − µ̂)2 (4.0.2)

Then it computes the z-score yi of each value xi

yi =
xi − µ̂

σ̂
(4.0.3)

The filtering process now removes every data whose z-score is outside the
interval [−3, 3].

Here an example, with the same dataset of the previous algorithm

dataset =



−1.9
0.3
3.7
4.1
6
6.1
7.2
9
19


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The estimated mean is µ̂ = 5.94 and the sample standard deviation is
σ̂ = 5.95. Then the corresponding set of z-scores is

z-scores =



−1.32
−0.95
−0.38
−0.31
0.01
0.03
0.21
0.51
2.19


note the last value, for the previous algorithm it should have been dis-
carded, but according to this one, it is still kept. Clearly, you can choose
a narrower interval than [−3, 3] if you want to be more strict on the
outliers.
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Chapter 5

Algorithms for parameters
estimation

5.1 Estimation of path loss index α

Assume to know:
υ0 ξi,∀i dji ,∀i

Place a transmitting device j, j > n at known position. For the anchor
node i, 1 ≤ i ≤ n, the values of signal intensity of the node j are obtained
according to (2.1.3). The referenced model is basically a constant term
[υ0 − 10α log10(di)] added to a zero mean gaussian variable [ξi], so from
[Ros20], let a ∈ R

a+N (0, σ2) ∼ N (a, σ2) (5.1.1)
therefore the (2.1.3) is gaussian as follows:

Xi ∼ N (µi, σ
2
i ) (5.1.2)

where
µi = υ0 − 10α log10(di) (5.1.3)

which has probability density function

pi(x) =
1√
2πσ2

i

e
− 1

2

(x−µi)
2

σ2
i (5.1.4)

Given a sample of n measurements

υ1, ..., υn
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one for each node, where each υi follows (5.1.2). Then we can employ
the Maximum Likelihood to estimate the path loss index. It follows

Ln(α, σ
2
1, ..., σ

2
n) =

n∏
i=1

P (Xi = υi) =
1

(2π)
n
2 (
∏n

i=1 σ
2
i )

1
2

e
− 1

2

∑n
i=1

(υi−µi)
2

σ2
i

(5.1.5)
by applying the logarithm to both members

ℓm(α, σ
2
1, ..., σ

2
n) = −n

2
ln(2π)− 1

2
ln

( n∏
i=1

σ2
i

)
− 1

2

n∑
i=1

(υi − µi)
2

σ2
i

(5.1.6)

Maximizing ℓin w.r.t to α is equal to finding the stationary point of the
third term in the above equation since the first and second one are inde-
pendent from α therefore [Mun+09]

∂

∂α

1

2

n∑
i=1

(υi − µi)
2

σ2
i

= 0 (5.1.7)

n∑
i=1

υi log10(di)

σ2
i

− υ0

n∑
i=1

log10(di)

σ2
i

+ 10α
n∑

i=1

(log10(di))
2

σ2
i

= 0 (5.1.8)

α =
υ0

∑n
i=1

log10(di)

σ2
i

−
∑n

i=1
υi log10(di)

σ2
i

10
∑n

i=1
(log10(di))

2

σ2
i

(5.1.9)

Sometimes to ease the computation, σ2
i is assumed constant

σ2
1 = ... = σ2

n = σ2

then the equation simplifies as

α =
υ0

∑n
i=1 log10(di)−

∑n
i=1 υi log10(di)

10
∑n

i=1(log10(di))
2

(5.1.10)
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5.2 Estimation of σ2
i

Assume to know:
υ0 α dji

In this case, instead, we consider only one node, since we are interested
to estimate only σ2

i which is the variance of node i. So after placing a
transmitting device j as before, we have m samples from node i

υi,1, ..., υi,m

each of them follows the distribution

Xi ∼ N (µi, σ
2
i ) (5.2.1)

where
µi = υ0 − 10α log10(di) (5.2.2)

Accordingly, the pdf is

pi(x) =
1√
2πσ2

i

e
− 1

2

(x−µi)
2

σ2
i (5.2.3)

The Maximum Likelihood function is

Lm(α, σ
2
i ) =

m∏
j=1

P (Xi = υi,j) =
1

(2πσ2
i )

m
2

e
− 1

2

∑m
j=1

(υi,j−µi)
2

σ2
i (5.2.4)

by applying the logarithm to both members

ℓm(α, σ
2
i ) = −m

2
ln(2πσ2

i )−
1

2σ2
i

m∑
j=1

(υi,j − µi)
2 (5.2.5)

Its derivative w.r.t σ2
i set to 0 has the following form

−mσ2
i +

∑m
j=1(υi,j − µi)

2

2σ4
i

= 0 (5.2.6)

Since σ2
i > 0 we have

σ̂2
i =

1

m

m∑
j=1

(υi,j − µi)
2 (5.2.7)
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Chapter 6

Algorithms for position
estimation

6.1 Common Paradigm
To avoid redundancy, given the fact that each algorithm differentiates
from the others only because of the mathematic tools employed, it makes
sense to focus mainly on it in the description of the algorithms and to
present here the common instructions. When instead the steps are quite
different, there will be a more detailed description of all the procedures.

Algorithm 3: Common steps of localization algorithms
1 Collect the signal strength;
2 Possibly pre-process the data;
3 if the method has a closed formula then
4 apply the formula and obtain x̂
5 else
6 while ! convergence OR ! max iteration reached do
7 update x̂;
8 end
9 end

10 return results;

6.2 Classification
Here follows a classification of the localization methods considered. Model-
based means that the algorithms children of that node employ directly
the model of log propagation seen in Chapter 2, whereas model-free don’t
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use it. Closed formula/iterative methods are quite self-explaining. Re-
garding statistics, the sub-classification is based on the employment of
probabilistic parameters, one above all, the variance σ2

i of the noise er-
ror ξi. Of course, model-free methods, since they do not use the model
above, they do not consider either the variance of the noise or any other
probabilistic parameters.
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6.3 Trilateration
Assume to know:
υ0 α

Consider the trilateration method from a purely theoretical point of view.
For this method, it is required to have only 3 anchor nodes. Each of them
can output its position (xi, yi) along with the RSSI read in its position
of the unknown node. By exploiting the model of the distance and the
RSSI read, and assuming no noise or multipath fading at all, one can
deduce the distance di between the unknown node u, u > n and current
node from the model (2.1.3) as follows:

di =
√

(xu − xi)2 + (yu − yi)2 = 10
υ0−υi
10α (6.3.1)

As a consequence we can imagine to draw a circle centered in (xi, yi)
with radius di. The unknown node u should lay on this circumference.
Of course, this is not enough to locate u. Therefore, we need to get data
also from the other 2 anchor nodes. In this way, we can draw 3 circles and
obtain a unique point of intersection as shown in fig. 6.1. Note that 3
nodes are the minimum number of nodes to have an unambiguous result.
In fact, if we were to have only 2 nodes, then there would be 2 possible
outcomes (the intersection of two circumferences generally results in 2
points). When we step into reality however the disturbances of the signal
inevitably lead to wrong estimation of the distance between the current
node and the unknown node, causing the circles to intersect in wrong
points or to not intersect at all, as in fig.6.2. In the latter case, provided
the algorithm has no software-level exception-catching, it would cause a
runtime error and give no results at all. However, some improvements can
be applied. The most intuitive one is to consider from the RSSI read, not
just a single value but taking the max and the min values recorded during
the sampling phase, and draw an annulus of possible locations as follows:

Algorithm 4: Obtaining the derived values
Result: min, max: radii of the annulus

1 Set samples = ∅;
2 while samples.size() < 10 do
3 samples.add(new measurement);
4 end
5 min = samples.min();
6 max = samples.max();
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Figure 6.1: Trilateration with noise = 0
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Figure 6.2: Trilateration with noise ̸= 0
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Figure 6.3: Trilateration with noise compensation

The new distances will be obtained as follows:

dmin
i = 10

υ0−min
10α (6.3.2)

dmax
i = 10

υ0−max
10α (6.3.3)

The result is now given as an area that corresponds to the intersection
of all the three annuli, shown in fig 6.3. Although the results are quite
promising, this algorithm is rarely used, due to the computation difficul-
ties of treating annuli. One important drawback is the low number of
measurements exploited. Clearly, a higher number of samples implies a
lower influence of the noise on the final estimation.
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6.4 Min Max
Assume to know:
υ0 α

Consider the previous framework. As usual one can deduce the distance
of the unknown node, by reverting the propagation model as done in
the previous section. Then we can obtain a number of circumferences,
one for each anchor node, that represent the possible locations of the
unknown node. In this algorithm, however, you need to consider not
circles but squares. The development of this algorithm follows [Rat+15].
Each anchor node i with estimated distance di from node u, u > n (with
(6.3.1)) is associated to a square centered in (xi, yi) with side equal to
2di. At this point, one has a set of overlapping squares, and can easily
find the intersection of all those squares, which results in a rectangles of
vertices (xmin, ymin), (xmax, ymin), (xmax, ymax), (xmin, ymax) with the fol-
lowing equations:

xmin = max(x1 − d1, ..., xn − dn) (6.4.1)

xmax = min(x1 + d1, ..., xn + dn) (6.4.2)
ymin = max(y1 − d1, ..., yn − dn) (6.4.3)
ymax = min(y1 + d1, ..., yn + dn) (6.4.4)

The final location will be estimated as the center of this rectangle, as
follows:

xu =
xmin + xmax

2
(6.4.5)

yu =
ymin + ymax

2
(6.4.6)

The gray area in 6.4 shows the intersection of all the squares.
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Figure 6.4: Min-Max estimation
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6.5 Linear estimation
Assume to know:
υ0 α ξi,∀i

In [ZB19] you can find this version but using a slightly different model.
Consider the model (2.1.5) below reported

νi = −β ln(di) + ξi (6.5.1)

After some time, for each anchor node, we will have a list of measure-
ments, drawn from the random variable

−β ln(di) + ξi ∼ N (−β ln(di), σ
2
i ) (6.5.2)

Rewrite the (6.5.1) as follows

νi = − ln
(
d
2β
2

i

)
+ ξi (6.5.3)

By exponentiating both members of (6.5.3) we have

eνi = e− ln
(
d
2
β
2

i

)
+ξi (6.5.4)(

eνi
)−1

=

(
e− ln

(
d
2
β
2

i

)
+ξi

)−1

(6.5.5)

e−νi = eln
(
d
2
β
2

i

)
−ξi (6.5.6)

e−νi = d
2β
2

i e−ξi (6.5.7)(
e−νi

) 2
β

=

(
d
2β
2

i e−ξi

) 2
β

(6.5.8)

e−
2
β
νi = d2i e

− 2
β
ξi (6.5.9)

Remind that the exponentiation of a gaussian distribution is [BG11] a
log-normal distribution. In other words, given X ∼ N (µ, σ2), then Y =
eX ∼ Lognormal(µ, σ2) with

E[Y ] = E
[
eX

]
= eµ+

σ2

2 (6.5.10)

V ar[Y ] = V ar
[
eX

]
= (eσ

2 − 1)e2µ+σ2 (6.5.11)
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From [Ros20], it is clear also that if a ∈ R and X ∼ N (µ, σ2) then

aX ∼ N (aµ, a2σ2) (6.5.12)

so in this case,
− 2

β
ξi ∼ N

(
0,

4

β2
σ2
i

)
(6.5.13)

From equations (6.5.10) and (6.5.11)

E

[
e−

2
β
νi

]
(6.5.14)

= E

[
d2i e

− 2
β
ξi

]
(6.5.15)

= d2iE

[
e−

2
β
ξi

]
(6.5.16)

= d2i e
2
β2

σ2
i (6.5.17)

V ar

[
e−

2
β
νi

]
(6.5.18)

= V ar

[
d2i e

− 2
β
ξi

]
(6.5.19)

= d4iV ar

[
e−

2
β
ξi

]
(6.5.20)

= d4i (e
4
β2

σ2
i − 1)e

4
β2

σ2
i (6.5.21)

As we can see from (6.5.17), e−
2
β
νi is a biased estimate of d2i , however

we can remove its bias by dividing it by e
2
β2

σ2
i (which is the bias itself).

Therefore, an unbiased estimate of d2i is

d̂2i = e
− 2

β
νi− 2

β2
σ2
i (6.5.22)

We want to use the above estimator obtained from the measurements to
build a linear model in x. Since the estimator is now unbiased by writing

(xu − xi)
2 + (yu − yi)

2 = d̂2i (6.5.23)

we can write
(xu − xi)

2 + (yu − yi)
2 = e

− 2
β
νi− 2

β2
σ2
i (6.5.24)
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−2xixu − 2yiyu + x2
u + y2u + x2

i + y2i = e
− 2

β
νi− 2

β2
σ2
i (6.5.25)

−2xixu − 2yiyu + x2
u + y2u = e

− 2
β
νi− 2

β2
σ2
i − x2

i − y2i (6.5.26)
By setting the condition

R2 = x2
u + y2u (6.5.27)

we can write it in matrix form−2x1 −2y1 1
... ... ...

−2xn −2yn 1


xu

yu
R2

 =

e
− 2

β
ν1− 2

β2
σ2
1 −x2

1 −y21
... ... ...

e
− 2

β
νn− 2

β2
σ2
n −x2

n −y2n

 (6.5.28)

with

A =

−2x1 −2y1 1
... ... ...

−2xn −2yn 1


x =

xu

yu
R2



b =

e
− 2

β
ν1− 2

β2
σ2
1 −x2

1 −y21
... ... ...

e
− 2

β
νn− 2

β2
σ2
n −x2

n −y2n


Now since x∗ is unknown we would like to choose x ≈ x∗ to have

Ax− b ≈ 0 (6.5.29)

One easy way is to seek the minimum of

J(x) = (Ax− b)T(Ax− b) (6.5.30)
= xTATAx− 2xTATb+ bTb (6.5.31)

We can fit this model with the Least Square Method, that for a linear
model (which is ours) has a known explicit solution [Rao+07] that can be
easily verified. In fact since J(x) is a quadratic function of x, then there
is a unique minimum [Ort87; ZB19]. The LLS estimate corresponds to:

x̂ = argmin
x

J(x) (6.5.32)

which can be found by setting to 0 its derivative
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∂J(x)

∂x
= 0

2ATAx̂− 2ATb = 0

ATAx̂ = ATb

x̂ = (ATA)−1ATb

(6.5.33)

The target position can be finally obtained as[
x̂u

ŷu

]
=

[
[x̂]1
[x̂]2

]
(6.5.34)
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6.6 Weighted linear estimation
Assume to know:
υ0 α ξi,∀i

In the previous section we have seen how to use statistics to obtain an
estimator of the distance from each anchor node to the unknown node,
and then putting all this in a linear form, to deduce the location of
the unknown node with a simple closed formula such as the linear least
squares. However we can still improve it by givin to each anchor node
a weight, bound to the variance of the estimator d̂2i obtained from the
anchor node i. A good idea would be to give more importance to the
nodes that produces an estimator with low variance, and to give less im-
portance to those node that produces estimators with high variance. To
ease the computation we consider each anchor node to be indepentendet
from each other. One way to do that is to introduce a symmetric covari-
ance matrix W′, which is also diagonal (because of the independence of
anchor nodes). Since we want the weight assigned to each node to be
inversely proportional to the variance we consider W = (W′)−1 [ZB19;
SZL08]. It is important to note that this improvement does not regard
the generation of the vector of estimators, rather the minimization of the
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cost function. Now we compute the variance of the estimator d̂2i

σ2
d̂i
=V ar

[
d̂2i
]
= (6.6.1)

= V ar

[
e
− 2

β
νi− 2

β2
σ2
i

]
from (6.5.22) (6.6.2)

=

(
e
− 2

β2
σ2
i

)2

V ar

[
e−

2
β
νi

]
because it is a constant (6.6.3)

= ����
e
− 4

β2
σ2
i d4i

(
e

4
β2

σ2
i − 1

)
���
e

4
β2

σ2

from (6.5.21) (6.6.4)

= d4i

(
e

4
β2

σ2
i − 1

)
(6.6.5)

≈
(
d̂i

2)2(
e

4
β2

σ2
i − 1

)
(6.6.6)

=

(
e
− 2

β
νi− 2

β2
σ2
i

)2(
e

4
β2

σ2
i − 1

)
from (6.5.22) (6.6.7)

= e
− 4

β
νi− 4

β2
σ2
i

(
e

4
β2

σ2
i − 1

)
(6.6.8)

= e−
4
β
νi

(
1− e

− 4
β2

σ2
i

)
(6.6.9)

=
1− e

− 4
β2

σ2
i

e
4
β
νi

(6.6.10)

The covariance matrix of the estimators is

W′ = diag
(
σ2
d̂1
, ..., σ2

d̂n

)
Now we get to the weighting matrix

W =
(
W′)−1

= diag
(
(σ2

d̂1
)−1, ..., (σ2

d̂n
)−1

)
(6.6.11)

= diag
(

e
4
β
ν1

1− e
− 4

β2
σ2
1

, ...,
e

4
β
νn

1− e
− 4

β2
σ2
n

)
(6.6.12)

The improved cost function [ZB19] takes the following form

J(x) = (Ax− b)TW(Ax− b) (6.6.13)
= xTATWAx− 2xTATWb+ bTWb (6.6.14)

that can be minimized with the usual LLS

x̂ = (ATWA)−1ATWb (6.6.15)
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The precision of this estimation can be further improved by imposing
the constraint (6.5.27) on the minimization. This condition is ignored
if we use LLS, but it can be successfully employed with the method of
Lagrange multipliers [Che+04; Lop94; PS98].
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6.7 Quadratic linearization
Assume to know:
υ0 α

From the canonical model extract di as follows

10υi = 10υ0−10α log10(di)

10υi−υ0 = 10−10α log10(di)

10υi−υ0 = d−10α
i

di = 10
υ0−υi
10α (6.7.1)

so that we have the following set of equations

(x1 − x)2 + (y1 − y)2 = d21
(x2 − x)2 + (y2 − y)2 = d22

...
(xn − x)2 + (yn − y)2 = d2n

(6.7.2)

Consider

1

n

n∑
i=1

d2i = (6.7.3)

=
1

n

n∑
i=1

[
(xi − x)2 + (yi − y)2

]
(6.7.4)

=
1

n

n∑
i=1

(xi − x)2 +
1

n

n∑
i=1

(yi − y)2 (6.7.5)

=
1

n

n∑
i=1

[x2
i − 2xix+ x2] +

1

n

n∑
i=1

[y2i − 2yiy + y2] (6.7.6)

=
1

n

n∑
i=1

[x2
i ]− 2x

1

n

n∑
i=1

[xi] + x2 +
1

n

n∑
i=1

[y2i ]− 2y
1

n

n∑
i=1

[yi] + y2

(6.7.7)

which is finally

1

n

n∑
i=1

[x2
i ]− 2x

1

n

n∑
i=1

[xi] + x2 +
1

n

n∑
i=1

[y2i ]− 2y
1

n

n∑
i=1

[yi] + y2 =
1

n

n∑
i=1

d2i

(6.7.8)

30



Frone one of the (6.7.2) it follows

x2
i + x2 − 2xix+ y2i + y2 − 2yiy = d2i develop the square (6.7.9)

−x2
i − x2 + 2xix− y2i − y2 + 2yiy = −d2i multiply by − 1 (6.7.10)

Now by adding member to member (6.7.8) to (6.7.10) you have(
− x2

i +
1

n

n∑
i=1

[x2
i ]

)
+

(
− y2i +

1

n

n∑
i=1

[y2i ]

)
+

+

(
2xix− 2x

1

n

n∑
i=1

[xi]

)
+

(
2yiy − 2y

1

n

n∑
i=1

[yi]

)
=

1

n

n∑
i=1

[d2i ]− d2i

(6.7.11)

and by rearranging the equation

+2x

(
xi −

1

n

n∑
i=1

[xi]

)
+ 2y

(
yi −

1

n

n∑
i=1

[yi]

)
+

+

(
− x2

i +
1

n

n∑
i=1

[x2
i ]

)
+

(
− y2i +

1

n

n∑
i=1

[y2i ]

)
=

1

n

n∑
i=1

[d2i ]− d2i

(6.7.12)

Then the previous set of equations (6.7.2) becomes(
x1 −

1

n

n∑
i=1

xi

)
x+

(
y1 −

1

n

n∑
i=1

yi

)
y

=
1

2

[(
x2
1 −

1

n

n∑
i=1

x2
i

)
+

(
y21 −

1

n

n∑
i=1

y2i

)
−
(
d21 −

1

n

n∑
i=1

d2i

)]
...(

xn −
1

n

n∑
i=1

xi

)
x+

(
yn −

1

n

n∑
i=1

yi

)
y

=
1

2

[(
x2
n −

1

n

n∑
i=1

x2
i

)
+

(
y2n −

1

n

n∑
i=1

y2i

)
−
(
d2n −

1

n

n∑
i=1

d2i

)]
(6.7.13)

So we can write the above set of equations in matrix form Ax = b by
setting

A =

x1 − 1
n

∑n
i=1 xi y1 − 1

n

∑n
i=1 yi... ...

xn − 1
n

∑n
i=1 xi yn − 1

n

∑n
i=1 yi


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x =

[
x
y

]

b =
1

2



(
x2
1 − 1

n

∑n
i=1 x

2
i

)
+

(
y21 − 1

n

∑n
i=1 y

2
i

)
−

(
d21 − 1

n

∑n
i=1 d

2
i

)
...(

x2
n − 1

n

∑n
i=1 x

2
i

)
+

(
y2n − 1

n

∑n
i=1 y

2
i

)
−
(
d2n − 1

n

∑n
i=1 d

2
i

)


Both A and b are completely known, also di, due to (6.7.1). Then the
solution can be computed with the usual Linear Least Square procedure
obtaining

x = (ATA)−1ATb (6.7.14)
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6.8 Lines intersection
Assume to know:
υ0 α

Let’s start from a geometrical analysis. Given two intersecting circles at
center x1, y1 and x2, y2 respectively and with radius r1 and r2 respectively,
the line that passes by the two points of intersection has the following
equation [ZB19]

(x2 − x1)x+ (y2 − y1)y =
1

2

[
(x2

2 + y22)− (x2
1 + y21)− (r22 − r21)

]
(6.8.1)

or equivalently

y =
1

y2 − y1

(
− (x2 − x1)x+

1

2

(
x2
2 + y22 − r22 − (x2

1 + y21 − r21)
))

(6.8.2)

Note that the formula is still valid even if the two circles do not inter-
sect each other. Given n measurements (so n circles), only n − 1 lines
are needed to have an independent system of equations. For example,
suppose to have three circles, it is needed to have only 2 lines, for exam-
ple the line passing between the first and the second circle, and the line
passing between the second and the third one, as in fig 6.5. Therefore,
given n points we have a set of n − 1 equations like the above (6.8.1),
that can be written in matrix form Ax = b with

A =


x2 − x1 y2 − y1
x3 − x1 y3 − y1

... ...
xn − x1 yn − y1


x =

[
x
y

]

b =
1

2


(x2

2 + y22)− (x2
1 + y21)− (d22 − d21)

(x2
3 + y23)− (x2

1 + y21)− (d23 − d21)
...

(x2
n + y2n)− (x2

1 + y21)− (d2n − d21)


where the di are computed with the (6.7.1).

The solution is obtained as an approximated intersection of all these
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Figure 6.5: Application of the algorithm with 3 circles and 2 lines
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Figure 6.6: Application of the algorithm with noise compensation
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lines with the LLS, as in fig. 6.6. You can see that they do not need to
intersect in exactly one point, that’s why the solution is computed using
LLS. In cyan it is shown the real position of the unknown node (U).

Given the high influence in this formula of the first anchor node (present
in all equations), one can try an optimization by rearranging the above
formula in a way that it relays more evenly to all the nodes as follows

A =


x2 − x1 y2 − y1
x3 − x2 y3 − y2

... ...
xn − xn−1 yn − yn−1


x =

[
x
y

]

b =
1

2


(x2

2 + y22)− (x2
1 + y21)− (d22 − d21)

(x2
3 + y23)− (x2

2 + y22)− (d23 − d22)
...

(x2
n + y2n)− (x2

n−1 + y2n−1)− (d2n − d2n−1)


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6.9 Multilateration
Assume to know:

∅

This algorithm is the generalization of the trilateration method and is
known as Multilateration. This method can provide two main benefits
over the classic trilateration:

• Always exists a solution (the algorithm may not be able to find it
though) (for non pathological forms)

• The result is made on more observation than the trilateration

So, from the measurement of each node, we try straight away to fit those
data to the canonical model. To do so we write a cost function to be
minimized

J(υ0, α, xu, yu) =

=
n∑

i=1

(
υi − υ0 + 10α log10

(√
(xi − xu)2 + (yi − yu)2

))2

(6.9.1)

x̂u, ŷu = arg min
υ0,α,xu,yu

J(υ0, α, xu, yu) (6.9.2)

The great advantage of this method is that it theoretically doesn’t need
to know any parameter of the model, however in reality to have good
results at least υ0 must be known. This is usually not a problem, since
the signal intensity at a fixed distance can be obtained by manual mea-
surement beforehand.

To increase the accuracy of this method, one can also redefine the cost
function as

J(υ0, α1, ..., αn, xu, yu) =

=
n∑

i=1

(
υi − υ0 + 10αi log10

(√
(xi − xu)2 + (yi − yu)2

))2

(6.9.3)

One big drawback of this method is that convergence is not guaranteed,
and it often depends from the starting guess. A “necessary condition”
for convergence is that the starting guess must be quite close to the real
location of the unknown device. For this reason, the usual choice for the
initial guess is the estimation obtained by the linear methods.
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The (6.9.1) and (6.9.3) are not linear systems, therefore the solution
must be computed with some iterative methods, (GN, steepest descent...)
[CZ13].
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6.10 Maximum Likelihood method
Assume to know:
υ0 ξi,∀i

We can start by considering the model (6.5.1) and (6.5.2). A look more
closely related to the probability point of view is (with p(•) the proba-
bility density function)

p(νi) =
1√
2πσ2

i

e
− 1

2

(νi+β ln(di))
2

σ2
i (6.10.1)

The joint probability distribution of all the nodes (assuming indepen-
dence between the nodes)

p(ν1, ..., νn) = p(ν1)·...·p(νn) =
1

(2π)
n
2Πn

i=1σi

e
− 1

2

∑n
i=1

(νi+β ln(di))
2

σ2
i (6.10.2)

And in matrix form [ZB19], we can write the covariance matrix as

Σ =

σ
2
1 0 0

0
. . . 0

0 0 σ2
n

 (6.10.3)

with
x =

[
xu

yu

]
(6.10.4)

f(x) = −β

ln(
√

(xu − x1)2 + (yu − y1)2)
...

ln(
√

(xu − xn)2 + (yu − yn)2)

 (6.10.5)

To obtain
p(ν) =

1

(2π)
n
2 |Σ| 12

e−
1
2

(
ν−f(x)

)
Σ−1

(
ν−f(x)

)
(6.10.6)

with

ν =

ν1...
νn

 (6.10.7)

For the Maximum Likelihood method we need to find the maximum of
(6.10.6) w.r.t x. As usual to ease the computation we consider the log.

ℓn(x) = − ln
(
(2π)

n
2 |Σ|

1
2

)
− 1

2

(
ν − f(x)

)T
Σ−1

(
ν − f(x)

)
(6.10.8)
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The first part is independent of x, so we need only to find the stationary
point of the second part, that is

x̂ = argmin
β,x

1

2

(
ν − f(x)

)T
Σ−1

(
ν − f(x)

)
(6.10.9)

As the Multilateration case, the minimization must be done with iterative
algorithms.

40



6.11 Centroid algorithm
Assume to know:

∅

Algorithm 5: Centroid algorithm
Result: Estimated position of the unknown node

1 Each node i broadcasts its position (xi, yi) to every other node;
2 Define the threshold;
3 Each anchor node retains the information of the nodes that are

above the threshold;
4 The unknown node computes its position as:

xu =

∑m
i=1 xi

m
, yu =

∑m
i=1 yi
m

(6.11.1)

which is the mean of the position of the retained nodes.

From [BHE00] the filtering based on the threshold can be done in two
ways. The first method consists of a simple selection based on the rssi
level, that is, every nearest node (whose level is above the rssi threshold)
is kept. The second method employs a more sofisticated approach. Every
node broadcasts multiple packets in the network, then each node replies
with one packet per packet received. Therefore node j can draw a list
for every node i as follows

gi =
n. of packets received from node i

n. of packets sent to node i
(6.11.2)

Since the quality/quantity of packets degrades with the distance, closer
nodes will send back many packets, therefore having a high grade, whereas
farther nodes will reply back with fewer packets, therefore will have a
lower grade. Then only the nodes with a grade greater or equal to a
certain threshold (e.g. 0.9) will be considered. This is a quite simple al-
gorithm since it generally assumes that the nodes with known positions
are placed in a regular grid. It presents however low accuracy, and also it
may be difficult to determine the threshold value. The main advantage
however is the simultaneous localization of multiple unknown nodes. Be-
low (fig. 6.7) a possible arrangement of anchor nodes.

There exists some improvements of the previous algorithm [KKG19], for
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Figure 6.7: Possible arrangement of nodes

example the Weighted Centroid Algorithm. Before getting into the for-
mula we need to remind the meaning of hop count. Given a set of con-
nected nodes, the hop count is the number of nodes that the packet goes
through before reaching the destination node. For example in the fig 6.8
node A wants to send a packet to node D, but to do so, the packet need
to be relayed by B, then by C and finally it reaches D. The hop count
therefore is 3.

Here we define a new metric as

wu,i =
1

hu,i

(6.11.3)

where hu,i is the hop count from node i to the unknown node u. The line
4 of the previous algorithm then becomes

xu =

∑m
i=1wu,ixi∑m
i=1wu,i

, yu =

∑m
i=1wu,iyi∑m
i=1wu,i

(6.11.4)
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Figure 6.8: Path from node A to node D, hop-count = 3

43



6.12 DV-Hop Algorithm
Assume to know:

∅

The DV-Hop algorithm was first published in [NN01].
Algorithm 6: DV-Hop algorithm

Result: Estimated position of the unknown node
1 Each node has built its own database;
2 Each node compute the average distance of one hop

AvgHopDistancei =

∑n
j=1,j ̸=i

√
(xj − xi)2 + (yj − yi)2∑n

j=1,j ̸=i hi,j

(6.12.1)

3 The unknown node u computes the approximate distance from
anchor node i using

du,i = AvgHopDistancei · hu,i (6.12.2)

The algorithm begins with a broadcast of all nodes with a packet, that
contains informations about its position and the hop count, which starts
from zero and it is incremented by one at each node it passes through.
Each node upgrade its metrics accordingly. After some time necessary
to reach a stable point where no information update happen, we have
a situation where every node has the minimum hop count from itself to
each node and the positions of each node. For example the following
table could be the database stored in node i

Node ID position hop count
1 (40,-35) 6
2 (-13,18) 4
. . . . . . . . .

As soon as the data is available each unknown node can compute its
approximated distance from each node i as in line 3 of the previous
algorithm. Therefore the unknown node u, 1 ≤ u ≤ n is able to derive

44



the following equations (with xu, yu) unknown

(x1 − xu)
2 + (y1 − yu)

2 = d2u,1

(x2 − xu)
2 + (y2 − yu)

2 = d2u,2
...

(xn − xu)
2 + (yn − yu)

2 = d2u,n

(6.12.3)

where du,i is the distance (in meters) from node u to node i unknown
exactly but estimated as in (6.12.2).

By subtracting the n-th equation to all the others, those can be trans-
formed to

x2
1 − x2

n + y21 − y2n − d2u,1 − d2u,n = 2xu(x1 − xn) + 2yu(y1 − yu)

x2
2 − x2

n + y22 − y2n − d2u,2 − d2u,n = 2xu(x2 − xn) + 2yu(y2 − yu)

...
x2
n−1 − x2

n + y2n−1 − y2n − d2u,n−1 − d2u,n = 2xu(xn−1 − xn) + 2yu(yn−1 − yu)

(6.12.4)

Can be written in matrix form Ax = b where

A = 2


x1 − xm y1 − ym
x2 − xm y2 − ym

... ...
xm−1 − xm ym−1 − ym

 (6.12.5)

x =

[
xu

yu

]
(6.12.6)

b =


x2
1 − x2

m + y21 − y2m − d2u,1 − d2u,m
x2
2 − x2

m + y22 − y2m − d2u,2 − d2u,m
...

x2
m−1 − x2

m + y2m−1 − y2m − d2u,n−1 − d2u,m

 (6.12.7)

The result can be computed with the closed formula of the LLS

x = (ATA)−1ATb (6.12.8)
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6.13 Fingerprinting
Assume to know:

previous υj
i , ∀i, j

Fingerprinting [Yiu+17] is a quite general technique, that can be used for
many scenarios. Its main drawback is the offline training phase, which
needs to be done before the localization takes place, therefore its use is
mostly reserved for example for the location of devices in a known area,
that can be for example factories, shopping center, where the nodes have
all the time to acquire a precise and accurate representation of the normal
environment. This comes with a positive side, it is an efficient model-free
algorithm, therefore its use is not restricted to signal intensity localization
only. As soon as this phase is done, it can start the localization phase.
The main principle underlying this method is the analysis of the similarity
of signal intensity observed by the unknown node (u, u > n) w.r.t. the
other nodes. The main principle underlying this method is to compute
the squared difference between the signal intensity of all the anchor nodes
measured by the unknown node and the signal intensity of all the other
nodes measured by each node. The algorithm employed by this method
is known as K-NN or K nearest neighbors [Bis06]. Here is presented first
the version working with 1-NN. In the learning (offline) phase, each node
builds an internal database with records of every node along with the
received signal strength as in the the following table.

Node ID RSSI
1 -54
2 -68
. . . . . .

As soon as the localization phase starts (computed remotely, since we
must have the signal intensity of all the nodes), the following formula is
used

î = argmin
i

{ n∑
j=1
j ̸=i

(υj
i − υj

u)
2

}
(6.13.1)

This formula just iterates over all the nodes, and by each node i it com-
putes the difference squared between the intensity of the node j read
by the node i (υj

i ) and by the node u (υj
u) for every node. Clearly, the

summation skips the values of equal i and j, because it doesn’t make
sense to measure the intensity of the signal produced by the node itself.

46



Therefore, the node î with the minimum sum of square differences, ac-
cording to the signal intensity read, should be closest to the unknown
node. The estimated position is the position of that node. This is a quite
raw estimation, since can take only one out of the n known positions, but
it can be efficiently improved for higher values of k. In those cases, the
selected nodes are k instead of one, and the final estimate is computed
as the mean of the position of those k nodes, as the name says, the k
nearest neighbors.
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Chapter 7

Conclusions

In this work, I have discussed the main algorithms nowadays available
to locate a device with an unknown position through the received signal
strength. It is very important to note, however, that those algorithms
can be used for the whole class of problems that are based on some path
decreasing propagation, regardless of the nature of the signal itself (e.g.
sound intensity). Let’s take the Quadratic linearization algorithm. Pro-
vided you have the mathematical description of the propagation model,
and you can derive the distance as in (6.7.1), then the final matrices
only depend on the position of the sensing devices and the estimated
distances. This reasoning applies also to the other algorithms, clearly
the Multilateration algorithm and also the model-free method (possibly
with some little adjustments).

It seems appealing that some algorithms don’t require the knowledge
of any parameter beforehand. Those are some of the model-free methods
and the Multilateration. Regarding the model-free methods, it should
be said however that they work well if the anchor nodes are many and
regularly positioned (in a grid for example), otherwise the precision down-
grades. Good results can be obtained with the Fingerprinting method,
however, its downside is that it requires a learning phase, where each
device measures the intensity read of all the other devices. This reduces
the range of applicability of this algorithm. For example, it could not
be used generally for disaster response, since there is no physical time to
learn the signal intensity of the other nodes. Regarding instead the Mul-
tilateration, it could actually work without any previous learning phase
nor any parameter but the quality of the estimation degrades. Usually,
at least υ0 is required. Additionally, one important drawback is the
starting guess. It must be close enough to the real location, otherwise,
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the method could diverge. A good choice for the starting guess is to
use the estimated position from other methods. A good increase in the
performance is given by employing an array of custom path loss indexes,
different for each anchor node, particularly useful if the location pro-
cess happens in an environment fitted with obstacles. This improvement
comes however with a decrease in performance.

Optimum results can be obtained when the field of application is well
known and the algorithm has all the time required to estimate param-
eters α, σ2

i ∀i with the algorithms presented earlier. In my opinion, the
most accurate one would be the Weighted linear estimation, which con-
siders carefully the effect of the variance of the measurements, which is
in fact a concise representation of the noise. A particular mention needs
to be given also to the line intersection algorithm.

The use of UAV is spreading more and more in many areas. As a mov-
ing anchor node, it could be effectively employed in Multilateration for
example, by moving in the area while recording samples as

(xi, yi, υi)

and then proceed with the usual computation. However it could not be
employed in some range free methods, for example the Fingerprinting,
since we cannot compare simultaneous measurements in different places.

As a consequence, it seems that the perfect algorithm doesn’t exist, not
even a perfect sequence of algorithms. It is a task for the user to choose
what fits best its need, based also on his known parameters and his ex-
pectations on the accuracy.

Below it is presented a table that briefly summarizes pros and cons of
the algorithms.
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Approach Ref Pros Cons Exp. test-
ing

Trilateration [ZB19] Easiness of
computa-
tion, Few
samples
required

Low accu-
racy

[Rat+15]

Min-Max [Rat+15] Easiness of
computa-
tion, Few
samples
required

Low accu-
racy

[Rat+15]

Lines inter-
section

[ZB19] Easy to
compute,
robust to
noise

Medium ac-
curacy

Weighted
linear
estimation

[ZB19] High preci-
sion, sensi-
ble to vari-
ance, easy
to compute

Required
proba-
bilistic
parameters

Multi-
lateration

[ZB19] Hard com-
putation,
starting
guess

Up to no
parameters
needed

[ZB19]

Centroid al-
gorithm

[BHE00] No model
neither
parameters
needed

Low ac-
curacy,
regular
placement
of nodes

[WZ14]

DV-Hop al-
gorithm

[NN01] No model
neither
parameters
needed

Low accu-
racy

[Yin19]

Fingerprint. [Yiu+17] No model
neither
parameters
needed

Low ac-
curacy,
regular
placement
of nodes
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