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1. Introduction

Nowadays, detecting illegal land�lls, often hid-
den and causing severe environmental hazards,
has become a critical challenge. In this work,
we address the problem of illegal land�ll detec-
tion through satellite images as an anomaly de-
tection and segmentation problem, where land-
�lls represent anomalies in the image and images
without waste constitute the normality. This
work is part of the European PERIVALLON
project [1], which aims to �ght organised envi-
ronmental crime by developing solutions based
on arti�cial intelligence to detect and contrast
such illegal activities.
Detecting illegal land�lls in satellite images has
been carried out mostly by human experts,
hence it was ine�cient and limited compared to
a possible automated version. Deep neural net-
works can o�er a more e�cient and e�ective so-
lution, building an automated land�ll discovery
tool capable of detecting anomalies that human
observation might miss, by continuously scan-
ning the ground with satellite images.
Traditional monitoring methods for such tasks
are supervised classi�cation and segmentation.
Instead, we use an unsupervised method to �nd
illegal waste, without being conditioned by the
types of anomalies during training.
The main challenge tackled by this thesis is the

great heterogeneity of land covers without illegal
waste, implying an extensive variety in normal
images. Instead of creating a general model for
all the satellite images, our solution suggests de-
veloping a speci�c model for each group of land
covers and using it to detect illegal land�lls only
on images including those land cover types.
Combining methodologies from the �elds of
anomaly detection and graph theory, we use
spectral clustering on the land covers to de�ne
strongly related groups and we split images into
subsets. On these sets, we apply Fully Convolu-
tional Autoencoders, followed by morphological
image operations, to produce more e�cient and
accurate identi�cation of illegal land�lls.

2. Problem formulation

In this section, we state the anomaly detection
problem that we address in this thesis. We refer
to images containing an illegal land�ll as anoma-

lous, while normal images do not contain them.
We can consider an RGB image in input as a
three dimensional matrix X ∈ Rw×h×3, where
values are normalized between [0, 1]. Here w is
the width and h is the height of the image. Our
goal is to locate anomalous regions in the image
X de�ning an anomaly mask :

ΩX(i, j) =

{
0 if X(i, j) is normal

1 if X(i, j) is anomalous
, (1)
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with X(i, j) the pixel at row i and column j in
X. We face this anomaly detection problem using
an unsupervised approach, i.e. using unlabeled
data. During the training phase, we take into
account only normal images X1, ..., Xn ∈ X ,
namely images not containing any illegal waste.
Unsupervised training considering only a type of
data is also called semisupervised approach.

3. Proposed solution

3.1. Autoencoders for Anomaly Detection

We address the anomaly detection problem us-
ing an Autoencoder, namely a Convolutional
Neural Network that is trained with the objec-
tive of reconstructing the input as desired out-
put [5]. Autoencoders consist of two main com-
ponents: the encoder E and the decoder D. E
maps the input into a low-dimensional latent
space, from which D reconstructs the input im-
age X̄ = D(E(X)). Our idea is to train the en-
coder and the decoder using only normal images
such that the di�erence between the original im-
age and the reconstructed image is minimized.
When the di�erence is below a certain thresh-
old τ , the image pixel X(i, j) is considered nor-
mal, above the threshold the pixel is considered
anomalous, namely{
ℓ(X(i, j),D(E(X(i, j)))) ≤ τ if normal

ℓ(X(i, j),D(E(X(i, j)))) > τ if anomalous
,

with ℓ(·, ·) the Autoencoder reconstruction loss.
However, since in this dataset normality is too
varied, training the model on the entire set
of normal images results in poor segmenta-
tion performance. Therefore, we split the im-
ages into smaller groups according to their land
cover. Formally, we create N groups of images
X1, . . .XN ⊆ X such that

⋃N
i=1Xi ≈ X , with

Xi set of images consistent from the land cover
perspective.

3.2. Dataset

In order to develop this thesis, we worked with
the AerialWaste dataset [4] that collects satellite
images of Lombardia region under the control of
ARPA agency. The latest version of this dataset
is composed of 10977 satellite images taken
by three di�erent sources: AGEA Ortophotos,
WorldView-3 and GoogleEarth. According to
the type of source, the images have di�erent
GSD (Ground Sampling Distance), namely a dif-
ferent pixel resolution of 20 cm, 30 cm or 50 cm

respectively. Such images are already split into
training set (75% of the total number of images)
and test set (25% of the total). Among the test
set, a subset of 169 anomalous images is pro-
vided with segmentation masks in the standard
COCO format. We decided to follow the division
provided by the dataset authors, even though in
the training we use only normal images, namely
5579 images of the training set.
Thanks to the dataset DUSAF 7.0 published in
the Geoportal of Lombardia region [2], we were
able to associate each image to one or (usually)
more types of land covers in the form of numer-
ical codes. Indeed, AerialWaste dataset has no
annotations about the land cover of each image,
forcing one to consider as normal a huge vari-
ety of images. Figure 1 illustrates images from
di�erent land cover types, (a), (b) and (c) are
normal images, while (c) and (d) are anomalous
images with their ground truth masks.

3.3. Methods

The idea of our solution is to create small groups
of strongly connected land cover types, in which
the concept of normality has limited variability.
On these groups, we train an Autoencoder that
will be speci�c for the land covers within the
group. Then, at test time, we evaluate the per-
formance of the speci�c Autoencoders on nor-
mal and anomalous test images belonging to the
same group.
In order to select only a subset of normal im-
ages to focus the work on, we group the di�erent
types of land cover using the spectral clustering

algorithm. To achieve this, we create an undi-
rected weighted graph G = (V,E) where each
node i ∈ V is a di�erent type of land cover, and
each edge eij ∈ E connecting i and j has weight
wij equal to the number of images containing si-
multaneously i and j as land covers. Thus, the
weight on each edge is a function of similarity

between the two vertices that the edge connects,
namely it represents the similarity between two
land cover types. Our aim is to highlight the
connections between types of land cover that are
strongly related, since a high edge weight corre-
sponds to a high number of images where those
types are co-present.
We are able to apply to this graph the Nor-
malized minimal cut algorithm provided by Shi
and Malik [3]: partition the graph G into dis-
joint sets of vertices A1, . . . , AK , i.e. such that
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(a) 3121, 31311 (b) 1121, 1122, 1221,
12111, 1112

(c) 3113, 5121 (d) 12112, 2111 (e) 12112, 2111, 11231

Figure 1: Images (a), (b), (c) are normal : (a) has categories �medium and high density coniferous forests (3121)�,
�medium and high density mixed forests governed by coppice (31311)�; (b) has �discontinuous residential fabric
(1121)�, �sparse and nucleiform residential fabric (1122)�, �road networks and ancillary spaces (1221)�, �industrial,
craft, commercial settlements (12111)�, �medium dense continuous residential fabric (1112)�; (c) has �riparian
formations (3113)�, �natural water basins (5121)�. Instead (d), (e) are anomalous images with their segmentation
masks, the �rst given along with the dataset, the latter manually segmented by us: (d) and (e) have land covers
�agricultural production facilities (12112)�, �simple arable land (2111)�; (e) has also �farmhouses (11231)�.

⋃K
i=1Ai = V and ∀i, j i ̸= j, Ai ∩ Aj = ∅,

by removing edges connecting the two sets. The
objective is to eliminate edges with a certain cri-
terion minimizing the total weight of the edges
deleted. The sum of the weights of the removed
edges represents the degree of dissimilarity, and
it is called cut : cut(Ai, Aj) =

∑
i∈Ai, j∈Aj

wij .

The normalized cut (Ncut) avoids cutting small
sets of isolated nodes in the graph, and the cut
cost is computed as a fraction of the total edge
connections to all the nodes in the graph:

Ncut(Ai, Aj) =
cut(Ai, Aj)

tot(Ai, V )
+

cut(Ai, Aj)

tot(Aj , V )

where tot(Ai, V ) =
∑

l∈Ai, k∈V wlk is the total
connection, i.e. the sum of the weights of edges
from the vertices in Ai to all the other vertices.
Since minimizing the normalized cut is an NP-
complete problem, an approximate discrete so-
lution can be e�ciently found: relaxing the hy-
pothesis to real values only, the problem can
be rewritten as the solution of the generalized
eigenvalue system

(D−W)y = λDy (2)

where D is the N ×N diagonal matrix with the
total connection d(i) =

∑
j wij from node i to all

the other vertices on its diagonal, W is the N ×
N symmetrical matrix with the graph weights as
elements W(i, j) = wij . It is found in (2) that
the second smallest eigenvector is the relaxed
solution of the normalized cut problem, thus we
use spectral clustering to partition the graph.
We perform this analysis on the training set,
where there are only normal images, namely

without illegal land�lls, in order to catch possi-
ble relations between land cover types in a con-
text of normality.

Figure 2: The clustered graph found with spectral clus-

tering: each node i is a di�erent land cover, each edge

(i, j) has weight wij equal to the number of images con-

taining simultaneously land covers i and j. The colour of

each edge stresses the value of its weight (lighter colour,

smaller weight). The clusterization represents the main

groups of land covers we can �nd in Lombardia territory.

In order to choose the optimal number of clus-
ters k, we look for the value k maximizing the
eigengap, namely the di�erence between consec-
utive eigenvalues, which turns out to be k = 4.
Performing the spectral clustering based on land
covers, we discover 4 di�erent groups, as shown
in Figure 2, that can be summed up as:

1. Woods and vegetative lands
2. River areas and water basins
3. Residential areas
4. Agricultural areas.

Our analysis is developed on the Agricultural ar-
eas cluster, which contains the land cover types
listed in Table 1.
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Code Description

223 Olive groves

31111
Medium and high density deciduous
forests governed by coppice

2111 Simple arable crops

2311
Permanent meadows in the absence
of tree and shrub species

2112 Arable land trees

12112 Agricultural production sites

3241
Bushes with signi�cant presence of
tall shrub and tree species

3242 Bushes in abandoned agricultural areas

1123 Sparse residential fabric

11231 Farmhouses

221 Vineyards

2312
Permanent meadows with scattered
tree and shrub species

31122
Low density broad-leaved forests
governed by high trunk

222 Orchards and minor fruit

21141 Open �eld �oro-nursery crops

21142 Protected �oro-nursery crops

21131 Vegetable crops in open �eld

21132 Protected horticultural crops

31121
Low density deciduous forests
governed by coppice

31112
Medium and high density broad-leaved
forests governed by high stems

12126 Photovoltaic systems on the ground

3114 Chestnut groves

3111 Medium and high density hardwood forests

Table 1: Codes and descriptions of the land covers
in Agricultural areas cluster.

4. Implementation details

4.1. Preprocessing

Since the images have di�erent pixel-resolution,
we scale them according to their source choosing
to set 30 cm/pixel for all of them. Even if the
network is able to receive in input images of all
sizes, in order to help the learning using batches
we randomly crop patches from the training im-
ages and give them in input to the encoder.
Keeping in mind the size of the receptive �eld
of our network, we decide to crop the patches of
size 128 × 128 pixels, namely 3840 × 3840 cm,
and we create batches of 128 patches each.

4.2. Postprocessing

During the testing, error maps are created as re-
construction error of the images, using the train-
ing losses. These maps can be described as ma-

trices Z = ℓ(X, X̄) ∈ Rw×h , with the values of
Z high where the reconstruction fails.
In order to create a score map, we choose
a threshold τ from the empirical quantile (at
98% and 99%) of the distribution of the error.
Thereby, following Equation (1), the score map
can be created in each pixel X(i, j) as:

ΩX(i, j) =

{
0 if ℓ(X(i, j), X̄(i, j)) < τ

1 if ℓ(X(i, j), X̄(i, j)) ≥ τ

with i, j indicating the row and column locating
the pixel in the image, ℓ the reconstruction loss.
The score map created is then postprocessed al-
ternating the morphological methods of erosion
and dilation. Erosion shrinks the shape of an
object in the image by removing pixels from
its edge, while dilation increases the shape by
adding pixels. The amount of pixels changed in
the image depends on the size and shape of the
structuring element used to process the image.
In such a way, the noise in the prediction map
of the anomaly masks is removed, and the holes
in the objects are �lled.

4.3. Neural network training

In this thesis we consider three di�erent losses to
train the networks. The �rst is MSE that com-
putes the mean squared error between each pixel
of the two images taken in comparison, namely
the original and the reconstructed image, and it
is de�ned as

MSE(X, X̄) =
1

nm

n∑
i=1

m∑
j=1

(X(i, j)− X̄(i, j))2

where the di�erence between images is consid-
ered pixel-wise, X(i, j) the pixel ranging in n
rows and m columns.
Besides, the structural similarity index (SSIM )
looks for the similarity between pixels of the two
images, producing a score ∈ {−1, 1}, with 1 in-
dicating the maximal similarity. It is de�ned as

SSIM(X, X̄) =
(2µXµX̄ + C1)(2σXX̄ + C2)

(µ2
X + µ2

X̄
+ C1)(σ2

X + σ2
X̄
+ C2)

where µX , µX̄ are the mean of X and X̄,
σX , σX̄ the variance of X and X̄, σXX̄ their
covariance, C1, C2 constants to avoid instabil-
ity when the sum of squared means is close to 0.
In order to use this metric during the training
as a loss, we consider 1− SSIM(X, X̄).
Finally, we de�ne a mixed loss as

ℓmixed = wMSE ·MSE(X, X̄) +

wSSIM · (1− SSIM(X, X̄))
(3)
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with wMSE , wSSIM weights arbitrarily chosen
as hyperparameters. In this way we try to com-
bine the MSE reconstruction precision with the
SSIM ability to grasp the image structure.
Before performing the training, we further split
the cluster of Agricultural areas into frequent

and rare, where the �rst contains only the most
frequent land cover types, namely those with
at least 50 samples, and the latter contains the
other more rare types. We obtain 1560 normal
images in the frequent training set, 307 images
(54 anomalous) in the rare test set, 787 images
(285 anomalous) in the frequent test set. The
aim is to use only the frequent subset in the
training phase, and use the rare land cover types
exclusively during the testing phase in order to
check the generalization ability of the network.

4.4. Autoencoder Architecture

Since the images have di�erent dimensions, we
design a Fully Convolutional Autoencoder in or-
der to take in input images of any size. Two
di�erent Fully Convolutional architectures are
used: a network with 3 convolutional layers
in the encoder, with ReLU as activation func-
tion, and in the decoder 3 convolutional layers
alternated with upsampling layers, with ReLU
as activation function; then a similar network
with 4 layers instead of 3. The �rst network is
trained with MSE loss, instead the second with
the mixed loss between MSE and SSIM de�ned
in (3) of weights wMSE = 0.7, wSSIM = 0.3.

5. Experiments

In this thesis we perform three di�erent type of
model evaluation: performance of the model us-
ing AUROC, ability to segment in binary masks,
and ability to �nd a su�cient amount of waste in
images. In this section we list all the results ob-
tained during our evaluation experiments on the
test set, that contains both normal and anoma-
lous images. Since the number of segmented im-
ages in the dataset is scarce, especially if we con-
sider only the images in our cluster, we manually
segment approximately 100 other images using
Odin annotator provided by the authors of Aeri-
alWaste dataset[4].
We �rst estimate the AUROC score on the re-
construction error compared to the ground truth
masks. Then, as explained in Section 4.2, we de-
termine the score maps for the anomalous test
images of the Agricultural cluster and we com-

pute the IoU and Dice scores of those predicted
maps with respect to the ground truth masks.
Initially we do not apply the morphological post-
processing, but we notice that applying it on the
score maps the results improve signi�cantly.

(a) (b) (c)

Figure 3: Image (a) is the GT mask, (b) is the mask
computed through the model trained with MSE be-
fore postprocessing and has scores IoU = 0.1509,
Dice = 0.3017, (c) after postprocessing has scores
IoUpostpr = 0.4704, Dicepostpr = 0.9408.

Figure 3 shows an example of the di�erence be-
tween the raw predicted masks (b) and the mask
after postprocessing (c).

IoU Dice AUROC

Baseline 0.0628 0.1257
69.91 %

Baselinepostpr 0.1446 0.2893

ℓMSE 0.0629 0.1257
70.12 %

ℓMSE
postpr 0.1482 0.2964

ℓmixed 0.0452 0.0903
70.99 %

ℓmixed
postpr 0.0881 0.1762

Table 2: Evaluation of the models trained with dif-
ferent losses, before and after the application of mor-
phological postprocessing; as baseline we consider a
model trained on the complete dataset.

In Table 2 are listed the results considering at
99% the threshold cuto� de�ned in Section 4.2,
with and without applying postprocessing. We
observe that after the postprocessing the per-
formance improve in all our models; the mixed-
loss model has best AUROC score but it is the
worst considering IoU and Dice scores, where ex-
cels the MSE-based model. The main issue with
these results is the false detection of object edges
as anomalies, for instance roof edges, roadsides,
small items. This matter is directly related to
the problem type that we are addressing, that is
at pixel-level.
As previously stated, we also perform the evalu-
ation on the rare subset of the cluster in order to
know if the models were able to generalize what
learnt on the frequent subset. Performance is
shown in Table 3 and is consistent with the re-
sults of the frequent subset.
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IoU Dice AUROC

ℓMSE
postpr 0.15806 0.3161 78.01 %

ℓmixed
postpr 0.0676 0.1352 77.51 %

Table 3: Evaluation on the rare set of cluster Agri-
cultural areas of the models trained on frequent set
with MSE loss and mixed loss.

Instead, evaluating the models on the images
contained in another di�erent cluster, more
speci�cally on the Residential areas cluster, we
obtain the results shown in Table 4.

IoU Dice AUROC

ℓMSE
postpr 0.1273 0.2547 68.94 %

ℓmixed
postpr 0.0757 0.1515 68.33 %

Table 4: Models trained on cluster of Agricultural
areas evaluated on cluster of Residential areas.

These results denote that our models can
broaden what learnt on frequent land covers to
connected and a�ne land cover types, but also
that the mixed loss model is not speci�c for
Agricultural cluster. Therefore, we use only the
model built with MSE loss to evaluate the pre-
diction of a su�cient amount of waste in anoma-
lous images of the frequent subset.
Computing the value minimizing the distance
between precision and recall scores, we �nd the
optimal threshold for the IoU score. We use this
threshold to discriminate between images pre-
dicted as anomalous (namely with a su�cient
amount of waste detected) or normal, �nding:
59 images properly predicted as anomalous (true
positive), 13 incorrectly predicted (simultane-
ously false negative and false positive, since the
masks were misplaced). Performing the same
evaluation considering only normal images we
�nd 62 true negative and 440 false positive.
Hence, we can complete the testing computing
Recall = 0.952 and Precision = 0.134. Since in
the real-world scenario the most important thing
is not to miss any illegal land�ll, the major re-
sult is that almost all the anomalies are correctly
detected, as enhanced by the high recall value.

6. Conclusions

In this work we approached the illegal land�lls
detection problem from a di�erent perspective
with respect to the previous works, namely as a
unsupervised anomaly detection problem.

Addressing the problem in an unsupervised
pixel-level manner is less e�ective with respect to
supervised image-level approaches, but it gives
us the bene�t of using the same network with
new di�erent images, without retraining it. In-
deed, in a context such as illegal land�lls de-
tection, it is important to be �exible since the
satellite image dataset could be in continuous
update.
Clustering the land cover types slightly im-
proved the performance of our models, even if
the edges of objects in the image are likely to
raise false alarms. This issue is due to the com-
plexity of the addressed task and the use of MSE
loss to train our model. We have shown that this
approach is feasible and viable, bringing reason-
able results.
The mixed loss turned out to be underperform-
ing with respect to the classical MSE loss. As a
future approach, it could be developed a mixed
loss using a di�erent type of structural similar-
ity or a di�erent metric. Overall, we noticed
that the results depend also on the quality of the
ground truth masks, since model predictions are
pixel sensitive and their assessment is a�ected
by that.
We underline that in our context it is more im-
portant to have a high recall with respect to a
high precision, meaning that false alarms of ille-
gal land�lls could be risen, but almost all of the
illegal areas are detected: sending someone to
investigate a suspicious area is better than not
spotting it.
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