
politecnico di milano

Facoltà di Ingegneria

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Master of Science in

Computer Science and Engineering

SAR Image Despeckling from Unpaired
Image-to-Image translation

Advisor: prof . matteo matteucci

Co-advisor: prof . francesco lattari

Master Graduation Thesis by:

vincenzo santomarco

Student Id n. 914688

Academic Year 2019-2020

politecnico di milano

Facoltà di Ingegneria

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Corso di Laurea Magistrale in

Computer Science and Engineering

SAR Image Despeckling from Unpaired
Image-to-Image translation

Relatore: prof . matteo matteucci

Correlatore: prof . francesco lattari

Tesi di Laurea Magistrale di:

vincenzo santomarco

Matricola n. 914688

Anno Accademico 2019-2020

colophon

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede. The style was inspired by Robert Bringhurst’s
seminal book on typography “The Elements of Typographic Style”. classicthesis
is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a
collection of postcards received so far is featured here:

http://postcards.miede.de/

This template has been adapted by Emanuele Mason, Andrea Cominola and
Daniela Anghileri: A template for master thesis at DEIB, June 2015. This version
of the paper has been later adapted by Marco Cannici, March 2018.

http://code.google.com/p/classicthesis/
http://postcards.miede.de/

A papà

C O N T E N T S

Abstract xix
1 introduction 1

1.1 Outline . 3

2 background 5

2.1 Generative Adversarial Networks 5

2.2 Wasserstein Generative Adversarial Networks 6

2.3 Cycle Consistent Generative Adversarial Networks 8

2.4 Many-to-One mappings . 9

2.5 Variational Auto Encoder . 11

2.6 Conditional Variational Auto Encoders 12

2.7 Cycle Conditional Variational Auto Encoders 13

2.8 Asymmetric Generative Adversarial Networks 15

3 background on sar image despeckling 17

3.1 Speckle Model . 17

3.2 State-of-the-art approaches . 18

3.2.1 Classical Algorithms . 18

3.2.2 Deep Learning Approaches 19

4 proposed solution 27

4.1 Architecture . 27

4.2 Training . 29

5 experimental results 35

5.1 Dataset . 35

5.2 Experiments . 37

5.2.1 First experiments on speckle generation 37

5.2.2 CycleWGAN Model . 42

5.2.3 Dataset augmentation and architecture tests 48

5.2.4 Noise Embedding . 54

6 conclusions 71

6.1 Future work . 73

bibliography 75

vii

L I S T O F F I G U R E S

Figure 2.1 Schema of a GAN training. The Generator (G) is fed
with a random vector z, sampled from a standard
Gaussian distribution, and outputs a generated image.
The Discriminator (D) is fed with both image extracted
from the training dataset and those generated by G,
assign each input a class between "real" and "fake".
On the output of the Discriminator is computed the
adversarial loss, which D aims at minimizing, while
G, whose objective is to fool D, at maximizing. 6

Figure 2.2 Training algorithm for WGANs [23] 7

Figure 2.3 Training algorithm for WGAN-GPs [25]. 8

Figure 2.4 Example of tasks performed by a CycleGAN [26]. The
top row shows, in order, examples of mapping between
optical pictures and paintings domain, transforming
zebras to horses and vice-versa and mapping images
from one season to another. The second row shows
example of mapping between pictures and paintings
domain, showing how this model can learn how to
translate a picture into a painting with the respective
style. 9

Figure 2.5 VAE without reparameterization trick (left) and with it
(right) [28]. The part in red represents the sampling
operation through which the gradient operation can-
not be performed. 12

Figure 2.6 CVAE architecture at training (left) and inference (right)
time [28]. 13

viii

Figure 4.1 Architecture of the Despeckler. The network takes as
input a 128× 128 logarithmic SAR patch x and outputs
the residual speckle ñ for computing the despeckled
image x̃ = y− ñ. The architecture is composed by a
down-sampling and an up-sampling path, with 5 steps
each connected via channel-wise concatenation skip
connections. Each step comprises a set of two blocks
made of 3× 3 Convolution, Batch Normalization and
ReLU activation function. The down-sampling opera-
tion is performed by a 2× 2 MaxPooling layer, while
the up-sampling by a 2 × 2 Transpose Convolution
with a stride of 2. Finally, a 1× 1 convolution reduces
the channels of the last convolution from 32 to 1. 28

Figure 4.2 Architecture of the Speckle Generator. The network
takes as input a 128× 128 logarithmic clean patch x
and a vector of length 512 and outputs the residual
speckle ñ for computing the generated SAR image
ỹ = x+ ñ. The input tensor is composed by the chan-
nel wise concatenation of the patch with the vector
replicated until the shape of 512× 128× 128. The ar-
chitecture is composed by a down-sampling and an
up-sampling path, with 5 steps each connected via
channel-wise concatenation skip connections. Each
step comprises a set of two blocks made of 3× 3 Con-
volution, Batch Normalization and ReLU activation
function. The down-sampling operation is performed
by a 2× 2 MaxPooling layer, while the up-sampling
by a 2× 2 Transpose Convolution with a stride of 2.
Finally, a 1× 1 convolution reduces the channels of the
last convolution from 32 to 1. 29

Figure 4.3 Critic networks architecture. Those networks are com-
posed by 5 steps of 3× 3 convolutional layer, ReLU
activatin function and 2× 2 MaxPooling. The final step
is then flattened and fed to a 1-layer MLP for obtaining
the score of the input patch. Those networks do not
make use of any Batch Normalization due to the in-
compatibility of this layer with the improved WGAN
training algorithm presented in [25]. 30

ix

Figure 4.4 Encoder architecture. The Encoder input is the channel-
wise concatenation of the despeckled patch x̃ = y−

Gd(y) obtained from the logarithmic SAR patch y with
the residual speckle ñ = Gd(y). This network is com-
posed by 5 steps interleaved by 2× 2 MaxPooling lay-
ers. Each step is composed by two sets of 3× 3 Convo-
lution, Batch Normalization and ReLU activation func-
tion. The number of filters for each convolutional layer
starts from 32 and doubles at each down-sampling
operation. The last downsampling is flattened and fed
to two 2-layers MLP, with 1024 hidden units. Those
two MLPs outputs the two vectors representing µ and
log(σ) of the N(µ, σ) distribution from which sample
the latent vector z̃ using the reparameterization trick. . 31

Figure 4.5 Schema of the speckled loop. A logarithmic SAR patch
y ∼ p(y) is fed to Gd for computing the residual
speckle ñ = Gd(y) and the corresponding clean patch
x̃ = y − ñ that minimizes the adversarial loss. The
latent vector z̃ is then sampled from a Gaussian dis-
tribution N(µ, σ), where µ, log(σ) = E(x̃, ñ), such that
it minimizes the KL divergence introduced in [30].
Finally x̃ is corrupted with a Gaussian noise η and
z̃ and x̃η are used for building the reconstruction
ŷ = x̃+Gn(x̃η, z̃) that minimizes the cycle consistency
loss ||y− ŷ||1. 32

Figure 4.6 Schema of the clean loop. A logarithmic clean patch
x ∼ p(x) is corrupted with a Gaussian noise η and fed
to Gn together with a Gaussian vector z ∼ N(0, 1) for
computing the residual speckle ñ = Gn(x, z) and the
corresponding SAR patch ỹ = x+ ñ that minimizes
the adversarial loss. Finally ỹ is used for building the
reconstruction x̂ = ỹ−Gd(ỹ) that minimizes the cycle
consistency loss ||x− x̂||1. 33

Figure 5.1 Example of clean dataset areas 35

Figure 5.2 Example of speckled dataset areas 35

x

Figure 5.3 Speckle Generator architecture diagram. The Speckle
Generator has a UNet-like [13] architecture, composed
of 3 down-sampling and up-sampling steps connected
via channel-wise concatenations. The upsampling is
performed using 2× 2 transpose convolutions with a
stride of 2. The final layer of the network is a 1× 1
convolution for mapping the 32 filters of the last up-
sampling layer into the single channel of a SAR image.
The network output represents the logarithm speckle
generated for corrupting the input logarithmic clean
patch, and the final generated patch is obtained using
Equation 5.2. 39

Figure 5.4 Critic network architecture. The Critic network is a
simple CNN composed by a series of convolutional
layers with a kernel of 3× 3 and 2× 2 max pooling
layers. The output is computed by flattening the last
down-sampling layer and using a MLP for mapping
these features into a real number, representing the
score of the input patch. 40

Figure 5.5 A comparison between the speckle generated by our
first Speckle Generator networks and the CycleWGAN
model. The first image shows the underlying scene of
the clean reference image. The second image shows
the speckle generated over that area by our first Gen-
erator trained using only the adversarial loss proposed
in [23]. The third image shows the detail and edge im-
provement by adding an l1 loss term between the input
and the output patch. The fourth image shows how
using the cycle consistency and the Despeckler net-
work, instead of the l1 loss function, improves speckle
generation performance over homogeneous areas. . . . 41

xi

Figure 5.6 Comparison of different cycle consistent Despeckling
network performances. The first image (top-left) shows
the speckle corrupted SAR image. The second image
(top-right) shows the despeckled patch obtained using
the CycleWGAN model with 64× 64 input patches.
The third image (bottom-left) shows the results ob-
tained enlarging the input patches up to 128× 128. We
can see how this network removes the patching prob-
lem presented in the previous one. The fourth image
(bottom-right) shows the results obtained using a GP
[25] loss term instead of the weight clipping for forc-
ing the 1-Lipschitz constraint for the Critic networks.
We can see how the network has similar performance
concerning the previous one, but we kept exploring
this model due to the faster and more reliable training. 44

Figure 5.7 Comparison of different cycle consistent Speckle Gen-
erator network performances. The first image (top-
left) shows the clean image. The second image (top-
right) shows the speckle generated by a 64× 64 patch
CycleWGAN model. The third image (bottom-left)
shows the speckle generated by a 128× 128 patch Cy-
cleWGAN. The fourth image (bottom-right) shows the
speckle generated by a 128× 128 patch CycleWGAN
trained using a GP [25] loss term instead of the weight
clipping for forcing the 1-Lipschitz constraint for the
Critic networks. We can see any major improvement
on the speckle generation side over these models. . . . 45

Figure 5.8 Speckle distributions over different areas generated
by 64x64 patches WGAN. The top image shows the
whole Mean used for validation, while the bottom one
shows the speckle generated by the Speckle Generator
network over that image. We can see how the speckle
generated have different distribution according to the
underlying scene. In particular, we see in this image a
contrast between the speckle generated over a homo-
geneous dark area and that generated over a brighter
area made of mountains and some buildings. 46

xii

Figure 5.9 Comparison between Weight Clipping and GP net-
work training with 128× 128 patches. The x-axis of
these graphs represents the number of training steps.
The first image (top-left) shows the speckle Critic loss
graph, the second one (top-right) shows the cycle con-
sistency loss, and the third one (bottom-left) shows
the Clean Critic loss. Looking at the lengths of these
graphs, we can see how the training of the WGAN-GP
model has been stopped before that of the WGAN one,
achieving similar speckle generation and despeckling
performances as shown in Figure 5.6 and Figure 5.7.
The cycle loss graph (top-right) shows how we could
set λcycle = 10 since the first epochs. Also, the Speckle
Critic losses over time (top-left) differ significantly. In
particular, we can see how the WGAN-GP model one
decreases after some epochs, showing how the speckle
Generator network is not complex enough to learn a
good speckle generation function. 48

Figure 5.10 Speckle Generator and Despeckler architecture trained
using the augmented dataset. Differently from the
architecture shown in Figure 5.3, the new one has
one more down-sampling and up-sampling step and
the number of convolutions for each step has been
increased to 2, in order to increase the receptive field
of each pixel. 49

Figure 5.11 Histogram of pixels amplitude of real and generated
speckled images. The first row shows the histogram
of a real SAR image. The second row shows the his-
togram of an image generated by a 128× 128 patch
WGAN-GP Speckle Generator trained using the loga-
rithmic cycle loss. The two histograms represent sim-
ilar curves, but the generated images tends to have
higher low amplitude pixel concentration with respect
to the actual one. 50

xiii

Figure 5.12 Comparison of despeckling performances calculating
cycle-consistency loss over different domains. The im-
age on top shows the SAR speckled image. On the bot-
tom, we can see the results of the Despeckler trained
using the logarithmic cycle loss (left) compared to
that trained using the cycle loss over the real SAR do-
main (right). We can see how the image on the right
is smoother and more homogeneous but loses some
detail, especially on high amplitude punctual scatter-
ers, concerning the left one, presenting some residual
speckle. 51

Figure 5.13 Despeckling performances of our network with respect
to a Ground-Truth Mean [9] (image 2), the SAR-BM3D

algorithm [7] (image 3) and the UNet architecture pro-
posed by Lattari et al. [11] (image 4) also with the TV
loss term (image 5). Our network (image 6) results
in better defined edges and contrasts, with respect to
the blurry images 3 and 4, and does not present any
artefacts. Also it better preserves high intensity scat-
terers with respect to 5 but still presents some residual
speckle. Comparing the ground-truth image (2) with
the smoother solution proposed in [11] (5) we can see
how the means we are using as ground truth also
presents some residual speckle. 53

Figure 5.14 Comparison between a generated speckled image with
a real SAR. On the top, we can see the Mean computed
by the algorithm of [9] over the temporal stack to
which the bottom-left real SAR image belongs. The
bottom-right image shows an image generated by the
128× 128 Speckle Generator of our CycleWGAN-GP
model trained using the logarithmic cycle loss. The two
speckle realizations look similar, even if the generated
one still preserves many details of the Mean. 55

Figure 5.15 Conditioned Speckle Generator network architecture.
The network differ from what proposed in Figure 5.10,
used for the Despeckler, for the injection of the vector
z. The 1×512 z input vector is repeated up to the shape
of 512× 128× 128 and channel-wise concatenated to
the input patch. 56

xiv

Figure 5.16 Encoder network architecture. The encoder is a CNN
that takes the channel-wise concatenation of the de-
speckled logarithmic image x̃ and the logarithmic
speckle ñ generated by the Despeckler for computing
the distribution N(µ, σ) from which sample the vector
z for reconstructing ŷ = Gn(x̃, z) + x̃ ∼ y = x̃+ ñ. The
network comprises five encoding steps of two 3× 3
convolutional layers with Batch Normalization and
ReLU activation function and 2× 2 MaxPooling. The
output of the last down-sampling layer is flattened and
fed to two MLPs. these MLPs have one hidden layer
composed of 1024 units and a 0.2 dropout probability,
then the output are two vectors of length 512 repre-
senting the µ and logσ for the reparameterization trick
of [29]. 57

Figure 5.17 Schema of the SAR images reconstruction loop. A
128× 128 speckled logarithmic patch y is taken as in-
put by the Despeckler, which computes the speckle ñ
from which we can extract the despeckled logarith-
mic patch x̃ = y− ñ. The adversarial WGAN loss is
computed over the generated x̃, while the encoder
network E computes the mean and the variance of
the distribution of z which minimizes the reconstruc-
tion error µ, σ = E(x̃, ñ). The KL divergence loss is
computed over the outputs of E. these parameters are
used to sample z using the reparameterization trick
z = µ+ σ� ε, ε ∼ N(0, 1). Finally the reconstruction
ŷ = Gn(x̃, z) is generated and the cycle loss over y and
ŷ is computed. 58

Figure 5.18 Histogram of generated speckle values obtained over
the same by sampling 10000 diferent z ∼ N(0, 1). 59

Figure 5.19 Detail of a homogeneous validation area. The image
on the left represents the residual noise of a Mean.
The amplitude of this image has been multiplied by
a factor of 2 to emphasize this signal. The image on
the right shows the speckle generated over that area.
In red and blue are highlighted the patterns that show
how the Speckle Generator uses this low amplitude
signal during the generation of the speckle. 60

xv

Figure 5.20 Comparison between our CycleCVAE implementa-
tions and the CycleWGAN-GP Despecklers. The top
left image shows the speckled SAR image. The top
right image shows the image despeckled using the De-
speckler of our CycleWGAN-GP model. On the bottom
row, we can see the performances of the Despecklers
trained in our CycleCVAE implementation baseline
(left) and using corrupted clean patches (right). The
CycleCVAE baseline drastically reduces the residual
noise showed by the CycleWGAN-GP model, losing
detail over strong scatterers. The improved CycleCVAE
implementation trained with corrupted clean patches
shows an improvement in preserving edges and con-
trasts than the baseline. 61

Figure 5.21 Detail of the speckle generated over a homogeneous
area by the Speckle Generator trained with Gaussian
noise corrupted Means. The image on the left shows
a Mean patch whose amplitude. The image on the
right shows the speckled one generated by feeding
the Speckle Generator with the patch on the left. The
amplitude of these images has been multiplied by a
factor of 3 for visual purposes. We highlighted areas in
which the correlation between the residual speckle and
the generated one is very low. However, there are still
brighter and darker pixel areas with similar shapes in
both images. 63

Figure 5.22 Histogram of generated speckle values obtained over
the same by sampling 10000 diferent z ∼ N(0, 1), using
the Speckle Generator trained on corrupted means. . . 64

xvi

Figure 5.23 Despeckling performances of our network with respect
to a Ground-Truth Mean [9] (image 2), the SAR-BM3D

algorithm [7] (image 3) and the UNet architecture pro-
posed by Lattari et al. [11] (image 4) also with the
TV loss term (image 5). Our network (image 6) re-
sults in better-defined edges and contrasts regarding
the blurry images 3 and 4 and does not present any
artefacts. Also, it better preserves details over high-
intensity scatterers than image 5 but still presents some
residual speckle, even if its intensity has been drasti-
cally reduced from the CycleWGAN-GP model. Com-
paring the ground-truth image (2) with the smoother
solution proposed in [11] (5), we can see how the
means we are using as ground truth also presents
some residual speckle. 65

Figure 5.24 Detail of the residual speckle over a Mean image (on
the left) and a SAR image despeckled using our Cy-
cleCVAE [31] implementation, trained using corrupted
clean images (right). 66

Figure 5.25 Comparison between the speckle generated by our
CycleCVAE models and that of a real SAR image.
The top left image shows the ground truth Mean of
which we are generating speckled images. The top
right shows the speckle generated by our CycleCVAE
baseline, while the bottom left shows that generated
by the model trained on corrupted clean patches. The
bottom right images show a real speckled SAR image.
We can see how corrupting clean patches do not af-
fect the generated speckle quality. Nevertheless, the
speckle quality is still cheap: generated speckled im-
ages still preserves too much detail of the underlying
scene. 69

L I S T O F TA B L E S

xvii

Table 5.1 Performance comparison of our CycleWGAN-GP and
CycleCVAE with other-state-of-the-art models on a nu-
merical basis. The matrics we considered are the Peak
Signal-to-Noise Rateo (PSNR), the Structural Similar-
ity Index Measure (SSIM) and the Equivalent Number
of Looks (ENL). We computed these metrics over 100

homogeneous patches extracted from a real speckled
SAR image and its corresponding Mean. 67

xviii

A B S T R A C T

Nowadays, a large number of satellites allows to systematically observe
the surface of our planet from space. Among these, particularly interesting
are satellites equipped with the Synthetic Aperture Radar (SAR) systems,
which can capture high-quality images under different weather conditions
and during nighttime, overcoming optical systems limitations. SAR satellites
allow the collection of copious images by systematically revisiting the points
composing their ground trace. This data is used to perform various tasks,
e.g., earth and other planet surface monitoring, emergency response, military
surveillance or the stability of civil infrastractures such as bridges or build-
ings. However, even if this technology does not suffer from optical sensors
limitations, images acquired by this kind of satellites are contaminated by
a peculiar noise called speckle. The speckle is caused by the interaction of
out-of-phase waves with a target, and its reduction is necessary to interpret
these images correctly. Thus, various algorithms have been proposed in the
literature to reduce the speckle intensity.

In the last years, Deep Learning models demonstrated state-of-the-art
performances over various computer vision tasks and, recently, they have
been succesfully applied to SAR image despeckling. However, these models
often rely on supervised learning, which requires a massive amount of
labelled data to be successfully carried out. Although, there are no noise-
free SAR images in reality, making it impossible to build labelled datasets
composed of matching speckled and corresponding clean image pairs. Thus,
the solutions proposed in the literature rely on synthetic datasets, built
by sampling multiplicative SAR speckle from a known distribution, or on
multi-temporal analysis. Even though these solutions reached outstanding
performances over the despeckling task, the assumptions they make have
some limitations. For example, synthetic datasets do not consider that the
speckle distribution changes accordingly to the underlying scene, i.e., an
urban area has a different speckle distribution than a wasteland. On the other
side, the multi-temporal analysis uses a stack of images taken over the same
scene at different times. Therefore, performing this analysis is possible only
if the scene does not present significant changes over the observed period.

In this work of thesis, we propose a model trained in an unsupervised
fashion without any simulated data or matching pair of clean and speckled
images. Instead, we took inspiration from the CycleGAN [26] presented by
Zhu et al. and developed a generative model capable of learning a speckle
distribution correlated with the underlying scene. We trained side by side
two networks capable of learning a despeckling and a speckle generation

xix

function, mapping speckled SAR images into the domain of the clean ones
and vice-versa. By doing so, our model is capable of generating its own pairs
of images by sampling SAR speckle from the distribution associated with the
clean one. Finally, we carried out a large set of experiments to validate the
developed models.

xx

S O M M A R I O

Al giorno d’oggi, un gran numero di satelliti consente di osservare sistematica-
mente la superficie del nostro pianeta dallo spazio. Tra questi, particolarmente
interessanti sono i satelliti dotati di sistemi SAR (Synthetic Aperture Radar),
in grado di catturare immagini di alta qualità in diverse condizioni meteo-
rologiche e durante le ore notturne, superando i limiti dei sistemi ottici. I
satelliti SAR consentono la raccolta di numerose immagini rivisitando siste-
maticamente i punti che compongono la loro traccia al suolo. Questi dati
vengono utilizzati per eseguire varie attività, ad esempio, monitoraggio della
superficie della terra e di altri pianeti, risposta alle emergenze, sorveglianza
militare o stabilità di infrastrutture civili come ponti o edifici. Tuttavia, anche
se questa tecnologia non soffre dei limiti dei sensori ottici, le immagini ac-
quisite da questo tipo di satelliti sono contaminate da un rumore particolare
chiamato speckle. Lo speckle è causato dall’interazione di onde sfasate con
un bersaglio e la sua riduzione è necessaria per interpretare correttamente
queste immagini. Pertanto, in letteratura sono stati proposti vari algoritmi
per ridurre l’intensità dello speckle.

Negli ultimi anni, i modelli di Deep Learning hanno dimostrato prestazioni
all’avanguardia in vari compiti di visione artificiale e, recentemente, sono
stati applicati con successo alla rimozione dello speckle di immagini SAR.
Tuttavia, questi modelli spesso si basano sull’apprendimento supervisionato,
che richiede un’enorme quantità di dati etichettati per essere eseguito con
successo. Tuttavia, in realtà non ci sono immagini SAR prive di rumore, il
che rende impossibile costruire set di dati etichettati composti da coppie di
immagini pulite e corrispondenti corrotte dallo speckle. Pertanto, le soluzioni
proposte in letteratura si basano su set di dati sintetici, costruiti campionando
speckle moltiplicativo da una distribuzione nota, o su analisi multi-temporali.
Anche se queste soluzioni hanno raggiunto prestazioni eccezionali nel com-
pito di eliminazione dello speckle, le ipotesi che fanno hanno alcuni limiti.
Ad esempio, i set di dati sintetici non considerano che la distribuzione dello
speckle cambia di conseguenza alla scena sottostante, ovvero un’area urbana
ha una distribuzione di speckle diversa rispetto a una terra desolata. Dall’al-
tro lato, l’analisi multi-temporale utilizza una pila di immagini riprese sulla
stessa scena in momenti diversi. Pertanto, l’esecuzione di questa analisi è
possibile solo se la scena non presenta cambiamenti significativi nel periodo
osservato.

In questo lavoro di tesi, proponiamo un modello addestrato in modo non
supervisionato senza dati simulati o coppie di immagini pulite e macchiate.
Invece, ci siamo ispirati al CycleGAN [26] presentato da Zhu et al. e abbiamo

xxi

sviluppato un modello generativo in grado di apprendere una distribuzione
speckle correlata con la scena sottostante. Abbiamo addestrato fianco a fianco
due reti in grado di apprendere una funzione di despeckling e di generazione
di speckle, mappando immagini SAR corrotte dallo speckle nel dominio
di quelle pulite e viceversa. In questo modo, il nostro modello è in grado
di generare le proprie coppie di immagini campionando lo speckle SAR
dalla distribuzione associata all’immagine pulita. Infine, abbiamo condotto
un’ampia serie di esperimenti per convalidare i modelli sviluppati.

xxii

1
I N T R O D U C T I O N

Nowadays, numerous satellites observe the Earth surface, making it possible
to collect data of dangerous or inaccessible areas from a wider perspective
than what can be achieved at ground level. Taking optical images from out-
side the atmosphere, though, could be a challenging task. For example, many
clouds and various weather phenomena can interfere with the light reflected
by the surface of our planet, or there could be no light at all if the image
is taken during nighttime. In this context, Synthetic Aperture Radars (SAR)
propose a solution to overcome the limitations of optical sensors. A SAR is an
imaging radar mounted on a moving platform capable of sending electromag-
netic waves and collecting the echoes of those waves, storing all the related
information for future processing. According to the time a SAR wave takes to
travel forth and back, it is possible to map the surface hit by this wave. This
technology is capable of high-resolution remote sensing, independent of flight
altitude and weather, as SAR can select frequencies to avoid weather-caused
signal attenuation. Also, since the SAR itself provides the electromagnetic
wave, no sunlight is needed to capture an image. SAR technology is applied
in numerous tasks, like land cover classification, environmental monitoring,
emergency response, and military surveillance.

Even though SAR is a powerful instrument, it suffers from a peculiar grainy
noise effect, called speckle. The speckle is caused by the resolution of each cell
being associated with an extended target, containing several scattering centres
whose elementary returns, by positive or negative interference, originate light
or dark image brightness. This phenomenon gives the image a grainy look,
making it challenging to identify the main features of the surface imaged
by the SAR. Thus, the need to find despeckling algorithms for reducing
speckle intensity while preserving information needed for the tasks that take
advantage of this technology.

In the literature, various approaches have been introduced to reduce the
speckle of SAR images, from classical algorithms to modern Deep Learn-
ing (DL) using Convolutional Neural Networks (CNN), which have been
carefully discussed later in the document. DL largely demonstrated to be a
game-changer in numerous tasks in the field of computer vision, like image
classification and segmentation. In the last years, DL approaches have also
been successfully investigated in the Earth Observation field. However, these
approaches require many labelled data to work, like a matching pair of image
and class it belongs to, or a mask associating a class for each pixel of the
associated image. Unfortunately, in SAR image despeckling, no ground truth

1

2 introduction

is available due to the impossibility of gathering speckle-free images. Ap-
proaches from literature tackled this problem by building synthetic datasets
sampling multiplicative speckle realizations from a known distribution or by
performing multi-temporal analysis over static scenes. Although synthetic
datasets allow learning single-image processing algorithms that outperformed
classical approaches, the assumptions made over the speckle distribution
do not consider how different surface features exhibit different scattering
characteristics. For example, the speckle showed over urban areas presents a
stronger backscatter than smoother surface due to artificial structures. At the
same time, performing multi-temporal analysis over a stack of SAR images
is limited for those scenes that do not differ significantly over the time in
consideration. In late years, generative models such as Generative Adversarial
Networks (GANs) showed outstanding performances over various computer
vision tasks. Also, in SAR literature, various approaches have exploited the
GAN capabilities to learn speckle reduction functions. In this work of thesis,
we propose a solution belonging to this class of generative models, paying
particular attention to solving the scarcity of labelled SAR data. We took
inspiration from unpaired image-to-image translation models, especially that
proposed by Zhu et al. [26], and trained our model without any pair of SAR
image and corresponding speckle-free realization. Due to the lack of paired
speckled and speckle-free images, we designed and trained a Speckle Gen-
erator network capable of mapping a clean image into a speckle corrupted
one. We exploited the CycleGAN model of Zhu et al. to concurrently train a
Despeckler network that can take advantage of the images generated by the
Speckle Generator for learning a despeckling function. We did this without
making any assumption on the speckle distribution or using any target image
obtained through a multi-temporal analysis. Instead, we designed and trained
those networks to learn an image-to-image translation model, to map a SAR
image into the clean domain and vice-versa.

In this document, we present all the phases of our exploration that led
to our final solution. First, we started from the more straightforward task
of generating SAR speckle for corrupting clean images and then moved to
a CycleGAN-like model trained for learning a one-to-one mapping from
SAR images to the corresponding clean one and vice-versa. Finally, we
empowered the Speckle Generator taking inspiration from the CycleCVAE
model of [31] making it learn the one-to-many mapping from the clean
domain to the SAR one. The proposed final solution consists of a Despeckler
showing performance comparable with other state-of-the-art approaches,
preserving edges and details over both edges and details over both smooth
and heterogeneous areas. Furthermore, the training framework allowed us
to obtain a good speckled images generator from the multi-temporal Means
extracted using [9]. The Speckle Generator has been modelled using the CVAE
[30] architecture allowing the generation of multiple samples of speckle,

1.1 outline 3

given the same underlying scene, conditioned over a latent vector, giving
the possibility to generate realistic data for building a synthetic dataset. The
proposed solution proves how unpaired image-to-image translation models
can be successfully used for SAR image despeckling, as shown during the
experiment conducted, and provides a good baseline for future developments.

1.1 outline

The rest of the document is organized as follows:

• Chapter 2: introduces the main deep learning models and concepts
needed to understand the work done, from the Generative Adversar-
ial Networks (GANs) to the Conditional Variational Auto Encoders
(CVAE) and their applications for solving one-to-many mappings in
CycleGANs.

• Chapter 3: its first part describes in detail the distribution of the speckle
of a SAR image. The rest of the chapter is structured to give an overview
of the state-of-the-art approaches by analyzing both classical algorithms
and Deep Learning approaches.

• Chapter 4: gives a detailed description of the proposed method, focusing
on the Despeckler and Speckle Generator architectures and the training
process.

• Chapter 5: describes the main experiments which summarize the var-
ious steps leading to the proposed solution, analyzing the results of
every intermediate model and justifying every subsequent improve-
ment.

• Chapter 6: summarizes our work by retracing the main stages and the
solved problems. Finally, some future developments are proposed.

2
B A C K G R O U N D

In this chapter, we describe we describe the theoretical background useful
to understand the proposed work. In particular, we give an overview on
Generative Adversarial Networks and Variational Auto Encoders, on which
this work of thesis focuses.

2.1 generative adversarial networks

The base model we decide to start our analysis from is proposed by Goodfel-
low et al. In [21], the authors propose a model for generating images starting
with a random vector z. The idea is to find a Generator network G that is
capable of learning the mapping f : Z→ X, where Z is a known distribution,
e.g., a standard Gaussian, and X the actual domain of the images we aim
at generating whose distribution is p(x). Thus, an optimal G should be able
to produce images x̂ = G(z), z ∼ N(0, 1) whose distribution p(x̂) coincides
with the actual one p(x). For doing so, a Discriminator network D is included
during the training. The Discriminator network is trained in order to learn to
recognize whether an input image comes from p(x) or from the generated
distribution p(̂x) so that when G is optimally trained the generated images x̂
are indistinguishable from the real ones x ∼ p(x). The two networks, D and G,
are then trained concurrently to make D learn how to classify real and fake
images and G to trick D and maximise its error. For doing so, those networks
are trained using an adversarial loss:

Lgan = max
G

min
D

Ex∼p(x)[logD(x)] + Ez∼N(0,1)[log(1−D(G(z)))] . (2.1)

These networks are known as Generative Adversarial Networks (GANs).
They are proven to be extremely powerful and showed excellent performance
in various computer vision tasks. Still, their training is very unstable, and
those models suffer from various problems during training. Discriminator
networks have Sigmoid or Tanh activation functions on the last layer. When
the Discriminator is optimal, the output values of those functions are close
to +1 and -1 or 0, for Tanh and Sigmoid respectively, where the gradient is
almost zero. This leads to a vanishing gradient problem, making the training
of the Generator network impossible. An optimal discriminator does not
provide enough information for the Generator to make progress. Another
common failure of GANs is the mode collapse. The mode collapse happens
when a Generator learns how to produce a single or a small set of outputs

5

6 background

Figure 2.1: Schema of a GAN training. The Generator (G) is fed with a random
vector z, sampled from a standard Gaussian distribution, and outputs a generated
image. The Discriminator (D) is fed with both image extracted from the training
dataset and those generated by G, assign each input a class between "real" and "fake".
On the output of the Discriminator is computed the adversarial loss, which D aims
at minimizing, while G, whose objective is to fool D, at maximizing.

that are the most plausible for the Discriminator independently from the
input vector z. Also, finding the right point to stop the training is difficult.
When G is optimal, the output of the network D is random; thus, if the
training continues past this point, the generator starts to train on this random
feedback, and its own quality may collapse. The training process of a GAN is
schematized in Figure 2.1.

2.2 wasserstein generative adversarial networks

Arjovsky, Chintala, and Bottou propose a solution to the limitations showed
by the GANs. In [23], the authors propose to use Critic networks instead of
Discriminators. Critic networks do not have any Sigmoid or Tanh activation
function as output, but instead their output is a linear function whose co-
domain is R and gradient 1. Given the distribution Px of real data and Pθ of
generated data, authors propose to train a generative model minimizing the
Earth Moving (EM) distance, or Wasserstein-1

W(Px,Pθ) = inf
γ∈Π(Px,Pθ)

E(x,y)∼γ[||x− y||] ,

where Π(Px,Pθ) denotes the set of all joint distributions γ(x, y) whose
marginals are respectively Px and Pθ. Thanks to the Kantorovich-Rubinstein
duality [24], the previous becomes

W(Px,Pθ) = sup
||f||L61

Ex∼Px [f(x)] − Ex∼Pθ [f(x)]

where the supremum is over all the 1-Lipschitz functions f : X → R. In
this paper, the authors propose approximating the function f with a neural

2.2 wasserstein generative adversarial networks 7

Figure 2.2: Training algorithm for WGANs [23]

network, the Critic network, referred to as D for continuity with the GAN
model. This model is called Wasserstein GAN (WGAN) due to the EM dis-
tance, or Wasserstein-1, used for training those networks. The adversarial loss
for WGANs is

Lwgan = max
G

min
D

Ez∼p(z)[D(G(z))] − Ex∼p(x)[D(x)] (2.2)

For forcing the Lipschitz constraint over these functions, authors propose
to clip the weights of the Critic in a fixed range. Because of the nature and
gradient of the Critic, it has been proven that this network has better training
stability. Thus, the authors propose a training algorithm where the weights
of G are updated only once every n steps on D, always to have an optimal
Critic. The algorithm proposed in [23] for training this model is showed in
Figure 2.2.

In [21], authors point out how the weight clipping is not an optimal
solution to force the 1-Lipschitz constraint over the Critic network. In [25],
Gulrajani et al. analyze how the choice of the clipping limit is crucial for a
successful training of WGANs, that can lead to both vanishing or exploding
gradients. Also, those critics are only capable of learning simple functions. In
this paper, the authors also propose an improved training for WGANs. The
solution proposed in [25] is to add a gradient penalty loss term for penalizing
the gradient norm of the Critic networks to make them have it as close as
possible to 1. The WGAN-GP loss then becomes

L = Ex̃∼Pg [D(x̃)] − Ex∼Pr [D(x)] + λgpEx̂∼Px̂ [(||∇x̂D(x̂)||2 − 1)
2] . (2.3)

8 background

Figure 2.3: Training algorithm for WGAN-GPs [25].

The authors define Px̂ sampling uniformly along straight lines between
pairs of points sampled from the data distribution Pr and the generator
distribution Pg. After various experiments over different tasks, they also
define λgp = 10 that resulted in the optimal weight for the Gradient Penalty
term. The improved training for the WGAN-GP is shown in Figure 2.3.

2.3 cycle consistent generative adversarial networks

The improved training for the WGAN-GP is shown in Figure 2.3. In this
work of thesis, we will take as reference for the unpaired image-to-image
translation task the CycleGAN model proposed by Zhu et al. in [26]. In this
paper, the authors aim at mapping images from a given domain A to another
one B, and vice-versa, without any given matching pair of images. The
authors suggest using two GANs for learning the two mapping functions
f : A → B and g : B → A, GB and GA respectively. For training, they use
two Discriminator networks, DB and DA, and two adversarial losses [21], for
making the two generators learn the f and g mappings and produce outputs
that are indistinguishable from images taken from the two domains. The
adversarial loss for the images produced by the g loop is:

Lgan,A = Ea∼p(A)[logDA(a)] + Eb∼p(B)[log(1−DA(GA(b))] ;

a similar loss is introduced for those produced by f. The discriminators
aim at minimizing those losses, while the generators at maximizing them.
For forcing the networks to learn a meaningful mapping, i.e., given a ∈ A

2.4 many-to-one mappings 9

Figure 2.4: Example of tasks performed by a CycleGAN [26]. The top row shows,
in order, examples of mapping between optical pictures and paintings domain,
transforming zebras to horses and vice-versa and mapping images from one season
to another. The second row shows example of mapping between pictures and
paintings domain, showing how this model can learn how to translate a picture into
a painting with the respective style.

produce the corresponding b ∈ B and vice-versa, the networks are made
cycle consistent, i.e., f(g(b)) = b and g(f(a)) = a. The authors do this by
adding a cycle consistency term to the two adversarial losses:

Lcycle = Ea∼p(A)[||GA(GB(a)) − a||1] + Eb∼p(B)[||GB(GA(b)) − b||1] .

The final loss used for training the whole model is:

LcycleGAN = Lgan,A +Lgan,B + λcycleLcycle , (2.4)

where λcycle is the weight of the cycle consistency term that authors set to be
10. The authors demonstrate the superiority of their approach from previous
methods, also on tasks where paired training data does not exist. Figure 2.4
shows some examples of tasks that can be carried out with a CycleGAN.
This Figure shows, on the top row, from left to right, how the network can
learn how to translate landscape pictures into Monet paintings, zebras into
horses, summer into winter and vice-versa. On the bottom row is showed
how this model can learn, given a collection of painting of famous artists,
how to render a picture into the respective style.

2.4 many-to-one mappings

Using a simple cycle-consistent GAN may restrict the learning of a function
where there is a many-to-one mapping. The cycle loss aims at minimizing the

10 background

point-wise distance between the original x and the reconstruction f(g(x)), and
so implicitly is supposing a bijective mapping between the two domains X and
Y. The problems that may arise in case CycleGANs are used for learning such
non-bijective mappings are discussed by Bashkirova, Usman, and Saenko in
[27].

In this paper, the authors analyze the one-to-many mapping problem in
image-to-image translation. In such a scenario, a cycle-consistent model is
not optimal for learning the function for mapping images from the lower
dimensionality domain into one of the many correspondings. They show how
the model learns how to hide information useful to reconstruct the input
image, sampled from the higher dimensionality domain, in the generated
images. Suppose the mappings f : X → Y and g : Y → X, where for every
y ∈ Y there is only one corresponding x ∈ X while for every x ∈ X there are
many y ∈ Y corresponding images. The cycle loss introduced in [26] aims
at minimizing ||y− f(g(y))||1, thus given a generated x̃ = g(y) the network
used for approximate g must learn how to reconstruct the one y taken as
input at the beginning of the cycle among the many. To accomplish this task
better, the network approximating the function f may learn to hide some
useful information for reconstructing the original y in a low amplitude noise
that cannot be seen by human eyes, which is low enough to be ignored by
the Discriminator. Those models are then susceptible to introducing low
amplitude noise to the input that can destroy the hidden signal. In this paper,
the authors also present two possible self-defences. They propose to include
a low amplitude Gaussian noise before performing the reconstruction

||y− f(g(y) + kñ)||1 ñ ∼ N(0, 1), k amplitude

for hiding any low amplitude noise carrying information encoded by the
network f and forcing g to ignore those signals. Another proposed solution
is to add a Guess Discriminator to distinguish between actual input image
y and reconstructed ones f(g(y)) to identify the hidden information stored
on the generated one. Thus the network g must then learn how to produce
authentic-looking reconstructions indistinguishable from the sampled ones
with no low amplitude noise.

In our case, we want to find a way to prevent this self-attack from happen-
ing and be able to learn a function that can identify the many corresponding
images, given one from the lower dimensionality domain, and lets us sample
from this distribution. The idea is to store information necessary to perform
the operation of sampling a certain image among those in a vector. This
way, it is possible to use this vector to condition the one-to-many network
and generate different images given the same input. There are in literature
various approaches aiming at resolving this problem but we will focus on
two of them in particular: one proposed by Guo et al. [31], that lays on the

2.5 variational auto encoder 11

idea introduced by the Variational Auto Encoders (VAE) [29], and one by Li et al.
[32].

2.5 variational auto encoder

In [29], Kingma and Welling propose a method for training a network for
generating data belonging to an unknown distribution p(x) given a set X
of known x ∼ p(x). The idea is to approximate a function f(z) such that
x̂ = f(z) ∼ p(x), where z is a random variable sampled from a known distri-
bution, e.g., z ∼ N(0, 1). Training such network means finding the function fθ,
parameterized over θ, that maximizes the probability of generating data in X

p(x) =

∫
pθ(x|z)p(z)dz ,

where pθ(x|z) is the probability distribution of the data generated by ftheta.
Here pθ(x|z) is modeled as a Gaussian, i.e., pθ(x|z) = N(x|fθ(z), σ

2), so that
there is a set of z that can generate something similar to each x ∈ X and we
can use gradient descent to train fθ and gradually increase P(x ∈ X). For
training fθ, may be possible to sample n z ∼ N(0, 1) for each x ∈ X and then
maximize

p(x) =
1

n

∑
i

p(x|z) .

Since p(x|z) is an isotropic Gaussian, the negative log probability of x is
proportional to the squared Euclidean distance between fθ(z) and x. Since
almost every z has p(x|z) almost zero, performing a train like this requires
sampling an extremely high number of z vectors. To overcome this, VAEs aim
to improve the sampling strategy, restricting possible z values to those that
will likely produce x. We want then to add a new network qθ(x) trained
for producing a distribution p(z|x) of those z values that maximizes the
probability of generating a given x. If we model the distributions produced
by q as N(µq, σ

2
q), we can train the whole model by sampling x ∈ X and

z ∼ qθ(x) and maximizing

log(p(x|z) − KL[p(z|x)||p(z)] ,

where KL represents the Kullback-Leibler (KL) divergence. Considering
p(x|z) = N(f(z), σ2), p(z|x) = qθ(x) = N(µq, σ

2
q) and p(z) = N(0, 1), Kingma

and Welling prove that we can train a VAE by minimizing the objective

Lvae = ||fθ(x) − x||
2
2 + 0.5(σq + µ

2
q − 1− log(σq)) . (2.5)

Performing a gradient descent over this loss function may be impossible due
to the impractical gradient descent over the operation of sampling z. Thus
the authors introduce the reparameterization trick. The reparameterization trick

12 background

Figure 2.5: VAE without reparameterization trick (left) and with it (right) [28]. The
part in red represents the sampling operation through which the gradient operation
cannot be performed.

is how they allow the propagation of the gradient through the sampling of z
operation by sampling a vector ε ∼ N(0, 1) and then element-wise multiplying
and adding this vector with the output of the network qθ(x) = µq, σq:

z = µq + σq � ε .

The reparameterization trick and why it is needed is schematized in Figure
2.5. The VAE is so-called because of the architecture composed by an encoder
for generating z distribution and a decoder for generating the output, that
reminds the classical Auto Encoders. When this model is optimally trained we
expect that the distribution p(z|x) = N(0, 1), thus at inference time we can
sample z ∼ N(0, 1) and feed the generator with it, producing a x ∼ p(x).

2.6 conditional variational auto encoders

Sohn, Lee, and Yan propose in [30] a method for applying the VAE architec-
ture to the one-to-many mapping. The idea is to create a model capable of
learning a function fθ(x, z) that, given an input x, samples one of the many
corresponding y of the codomain associated with x. In our SAR despeckling
problem, this is to sample one of the possible speckled images y from the
distribution whose underlying scene is x. The architecture proposed is called
Conditional VAE (CVAE) [30]. Like VAEs, CVAEs use an encoder to obtain a z
distribution that is the one that maximizes the probability of generating a
given y and then feed an input x together with the z to a Generator network
that should produce y. Thus, we want to produce an output y that is con-
ditioned by z over the input x. Sohn, Lee, and Yan present an encoder that

2.7 cycle conditional variational auto encoders 13

Figure 2.6: CVAE architecture at training (left) and inference (right) time [28].

takes as input both the input x and the desired output y and produces a
distribution from which a z is sampled using the reparameterization trick,
then the decoder is fed with x and z to produce something that should be as
similar as possible to the original y. Similarly to how is introduced in [29],
during training, given x and a corresponding y, we can minimize the loss

Lcvae = ||fθ(x, z) − y||
2
2 + 0.5(σq + µ

2
q − 1− log(σq)) ,

µq, σq = q(x, y) ε ∼ N(0, 1) z = µq + σq � ε .

After an optimal training, we can expect that q(x, y) = N(0, 1), so at inference
time, given an x, we can sample z ∼ N(0, 1) and use this to condition the
generation of y = fθ(x, z). The process of training and inference of a CVAE is
schematized in Figure 2.6. Training this model requires labelled data such
as a dataset of corresponding pairs of input x and expected output y. Thus
we want to go one step further and exploit this architecture for learning a
one-to-many mapping in an unsupervised fashion, where pairs {x, y} are not
available.

2.7 cycle conditional variational auto encoders

Guo et al. propose a method for using a CVAE architecture in a cycle consistent
model for resolving the many-to-one mappings problem called CycleCVAE
[31]. In [31], the authors propose a cycle consistent model where the output of
the one-to-many mapping are conditioned over a latent variable z ∼ N(0, 1).
Given two domains X and Y, where Y has higher dimansionality than X, we

14 background

want to learn two mappings f : X× Z → Y and g : Y → X that are cycle
consistent. The two cycles that compose this model are

{x, z}→ ỹ→ x̂

y→ {x̃, z}→ ŷ ,

where we want to obtain reconstructions that are as closer as possible to the
original input, i.e., x̂ ≈ x and ŷ ≈ y. Stochastically handling the first cycle
is easy, after sampling a z ∼ N(0, 1) we can generate ỹ = fθ(x, z) and then
uniquely define x̂ = gθ(ỹ). We can then train those networks by minimizing

Lcyclecvae,x = ||x̂− x||1

as in 2.4 [26]. Handling the second cycle is, instead, less trivial. Given y, we
may compute x̃ = gθ(y) and then sample z ∼ N(0, 1) to find the ŷ = fθ(x̃, z)

that minimizes ||y− ŷ||1. In [29] authors prove how stochastically handling
this cycle is impossible, since it would require an intractable number of z
samples. To train this model, the authors propose structuring this second
cycle using a CVAE architecture. Thus, they define a new network qθ for
learning a function that given any finds a distribution p(z|y) of zs that
maximizes the probability of recreating the same y through fθ(x̂, z) through
the reparameterization trick. Thus the second cycle becomes

y→ {x̃ = gθ(y), z ∼ N(µq, σ
2
q)}→ ŷ = f(x̃, z)

µq, σq = q(y) ε ∼ N(0, 1) z = µq + σq · ε .

Note that the q(y) function proposed here differs from that proposed in [30]
q(x, y), since conditioning the generation of z also over x̃ does not give any
new information to the network, since x̃ is merely a function of y. This second
cycle is then trained by minimizing both the reconstruction error and KL
divergence

Lcyclecvae,y = ||y− ỹ||1 + KL[qθ(y)||N(0, 1)] .

The total loss then becomes

Lcyclecvae = ||x− x̂||1 + ||y− ŷ||1 + KL[qθ(y)||N(0, 1)] (2.6)

x ∼ p(x), y ∼ p(y), x̂ = gθ(fθ(x, z ∼ N(0, 1)), ŷ = fθ(gθ(x), z ∼ qθ(y)).

As in [30] and [29], at inference time new samples of y are generated, starting
from the same x, by sampling different z ∼ N(0, 1).

2.8 asymmetric generative adversarial networks 15

2.8 asymmetric generative adversarial networks

Another solution we consider for solving the hidden embedding problem
is that proposed by Li et al. in [32]. In this paper, the authors propose
an architecture similar to the CycleCVAE called AsymmetricGAN. Given two
domains X and Y, where Y has a higher dimensionality than x, we want
to learn the two mappings Y → X and X → Y, that is a one-to-many. Thus
the idea is to augment the X domain by mapping each y ∈ Y with a pair
{x ∈ X, z}, z sampled from a known distribution like a standard Gaussian.
We want then to learn the two functions f : X×Z→ Y and g : Y → X using
two cycle consistent GANs fθ and gθ, with their Discriminators dy and dx
respectively, together with a third function q : Y → Z for embedding the
information necessary to generate a given y into an auxiliary variable z ∈ Z,
learned by qtheta. We can then define the two cycles

{x, z}→ ỹ→ {x̂, ẑ}

y→ {x̃, z̃}→ x̂ .

The first cycle is handled by sampling z ∼ N(0, 1) for then generating
ỹ = fθ(x, z). The networks are trained in order to generate the ỹ that can
reconstruct both x̂ = gθ(ỹ) and ẑ = qθ(ỹ) that minimizes the errors ||x− x̂||1
and ||z− ẑ||1. The second cycle aims at reconstructing a given y via generating
x̃ = gθ(y) and z̃ = qθ(y) that minimize the error ||y− ŷ||1, where ŷ = fθ(x̃, ỹ).
During the second cycle, an adversarial loss is introduced for forcing the
Encoder qθ to learn how to map the information necessary for reconstruct-
ing y into an auxiliary variable z that must be indistinguishable from those
sampled by a standard Gaussian. This way, a Discriminator dθ is introduced
for identifying whether a given input z has been generated by qθ or sampled
from p(z) = N(0, 1). The loss used for training this model is

Lasym = La,x +La,y + λ1La,z + λ2Lc,x + λ3Lc,y + λ4Lc,z , (2.7)

where the La terms refer to the adversarial loss [21] and the Lc to the
cycle consistency terms introduced by [26], each properly weighted by a λ
parameter.

3
B A C K G R O U N D O N S A R I M A G E D E S P E C K L I N G

This chapter is provided to give an overview of the state-of-the-art approaches
used to reduce the speckle in SAR images. After a brief introduction to
standard filtering algorithms, we focus on Deep Learning approaches, which
is the class of methodologies our method belongs to. Deep Learning literature
is presented by discriminating generative and non-generative models. While
the former make use of Generative Adversarial Networks for learning a
mapping from the Speckled SAR domain to the Speckle-free one, the latter
are trained using standard supervised learning.

3.1 speckle model

One of the biggest problems of the SAR despeckling task is to identify
the distribution of the speckle that corrupts the clean underlying image
containing the information of interest. In the SAR despeckling literature, the
speckle that corrupts those images is supposed to be multiplicative. Let us
assume y to be a speckle-corrupted image and x the corresponding clean one,
then the former is corrupted by a speckle n such that

y = n · x ,

or equivalently, in the logarithm domain,

logy = logn+ log x .

In supervised methods, a dataset of SAR images is built by supposing the
speckle n to be gamma distributed with unit mean and variance 1

L , L being
the number of looks of the SAR image:

p(n) =
LLnL−1e−Ln

Γ(L)
, n > 0 , L > 0 .

However, this model only applies to homogeneous regions of the SAR image,
e.g., grassland region, and it is not suitable in moderate and extremely
heterogeneous areas. Indeed, the actual speckle distribution depends on the
underlying scene, e.g., it changes from urban to wastelands areas. Thus, a
starting point for our method is to find a function able to find the relation
between the underlying scene and the speckle distribution and generate noise
accordingly.

17

18 background on sar image despeckling

3.2 state-of-the-art approaches

3.2.1 Classical Algorithms

The first class of methodologies are those which make use of adaptive filters
like [1], [2] and [3]. In those papers, the authors propose algorithms that use
a moving window over the entire image. [1], and [2] compute a linear combi-
nation of the central pixel intensity and the average intensity of neighbour
pixels. Instead, [3] use an exponentially damped kernel that behaves in a
fashion similar to a low-pass filter or an identity filter, depending on whether
the local coefficient of variation is small or large. Even if those algorithms
have good results under some circumstances, they are highly constrained by
choice of the window and, in general, are applicable only over homogeneous
areas and characterized by blurry artefacts.

Another class of algorithms are those which reduce the noise by thresh-
olding the coefficients of the Discrete Wavelet Transform (DWT) of the log-
transformed single look image. Xie, Pierce, and Ulaby [4] outperforms the
enhanced filter of [1] by integrating the wavelet denoising technique with a
regularisation procedure based on Markov random fields (MRF). Argenti and
Alparone [5] apply a Minimum Mean-Square Error (MMSE) filtering in the
undecimated wavelet domain, reaching better performances than [2]. Those
methods still fail in preserving the backscatter mean over homogeneous areas
and details, and generate artificial artefacts.

Recently, Non-Local (NL) filtering methods have been introduced. Unlike
local filters, NL means filtering algorithms, like those proposed in [6] and [7],
take a mean of all pixels in the image, weighted by how similar these pixels
are to the target. This class of algorithms gets better results it terms of post-
filtering clarity and detail than local mean algorithms. Nevertheless, those
algorithms are very computationally expensive. A NL filtering algorithm is
the Block-Matching 3-D (BM3D) denoising algorithm proposed in [6]. In this
paper, authors group image patches into 3-D arrays based on their similarity
and perform a collaborative filtering procedure to obtain the 2-D estimates
for all grouped blocks. This idea is then extended by Parrilli et al. to deal with
SAR images. The SAR-Block-Matching 3-D (SAR-BM3D) [7] algorithm groups
similar image patches through an ad hoc similarity measure that takes into
account the actual speckle statistics and by adopting the local linear MMSE
(LLMMSE) criterion. Given that it is considered one of the best approach
among non-learnable filtering methods, we used SAR-BM3D as one of the
baselines to compare our results with (see Chapter 5).

Approaches using a Total Variation (TV) term are also popular [8]. Those
methods combine a data fitting term with a TV regularization for encouraging
smooth results while preserving edges. In those algorithms, the weight given
to the regularization term is crucial. Large values may lead to over-smoothed

3.2 state-of-the-art approaches 19

results without properly preserving edges and details, while small values
may not sufficiently remove the noise.

Finally, it is worth mentioning those frameworks that use multi-temporal
stacks of SAR images that use the extracted temporal statistics to develop
space-adaptive filters for the single image. Ferretti et al. [9] propose an algo-
rithm that aims at identifying Punctual Scatters (PS), with high reflectivity
values and phase stability over the whole period of observation, and Dis-
tributed Scatters (DS), composed of many neighbouring pixels sharing similar
values but having low average temporal coherence. The proposed solution
wants to spatially average the data over statistically homogeneous areas
without compromising the identification of coherent point-wise scatterers. It
identifies DSs by applying the two-sample Kolmogorov–Smirnov (KS) test
within an estimation window where pixels share similar statistics of the
considered centre pixel. Then, the obtained DSs identify homogeneous areas
in the image and their intensities are averaged to reduce the speckle while
preserving PSs. We suppose that, at least under some circumstances in which
the underlying scene does not change significantly over time, this algorithm
will calculate an exact estimate of the despeckled image. This approach is cur-
rently considered as the state-of-the-art for SAR image despeckling. However,
it needs entire temporal data stacks and it is based on the assumption that
the underlying scene does not change significantly over time. The approach
proposed in this work of thesis, instead, propose a solution for achieving
similar results with respect to [9] over a single speckled SAR image, allowing
comparable de-speckling performances even in those scenes where a certain
time stability cannot be achieved.

3.2.2 Deep Learning Approaches

In recent years, Deep Learning showed outstanding performances over vari-
ous computer vision tasks. This class of algorithms has then been proposed
for the exploration of the remote sensing field, for tasks like the SAR despeck-
ling problem investigated in this thesis. In the literature, we can distinguish
among two different DL approaches: non-generative models and generative
models.

non-generative models Non-generative models, which use classical
supervised learning techniques, need paired data to be trained. In SAR do-
main there is no such pair of speckled and speckle-free images available, so
the way the train dataset is built is a critical choice for those methods. In
literature we can find various methods that propose to build this dataset rely-
ing on the knowledge that can be gathered over a temporal stack. Chierchia
et al. propose a deep CNN trained using a dataset where the clean image is
obtained by averaging a temporal stack and keeping only the regions with

20 background on sar image despeckling

no significant temporal changes. Those models suffer from the limitations
coming from a dataset built this way and may have to deal with data scarcity
at training time.

One of the methods that aim at overcoming this limitation is that proposed
by Lattari et al. [11]. The authors propose an encoder-decoder architecture
that extracts high-level features from the input image and then upsamples
those features until the exact dimensions of the input. For not losing any
information during the upsampling process, a set of skip connections con-
catenate each downsampling step to the corresponding upsampling one, i.e.,
the one with equal dimensions. The network is trained accordingly to the
residual paradigm: the function learned does not aim to extract the clean
image directly, but rather a residual n such that, given x as input and y as
ground truth,

y = x+n .

This approach is proven to be effective in previous related works [12]. Dif-
ferently from other approaches which work on the logarithm domain, even
if they are assuming a multiplicative noise model, they are not calculating
the residual on the logarithms of the synthetic image and the ground truth.
During the training phase, they feed the network with corrupted images and
the corresponding targets. This dataset is built by making assumptions on
the speckle distribution and then sampling from this distribution a noise
mask multiplied to a ground truth greyscale aerial optical image, obtaining
the corresponding noisy. The model aims at minimizing a Minimum Squared
Error loss between the ground truth residual n = y− x and the one computed
by the network ñ = φ(x,Θ)

Lmse =
1

2N

N∑
i=1

||(φ(xi, Θ) −ni)||
2
2 .

Then, the network is fine-tuned by feeding it with images taken from the
actual SAR domain. Thus, starting from a clean image obtained by computing
the mean of a temporal stack of real speckled SAR images, they corrupt each
patch with artificial noise as done in the previous step. During this finetuning,
the network can learn how to deal with higher resolution images from the
actual SAR domain. For improving the performances of the network, a
properly weghted Total Variation term is added to this loss in order to have
smoother outputs and remove undesired artifacts, this TV term is computed
as

Ltv =
∑
i,j

e−|∇hxij||∇hx̂ij|+ e−|∇vxij||∇vx̂ij|

where ∇hx̂ and ∇vx̂ are gradients computed on reconstructed image on both
horizontal and vertical directions and defined as

∇hx̂ij = x̂i,j+1 − x̂i,j

3.2 state-of-the-art approaches 21

∇vx̂ij = x̂i+1,j − x̂i,j
while ∇hx and ∇vx are the same gradients but computed on the speckle-free
reference image. Even if this work demonstrated outperforming despeckling
capabilities, it is trained on simulated speckled images which prevents the
model from learning the real distribution of SAR data. Our work proposes a
solution for overcoming this limitation. We compared the results obtained
by our approach with the one presented in [11] during the conducted experi-
ments (see Chapter 5).

One of the works that propose an alternative solution to the data simulation
is that proposed by Dalsasso, Denis, and Tupin [18]. Here, the authors present
a semi-self supervised approach, called sar2sar, based on the rationale of
noise2noise [17]. The noise2noise model wants to deal with a situation in
which pairs (y, x) of noisy and corresponding clean images are not available
for training a model in a supervised fashion, minimizing the `2 loss

EX[||φ(y,Θ) − x||
2] .

For doing so, the authors propose to use noisy pairs (y1, y2), where both
samples are drawn from the same conditioned distribution pY|X, i.e., are
two different noisy realizations with the same underlying scene x, aiming at
minimizing an equivalent loss

EX[||φ(y1, Θ) − y2||
2] .

The authors make two assumptions: the scene x is static,i.e., does not change
significantly over time, and the noise centred, i.e., EY|X[y] = x. This method
is then applied to the SAR despeckling problem in [18]. The authors propose
to apply the method proposed in [17], taking into account changes that may
occur between two different SAR images taken over the same area in distinct
moments. Given a network that can estimate x̂1 and x̂2 from y1 and y2, the
authors propose to partially compensate changes that may occur in y2 with
the image

y1 − x̂1 + x̂2

which more closely resembles y2. The sar2sar approach then combines the
idea introduced in noise2noise with the compensation for changes over
a temporal series of SAR images, performing the restoration into the log-
domain by a deep network. Authors divide the training into three steps. At
first the despeckling network is pre-trained in a supervised fashion over a
synthetically generated dataset, then on pairs of images extracted randomly
from a time-series, compensating the second image for changes based on
reflectivities estimated with the network trained in previous step. Finally, a
refinement step is performed using the updated network weights to obtain
better compensation for changes. Since the first step uses a supervised ap-
proach, the authors refer to the sar2sar as a semi-supervised algorithm. This

22 background on sar image despeckling

work aims at overcoming issues related to those models trained on artificial
noise. Even though the network is pre-trained over a synthetic dataset, the
actual training phase tries to make the network learn how to deal with ac-
tual SAR speckle by compensating images for changes. While performing
this compensation, though, it is essential to point out that the noise mask
extracted from the compensated image may be highly correlated with the
objects contained in the underlying scene. For optimal compensation, the
stack of images used should not have significant changes that drastically
influence the speckle over time, a condition that may be hard to achieve in
particular areas, e.g., urban areas.

Another semi-self supervised approach is that proposed by Mullissa et
al. in [20]. In this paper, the authors present a model that not only aims
at learning a function for cleaning speckled images but at the same time
attempt at estimating an accurate SAR speckle distribution. In particular,
their DeSpeckNet model does not use any synthetic dataset for training. This
model is composed of two Convolutional Neural Networks: one for learning
a function that takes a noisy image y as input and outputs the corresponding
clean one x, and another CNN for extracting the noise n, such that they can
reconstruct the original y as

y = n · x .

Those networks do not use any pooling layer, in order to avoid upsampling
layers with all their extra computational burden and complexity, and are
trained using three different losses properly weighted:

L = λcleanLclean + λnoisyLnoisy + λtvLtv .

The first element of this loss function is a Mean Squared Error loss between a
clean label x and the output of the despeckling network x̂:

Lclean(x, x̂) =
1

N

N∑
i=1

(xi − x̂i)
2 ,

where N is the number of pixels in a training patch. The second one is a MSE
loss between the original noisy image y and the reconstruction, obtained via
the noise estimation n computed by the noise extraction network, ŷ = nx̂

Lnoisy(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)
2 .

A Total Variation loss is then added for smoothing the clean image:

Ltv(x̂) =
∑
i

|∇x̂i| .

This term minimizes the absolute differences between neighboring pixel-
values, enforcing smoothness while preserving edges. The authors split the

3.2 state-of-the-art approaches 23

training into two steps: first, they train the model in a supervised fashion
by feeding it with pairs of clean and speckled images, then the model is
finetuned with speckled SAR images only. In the first step, the pairs of
images are extracted from multi-temporal stacks of SAR images, finding noisy
patches stable in time, i.e., the scene must not have large temporal variation.
The algorithm then pairs those images with the corresponding one computed
via a mean over the stack. In the unsupervised step, the algorithm feeds the
network with speckled images only, without any clean label; calculating the
clean term of the loss function Lclean as an MSE between the clean estimation
x̂ and the noisy input y and reducing the associated weight λclean:

Lclean,2(y, x̂) =
1

N

N∑
i=1

(yi − x̂i)
2 .

This loss has the effect of maintaining the solution close to the original image
to preserve spatial structures while the other losses smooth (Ltv) and de-
noise (Lnoisy). The training may be highly biased on the choice made while
building a dataset for step one. It may present the same limitations described
for [18]. By looking for time-invariant images, the dataset will lack those
captured in particular areas that cannot be stable over time. This way, it is
impossible to train the network over a complete set of images capturing all
the possible scenarios.

generative models Another class of Deep Learning approaches is that
of generative models. The idea behind those approaches is to exploit the
GANs capabilities to learn those high level features that characterize the clean
images domain that a simple MSE loss cannot capture.

The first generative model we want to analyze is that proposed by Wang,
Zhang, and Patel in [15]. This approach lays on the idea that the MSE loss
used in previous methods measures the error for each pixel independently
from the rest of the image without putting any attention on higher-level
features. They propose to use a GAN to overcome this issue and force a
network to learn how to map speckled images into the clean domain and
preserve those features. The dataset used for training this model is generated
by sampling noise n from a Gamma distribution and then multiplying it to
the clean image x:

y = n · x .

The model aims at minimizing a loss function composed by three terms:

L = Le + λaLa + λpLp .

The Le term is a per-pixel Euclidean loss between y and the predicted
x̂ = G(y)

Le =
1

WH

W∑
w=1

H∑
h=1

||G(yh,w) − xh,w||22

24 background on sar image despeckling

where W ×H is the size of the input images. The term La is the adversarial
loss defined in [21], and serves as a guide for the Generator network to learn
how to produce images that are indistinguishable from those sampled from
the set of ground-truth clean images:

La = −
1

N

N∑
i=1

logD(X̂i) ,

where X̂ is a set of N images produced by the network G. The last term Lp
is a perceptual loss, computed as an euclidean distance between the two
high level feature vectors of the input and output images of G, and helps the
generator network learning to keep unchanged those features of the input:

Lp =
1

WH

W∑
w=1

H∑
h=1

||V(G(yh,w)) − V(xh,w)|| .

The V function extracts the feature vector from the images, those vectors are
obtained from the output of the relu7 layer of a pretrained VGG16 network.
Combining those two losses with the Euclidean distance makes it possible
for the despeckling network to learn how to effectively reduce the speckle
while preserving those features that give the clean image a smoother look,
preserving edges.

Liu, Li, and Jiao [16] propose a different approach for exploiting the ef-
ficiency of GANs: they combine a Euclidean per-pixel distance between
predicted output and ground-truth with an adversarial loss for preserving
higher-level features. In [16], the authors present a GAN with a Generator
architecture composed of several convolutional layers without any down-
sampling and a 70× 70 PatchGAN [22] Discriminator. For the training phase,
authors build a dataset via sampling multiplicative noise n from a gamma
distribution and applying it to a clean greyscale optical image x:

y = n · x .

Moreover, use a combination of two different losses for making the generator
learn the despeckling function. The first loss is a weighted sum of an Eu-
clidean per-pixel distance and a Total Variation term, and serves for making
the generator network learn the mapping from the speckled domain to the
corresponding clean image while at the same time preserving sharp edges
and details:

Lg = Le + λtvLtv

where

Le =
1

WH

W∑
w=1

H∑
h=1

||G(yw,h) − xw,h||22

3.2 state-of-the-art approaches 25

Ltv =

W∑
w=1

H∑
h=1

√
(x̂w+1,h − x̂w,h)2 + (x̂w,h+1 − x̂w,h)2

and x̂ = G(y). The second is an adversarial loss: this loss is used for training
the Discriminator and making it learn high-level features of the clean images
and to use them for distinguishing those generated by G from those coming
from the ground-truth dataset. At the same time G aims at maximizing the
error of the Discriminator, thus learning how to produce clean images that D
is not able to distinguish from the real ones. The D network takes as input a
noisy/clean pair, that may be composed by concatenating noisy images with
the corresponding clean label, i.e., the s = {y, x} pairs, or by concatenating
input and corresponding output of the Generator, i.e., t = {y, x̂}. Thus the
adversarial loss[21] becomes:

La = max
D

E[log(D(s)) + log(1−D(t))] .

Final loss is then
L = La + λgLg .

Both [15] and [16] are assuming a fixed speckle distribution. As already
discussed for [11], the speckle distribution of real SAR images depends on the
underlying scene, thus those models will result in having lower performances
over those areas whose speckle is very dissimilar to the synthetic one.

Gu, Zhang, and Wang [14] propose a generative model that learns how to
sample noise patch from the real speckle distribution p(x), without making
any assumptions about the distribution itself like previous works, by training
a noise generation network using an adversarial loss. In [14] the authors build
a dataset of noise samples starting from homogeneous patches taken out of
real SAR images, e.g., areas of oceans, wastelands or farmlands. The formula
used for extracting the speckle from those patches is:

log(n) = log(ŷ) − mean(log(ŷ)) ,

where n is the multiplicative speckle, ŷ is a homogeneous area, and the
operation mean calculates the mean value. With a large enough dataset of
noise samples, a noise generator network can be trained using the adversarial
loss of Equation 2.1 [21]:

min
G

max
D

Lgan(D,G) = Ex∼p(x)[logD(x)] + Ez∼N(0,1)[1− logD(G(z))] ,

where p(x) is the distribution of real SAR noise samples, G is the noise
generator network and D the discriminator. An optimally trained network G
can be able to sample noise patches from the distribution p(x) itself. Using
this network, the authors build a dataset of clean/speckled image pairs for
proceeding in the training of the despeckling network. The authors propose to

26 background on sar image despeckling

use a dataset of grayscale optical aerial images with a runtime generated noisy
counterpart, obtained by feeding G with a z vector, sampled from a standard
Gaussian distribution, and adding the result to the image. The despeckler is a
CNN, with a downsampling and an upsampling path connected via residual
connections, which add the corresponding downsampling layer output to the
upsampling one. The loss used for the training is

LΘ =
1

2WH
||f(x,Θ) − y||22 ,

where x and y are the noisy input image and its corresponding clean label,
both with a size of W ×H. The generator network trained this way will gen-
erate noise samples sampled from the noise distribution of the homogeneous
areas extracted before training. This way, despeckler will struggle on areas
with a different speckle distribution from that learned by the generator.

Based on this state of the art analysis, we want to propose a solution that
can learn how to despeckle SAR images in an unsupervised fashion. In partic-
ular we take inspiration from the unpaired image to image translation method
proposed by Zhu et al. [26]. We want to overcome the lack of speckled/clean
SAR image pairs by training two cycle-consistent networks: a Speckle Genera-
tor and a Despeckler. The Speckle Generator is capable of learning the actual
SAR speckle distribution for generating speckle corrupted images belonging
to the same distribution of the real ones while the Despeckler can exploit this
knowledge for learning how to despeckle those images.

In the following Chapter we will describe in detail the proposed solution
and the dataset used for training and validate the model.

4
P R O P O S E D S O L U T I O N

In this chapter we describe in detail the architecture and the training of the
solution we propose in this thesis work. The proposed solution is composed
by two networks: the Despeckler (Gd) and the Speckle Generator (Gn). The
Despeckler is trained in order to learn how to reduce the speckle of real
SAR images. The Speckle Generator is trained in order to learn the speckle
distribution over the input clean patch and to sample one of the infinite
possible speckle realizations via a Gaussian vector. The two networks are
trained in an unsupervised fashion, using the unpaired image-to-image
translation method proposed in [26] and handling the one-to-many mapping
on the speckle generation side using the technique of [31]. Differently from the
CycleGAN model of [26], the training of the two networks is not performed
using two Generative Adversarial Networks, due to the well known training
stability problem they are subject to, as pointed out in [23]. Instead, we use
the improved Wasserstain GAN training, with Gradient Penalty, proposed in
[25].

4.1 architecture

For the networks architecture, we take inspiration from the UNet [13] archi-
tecture. This architecture, originally implemented for image segmentation
tasks, has proven to have awesome performance for SAR image despeckling,
as showed by [11]. Both Despeckler and Speckle Generator are composed
by 5-step down-sampling and an up-sampling paths, connected via skip
connections that concatenate the output of a down-sampling step with the
corresponding up-sampling one. Each step is composed by a set of two
3× 3 convolutional layers with 32 starting filters and doubling this number
on every step. Those steps also comprise Batch Normalizations and ReLU
activation functions. The down-sampling operation is performed by a 2× 2
MaxPooling layer, while the upsampling operation by a 2× 2 with a stride of
2 Transpose Convolution. The last layer of the network is a 1x1 convolutional
layer for reducing the number of the last convolutional layer filters from 32

to 1. The Despeckler takes as input a logarithmic SAR image y and outputs
the logarithmic residual speckle n and calculates the despeckled patch x via

log(x) = log(y) − log(n) .

The architecture of the Despeckler is shown in Figure 4.1.

27

28 proposed solution

Figure 4.1: Architecture of the Despeckler. The network takes as input a 128× 128
logarithmic SAR patch x and outputs the residual speckle ñ for computing the
despeckled image x̃ = y− ñ. The architecture is composed by a down-sampling and
an up-sampling path, with 5 steps each connected via channel-wise concatenation
skip connections. Each step comprises a set of two blocks made of 3× 3 Convolution,
Batch Normalization and ReLU activation function. The down-sampling operation is
performed by a 2× 2 MaxPooling layer, while the up-sampling by a 2× 2 Transpose
Convolution with a stride of 2. Finally, a 1× 1 convolution reduces the channels of
the last convolution from 32 to 1.

The Speckle Generator takes as input a logarithmic clean patch x and a
gaussian vector of length 512 and outputs the logarithmic residual speckle n.
The inputs of this networks are combined by replicating the vector 128× 128
times forming a tensor of shape 512× 128× 128 and channel-wise concatenat-
ing this tensor with the input patch. The generated SAR patch y is calculated
via

log(y) = log(x) + log(n) .

The architecture of the Speckle Generator is shown in Figure 4.2.

4.2 training 29

Figure 4.2: Architecture of the Speckle Generator. The network takes as input a
128× 128 logarithmic clean patch x and a vector of length 512 and outputs the
residual speckle ñ for computing the generated SAR image ỹ = x+ ñ. The input
tensor is composed by the channel wise concatenation of the patch with the vector
replicated until the shape of 512× 128× 128. The architecture is composed by a
down-sampling and an up-sampling path, with 5 steps each connected via channel-
wise concatenation skip connections. Each step comprises a set of two blocks made
of 3× 3 Convolution, Batch Normalization and ReLU activation function. The down-
sampling operation is performed by a 2× 2 MaxPooling layer, while the up-sampling
by a 2× 2 Transpose Convolution with a stride of 2. Finally, a 1× 1 convolution
reduces the channels of the last convolution from 32 to 1.

4.2 training

We trained our networks using the WGAN-GP algorithm [25], due to the
well known training problems of classical GAN models, as shown in [23], the
improved version of the WGANs [23] which showed to resolve vanishing and
exploding gradient problems. Thus, we introduced two Critics networks, Dd
and Dn, as defined in the reference paper [23]. Those networks are composed
by 5 down-sampling steps, which comprises a 3× 3 convolutional layer with
a number of channels that starts from 32 and doubles at every step, a ReLU
activation function and a 2× 2 MaxPooling. The output of those network is
a real number and is obtained trough a one-layer MLP. The architecture of
those networks is represented in Figure 4.3.

30 proposed solution

Figure 4.3: Critic networks architecture. Those networks are composed by 5 steps
of 3× 3 convolutional layer, ReLU activatin function and 2× 2 MaxPooling. The
final step is then flattened and fed to a 1-layer MLP for obtaining the score of the
input patch. Those networks do not make use of any Batch Normalization due to the
incompatibility of this layer with the improved WGAN training algorithm presented
in [25].

4.2 training 31

Figure 4.4: Encoder architecture. The Encoder input is the channel-wise concate-
nation of the despeckled patch x̃ = y−Gd(y) obtained from the logarithmic SAR
patch y with the residual speckle ñ = Gd(y). This network is composed by 5 steps
interleaved by 2× 2 MaxPooling layers. Each step is composed by two sets of 3× 3
Convolution, Batch Normalization and ReLU activation function. The number of
filters for each convolutional layer starts from 32 and doubles at each down-sampling
operation. The last downsampling is flattened and fed to two 2-layers MLP, with
1024 hidden units. Those two MLPs outputs the two vectors representing µ and
log(σ) of the N(µ, σ) distribution from which sample the latent vector z̃ using the
reparameterization trick.

32 proposed solution

Figure 4.5: Schema of the speckled loop. A logarithmic SAR patch y ∼ p(y) is
fed to Gd for computing the residual speckle ñ = Gd(y) and the corresponding
clean patch x̃ = y − ñ that minimizes the adversarial loss. The latent vector z̃
is then sampled from a Gaussian distribution N(µ, σ), where µ, log(σ) = E(x̃, ñ),
such that it minimizes the KL divergence introduced in [30]. Finally x̃ is corrupted
with a Gaussian noise η and z̃ and x̃η are used for building the reconstruction
ŷ = x̃+Gn(x̃η, z̃) that minimizes the cycle consistency loss ||y− ŷ||1.

For training our model, we split each training step in two loops, namely
the clean loop and the speckled loop. Let us define x a logarithmic clean
patch and y a logarithmic SAR patch taken from the training dataset. During
the clean loop we sample a vector z from a standard Gaussian distribution
and use this for generating a fake SAR patch ỹ, we then despeckle this patch
obtaining the reconstruction of the starting clean patch x̂. The speckled loop
starts by despeckling the y patch, obtaining a despeckled patch x̃, and by
generating a latent vector z̃ through an Encoder network (E), as introduced
by the CVAE [30] model, used for building the SAR image reconstruction
ŷ. The Encoder architecture, shown in Figure 4.4, is composed by a main
module and two MLPs. The main module is a 5 step CNN composed by
two blocks of 3× 3 Convolution, BatchNormalization and ReLU activation
function, each step followed by a 2× 2 MaxPooling layer. The convolutional
layer have a number of filters that starts from 32 and doubles every step. The
output of the main module is flattened and fed to the two MLPs. The MLPs
have 1024 hidden units and outputs two vector of length 512 representing
the µ and log(σ) parameters used for sampling the latent vector (̃z) using the
reparameterization trick. The Encoder input is the channel-wise concatenation
of the despeckled patch x̃ = y−Gd(y) obtained from the logarithmic SAR

4.2 training 33

Figure 4.6: Schema of the clean loop. A logarithmic clean patch x ∼ p(x) is corrupted
with a Gaussian noise η and fed to Gn together with a Gaussian vector z ∼ N(0, 1)

for computing the residual speckle ñ = Gn(x, z) and the corresponding SAR patch
ỹ = x+ ñ that minimizes the adversarial loss. Finally ỹ is used for building the
reconstruction x̂ = ỹ−Gd(ỹ) that minimizes the cycle consistency loss ||x− x̂||1.

patch y with the residual speckle ñ = Gd(y). However, the set of clean
images we are using is computed via the algorithm proposed in [9] over a
multi-temporal stack of SAR images, they presents a residual low-amplitude
speckle. Since this residual resulted to influence the generation of speckle,
we add, at training time, a low-amplitude Gaussian noise in order to force
our networks to ignore this residual. In particular, we added this noise on
the clean patch x, when feeding it to the Speckle Generator at the beginning
of the clean loop, and on the despeckled patch x̃ right before generating the
reconstruction ŷ at the end of the speckled loop. The formula we used to
corrupt a clean patch x is:

xη = log(exp(x) + η)

η = 0.05× ε ε ∼ N(0, 1) .

The clean and speckled loop are schematized in Figure 4.6 and Figure 4.5
respectively.

The loss function we introduced is composed by 4 terms. Let us define
p(x) the distribution of the logarithmic clean patches, p(y) the distribution of
the logarithmic SAR patches, x̃ = y−Gd(y) the despeckled patch obtained
from y ∼ p(y) and ỹ = x+Gn(x, z) the fake SAR patch generated by the
Speckle Generator starting from the clean one x ∼ p(x) and a Gaussian vector
z ∼ N(0, 1). The first two terms represents the adversarial losses, introduced
in Equation 2.3, for the Despeckler and the Speckle Generator:

La,d = Ey∼p(y)[Dd(x̃)] − Ex∼p(x)[Dd(x)] + λgpEẋ∼p(ẋ)[(||∇Dd(ẋ)||2 − 1)2],

La,n = Ex∼p(x)[Dn(ỹ)] − Ey∼p(y)[Dn(y)] + λgpEẏ∼p(ẏ)[(||∇Dn(ẏ)||2 − 1)2].

34 proposed solution

As suggested in [25], we set λgp = 10. Given a despeckled image x̃ and a
speckled generated ỹ, let us define the reconstruction of y and x respectively
x̂ = ỹ − Gd(ỹ) and ŷ = x̃ + Gn(x̃, z̃), z̃ being the latent vector obtained
throught the reparameterization trick

z̃ = µ+ σ� ε, ε ∼ N(0, 1), µ, log(σ) = E(x̃, ñ), ñ = Gd(y) .

The third term of our loss is the cycle consistency term introduced in [26]:

Lcyc = Ex∼p(x)[||x− x̂||1] + Ey∼p(y)[||y− ŷ||1] .

The fourth term of our loss is the KL-divergence of Equation 2.5 introduced
in [29]:

Lkl = 0.5(σ+ µq − 1− log(σ)) .

The complete loss of our model becomes:

L = La,d +La,n + λcycLcyc + λklLkl ,

with λkl = 0.025 and λcyc = 10.

5
E X P E R I M E N TA L R E S U LT S

This chapter describes the large suite of experiments we conducted during
this work of thesis. Experiments are presented to describe the various steps
that have led to our final approach described in Chapter 4.

5.1 dataset

Figure 5.1: Example of clean dataset areas

Figure 5.2: Example of speckled dataset areas

35

36 experimental results

The dataset we used for training the solution proposed in Chapter 4 is
composed of two subsets: a subset of speckled SAR images and one of
speckle-free Means computed over multi-temporal stacks using the algorithm
of [9]. The images composing the speckled dataset and the stacks are taken by
Sentinel-1 satellites over different areas of Italy and represent many different
areas and scenes we expect may have peculiar speckle distributions. Examples
of images composing this dataset are shown in Figure 5.2, which shows some
areas of the speckled subset, and Figure 5.1, which shows the areas of the
speckle-free one. These images show the various areas we considered to be
included in this dataset considering different surface features which exhibit
different scattering characteristics of the SAR signal:

• Urban areas with very strong backscatter due to the presence of build-
ings;

• Mountains and forest with medium backscatter due to the presence of
trees;

• Calm water with smooth surfaces and low backscatter;

• Rough sea with increased backscatter due to wind and current effects;

• Plains and farmlands, with homogeneous patches representing the
fields;

• Mine areas, with peculiar scatters in the presence of the mine itself.

The two subsets are disjointed, i.e., there is no speckled SAR image whose
corresponding speckle-free Mean is in the clean subset and vice-versa. In total,
we gathered eleven Means and eight speckled SAR images. The validation
dataset is, instead, composed of two images only. This dataset comprises a
SAR image and a speckle-free Mean computed over the temporal stack of this
image. We made this choice to have better visual feedback when evaluating
the performance of our experiments.

We built the dataset using images of different scenarios to cover all the
possible speckle distributions. Examples of These images are shown in Figure
5.1 and Figure 5.2. The dataset is composed of patch extracted from These
images using a sliding window. Given a patch size of W×H, we use a sliding
factor of W2 ×

H
2 , in order to have some overlapping over adjacent patches.

Our final model uses 128× 128 patches extracted from high dimension SAR
images and Means using a 64× 64 sliding window. By doing so, we obtain
106204 speckled patches and 305844 clean ones on the training dataset, plus
900 and 900 patches for validation.

We are supposing a multiplicative speckle model

y = nx , (5.1)

5.2 experiments 37

where y is the speckled image, x the corresponding clean one and n the
speckle. In particular, we trained our network by feeding them with the
log transform of the amplitude images, in order to make this multiplicative
speckle additive

log(y) = log(n) + log(x) . (5.2)

We train our network for letting them output the speckle log(n), both for
speckle generation and despeckling path.

From now on, the distribution of the log-transformed clean patches will be
addressed as p(x), the distribution of the noisy ones as p(y) and the condi-
tioned distribution of the speckle as p(n|x) and p(n|y), for the speckle gener-
ation and despeckling path respectively. Also, Y will be the log-transformed
speckled SAR images and X the log-transformed means.

5.2 experiments

The solution to the SAR despeckling problem proposed in this work of
thesis results from a well-designed suite of experiments. In particular, we
tackled the problem during the thesis, starting from more straightforward
approaches. Then, we built the proposed solution step by step based on the
results we obtained during the experiments. We started by building a Speckle
Generator network capable of generating speckle samples from a clean image.
We then moved to an image-to-image translation model, as proposed in
[26], introducing a Despeckler for forcing our Speckle Generator to produce
samples that are more correlated with the input. Finally, we deeper explored
the speckle generation task by improving our Speckle Generator to produce
multiple speckle samples from the same input patch, conditioning these
outputs over a Gaussian vector.

5.2.1 First experiments on speckle generation

We designed our first model to learn a speckle generation function to obtain
a speckle realization from a clean input SAR image. In particular, we want
our network to learn how to generate a speckle whose distribution is as
close as possible to the real one. We considered a simpler dataset composed
of a subset of these images presented in the previous section during this
earlier stage. More precisely, the validation dataset comprises two images
that are uncorrelated to each other, i.e., the validation Mean is extracted
from a temporal stack representing a coast area, and the validation speckled
image represents a mine area. At the same time, the training dataset does not
contain the many different surfaces considered on the final dataset.

Due to the known limitations of the Generative Adversarial Networks, we
decided to start our exploration by training this model with the algorithm

38 experimental results

proposed in [23] that showed a more stable training process. Considering
x ∼ p(x) a clean logarithmic patch and y ∼ p(y) a speckled logarithmic patch,
G is the Generator network that takes as input a logarithmic clean patch and
outputs a residual speckle for calculating the generated logarithmic speckled
patch with Equation 5.2, and D the Critic that we train using the Wasserstein
GAN adversarial loss introduced in Equation 2.2:

Lwgan = max
G

min
D

Ex∼p(x)[D(x+G(x))] − Ey∼p(y)[D(y)] .

We see, from this formula, that the Critic network aims at giving a score for
each input, giving higher scores to authentic SAR images and lower to fake
ones. At the same time, the Generator network is trained in order to fool the
Critic and make it giving higher scores to the generated images. Thus, we
expect that this loss should be around zero when the G network is trained to
optimality. We train our Speckle Generator using the same optimizer, learning
rate, weight clipping limit, and Critic iterations used in [23].

The Speckle Generator architecture is shown in Figure 5.3. The Speckle
Generator has a U-Net-like architecture [13], with 4-steps down-sampling
and up-sampling paths connected via skip connections that channel-wise
concatenate down-sampling outputs to the corresponding up-sampling step.
Each step is composed of two 3× 3 convolutions, each followed by batch
normalization and a ReLU activation function and composed by twice the
number of filters of the previous step, starting from 32. A 2× 2 max-pooling
layer performs the down-sampling operation. After considering using bilinear
interpolation on the up-sampling side, we decide to perform the up-sample
operation via a 2× 2 transpose convolution with a stride of 2. Finally, a 1× 1
convolution outputs is used for transforming the 32 channels of the last step
into a one channel output patch.

The Critics shown in Figure 5.4 are simple CNN, composed by 5 convo-
lutions followed by a ReLU activation functions, and 5 2× 2 max-pooling
layers. The last step is then flattened and, via a one-layer MLP, mapped to
the R set of real numbers.

5.2 experiments 39

Figure 5.3: Speckle Generator architecture diagram. The Speckle Generator has a
UNet-like [13] architecture, composed of 3 down-sampling and up-sampling steps
connected via channel-wise concatenations. The upsampling is performed using
2× 2 transpose convolutions with a stride of 2. The final layer of the network is a
1× 1 convolution for mapping the 32 filters of the last up-sampling layer into the
single channel of a SAR image. The network output represents the logarithm speckle
generated for corrupting the input logarithmic clean patch, and the final generated
patch is obtained using Equation 5.2.

40 experimental results

Figure 5.4: Critic network architecture. The Critic network is a simple CNN com-
posed by a series of convolutional layers with a kernel of 3× 3 and 2× 2 max pooling
layers. The output is computed by flattening the last down-sampling layer and using
a MLP for mapping these features into a real number, representing the score of the
input patch.

5.2 experiments 41

Figure 5.5: A comparison between the speckle generated by our first Speckle Gener-
ator networks and the CycleWGAN model. The first image shows the underlying
scene of the clean reference image. The second image shows the speckle generated
over that area by our first Generator trained using only the adversarial loss proposed
in [23]. The third image shows the detail and edge improvement by adding an l1 loss
term between the input and the output patch. The fourth image shows how using
the cycle consistency and the Despeckler network, instead of the l1 loss function,
improves speckle generation performance over homogeneous areas.

A visual example of the results obtained by this model is shown in Figure
5.5. In this image we can see a comparison between the underlying clean
image, on the top-left corner, and the speckle generated by this model, on
the top-right corner. The speckle generated by this model results loosely
correlated with the underlying image, in particular it does not preserve the
details and edges of the original image. Thus, as a first solution, we propose

42 experimental results

to add an `1 loss term between the input and the corresponding output for
constraining the action of the generated speckle:

L`1 = Ex∼p(x)[||G(x) + x− x||1] = Ex∼p(x)[||G(x)||1] . (5.3)

This loss is properly weighted, in order to allow the Generator to learn how
to keep some similarity between input and output without degenerating into
the identity function. The total loss become

L = Lwgan + λ`1L`1 ,

where λ`1 = 0.1. The results of this network are compared with those of
the previous experiment in Figure 5.5. The bottom-left image shows the
results achieved by including the l1 loss. We can see how the speckle changes
around the edges and in more homogeneous areas. However, the quality
of the generated speckle is still cheap. In particular, looking at the darker
homogeneous area, the performances of the network seem to be dropped.
For further improving the Speckle Generator performances, we pair it with
a new WGAN, the Despeckler, and train them concurrently using the cycle
consistency loss of [21]. We give a more detailed description of this model,
which we call CycleWGAN, in the next section. The cycle consistency term of
the loss introduced in Equation 2.4 forces the Speckle Generator to preserve
better the information contained in the original image so that the Despeckler
can retrieve the original clean patch from the speckle corrupted one. By
doing so, our model achieves higher quality results than the `1 loss. In the
bottom-right image of Figure 5.5 we can see how the CycleWGAN resolves
the problem showed over heterogeneous areas while still preserving contrast
and edges as in previous models.

5.2.2 CycleWGAN Model

To allow the network to learn significant mappings between the clean and
speckled domains, i.e., we want both the Despeckler and the Speckle Genera-
tor to learn how to produce the corresponding image of the target domain,
we train two WGANs using the framework described in [26].

For applying the solution proposed by Zhu et al. to our problem, we define
a Speckle Generator network Gn and a Despeckler Gd and two Critics Dn
and Dd. The Gn Speckle Generator takes as input a patch x coming from the
clean dataset X and outputs a speckle n, for then computing the generated
noisy patch ŷ as using Equation 5.2

ŷ = n+ x ,

n = Gn(x) .

5.2 experiments 43

The Gd network takes as input a 64× 64 patch y coming from the speckled
dataset Y and outputs a speckle n, for then computing the despeckled patch
x̂ using the 5.2

x̂ = y−n ,

n = Gd(y) .

Then the Dn discriminator must distinguish y patches sampled from p(y)

from the generated ŷ, while Dd the x sampled from p(x) from x̂. In this
context, the WGAN adversarial losses of Equation 2.2 used for training these
networks are:

Lwgan, n = max
Gn

min
Dn

Ex∼p(x)[Dn(ŷ)] − Ey∼p(y)[Dn(y)] ,

Lwgan, d = max
Gd

min
Dd

Ey∼p(y)[Dd(x̂)] − Ex∼p(x)[Dd(x)] .

The Generator and Critic networks have the same architecture described in
the previous section. For applying the cycle consistency term of Equation 2.4,
we had to compute first the reconstructions of both the noisy and the clean
images, the inputs of Gd and Gn respectively. We define these reconstructions
as

xr = ŷ−Gd(ŷ) yr = x̂+Gn(x̂) .

The cycle consistency term of 2.4 then becomes

Lcycle = Ex∼p(x)[||xr − x||1] + Ey∼p(y)[||yr − y||1] .

The complete loss used for training this model is

L = Lwgan, n +Lwgan, d + λcycleLcycle .

Even though the WGANs proposed by Arjovsky, Chintala, and Bottou
result to have improved training stability than classical GANs [21], WGAN
training still has some limitations as showed in [25]. In fact, putting λcycle =
10 as proposed in [26] results in vanishing gradient. In this scenario, the
Critic is optimal in distinguishing between generated and sampled images,
but the Generators cannot learn anything. This problem is mainly due to the
weight clipping, which is not the best way to force the 1-Lipschitz constraint
for Critic networks. After trying with different values of λcycle, from 1 up
to 10, it turns out that the best solution is to first train for 20 epochs the
two generators independently, i.e., λcycle = 0, for then linearly increase the
cycle-loss weight up to 5 for the next 30 epochs. The training ends by letting
λcycle = 5 for the remaining epochs. The results of this network, with input
patches of 64× 64 are shown in Figure 5.6 and Figure 5.7.

44 experimental results

Figure 5.6: Comparison of different cycle consistent Despeckling network perfor-
mances. The first image (top-left) shows the speckle corrupted SAR image. The
second image (top-right) shows the despeckled patch obtained using the CycleW-
GAN model with 64× 64 input patches. The third image (bottom-left) shows the
results obtained enlarging the input patches up to 128× 128. We can see how this
network removes the patching problem presented in the previous one. The fourth
image (bottom-right) shows the results obtained using a GP [25] loss term instead of
the weight clipping for forcing the 1-Lipschitz constraint for the Critic networks. We
can see how the network has similar performance concerning the previous one, but
we kept exploring this model due to the faster and more reliable training.

5.2 experiments 45

Figure 5.7: Comparison of different cycle consistent Speckle Generator network
performances. The first image (top-left) shows the clean image. The second image
(top-right) shows the speckle generated by a 64× 64 patch CycleWGAN model.
The third image (bottom-left) shows the speckle generated by a 128× 128 patch
CycleWGAN. The fourth image (bottom-right) shows the speckle generated by a
128× 128 patch CycleWGAN trained using a GP [25] loss term instead of the weight
clipping for forcing the 1-Lipschitz constraint for the Critic networks. We can see
any major improvement on the speckle generation side over these models.

We can see a comparison between the different CycleWGAN models we
developed in these figures. On the top row of Figure 5.6, we can see a SAR
image, on the left, with the corresponding one despeckled by this network, on
the right. On the top row of Figure 5.7, we can see the comparison between
a clean SAR image, on the left, with the speckle corrupted generated one,
on the right. We already showed, in the previous section, how the Speckle

46 experimental results

Figure 5.8: Speckle distributions over different areas generated by 64x64 patches
WGAN. The top image shows the whole Mean used for validation, while the bottom
one shows the speckle generated by the Speckle Generator network over that image.
We can see how the speckle generated have different distribution according to the
underlying scene. In particular, we see in this image a contrast between the speckle
generated over a homogeneous dark area and that generated over a brighter area
made of mountains and some buildings.

Generator of the CycleWGAN model showed significant improvements from
the previous experiment that used the `1 loss of Equation 5.3 for constraining
the output of the WGAN Generator. Figure 5.8 shows the full validation clean
image used so far and the corresponding speckle generated by our network,
i.e., the term n of the Equation 5.1. We can see that our network learned
how to generate a realistic speckle distribution according to the underlying
scene. The result of the despeckling network, shown in Figure 5.6, are also
auspicious. The network learned how to reduce the speckle while at the
same time preserving edges and details. Still, this network has wide room
for improvement. In particular, we can see how there is still some residual
speckle over all the image and a juxtaposition of brighter and darker patches
where we expected a more homogeneous tone.

At this point, we enlarged the patches, increasing the size up to 128× 128
for letting the network get more context of the scene. The results of the
network trained with extended patches are shown in Figure 5.6 and Figure
5.7. On the bottom-left image of these Figures, we can see the Despeckler
and the Speckle Generator results, respectively, trained using a CycleWGAN
with input patches of 128× 128. While the Speckle Generator does not seem
to have any significant change in the quality of the generated speckle, the
Despeckler has shown an outstanding improvement. For example, we can
see in Figure 5.6 how the image no longer has that bright-patch effect shown

5.2 experiments 47

in the previous experiment. Instead, it results smoother, with less residual
speckle and better-defined edges and details.

After these experiments, we looked forward to an improvement in the
training of our WGANs. In particular, the Critic networks introduced in
[23] suffer from vanishing or exploding gradient problems depending on
the choice of the weight clipping limit, as shown in [25]. Thus, instead of
performing a tuning over this hyper-parameter, we decided to implement the
solution proposed in this paper by adding a Gradient Penalty (GP) term to
our WGAN loss. Let us define Lwgan-gp,n and Lwgan-gp,d the losses introduced
in Equation 2.3 applied to (Gn, Dn) and (Gd, Dd) respectively, we define a
new loss for our model:

L = Lwgan-gp,n +Lwgan-gp,d + λcycleLcycle .

For using the WGAN-GP training, in [25] the authors specify to remove
the Batch Normalization layers from the Critic networks. In fact, instead of
mapping a single input to a single output, Batch Normalization maps from
an entire batch of inputs to a batch of outputs. At the same time, penalized
training objective wants to penalize the norm of the Critic gradient for each
input independently.

We refer to this model as CycleWGAN-GP. We use the same optimizer,
learning rate and λgp defined in [25] and showed in Figure 2.3. With the
improved stability achieved thanks to the GP, we can set λcycle = 10 since
the beginning of the training, reaching similar results to the Weight Clipping
network but with faster training. The results of this network are shown
alongside those of the previous ones in Figure 5.6 and Figure 5.7, on the
bottom-right images. Overall, the new training did not significantly change
the performance of our networks.

Nevertheless, looking at the training metrics of the two networks compared
in Figure 5.9 we can see that we can achieve these similar results with fewer
training iterations. This Figure shows the graphs representing the Speckle
Critic loss (top-left), the Clean Critic loss (bottom-left) and the cycle loss (top-
right). These graphs show how the number of iterations of the CycleWGAN-
GP model is lower than what is needed for training the CycleWGAN one
for obtaining similar performances. Also, looking at the speckled Critic (Dn)
score, we can see that this decreases after some epochs when using a GP
term. In 2.3, the authors show how this behaviour is caused by the Speckle
Generator Gn not being complex enough for learning how to generate speckle
indistinguishable from that of authentic SAR images, leading to the Critic
over-fitting.

48 experimental results

Figure 5.9: Comparison between Weight Clipping and GP network training with
128× 128 patches. The x-axis of these graphs represents the number of training
steps. The first image (top-left) shows the speckle Critic loss graph, the second one
(top-right) shows the cycle consistency loss, and the third one (bottom-left) shows the
Clean Critic loss. Looking at the lengths of these graphs, we can see how the training
of the WGAN-GP model has been stopped before that of the WGAN one, achieving
similar speckle generation and despeckling performances as shown in Figure 5.6 and
Figure 5.7. The cycle loss graph (top-right) shows how we could set λcycle = 10 since
the first epochs. Also, the Speckle Critic losses over time (top-left) differ significantly.
In particular, we can see how the WGAN-GP model one decreases after some epochs,
showing how the speckle Generator network is not complex enough to learn a good
speckle generation function.

5.2.3 Dataset augmentation and architecture tests

After completing the development of the CycleWGAN-GP model, new data
became available. Thus, we decided to perform a dataset refactoring. We
included what has been so far our validation dataset into the training dataset
and use two corresponding speckled and clean images for validating our
model. We decided to extract the speckled validation image from a temporal
stack, whose mean is the same validation clean image. We did that to have
better visual feedback on the performance of our model. Recalling the analysis
made looking at the training graph shown in Figure 5.9, we also decided to
improve the architecture of both the speckle Generator and the Despeckler.
We introduced one more down-sampling and up-sampling step and doubled
the number of convolutions for each of these steps from the architecture

5.2 experiments 49

Figure 5.10: Speckle Generator and Despeckler architecture trained using the aug-
mented dataset. Differently from the architecture shown in Figure 5.3, the new one
has one more down-sampling and up-sampling step and the number of convolutions
for each step has been increased to 2, in order to increase the receptive field of each
pixel.

shown in Figure 5.3 to increase the receptive field. The new architecture is
shown in Figure 5.10.

We also tried different version of the cycle consistency loss of Equation 2.4.
One possible option is to calculate the reconstruction error on the logarithmic
domain, i.e., given x ∈ X logarithm of a clean patch, ỹ = Gn(x) + x a speckle
generated over x and x̂ = ỹ−Gd(ỹ) its reconstruction we rewrite the Equation
2.4:

Lcycle,x = Ex∼p(x)[||x− x̂||1] .

Another option is instead to compute that loss on the original amplitude
domain, so that the cycle loss over x becomes

Lcycle,x = Ex∼p(x)[||exp(x) − exp(x̂)||1] .

The rationale behind this is that we have higher values for errors over low
amplitude pixels on a logarithm scale. In contrast, the logarithm function
tends to be almost flat for higher values, thus penalizing fewer errors over
high amplitude pixels. On the other hand, the cycle loss over the actual
amplitude domain penalizes errors linearly across the whole range of possible

50 experimental results

Figure 5.11: Histogram of pixels amplitude of real and generated speckled images.
The first row shows the histogram of a real SAR image. The second row shows the
histogram of an image generated by a 128× 128 patch WGAN-GP Speckle Generator
trained using the logarithmic cycle loss. The two histograms represent similar curves,
but the generated images tends to have higher low amplitude pixel concentration
with respect to the actual one.

5.2 experiments 51

Figure 5.12: Comparison of despeckling performances calculating cycle-consistency
loss over different domains. The image on top shows the SAR speckled image. On the
bottom, we can see the results of the Despeckler trained using the logarithmic cycle
loss (left) compared to that trained using the cycle loss over the real SAR domain
(right). We can see how the image on the right is smoother and more homogeneous
but loses some detail, especially on high amplitude punctual scatterers, concerning
the left one, presenting some residual speckle.

52 experimental results

values. We can analyze the amplitude values of a SAR image by looking
at the histogram on the top row of Figure 5.11. Here we can see how a
per-pixel distance over the logarithm domain may be optimal for computing
the cycle loss over the pixels, composing most of the image and details,
whose value is relatively small. Using the actual amplitude domain helps
preserve the scale of higher intensity pixels, like strong scatterers that are
outliers for the distribution shown in the histogram of Figure 5.11. The
results of two networks trained using these losses are shown in Figure
5.12. We can see how computing the cycle loss on the original domain
results in smoother surfaces with low residual speckle but losing some
information over punctual scatterers, particularly those whose amplitude
value is not significantly higher than the average pixel value. The log domain
loss performs better in preserving scatterers information but presents a
residual speckle. In particular, it exaggerates the amplitude of bright spots
that may not be considered strong scatterers. These differences show how
the two networks store the information necessary to reconstruct the original
speckled image, necessary for minimizing the Lcycle term. Calculating cycle
consistency loss over the original domain allows the network to store this
information as a low amplitude speckle, having a low impact on the cycle
loss term. Using the log domain allows the network to store this information
on higher amplitude pixels.

Overall, we achieved satisfactory performances on the despeckling side.
Figure 5.13 shows a comparison between our model and both the SAR-BM3D

algorithm proposed in [7] and the UNet of Lattari et al. [11]. In this Figure, the
first image represents the SAR image on which we performed the despeckling
(image 1) and the Mean computed by the multi-temporal algorithm proposed
by Ferretti et al. [9] over the stack from which we extracted the speckled
image as Ground-Truth (image 2). The SAR-BM3D algorithm (image 3) tends to
be blurry, especially over high contrast edges and introduces some artefacts
over homogeneous areas. The UNet of [11] (image 4), instead, is sharper over
areas with a high density of high amplitude scatterers, i.e., buildings, and in
preserving the punctual isolated ones, but still heavily introduces artefacts
over the homogeneous areas. The improved version with TV loss of this
network (image 5) partially solves the artefacts problem. It improves the
definition of the heavy scatterers, but it over-smooths homogeneous areas,
losing many details. Our CycleWGAN-GP model trained using 128× 128
and logarithm domain cycle loss (image 6) does an excellent job preserving
details over both high scatterers concentration and homogeneous areas, but
it presents a residual speckle. However, comparing the ground-truth Mean
(image 2) with the output of the UNet with the TV loss term of [11] (image
5) in Figure 5.13, we can notice some residual speckle is present in the
first. Thus, due to the choice of the clean dataset, it will be impossible
for us to remove it, but we aim at reducing its intensity in our following

5.2 experiments 53

Figure 5.13: Despeckling performances of our network with respect to a Ground-
Truth Mean [9] (image 2), the SAR-BM3D algorithm [7] (image 3) and the UNet archi-
tecture proposed by Lattari et al. [11] (image 4) also with the TV loss term (image 5).
Our network (image 6) results in better defined edges and contrasts, with respect to
the blurry images 3 and 4, and does not present any artefacts. Also it better preserves
high intensity scatterers with respect to 5 but still presents some residual speckle.
Comparing the ground-truth image (2) with the smoother solution proposed in [11]
(5) we can see how the means we are using as ground truth also presents some
residual speckle.

54 experimental results

experiments. On the speckle generation side, Figure 5.11 shows a comparison
between the histogram of an actual SAR image and one generated by ours
Speckle Generator. Overall, the two curves are similar, but there is still some
difference. For example, looking at Figure 5.14 we can observe how the
generated speckle corrupts a mean, computed over a temporal stack with
the algorithm proposed by Ferretti et al. [9], in a similar way to an actual
SAR image extracted from the stack. Nonetheless, our Speckle Generator still
preserves many details from the input mean.

In conclusion, we can say that we have successfully trained in an unsuper-
vised fashion a Despeckler that reaches comparable performances with the
state-of-the-art approaches on some aspects. In the following sections, we
improved our model to find a Speckle Generator capable of learning, for each
input patch, a speckle distribution from which we can sample one on the
infinite possible speckle realizations coming from this distribution.

5.2.4 Noise Embedding

Using a simple CycleGAN [26] may restrict the learning of a function for
generating the speckle. The cycle loss aims at minimizing the point-wise
distance between the original x and the reconstruction f(g(x)). We may con-
sider that the actual corresponding noisy image, given a clean patch, is not
unique for our particular SAR image despeckling and speckle generation
tasks. Once we can identify the speckle distribution over an area, we wanted
to sample an infinite number of speckle realization for each clean patch.
This problem is addressed as one-to-many mappings, and is discussed by
Bashkirova, Usman, and Saenko in [27]. This paper shows how networks
learning many-to-one mappings store information necessary to reconstruct
the input image in the output as a low amplitude noise. The network learning
the one-to-many mapping can use the information stored in this noise to
minimize the cycle-consistency loss.

In our case, we noticed how clean images produced by the Despeckler
carries a strong residual speckle, necessary for the Speckle Generator to
reconstruct the same input speckled image. We want to improve our model
to store this information in a separate vector. This way, we can use this vector
to condition the Speckle Generator and generate different speckle realizations
given the same input patch without hiding any information in the clean
images. There are in literature various approaches aiming at resolving this
problem but we focused on two of them in particular: one proposed by Guo
et al. [31], that lays on the idea introduced by the so-called Variational

AutoEncoders (VAE) [29], and one by Li et al. [32].
We defined a new Speckle Generator architecture that can take as input

a clean image x and a latent vector z for conditioning the generation of
the speckle. The new architecture differs from the previously introduced

5.2 experiments 55

Figure 5.14: Comparison between a generated speckled image with a real SAR. On
the top, we can see the Mean computed by the algorithm of [9] over the temporal
stack to which the bottom-left real SAR image belongs. The bottom-right image
shows an image generated by the 128× 128 Speckle Generator of our CycleWGAN-
GP model trained using the logarithmic cycle loss. The two speckle realizations look
similar, even if the generated one still preserves many details of the Mean.

56 experimental results

Figure 5.15: Conditioned Speckle Generator network architecture. The network
differ from what proposed in Figure 5.10, used for the Despeckler, for the injection of
the vector z. The 1× 512 z input vector is repeated up to the shape of 512× 128× 128
and channel-wise concatenated to the input patch.

in Figure 5.10 for letting us inject the latent vector. For doing so, we take
inspiration from [33]. In this paper, Zhu et al. propose to inject z by repeating
such vector h×w times for building a tensor whose shape is d× h×w,
where d is the dimension of the vector and h and w are height and width of
the input patches. Finally, we channel-wise concatenate this tensor with the
input patch. The new Speckle Generator structure is shown in Figure 5.15.

[31] and [32] propose two different architectures for this network. A first
one for training it in a Conditional VAE-like [30] fashion as proposed in the
CycleCVAE [31] model, where the Encoder takes the channel-wise concate-
nation of a log speckle n and a clean image x, such that the corresponding
logarithmic speckled one can be calculated via Equation 5.2, and outputs
two vectors µ and σ, so that we can extract the z from the distribution that
minimizes the reconstruction error ||y− yr||1 using the reparameterization
trick. In [31], the authors propose to feed this Encoder only with the image we
are aiming at reconstructing, y. However, we decided to feed the Encoder with
the channel-wise concatenation of the despeckled image x and the speckle n,
which has been proved in [31] to be equivalent. Thus, feeding the network
with y corresponds to using {x, n}, since they represent the same information
(the speckled image y is merely the sum of the two components x and n).

5.2 experiments 57

Figure 5.16: Encoder network architecture. The encoder is a CNN that takes the
channel-wise concatenation of the despeckled logarithmic image x̃ and the logarith-
mic speckle ñ generated by the Despeckler for computing the distribution N(µ, σ)

from which sample the vector z for reconstructing ŷ = Gn(x̃, z) + x̃ ∼ y = x̃+ ñ. The
network comprises five encoding steps of two 3× 3 convolutional layers with Batch
Normalization and ReLU activation function and 2× 2 MaxPooling. The output of
the last down-sampling layer is flattened and fed to two MLPs. these MLPs have one
hidden layer composed of 1024 units and a 0.2 dropout probability, then the output
are two vectors of length 512 representing the µ and logσ for the reparameterization
trick of [29].

A second version of the Encoder network is that proposed by Li et al.
[32], where the output of this network is the vector z itself. Again, we use
a new Critic (De) to introduce an adversarial loss to force the generated zs
distribution to match the sampled ones. After analyzing both [31] and [32],
we decided to implement and deeper investigate the CycleCVAE model. The
Encoder network architecture has already been described in Chapter 4. We
propose this architecture again in detail in Figure 5.16. For training our model

58 experimental results

Figure 5.17: Schema of the SAR images reconstruction loop. A 128× 128 speckled
logarithmic patch y is taken as input by the Despeckler, which computes the speckle
ñ from which we can extract the despeckled logarithmic patch x̃ = y − ñ. The
adversarial WGAN loss is computed over the generated x̃, while the encoder network
E computes the mean and the variance of the distribution of z which minimizes the
reconstruction error µ, σ = E(x̃, ñ). The KL divergence loss is computed over the
outputs of E. these parameters are used to sample z using the reparameterization
trick z = µ+ σ� ε, ε ∼ N(0, 1). Finally the reconstruction ŷ = Gn(x̃, z) is generated
and the cycle loss over y and ŷ is computed.

we divide each step into two different loops: the clean loop

x→ ỹ→ x̂

and the noisy one
y→ {x̃, z̃}→ ŷ .

The training of the clean loop does not differ from what is done in the
cycle-consistent baseline model. Given a clean patch x we sample a Gaussian
vector z ∼ N(0, 1) and find the generated speckled patch ỹ = x+Gn(x, z)

for which we compute the adversarial loss Lwgangp,y. We then despeckle
the generated patch finding the clean reconstruction x̂ = ỹ − Gd(ỹ) and
computing the cycle loss ||x− x̂||1. For the noisy loop, we at first despeckle the
speckled patch x̃ = y−Gd(y) and compute the corresponding adversarial
loss Lwgangp,x, then sample a vector z̃ from the distribution that minimizes
the reconstruction error. As showed in [30], this distribution is a Gaussian
whose mean and logarithmic variance are calculated by the Encoder network
E

µ, log(σ) = E(x̃, Gd(y)) ,

5.2 experiments 59

Figure 5.18: Histogram of generated speckle values obtained over the same by
sampling 10000 diferent z ∼ N(0, 1).

then the vector z̃ is obtained via the reparameterization trick

z̃ = µ+ σ� ε, ε ∼ N(0, 1) .

Here, we compute the KL divergence over the Encoder distribution

KL[E(x̃, Gd(y))|N(0, 1)] = −0.5(1+ log(σ) − µ2 − σ) .

Finally, we reconstruct the original noisy patch by feeding x̃ and z̃ to the
Speckle Generator ŷ = x̃+Gn(x̃, z̃) and calculate the reconstruction error
||y− ŷ||1. The schema of the speckled loop training is showed in Figure 5.17.
The total loss we used for training this model is:

L = Ladv,n +Ladv,d + λcycleLcycle + λklLkl ,

where λkl = 0.025.
This model improved both speckle generation and despeckling perfor-

mances than the simple CycleWGAN-GP. In particular, it can sample different
speckle realizations accordingly to the latent input vector. We proved this by
isolating a homogeneous patch from our validation dataset and performing
Speckle Generation inference 10000 times using different z ∼ N(0, 1), then
plotting all the values taken by a point with fixed coordinates. The histogram
of these values is shown in Figure 5.18. We can see how different latent vectors
generate different speckle realizations whose values vary from a minimum of
0.9 up to a maximum of 1.6. The histogram shows how most of these values
are around one, but this distribution is not symmetric. The tail over higher
values indicates that our Speckle Generator tends to raise the amplitude
value of the clean analyzed pixel when generating speckled images. This

60 experimental results

Figure 5.19: Detail of a homogeneous validation area. The image on the left repre-
sents the residual noise of a Mean. The amplitude of this image has been multiplied
by a factor of 2 to emphasize this signal. The image on the right shows the speckle
generated over that area. In red and blue are highlighted the patterns that show how
the Speckle Generator uses this low amplitude signal during the generation of the
speckle.

behaviour made us suspect that our model is still hiding some information
about the speckle in the clean image. In fact, by zooming over homogeneous
areas of our validation images, we can see how the generated speckle reflects
some patterns of the residual noise present in the Means. These patterns
show that our model is still encoding helpful information to reconstruct the
speckle realization in the despeckled image itself. Observing the speckle in
detail validating the results, it turned out that the speckle generated by our
network is just an amplification of this low amplitude signal. Figure 5.19

shows a comparison between a detail of a homogeneous area taken from
a validation Mean, whose amplitude has been doubled in value for visual
purposes, on the left and the corresponding speckled generated on the right.
We highlighted in red and blue the patterns of this low amplitude signal
showing how our Speckle Generator amplifies this signal when generating
the speckle. We only highlighted the longer lines drawn by adjacent darker
pixels whose shape is identical in the two images. However, we invite the
reader at taking a closer look pixel-by-pixel. It can be easily noticed that if
there are elements in the clean image whose intensity is higher (or lower) than
neighbours, then the speckled image presents the same behaviour over the
corresponding spots. Recalling the histogram of Figure 5.18, we can confirm
that our Speckle Generator learned to generate speckle by exaggerating the
small amplitude fluctuations of the clean image pixels.

5.2 experiments 61

Figure 5.20: Comparison between our CycleCVAE implementations and the
CycleWGAN-GP Despecklers. The top left image shows the speckled SAR im-
age. The top right image shows the image despeckled using the Despeckler of our
CycleWGAN-GP model. On the bottom row, we can see the performances of the
Despecklers trained in our CycleCVAE implementation baseline (left) and using
corrupted clean patches (right). The CycleCVAE baseline drastically reduces the
residual noise showed by the CycleWGAN-GP model, losing detail over strong
scatterers. The improved CycleCVAE implementation trained with corrupted clean
patches shows an improvement in preserving edges and contrasts than the baseline.

The network outperformed the CycleWGAN-GP model on the despeck-
ling side by drastically reducing the residual speckle. At the same time, it
overall well preserved the strong scatterers but showed more blurry edges,
in particular over darker areas. This comparison is shown in Figure 5.20.
On the top row of this Figure, we can see the original speckled SAR image

62 experimental results

and the corresponding despeckled using the CycleWGAN-GP model. We
can see the same image despeckled by our CycleCVAE implementation on
the bottom left. Examining the black diagonal that cuts these images from
the bottom-left corner to approximately the top-right one, we may notice
interesting differences between the two approaches. This portion of the image
has better-defined edges in the CycleWGAN-GP than the CycleCVAE, which
shows blurry effects in distinct darker areas, e.g., shadows on the top part of
the image and black circular localities in the centre-right, below the diagonal.
However, looking at the central homogeneous area of the CycleWGAN-GP
despeckled image, we can see a residual noise that emphasizes the speckle
pattern of the SAR image (the brighter pixels). In contrast, the CycleCVAE
image shows, as expected, to overcome this problem. However, by taking a
closer look, we can see this image is still preserving some information related
to the presence of these spots. We already outlined how this signal is also
present over the Means we use as a clean dataset at training time, making it
impossible to eliminate this low-amplitude residual.

For forcing our networks to ignore this signal, we decided to apply, at
training time, a low amplitude Gaussian noise to clean images before feeding
them to the Speckle Generator. The amplitude of the noise is set to be
small enough not to delete any detail of the original image, e.g., edges and
punctual scatterers, but big enough to delete the effect of every information
the Despeckler may introduce into a despeckled patch. We define this noise
as

η = γ× ε ,

ε being a 128×128 patch whose values are sampled from a standard Gaussian
and γ = 0.05. We then generate a corrupted patch y1 by corrupting the
original logarithmic clean patch y

y1 = log(η+ exp(y)) .

This operation is performed both when generating the speckled patch ỹ, given
a Mean patch x, during the clean loop and when generating the reconstruction
ŷ, given the despeckled patch x̃, during the speckled loop.

This process improves our Despeckler, making it better to preserve edges
and contrasts. We compare the two CycleCVAE implementations on the bot-
tom row of Figure 5.20. By looking at the top part of this Figure and the black
diagonal, we can notice as this model well preserves the contrasts between
darker and brighter adjacent areas defining sharp edges. A high level of detail
is also preserved over strong scatterers areas, while homogeneous areas, like
that in the centre of the image, present a low residual speckle. Comparing
this image with those produced by the previous model, we concluded that
this is the best solution we obtained. On the Speckle Generation side, adding
the noise η at the clean patches resulted in the generation of a speckle loosely

5.2 experiments 63

Figure 5.21: Detail of the speckle generated over a homogeneous area by the Speckle
Generator trained with Gaussian noise corrupted Means. The image on the left
shows a Mean patch whose amplitude. The image on the right shows the speckled
one generated by feeding the Speckle Generator with the patch on the left. The
amplitude of these images has been multiplied by a factor of 3 for visual purposes.
We highlighted areas in which the correlation between the residual speckle and the
generated one is very low. However, there are still brighter and darker pixel areas
with similar shapes in both images.

correlated with the residual shown by the Means. For example, in Figure
5.21, we can see a homogeneous area extracted from a Mean (left) and the
corresponding speckled generated by our Speckle Generator trained using
the Gaussian noise corruption (right). We multiplied the amplitude of these
images by a factor of 3 to better enhancing the fluctuations of values between
adjacent pixels. We also circled in red (Mean) and blue (speckled generated)
some areas in which the Speckle Generator showed to ignore the pattern
present in the means. However, even in these areas, we can notice how partic-
ularly dark and bright pixels still influence the generated speckle, particularly
by looking at the bright area in the left of the two images.

As for the previous model, we performed a test in which we sampled 10000

different latent vectors from a standard Gaussian and generated as many
speckle realizations over one patch. The speckle intensity generated over a
single pixel is showed by the histogram of Figure 5.22. As a consequence
of the lower correlation between generated speckle and the residual present
in the Means, these histograms show how the Speckle Generator output
distribution has a broader variance, starting from 0 up to 1.6. This histogram
has a more symmetric shape centred in 1, covering almost the same range
of lower and higher values than 1. However, we can see how the histogram
is still unbalanced on the right side, meaning that the generated speckle

64 experimental results

Figure 5.22: Histogram of generated speckle values obtained over the same by sam-
pling 10000 diferent z ∼ N(0, 1), using the Speckle Generator trained on corrupted
means.

is less correlated with the clean patch patterns. This displacement shows
how the low-amplitude signal still influences the Speckle Generator output,
confirming the analysis performed looking at Figure 5.21.

Finally, in Figure 5.23 we show a comparison between our Despeckler and
other state-of-the-art models. Our model (image 6) achieves good perfor-
mances in preserving edges and details with no blur and without introducing
any artefact than the SAR-BM3D algorithm [7] (image 3) and the UNet
without TV term of [11] (image 4). Still, it struggles in preserving punctual
scatterers, even if we can see how the Despeckler better preserves details in
areas where there is a high concentration of these objects than the model
of [11] trained using the TV term. As for the CycleWGAN-GP model, we
still have some residual speckle, even if its intensity has been drastically
reduced. We still want to point out how this residual noise is due to our
choice about the clean dataset. We can see how this choice influences the
Despeckler performances looking at Figure 5.24. Here we can compare the
intensity of the residual speckle of a Mean image (left), taken from the valida-
tion dataset, and the image obtained despeckling the corresponding area of a
speckled SAR image taken from the temporal stack over which the Mean has
been computed (right). Due to the kind of training we are performing, our
model cannot eliminate this residual. Suppose our Despeckler would learn
a despeckling function that generates smoother outputs over homogeneous
areas. In that case, the Critic network will learn to distinguish these images
from the Means in the training dataset thanks to the absence of residual
speckle, giving them lower scores.

5.2 experiments 65

Figure 5.23: Despeckling performances of our network with respect to a Ground-
Truth Mean [9] (image 2), the SAR-BM3D algorithm [7] (image 3) and the UNet archi-
tecture proposed by Lattari et al. [11] (image 4) also with the TV loss term (image 5).
Our network (image 6) results in better-defined edges and contrasts regarding the
blurry images 3 and 4 and does not present any artefacts. Also, it better preserves
details over high-intensity scatterers than image 5 but still presents some residual
speckle, even if its intensity has been drastically reduced from the CycleWGAN-GP
model. Comparing the ground-truth image (2) with the smoother solution proposed
in [11] (5), we can see how the means we are using as ground truth also presents
some residual speckle.

66 experimental results

Figure 5.24: Detail of the residual speckle over a Mean image (on the left) and a
SAR image despeckled using our CycleCVAE [31] implementation, trained using
corrupted clean images (right).

However, adding the Gaussian noise η at training time showed a reduced
intensity of this signal. If we look at the two images in this Figure, we can
notice how the one produced by our model has smoother fluctuations in
amplitude among adjacent pixels.

Since for SAR image despeckling no clean images are available, we per-
formed the validation of this model thanks to the external support of a SAR
expert from the same company that provided us with the images composing
our dataset. He assisted us during all the work, from the creation of the
dataset to the validation of the results. He gave us positive feedback about
the state-of-the-art comparison shown in Figure 5.23, which made us more
confident about the obtained results.

To perform a quantitative analysis of the obtained despeckling perfor-
mance, we collected an additional test set from which we selected 100 patches
128× 128 selected from a real SAR datastack. These patches have been man-
ually inspected to select homogeneous regions, which can be considered
stationary during time, and for which we can consider the temporal mean as
an approximated GT for computing the evaluation metrics. On this set, we
compute the standard metrics used in literature for evaluating despeckling
performances of proposed algorithms: the Peak Signal-to-Noise Ratio (PSNR)
and the Structural Similarity Index Measure (SSIM). Among the selected
patches we further selected the most homogeneous areas to compute the
Equivalent Number of Looks (ENL). We compare this metric also with the
ground-truth images. The PSNR is an engineering term for the ratio between
the maximum possible power of a signal and the power of corrupting noise
that affects its representation, and is used for evaluating the quality of the de-

5.2 experiments 67

PSNR SSIM ENL

SAR-BM3D [7] 26.5095 0.9983 30.2738

UNet [11] 27.1033 0.9985 43.1244

UNet + TV [11] 27.8735 0.9986 215.2318

CycleWGAN-GP 25.2768 0.9970 118.8199

CycleCVAE 28.4936 0.9991 69.7789

Ground-Truth [9] 56.4223

Table 5.1: Performance comparison of our CycleWGAN-GP and CycleCVAE with
other-state-of-the-art models on a numerical basis. The matrics we considered are
the Peak Signal-to-Noise Rateo (PSNR), the Structural Similarity Index Measure
(SSIM) and the Equivalent Number of Looks (ENL). We computed these metrics
over 100 homogeneous patches extracted from a real speckled SAR image and its
corresponding Mean.

speckled image with respect to the ground-truth. SSIM is a perception-based
model that considers image degradation as perceived change in structural
information, while also incorporating important perceptual phenomena, in-
cluding both luminance masking and contrast masking terms. The ENL is
a parameter which describes the degree of averaging applied to the SAR
measurements and represents the degree of smoothing in a homogeneous
region. Given x a clean patch and y the corresponding despeckled one, these
metrics are defined as follows:

PSNR(x, y) = 20 log10(
max(y)√
MSE(x, y)

) ,

MSE being the Mean Squared Error;

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2x + µ
2
y + c1)(σ

2
x + σ

2
y + c2)

,

where µi is the mean of i, σi is the variance of i and ci is a constant introduced
to avoid instabilities;

ENL(x) =
µ2x
σ2x

,

where µi and σi are the mean and the standard deviation of the considered
patch x respectively. In Table 5.1 we use these metrics to compare our model
with the SAR-BM3D algorithm and the two UNet architectures proposed by
[11].

The metrics confirm the qualitative analysis. In particular, from the point
of view of the PSNR, the CycleCVAE model shows better performance of our
CycleWGAN-GP. This is because, the use of CVAE allows to store speckle

68 experimental results

information into the latent vector instead of the outputs of the Despeck-
ler network, reducing the intensity of the residual noise showed by the
CycleWGAN-GP. Even if the CycleWGAN-GP model showed a better ENL,
we want to point out that this network showed a strong residual noise over
extremely heterogeneous and rich of details areas, while on homogeneous
ones showed smoother details. Also, by comparing this metric with that
showed by the ground truth images, we can see how these have a strong
residual speckle. Thus, even if the CycleCVAE showed worse ENL results,
those are closer to the ground-truth. Then, looking at the SSIM and the
PSNR, the quality of the despeckled images drastically improved from the
CycleWGAN-GP model to the CycleCVAE. We can then compare our model
with other state-of-the-art approaches. Here we can see how, on those metrics,
our model is outperforming these already present in literature, having a
PSNR that is 2 points higher than SAR-BM3D and 1.4 and 0.6 higher than the
two models proposed in [11], the baseline and the UNet with TV respectively.
However, our model learned a despeckling function for mapping SAR images
into the domain defined by the images computed using [9], which present
a residual noise. Since the same class of images has been used as ground
truth for computing those metrics, we expected higher values of PSNR and
SSIM, while lower ENL, than the other models which tends to oversmooth
homogeneous surfaces.

On the speckle generation side, we have no other proposed method in
literature we can compare our model to nor metrics that may represent
the quality of the generated noise. A useful feedback on the performance
of the Speckle Generator has been given by the SAR expert that assisted
us by performing qualitative analysis on the produced images. We show
those results by looking at Figure 5.25, which shows the performances of
the Speckle Generator. On the top left image, we can see the clean area
on which we generate noise. The top right and bottom left images show
the speckle generated over that area by our CycleCVAE baseline and the
one trained corrupting the clean patches with Gaussian noise, respectively.
Finally, the bottom right image shows the same area as it is captured by one
of the speckled SAR images from the temporal stack used to compute the
top left Mean. Thus, we can see how the two CycleCVAE models we trained
have similar speckle generation performances, but there is still room for
improvements. In particular, the generated speckle preserves details coming
from the underlying scene that we would expect to be hidden by a stronger
speckle.

5.2 experiments 69

Figure 5.25: Comparison between the speckle generated by our CycleCVAE models
and that of a real SAR image. The top left image shows the ground truth Mean of
which we are generating speckled images. The top right shows the speckle generated
by our CycleCVAE baseline, while the bottom left shows that generated by the model
trained on corrupted clean patches. The bottom right images show a real speckled
SAR image. We can see how corrupting clean patches do not affect the generated
speckle quality. Nevertheless, the speckle quality is still cheap: generated speckled
images still preserves too much detail of the underlying scene.

However, we proved how using our Speckle Generator network for building
a synthetic dataset allows our Despeckler to achieve similar performances
to state-of-the-art algorithms. In particular, our model showed remarkable
performances in well preserving edges and details over homogeneous areas
and strong scatterers clusters, even if it still struggles on isolated ones, without
introducing any artefact nor adding ad-hoc loss terms as the TV of [11].

6
C O N C L U S I O N S

In this work of thesis, we presented a Deep Learning model for unsupervised
SAR image despeckling. Given the absence of ground truth for training, we
developed our method following the unpaired image-to-image translation
framework presented in [26]. In particular, we designed two UNet-like net-
works, which we called Despeckler and Speckle Generator, for learning both
a despeckling and a speckle generation function. We trained those networks
using two adversarial loss, according to the WGAN-GP algorithm proposed
in [25]. We used two generative models to let them learn those high-level
features of both speckled and clean domains that supervised methods cannot
capture. We paid particular attention to the data scarcity problem, avoiding
any assumption about the speckle distribution like what is done in other
methods in literature when building synthetic datasets. We trained those
models concurrently, taking inspiration from the CycleGAN proposed in [26]
which showed outstanding performance in various image-to-image transla-
tion tasks. This approach allowed us to train our model in an unsupervised
fashion, using two sets of speckled and clean images in which no matching
pair is present. We used the cycle-consistency loss term for forcing our net-
works to learn meaningful mappings from the speckled SAR domain into the
clean one and vice-versa. By doing so, we let both the Speckle Generator and
the Despeckler learn a different speckle distribution according to the areas.
Furthermore, the training framework allowed us to obtain a good speckled
images generator from the multi-temporal Means extracted using [9]. The
Speckle Generator has been modelled using the CVAE [30] architecture allow-
ing the generation of multiple samples of speckle, given the same underlying
scene, conditioned over a latent vector, giving the possibility to generate
realistic data for building a synthetic dataset. The proposed solution proves
how unpaired image-to-image translation models can be successfully used
for SAR image despeckling, as shown during the experiment conducted, and
provides a good baseline for future developments.

In Chapter 5, we presented step by step every design choice we made
and the results obtained during our exploration of the problem. We started
with a more manageable task of using a WGAN [23] Speckle Generator
for generating speckle patches. The WGAN choice was made due to the
well-known limitations and training instability of classical GAN models. This
network produced generated images loosely correlated with the input clean
ones by losing detail over edges or adding strong scatterers over areas that
resulted in homogeneous inputs. After introducing a `1 loss between clean

71

72 conclusions

input and speckled output, we enriched our model by adding a Despeckler
network and training the two using a CycleWGAN model. In terms of
generated speckled images, we compared the results of these models and
proved how the CycleWGAN drastically improves the output quality. The
qualitative analysis demonstrated how the generated images preserved much
more details over the edges than the WGAN baseline without introducing any
strong scatterer that was not present in the clean input. We then illustrated the
limitations of a simple WGAN model and why it was necessary to introduce
a Gradient Penalty term for forcing the 1-Lipschitz in place of the Weight
Clipping. The training of a CycleWGAN model resulted slow, and the quality
of the information given by Critic networks was cheap, as proved in [25]. In
particular, we had to schedule the weight given to the cycle-consistency term
of our loss function to avoid vanishing gradients. Finally, we compared the
so-called CycleWGAN-GP model with other state-of-the-art approaches. It
achieved great results on both speckle generation and despeckling side but
still presented a non-neglectable residual speckle, especially over extremely
heterogeneous areas. We also demonstrated how our model successfully
learned how to map different areas of a clean image to different speckle
distributions on the speckle generation side.

Finally, we examined the one-to-many mapping problem and how this
could impact the performance of a CycleGAN, forcing the many-to-one side
network to hide helpful information in the produced images. We imple-
mented a CycleCVAE model to allow the Speckle Generator to embed this
information, which was necessary for generating speckled images, in a sepa-
rate latent vector and showed how this drastically reduced the intensity of
the residual speckle of the CycleWGAN-GP. We performed several tests to
validate the quality of the generated speckle by closely analyzing the patterns
presented by those images and plotting the amplitude intensity obtained
over one pixel by generating 10000 speckled images sampling different latent
vectors. The data gathered indicated a correlation between the speckle gen-
erated and a low-amplitude signal corrupting the clean reference images of
our training dataset. In particular, we identified some patterns in this signal
that the Speckle Generator amplified on images produced over the same area.
Thus, we trained our final solution adding Gaussian noise to the clean images
with an adequately calibrated amplitude for hiding this signal. We applied
this noise before feeding them to the Speckle Generator for allowing our
model to ignore the low-amplitude signal. The final model achieved outstand-
ing performances when compared with other state-of-the-art approaches. In
particular, it resulted not to be affected by artefact generation over hetero-
geneous areas and high performances in preserving edges and details on
extremely heterogeneous surfaces in the presence of a high concentration of
strong scatterers. Still, our solution struggles to preserve isolated scatterers,
especially those whose intensity is not notably higher than surrounding

6.1 future work 73

pixels. On the speckle generation side, this model showed wider variance on
the values generated over a single pixel by sampling 10000 latent vectors and
less correlation with the residual signal of the clean images than the previous
model.

In conclusion, we computed the Peak Signal-to-Noise Ratio and the Struc-
tural Similarity Intex Measure over a set of 100 patches extracted from a
speckled SAR image. These patches have been carefully selected to be homo-
geneous enough to consider the temporal stack average a good approximation
of the equivalent clean. We manually identified those that resulted remark-
ably homogenous for an accurate estimation of the ENL. We analyzed those
metrics and compared the result of our CycleWGAN-GP and CycleCVAE
models with the SAR-BM3D [7] algorithm and the UNet and UNet with
Total Variation of [11]. We noted better despeckling performances when
considering a Mean computed over a temporal stack using the algorithm of
[9] as ground truth. Finally, we computed the Equivalent Number of Looks
metric over manually selected homogeneous patches. We noted how, even
if a residual noise corrupts our clean dataset images and as a consequence
also our despeckled ones, we achieve better performances than [7] and the
baseline model, without TV, of [11].

6.1 future work

We showed in Chapter 5 how the model presented in Chapter 4 achieved com-
parable performances to other approaches present in literature. In particular,
we want to point out how the unpaired image-to-image translation network
we used allowed the Despeckler network to learn how to despeckle areas
with peculiar speckle distributions properly. We compared our CycleCVAE
performances with those of the UNet with TV proposed in [11], considered
to be the state-of-the-art. We showed how our solution achieved better detail
preservation in extremely heterogeneous areas with a high concentration of
strong scatterers than [11], which tends to lose some details. Unfortunately,
our model still struggles to preserve punctual scatterers, especially those with
lower amplitude and particularly bright areas, which usually represent build-
ings and structures whose characteristics are crucial for performing various
tasks. Lattari et al. [11] overcame this problem by adding a TV term, properly
weighted accordingly to the corresponding ground-truth clean image. This
term allowed their model to achieve smoother homogeneous surfaces and
to preserve those scatterers better. Since we have no matching pair, we can-
not use this term. We propose future work to deeper explore this problem
and find a suitable solution. We suggest investigating an identity loss term
between the speckled input of our Despeckler and the despeckled output.
This loss must penalize outputs where the intensity of high scatterers pixels
differs too much from the input. It may be possible to classify a pixel as a

74 conclusions

scatterer if its intensity is over a certain threshold k, then compute an `1 or
MSE loss term, properly weighted, between input and output input pixels.
Let us define y the input speckled patch and x̃ = y−Gd(y) the despeckled
one, let us define a patch s:

si,j =

{
0 if yi,j < k

1 otherwise
,

we can then define the identity loss

Lid = ||s� y− s� x̃||1 .

Considering this loss, the choice of the parameter k, which defines what
a scatterer is, is crucial. Lower values of this parameter will also preserve
unnecessary speckle in the clean image. Higher values will lead to losing
important information about these objects.

We also suggest investigating possible improvements of the Speckle Gen-
erator further. Even if this network is doing an excellent job in recognizing
different areas and accordingly generating speckle sampled from the proper
distribution, the images produced by this network still preserve too many
details coming from the underlying clean ones. We expected that a natural
speckle would be strong enough to hide those details. However, then De-
speckler would not recover them and properly minimize the cycle-consistency
loss term. Thus, we propose treating the speckled-to-clean branch as a one-
to-many mapping. The details of the underlying scene hidden by the speckle
generated by an optimal Speckle Generator may be encoded in a latent vector,
as done one the clean-to-speckled branch. One possible first step for starting
this exploration could be to implement a symmetric version of the training
described for our proposed solution in Chapter 4, implementing a CVAE ar-
chitecture also for the Despeckler. Otherwise, there are various models in the
literature which propose different approaches for dealing with many-to-many
mappings, as the Augmented CycleGAN proposed in [34].

Finally, we proved how by using a CycleCVAE architecture, we could
generate different speckle realizations. An interesting aspect that could be
deeper investigated is whether the actual distribution showed by analyzing
these realization matches what expected by the theory. Indeed, for carrying
out a successful analysis of this aspect, some attention should be driven to
the dataset since we proved how the low-amplitude signal present in the
Means composing our clean images dataset affects the generated speckle. We
also propose to test the efficiency of our Speckle Generator network, training
a model in a supervised fashion using the speckle generated by this network
for building a synthetic dataset.

B I B L I O G R A P H Y

[1] Jong-Sen Lee. “Digital image enhancement and noise filtering by use
of local statistics.” In: IEEE transactions on pattern analysis and machine
intelligence 2 (1980), pp. 165–168 (cit. on p. 18).

[2] Darwin T Kuan, Alexander A Sawchuk, Timothy C Strand, and Pierre
Chavel. “Adaptive noise smoothing filter for images with signal-dependent
noise.” In: IEEE transactions on pattern analysis and machine intelligence 2

(1985), pp. 165–177 (cit. on p. 18).

[3] Victor S Frost, Josephine Abbott Stiles, K Sam Shanmugan, and Julian C
Holtzman. “A model for radar images and its application to adaptive
digital filtering of multiplicative noise.” In: IEEE Transactions on pattern
analysis and machine intelligence 2 (1982), pp. 157–166 (cit. on p. 18).

[4] Hua Xie, Leland E Pierce, and Fawwaz T Ulaby. “SAR speckle reduction
using wavelet denoising and Markov random field modeling.” In: IEEE
Transactions on geoscience and remote sensing 40.10 (2002), pp. 2196–2212

(cit. on p. 18).

[5] Fabrizio Argenti and Luciano Alparone. “Speckle removal from SAR
images in the undecimated wavelet domain.” In: IEEE Transactions on
Geoscience and Remote Sensing 40.11 (2002), pp. 2363–2374 (cit. on p. 18).

[6] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen
Egiazarian. “Image Denoising by Sparse 3-D Transform-Domain Col-
laborative Filtering.” In: IEEE Transactions on Image Processing 16 (Aug.
2007), pp. 2080–2095 (cit. on p. 18).

[7] Sara Parrilli, Mariana Poderico, Cesario Vincenzo Angelino, and Luisa
Verdoliva. “A Nonlocal SAR Image Denoising Algorithm Based on
LLMMSE Wavelet Shrinkage.” In: IEEE Transactions on Geoscience and
Remote Sensing 50 (Feb. 2012), pp. 606–616 (cit. on pp. 18, 52, 53, 64, 65,
67, 73).

[8] Leonid I Rudin, Stanley Osher, and Emad Fatemi. “Nonlinear total
variation based noise removal algorithms.” In: Physica D: nonlinear
phenomena 60.1-4 (1992), pp. 259–268 (cit. on p. 18).

[9] Alessandro Ferretti, Alfio Fumagalli, Fabrizio Novali, Claudio Prati,
Fabio Rocca, and Alessio Rucci. “A new algorithm for processing inter-
ferometric data-stacks: SqueeSAR.” In: IEEE transactions on geoscience
and remote sensing 49.9 (2011), pp. 3460–3470 (cit. on pp. 2, 19, 33, 36,
52–55, 65, 67, 68, 71, 73).

75

76 bibliography

[10] G. Chierchia, D. Cozzolino, G. Poggi, and L. Verdoliva. “SAR image de-
speckling through convolutional neural networks.” In: (2017), 5438–5441

(cit. on p. 19).

[11] Francesco Lattari, Borja Gonzalez Leon, Francesco Asaro, Alessio Rucci,
Claudio Prati, and Matteo Matteucci. “Deep Learning for SAR Image
Despeckling.” In: Remote Sensing 11 (June 2019), p. 1532 (cit. on pp. 20,
21, 25, 27, 52, 53, 64, 65, 67–69, 73).

[12] Giulia Fracastoro, Enrico Magli, Giovanni Poggi, Giuseppe Scarpa,
Diego Valsesia, and Luisa Verdoliva. “Deep Learning Methods For
Synthetic Aperture Radar Image Despeckling: An Overview Of Trends
And Perspectives.” In: IEEE Geoscience and Remote Sensing Magazine
(2021), 2–24 (cit. on p. 20).

[13] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolu-
tional Networks for Biomedical Image Segmentation.” In: (2015) (cit. on
pp. 27, 38, 39).

[14] Feng Gu, Hong Zhang, and Chao Wang. “A GAN-based Method for
SAR Image Despeckling.” In: 2019 SAR in Big Data Era (BIGSARDATA)
(Aug. 2019) (cit. on p. 25).

[15] P. Wang, H. Zhang, and V. M. Patel. “Generative adversarial network-
based restoration of speckled SAR images.” In: (2017), pp. 1–5 (cit. on
pp. 23, 25).

[16] Ruijiao Liu, Yangyang Li, and Licheng Jiao. “SAR Image Specle Reduc-
tion based on a Generative Adversarial Network.” In: 2020 International
Joint Conference on Neural Networks (IJCNN) (July 2020) (cit. on pp. 24,
25).

[17] Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero
Karras, Miika Aittala, and Timo Aila. “Noise2Noise: Learning Image
Restoration without Clean Data.” In: (2018) (cit. on p. 21).

[18] Emanuele Dalsasso, Loic Denis, and Florence Tupin. “SAR2SAR: a semi-
supervised despeckling algorithm for SAR images.” In: IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing (2021),
pp. 1–1 (cit. on pp. 21, 23).

[19] Andrea Bordone Molini, Diego Valsesia, Giulia Fracastoro, and Enrico
Magli. “Speckle2Void: Deep Self-Supervised SAR Despeckling With
Blind-Spot Convolutional Neural Networks.” In: IEEE Transactions on
Geoscience and Remote Sensing (2021), pp. 1–17.

[20] Adugna G. Mullissa, Diego Marcos, Devis Tuia, Martin Herold, and
Johannes Reiche. “deSpeckNet: Generalizing Deep Learning-Based
SAR Image Despeckling.” In: IEEE Transactions on Geoscience and Remote
Sensing (2020), pp. 1–15 (cit. on p. 22).

bibliography 77

[21] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Gen-
erative Adversarial Networks.” In: (2014) (cit. on pp. 5, 7, 8, 15, 24, 25,
42, 43).

[22] Michael Wand Chuan Li. “Precomputed Real-Time Texture Synthesis
with Markovian Generative Adversarial Networks.” In: (2016) (cit. on
p. 24).

[23] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein
GAN.” In: (2017) (cit. on pp. 6, 7, 27, 29, 38, 41, 43, 47, 71).

[24] Cedric Villani. OPTIMAL TRANSPORT : old and new. 2016 (cit. on p. 6).

[25] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron Courville. “Improved Training of Wasserstein GANs.” In:
arXiv:1704.00028 [cs, stat] (Dec. 2017) (cit. on pp. 7, 8, 27, 29, 30, 34,
43–45, 47, 71, 72).

[26] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. “Un-
paired Image-to-Image Translation Using Cycle-Consistent Adversarial
Networks.” In: 2017 IEEE International Conference on Computer Vision
(ICCV) (Oct. 2017) (cit. on pp. xix, xxi, 2, 8–10, 14, 15, 26, 27, 34, 37, 42,
43, 54, 71).

[27] Dina Bashkirova, Ben Usman, and Kate Saenko. “Adversarial Self-
Defense for Cycle-Consistent GANs.” In: Advances in Neural Information
Processing Systems 32 (2019) (cit. on pp. 10, 54).

[28] Carl Doersch. “Tutorial on Variational Autoencoders.” In: arXiv:1606.05908
[cs, stat] (Jan. 2021) (cit. on pp. 12, 13).

[29] Diederik P Kingma and Max Welling. “Auto-Encoding Variational
Bayes.” In: (2013) (cit. on pp. 11, 13, 14, 34, 54, 57).

[30] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. “Learning Structured
Output Representation using Deep Conditional Generative Models.”
In: 28 (2015). Ed. by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett (cit. on pp. 2, 12, 14, 32, 56, 58, 71).

[31] Qipeng Guo, Zhijing Jin, Ziyu Wang, Xipeng Qiu, Weinan Zhang, Jun
Zhu, Zheng Zhang, and David Wipf. “Fork or Fail: Cycle-Consistent
Training with Many-to-One Mappings.” In: arXiv:2012.07412 [cs] (Jan.
2021) (cit. on pp. 2, 10, 13, 27, 54, 56, 57, 66).

[32] Yu Li, Sheng Tang, Rui Zhang, Yongdong Zhang, Jintao Li, and Shuicheng
Yan. “Asymmetric GAN for Unpaired Image-to-image Translation.” In:
IEEE Transactions on Image Processing (2019), pp. 1–1 (cit. on pp. 11, 15,
54, 56, 57).

78 bibliography

[33] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A.
Efros, Oliver Wang, and Eli Shechtman. “Toward Multimodal Image-
to-Image Translation.” In: arXiv:1711.11586 [cs, stat] (Oct. 2018) (cit. on
p. 56).

[34] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. “Multimodal
Unsupervised Image-to-Image Translation.” In: arXiv:1804.04732 [cs,
stat] (Aug. 2018) (cit. on p. 74).

	Contents
	List of Figures
	List of Tables
	Abstract
	Abstract
	Sommario

	1 Introduction
	1.1 Outline

	2 Background
	2.1 Generative Adversarial Networks
	2.2 Wasserstein Generative Adversarial Networks
	2.3 Cycle Consistent Generative Adversarial Networks
	2.4 Many-to-One mappings
	2.5 Variational Auto Encoder
	2.6 Conditional Variational Auto Encoders
	2.7 Cycle Conditional Variational Auto Encoders
	2.8 Asymmetric Generative Adversarial Networks

	3 Background on SAR Image Despeckling
	3.1 Speckle Model
	3.2 State-of-the-art approaches
	3.2.1 Classical Algorithms
	3.2.2 Deep Learning Approaches

	4 Proposed Solution
	4.1 Architecture
	4.2 Training

	5 Experimental Results
	5.1 Dataset
	5.2 Experiments
	5.2.1 First experiments on speckle generation
	5.2.2 CycleWGAN Model
	5.2.3 Dataset augmentation and architecture tests
	5.2.4 Noise Embedding

	6 conclusions
	6.1 Future work

	 Bibliography

