
Executive Summary of the Thesis

Channel State Information (CSI) features Collection in Wi-Fi Access
Points for IoT forensics

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Alessia Luoni

Advisor: Prof. Alessandro Enrico Cesare Redondi

Co-advisor: Dr. Fabio Palmese

Academic year: 2021-2022

Abstract
Human activities sensing can contribute to solve
a wide range of problems, including those in the
IoT Forensics field. Techniques used to perform
human detection often require IoT devices that
need to be carried, which may be unconventional
in places such as at home. Several alternative so-
lutions exist, but their success is affected by the
surrounding environment. Therefore, experts
can rely on wireless sensing, and in particular on
the Channel State Information (CSI), which can
leverage the existing radio signals generated in-
side a Wi-Fi infrastructure for human activities
sensing. This work proposes a tool that allows
to capture CSI features directly in a Wi-Fi ac-
cess point and which can be easily controlled via
its user web interface. After the project overview
and its implementation details, we show how the
data extracted from common IoT devices can be
used for IoT Forensics analysis tasks, such as de-
tecting the presence of humans inside an indoor
environment as well as its passage through the
room door.

1. Introduction
In the last years, IoT companies are continu-
ously launching new products into the market,
as well as making smart the existing ones used in
daily activities. Therefore, we have a high num-
ber of connected devices producing traffic simul-
taneously that could be used as potential source
of evidence in case of crimes. This is why IoT
forensics is becoming popular and applied. This
work focuses on a subcategory of IoT Forensics
called IoT Network Forensics, which aims at cap-
turing and analysing IoT device network traffic
for forensics purposes. In particular, since col-
lecting CSI data directly from an Access Point
(AP) is not often feasible, our first goal is the
creation of a tool, named CSI Feature Sniffer,
that allows the collection of CSI features directly
in the access point, to be easily controlled via
the user web interface and that returns an al-
ready processed file. After presenting the tool
implementation details as well as its configura-
tion parameters, we show potential uses of the
tool output for IoT forensics analysis tasks. In
particular, we show that it is feasible to recog-
nize when a person is inside a room and the mo-
ments in which he/she passes through the door
using a smart camera as source of traffic. The

1

Executive summary Alessia Luoni

rest of the paper is structured as follows: Sec-
tion 2 presents the CSI related works, Section
3 describes the implementation of CSI Feature
Sniffer, Section 4 shows real case scenarios that
exploit the collected CSI features, Section 5 con-
tains the results obtained and in Section 6 there
are the conclusions.

2. Related works
Device-free methodologies used for human ac-
tivities sensing in indoor environments includes
low-cost approaches mainly based on two indi-
cators: the RSSI (Received Signal Strength In-
dicator) and the CSI (Channel State Informa-
tion). However, most of the related works uses
the CSI because it is considered more stable and
more fine-grained than the RSSI.
CSI is a measurement from the Physical layer
which illustrates how the propagation of a sig-
nal from the sender to the receiver occurs.
The CSI is represented by a vector where each
entry is a complex number, which phase and am-
plitude of every subcarrier can be derived [4]:

Hi = |Hi|ej sin(̸ Hi) (1)

Where |Hi| is the CSI amplitude of the ith sub-
carrier and ̸ Hi is its phase.
The paper which inspired the thesis the
most demonstrates, by only analysing the
CSI feauters collected with two ESP32 micro-
controllers, how it can be done a through-wall
occupancy monitor activity in a hallway [3].
Another work that applies the same data for
similar scopes is presented in [2], where the
authors propose a semi-supervised learning ap-
proach for counting people in a room. Here
Guo et al. leveraged the spatial diversity on the
MIMO-enabled WiFi devices to extract effective
features from the CSI difference between two an-
tennas.
Moreover, because of their great social impact,
many studies have been done for recognizing
atypical activities, such as detect falls. The first
work proposed that aims at sensing these actions
by analysing the CSI is WiFall [5]. In this case,
the authors trained the model both with a one-
class Support Vector Machine classifier and then
with a Random Forest algorithm.
As we have seen, CSI features allow to conduct a
wide number of researches. However, this mea-
surement requires one between the specific tools

available for capturing data, so among them we
chose the Nexmon CSI Extractor [1].

Figure 1: CSI Feature-Sniffer architecture

3. CSI Feature Sniffer
CSI Feature Sniffer is a forensic tool which can
be installed in any AP with OpenWrt firmware
and that allows users to capture CSI data di-
rectly from it through the LuCI web interface.
This enables the gathering of data and the down-
loading of the parsed features in a very user-
friendly environment, rather than using several
bash commands which require a deep knowledge.

3.1. Architecture
Since the tool is intended to be usable also by
non-expert users, its setup must be easily repli-
cable; indeed, its components are:
• An Access Point (AP) with OpenWrt

and LuCI web interface installed.
• A Raspberry Pi equipped with the Nex-

mon CSI Extractor. It is used to collect
the CSI features and to that end it needs to
be connected with an ethernet cable to the
AP. The user must take care that the Wi-Fi
card and the installed kernel are compatible
with those required by the nexmon project

• Wi-Fi devices that are connected wireless
to the AP and from which we want to sniff
traffic. In this work, we tested an indoor
security camera (Teckin Camera TC100) as
the IoT device that sent CSI traffic.

• A personal computer from which the
user can access CSI Feature Sniffer via the
AP web interface.

A sketch of the architecture is reported in Figure
1

2

Executive summary Alessia Luoni

3.2. User interface
The CSI Feature Sniffer user interface is an ex-
tension of the LuCI web interface. Its homepage
allows to create new configurations as well as
to control the existing ones with proper buttons
to: open/edit its settings, start and stop the CSI
capture, download the resulting output as CSV,
delete the configuration. The user can also cre-
ate new configurations through the proper but-
ton that opens a page where to enter the config-
uration parameters (i.e. Wi-Fi channel, devices
to filter).

3.3. Implementation details

3.3.1 AP - Raspberry Pi communication

MQTT was used to connect the AP with
the Raspberry Pi, so that Nexmon could be
controlled through the web interface.
For establishing the communication between
the two devices we installed Mosquitto on both
of them and then, on the Raspberry, we created
a Python script to connect to the broker and to
subscribe to the topics: start, stop, prepare and
download. In addition, based on the received
message topic, it is responsible for calling other
scripts that activate the CSI Feature Sniffer
functionalities. At this point, since we needed
to subscribe to the topics as soon as possible,
the script was embedded in a service which
starts when the operating system boots.

Create: Creating a configuration is an
easy functionality that operates only at the AP
side, which is triggered after the user enters
its parameters and saves it. At this point a
function in the web server immediately checks
the input and then appends the parameters in
a configuration file.

Start: When the user clicks the start button,
the AP sends an MQTT publish message to
the broker with prepare as topic, containing the
entire configuration file in the message payload.
As the Raspberry receives the publish message,
it retrieves the file content and prepares the
settings for the Nexmon process. Then the AP
sends another publish to the start topic that will
trigger the Raspberry to start the Python script
which executes all the commands required by
Nexmon to capture the CSI data. We remark

that these phases require the Raspberry to be
previously subscribed to the proper topics, as
previously stated.

Stop: The capture interruption is simply
implemented by the AP sending a message to
the topic stop, causing the subscribed process
in the Raspberry side to send a SIGINT signal
to kill the Nexmon capture execution.

Download: In order to avoid the down-
loading of old .csv files, the first thing that
happens when hitting the download button, is
the deletion of possible retained messages.
Next, the AP publishes a message with topic
download, the receipt of which triggers the
start of a Python script on the Raspberry
that initially parses the file resulting from the
capture, then creates a CSV file containing
all the CSI features and finally sends it as a
retained MQTT publish message. The file is
then forwarded to AP as soon as it subscribes
to the output topic.
However, the file is not immediately ready to
be downloaded by the end user, but he/she has
to wait for all the data to be sent, so the whole
procedure requires several request/response
messages until the final output is eventually
sent back to the user in the HTTP response.

4. Human detection with CSI
All the experiments are conducted in the same
room and with no one else besides the moving
person in this environment.Several scenarios are
tested in order to understand how the Channel
State Information react to human activity. In
particular, we examined the following scenarios:
• Scenario 1: The Raspberry Pi and the

Teckin camera are facing each other at the
room entrance and spaced ∼ 1.5 m apart.
In this case, at the beginning of the capture
the person is just outside the room. After-
wards, she enters the room, passes between
the devices, walks until she reaches the op-
posite wall, then turns around and reaches
the starting position. All these actions are
repeated 20 times, which results in 40 door
crossings. Since the devices were both near
the entrance, in this context, the main fo-
cus was to understand whether it was possi-
ble to detect the moment in which a person

3

Executive summary Alessia Luoni

passed through the door from the CSI.
• Scenario 2: The Raspberry is placed at

the room entrance, while the camera is
placed near the right wall, around ∼ 5.5 m
away from the other device.
In this case, at the beginning of the capture
the person is outside the room. Afterwards,
she enters the room, walks a few seconds in-
side it, then turns around and reaches the
starting position. All these actions are re-
peated for 15 times, which result in 30 cross-
ing from the door. This time, the two in-
struments are far apart, so our goal is to de-
tect the presence of the person in the room,
instead of detecting the entrance.

• Scenario 3-4: these two experiments are
analogous to Scenario 1 and 2 respectively,
but with the smart camera facing the wall.
This means that for Scenario 3 the camera
has not the room entrance in its Field of
View (FoV) and the same holds for Scenario
4, in which the moving person is outside
the FoV of the camera. The goal of the
experiments is the same as before, detecting
the passage (Scenario 3) and the presence
(Scenario 4) of a moving person.

4.1. Preprocessing and data analysis
We firstly collected CSI data by only filtering the
traffic from the camera on the 20 MHz band, af-
ter we moved on to the preprocessing and analy-
sis stages. Before starting the preprocessing we
opened the PCAP file produced by the Nexmon
tool containing the CSI capture using the csiread
tool, a library available on GitHub which parses
data. After this parsing, we obtain the CSI fea-
tures (for each one of the data subcarrier avail-
able in the band, we got for example, the sub-
carrier number, the frame to which it belongs
and the amplitude derived from the CSI value)
and then we create our dataframe.
Although the CSI measurements are composed
of both phase and amplitude, only the ampli-
tudes have been considered for this experiment
because the phases are influenced by device clock
and carrier frequency, so they need a calibration
which introduces several drawbacks. The next
step involves the discovery of outliers, which
consists in applying a windowed filter for each
subcarrier i ∈ I, where I = [-28, -27, . . . , -
1, 1, . . . , 27, 28]. Specifically, the dataframe

is divided into w seconds wide non-overlapping
windows. Therefore, each packet is assigned to
a proper window by checking its timestamp.
Subsequently, the filtering was applied as fol-
lows:

A
(i)
t =

A
(i)
t

|A(i)
t −µ(A(i){w})|
σ(A(i){w}) < λ

A
(i)
t−1 otherwise

Where:
• µ(A(i){w}) is the mean of the amplitude

values for the i-th subcarrier in the window
w.

• σ(A(i){w}) is the standard deviation of the
amplitude values for the i-th subcarrier in
the window w.

After the cleaning of the amplitude measure-
ments, some statics were applied. The first com-
putation included the calculation of the stan-
dard deviation as before, for each subcarrier, to
update the value of A(i)

t :

A
(i)
t = σ(A(i){w}) (2)

Then, the dataframe was modified again in order
to compute ACSI,t as the average standard de-
viation on all the subcarriers for a certain time
instant t :

ACSI,t = µ(A
(∀i∈I)
t) (3)

Subcarriers close to each other should have sim-
ilar values, so, when there is noise across sev-
eral subcarriers at time t, ACSI,t assumes a high
value, which means that a target is present in
the environment; conversely, if the noise is not
frequent across subcarriers, ACSI,t is low and
it means that no target is present [3]. At this
point, we need to understand if there is effec-
tively a correlation between the ACSI,t and the
passage/presence of a person. To do it, we used
a binary threshold classifier.
We firstly added a ground truth column to the
dataframe where the rows assumed a specific
value in accordance with the activity the person
was carrying out in that moment: in the case
of the passage detection task, the correspondent
value assigned was 0 if in that moment the per-
son was not passing through the entrance/exit,
while in the presence detection alternative, it
was 0 when the person was not inside the room;
on the contrary, the value was 1 whenever the

4

Executive summary Alessia Luoni

Figure 2: Scenario 1 ACSI and ROC curve

person was passing or was inside the room.
The following step included the definition of
a threshold parameter τ , which was initialized
with the value of the minimum ACSI,t and that
produced a prediction variable Y , which could
assume the values 0 or 1. Its assignment follows
this rule:

Yt =

{
1 ACSI,t ≥ τ

0 otherwise

After the comparison of each ACSI,t with the
threshold parameter, τ was incremented by 1
until it reached the maximum ACSI,t value, and
at every update the comparisons were repeated.

4.2. Classification metrics
At each iteration, before updating the threshold,
the predicted Y(t) values is compaired with the
ground truth column in order to evaluate the re-
sults.
Since binary variables are used, we computed:
True Positives (TP), True Negatives (TN), False
Positives (FP) and False Negatives (TN). From
them we then obtained the following classifica-
tion metrics that are required to achieve ROC
curves :
• True Positive Rate (TPR) or sensitiv-

ity: the probability that an actual positive
is classified as positive

TPR =
TP

TP + FN
(4)

• False Positive Rate (FPR): the proba-
bility that an actual negative is classified as

positive

FPR =
FP

FP + TN
(5)

5. Experimental results
The scenarios mentioned in section 4 are tested
with several values for the parameters w (win-
dow size) and λ (used for filtering outliers) and
the best ones produced the following results.
The first scenario is the one that yielded the best
results (represented in fig. 2),which means that
the classifier, when the camera was close and
facing the Raspberry, was almost always able to
recognize the passage of a human. Indeed, the
resulting AUC value was 0.9551.
The second scenario, which had the camera dis-
tant from the entrance and whose objective was
to recognize the presence of a person in a room,
also performed well, indeed it reached an AUC
value of 0.9376.
Considering scenario 3, the AUC value of 0.8380
shows that turning the camera toward the wall
decreased the performance, but nevertheless the
presence detection still occurred for the vast ma-
jority of times.
As for the last scenario, it was the one that gave
the worst outcomes, although theyactually can-
not be considered bad this time either, since we
got a value for the AUC of 0.8135.

5

Executive summary Alessia Luoni

5.1. What happens if the device sends
less packets?

Considering the results obtained, we then tried
to stress the tests further to see the changes ob-
tained if the number of packets sent by the IoT
device was lower. This is done also because usu-
ally smart cameras produce much more traffic
than other types of IoT devices as for example
smart plugs, smart bulbs or other sensor devices.
In order to simulate the behaviour of different
rates IoT devices, we reduced the number of
packets produced by the camera simply discard-
ing some of the packets captured. In particular,
we compared the results where we had all pack-
ages, half of the packets, 1/5 of the packets, 1/10
of the packets, 1/50 of the packets.
We discovered that a large number of frames had
to be removed before performance deteriorated.

Figure 3: Scenario 1 with less packets

In fact, in most cases, the results remained al-
most unchanged as long as 1/5 packets were kept
in the dataframe. Actually, in some situations,
such as in scenario 1 (represented in fig. 3) and
4, the outcomes even improved when half of the
packets were eliminated. Except that for the
first scenario, where performance was still good,
the threshold that started the deterioration of
the results was when only 1/10 of the frames
were kept in the dataframe.
Finally, in all cases, when only 1/50 of the pack-
ets were considered, the shapes of the ROC
curves deteriorated dramatically, which was pre-
dictable since, in doing so, only a little more
than one packet per second was considered.

6. Conclusions
This work presented CSI Feature Sniffer, a
tool that allows Channel State Information fea-
tures collection in OpenWrt based Wi-FI Access
Points. In particular the aim of the work has
been to ease the collection of such features and
to show its possible application cases for IoT
forensic analysis tasks by extracting such fea-
tures from common IoT devices.
As future research directions we plan to test our
system with different IoT devices to understand
whether they can all recognize the activities per-
formed in this thesis and to find which one per-
forms better.
In addition, it would be interesting to see how
the CSI features react if multiple subjects take
turns in performing the described activities.
From this, using machine learning algorithms,
work could be done aimed at trying to recognize
the person who is performing the action.

References
[1] F. Gringoli, M. Schulz, J. Link, and M. Hol-

lick. Free Your CSI: A Channel State In-
formation Extraction Platform For Modern
Wi-Fi Chipsets. In ACM WiNTECH 2019.

[2] X. Guo, B. Liu, C. Shi, H. Liu, Y. Chen, and
M. C. Chuah. Wifi-enabled smart human
dynamics monitoring. In SenSys ’17. ACM.

[3] S. M. Hernandez and E. Bulut. Adver-
sarial occupancy monitoring using one-sided
through-wall wifi sensing.

[4] J. Liu, H. Liu, Y. Chen, Y. Wang, and
C. Wang. Wireless sensing for human activ-
ity: A survey. IEEE Communications Sur-
veys Tutorials, 2020.

[5] Y. Wang, K. Wu, and L. M. Ni. Wifall:
Device-free fall detection by wireless net-
works. IEEE Transactions on Mobile Com-
puting, 2017.

6

	Introduction
	Related works
	CSI Feature Sniffer
	Architecture
	User interface
	Implementation details
	AP - Raspberry Pi communication

	Human detection with CSI
	Preprocessing and data analysis
	Classification metrics

	Experimental results
	What happens if the device sends less packets?

	Conclusions

