
Implementation of path following
and obstacle avoidance in two
omnidirectional platforms

Tesi di Laurea Magistrale in
Automation and Control Engineering - Ingegneria
dell’Automazione

Author: Andrea Mauri, Giulia Fasoli

Student ID: 945541, 953744
Advisor: Prof. Matteo Matteucci
Co-advisors: Simone Mentasti
Academic Year: 2021-22

Like I always say, can’t find a door? Make your own.

- Full Metal Alchemist

Dedicate to our mums and dads.

iii

Acknowledgements

We would like to thank the AirLab staff and the stimulating atmosphere created; we came
out enriched, not only as engineers. A special thanks to professors Matteucci and Mentasti
for their advice and the opportunity to work on this experimental thesis together. We
learned a lot.

We want to thank all the true "Iguanine": Anto, Edo, Fil and Max. The best gambling
den of these years. Many thanks to all our friends outside the Politecnico for all the
patience and moments spent together. A special thank to Andrea and Zoe for believing
in us.

A final thank to our families for helping us, supporting us, and accompanying us
through all our experiences.

v

Abstract

The thesis presented here has the main objective of the realization of a position con-
troller for two omnidirectional platforms, with different wheels and different configura-
tions, then integrated with ROS navigation stack through an intermediate planner. This
work presents an analysis of the kinematics of the two robots and the estimation of a
complete model through a black-box approach. The adopted controller is a PID, based
on feedback measurement of the output according to OptiTrack™motion capture system,
in this way the two platforms are able to directly reach a single goal or to follow multiple
waypoints before arriving at the final destination. The intermediate planner implemented
generates several close waypoints on the global pre-determined path according to a look-
ahead distance. An obstacle avoidance algorithm is also developed to allow the motion of
the robots in an environment characterized by static unmapped obstacles whose presence
is read according to the onboard lidar sensor; a cost is assigned to each obstacle depend-
ing on its distance from the robot so that it is possible to create a map based on these
values and the platforms can choose the path with a cost lower than a defined thresh-
old. Finally, a double mode of navigation is implemented allowing to switch between the
omnidirectional motion and another similar to the differential drive robot one. All the
previous techniques are tested in a real environment and experimental results of both two
platforms are presented.

Keywords: Omnidirectional platforms, PID, Waypoints, Navigation, Intermediate plan-
ner, Obstacle avoidance

Abstract in lingua italiana

La tesi presentata ha come obiettivo principale la realizzazione di un controllore di po-
sizione per due piattaforme omnidirezionali, con ruote e configurazioni diverse, integrato
poi con il pacchetto di navigazione di ROS attraverso un pianificatore intermedio. Questo
lavoro presenta un’analisi della cinematica dei due robot e la stima di un modello com-
pleto attraverso un approccio black-box. Il controllore adottato è un PID, basato sulla
misurazione in retroazione dell’output secondo il sistema di motion capture OptiTrack,
in questo modo le due piattaforme sono in grado di raggiungere direttamente un singolo
obiettivo o di seguire più waypoint prima di arrivare alla destinazione finale. Il piani-
ficatore intermedio implementato genera diversi waypoint ravvicinati lungo il percorso
globale predeterminato in funzione di un orizzonte spaziale. Viene inoltre sviluppato un
algoritmo di obstacle avoidance per consentire il movimento dei robot in un ambiente
caratterizzato da ostacoli statici non mappati, la cui presenza viene letta in base al sen-
sore lidar presente sui robot; a ogni ostacolo viene assegnato un costo in base alla sua
distanza dal robot, in modo che sia possibile creare una mappa basata su questi valori e
le piattaforme possano scegliere il percorso con un costo inferiore a una soglia definita.
Infine, viene implementata una doppia modalità di navigazione che consente di passare
dal movimento omnidirezionale a un altro simile a quello dei robot a trazione differenziale.
Tutte le tecniche precedenti sono state testate in un ambiente reale e sono stati presentati
i risultati sperimentali di entrambe le piattaforme.

Parole chiave: Piattaforme Omnidirezionali, PID, Waypoints, Navigazione, Pianifi-
catore Intermedio, Obstacle Avoidance

ix

Contents

Acknowledgements iii

Abstract v

Abstract in lingua italiana vii

Contents ix

1 Introduction 1
1.1 Introduzione . 1
1.2 Introduction . 2
1.3 Contribution . 4
1.4 Thesis outline . 5

2 State of The Art 7
2.1 Wheeled mobile robots . 7

2.1.1 Types of wheel . 7
2.1.2 Robot configuration . 9
2.1.3 Omnidirectional robots . 12

2.2 Control Strategies . 13
2.3 Robot navigation . 14

2.3.1 Global planner . 15
2.3.2 Intermediate planner . 16
2.3.3 Obstacle avoidance . 18

3 Experimental set-up 23
3.1 Hardware . 23

3.1.1 Mobile platforms . 23
3.1.2 Actuator . 24
3.1.3 Laser Scanner . 25

x | Contents

3.1.4 OptiTrack™ . 26
3.1.5 On board computer . 27
3.1.6 Control boards . 28

3.2 Software . 29
3.2.1 ROS: Robotic Operating System 29
3.2.2 MATLAB® and Simulink® . 30

4 Models 33
4.1 Kinematic model . 33

4.1.1 Omni wheeled robot . 37
4.1.2 Mecanum wheeled robot . 38

4.2 Black-box model . 40
4.2.1 Parameter Estimation . 41
4.2.2 Omni wheeled robot estimation . 42
4.2.3 Mecanum wheeled robot estimation 43

5 Position Control 45
5.1 Controller and Specifications . 45

5.1.1 Control and Environment Specifications 45
5.1.2 Control Discretization . 47

5.2 Controller Implementation . 49
5.2.1 Parameters Description . 50
5.2.2 Tuning . 52
5.2.3 Double Navigation . 53

5.3 Experimental Results . 54
5.3.1 Omni wheeled robot . 55
5.3.2 Mecanum wheeled robot . 59
5.3.3 Double navigation . 63

6 Robot Navigation 65
6.1 Move−Base . 65
6.2 Spatial Horizon . 68

6.2.1 Algorithm explanation . 68
6.2.2 Experimental Results . 69

6.3 Vector Field Histogram . 71
6.3.1 Algorithm explanation . 72
6.3.2 Experimental Results . 75

7 Conclusion and Future Works 79

Bibliography 81

1

1| Introduction

1.1. Introduzione

Negli ultimi decenni, l’automazione e la robotica stanno acquisendo sempre più im-
portanza, non solo in ambito industriale ma anche nella vita di tutti i giorni. La ragione
principale di questo successo è legata alla maggiore produttività garantita dai robot,
dall’enorme efficienza nel completare i compiti e, infine, dalla possibilità di operare in
situazioni potenzialmente pericolose. L’origine della robotica moderna è strettamente
legata alll’applicazione industriale, come ad esempio i bracci meccanici, capaci di com-
pletare compiti velocemente e con grande precisione ma isolati e senza la possibilità di
interagire con operatori umani.

Questa limitazione è la ragione principale dello sviluppo di robot mobili, tipicamente
veicoli a guida autonoma (AGV), che forniscono uno spazio di lavoro maggiore in aggiunta
alla possibilità di operare in svariati campi come, ad esempio, ospedali, alberghi, maga-
zzini, e applicazioni militari o agricole. Inoltre, i robot mobili sono in grado di lavorare a
contatto con operatori umani o altri robot in modo completamente autonomo e sicuro.

Gli aspetti più importanti di un AGV sono: l’abilità di lavorare in completa autono-
mia, un’ampia flessibilità per essere capaci di svolgere diversi compiti e muoversi lungo
diversi percorsi e, infine, essere in grado di evitare oggetti statici, altri robot, e operatori
in movimento.

Considerando i vantaggi menzionati, la ricerca su questa tipologia di robot è aumen-
tata portando numerose alternative tecnologiche come, ad esempio, differenti tipologie
di ruote e possibili configurazioni permettendo un numero considerevole di movimenti
eseguibili. In particolare sono stati effettuati numerosi studi ed esperimenti sui robot
omnidirezionali. Questi sono in grado di muoversi in ogni direzione sfruttando i tre gradi
di libertà che hanno a disposizione, i.e. le due coordinate planari x ed y e l’orientamento
θ. I robot omnidirezionali sono adatti ad ambienti molto dinamici o a posti caratterizzati
da spazi stretti e corridoi, proprio per la loro capacità di eseguire qualsiasi manovra.

2 1| Introduction

L’obiettivo di questo lavoro di tesi è l’implementazione di un controllore di posizione
PID in un ambiente dotato di un sistema motion capture, che viene integrato ai preesistenti
metodi di navigazione attraverso l’utilizzo della piattaforma ROS. Successivamente, lo
sviluppo di un algoritmo per evitare gli ostacoli adatto alla elevata mobilità dei robot
omnidirezionali. Infine, ad ogni analisi affrontata in questo lavoro di tesi, viene aggiunto
un confronto tra le due piattaforme adottate basato sul loro modello e sui risultati speri-
mentali ottenuti.

Gli obiettivi del controllo di posizione sono i seguenti:

• Il robot deve raggiungere una singola meta partendo da una determinata posizione
soddisfando le specifiche.

• Il robot deve seguire una serie di punti intermedi che possono simulano possibili
stazioni di lavoro in applicazioni future.

Il controllore PID nasce nei primi anni del 1900 ed è ancora una delle strategie di con-
trollo più usate, questo grazie alla sua semplicità e alla sua facilità di implementazione
anche in microcomputer che hanno limitate capacità computazionali. Un’altra ragione
per utilizzare questo approccio nel nostro lavoro è la sua adattabilità, poichè, operando
con due piattaforme utilizzabili in diversi ambienti, la facilità di regolazione dei parametri
del controllore è preferibile rispetto ad altre strategie.

Per integrare il PID con i metodi di navigazione presenti nell’ambiente ROS, è nec-
essario generare punti intermedi lungo il percorso predefinito. Per farlo personalizziamo
un algoritmo nato nel mondo del deep reinforcement learning, capace di generare sub-
goals secondo un certo orizzonte spaziale. Infine, viene presentato un algoritmo usato per
evitare ostacoli con l’ausilio dei sensori presenti a bordo dei robot.

L’intero sistema è testato su piattaforme reali in diverse situazioni possibili e sotto
diverese condizioni iniziali, ottenendo risultati soddisfacenti che garantiscono un buon
punto di partenza per sviluppi più avanzati di entrambi i robot.

Tutti gli algoritmi e i modelli definiti in questo lavoro di tesi sono sviluppati utilizzando
Python, Matlab®, e Simulink®.

1.2. Introduction

In the last decades, automation and robotics are gaining more importance, not only
in the industrial field but also in everyday life. The main reasons behind this success are
related to the higher productivity guaranteed by robots, the huge efficiency in accom-

1| Introduction 3

plishing tasks, and finally, their possibility to operate in conditions that are potentially
dangerous. The origin of modern robotics is strictly related to industrial applications, for
example, mechanical arms, able to complete tasks quickly and with high precision but
isolated and without interactions with human operators.

This limitation is the main reason for the development of mobile robots, typically
Automated guided vehicles (AGV), that provide a larger working environment in addition
to the possibility of operating in several fields, for example, hospitals, hotels, warehouses,
and military or agricultural applications. Moreover, mobile robots are able to operate
with humans or other robots in a completely autonomous and safe way.

The most important aspects of an AGV are: the ability to work with complete au-
tonomy, large flexibility to be able to perform different tasks and travel on different paths
and, finally, the ability to avoid static obstacles, other robots, and moving operators.

Considering the mentioned advantages, the research on these kinds of robots is in-
creased bringing several technological alternatives such as different types of wheels and
different possible configurations, allowing a considerable number of executable motions.
In particular, numerous studies and experiments are executed on omnidirectional robots.
These are able to move in any direction exploiting their three available degrees of freedom,
i.e. the two planar coordinates x and y and the orientation θ. Omnidirectional robots
are suitable for very dynamic environments or places characterized by narrow spaces and
corridors because of their ability to perform any manoeuvre.

The aim of this thesis work is the implementation of a PID position controller in an
environment equipped with a motion capture system, which is integrated with the pre-
existing navigation methods through the ROS platform. Subsequently, an algorithm for
obstacle avoidance suitable for the elevated mobility of omnidirectional robots is devel-
oped. Finally, to each analysis faced in this thesis work is added a comparison between
the two platforms based on their model and on the obtained experimental results.

The position control objectives are the following:

• The robot must reach a single goal from a certain starting position fulfilling speci-
fications.

• The robot has to follow a series of intermediate points that can simulate possible
workstations in future applications.

PID controller is born in the first years of 1900 and it’s still one of the most used control
strategies, this is due to its simplicity and ease of implementation also on microcomputers
with limited computational capabilities. Another reason to adopt this approach in our

4 1| Introduction

work is its adaptability because, since we are operating with two platforms that can be
used in various situations and environments, the ease of tuning the controller parameters
is preferable with respect to other strategies.

In order to integrate the PID with the navigation methods present in the ROS envi-
ronment, it is necessary to generate intermediate points along the predefined path. To
do so we customize an algorithm that is born in the world of deep reinforcement learning
and that is able to generate subgoals according to a spatial horizon. Finally, an algorithm
able to avoid obstacles through onboard sensors is presented.

The full system is tested on real platforms in different possible situations and under
different initial conditions, obtaining satisfactory results that guarantee a good starting
point for more advanced implementation of both robots.

All the algorithms and the models defined in this thesis work are developed through
Python, Matlab®, and Simulink®.

1.3. Contribution

The contribution of this work are listed below:

• Implementation of a position control through a feedback loop mechanism and the
Proportional Integral Derivative (PID) controller, starting from robot kinematics
and the theoretical model of the system obtained using a black-box approach.

• Implementation of an algorithm that allows path following-like motion of the robots
and the possibility to adopt the PID controller with the commonly used navigation
approaches.

• Implementation of an algorithm that allows obstacle avoidance based on a cus-
tomized vector field histogram approach enabling the robot to move in an environ-
ment with unmapped obstacles.

• Application of the overall developed system on two omnidirectional platforms that
move in a real working environment equipped with a motion capture system.

• Comparison of the performances of the two platforms based on their experimental
results.

1| Introduction 5

1.4. Thesis outline

Chapter 2 presents an overview of the technological background of mobile robots,
focusing on the different typologies of wheels and configurations with a particular interest
in omnidirectional robots. Then, the two most adopted control strategies are explained
describing their advantages and disadvantages. Lastly, the starting point of the algorithms
and methods used to allow the platforms to navigate and avoid obstacles are shown.

Chapter 3 illustrates the set-up, both hardware and software, used in the entire
work. Starting with a deeper analysis relative to the two platforms’ mechanics and going
on with a brief presentation of actuators, sensors, onboard computer, and control boards,
concluding with a description of the adopted software: ROS, MATLAB®, and Simulink®.

Chapter 4 introduces the kinematic model of the two platforms expressing all the
required relationships. Moreover, it shows the black-box technique adopted to estimate
the parameter of an approximated model starting from the measured data.

Chapter 5 presents the implementation of the PID controller explaining the mean-
ing of each gain, the tuning strategy adopted, and the discretization technique used.
Finally, it shows the experimental results relative to the control position and the devel-
opment of a double navigation motion.

Chapter 6 describes the move−base package functioning as well as the algorithm
that generates subgoals to simulate trajectory tracking and the algorithm used for ob-
stacle avoidance so that it is possible to perform complete navigation. Moreover, the
experimental results for both platforms are depicted.

Chapter 7 concludes the thesis by outlining the future works and possible upgrading
of the robots.

7

2| State of The Art

The purpose of this chapter is to provide a general description of wheeled mobile robots
starting from the different types of wheels, discussing their properties from the mobility
point of view, introducing different control strategies and navigation algorithms, and
describing the most commonly encountered realizations of such robots.

2.1. Wheeled mobile robots

In this Section, we describe a variety of wheels and their possible configurations in
mobile robots. We discuss the restriction of robot mobility implied by the use of some of
these wheels and the overcome of this limitation with the development of omnidirectional
robots.

2.1.1. Types of wheel

Wheeled mobile robots are widely used to achieve robot locomotion and, although
it is difficult to overcome uneven ground conditions, they are suitable for several target
environments in practical applications. In general, wheeled robots are characterized by
lower energy consumption and faster motion than other locomotion mechanisms (e.g.,
tracked vehicles or legged robots) [5].

Nowadays multiple types of wheels with different properties and for various purposes
are available. The primary distinction to be made is between standard design wheels
and unconventional design wheels. In a single-wheel standard design there are two main
conditions to be defined:

• a mechanical design to allow steering motion (i. e. to fix the wheel orientation or
not)

• the determination of steering and driving actuation (i.e. active or passive drive)

As standard designs, we focus on the conventional wheel, the steering wheel and the
caster wheels. These wheels have the classical round shape that is commonly seen [29].

8 2| State of The Art

Conventional wheels, Figure 2.1a, are simple and functional providing forward and
backward rotation of the wheel. The steering axis is fixed, i.e. the orientation of the
wheel does not change, moreover, the displacement is limited on the driving direction.

Steering wheels are similar to conventional ones from an aesthetic point of view, but
with different mechanical structures. They also allow rotation around the vertical axis: a
driving motor provides forward and backward locomotion, while a steering motor controls
the rotation around the axis so that this kind of wheel can behave as a conventional wheel
or as a steering wheel.

Caster wheels help to achieve near-omnidirectional mobility of a vehicle. There exist
two categories of them: rigid wheels, Figure 2.1b, and swivel wheels, Figure 2.1c. The
first ones can rotate only forward and backwards while a swivel wheel can also passively
rotate 360 degrees around the vertical axis.

Conventional, steering and caster wheel have simple designs and for this reason, are
cheaper, moreover, they are robust for rough surfaces up to some degree of roughness. As
for the unconventional design wheel, we describe the two kinds of wheels that are mounted
on the platforms used in this thesis.

Omni wheels are characterized by a combination of a main active wheel and passive
freely rotating rollers in which the axes of passive rollers are orthogonal to the main wheel
axis as it is shown in Figure 2.1d. Free rollers are employed in order to eliminate the non-
holonomic velocity constraint. Merging the active rotation of several active wheels with
the passive rotation of the rollers, it is possible to move a vehicle in any direction.

Mecanum wheels are similar to the Omni ones but rollers are mounted with their axis
at an angle of 45 degrees relative to the axis of the active wheelbase as we can see in Figure
2.1e. As said, passive rollers are free to rotate around the axis of rotation, which enables
the lateral motion of the wheel. As a result, the driving velocity should be controlled by
an actuator, while the lateral velocity is passively driven. Applying different velocities to
each wheel a robot can move in any direction.

Omnidirectional wheels are suggested in indoor environments due to their high sen-
sitivity to rough and unequal surfaces. The mechanical design of unconventional wheels
is more complex compared to the standard wheels, as a result, their cost of production is
more elevated. An important feature to consider when analysing different kinds of wheels
is their restriction on the motion. Each wheel has a defined number of degrees of freedom
that impact the robot’s range of motion. Conventional wheels only have one degree of
freedom; steering wheels can guarantee also rotation around a vertical axis, which means

2| State of The Art 9

(a) Conventional (b) Rigid Caster (c) Swivel Caster

(d) Universal Omni (e) Mecanum

Figure 2.1: Types of wheel

that they have two degrees of freedom and motion is still limited. Finally, universal
Omni wheels and Mecanum wheels have three degrees of freedom allowing motion in any
direction.

2.1.2. Robot configuration

Table 2.1 compares the degrees of freedom of wheels and their most used configura-
tions. The abbreviation DW stands for Different Wheel, it is used to indicate that the
configuration requires one or more different wheels together with the one specified, while

Type of Wheel Possible wheels
configuration

Minimal required
number of wheel DoF

Conventional 2 or more wheels 2 1

Steering 2 (1 DW)
3, 4 wheels 2 (1 DW) 2

Caster 1 or more (as SW) 1 (as SW) 1, 2

Omni 3 or 4 wheels 3 3

Mecanum 4 or more wheels 4 3

Table 2.1: Mechanical parameters and configuration [29].

10 2| State of The Art

Figure 2.2: Omni wheels configurations.

SW means Support Wheel.

As reported in 2.1, Caster wheels are used in a passive way and, in order to obtain
omnidirectional mobility, other wheels are required. A common configuration with caster
wheels is the one present in the differential drive robot, Figure 2.3a, in which conventional
wheels are used as active wheels while a caster wheel adds stability to the robot without
limiting the robot rotation and therefore its degrees of freedom. It is possible to extend
the two differential drive robot to a four wheel robot by mounting additional passive caster
wheels. The major advantages can be summarized as:

• A simple mechanical design with a simple kinematic model

• Low fabrication costs

• Errors can be easy to calibrate.

On the other hand, the disadvantages are:

• Difficulty of moving irregular surfaces as a consequence of the possible loss of contact
with the ground of one or more active wheels.

• Only forward and rotational movement allowed.

Steering wheels are typically used with four-wheeled platforms, such as car-like robots,
three-wheeled vehicles such as triangular cart-like platforms in which two active steering
wheels are combined with a single caster passive wheel, and two-wheeled configurations
such as bicycles. Focusing on the car-like structure, the front two steering wheels must be
synchronised to keep the same instantaneous centre of rotation. Typically, this solution
is kinematically approximated to a bicycle model. Car-like robots are more stable during
high-speed motion whereas a major disadvantage is reduced motion related to the steering
mechanism.

Universal Omni wheels can be used in three-wheeled configurations or four-wheeled

2| State of The Art 11

(a) Differential drive robot [8] (b) Three Omni wheels configuration robot

(c) Classical mecanum wheels configuration

Figure 2.3: Configuration examples

configurations. Three universal wheels are mounted on a triangular platform equally
spaced every 120 degrees, as presented in Figure 2.3b. In four-wheeled design, instead,
there are two possibilities: the first one in which wheels are located symmetrically on
the sides of square mobile platforms with 90 degrees angle between the wheels, and the
second one in which the wheels are mounted symmetrically at the corner of the square
mobile platform with axis inclined by 90 degrees relative to each other. This difference is
depicted in Figure 2.2.

Finally, Mecanum wheels are typically used in car-like platforms, in which wheels are
mounted in line with each other as depicted in Figure 2.3c.

12 2| State of The Art

(a) Forklift robot (b) Wheelchair robot

(c) Industrial agv

Figure 2.4: Omnidirectional robot application examples

2.1.3. Omnidirectional robots

Omnidirectional mobile robots are continuously gaining more popularity, they are
largely used in industrial productions, such as the forklift shown in Figure 2.4a or the
AGV in Figure 2.4c, and in congested environments such as houses, offices, and hospitals
but also in domestic, military, agricultural, and many other fields. Possible examples
are service robots, wheelchairs (Figure 2.4b), and other devices used to help physical
disabilities’ daily life or the vehicle used in storage facilities with the ability to move,
inspect and handle products.

These robots can guarantee greater manoeuvrability and efficiency, indeed, they are
able to move instantaneously in any direction from any configuration in a two-dimensional
plane.

A torque is applied to each wheel by an independent actuator, so their respective
direction of rotation can be arbitrarily performed. In addition, omnidirectional systems
can slide perpendicularly to the torque vector, thanks to the passive rollers mounted on
the edge of the wheels, allowing greater flexibility in a congested environment. As a con-

2| State of The Art 13

sequence, translational and rotational motions are decoupled so that the robot can change
its motion direction without changing its orientation. On the other hand, omnidirectional
robots are inefficient in terms of energy consumption because the wheels can generate
opposing forces and, therefore, can wear out faster than conventional wheels [32].

These robots are typically characterized by three and four wheels platforms. Three
wheels configurations are simpler, cheaper from an equipment point of view, and have
a lower energy consumption. On the other hand, four wheels configurations can have
higher acceleration with the same actuators and have better floor traction meaning that
the slippage is lower if we assume that all the wheels are in contact with the ground [20].
Four-wheeled robots may require some kind of suspension to distribute forces equally
among the wheels.

2.2. Control Strategies

Position control is a crucial topic in autonomous mobile robotics. The precision of the
positioning of the platforms together with the repeatability of the results is a fundamental
requirement to be satisfied when the robots need to move around a working environment.
This Section details the main control strategies used in industrial applications concerning
omnidirectional mobile robots while underlining the advantages and disadvantages of both
regulators.

Proportional Integral Derivative (PID) control is the most commonly used control
algorithm due to its effectiveness in many operation conditions, its simplicity, and ease of
implementation. It acts on the error between the set-point and the controlled variable, for
this reason, it does not require measurements of the internal state and, as a consequence,
few sensors are needed and therefore lower costs. Moreover, this kind of controller does not
need an elevated knowledge of the plant and it is efficient against common uncertainties
around an operating region. Finally, PID is very easy to implement in continuous-time
or digital-time form into microcomputers, because is characterized by a single equation.
The main disadvantage of this category of controllers is the high sensitivity to variable
conditions of operation like changes of transported mass or resistance forces. Further
analysis of this regulator is conducted in Chapter 5.

The term Model Predictive Control does not refer to a specialised control strategy,
but rather to a wide range of advanced control methodologies that make explicit use of
a model, which describes the observed process, to obtain a control through the minimi-
sation of an objective function. Compared to standard PID, MPC is a very effective and
advanced control strategy, that has a significant impact on industrial process control [22]-

14 2| State of The Art

Figure 2.5: MPC block diagram [11].

[18]. The model is used to predict the future output based on historical information about
the process, as well as anticipated future input. The aim of MPC is to compute an optimal
control input that, while ensuring the satisfaction of given system constraints, minimizes
a priori defined cost function. It guarantees adequate control in presence of object con-
straints and delays in the control system, plus it is able to respond to set point changes
without the need for the occurrence of control error resulting from actual measurement,
only based on the predicted output values with the possibility of correct operation of the
control system in case of temporary unavailability of the measured quantities. Finally, it
can use velocity information in the future, based on a predefined velocity profile at each
time instant. The main problems with MPC are the high computational load and the
elevated algorithmic complexity in addition to the large number of control parameters
required.

2.3. Robot navigation

Robot navigation is the robot’s ability to determine its own position in its frame of
reference and then plan a path toward some goal location. As depicted in Figure 2.6
localization is a fundamental part of robot navigation since it provides the robot’s current
pose that is then used by the path planning and navigation algorithms [12].

Robot localization is the process of determining the position and orientation of a
mobile robot situated in an environment. Localization is one of the most fundamental
capabilities required by an autonomous robot since it is crucial to determine the robot’s
future actions. In a typical scenario, the map of the environment is available and thanks

2| State of The Art 15

Figure 2.6: Navigation block diagram [1].

to the adoption of internal and external sensors the robot observe the environment and
monitors its own behaviour.

In order to solve the navigation problem, ROS, a middleware that is better presented
in Chapter 3, relies on move−base. It employs hierarchical planners consisting of a global
planner, which calculates the optimal path using search-based approaches, and a local
planner, which executes it considering local observations and unknown obstacles.

2.3.1. Global planner

The global planner uses a priori information from the environment to create the best
possible path between point A on the map and point B. Usually, the path planning
problem is addressed in the configuration space (C-space), in which the platforms are
represented as a mobile point at each time instant. Obstacles are also mapped from the
workspace to the C-space. The subset of the C-space that describe the collision-free zone
is called Cfree. If a path completely belongs to Cfree, then is called a free path. The
two main categories of path planning algorithms are search-based planning and sampling-
based planning. Search-based algorithms are characterized by the:

• Generation of a systematic discrete graph of Cfree

• Guarantee of finding a path if it exists (i.e. resolution complete)

• Addition of nodes when necessary

16 2| State of The Art

• Possible high computational cost when problem dimension increases

While Sampling-based algorithms differ according to the following characteristic:

• The generation of a sparse sample-based graph of Cfree

• The guarantee that the probability of finding a path if it exists approaches 1 as the
number of iterations tends to infinity (i.e. probabilistically complete)

• The addition of samples only when necessary

• The reduced memory usage and adaptability for high-dimensional planning

The move−base global planner is typically one of these three different possibilities.
The first one is carrot−planner, it is the simplest global planner, which makes the robot
get as close to a user-specified goal point as possible. The planner checks whether the
user-specified goal is an obstacle. If it is, then it moves back along the vector between
the robot and the goal. Otherwise, it passes the goal point as a plan to the local planner
or controller (internally). A possible alternative is navfn which uses Dijkstra’s algorithm
to determine the global path.

Finally, the most used one is global−planner which, in addition to Dijkstra’s algorithm,
supports the A* algorithm, toggles quadratic approximation, and toggles grid path.

2.3.2. Intermediate planner

As described in [16], many robotic navigation systems, employ hierarchical planners
consisting of a global planner, using search-based approaches e.g. A-star or Random Rapid
Tree(RRT) search, and a local planner, which executes the task considering local sensor
information and unknown obstacles. Current systems can operate in static environments,
while dynamic ones are still challenging. To achieve efficient navigation in highly dynamic
environments, Deep Reinforcement Learning (DRL) has gained importance as a planning
method thanks to its ability to navigate effectively using raw sensor input. The main
disadvantages of planning through DRL are its incapability to recover from a complex
situation, e.g. corners and corridors, since it is affected by local minima; and for the
difficult training required.

To generate waypoints in a more dynamic way and provides a shorter goal horizon
two algorithms are introduced: Spacial Horizon (SH) and Landmark-based Waypoint
Generator (LM-WP).

Landmark-based Waypoint Generator (LM-WP) main aim is to smooth and improve
the efficiency of the path created with the global planner. To achieve these results, LM-

2| State of The Art 17

Figure 2.7: Waypoint calculation with LM-WP algorithm

Algorithm 2.1 Landmark selection pseudocode algorithm
1: Input : Start position ps, goal position pg, occupancy grid-map
2: Output : queue of landmarks L
3: Parameter: ψtresh;
4: Global path πg ← kinodynamicAstar(ps,pg);
5: Parameterize global path πg as uniform b-spline path π∗

g ;
6: for t from tq to tM−q do
7: Evaluate position pt, velocity vt, acceleration at on π∗

g at time t using De Boor’s
algorithm;

8: Calculate steering angle velocity ωt and steering angle ψt;
9: if ψt>ψtresh then

10: L.pushback(pt);
11: end if
12: end for
13: L.pushback(pg);

WP is based on the assumption that just a subset of points of the global path must
be reached by the robot, these are denoted as landmarks. To navigate on the map,
the landmarks correspond to turning points, which can be described as points where
the robot’s steering angle is greater than a specified threshold. Once the landmarks are
selected, a path is calculated using b-spline interpolation based on the kinodynamic A-star
search global path planner method. From the parameterized path are then evaluated the
position, velocity and acceleration. The landmark selection is shown in Algorithm 2.1.
Subsequently, the waypoints are found taking into account the robot’s current pose, the
following landmark position, and the obstacles’ locations in the occupancy grid-map. To
ensure a path in Cfree, the b-spline path is optimised using the ESDF-free gradient-based
method. After the local path optimization and using De Boor’s algorithm [21] is possible
to find the sub-goal from the b-spline path.

18 2| State of The Art

Figure 2.8: Spatial Horizon example

Algorithm 2.2 Spatial horizon pseudocode algorithm
1: Input : Global path πg, Robot position pr
2: Output : Subgoal gsub, Robot position pr
3: Parameter dahead;
4: Find the set of intersection points of R(pr,dahead) and global path πg as Φ;
5: if Φ is not empty then
6: select the intersection point near to the global goal as gsub
7: else
8: call GLOBAL REPLAN → new global path πnew

g ;
9: Subgoal calculation (πnew

g ,pr);
10: end if

Spatial Horizon (SH) provides, not only a shorter goal horizon but also an additional
security layer in preparation for the local planner that only has access to local sensor data.
More precisely, starting from the global path, SH defines a subset of local goals based on
the robot’s position and on a pre-defined look-ahead distance named spatial horizon as
depicted in Figure 2.8. These are considered local sub-goals and are given as input to the
local planner. Finally, SH possesses a way to recompile the global path when the robot
is too far away from it or after a certain time interval with no movements of the robot.
A sketch of the algorithm is shown in Algorithm 2.2.

2.3.3. Obstacle avoidance

Obstacle avoidance is a key phase during navigation, it consists in preventing colli-
sions with obstacles using information from the static map and onboard sensors. The
development of collision avoidance algorithms has encountered a great improvement in
the last decades, from the simpler ones that, when detecting an obstacle, stop the robot
to recalculate a possible path; to more advanced ones that steer the robot to avoid the

2| State of The Art 19

collision. The increase in the complexity of algorithms results in necessary additional
measurements of the occupied dimensions of the obstacles. Obstacle avoidance also called
local path planning, does not guarantee, differently from global path planning, an optimal
solution due to the lack of a priori information about the environment.

In literature is possible to find many relevant obstacle avoidance methods, we focus
on the potential field methods. In this class of methods, obstacles produce repulsive
imaginary forces, while the goal position applies an attractive force to the robot. The
resultant is a force vector, obtained as the sum of all the forces, calculated at each time
instant.

One of the first real-time obstacle avoidance methods is Virtual Force Field (VFF), as
presented in [3], which allows fast, continuous, and smooth motion of the controlled vehicle
among unexpected obstacles without requiring it to stop the vehicle. It is composed by
two main phases:

• To represent the obstacles, it is used a two-dimensional Cartesian histogram grid,
in which each cell holds a value representing the probability of the presence of an
obstacle in that specific location. This method creates a likelihood distribution
modifying the value on only one cell in the histogram for each sensor reading. The
data are gathered continuously and rapidly to calculate a precise probability (i.e.
likelihood) distribution. Iterating the process, the cells in the neighbour of the
obstacle’s actual position have high certainty values.

• To implement the potential field to the histogram grid it is needed to define activecells
as the cell inside the sensor’s range. Each active cell applies a repulsive force in the
direction of the robot, whose intensity is inversely proportional to the distance be-
tween the cell and the centre of the robot and directly proportional to the certainty
value of the cell. In addition, a constant virtual attractive force is applied to the
chassis toward the target. The sum of all the repulsive and the attractive forces
results in the force vector.

By combining the first two phases of this method the robot is able to react rapidly in
front of unknown obstacles. One of the problems with the VFF method is encountered
when the robot has to pass between two obstacles, like a doorway for example, because
the two sides generate a force that pushes the robot away. Moreover, the histogram grid is
built in a discrete way, this can create a problem when the robot changes its position from
one cell to another because there is a variation of a unit in the distance between the robot
and the obstacle, determining a huge variation in the resultant force. A low-pass filter
able to smooth the control signal can reduce this effect but, on the other hand, it creates

20 2| State of The Art

(a) Histogram creation (b) Potential Field idea

Figure 2.9: VFH phases

a delay that impacts the robot’s reaction to an unexpected obstacle. However, the main
issue with VFF is the huge data reduction performed, the large amount of information
provided by sensors is reduced, in one step, to the direction and intensity of the resultant
force.

Due to the problems mentioned above, another method called Vector Field Histogram
(VFH) has been implemented. It uses a two stages data reduction resulting in three levels
of data representation. The three-level of data are described below.

• In the highest level the two-dimensional Cartesian histogram is continuously up-
dated in real-time, similar to VFF first phase, in addition, it also holds a detailed
representation of the environment.

• In the middle level, at every time instant the robot’s position is used to generate
a one-dimensional polar histogram as depicted in 2.10a. The results are a pre-
determined number of sectors, with the same width, each one with a value that
represents the polar obstacle density in the direction corresponding to the specific
sector.

• In the lowest level the reference values for the drive and steer controllers of the
vehicle are produced.

In conclusion, it is possible to summarize the behaviour of a VFH-controlled mobile
robot as the response of the platforms depending on the likelihood of the presence of an

2| State of The Art 21

(a) VFH obstacle density histogram (b) Polar histogram in the histogram grid

Figure 2.10: Results of VFH information reduction

a priori unknown object. Two histograms are then created: the histogram grid, in which
the probability is expressed as a certainty value; and a polar histogram, which transforms
the previous information into the width and height of the column of the graph. Vector
Field Histogram is appropriate in situations where inaccurate sensor data are present, e.g.
sensor fusion.

23

3| Experimental set-up

This Chapter aims to describe the setup of the platforms used. First, it outlines the
prototype robots’ main hardware features and then describes the software used in the
project during the phase of theoretical simulation and the physical experimental tests.

3.1. Hardware

The hardware Section presents a description of the two platforms’ dimensional fea-
tures, the actuators, the electronic components and the used sensor (internal and exter-
nal).

3.1.1. Mobile platforms

The mobile platforms adopted in this work are two omnidirectional holonomic robots,
i.e. the degrees of freedom of the platform are equal to the controllable degrees of freedom.
As introduced in Chapter 2 the omnidirectional robots allow simultaneous and indepen-
dent rotational and translational displacements granted by four electric motors, one for
each wheel.

The limit velocity of the platforms is set to 1.2 m/s, e.g. velocity of a walking person,
as it is a reasonably safe value for an indoor environment. The robots differ in two main
aspects: the type of wheel and their spatial arrangement; the latter consequently influence
the shape of the chassis.

The first robot, as shown in Figure 3.1b, presents four Omni wheels with their axes
inclined 45 degrees with respect to the chosen forward direction and equally spaced every
90 degrees; while the second robot (Figure 3.1a) adopts four Mecanum wheels mounted
parallel to the forward chassis axes.

24 3| Experimental set-up

(a) Omni wheeled robot. (b) Mecanum wheeled robot.

Figure 3.1: Platforms’ dimensions and configurations.

Robot M r dx dy L l

Omni wheeled robot 30 90 295 295 640 640

Mecanum wheeled robot 30 77 200 169 500 450

Table 3.1: Robots weights and dimensions

3.1.2. Actuator

The four electric motors mounted on both platforms are TORQUE BOARD 6355-
190KV. The motors have a shaft diameter of 8 mm and a usable shaft length of 32 mm.
They are equipped with a 200 mm Silicone 12AWG wire with 5.5 mm Male Gold Bullet
Connectors. These motors are equipped with CNC vent holes to improve efficiency and
limit overheating due to inefficiencies [31] and use high-temperature neodymium magnets
to allow higher overheating limits. Moreover, all bearings are replaced with rubber-sealed
bearings to extend the life of the motors, since they prevent lubricants from seeping out
and external contaminants from damaging the bearing.

The technical specifications are reported in Table 3.2. Of those parameters, motor
resistance and inductance are calculated using the Vesc®Tool software.

3| Experimental set-up 25

Figure 3.2: TORQUE BOARD 6355-190KV dimensions.

Max Power 2500 W

Max current 80 A

Nominal voltage 44.4 V

Max Torque 2.83 Nm

Motor resistance 14.4 mΩ

Motor inductance 8.75 µH

Motor poles 14

Gear ratio 5
Weight 639,5652 g

Table 3.2: TORQUE BOARD 6355-190KV technical specification

3.1.3. Laser Scanner

Each robot is equipped with multiple laser scanners YDLIDAR G4, shown in Figure
3.3a. YDLIDAR G4 is a 360 degrees 2D Lidar based on the triangulation principle. It
uses an infrared laser and optical lens to transmit and receive the laser signal.

The structure rotates 360 degrees to continuously output the angle information and
the data of the environment. These sensors can be used singularly if the robot setup does
not limit the visual of the sensor creating a shadow cone, or if multiple laser sensors have
to be installed, a merging and synchronization of data are recommended to have a better
reconstruction of the environment.

26 3| Experimental set-up

(a) YDLIDAR G4. (b) Lidar top view.

Figure 3.3: Lidar scanner.

Ranging frequency 9000 Hz

Motor frequency 7 Hz

Ranging distance 0.28-16 m

Field of view 0-360 deg

Angle resolution 0.28 (frequency @7Hz) deg
Baud rate 230400 bps

Table 3.3: YDLIDAR G4 technical specification

YDLIDAR G4 internally defines a polar coordinate system. Its reference frame takes
the centre of the rotating core of the sensor as the pole and the angle is positive clockwise.
The zero angle is located in the direction of the outlet of the plug interface line as shown
in Figure 3.3b.

In Table 3.3 are reported the technical specifications considering the typical values;
all information is gathered from the data-sheet of the sensor [14].

3.1.4. OptiTrack™

To gather information about the position of the robots inside the laboratory arena
we use the OptiTrack™system. OptiTrack™includes motion capture software and high-
speed tracking cameras. Multiple synchronized cameras are installed around the target
area, each of them capturing 2D images. From the comparison and the overlapping of the
positions derived by the cameras is possible to compute the 3D positions via triangulation.
Optical motion capture systems obtain the data by detecting emitted or reflected light,
indeed cameras track surfaces covered with retro-reflective material. The IR light emitted

3| Experimental set-up 27

Figure 3.4: OptiTrack setup.

from the camera is reflected and detected by the camera’s sensor. The captured reflections
are used to calculate the 2D marker position. Rigid body movement can be tracked when
at least three markers are visible [6].

To track the mobile platforms we use an arrow-shaped surface with five circular passive
markers fixed on top. The configuration is labelled and saved on a custom project in
Motive,i.e. the software part of OptiTrack™. The cameras are able to locate markers with
millimetre precision when the light noise is reduced to the minimum, the 3D and 2D poses
are then broadcast at a maximum of 350Hz, but our set-up publishing frequency is set
to 120Hz.

The main parameter that can be configured from Motive are LED illumination, which
sets the brightness of the cameras; Exposure, which controls how long the shutter remains
open; Threshold, which limits the minimum brightness for a pixel to be considered; FPS,
which determine the number of images a camera can catch per second; and Gain, which
can improve the tracking at very long distances.

3.1.5. On board computer

The calculations are performed by a NUC Intel mounted on both robots. The com-
puter is screwed on the top layer of the platforms and wired to the other components.

Processor Inter(R) Core tm i7-1165G7
Graphic card Intel (R) Xe Graphics (TGL GT2)

Table 3.4: NUC Intel main technical specification

28 3| Experimental set-up

Figure 3.5: FLIPSKY Mini FSESC6.7 PRO 70A.

Continuous current 70 A

Voltage 14 V - 60 V

Control Interface Ports USB,CAN,UART, SPI, IIC

Motor wire 12AWG

Power cable 12AWG

ERPM 150000

Size 67x39x18.7 mm (Including heatsink)
Weight 130 g

Table 3.5: FLIPSKY Mini FSESC6.7 PRO 70A technical specification

3.1.6. Control boards

The four electric motors are actuated and controlled by the FLIPSKY Mini FSESC6.7
PRO 70A. The ESC (Electronic Speed Controller) is based on a open source project called
VESC. The Vesc project

The FLIPSKY Mini FSESC6.7 PRO 70A support four control modes: current, duty
cycle, speed, and position control mode [10]. The Vesc project allows the user to tune
the current and speed control of the motors. The current controller implemented is a
Field Oriented Control (FOC) that guarantees higher top speed and higher efficiency by
pushing the motor to achieve maximum torque at a given speed.

3| Experimental set-up 29

Figure 3.6: ROS icon.

3.2. Software

This Section illustrates the software used in this thesis work. It includes Robotic
Operating System (ROS) as middle-ware and Python as the programming language of the
algorithms. To create and simulate the robots’ models we use Matlab® and Simulink®.

3.2.1. ROS: Robotic Operating System

ROS is defined as an open-source, meta-operating system that provides services such
as hardware abstraction, low-level device control, implementation of commonly-used func-
tionality, message-passing between processes, and package management [23].

Simplifying the definition is possible to state that ROS is a framework that manages
the communication between distributed processes, and enables the executable to be de-
signed independently. This characteristic benefits the overall system by decreasing code
complexity while increasing fault tolerance.

ROS supports TCP/IP-based and UDP-based protocols. The small processes that
perform computations are called Nodes, which can be grouped in Packages and Stacks.
The inputs/outputs are called Messages that are written on specified channels, called
Topics. Topics have anonymous publish/subscribe semantics to decouple the production
of information from its consumption [24]. A node can publish a message on topics and/or
read a message from topics. Another entity largely used is Services which are similar
to functions that can be called inside the nodes to perform different tasks. Services are
based on request/reply communication which is often required in a distributed system.

To easily represent the state of the robots and their perception of the environment we
use Rviz. Rviz (short for “ROS visualization”) is a 3D visualization package. It uses sensor
data, e.g. laser scan data, to recreate an accurate depiction of the robot’s perception of
the world (real or simulated). Rviz allows the representation of different reference frames
and the footprint of the robot, i.e. the projection of the occupancy area of the robot on
the ground plane. It also shows the environment map and relative occupancy grid: a 2D
grid map, in which each cell indicates the likelihood the cell contains an obstacle. Figure
3.7 shows the AIRLab arena mapped using the laser sensor data and Rviz.

30 3| Experimental set-up

Figure 3.7: AIRLab arena map.

A widely used ROS package that maintains the relationship between multiple reference
frames over time is tf. This is typically used to publish the relative pose with respect to
any defined coordinate frame. In our specific case, we use a unitary tf to link the map
frame to the Optitrack™world frame. We use other two tf: one that corresponds to the
marker pose, denoted as "base−link", in the world frame and one that links the laser
scan position to the base−link frame. Thanks to this structure we are able to observe the
motion of the robot in the map on Rviz.

3.2.2. MATLAB® and Simulink®

MATLAB® (an abbreviation of "MATrix LABoratory") is a programming platform
designed to analyze data, develop algorithms, create models, and simulate systems. The
core of MATLAB® is a matrix-based language to allow the expression of computational
mathematics. Simulink® is a graphical programming language, with a block diagram
interface for modelling and simulating dynamical systems. Simulink® offers a tight cor-
relation with MATLAB® and its environment, allowing it to incorporate MATLAB®

functions into models and export simulation results to MATLAB for further analysis [34].

All the mathematical relationships and models used in this work are created using
MATLAB® and Simulink®. The kinematic models, expressed in detail in Chapter 4, for
both robots are developed using the symbolic language of MATLAB®, while the black-box
all-inclusive model is created in Simulink®.

To estimate the parameters of the models’ transfer function we use a specific Simulink®

tool: the Parameter Estimator. Starting from real measured data, saved as time-series,

3| Experimental set-up 31

Figure 3.8: MATLAB® and Simulink® icon.

i.e. a set of data points ordered in time, a model, and a set of targeted tests, the parame-
ter estimator adjusts the transfer functions gains and time constant so that the simulated
model matches the output measured one. Further description of the application of the
Parameter Estimation Toolbox is carried out in Section 4.2.1.

33

4| Models

The following Chapter presents two models: the first is mathematically derived from the
robots’ motion relationships, whereas the second is estimated from empirically measured
data.

Motion planning and control are core components for mobile robot mobility. Both of
them require an analysis of the physical behaviour of the robot to be able to develop the
best possible plans and controls. In the context of mobile robotics, a platform’s physical
behaviour is generally characterized by its dynamics and kinematics, [30].

Since the dynamic model of the system is not crucial for the study developed in
this thesis, and since the robots’ speeds are limited; the system is approximated in a
Black−Box model. Given the technical complexity of creating specific tests to estimate
the system’s dynamic response alone, it is decided to group the entire system: kinematic
and dynamic, within the black-box model. This further simplification made it possible
to carry out tests aimed at isolating the responses of the three degrees of freedom and to
independently define the parameters of the three transfer functions of the model. Starting
from the simulation of the overall model, it is then possible to define the initial values of
the position controller, which is dealt with in detail in Chapter 5.

4.1. Kinematic model

Kinematic models are a subcategory of mechanical models describing limitations on
a robot’s motions, these can describe the spatial position of a rigid body, or system of
bodies, neglecting the forces involved.

The definition of the kinematic model is a bottom-up process, indeed, every single
wheel contributes to the movement of the platform and, simultaneously, imposes con-
straints that limit the robot’s motion. Furthermore, the geometrical configuration links
wheels together, determining a constraint on the overall motion of the chassis.

Starting from [4] we develop the kinematic model. The configuration of a mobile
platform as a rigid body can be generally described with six variables, three Cartesian

34 4| Models

coordinates (x, y, z) and three Euler Angles (roll, pitch, yaw), related to the inertial
external reference frame. If a mobile robot, such as the ones treated in this thesis, moves
on a planar surface, this reduces the degree of freedom of the body to two Cartesian
coordinates x and y, and one orientation angle θ, i.e. yaw angle.

Considering the configuration of the n wheels of the robot and the chassis pose, the
variable vector that define the model can be written as:

q =

[
qr

qw

]
(4.1)

Where:

• qr represents the position of the robots’ centre of mass in the global reference frame
defined by the coordinates x and y and the orientation θ.

• qw =
[
φ1 ... φn

]
is the configuration vector of the n wheels.

These are not independent because their time derivatives are related according to a kine-
matic constraint.

To derive the kinematic model of the robot we start focusing on the point Wi, which is
the centre of a wheel. This point can be considered both as a point belonging to the robot
chassis or as a point of the wheel. By equating the velocity’s in the different reference
frames, the relationship between the velocity of the chassis and the angular velocity of
the wheels is found.

Fixing the reference frame {w} on the contact point between the centre of the wheel
and the robot chassis it is possible to relate the velocity of point Wi with respect to the
angular velocities of the wheel φi and the sliding velocity of the passive roller in contact
with the ground σ. The velocity of point Wi is determined based on the linear velocity of
the wheel in the contact point and the angular velocity of both the chassis and the wheel.

[
vW

]
{w}

=

σ cos(γ)σ sin(γ)

0

+

0φ̇
θ̇

×
00
r

 =

σ cos(γ) + φ̇r

σ sin(γ)

0

 (4.2)

keeping only the xy component:[
vxw

vyw

]
=

[
r cos(γ)

0 sin(γ)

][
φ̇

σ

]
(4.3)

4| Models 35

(a) Wheel model. (b) Wheel detail.

Figure 4.1: Wheel representation.

Fixing a reference frame on the robot chassis {r} and considering the centre of the wheel
belonging to this frame, the velocity of Wi can be deduced from the linear and the angular
velocity of the centre of mass of the robot.

The position of each wheel in the robot chassis reference frame is defined by the
coordinates xi and yi.

[
vW

]
{r}

=

 v

vn

0

+

00
θ̇

×
xiyi
0

 =

 v − θ̇yi
vn+ θ̇xi

0

 (4.4)

[
vxr

vyr

]
=

[
1 0 −yi
0 1 xi

] v

vn

θ̇

 (4.5)

The orientation of reference frame {w} with respect to the reference frame {r} can be
described by the angle β around the z axis. Therefore, considering the corresponding
rotation matrix relative to the x and y terms we can write the equation that represent
the dependencies between the two frames:[

cos(β) − sin(β)

sin(β) cos(β)

] [
vW

]
{w}

=
[
vW

]
{r}

(4.6)

36 4| Models

By substituting Equation (4.2) and Equation (4.4) into Equation (4.6), the relationship
between wheels’ angular velocity and the velocity of the chassis of the robot becomes:

[
φ̇

σ

]
=

[
r cos(γ)

0 sin(γ)

]−1 [
cos(β) − sin(β)

sin(β) cos(β)

]−1 [
1 0 −yi
0 1 xi

] v

vn

θ̇

Finally, by rearranging the equation we obtain:

[
φ̇i

σi

]
=

[
sin(γi+βi)
r sin(γi)

− cos(γi+βi)
r sin(γi)

−yi sin(γi+βi)−xi cos(γi+βi)
r sin(γi)

− sin(βi)
sin(γi)

cos(βi)
sin(γi)

yi sin(βi)+xi cos(βi)
sin(γi)

] v

vn

θ̇

 (4.7)

Assuming that there is no wheel slipping on the ground we can neglect the terms related
to σ, and, considering a robot with n wheels, the transformation matrix can be rewritten
as:

φ̇1

...
φ̇n

 =

sin(γ1+β1)
r sin(γ1)

− cos(γ1+β1)
r sin(γ1)

−y1 sin(γ1+β1)−x1 cos(γ1+β1)
r sin(γ1)

...
...

...
sin(γn+βn)
r sin(γn)

− cos(γn+βn)
r sin(γn)

−yn sin(γn+βn)−xn cos(γn+βn)
r sin(γn)

 v

vn

θ̇

 (4.8)

Let’s define with Tk the transformation matrix in equation (4.8). The rotation matrix
that links the global inertial frame to the frame of the robot chassis is a rotation of angle
θ around the z axis and will be defined as Rθ. v

vn

θ̇

 = Rθ ·

ẋẏ
θ̇

 (4.9)

where:

Rθ =

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (4.10)

In conclusion, the inverse kinematic of a generic n− wheel robot can be rewritten as:

q̇w = TkR
⊤
θ q̇r (4.11)

4| Models 37

Figure 4.2: Omni wheeled robot

Wheel αi βi γi d

1 45◦ −45◦ 90◦ d

2 −45◦ −135◦ 90◦ d

3 135◦ 45◦ 90◦ d

4 −135◦ 135◦ 90◦ d

Table 4.1: Omni wheeled robot parameters.

4.1.1. Omni wheeled robot

The first robot considered is designed to have four Omni wheels equally spaced every
90◦ in space. The distance between the geometrical centre of the robot to the centre of
each wheel is d.

Starting from Equation (4.8) and considering the specific geometric parameters de-
scribed in Table 4.1, the direct and inverse kinematic models become respectively:

 v

vn

θ̇

 = −r
4

−
√
2
√
2 −

√
2
√
2√

2
√
2 −

√
2 −

√
2

1
d

1
d

1
d

1
d

φ1

φ2

φ3

φ4

 (4.12)

38 4| Models

Figure 4.3: Moving direction of Omni wheeled robot

φ1

φ2

φ3

φ4

 = −1

r

−

√
2
2

√
2
2

d
√
2
2

√
2
2

d

−
√
2
2
−

√
2
2

d
√
2
2
−

√
2
2

d

 v

vn

θ̇

 (4.13)

To better understand the mathematical relationship, Figure 4.3 shows the rotation
direction of the wheels required to perform different manoeuvres. It is important to notice
how, in diagonal displacement, two wheels are not actuated. The passive roller mounted
on these wheels rotates without any sliding.

4.1.2. Mecanum wheeled robot

The second platform configuration considered has four Mecanum wheels, i.e. with 45◦

inclined rollers around the wheel’s edge. The distances of the wheels’ centre with respect
to the centre of the chassis can be redefined as:

dx = d ∗ cos(α) dy = d ∗ sin(α) (4.14)

The geometrical parameters are reported in Table 4.2.

4| Models 39

Wheel αi βi γi xi yi

1 40◦ 0◦ 45◦ dx dy

2 130◦ 0◦ −45◦ dx −dy
3 −130◦ 0◦ −45◦ −dx dy
4 −40◦ 0◦ 45◦ −dx −dy

Table 4.2: Mecanum robot parameters.

The direct and inverse kinematic models are expressed in Equation (4.15) and (4.16).

 v

vn

θ̇

 =
r

4

 1 1 1 1

−1 1 1 −1
− 1

dx+dy
1

dx+dy
− 1

dx+dy
1

dx+dy

φ1

φ2

φ3

φ4

 (4.15)

φ1

φ2

φ3

φ4

 =
1

r

1 −1 −(dx + dy)

1 1 dx + dy

1 1 −(dx + dy)

1 −1 dx + dy

 v

vn

θ̇

 (4.16)

Figure 4.5 shows the chassis motion concerning the wheel’s linear velocity direction.
Unlike the Omni wheeled robot, the passive rollers in diagonal displacement do not roll

Figure 4.4: Mecanum wheeled robot

40 4| Models

Figure 4.5: Moving direction of Mecanum wheeled robot

but slide, this condition causes an increase in energy consumption and wheel wear.

4.2. Black-box model

Black-box modelling is mostly used when the focus is on fitting the data regardless
of the mathematical relationships of the model. It is usually a trial-and-error process,
where the parameters of multiple structures are estimated and the results are compared.
It is common usage to start from a simple and linear model structure and then progress
by adding complexity, boundaries and non-linearity to create more advanced models if
necessary [33].

Between different black-box structures, e.g. Linear ARX model, State-space model;
we opt for a transfer function representation. Transfer function representation aims to
describe relationships between the output of a controllable system and the input signal
for all the input values. It is defined as the ratio of the Laplace transform of the output
variable to the Laplace transform of the input variable with the assumption of zero initial
value.

Having the two platforms’ deep similarities in the movement’s relationship, the Black-
box models developed are similar for both robots.

4| Models 41

Figure 4.6: Parameter estimator transfer functions

4.2.1. Parameter Estimation

The parameter estimation is carried out using a specific Simulink® tool. The data
used to estimate the parameters are collected by parsing the bags, i.e. "a file format in
ROS for storing ROS message data" [25], recorded during the experiments. The recorded
tests deeply influence the precision and representativeness of the model’s parameters.

There are a few main features to supervision during gathering the data: the test
duration and the velocity of the operating point. The test we consider is a step response
of the output, i.e. the response of a system to make the output change from an initial
state to a final one and remain constant. This is because the position control, explained
in Chapter 5, receives as input set-points that it has to reach starting from an initial
position, this corresponds to a step response for each of the three degrees of freedom (x,
y, θ) of the system.

In a step response if the time series recorded is too long the estimation represents
better the steady state portion of the response, e.g. the position set-point, while if the
test is too short then the model estimated is more faithful to the transient part, e.g. the
position variation between the initial state to the final one. The data need to be collected
as a trade-off between the two conditions mentioned above to have a good representation
of the overall response and obtain a realistic model.

The other main feature we take into consideration is robots’ speed. Knowing that the
model is non-linear, the behaviour of the system changes with the speed of the chassis and
because of that the parameters estimated during a test with a specific speed, might not be
accurate enough if used in different velocity conditions. Since our focus is restricted to a
small set of possible velocities and we want the system to be precise in the neighbourhood
of an operating point we estimated the parameters of a subset of tests and then calculate

42 4| Models

Figure 4.7: Parameter estimator window

the mean to have the final approximation.

As shown in Figure 4.6, to operate, the parameter estimator needs a time series as
input for each transfer function, represented in the box "data input", and a time series for
each output, named "data output". To collect decoupled data we set different maximum
speeds on the joystick and then move the robot remotely along a single axis each time.

In the command window of the parameter estimator, we set the input and the output
time series, the initial value as the first data collected in each time series of the output
(position of the robot) and which parameter of the transfer function to evaluate. We
command the Simulink® tool to estimate three gains, i.e. kx, ky, kt, and three time
constants, i.e. taux, tauy, taut. The transfer functions link the velocity of the platforms’
chassis in the global reference frame to the position of the robots’ centre in the same
reference frame.

For both robots, we test different linear velocities from 0.6m/s to 1.2m/s and angular
velocities from 2.0 rad/s to 3.5 rad/s, and for each test, we estimate the parameters.

4.2.2. Omni wheeled robot estimation

The data estimated are reported in Table 4.4. From these values, we calculate the
mean to find the final approximation parameters of the simplified black-box model.

Figure 4.7 shows the model response: the first row presents the output, i.e. the

4| Models 43

Vx kx τx

0.6 0.804 0.177

0.8 0.751 0.188

1.0 0.813 0.216

1.2 0.861 0.248

final 0.807 0.207

Vy ky τy

0.6 0.695 0.180

0.8 0.811 0.197

1.0 0.812 0.212

1.2 0.820 0.233

final 0.784 0.206

Vθ kθ τθ

2.0 0.789 0.090

2.5 0.834 0.070

3.14 0.869 0.103

3.5 0.873 0.097

final 0.841 0.090

Table 4.3: Estimated parameters.

position of the robot both measured and simulated, and the second row represents the
input, i.e. the velocity. Each column is related to one degree of freedom, respectively x,
y, θ.

4.2.3. Mecanum wheeled robot estimation

The Table 4.4 report the parameters estimated from the measured data. The final
approximation parameters of the simplified black-box model are found by calculating the
mean of each set of data.

The model step response, both measured and simulated, of the system is shown in
Figure 4.8 representing the three different degrees of freedom. The difference between the

Figure 4.8: Parameter estimator window

44 4| Models

Vx kx τx

0.6 0.891 0.123

0.8 0.930 0.154

1.0 0.966 0.209

1.2 0.109 0.214

final 0.724 0.175

Vy ky τy

0.6 0.903 0.145

0.8 0.940 0.156

1.0 0.971 0.199

1.2 0.102 0.203

final 0.729 0.176

Vθ kθ τθ

2.0 0.887 0.098

2.5 0.892 0.099

3.14 0.934 0.089

3.5 0.950 0.950

final 0.916 0.309

Table 4.4: Estimated parameters.

real and theoretical estimated model is higher at the end of the transient part, this is
due to the contribution of dynamic effects that are harder to approximate given a simple
model. Nevertheless, it can give a sufficiently accurate starting point for the controller
tuning, which is better analysed in Chapter 5.

45

5| Position Control

This Chapter presents the first target of our thesis work, which is the control of the
position of the robots. It means that, given a final position,i.e. the goal, the platforms
are able to reach it while fulfilling some pre-defined specifications.

5.1. Controller and Specifications

Considering the advantages presented in Chapter 2, in particular its ease of imple-
mentation and its robustness, we decide to adopt the PID controller. Moreover, we are
working with omnidirectional platforms, which means that it is possible to control inde-
pendently the linear position on the x− axis, the linear position on the y− axis, and the
angular position around the z− axis. For this reason, we close three independent control
loops with three different PIDs, one for each variable as it is shown in Figure 5.1.

Each controller receives as input the error between the set-point, i.e. the goal in
our situation, and the measured actual position of the robot, obtained from OptiTrack™,
producing as output the linear and angular velocities in the two-dimensional global refer-
ence frame. These are then converted into the robot’s reference frame through a rotation
matrix around the z − axis and finally, according to each robot’s kinematic, transformed
into wheel velocities that are actuated by the four motors as specified in Chapter 4.

5.1.1. Control and Environment Specifications

As already mentioned above, during its motion, the robots have to satisfy some spec-
ifications. These can be related to the performances or the environment. Settling time,
rise time, percent overshoot, and steady-state error values are correlated to the desired
platforms’ behaviour. They can be defined as:

• Settling time is the time required for the output to settle within a certain percentage
which is typically 2% or 5%.

• Rise Time is the amount of time the system takes to go from 10% to 90% of the

46 5| Position Control

Figure 5.1: Simulink representation of independent PIDs

steady-state, or final value.

• Percent overshoot is the amount that the output exceeds the final value, expressed
as a percentage of the final value.

• Steady-state error is the final difference between the output and the desired value.

To better visualize the specification Figure 5.2 shows a step response of a generic
system highlighting them.

Since the two platforms are probably going to operate in environments characterized
by unknown obstacles, narrow places, and workstations, we decide to give more impor-
tance to percent overshoot and to steady-state error trying to reduce both to zero. In this
way, the robots reach the goal in a slower but safer way, managing to arrive at the exact
desired position without the risk of hitting the workstation.

To avoid an aggressive proportional action, better explained in Section 5.2, that can
cause a high peak of current, and therefore limit the lifetime of the actuator we set an
error saturation, i.e. a maximum value that the position error can assume. Another
reason to proceed at a lower speed is related to the environmental specifications. Indeed,
robots work indoors where high velocities are dangerous because of the possible presence
of people. For this reason, we also introduce a maximum linear saturation on the output
of the PID controller equal to 1.2 m/s and saturation on the maximum angular velocity
equal to 1.2 rad/s.

The self-imposed specifications are listed in Table 5.1 .

5| Position Control 47

Figure 5.2: Controller specifications

5.1.2. Control Discretization

As stated in Section 3.1.4 the Optitrack™motion sensor publish the pose of the plat-
form at 120 Hz. To implement the regulator on ROS we are bound to a callback, i.e. a
function triggered by the subscriber every time a message is sent on a topic. Due to the
possibility of the sensor losing information, we decide to associate an independent timer
with our controller. We set the timer frequency at 100 Hz, being a reasonably high value
without exceeding the sensor’s one.

Given a SISO (i.e., Single Input Single Output) system, a typical controller is described
by the transfer function:

C(s) =
bos

n−1 + · · ·+ bn−1

sn + aosn−1 + · · ·+ an−1

(5.1)

overshoot 5%

steady-state error 0.04 m

error saturation 0.5 m
output saturation 1.2 m/s

Table 5.1: Control specification

48 5| Position Control

The core idea is to take the continuous time controller C(s) and discretize it into C(z) so
that its output is as close as possible to the output u(t) of the continuous time controller
for a specific time instant kT . So, the integrators that take as input the continuous
output of the controller and give the continuous output of the plant y(t) =

∫ t

0
u(τ)d(τ)

are substituted with blocks returning a discrete output ỹ(k) = y(Tk) = y(k).

There are three possible approaches to carry out this task: Forward Euler discretiza-
tion, Backward Euler discretization, and Tustin discretization. We decide to use the last
one. The main idea is to sample two consecutive instants: kT and (k+1)T , as presented
in [28], obtaining the integral:

y((k + 1)T) =

∫ (k+1)T

0

u(τ)d(τ) (5.2)

This can be split in two obtaining:

y((k + 1)T) =

∫ (k+1)T

0

u(τ)d(τ) =

∫ kT

0

u(τ)d(τ) +

∫ (k+1)T

kT

u(τ)d(τ) (5.3)

The first integral corresponds to y(kT) = y(k), the continuous signal y(t) sampled with
period T . The second integral, instead, is the area of u(t) between u(kT) and u((k+1)T)

which can be approximated as the coloured area in Figure 5.3. Tustin’s approach linearly
connects the two consecutive samples, so, we rewrite equation (5.2) as:

ỹ(k + 1) = ỹ(k) + h
u(k + u(k + 1)

2
(5.4)

we apply Z-transform and obtain:

Ỹ (z) =
h

2

1 + z−1

1− z−1
U(z) (5.5)

and the change of variables is the following one:

s =
2

T

z − 1

z + 1
(5.6)

We select Tustin’s method because is the only one able to map the pole of the unitary
circle as depicted in Figure 5.4

5| Position Control 49

Figure 5.3: Tustin discretization

Figure 5.4: Pole mapping with Tustin method

5.2. Controller Implementation

The output of the PID controller in the time domain is:

u(t) = Kpe(t) +Ki

∫ t

0

u(τ)d(τ) +Kd
de

dt
(5.7)

where e(t) is the tracking error between the set-point and the measured output, while
Kp, Ki, Kd are respectively the proportional, integral, and derivative gain which are the
parameters to be tuned. The simulink representation of a basic continuous time PID
controller is represented in Figure 5.5. Evaluating the Laplace transform of the previous

50 5| Position Control

Figure 5.5: Basic PID simulink representation

equation we obtain the PID transfer function as:

Kp +
Ki

s
+Kds =

Kds
2 +Kps+Ki

2
(5.8)

5.2.1. Parameters Description

The proportional term Kp · e(t) generates an output that is directly proportional
to the error so that the greater the error, the greater the output. This means that a
high proportional gain implies an elevated change in the output as a consequence of a
large input error determining a quicker reaction but also a greater overshoot and can
cause instability and oscillations. On the other hand, if Kp is small, the controller is less
sensitive and responsive. Finally, the proportional term is able to reduce the steady-state
error but not completely eliminate it.

The integral term Ki ·
∫ t

0
u(τ)d(τ) depends on the cumulative error and defines the

offset that must be corrected. For this reason, it is able to eliminate the steady-state
error but, it can cause a huge increment of the overshoot. The main problem with the
integral term is the phenomenon called windup. If the initial position error is so high that
the actuator saturates, the integral term continuously increases reaching its maximum
value when the error is zero. From this point on, the output can not leave the saturation
condition until the error remains negative for a sufficiently long time allowing the integral

5| Position Control 51

Figure 5.6: Anti-windup implementation on simulink

term to decrease. This can generate a huge overshoot and a dump oscillation.

There are several possibilities to avoid this issue, we decide to adopt the back-
calculation method as presented in [2]. In this case, when the output saturates, Ki is
recomputed in order to give a value at the saturation limit and the integrator is reset
with a time period Tt. A good rule of thumb consists in setting Tt =

√
Ti · Td where

Ti =
Kp

Ki
and Td = Kd

Kp
that are respectively the integrator and the derivative time con-

stants.

Figure 5.6 illustrates the block diagram with the implementation of the back-calculation
method, the difference between the output of the PID and the output of the actuator be-
comes the input of the integrator through a constant 1

Tt
. In this way, the regulator works

as if it has two modes: the normal condition and the one operating when saturation is
reached to avoid windup.

The derivative term Kd · dedt depends on the rate of error change. Its aim is to predict
the system behaviour in order to improve settling time and reduce overshoot. The main
problem is the high sensitivity to noise of the derivative term that can cause the system
to vibrate. Moreover, to create a derivative action in a real situation it is necessary
to increase the number of poles of its transfer function, for this reason, we must add
a high-frequency pole. In this way, the transfer function describing the derivative term
becomes:

Kds

1 + Kd

KpN
s

(5.9)

52 5| Position Control

Kp Ki Kd

P 0.50Kmax - -

PI 0.45Kmax 1.2Kp · fo -
PID 0.60Kmax Kp · fo 0.125Kp/fo

Table 5.2: Ziegler-Nichols tuning rule.

The value of N is chosen to obtain a pole s = − N
Td

which is outside of the control
bandwidth. The control bandwidth measures the reactivity of the system to the input
command changes. Typical values of N are between 5 and 20. We decide to consider
N = 10 for both robots.

5.2.2. Tuning

The first PID is developed in 1911 by Elmer Sperry but introduced as a tunable pro-
portional controller in 1933 by the Taylor Instrumental Company. In order to eliminate
the steady-state error, some control engineers introduce, a few years later, a way to reset
the integrated error from the proportional controller, introducing the first PI. In 1940 Tay-
lor Instrumental Company, in order to reduce overshoot, creates the first derivative action
to be added to the controller. However, the first tuning rules for PIDs are introduced in
1942 by Ziegler and Nichols defining a method that is still one of the most used. It is a
heuristic method in which all the gains are initially set to zero. Then, the proportional
gain is increased until the system is unstable and the output starts to oscillate. In this
way, the maximum gain Kmax and the frequency of oscillation fo are found, so that Ki

and Kd can be expressed as a function of the [9]. Depending on the type of PID required,
Ziegler and Nichols define a set of rules that are described in Table 5.2

This approach may generate gains that are so elevated to possibly be dangerous in a
real application and, in particular, in an indoor environment like the one our robots are
moving in. For this reason, as explained in Chapter 4, we create a black-box model of
the full system, kinematic and dynamic, and we apply the tuning method in simulation
through MATLAB® and Simulink® to obtain the first set of value for the gains, as
depicted in Figure 5.7. The main problem of the Ziegler and Nichols tuning rule is related
to low robustness and to high sensitivity to parameters variation, for this reason, we settle
the final value of the proportional, integral, and derivative gains according to a trial-and-
error approach considering how a change in each gain affects the response of the system,

5| Position Control 53

Figure 5.7: PID and black-box model

Rise Time Overshoot Settling Time Steady-State error

Kp Decrease Increase Small Change Decrease

Ki Decrease Increase Increase Eliminate
Kd Minor Change Decrease Decrease None

Table 5.3: Effects of increasing the three gains.

as it is summarized in Table 5.3.

Furthermore, in order to have a diagonal motion even in situations where the difference
between the set-point and the actual position is much greater in one of the two directions,
we modify the x and y errors according to Algorithm 5.1

Finally, if the robots arrive at the last waypoint all the velocity commands are pub-
lished equal to zero, and the PIDs are reset. Moreover, to be safe in case of loss of
connection with optitrack, if no messages from it arrive for 50ms the robots stop.

5.2.3. Double Navigation

In order to allow greater modularity during navigation for different possible applica-
tions, and to be able to use, in the best way, the in-front camera, in future works, we
decide to implement the possibility to switch between two modes: the first one in which
the platforms behave as a classical omnidirectional robot and another one in which the
two robots are similar to differential drive ones.

In the second case, when a waypoint is generated, we evaluate the direction between
the actual position of the robot and the x and y position of the set-point. During the

54 5| Position Control

Algorithm 5.1 Error modification algorithm
1: if abs(error.x) > emax or abs(error.y) > emax then
2: if abs(error.x) > abs(error.y) then
3: error.y = sign(error.y)·emax·abs(error.y

error.x
)

4: error.x = sign(error.x)·emax

5: else
6: error.x = sign(error.x)·emax·abs(error.x

error.y
)

7: error.y = sign(error.y)·emax

8: end if
9: end if

(a) Desired motion. (b) Undesired motion.

Figure 5.8: Error saturation algorithm

motion, we control the orientation of the robot considering as the set-point the angle
evaluated in this way and removing the independence between the three PIDs so that
the robots can move only forward. When they reach a user-determined distance from the
set-point, the desired angle becomes the orientation of the waypoint and the control is
performed as happens during the omnidirectional motion.

5.3. Experimental Results

In this Section, we present the experimental results of the tuning of the PID controllers
on both platforms with a position step signal as input. We then proceed to validate
the overall system with multiple waypoints and with different starting positions, to test
different possible distances to be travelled.

In order to choose the best set of gains with the trial and error approach, we test
the motion of the robot by changing the values of the parameters. We adopt a step-by-
step method: starting from pure proportional controllers we then increase complexity if

5| Position Control 55

(a) Multiple Kp on x (b) Multiple Kp on y

(c) Multiple Kp around theta

Figure 5.9: Proportional term tuning

necessary. Given the considerations elaborated in Section 5.2.2 we choose to set the initial
P gain equal to a fifth of the Ziegler and Nichols value.

5.3.1. Omni wheeled robot

Starting with the proportional term, we change it from a value of 1.0 to 2.5 at regular
intervals of 0.5, moving from the same initial position to the same goal and analyzing the
response for the three directions x, y and θ. The results of these tests are shown in Figure
5.9. Starting from the response on the x direction, which is depicted in Figure 5.15a, we
notice that, with a value of Kp = 1 the response is slow and the steady-state error does
not satisfy the specifications. Increasing the gain to Kp = 1.5 we obtain a faster response
but with a steady-state error that can still be improved. The response with Kp = 2

guarantees a response that is satisfactory both from the point of view of the percent
overshoot and of the steady-state error. Trying to obtain an even greater improvement in
the performance we set the proportional gain to a value of 2.5 but the response presents
an overshoot and the steady-state error is still present. For this reason, we decide to
adopt the third possibility. Analogous reasoning can be done for the proportional gain
of the PID regarding the y direction, Figure 5.15b. Finally, we analyze the responses
for the rotation around theta that are represented in Figure 5.15c, these measurements

56 5| Position Control

(a) x response (b) y response

(c) θ response

Figure 5.10: Response of the robot with proportional gain Kp=2

Steady-State error Overshoot Settling Time Rise Time

x 0.0311 m 0 % 3.1 s 1.864 s

y 0.019 m 0 % 3.3 s 1.87 s
θ 0.0058 rad 0 % 3.285 s 2.186 s

Table 5.4: Omni wheeled specification with Kp=2.

are affected by the noise from Optitrack, in any case, it is possible to notice that the
response with Kp = 1 is very slow and presents a large steady-state error, for this reason,
is excluded. The performances obtained with the other tests are similar, as a consequence,
we decide to assign to the proportional term a value of 2 because is the best trade-off
between fast response and safety behaviour.

The detailed response of the platform with a proportional gain equal to 2.0 is shown
in Figure 5.10, starting from the initial pose qr,start = [0.8512,−2.5971,−1.5089]T , the
robot must reach pose qr,goal = [3.1, 0.1, 0.9389]T . In this way, for the control along
the x direction, we obtain a steady-state error of 0.0311 m and zero percent overshoot.
Moreover, the rise time is equal to 1.864 s while the settling time set to 5% is 3.1 s. Also
along the y direction, the percent overshoot is null, and the steady-state error reaches a

5| Position Control 57

(a) x response (b) y response

(c) θ response

Figure 5.11: Response of the robot when travelling a longer distance

Steady-State error Overshoot Settling Time Rise Time

x 0.0245 m 0 % 4.36 s 3.033 s

y 0.0356 m 0 % 4.059 s 2.489 s
θ 0.0245 rad 0 % 3.525 s 2.362 s

Table 5.5: Validation specification.

value of 0.019m. The rise time is 1.87 s and the settling time is 3.3 s. Finally, we analyze
the behaviour around θ, in this case, we obtain a response that is characterized by no
overshoot, steady-state error equal to 0.0058 rad, a rise time of 2.1860 s and settling time
of 3.285 s. In conclusion, with this tuning configuration, the result of the motion of the
platforms completely fulfils the specifications. Since the response of the Omni wheeled
robot satisfies the limitations that we impose and has satisfactory behaviour with just a
proportional controller, we decide to not add the integral and the derivative terms so that
we have a regulator that is as simpler as possible. The specification found are summarize
in Table 5.4. In order to validate our controller choice, we decide to perform the same
test with different starting conditions, i.e. with a different starting point, analyzing the
behaviour of the robot when it has to travel longer or shorter distances.

58 5| Position Control

Figure 5.12: Response of the robot when travelling multiple waypoints

The first situation is shown in Figure 5.11, the robot has to move from qr,start =

[−1.5081,−2.4719,−2.0633]T to qr,goal = [3.1, 0.1, 0.9389]T . It is possible to notice that,
also in this case, overshoot is absent in all three responses. Furthermore, the steady-state
error is 0.0245 m along x, 0.0356 m along y and 0.0245 rad around θ meaning that the
controller is valid. Regarding the other response information we obtain a rise time of
3.033 s and a settling time of 4.36 s for x, a rise time of 2.489 s and a settling time of
4.059 s for y, and, finally, we obtain on θ 2.362 s and 3.525 s respectively for the rise time
and the settling time.

As a final remark, it could be possible to obtain a faster motion by increasing the
saturation limits or the maximum permitted error but, it would affect the steady-state
error and the percent overshoot of the responses, since we decide to give more importance
to these two aspects, we still prefer to have a slower robot but with higher precision.

As our last test, we create a possible real-life situation for the robot, identifying
multiple waypoints that simulate working stations the robot has to cross before reaching
the final goal. In order to do that, we use a joystick to collect the different waypoints
and then we let the robots move in autonomous. We introduce a tolerance value of 5 cm
on x and y and of 0.05 rad on θ to allow the robot to move to the next set-point, this
represents the admitted steady-state error.

In particular, the platform has to perform a first motion that is prevalent along the y
direction, followed by sliding in the x direction. Then it moves diagonally and concludes
with a rotation as depicted in Figure 5.12.

5| Position Control 59

(a) Multiple Kp on x (b) Multiple Kp on y

(c) Multiple Kp around theta

Figure 5.13: Proportional term tuning

The robot is able to reach each set-point with the required precision, as already noticed
during the validation test with the short step, the robot presents overshoot when it has
to travel small distances along a certain direction or it has to perform small rotations.
It would be possible to reduce the time the platform stops at a waypoints by increasing
the tolerance value. It is important to underline the high precision of the robot when it
arrives at the goal, the steady-state error on both x and y is lower than 1 cm.

5.3.2. Mecanum wheeled robot

We decide to adopt the same approach used before also with this second robot, in
order to obtain the best controller for our purpose we tune the proportional gain as our
first step. Considering Ziegler Nichols as the starting point we analyze the response of
the robot to the same goal with different values of Kp. The results are visible in Figure
5.17. Along x direction can be noticed that all the responses present a small percent of
overshoot and a low steady-state error but, anyway, the specifications on these values are
satisfied. For this reason, we base our final decision on how fast the robot is able to reach
the goal. As expected, an increase in the proportional gain leads to a smaller rise time, as
a consequence, we decide to impose Kp = 2.5. Regarding the behaviour along y direction,
none of the responses present overshoot, our choice is based on the steady-state error,

60 5| Position Control

(a) x response (b) y response

(c) θ response

Figure 5.14: Robot response with the implemented controller

Steady-State error Overshoot Settling Time Rise Time

x 0.0047 m 1 % 3.1350 s 2.032 s

y 0.0011 m 0.0449 % 3.417 s 2.226 s
θ 0.0062 rad 2.3347 % 2.6420 s 1.476 s

Table 5.6: Mecanum wheeled specification with Kp=2.5.

which is acceptable with all the possibilities but definitely lower with the higher values of
Kp, and, secondly on the rise time which is lower with Kp = 2.5; for this reason, the latter
is our final choice. Finally, we analyze the rotation around θ, this is particularly affected
by the noise from Optitrack™but it is possible to see that, as in the x situation, any
choice of the proportional gain causes overshoot and steady-state error, and, like before,
we consider the rise time to determine our final decision, also in this case we set Kp = 2.5.
We test our platform with the chosen controller to analyze with more precision the results
and the specifications, starting from qr,start = [0.7543,−2.6889,−2.5201]T , the robot must
reach the goal placed in qr,goal = [2.72, 0.21, 0.6761]T , Figure ??. Regarding x, we obtain
a steady-state error of 0.0047 m and a percent overshoot of 1% that are much below our
imposed limits, furthermore, with a rise time of 2.032 s and a settling time of 3.135 s

the controller is satisfying. Moving along y the response is characterized by an overshoot

5| Position Control 61

(a) x response (b) y response

(c) θ response

Figure 5.15: Robot response when travelling longer distances

Steady-State error Overshoot Settling Time Rise Time

x ≃ 0 m 0.15040 % 4.274 s 2.926 s

y 0.0043 m 0 % 4.5780 s 3.0740 s
θ ≃ 0 rad 2.8851 % 2.8960 s 1.9910 s

Table 5.7: Mecanum wheeled specification .

of 0.0449% and the robot reaches its final value with an error of 0.0011 m, the rise time
and the settling time are respectively 2.226 s and 3.417 s, this means that also in this
case the proportional gain is set correctly. We conclude by focusing on the θ response, in
this case, the numeric results related to the specifications are strongly affected by noise,
indeed, the percent overshoot is 2.3347%, and the steady-state error is 0.0062 rad, but in
reality, they are lower. It’s important to underline that, despite the noise, the results are
still satisfactory. Analyzing the obtained values, we conclude implementing a position
controller composed of only the proportional term with a gain equal to 2.5. Also with this
robot, as before, this type of controller is enough for our purpose, if it would be necessary
to reduce the steady-state error or to obtain a faster response, an integrative term can be
added even if this would increase the overshoot.

62 5| Position Control

Figure 5.16: Multiple waypoints following

In order to verify if the selected controller works well in different situations, we test
the robot with longer and shorter distances.

The result from the first case is presented in Figure 5.15, the starting pose is x =

−2.0218, y = −2.4925, θ = −2.0218, while the goal is placed in x = 0.6761, y = 0.2100,
θ = 0.6761. In this case, the error is almost eliminated considering the motion along x with
a percent overshoot of 0.1504%. On the other hand, the response is slow with a rise time
of 2.926 s and a settling time at 5% of 4.274 s. Also the behaviour on y is satisfactory, it’s
important to underline the complete absence of overshoot and the steady-state error equal
to just 0.0043 m, even if this implies a slow response also in this direction, indeed, the rise
time is 3.0740 s and the settling time 4.5780 s. Finally, the response on θ reports again
a steady-state error very close to zero and an overshoot of 2.8851%, much lower than the
specification. We can conclude that this controller is perfectly valid for longer distances.
In order to be coherent, we decide to conduct a concluding test, also on the Mecanum
wheeled robot, the multiple waypoints following. Using the joystick we collect waypoints
with coordinates x = 2.82,−0.44, 2.37, 2.63, y = −2.46,−2.15,−0.89,−0.94, and θ =

0.1341, 0.0548,−3.0022,−0.421. As depicted in Figure 5.16, thanks to the proportional
controller, the robot is able to reach all the intermediate points and the final goal with
the required accuracy. In this case, the robot stops at a waypoint adjusting its position
in less time thanks to the higher value of the proportional gain. It is possible to notice
that when the step dimension is very small, a certain amount of overshoot appears, but
it is still much lower than our required specifications. This test completely demonstrates
that our proportional controller is sufficient to fulfil all the specifications.

5| Position Control 63

(a) Differential navigation (b) Omnidirectional navigation

Figure 5.17: Navigation modes

5.3.3. Double navigation

Before moving to the next Chapter, we want to analyze the differences, also from the
experimental point of view, between the two types of possible navigation. As depicted
in Figure 5.17a, when the mode is set to "differential", the robot is oriented along the
direction that connects the actual position and the goal during its motion, then it turns
and reaches the desired orientation when it is closed to the desired position. Figure 5.17b,
instead, represents the classical omnidirectional motion, the x, y, and θ directions are
corrected independently and the robots perform a rotation during its translation along

Figure 5.18: Double navigation experimental results

64 5| Position Control

x and y axes. It is important to underline, as shown in Figure 5.18 that, from the
performance point of view, the two modes guarantee the same results, the only difference
stands in the behaviour of θ. In conclusion, the unique decision factor is the required
movement specification in the robot application.

65

6| Robot Navigation

This Chapter presents the two algorithms that we develop in order to perform navigation
through the PID controller tuned in Chapter 5, together with the experimental results
obtained implementing them on our real platforms. As already mentioned in Chapter 2,
navigation consists in moving without collision with obstacles, from an initial position to
a specific goal. The starting point to achieve this is move−base.

6.1. Move−Base

Move−base is a package, used in ROS, providing an implementation of an action
that, as explained in [26], given a goal in the world, attempts to reach it with a mobile
base, connecting the global and the local planners. This package provides the move−base
node that implements a ROS interface for configuring, running, and interacting with the
navigation stack on a robot.

The navigation stack takes information from odometry and sensor streams to be
able to compute the velocity commands that are sent to a mobile robot[27]. The other
required inputs are the information from amcl and the map from the map server. Figure
6.1 illustrates how move−base node operates and interacts with other components.

The map is created by moving the robot in the environment while considering the
sensor readings and the odometry from the encoders. Odometry is used to estimate the
position of the robot with respect to its starting localization. Amcl, instead, estimates the
pose of the robot taking as input the laser-based map and the laser scans. Their different
operating behaviours are shown in Figure 6.2. It is possible to notice that localization
performed through odometry is based on dead reckoning which means calculating the
current position by using a previously determined position and then integrating estimates
of heading direction and speed, for this reason, this method is subjected to uncertainties
related to odometry drift. Since our working environment is equipped with OptiTrack™,
localization is performed with this external sensor, and no odometry or estimation through
amcl is required avoiding the problems mentioned above.

66 6| Robot Navigation

Figure 6.1: move−base structure

Figure 6.2: Odometry and amcl comparison

The global planner uses offline information about the environment, described by the
map, to create the best possible path. Between the three options presented in Chapter
2, we adopt global−plan thanks to its flexibility. In fact, it can support both Dijkstra’s
and A* algorithms. As clarified in [19], the first one is a graphic search method that uses
information from a grid cell map. It assigns a value to all the nodes, i.e. two elements
to be connected, in the free space, and then, starting from the initial position, the value
of a cell is the number of nodes that has to be crossed to reach that. The minimum
value of the sum of all edges, i.e. line connecting nodes, from the starting position to
the goal is the shortest path. Dijkstra’s is based on a greedy algorithm in the sense that
it finds the next best solution hoping to obtain as a final result the best solution to the
whole problem, i.e. it finds the locally optimal choice at each step. The main advantage
is the small complexity but, on the other hand, it may consume a lot of time analyzing
the costs to all the nodes. A* algorithm, instead, is based on Dijkstra’s method but it

6| Robot Navigation 67

Figure 6.3: Recovery behaviors

uses a heuristic function to determine an estimate of the path between each node and the
goal [13]. A heuristic function ranks alternatives based on available information, typically
distance. There are three possible methods to evaluate a distance: the Euclidean distance,
the Manhattan distance and the great circle distance. The first one is the measure of the
segment connecting two points, the second one is the sum of absolute differences of the
Cartesian coordinates of the points [7], and finally, the last one is the shortest measured
distance on the surface of a sphere containing the two points [17]. In this way, the
algorithm is faster and more efficient.

The local planner considers obstacles detected with sensors, and vehicle constraints
in order to create new suitable waypoints while trying to follow the global path. In our
work, we do not use a pre-defined local planner but implement an intermediate planner
and a custom obstacle avoidance algorithm as presented in the next sections.

The navigation stack uses two costmaps to be able to read information about obstacles.
The first one is used for global planning and considers the whole environment while the
second one is used for local planning and obstacle avoidance and is continuously updated
through sensor readings.

There are cases in which the robot can perceive itself as stuck, for this reason, the
move−base node can perform recovery behaviours. In the beginning, all the obstacles that
are outside a specific region are removed from the map and then the robot tries an in-place
rotation to clear out space. If the robot fails again, it tries to clear its map another time,
removing all the obstacles outside of the rectangular region in which it rotates in place.
Finally, the robot tries to rotate again, and if it fails the goal is considered infeasible and
it is aborted. This procedure is sketched in Figure 6.3

68 6| Robot Navigation

Figure 6.4: Spatial Horizon

6.2. Spatial Horizon

In order to allow the robot to perform a motion that can approximate a path following,
but using the waypoint following strategy with PIDs developed in Chapter 5 we implement
an intermediate planner. It is able to generate subgoals on the global path according to a
user-determined look-ahead distance; these become the new set-points of the controller.

6.2.1. Algorithm explanation

The pose of the robot in each time instant is obtained by subscribing to Opti-
Track™topic, furthermore, the initial position and orientation of the robot are saved and
given as input to the global path generator.

The other input required by move−base is the goal, we generate it through the 2D Nav
Goal button on Rviz, then it is saved and the path is created according to the make−plan
service.

The global−path is composed of numerous close points, in order to generate the sub-
goal, we check all of these points evaluating the norm between the actual position of
the robot and each of them. If this distance is greater than the difference between the
look-ahead distance and the pre-determined linear tolerance, but it’s lower than the sum

6| Robot Navigation 69

of the two, the farthest subgoal from the pose of the robot is selected and then published
on the specific topic.

From this point on we implement two possible approaches: the new subgoals are
continuously published so that the robots are characterized by a smoother motion, or a
new subgoal is determined only when the robots are close enough to the previous one.
When the distance between the robot and the goal is lower than the look-ahead horizon,
the new subgoal is set equal to the end pose and published.

Finally, if the distance between the platform and the subgoal is greater than a user-
defined threshold, which means that the robot is too far away from the path, the global
route is planned again.

While in the classical Spatial Horizon algorithm the subgoals are sent to the local
planner, in our case they are read from the PID controller and set as the new waypoints
the robot has to follow.

6.2.2. Experimental Results

This section shows the results obtained by implementing the algorithm on the two real
platforms. We focus our analysis on the difference that the systems’ responses present by
changing the look-ahead distance; concluding with the comparison between the motion of
the robots when they have to reach the subgoal before moving to the next one and when,
instead, they are continuously updated.

Starting with a value of 0.5 m, we perform the tests incrementing the horizon up to a
value of 2.5 m. The results are depicted in Figure 6.5 where the line on the top represents
the updated waypoints while the line below corresponds to the position measured by
OptiTrack™. It is possible to notice that, as the look-ahead increases, the constant distance
from the set-points increases and the motion is less precise, on the other hand, if we decide
to set a more aggressive controller, with a small horizon, the robot reaches the subgoal
before it is updated, this is due to the update frequency at which they are computed. It is
important to underline that, using the same position controllers implemented in Chapter
5, the two platforms are able to move and reach the final goal with the required precision.

70 6| Robot Navigation

(a) x response with 0.5 (b) y response with 0.5

(c) x response with 1 (d) y response with 1

(e) x response with 2 (f) y response with 2

(g) x response with 2.5 (h) y response with 2.5

Figure 6.5: Robot response with different look-ahead distances

6| Robot Navigation 71

(a) Second strategy x response (b) second strategy y response

Figure 6.6: Subgoal generation second approach

(a) Second strategy x response with horizon=2.5 (b) Second strategy y response with horizon=2.5

Figure 6.7: Effect of increasing the look-ahead distance

Figure 6.6 shows that using the second strategy of subgoals generation, the response
is composed of multiple small steps, and the behaviour of the robots is less smooth. For
this reason, we decide to use the first method.

For completeness, we show in Figure 6.7 the consequences of changing the look-ahead
distance when subgoals are generated when robots are close to the previous one; it is
possible to notice that the dimension of the steps is larger.

6.3. Vector Field Histogram

The last step of our work is related to obstacle avoidance. To perform that we decide
to customise the VFH algorithm introduced in Chapter 2 since it is simple, requires a
small amount of calculation, has high real-time performance and does not require the

72 6| Robot Navigation

Figure 6.8: Goal definition with Rviz

robot to stop in front of an obstacle. In addition, it perfectly suits omnidirectionality.

6.3.1. Algorithm explanation

The actual 2D pose of the robot in each time instant is obtained and saved by sub-
scribing to the OptiTrack™topic, then we determine a final goal through Rviz as illustrated
in Figure 6.8.

When VFH is enabled, the subgoals from Spatial Horizon, obtained as described in
Section 6.2, are not given directly to the PID controller but are first analyzed to check if
they are on a path that can cause a collision.

When the intermediate goal is defined and the local costmap is ready, we build a
circumference with a radius equal to the distance between the actual pose and the subgoal
and centred with the chassis of the robot as represented in Figure ??. The circumference
is defined as a list with 360 elements, corresponding to 360 points in the 2D plan separated
by 1 degree, where the first one is the subgoal from Spatial Horizon.

For each of these points, we apply Bresenham’s algorithm to approximate the line
between the centre of the robots and the 360 points of the circumference so that we can
identify all the pixels in between.

As explained in [15], the algorithm identifies the driving axis (DA) as the one in which
the difference between the two points is greater, and the passive axis (PA). The first one
becomes the axis of control of the algorithm and the one of maximum movement. Starting
from the initial point the coordinate corresponding to DA axis is incremented one by one,
the other only as needed. Bresenham’s algorithm keeps an error bound ϵ at each stage,

6| Robot Navigation 73

Figure 6.9: Circumference creation

Figure 6.10: Bresenham algorithm example

which represents the negative of the distance from the point where the line exits the pixel
to the top edge of the pixel as shown in Figure 6.10

In the beginning, its value corresponds to m − 1, and then it is incremented by m
each time the DA coordinate is incremented by one. When ϵ becomes greater than zero
it means the line has moved upwards one pixel, and it is necessary to increment the PA
coordinate and decrement ϵ by one unit.

Once the pixels of all these lines are determined we have to define the corresponding
index of the costmap since its data are represented in a tuple. This is found as

dy ∗ rowstride+ dx (6.1)

74 6| Robot Navigation

Figure 6.11: Lines connecting robot’s centre and circumference

Where dy and dx are respectively the vertical and the horizontal distance (in pixels)
from the origin of the costmap while the rowstride is the number of cells between the first
pixel in a row of image data and the first pixel in the next row. It corresponds to the
height of the costmap. As a result, we know the cost of each line connecting the centre of
the robot to the points of the circumference, these are represented by the internal coloured
circle in Figure 6.11.

In this way, thanks to the costmaps data, we can determine the cost of each pixel,
defined as the probability of having an obstacle at that point so that we can obtain an
list of 360 elements where the first one is the cost to reach the defined subgoal and the
last is the cost to reach the point of the circumference on its right.

Figure 6.12: Subgoal selection

6| Robot Navigation 75

(a) Smaller circunference (b) Further radius reduction

Figure 6.13: Effect of increasing the look-ahead distance

Finally, the algorithm begins scanning the list by alternating an element from the top
and an element from the bottom corresponding to alternating left and right points on
the circumference starting from the subgoal. When a point with a cost lower than the
threshold is found, it becomes the new subgoal and it is published on a new topic so that
the PID can use it. Figure 6.12 shows the line connecting the centre of the robot to the
chosen subgoal, it is important to underline that the chosen set-point might not belong
to the global path.

If the robot is stuck, i.e. no suitable points are found, we implement a procedure to
recover. It consists of determining new circles with decreasing radius until the robots are
able to determine a feasible path as represented in Figure 6.13. If a new subgoal can not
be found, an error message is shown on the screen and the robot remains on the post.

6.3.2. Experimental Results

This Section presents the results of implementing the obstacle avoidance algorithm.
To test the reaction of the robots to different situations we select three main set-ups.

First of all, the platforms must be able to avoid a single obstacle as represented in
Figure 6.14a. While the omnidirectional robot is able to perform well with the regulator
implemented in Chapter 5, we have to reduce the proportional gain to a value of Kp = 2

for the mecanum one otherwise it is too fast to allow the Lidars to recompute the costmap.
Subsequently, we want to test the robots with a more complex obstacle configuration as
the S-shape depicted in Figure 6.14c. Both platforms are able to complete the path in
a satisfactory way. Finally, we focus on a configuration that starts in a stuck condition,
Figure 6.14b; both the robots are able to recover and reach the goal situated beyond the

76 6| Robot Navigation

(a) single obstacle (b) [U-shape obstacle

(c) S-shape obstacle

Figure 6.14: Obstacle avoidance configurations

obstacles.

We want to conclude the experimental phase by analyzing the precision with which,
during obstacle avoidance, the robot is able to follow the best path generated by the global
planner. Starting with the already implemented regulators, the results are not satisfactory

Figure 6.15: Path following with proportional controller

6| Robot Navigation 77

Figure 6.16: Path following with integral action

as shown in Figure 6.15. For this reason, we decide to add an integral action to both the
controllers in order to reduce the steady-state error and to decrease the proportional term
to Kp = 1.5 to be able to follow the path with more accuracy. The final behaviour is
represented in Figure 6.16. With this implementation, it is possible to obtain a response
characterized by higher precision, the robots follow the path with an error of 3 cm.

79

7| Conclusion and Future Works

In this thesis work, we show the development of a control strategy that enables efficient
navigation and obstacle avoidance of two omnidirectional platforms. In particular, we
adopt a position controller, based on feedback measurement of the output from a Motion
Capture system, that is able to reach the position and orientation of waypoints.

Starting from the complete model of the system that comprehends the kinematic
and the dynamic model, estimated according to a black box approach, we evaluate the
first set of gains for the controller by applying the Ziegler-Nichols tuning rule. Since
with these values, the specifications are not satisfied, we adjust them according to an
experimental trial and error approach. With the final set of gains, it is possible to obtain
a satisfactory system response, and the controller choice is validated considering different
initial conditions.

The obtained position controller is integrated with the traditional navigation ap-
proaches from ROS package move−base. Experimental results show that the intermediate
planner that we implement guarantees a motion that is close to a path following, moreover
the customized obstacle avoidance algorithm allows the robot to perform well and safely
with simple and common obstacle shapes.

In addition, all the tests are performed with both the motion possibilities that we
implement: the omnidirectional one and the differential-like one. The results are similar
meaning that the user can choose the mode according to its necessities with the same
performances.

The themes developed in this thesis allow several possible future works. First of all the
definition of a precise dynamic model with the evaluation and the estimation of variables
like wheel’s and platforms’ inertia and friction coefficients, so that it is possible to obtain
an accurate theoretical model and improve the tuning of the controller. Moreover, in this
way, it will be possible to perform tests with changing masses, simulating the behaviour
of a manipulator taking objects that can be mounted on the two platforms.

The measurement of the output is obtained through the motion capture system, this

80 7| Conclusion and Future Works

will not be available in all the environments the two platforms will work. For this reason,
it could be useful to substitute this strategy with other localization methods. A possible
solution can be the exploitation of the methods that are present in the navigation stack
from ROS: amcl and odometry.

The PID controller chosen in this thesis guarantees good performances of the two
robots, but, it can become useful, depending on the application field, to implement a
more advanced controller. A future solution can be the MPC that minimizes a cost
function, e.g. energy consumption or platforms’ vibrations. Nevertheless, more complex
strategies require a higher computational cost.

In cases the two robots are going to be used in dynamic environments such as ware-
houses, hospitals or hotels, characterized by moving obstacles or interaction with people,
it would be useful to develop an obstacle avoidance algorithm that can substitute the
customized VFH presented in this thesis. Moreover, there are obstacle configurations
that cause the robot to oscillate without finding a feasible path, for this reason, it can be
necessary to implement algorithms that overcome this problem.

Since the robot is equipped with an onboard camera that is not used in the present
thesis work, a possible future implementation integrates an algorithm for image recogni-
tion with the currently onboard sensors.

Finally, from the hardware point of view, the contact point between a wheel and the
ground is discontinuous creating higher vibrations with respect to other types of wheels,
e.g. conventional wheels. Moreover, the platforms are characterized by rigid structures
which means that vibrations propagate from the wheel to the top of the robots. A possible
future solution is the implementation of a structural component that isolates the highest
part of the robot from the lower ones preventing damage to the electrical devices and
sensors.

81

Bibliography

[1] H. Andreasson. Local visual feature based localisation and mapping by mobile robots.
PhD thesis, Örebro universitet, 2008.

[2] K. Åström and L. Rundqwist. Integrator windup and how to avoid it. 1989. American
Control Conference, 1989, ACC ’89 ; Conference date: 21-06-1989 Through 23-06-
1989.

[3] J. Borenstein and Y. Koren. The vector field histogram-fast obstacle avoidance for
mobile robots. IEEE Transactions on Robotics and Automation, 7(3):278–288, 1991.

[4] I. M. Caireta. Model predictive control for a mecanum-wheeled robot in dynami-
cal environments. Universitat Politècnica de Catalunya Facultat de Matemàtiques i
Estadística, Universitat Politècnica de Barcelona: Barcelona, Spain, 2019.

[5] G. Campion and W. Chung. Wheeled rob 17 . wheeled robots. 2008.

[6] N. Corporation. Optitrack documentation wiki, 2022. URL https://v30.wiki.

optitrack.com/index.php?title=OptiTrack_Documentation_Wiki.

[7] Z. Cui. Towards Interpretable Machine Learning with Applications to Clinical Deci-
sion Support. Washington University in St. Louis, 2019.

[8] C. Delgado-Mata, R. Velázquez, and C. A. Gutiérrez. A differential-drive mobile
robot driven by an ethology inspired behaviour architecture. Procedia Technology, 3:
157–166, 2012.

[9] G. Ellis. Chapter 6 - four types of controllers. In G. Ellis, editor, Control Sys-
tem Design Guide (Fourth Edition), pages 97–119. Butterworth-Heinemann, Boston,
fourth edition edition, 2012. ISBN 978-0-12-385920-4. doi: https://doi.org/10.1016/
B978-0-12-385920-4.00006-0. URL https://www.sciencedirect.com/science/

article/pii/B9780123859204000060.

[10] Flipsky. Flipsky mini fsesc6.7 pro 70a base on vesc6.6
with aluminum anodized heat sink, 2018. URL https:

https://v30.wiki.optitrack.com/index.php?title=OptiTrack_Documentation_Wiki
https://v30.wiki.optitrack.com/index.php?title=OptiTrack_Documentation_Wiki
https://www.sciencedirect.com/science/article/pii/B9780123859204000060
https://www.sciencedirect.com/science/article/pii/B9780123859204000060
https://flipsky.net/collections/electronic-products/products/flipsky-mini-fsesc6-7-pro-70a-base-on-vesc6-6-with-aluminum-anodized-heat-sink
https://flipsky.net/collections/electronic-products/products/flipsky-mini-fsesc6-7-pro-70a-base-on-vesc6-6-with-aluminum-anodized-heat-sink
https://flipsky.net/collections/electronic-products/products/flipsky-mini-fsesc6-7-pro-70a-base-on-vesc6-6-with-aluminum-anodized-heat-sink

82 | Bibliography

//flipsky.net/collections/electronic-products/products/

flipsky-mini-fsesc6-7-pro-70a-base-on-vesc6-6-with-aluminum-anodized-heat-sink.

[11] T. A. Gaffoor. Ai for process control series (part 1) - introduction to
control strategies, 2022. URL https://www.innovyze.com/en-us/blog/

ai-for-process-control-series-part-1-introduction-to-control-strategies.

[12] S. Huang and G. Dissanayake. Robot localization: An introduction. Wiley Encyclo-
pedia of Electrical and Electronics Engineering, pages 1–10, 1999.

[13] ICS. A* search algorithm, 2022. URL https://isaaccomputerscience.org/

concepts/dsa_search_a_star?examBoard=all&stage=all.

[14] Jane. YDLIDAR G4 Data Sheet. Shenzhen EAI Technology Co., 16th Floor, Block
7A,International innovation Valley,Nanshan District, Shenzhen, Guangdong, China,
6 2022.

[15] K. I. Joy. On-line computer graphics notes: Breshenham’s algorithm,
2022. URL https://www.cs.put.poznan.pl/swilk/pmwiki/uploads/Dydaktyka/

bresenham-int.pdf.

[16] L. Kästner, T. Buiyan, X. Zhao, Z. Shen, C. Marx, and J. Lambrecht. Connect-
ing deep-reinforcement-learning-based obstacle avoidance with conventional global
planners using waypoint generators. CoRR, 2021.

[17] B. D. Kifana and M. Abdurohman. Great circle distance methode for improving
operational control system based on gps tracking system. International Journal on
Computer Science and Engineering, 4(4):647, 2012.

[18] J. M. Maciejowski. Predictive control: with constraints. Pearson education, 2002.

[19] P. Marín, A. Hussein, D. Martín Gómez, and A. de la Escalera. Global and local path
planning study in a ros-based research platform for autonomous vehicles. Journal of
Advanced Transportation, 2018:1–10, 02 2018. doi: 10.1155/2018/6392697.

[20] H. P. Oliveira, A. J. Sousa, A. P. Moreira, and P. J. Costa. Dynamical models for
omni-directional robots with 3 and 4 wheels. In ICINCO-RA (1), pages 189–196,
2008.

[21] K. Qin. General matrix representations for b-splines. In Proceedings Pacific Graph-
ics’ 98. Sixth Pacific Conference on Computer Graphics and Applications (Cat. No.
98EX208), pages 37–43. IEEE, 1998.

https://flipsky.net/collections/electronic-products/products/flipsky-mini-fsesc6-7-pro-70a-base-on-vesc6-6-with-aluminum-anodized-heat-sink
https://flipsky.net/collections/electronic-products/products/flipsky-mini-fsesc6-7-pro-70a-base-on-vesc6-6-with-aluminum-anodized-heat-sink
https://flipsky.net/collections/electronic-products/products/flipsky-mini-fsesc6-7-pro-70a-base-on-vesc6-6-with-aluminum-anodized-heat-sink
https://flipsky.net/collections/electronic-products/products/flipsky-mini-fsesc6-7-pro-70a-base-on-vesc6-6-with-aluminum-anodized-heat-sink
https://flipsky.net/collections/electronic-products/products/flipsky-mini-fsesc6-7-pro-70a-base-on-vesc6-6-with-aluminum-anodized-heat-sink
https://www.innovyze.com/en-us/blog/ai-for-process-control-series-part-1-introduction-to-control-strategies
https://www.innovyze.com/en-us/blog/ai-for-process-control-series-part-1-introduction-to-control-strategies
https://isaaccomputerscience.org/concepts/dsa_search_a_star?examBoard=all&stage=all
https://isaaccomputerscience.org/concepts/dsa_search_a_star?examBoard=all&stage=all
https://www.cs.put.poznan.pl/swilk/pmwiki/uploads/Dydaktyka/bresenham-int.pdf
https://www.cs.put.poznan.pl/swilk/pmwiki/uploads/Dydaktyka/bresenham-int.pdf

7| BIBLIOGRAPHY 83

[22] S. J. Qin and T. A. Badgwell. A survey of industrial model predictive control tech-
nology. Control engineering practice, 11(7):733–764, 2003.

[23] ROS. Introduction, 2018. URL http://wiki.ros.org/ROS/Introduction.

[24] ROS. Topics, 2019. URL http://wiki.ros.org/Topics.

[25] ROS. Bags, 2020. URL http://wiki.ros.org/Bags.

[26] ROS. move−base, 2020. URL http://wiki.ros.org/move_base.

[27] ROS. navigation, 2020. URL http://wiki.ros.org/navigation.

[28] L. Schenato. Control laboratory: Discretization of continuous systems. 4 2016.

[29] K. Shabalina, A. Sagitov, and E. Magid. Comparative analysis of mobile robot
wheels design. 2018 11th International Conference on Developments in eSystems
Engineering (DeSE), pages 175–179, 2018.

[30] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to autonomous
mobile robots. MIT press, 2011.

[31] D. E. Skateboard. Electric skateboard motor 6355 190kv,
2022. URL https://diyelectricskateboard.com/products/

electric-skateboard-motor-6355-190kv.

[32] H. Taheri, B. Qiao, and N. Ghaeminezhad. Kinematic model of a four mecanum
wheeled mobile robot. International journal of computer applications, 113(3):6–9,
2015.

[33] I. The MathWorks. Black-box modeling, 2022. URL https://it.mathworks.com/

help/ident/ug/black-box-modeling.html.

[34] I. The MathWorks. Simulation and model-based design, 2022. URL https://it.

mathworks.com/help/simulink/.

http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/Topics
http://wiki.ros.org/Bags
http://wiki.ros.org/move_base
http://wiki.ros.org/navigation
https://diyelectricskateboard.com/products/electric-skateboard-motor-6355-190kv
https://diyelectricskateboard.com/products/electric-skateboard-motor-6355-190kv
https://it.mathworks.com/help/ident/ug/black-box-modeling.html
https://it.mathworks.com/help/ident/ug/black-box-modeling.html
https://it.mathworks.com/help/simulink/
https://it.mathworks.com/help/simulink/

	Acknowledgements
	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Introduzione
	Introduction
	Contribution
	Thesis outline

	State of The Art
	Wheeled mobile robots
	Types of wheel
	Robot configuration
	Omnidirectional robots

	Control Strategies
	Robot navigation
	Global planner
	Intermediate planner
	Obstacle avoidance

	Experimental set-up
	Hardware
	Mobile platforms
	Actuator
	Laser Scanner
	OptiTrack™
	On board computer
	Control boards

	Software
	ROS: Robotic Operating System
	MATLAB® and Simulink®

	Models
	Kinematic model
	Omni wheeled robot
	Mecanum wheeled robot

	Black-box model
	Parameter Estimation
	Omni wheeled robot estimation
	Mecanum wheeled robot estimation

	Position Control
	Controller and Specifications
	Control and Environment Specifications
	Control Discretization

	Controller Implementation
	Parameters Description
	Tuning
	Double Navigation

	Experimental Results
	Omni wheeled robot
	Mecanum wheeled robot
	Double navigation

	Robot Navigation
	Move-Base
	Spatial Horizon
	Algorithm explanation
	Experimental Results

	Vector Field Histogram
	Algorithm explanation
	Experimental Results

	Conclusion and Future Works
	Bibliography

