
POLITECNICO DI MILANO
Department of Electronics, Informatics and Bioengineering
M.Sc. programme in Computer Science and Engineering

Deployment of Container Orchestration and
Function-as-a-Service functions with Node

Selection Method on Hybrid Cluster
Architecture

Advisor: Prof. Pierluigi Plebani

Master Thesis of:
Alberto Marini

862838

Academic Year 2019-2020

Deployment of Container Orchestration and
Function-as-a-Service functions with Node

Selection Method on Hybrid Cluster
Architecture

Alberto Marini

Academic Year 2019-2020

στον πατέρα μου

καί τη μητέρα μου

καί αγαπημένους άνθρωπουσ μου

Abstract

The stateless containerized Function-as-a-Service (FaaS) cloud comput-
ing model is increasing of paramount importance as it allows developers to
create, execute and manage application packages as functions, without deal-
ing with their own infrastructure.

The scope of this thesis is to verify the possibility of creating a hybrid ar-
chitecture with the open-source software currently available, that is possible
to perform FaaS functions, by selecting the desired node.

This thesis shows the development of a heterogeneous cluster with VPS
on the cloud and Raspberry Pi. The chosen Container Orchestration plat-
form is k3s, and as regards the framework for the Function-as-a-Service func-
tions, the choice is OpenFaaS. The way that to deploy FaaS applications on
OpenFaaS by selecting the desired node and making the serverless function
compatible with different architectures is also presented.

i

Sommario

Il modello di cloud computing Function-as-a-Service (FaaS) basato su
eventi ed eseguito in container stateless é sempre più di fondamentale im-
portanza poiché consente agli sviluppatori di creare, eseguire e gestire i pac-
chetti applicativi come funzioni, senza doversi occupare della propria infras-
truttura.

L’obiettivo in questa tesi é quello di verificare la possibilità di creare
un’architettura ibrida con il software open-source ad oggi disponibile al cui
interno é possibile eseguire funzioni FaaS in modo flessibile, selezionando il
nodo.

In questa tesi viene mostrato lo sviluppo di un cluster eterogeneo con
VPS su cloud e Raspberry Pi. La piattaforma di orchestrazione dei con-
tainer scelta é k3s, mentre per quanto concerne il framework per le funzioni
Function-as-a-Service, la scelta effettuata é quella di OpenFaaS. Infine, viene
mostrato come effettuare il deploy delle applicazioni FaaS su OpenFaaS se-
lezionando il nodo desiderato e rendere la funzione serverless compatibile con
diverse architetture.

iii

Contents

Abstract i

Sommario iii

Introduction 1

1 FaaS & Container Orchestration 3
1.1 Introduction . 3
1.2 FaaS platforms . 4

1.2.1 Apache OpenWhisk 4
1.2.2 OpenFaaS . 5

1.2.2.1 The API Gateway 6
1.3 Container Orchestration . 7

1.3.1 Docker & Docker Swarm 7
1.3.1.1 Docker Engine 7
1.3.1.2 Docker orchestration 8

1.3.2 Kubernetes . 9
1.3.3 k3s . 10

2 Hybrid cluster 13
2.1 Introduction . 13
2.2 Containers on hybrid environment 13
2.3 FaaS deployment . 14
2.4 Implementation . 14

3 Cluster configuration 17
3.1 Introduction . 17
3.2 Architecture . 17
3.3 Environment setup . 19

3.3.1 k3s cluster deployment 19
3.3.1.1 OpenFaaS deployment 21

v

3.3.1.2 OpenFaaS Functions 23
3.3.1.3 Node selection 23

4 Concluding remarks 25
4.1 Future directions . 25

A Raspberry Pi & k3s code scripts 27

B OpenFaaS code scripts 31

vi

List of Figures

1.1 Architectural View of Apache OpenWhisk [The19] 4
1.2 OpenFaaS structure [Ale19] 5
1.3 Conceputal OpenFaaS architecture when Kubernetes is used

as the orchestration provider [Ope19] 6
1.4 Docker Engine components flow [Doc19a] 8
1.5 Docker Swarm components[Doc19b] 8
1.6 Kubernetes node overview [Kub19b] 9
1.7 Kubernetes Master and Worker node components [Kub19a] . 10
1.8 k3s Server & k3s Agent [Ran19] 12

2.1 Hybrid Cluster Diagram . 14
2.2 Deployment OpenFaaS function on a selected Worker node . . 15

3.1 k3s Single Server Architecture [k3s20] 18
3.2 k3s High Availability Architecture [k3s20] 18
3.3 List of Nodes of the Hybrid Cluster 20
3.4 Hybrid Cluster with Labels 20
3.5 OpenFaaS Services . 21
3.6 OpenFaaS API Portal . 22

vii

Introduction

Function-as-a-Service (FaaS) and Container Orchestration platforms are
becoming increasingly important tools for deploying services over the net-
work, thanks to the flexibility and reliability. One of the main benefits is the
optimization and performance of an application. Container Orchestration
platforms are very popular nowadays among applications in multiple fields
as cloud computing and so on. The implementation of the microservices logic
has been adopted widely for various reasons, starting from the isolation of
each application running as a Container. As a further step, Function-as-
a-Service (FaaS) allows developers to write applications without handling
the system resources. In this context, it is possible to create a short-lived
container which can be triggered when needed and also the computation
overload is purely on demand.

The goal of this thesis is to show that it is possible to have a deployment
of serverless functions, with the selectivity of which node to use, on a hybrid
FaaS cluster, using a Container Orchestration platform to orchestrate the
entire network. The environment consists of a cluster with machines based
on cloud and a physical device such as Raspberry Pi. We will present the
capabilities and limitations, the consequent choices made during the config-
uration of the cluster and we will explain how to implement everything.

Structure of the document

The thesis is structured in the following way:

• Chapter 1 provides an introduction to the principal FaaS and Con-
tainer Orchestration platforms that we analyzed and used for reaching
the main goals.

• Chapter 2 discusses the chosen platforms for the hybrid cluster and
how can be implemented.

• Chapter 3 covers the architecture of the hybrid cluster environment,
starting from the available resources, moving to the configuration choices,
and regarding the implementation, from k3s to OpenFaaS function de-
ployment.

• Chapter 4 summarizes the results of this thesis, giving final reasoning
and introducing the next steps for further developments.

2

Chapter 1

FaaS & Container
Orchestration

1.1 Introduction

Function-as-a-Service (FaaS) is a type of computing known also as a
serverless and event-driven, method of using cloud technology to enable
higher efficiency in computer workflows and processes.

The main benefit of FaaS is the capability of offering cloud services using
the required resources. Moreover, FaaS helps to concentrate only on applica-
tive function, without considering the server provisioning, operative system,
and other aspects.

FaaS platforms do not require coding to a specific framework or library.
In fact, FaaS functions are like regular applications for language and envi-
ronment. The only limit is the significant architectural restriction, peculiarly
for state and execution duration.

In this Chapter, we are going to consider the main FaaS and Container
Orchestration services. All the platforms discussed in this thesis are open-
source and available on GitHub.

1.2 FaaS platforms

Many Function-as-a-Service (FaaS) platforms have been created to sat-
isfy the different needs for deployment. Up to now, the bigger part of FaaS
platforms are open-source or to be paid. Especially in the open-source world
it is quite important that behind a Faas platform there is an active com-
munity for supporting, solving problems and releasing new versions with
updated functionalities.

In this section, we consider Apache OpenWhisk and OpenFaaS.

1.2.1 Apache OpenWhisk

Apache OpenWhisk is an open-source distributed Serverless platform.
OpenWhisk manages the infrastructure, servers and scaling using Docker
containers. The OpenWhisk platform is based on Scala and supports differ-
ent programming languages like .Net, Go, Java, JavaScript, PHP, Python,
Ruby, and Swift.

Figure 1.1: Architectural View of Apache OpenWhisk [The19]

The architectural scheme, shown in Figure 1.1 includes the following
concepts

• Event Source: passes the set of parameters that are essential for the
invocation.

• Trigger: endpoints that are explicitly called by event sources such as
databases, stream processing engines, file systems, and line-of-business
applications.

4

• Rule: acts as the connection between Triggers and Actions by creating
a loosely coupled association between them.

• Action: represents the standalone functions, completely autonomous
and independent of the event sources.

Apache OpenWhisk can be used with an account on IBM BlueMix, a Va-
grant Machine or with Docker on Ubuntu. We no longer consider OpenWhisk
due to issues faced in setup and its minimal dependence on Kubernetes for
container orchestration.

1.2.2 OpenFaaS

OpenFaaS is an open-source Functions-as-a-Service framework created by
Alex Ellis, available on GitHub 1 under the MIT license. OpenFaaS is built
with a focus on ease of use, simplicity, portability, and openness. As shown
in Figure 1.2, OpenFaaS has two key components: an API Gateway and a
functioning watchdog. Prometheus, instead, is used for recording metrics. It
also supports multiple container orchestrators like Kubernetes and Docker
Swarm.

Figure 1.2: OpenFaaS structure [Ale19]

OpenFaaS is growing rapidly in the Open-Source Serverless Frameworks
field, with continuous updates and new functionalities.

1https://github.com/openfaas/faas

5

https://github.com/openfaas/faas

1.2.2.1 The API Gateway

One of the main benefits of OpenFaaS is the capability of allowing all
developers to write functions in any programming language like C#, Go,
NodeJS, Python, and Ruby.

OpenFaaS supports two types of function triggers: HTTP and event-
based. In addition, OpenFaaS can be integrated with Apache Kafka, an
open-source distributed streaming platform for building real-time data pipelines
and stream processing applications.

The API Gateway provides a route into the deployed functions and col-
lects metrics through Prometheus. The Gateway has a User Interface for
deploying functions and invoicing them. Due to the API Gateway, it is pos-
sible to scale up from zero using also auto-scaling functionalities via Alert-
Manager and Prometheus.

Figure 1.3, it represents the conceptual architecture when Kubernetes is
used as the orchestration provider.

Figure 1.3: Conceputal OpenFaaS architecture when Kubernetes is used as the orches-
tration provider [Ope19]

6

1.3 Container Orchestration

Container Orchestration platforms has changed the way of software orga-
nizations build, ship, and maintain applications. A container is run by using
Container Orchestration platforms and it has its own filesystem, CPU, mem-
ory, process space, and more. A container is decoupled by the underlying
infrastructure, which means that it is portable across cloud and OS distri-
bution. Due to Container Orchestration platforms, it is possible to handle
the automation of all aspects of coordinating and managing containers. The
main benefits of Container Orchestration are increased portability, simple
and fast deployment, and improved security.

In this section, we are going to consider Docker, Kubernetes, and k3s.
The latter one is a platform based on Kubernetes, but developed with a dif-
ferent approach to solving problems during the deployment on heterogeneous
devices.

1.3.1 Docker & Docker Swarm

Docker is an open-source project with the main focus of automatizing
application deployment. By using Docker, the abstraction level allows us to
package and run an application in the isolated environment called container.
In particular, containers are lightweight because they do not require the extra
load of a hypervisor, and they can run directly within the host machine’s
kernel.

1.3.1.1 Docker Engine

The Docker Engine is a client-server application with three major com-
ponents:

• A server, a program called the daemon process, also known as dockerd.

• REST API useful for talking to the daemon and instruct it what to
do.

• A command-line interface (CLI) client, also known as docker command.

The CLI uses the Docker REST API to control or interact with the
Docker daemon through scripting language or direct CLI commands. Many
other Docker applications use the underlying API and CLI.

The daemon creates and manages Docker objects, such as images, con-
tainers, networks, and volumes as shown in Figure 1.4.

7

Figure 1.4: Docker Engine components flow [Doc19a]

1.3.1.2 Docker orchestration

Starting from Docker Engine 1.12, and newer version, has been intro-
duced the Swarm mode, a clustering and scheduling tool for Docker contain-
ers.

Docker Swarm uses scheduling capabilities to ensure that there are suffi-
cient resources for all the distributed containers. Swarm assigns containers
to underlying nodes and optimizes resources by automatically scheduling
container workloads to run on the most appropriate host. The main benefit
provided by Swarm mode is about being sure that each container has been
launched on a system satisfying the resources requested, while maintaining
high-performance levels and optimal efficiency.

Figure 1.5: Docker Swarm components[Doc19b]

8

1.3.2 Kubernetes

Kubernetes is a container orchestration platform. Kubernetes automates
the process of scaling, managing, updating and removing containers, and
makes use of various concepts and abstractions.

The main benefit of Kubernetes is the possibility of allowing the au-
tomation of container provisioning, networking, load-balancing, security and
scaling across all the nodes.

It allows users to run containers across multiple compute nodes. A node
can be a virtual machine or a bare-metal server). Once Kubernetes has
taken control over a cluster of nodes, containers can be turned on or off at
any given time.

There are two basic concepts about a Kubernetes cluster shown in Figure
1.6. The first is the node, a common term for VMs and/or bare-metal servers
that Kubernetes manages. The second term is pod, which is a basic unit of
deployment in Kubernetes. A pod is a collection of related Docker containers
that need to coexist. Each pod is assigned with a unique IP address within
the cluster, allowing the application to use ports without conflict. Pods are
created and destroyed on nodes as needed to conform to the state specified
in the pod definition.

Figure 1.6: Kubernetes node overview [Kub19b]

Coming back to the nodes, there are two types of nodes as shown in Fig-
ure 1.7. One is the Master Node, the main access point from which admin-
istrators and other users interact with the cluster to manage the scheduling
and deployment of containers. It controls the scheduling of pods across var-
ious Worker nodes, where the application runs. The master node’s job is to

9

make sure that the desired state of the cluster is maintained. The Kuber-
netes Worker node runs an agent process named kubelet that is responsible
for managing the state of the node and it collects performance and health
information from nodes, pods, and containers.

Figure 1.7: Kubernetes Master and Worker node components [Kub19a]

Moreover, Kubernetes provides also other abstraction functionalities like:

• Namespaces: it allows to create virtual clusters on top of a physical
cluster.

• Labels: key/value pairs that you can assign to pods and other objects
in Kubernetes.

Finally, one of the Kubernetes components that helps to keep an eye
on the container deployment is Dashboard, a web-based UI from which is
possible to deploy and troubleshoot apps and manage cluster resources

1.3.3 k3s

k3s is a lightweight Kubernetes version developed by Rancher Labs. The
reason why k3s have been developed is the necessity of creating an optimized
version for ARM64 and ARMv7 processor, capable to provide all the most
important tools that are developed inside Kubernetes.

The k3s binary, available on GitHub 2, is less than 40MB. It requires
only 512MB of RAM to run on a device like Raspberry Pi. Inside k3s binary

2https://github.com/rancher/k3s

10

https://github.com/rancher/k3s

are available all the low-level components required like containers, runc and
kubectl.

The minimum system requirements for k3s are the following:

• Linux 3.10+

• 512 MB of RAM per server

• 75 MB of RAM per node

• 200 MB of disk space

• x86_64, ARMv7, ARM64

Looking closer to k3s, Rancher Labs removed legacy, alpha, non-default
features and most in-tree plugins (cloud providers and storage plugins) which
can be replaced without tree addons. Moreover, as default storage mecha-
nism has been added sqlite3. etcd3 is available, but not the default. Ev-
erything is wrapped in simple launcher bash script A.2 in Appendix A that
handles TLS and options in a short string.

The main k3s package required dependencies are the followings:

• containerd: a container runtime that can manage a complete container
lifecycle.

• Flannel: one of the simplest networking interface that can create an-
other flat network which runs above the host network, called overlay
network.

• CoreDNS: it is a flexible, extensible DNS server that can server as the
k3s cluster DNS.

• CNI: k3s supports container network interface, a standard created
to configure container networking when containers are created or de-
stroyed.

• Host utilities (iptables, socat, etc)

Figure 1.8 shows the relation between k3s Server and k3s Agent. In
Kubernetes terminology, Server and Agent refer respectively to Master and
Node. k3s bundles the Kubernetes components into combined processes that
are presented as a simple server and agent model. Running k3s server will

11

start the Kubernetes server and automatically register the localhost as an
agent. By default, k3s installs on the same machine server and agent, but it
can be disabled an installed separately with a special flag as shown in bash
script A.3 in Appendix A.

In particular, we can see that the network connection is controlled by the
Tunnel Proxy component, instead, the k3s Server integrates the Scheduler
and Controller Manager processes.

Figure 1.8: k3s Server & k3s Agent [Ran19]

By using k3s is possible to create a production cluster with heterogeneous
devices. The support to x86_64, ARMv7, ARM64 is useful for solving the
compatibility with different devices, creating a cluster network with a master
node and deploying tasks over the network, targeting selected devices.

12

Chapter 2

Hybrid cluster

2.1 Introduction

This Chapter extends the Chapter 1 analyzing the characteristics of the
chosen Container and FaaS platforms, and why they are the right choice for
our cluster.

We verify how it is possible having a hybrid architecture with today’s
available open-source frameworks and the possibility to deploy FaaS func-
tions, flexibly, selecting the desired node.

2.2 Containers on hybrid environment

Container Orchestration on the hybrid environment requires particular
attention about performances and resources. The container virtualization
requires a level of abstraction that is quite complex for a heterogeneous
network of devices with different hardware.

For these reasons, a lightweight Kubernetes distribution as Rancher Labs’
k3s has been chosen. It provides most of Kubernetes components for network
management and container deployments. k3s is compatible with Raspberry
Pi and runs using a low amount of resources thanks to the reduced depen-
dencies.

In fact, in our hybrid cluster shown in Figure 2.1 we have three VM’s
based on cloud and two Raspberry Pi. There are multiple reasons why
choosing a cloud platform, starting from the availability to the reduced costs
in running a VM in an always-on environment, with backup and recovery
options. One of the cloud virtual machines is the main Server, instead, the
others are the nodes, called Workers in k3s.

Figure 2.1: Hybrid Cluster Diagram

2.3 FaaS deployment

Function-as-a-Service is a framework for building serverless functions on
top of containers. A serverless function is short-lived, not a daemon, not
stateful and it executes in a few seconds.

We decided to deploy on the hybrid cluster the OpenFaaS framework
that is compatible with Kubernetes and Docker. Moreover, OpenFaaS can
be expanded adding functionalities like Grafana dashboards1 and many other
tools helpful for handling the deployment of OpenFaaS functions.

2.4 Implementation

We identified OpenFaaS and k3s to enable our goal of deploying FaaS
function on a hybrid cluster.

Provided a cluster of machines, which can comprise cloud VM’s and other
heterogeneous devices such as Raspberry Pi, we bootstrap the k3s server on
the master node. Then, we connect each worker node to the master by de-
ploying k3s and adding the relative master node token as shown in code A.6.

For the Raspberry Pi’s Worker nodes it is necessary to install the Op-
erative System Raspberry OS on their microSD card and proceed with k3s

1https://grafana.com/grafana/dashboards/3526

14

installation. Then, we use an abstraction functionality of Kubernetes such
as labels, to rename each node. The Label is a key/value set that can be
assigned to every object in Kubernetes. After the k3s cluster has been set,
each node has been labeled uniquely, on the Master node is possible to de-
ploy OpenFaaS and the relative CLI with the code B.1.

By deploying OpenFaaS, all the services such as AlertManager, FaaS-
idles, Gateway, Nats, Prometheus, and Queue-Worker are distributed over
the hybrid cluster. This solution’s quite straightforward to guarantee that
the serverless platform is always available. If a Worker node goes offline, the
lost OpenFaaS services will be recreated on another Worker node or moved
to the server, depending on a load of each machine in the cluster.

Once deployed the OpenFaaS function with a Label set in the .yml file,
as shown in Figure 2.2, if the OpenFaaS function includes the tag relative
to a k3s worker node label, then the deployment will be set to that node.
If the OpenFaaS function requires higher performances, OpenFaaS timeout
will stop the deployment.

Figure 2.2: Deployment OpenFaaS function on a selected Worker node

We verify how it is possible having a hybrid architecture with today’s
available open-source frameworks and the possibility to deploy FaaS func-
tions in a flexible way selecting a node.

15

16

Chapter 3

Cluster configuration

3.1 Introduction

After the reasoning of how to implement a hybrid cluster, in this Chapter,
we enter the project details focusing on how it has been built using the
available devices and resources and how it has been configured. The main
goal is to validate the solution proposed in section 2.4 that is the verification
of how it is possible having a hybrid architecture and the possibility to deploy
FaaS functions selecting exactly each node.

3.2 Architecture

The architecture that we are going to cover is based on five machines.
The chosen solution is a k3s single server architecture as shown in Figure
3.1. This solution provides the following configuration:

• The main server

• Embedded SQLite Database on the server node

• Agent nodes that are connected to the main server

• Networking handled with Flannel as Cluster Networking Interface

Besides Flannel, as described in Chapter 1.3.3, k3s integrates also CoreDNS
as a cluster DNS provider, the Traefik Ingress controller, and Klipper service
load balancer.

Figure 3.1: k3s Single Server Architecture [k3s20]

Moreover, k3s can be deployed also in case of High Availability require-
ments1. In this case, it is necessary to create a cluster with two or more
server nodes, one or more agent nodes, an external database, and a fixed
registration address. One of the biggest constraints of a High Availability
cluster is the requirement at level hardware with a minimum 2 vCPU and 4
GB of RAM.

Figure 3.2: k3s High Availability Architecture [k3s20]

1https://rancher.com/docs/k3s/latest/en/architecture/

18

https://rancher.com/docs/k3s/latest/en/architecture/

In our case, the server and two nodes are running in Ubuntu, distributed
across different countries. In particular, the VPS server is based in Frankfurt,
and the two other VPSs are based in Amsterdam. On the network side, each
VPS has been assigned to a Floating IP address. This solution provides a
stable IP address.

The main server node has the following specification:

• 2 vCPUs

• 4GB

• 80GB disk storage

Instead, the cloud based nodes have the following specifications:

• 1 vCPUs

• 2GB

• 50GB disk storage

Besides, there are two Raspberry Pis with Raspberry Pi OS connected
from Italy. For installing the Raspberry Pi OS on the microSD card has
been used the script A.1 in Appendix A.

3.3 Environment setup

Previously we have introduced the available machines, explainer the dif-
ferent configurations compatible with k3s focusing on the specifications of
server, nodes, and networking.

The following section is going to explain how the environment has been
set up from the k3s cluster creation to the OpenFaaS function deployment.

3.3.1 k3s cluster deployment

The k3s installation is quite straightforward. Once installed it, with the
code script A.2 in Appendix A, the server can be activated by using the
string A.4 in Appendix A.

The following necessary step for deploying the cluster is to add every
single worker to the server. To be able to communicate with the worker
nodes, the server generates a token code stored at
/var/lib/rancher/k3s/server/node-token.

19

Then, k3s should be installed on each worker node and added to the clus-
ter by running the installation script A.5 in Appendix A.
K3S_URL will be the server URL with add the port :6443, instead the K3S_TOKEN
is the string found before inside the node-token file.

Then, k3s has completed the deployment of the hybrid cluster as shown
in Figure 3.3.

Figure 3.3: List of Nodes of the Hybrid Cluster

At this point, each node has been labeled using the code at A.8. For in-
stance, the Raspberry Pi nodes has been labeled respectively type=rspbpi-01
and type=rspbpi-02. For each node on the cloud side, instead, the labels are
for FaaS-Cluster-02 type=faas-02 and for FaaS-Cluster-03 type=faas-03 as
shown in Figure 3.4.

Figure 3.4: Hybrid Cluster with Labels

20

3.3.1.1 OpenFaaS deployment

As previously explained, the k3s cluster has been provisioned. OpenFaaS
provides a faas-cli that has been installed using the script below:
curl -sSL https://cli.openfaas.com | sudo -E sh

The OpenFaaS deploying has been done using kubectl and the plain
YALM file. This solution is suggested for development-only projects. In a
production environment, OpenFaaS suggests to use Helm chart provided in
the faas-netes repository2.

To deploy OpenFaaS is necessary to clone the repository in script B.2 in
Appendix B. The whole stack che be deployed with the script B.3 in Ap-
pendix B. For accessing OpenFaas is necessary to create a password for the
gateway using the script B.4 in Appendix B. Last step is to deploy OpenFaaS
with the following code:
cd faas-netes && kubectl apply -f ./yaml

With the command kubectl get deploy -n openfaas, it can be also
monitored that the main OpenFaas services are running.

Figure 3.5: OpenFaaS Services

Last step is the login in the OpenFaaS UI using the script B.5. The port
used by OpenFaaS is the 31112.

2https://github.com/openfaas/faas-netes/blob/master/HELM.md

21

https://github.com/openfaas/faas-netes/blob/master/HELM.md

Figure 3.6: OpenFaaS API Portal

22

3.3.1.2 OpenFaaS Functions

The OpenFaaS function can be deployed using the faas-cli and built-
in templates. It is also possible to use any binary for Windows or Linux in
a Docker container. Another functionality that can be implemented in an
OpenFaaS function is the chaining of one function from another. By being
all the nodes on the same network, each function can make use of each other
directly, keeping a low level of latency by being on the same network.

In the heterogeneous cluster configuration described in this thesis, it is
necessary that each OpenFaaS function should provide multi-architecture
support. In our case, the cloud nodes and server are based on amd64 archi-
tecture, instead the RaspberryPi’s 3 are based on armhf architecture.

A possible solution found it is the Docker Buildx CLI Plugin. In the
detail, Docker Buildx is an experimental feature that extends the docker
build command with the full support of the features provided by Moby
BuildKit3 builder toolkit. Docker Buildx can be installed on the Docker
version from Docker 18.09+ and Docker 19.03.

With Docker buuildx can be built a function for multi-architecture plat-
forms. As shown in the code script 3.1 below, the function is built for amd64,
arm7, and arm64 and also pushed it on the Docker registry.

Code 3.1: Docker buildx build script

1 docker bu i ldx bu i ld function_name . yml \
2 −−plat form l inux /amd64 , l i nux /arm/v7 , l i nux /arm64 \
3 −−output " type=image , push=true " \
4 −−tag username/ function_name : l a t e s t ...

bu i ld / function_name/

3.3.1.3 Node selection

Once the function has been built, it can be deployed on the nodes by
selecting them. For example, in the following code scropt 3.2, it is shown
the deployment of a function on the raspberry-01 node. The –constraint
flag is used for selecting the node based on the label added in section 3.3.1.

Code 3.2: OpenFaaS function deployment on a node

1 f a a s deploy −f function_name . yml −−c on s t r a i n t ...
" type=rspbpi−01"

3https://github.com/moby/buildkit

23

https://github.com/moby/buildkit

24

Chapter 4

Concluding remarks

The research reported in this thesis has introduced the principal FaaS
Platforms & Container Orchestration, focusing on the ability of the possi-
bility to create a hybrid cluster.

OpenFaaS proved to be suitable tools for our purposes, is easy and fast
to set up, and capable to offer the required scalability and customizabil-
ity. Underneath, k3s has shown to be the right Kubernetes platform being
lightweight and compatible with a heterogeneous level of devices.

To investigate the possibility to deploy serverless functions with the se-
lectivity of which node to use using, we deployed a cluster based on a server
and two nodes cloud-based. Then we added two Raspberry Pis. After set-
ting up the k3s hybrid cluster architecture, OpenFaaS has been deployed,
and also the FaaS function selecting the desired node.

4.1 Future directions

All the information in this thesis will be useful in the future works. It
is clear which are the right tools to utilize and how to configure a heteroge-
neous cluster.
To implement a hybrid cluster architecture we relied on k3s, which in turn is
a great solution for container orchestration. From the results, it comes out
that the computational power provided by Raspberry Pi’s 3 is not enough for
complex OpenFaaS function deployment. With the growing computational
power provided by new devices, like the latest Raspberry Pi 4, for some
tasks, this kind of limitation could be solved. In the case of HA cluster with
Container Orchestration is still suggested to use server and worker nodes
with higher hardware specification as illustrated by k3s1.

1https://rancher.com/docs/k3s/latest/en/installation/ha/

https://rancher.com/docs/k3s/latest/en/installation/ha/

Although k3s is a very supported Open-Source project, other solutions
can be tested. At the same time, the community around OpenFaaS is grow-
ing up rapidly in the last years and has many different projects are in working
progress.

OpenFaaS founder, Alex Ellis, has released a lightweight version called
faasd2. It offers many of the benefits of containers and OpenFaaS, but with-
out the complexity and operational costs of Kubernetes. The container au-
tomation in faasd is handled by containerd.

Even if faasd is a promising solution, it is still under active development
and not ready for a production environment. Moreover, functionalities pro-
vided by k3s or Kubernetes are still not available. In the future, faasd could
be another solution for deploying a hybrid cluster with FaaS functions, espe-
cially when the devices involved are generally provided of low computational
power.

The next step, then, is to transform the cluster in a real production en-
vironment. To realize a system using k3s and OpenFaaS it will be necessary
to understand how to implement a more robust network, optimized for the
multi-architecture deployment.

On the network side, k3s includes Flannel. One of the main Flannel con-
straints is that every node IP needs to be able to see every other node IP. For
a production environment where availability, privacy, and performances are
required, should be considered building up a VPS network using solutions
like WireGuard with Kilo3.

At the same time, Docker’s Buildx used in Chapter 3.3.1.2 is still an
experimental features. It means that cannot be used in production environ-
ments. With the next Docker releases, dockerx could be supported officially.

In this thesis, the capability to select exactly each node has been reached
through a careful naming and a modification of each OpenFaaS function,
based on the different hardware architectures inside the cluster. So, there is
the need to find automation for labeling and deployment based on the actual
architecture and the available resources on each worker node.

2https://github.com/openfaas/faasd
3https://github.com/squat/kilo

26

https://github.com/openfaas/faasd
https://github.com/squat/kilo

Appendix A

Raspberry Pi & k3s code
scripts

Code A.1: Automatic bash script for Raspbian installation on microSD Card

1 #!/ bin / bash
2

3 set −e
4 set −o p i p e f a i l
5

6 RASPBERRYHOSTNAME=$1
7 RASPBERRYMOUNTPATH=$2
8 PUBLICSSHKEY=$3
9 RASPBERRYTIMEZONE=$4

10

11 IMG=$ (l s raspbian . img)
12 i f [[−z "$IMG"]] ; then
13 wget https : // downloads . r a spbe r ryp i . org / ...

r a spb i an_ l i t e_ la t e s t −O raspbian . z ip
14 unzip raspbian . z ip
15 mv ∗ . img raspbian . img
16 rm −f raspbian . z ip
17 f i
18

19 sudo dd bs=1M i f=raspbian . img o f=/dev/ sda ...
s t a tu s=prog r e s s

20

21 sudo mkdir $RASPBERRYMOUNTPATH

22 sudo mount /dev/ sda2 $RASPBERRYMOUNTPATH
23 cat wpa_supplicant . conf | sudo t e e −a ...

$RASPBERRYMOUNTPATH/ etc /wpa_supplicant/ ...
wpa_supplicant . conf > /dev/ nu l l

24 echo $RASPBERRYHOSTNAME | sudo t e e ...
$RASPBERRYMOUNTPATH/ etc /hostname > /dev/ nu l l

25 echo " 1 2 7 . 0 . 1 . 1 $RASPBERRYHOSTNAME" | sudo t e e ...
−a $RASPBERRYMOUNTPATH/ etc / hos t s

26

27 sudo rm $RASPBERRYMOUNTPATH/ etc / l o c a l t ime
28 sudo cp $RASPBERRYMOUNTPATH/usr / share / zone in f o / ...

$RASPBERRYTIMEZONE $RASPBERRYMOUNTPATH/ etc / l o c a l t ime
29

30 sudo sed − i ’ s /^#PasswordAuthent icat ion ...
yes /PasswordAuthent icat ion no/g ’ ...
$RASPBERRYMOUNTPATH/ e t c / ssh / sshd_conf ig

31 sudo sed − i ’ s /^UsePAM yes /UsePAM no/g ’ ...
$RASPBERRYMOUNTPATH/ etc / ssh / sshd_conf ig

32 sudo mkdir $RASPBERRYMOUNTPATH/home/ pi / . ssh
33 echo −n $PUBLICSSHKEY >> authorized_keys
34 sudo mv authorized_keys ...

$RASPBERRYMOUNTPATH/home/ pi / . ssh /
35 chmod 644 ...

$RASPBERRYMOUNTPATH/home/ pi / . ssh / authorized_keys
36

37 sudo umount $RASPBERRYMOUNTPATH
38 sudo mount /dev/ sda1 $RASPBERRYMOUNTPATH
39 sudo touch $RASPBERRYMOUNTPATH/ ssh
40

41 echo −n ’ cgroup_enable=cpuset cgroup_enable=memory ’ ...
| sudo t e e −a $RASPBERRYMOUNTPATH/cmdline . txt

42 sudo sh −c " t r −d ’\n ’ < ...
$RASPBERRYMOUNTPATH/cmdline . txt > ...
$RASPBERRYMOUNTPATH/cmdline2 . txt "

43 sudo mv $RASPBERRYMOUNTPATH/cmdline2 . txt ...
$RASPBERRYMOUNTPATH/cmdline . txt

44

45 sudo umount $RASPBERRYMOUNTPATH

Code A.2: k3s installation script with Agent

28

1 curl −s fL https : // get . k3s . i o | sh −

Code A.3: k3s installation script without Agent

1 curl −s fL https : // get . k3s . i o | ...
INSTALL_K3S_EXEC="−−d i sab l e−agent " sh −

Code A.4: k3s server activation

1 sudo k3s s e r v e r

Code A.5: k3s node installation & connection to server using $TOKEN

1 curl −s fL https : // get . k3s . i o | ...
K3S_URL=https : // server_address :6443 ...
K3S_TOKEN=token_code sh −

Code A.6: k3s node installation and token connection

1 curl −s fL https : // get . k3s . i o | ...
K3S_URL=https : // server_address :6443 ...
K3S_TOKEN=token_code sh −

Code A.7: k3s get node command

1 sudo k3s kubect l get node

Code A.8: Node labeling on k3s

1 kubect l l a b e l nodes raspber ryp i −01 type=rspbpi−01
2 kubect l l a b e l nodes raspber ryp i −02 type=rspbpi−02
3 kubect l l a b e l nodes faas−c l u s t e r −02 type=faas −02
4 kubect l l a b e l nodes faas−c l u s t e r −03 type=faas −03

29

30

Appendix B

OpenFaaS code scripts

Code B.1: OpenFaaS CLI installation

1 curl −sSL https : // c l i . openfaas . com | sudo −E sh

Code B.2: Clone OpenFaaS repository

1 g i t c l one https : // github . com/ openfaas / faas−nete s

Code B.3: Deploy openfaas and openfaasfn namespaces

1 kubect l apply −f ...
https : // raw . g i thubuse rcontent . com/ openfaas / faas−nete s / ...
master /namespaces . yml

Code B.4: OpenFaaS password creation

1 # genera te a random password
2 PASSWORD=$ (head −c 12 /dev/urandom | shasum | cut −d ’ ...

’ −f 1)
3

4 kubect l −n openfaas c r e a t e s e c r e t g en e r i c bas ic−auth \
5 −−from− l i t e r a l=bas ic−auth−user=admin \
6 −−from− l i t e r a l=bas ic−auth−password="$PASSWORD"

Code B.5: OpenFaaS password creation

1 export OPENFAAS_URL=http : / / 1 2 7 . 0 . 0 . 1 : 3 1 1 1 2
2

3 echo −n $PASSWORD | faas−c l i login −−password−s td in

32

Bibliography

[Ale19] Alex Ellis. OpenFaaS Function as a Service. [Online; accessed
October 11, 2019]. 2019. url: https://blog.alexellis.io/
introducing-functions-as-a-service/.

[Doc19a] Docker. Docker Engines components flow. [Online; accessed Oc-
tober 13, 2019]. 2019. url: https://docs.docker.com/engine/
docker-overview/.

[Doc19b] Docker.Docker Engines components flow. [Online; accessed Septem-
ber 11, 2020]. 2019. url: https://docs.docker.com/engine/
swarm/how-swarm-mode-works/nodes/.

[Kub19a] Kubernetes. Kubernetes Master and Worker components. [On-
line; accessed October 15, 2019]. 2019. url: https://kubernetes.
io/blog/2018/08/03/out-of-the-clouds-onto-the-ground-
how-to-make-kubernetes-production-grade-anywhere/.

[Kub19b] Kubernetes. Kubernetes node overview. [Online; accessed Octo-
ber 13, 2019]. 2019. url: https : / / kubernetes . io / docs /
tutorials/kubernetes-basics/explore/explore-intro/.

[Ope19] OpenFaaS Project. Conceptual OpenFaas diagram. [Online; ac-
cessed October 13, 2019]. 2019. url: https://docs.openfaas.
com/architecture/gateway/.

[Ran19] Rancher Labs. k3s Server & k3s Agent. [Online; accessed October
13, 2019]. 2019. url: https://k3s.io.

[The19] TheNewStack. Architectural View of Apache OpenWhisk. [On-
line; accessed October 14, 2019]. 2019. url: https://thenewstack.
io/behind-scenes-apache-openwhisk-serverless-platform/.

[k3s20] k3s. k3s High Availability infrastructure. [Online; accessed Septem-
ber 1, 2020]. 2020. url: https://rancher.com/docs/k3s/
latest/en/installation/ha/.

33

https://blog.alexellis.io/introducing-functions-as-a-service/
https://blog.alexellis.io/introducing-functions-as-a-service/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://kubernetes.io/blog/2018/08/03/out-of-the-clouds-onto-the-ground-how-to-make-kubernetes-production-grade-anywhere/
https://kubernetes.io/blog/2018/08/03/out-of-the-clouds-onto-the-ground-how-to-make-kubernetes-production-grade-anywhere/
https://kubernetes.io/blog/2018/08/03/out-of-the-clouds-onto-the-ground-how-to-make-kubernetes-production-grade-anywhere/
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/
https://docs.openfaas.com/architecture/gateway/
https://docs.openfaas.com/architecture/gateway/
https://k3s.io
https://thenewstack.io/behind-scenes-apache-openwhisk-serverless-platform/
https://thenewstack.io/behind-scenes-apache-openwhisk-serverless-platform/
https://rancher.com/docs/k3s/latest/en/installation/ha/
https://rancher.com/docs/k3s/latest/en/installation/ha/

	Abstract
	Sommario
	Introduction
	FaaS & Container Orchestration
	Introduction
	FaaS platforms
	Apache OpenWhisk
	OpenFaaS
	The API Gateway

	Container Orchestration
	Docker & Docker Swarm
	Docker Engine
	Docker orchestration

	Kubernetes
	k3s

	Hybrid cluster
	Introduction
	Containers on hybrid environment
	FaaS deployment
	Implementation

	Cluster configuration
	Introduction
	Architecture
	Environment setup
	k3s cluster deployment
	OpenFaaS deployment
	OpenFaaS Functions
	Node selection

	Concluding remarks
	Future directions

	Raspberry Pi & k3s code scripts
	OpenFaaS code scripts

