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1. Introduction
With the increasing number of connected devices
and with Internet-of-Thing (IoT) implementa-
tion now becoming more widespread, cloud-
centric architectures are starting to be ineffec-
tive. Numerous devices are generating a lot of
data at the end of the network and many appli-
cations are already being deployed at the edge to
process the information. Cisco Systems predicts
that an estimated 29 billion devices will connect
to the Internet by 2023 [12].
Due to the volume, variety and velocity of data
generated at the end of the network, the cloud
cannot fully support applications that must meet
compelling latency or bandwidth constraints:
huge distances need to be covered by the com-
munication, increasing the latency and making
a large quantity of data pass through the net-
work. Indeed, the considerable increase in the
amount of data produced at the end of the net-
work was not accompanied by a comparable in-
crease of available bandwidth from/to the cloud
[11].
To deal with the aforementioned situation
new approaches have been introduced in both
academia and industry, exploiting the power of
the edge of the network to perform the compu-
tation closer to the data source.
In this thesis we study the state of the art for
stateful computations and data processing on
the edge and after carefully analyzing the issues
and the needs of the scenario we collect the use

cases predominantly affected by bandwidth and
latency constraints. We then show the current
frameworks available in the industry and notice
how these solutions do not cover the use cases
found. So we then propose a serverless approach
effectively applicable by web infrastructure com-
panies, that takes into consideration the prob-
lem of the scarcity of the resources, while still
allowing quite powerful stateful computations on
the edge. We also show how we implemented
this new approach through a working prototype,
and finally we investigate the gains developers
may obtain by using our approach. We demon-
strate how several use cases can benefit from
this new system through discrete-event simula-
tion, since running our prototype on an emula-
tion of a global edge network was infeasible due
to the sheer amount of resources needed to emu-
late even a small edge network.

2. Preliminaries and Problems
In the Edge Computing paradigm, computing
and storage nodes are placed at the Internet’s
edge in close proximity to mobile devices or IoT
sensors, so "edge" can be considered any com-
puting and network resources along the path be-
tween data sources and cloud data centers.
The origin of Edge Computing dates back to
the late 1990s when Content Delivery Networks
(CDNs) were introduced to increase web perfor-
mance [4]. A CDN uses machines at the edge of
the network to cache frequently requested con-
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tents, allowing to save bandwidth and improve
the latency. Edge computing generalizes and ex-
tends the CDN concept with the goal of moving
core-centric applications to a geo-distributed en-
vironment as in an edge network.
Edge Computing can address many concerns like
response time requirements, mobile devices’ lim-
ited battery life, as well as bandwidth cost saving
[10].
An improved latency can be provided thanks
to the proximity between the edge server and
the client that allows to avoid the travel-distance
needed to make the client communicate to the
central cloud platform.
Mobile devices’ battery life can be saved by
offloading the computation to the nearest edge
server, instead of computing it locally. This is
particularly useful for battery powered IoT sen-
sors or other devices stringently limited in power.
And ultimately bandwidth costs can be saved
thanks to reduced usage of the network and by
allowing to run compression techniques directly
at the edge near the client.

2.1. Data Processing
Data processing on the edge is clearly a field in
development, many different ideas are being pre-
sented with innovative concepts.
In several papers it is applied the concept of
stream processing, a branch of data processing
in which long-running operators are placed
in the network and data is bound to be flowing
through these operators. At the "IEEE Interna-
tional Conference on Fog and Edge Computing
(ICFEC)" a few pioneering solutions were pre-
sented in which it has been shown how to find the
best deployment on an edge infrastructure [1] [5]
and how to dynamically choose which node can
process the data stream [9].
A recurring topic is also the management of less
abundant resources, which is for sure a clear
distinction in respect to a classic core-centric in-
frastructure. At the ICFEC there were presented
solutions for using both the storage [6] and the
bandwidth [13] efficiently.
An important concept is also the one of serverless
execution. Nastic et al. [8] expose how current
approaches for data analytics on the edge force
developers to resort to processes that are largely
manual, task-specific, and error-prone. They de-
fined the main prerequisites and the architecture
of a platform which can allow data processing

and analytics on the edge while abstracting the
complexity of the edge infrastructure. Some of
their concepts are the main inspiration behind
our work.

2.2. Edge Applications
During our research we collected and organized
the high-level applications and the more specific
use cases, which have been used to motivate the
work done by the research in the field of data
processing on the edge.
A common characteristic present in all the ap-
plications is the absence of the need for a
fully global view. If a global view is needed,
of course a core-centric approach would be pre-
ferred since with all the information in one point
it becomes easier to create a result that collects
all the information.
Instead the applications usually present a depen-
dency with a user (e.g., Wearable healthcare de-
vices, Online shopping cart), a device (e.g., Con-
nected vehicles, Surveillance footage analysis) or
a geographical area (e.g., Smart home, Smart
city, Building environment control).
Some of the applications necessarily need a state
(e.g., Massively multiplayer online games, Online
shopping cart) while a few may not need it (e.g.,
Surveillance footage analysis).
We also see a clear difference between applica-
tions that have a static approach to changes
of location and applications that instead are
dynamic in changes. For example Wearable
healthcare devices is for sure a dynamic appli-
cation where the person wearing the device can
change location frequently, while the Building
environment control application is clearly static
in changes.
And finally we noticed how these applications
all have the need of a high write through-
put, they do not have a clear predominance of
read actions with reference to write actions. In
fact applications with high read and low write
throughput can be already fulfilled by Content
Delivery Networks or similar solutions.

2.3. Edge Use Cases
The usage of the edge, in many of the use cases
we collected, has been motivated by the research
with the goal of bandwidth reduction.
A recurring motivation is also the location
awareness which comes for free when working
on the edge of the network. The location aware-
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ness feature can be used in interesting use cases
like finding trending topics of a certain area in
a social network or analyzing video footage to
monitor the traffic in a certain road.

3. Existing Solutions
We studied the current frameworks publicly
available in the industry to perform serverless
computations on the edge on a large scale and
in the thesis we analyzed one by one each of these
solutions. The most popular solutions are AWS
Lambda@Edge, Cloudflare Workers and Akamai
EdgeWorkers.
However, these frameworks do not provide state-
ful support for use cases with frequent write
operations. They only provide support for
caching, stateless, forwarding or infrequent-write
use cases. If we apply the frameworks to the use
cases we collected, we can fulfill only the state-
less use cases. All the other use cases require
an abundant rate of write operations, making
the available frameworks unsuitable for the
tasks.
Therefore, we tried to think of a new solution
which can fulfill the use cases we collected.
Before thinking about a new solution we studied
the platforms that can be used to set up a FaaS
architecture, with the idea in mind to build a
prototype of our solution on this infrastructure.
Indeed we have seen while studying the available
framework that the FaaS paradigm is the most
used paradigm to allow computations on the edge
in the industry, while long-running solutions are
not widespread, this is expected since the FaaS
paradigm can allow to reach an high efficiency
[7] which in the edge is essential.
Therefore we studied the open-source FaaS plat-
forms and found interesting solutions in this field,
with the most popular solutions being Apache
OpenWhisk, Fission and OpenFaas. We espe-
cially found OpenFaas interesting since they pro-
vide two flavours of their system: the faas flavour
allows vast scalability but comes with a bigger
overhead, while the faasd flavour cannot scale
horizontally but can run on hardware-limited
devices, in fact we were able to try the system
also on our Raspberry Pi 3 Model B+ (a device
with only 1 GB of RAM).

Figure 1: High-level architecture of an example
setup

4. Design of the Solution
The high-level concepts of our solution consist
in splitting the infrastructure in hierarchical
levels and allowing the developers to specify on
which levels the clients save and access the data.
Our API allows to:
• Specify the hierarchy of the infrastructure,

in serverless setups this should be done by
the web infrastructure companies;

• Deploy geo-distributed functions exactly
where needed;

• Have a geographically-partitioned
stateful support, where each location
(e.g., the cloudlet in a city) has its own set
of data;

• Save data easily by only specifying one or
multiple levels, then the actual location is
obtained by the framework.

These concepts allow a lot of versatility where
the developer can process the data at a certain
level and then organize the results in geographic
partitions, without actually specifying where to
save the results, but only specifying the levels
and letting the framework handle the rest.
In Figure 1 we show an example with three lev-
els. Clients can invoke functions on the near-
est location of a certain level, these functions can
be used for both sending data or requesting
data. When clients send data, the function writ-
ten by the developer can process the data and
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then save the results in the provided stateful sup-
port. The results can be saved on different and
multiple levels.

4.1. Finding the Nearest Location
Our solution assumes the presence of the abil-
ity to contact the nearest server automatically,
without the intervention of the developer (the
developer just needs to send the request to the
function’s URL).
This process has already been proved to be feasi-
ble and is in fact exploited by many web infras-
tructure companies to provide a Content Deliv-
ery Network or to provide serverless edge com-
puting. The most common procedures to per-
form the process are the following:
• Anycast Routing: this routing procedure

uses the Border Gateway Protocol (BGP) to
route clients using the natural network flow,
indeed the information collected by the BGP
protocol about network neighbors is used to
efficiently route traffic based on hop count
ensuring the shortest traveling distance be-
tween the client and its final destination [3].

• Unicast Routing: a process which can
be incorporated into the standard Domain
Name System (DNS) resolution process by
using recursive DNS queries which redirect
clients to the server closest to the DNS re-
solver (and usually the DNS resolver is phys-
ically near the client) [2].

• Manual Routing: a procedure in which
the client computes on its own which is the
most appropriate server to contact, with
this procedure GPS-equipped devices can
use more precise information about the lo-
cation.

In the implementation of our prototype we use
a Manual Routing procedure where the clients
would manually contact the nearest server, but
in a real scenario a process like Unicast Routing
or Anycast Routing could be preferred.

4.2. Suitable Use Cases
Our solution, for how has been thought, is suit-
able for use cases with the following characteris-
tics:
• Stateful computation: the use case needs

a stateful support with frequent writes
and reads.

• Location awareness: the use cases works
on geographic partitions of the data;

• Location is static: data producers do not
change location; OR Location is dynamic
but it’s not a problem to have a dis-
continuity in the data: e.g., if there is an
aggregation at the "city" level and a data
producer exits the city, its data will have a
discontinuity;

• Session consistency is not needed: the
concept of session, where the user maintains
consistency of the data even when the con-
nected server changes, is not provided by our
solution;

5. The Prototype
We chose to implement our prototype on top
of OpenFaas since, with their two versions, it
is possible to create a FaaS architecture both
on high-performing machines and on hardware-
limited devices. OpenFaas automatically scales
and runs Docker images in response to triggers;
these Docker images contain the functions pro-
vided by the developer and are run using a
popular container-orchestration system, Kuber-
netes. We provided two triggers for the sys-
tem: the HTTP trigger, where the function
gets activated by a simple HTTP request, and
the cron trigger, where the function is auto-
matically called periodically based on the cur-
rent time. OpenFaas also allows the developer
to specify RAM and CPU usage limits.

5.1. Deployments
With a Command Line Interface (CLI) that
we built and which interacts with the APIs pro-
vided by OpenFaas, we allow the developer to
perform the deployment on the whole network.
The developer can use the following options:
• inEvery : a string representing the level on

which to deploy the function (e.g., "city",
"continent").

• inAreas : a list of string of areas, specifying
in which areas to deploy. If unspecified we
can assume the developer wants it deployed
on every area of the level specified in inEv
ery (e.g., "milan", "france").

• exceptIn : a list of strings of areas that are
an exception to what was previously defined
before. In these areas the developer does not
want to perform the deployment.

The CLI can then perform automatically the de-
ployment on the areas requested. The hierarchy
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and the relation between areas and machines is
specified by using the hierarchical structure
of a JSON file: in this file the whole network and
its division by hierarchy is specified.

5.2. Stateful Support
To provide support for stateful computations we
created a JavaScript API that interacts with a
Redis instance running on the machine, and
a custom function which allows machines on a
lower level of the hierarchy to forward data on
an upper level. In our prototype we provided the
following APIs:
• get : gets the value associated to a key;
• getList : gets the list of values associated to

the key;
• set : sets the key to hold the provided value;
• addToList : adds a value to the list specified

by the key (if the list does not exists it is
automatically created).

The two "read" APIs allow only to read the val-
ues that the current location contains, so if the
developer wants to access "continent" level data,
the developer will need to deploy a function at
the "continent" level and perform a get opera-
tion in the function. While the two write APIs
allow saving the data on one or multiple levels.
Since the processing should be done on a lower
level so that it is performed as close as possi-
ble to the user, these APIs only allow forwarding
data on upper levels. In every write action there
must also be specified a Time-To-Live that will
be applied to that value, this forces developers
to not accumulate data in the stateful support.
Accumulating data should be avoided due to the
more bounded resources present at the edge of
the network.

6. Experimental evaluation
We performed two types of evaluation: a first as-
sessment done on the working prototype run-
ning on multiple Virtual Machines (VMs) and an
evaluation using simulations run on a discrete-
event simulator. In the first case, since it’s
not possible to emulate a network similar to a
real edge network due to the amount of resources
needed, we focus on the effectiveness, effi-
ciency and usability of the framework. While
with the discrete-event simulation at hand we
can focus on the latency and the bandwidth
consumed.

6.1. Performance
We found that, after paying the cold-start price
where the initialization of the container run-
ning the function would create a noticeable la-
tency, functions were executed in milliseconds
even when using the (local) stateful support.
This speed of the stateful support has been possi-
ble thanks to the usage of an in-memory database
like Redis.
We also tested the scalability of our solution
when using the faas flavour of OpenFaas: we
made 10’000 sequential calls to a node running a
simple function and we noticed that new contain-
ers were immediately created to fulfill the stream
of requests. After the 10’000 calls ended and
no new calls were made, OpenFaas automatically
scaled down and brought the number of idle con-
tainers to one.

6.2. Usability
We tested our solution with the implementation
of some use cases. Our solution allows develop-
ers to forget about the location, which instead
is handled internally, and forget about handling
the complex management of hundreds of geo-
distributed nodes. This avoids the creation of
custom solutions that overfit on the available in-
frastructure, creating a code that becomes task-
specific and difficult to extend and maintain. In
fact, developers would need to set up the infras-
tructure all by themselves, a process which can
create errors or malfunctions, while the serverless
FaaS architecture in our solution allows to forget
about the handling of the infrastructure.

6.3. Simulation Summary
Thanks to the various experiments performed on
the simulation, we found that by using our frame-
work we get immense benefits in terms of re-
duced traffic in the network (Figure 2), while
allowing faster reads when the data aggrega-
tion needed is not central.
In a case where a central aggregation is still
needed we found that the write requests suffer
an increase in latency, but the increase is not
substantial (≈139ms on the simulation of our ap-
proach, versus the ≈109ms on the simulation of
the cloud solution).
During the simulations we also noticed how our
edge solution can be affected by an increase in
the average write latency due to random spikes
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Figure 2: Traffic per distance generated in the
network.

in the requests. This is caused by the small num-
ber of cores and resources in the lowest level of
the hierarchy, that can’t keep up with the spike
of requests. Fortunately this increase is not dras-
tic.

7. Conclusions
The large diffusion of smart devices and IoT sen-
sors has resulted in an unprecedented growth
in the amount of collected data. Core-centric
approaches have shown to be inefficient as they
need to transfer data back and forth between the
core and the devices, generating notable laten-
cies. Therefore new approaches, which exploit
the tremendous power of the edge of the net-
work, are replacing the core-centric approaches.
In this thesis we have studied the problem of
performing stateful computations in a geo-
distributed and heterogeneous scenario,
that is the edge of the network.
After analyzing the state of the art in the litera-
ture, we started collecting and organizing the
use cases predominantly affected by bandwidth
and latency constraints. With the use cases at
hand we studied the current frameworks
provided by the industry and we noticed that
some of the use cases were left out and couldn’t
be fulfilled by the available frameworks. This
situation forces developers to create ad hoc so-
lutions on the infrastructure, a process which is
error-prone and task-specific.
Therefore we tried to solve the gap of fulfillment
present in the use cases, by proposing a new so-
lution which supports the characteristics of the
use cases left out. We designed and then im-

plemented a prototype for this solution which
brings stateful computations and location aware-
ness in contexts where a change of location of the
clients does not occur or is not important (the
solution in fact does not provide session consis-
tency).
We then evaluated the performance and usabil-
ity of our prototype in a simple scenario. In-
stead to evaluate the solution in a complex but
more realistic scenario we resorted to a discrete-
event simulation. We found that, by using our
framework with the right use cases, we get im-
mense benefits in terms of reduced traffic in
the network and in terms of lower latencies,
especially in cases where the data aggregation
needed is not central. However we also noticed
how our solution can be affected by a latency in-
crease due to random spikes in the requests and
due to the small number of cores and resources
at the edge of the network. Nevertheless the re-
sults of the evaluation confirmed the power and
effectiveness of the proposed solution.

8. Future Developments
In this thesis, we have addressed several key is-
sues related to stateful serverless computing on
the edge by designing and implementing a new
solution. However, with our solution, not every
use case can be fulfilled, in fact the absence of
session consistency makes the usage impracti-
cal in a dynamic context where the location of the
client changes. Therefore a possible improvement
and a possible research direction could be session
consistency in the context of stateful serverless
computing on the edge.
Another problem with our solution is the possi-
bility for edge locations to be overwhelmed due to
random spikes in requests targeting a specific lo-
cation: our solution does not support the offload
of the computation to free up some resources
from an overloaded node. On the contrary, for
how we thought our solution, in some use cases
it’s important to be static and to always reach
the same node.
In the context of serverless computing a common
problem is the phenomenon of cold-start, which
impacts processing latency. There exist solutions
that firmly mitigated the problem reaching mil-
liseconds cold-start latencies (like the solution
provided by Cloudflare Workers), but unfortu-
nately these solutions are currently proprietary.
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Abstract

The popularity and proliferation of smart devices (e.g., smartphones, wearable de-
vices, Internet-of-Things sensors) is resulting in an unprecedented growth in the
amount of collected data. The current most popular approaches to manage this
huge amount of data typically rely on cloud platforms located at the core of the
infrastructure.

As the number of devices and the amount of data they generate increases, such
core-centric approaches are becoming increasingly inefficient as they need to transfer
data back and forth between the core and the devices. Furthermore, the latencies
associated with such data transfer are affected by the huge travel-distance needed
to make the device communicate to the central cloud platform.

To deal with the aforementioned situation new approaches have been introduced
in both academia and industry, exploiting the power of the edge of the network
to perform the computation closer to the data source. We noticed a discrepancy
between the approaches proposed in research and in industry: research frequently
assumes the possibility of running virtual machines or long-running containers on
the edge. However, most real-world web infrastructure companies do not comply
with this assumption due to the limited resource available in the edge.

In this thesis we study the state of the art for stateful computations and data pro-
cessing on the edge and after carefully analyzing the issues and the needs of the
scenario we show the use cases predominantly affected by bandwidth and latency
constraints. We then show the current frameworks available in the industry and
notice how these solutions do not cover the use cases found. So we then propose
a serverless approach effectively applicable by web infrastructure companies, that
takes into consideration the problem of the scarcity of the resources, while still al-
lowing quite powerful stateful computations on the edge. We also show how we
implemented this new approach through a working prototype, and finally we inves-
tigate the gains developers may obtain by using our approach. We demonstrate how
several use cases can benefit from this new system through discrete-event simulation,
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since running our prototype on an emulation of a global edge network was infeasible
due to the sheer amount of resources needed to emulate even a small edge network.

Keywords: Edge Computing, Serverless, FaaS, Stateful
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Sommario

La popolarità e la proliferazione di dispositivi intelligenti (e.g., smartphone, dis-
positivi indossabili, sensori Internet-of-Things) sta determinando una crescita senza
precedenti della quantità di dati raccolti. Gli approcci attualmente più diffusi per
gestire questa enorme quantità di dati si basano in genere su piattaforme cloud
situate al centro dell’infrastruttura.

Con l’aumento del numero di dispositivi e della quantità di dati generati, tali ap-
procci basati su un core centrale stanno diventando sempre più inefficienti poiché
devono trasferire i dati avanti e indietro tra il core e i dispositivi. Inoltre, le latenze
associate a tale trasferimento di dati sono influenzate dall’enorme distanza di viaggio
necessaria per far comunicare il dispositivo con la piattaforma cloud centrale.

Per affrontare la situazione sono stati introdotti nuovi approcci sia nel mondo ac-
cademico che nell’industria, sfruttando la potenza dell’edge della rete per eseguire
il calcolo più vicino alla fonte dei dati. Abbiamo notato una discrepanza tra gli
approcci proposti nella ricerca e nell’industria: la ricerca presuppone spesso la pos-
sibilità di eseguire macchine virtuali o container di lunga durata sull’edge. Tuttavia,
la maggior parte delle aziende di infrastruttura web non rispettano questa ipotesi a
causa delle risorse limitate disponibili nell’edge.

In questa tesi studiamo lo stato dell’arte per le computazioni con stato e per l’elaborazione
dei dati sull’edge, e dopo aver analizzato attentamente le problematiche e le esigenze
dello scenario mostriamo i casi d’uso prevalentemente affetti da vincoli di larghezza
di banda e latenza. Mostriamo quindi i framework attuali disponibili nel settore
e notiamo come queste soluzioni non coprono i casi d’uso trovati. Quindi proponi-
amo un approccio serverless effettivamente applicabile dalle aziende di infrastrutture
web, che tenga conto del problema della scarsità delle risorse pur consentendo com-
putazioni stateful abbastanza potenti sull’edge. Mostriamo anche come abbiamo
implementato questo nuovo approccio attraverso un prototipo funzionante, e infine
esaminiamo i benefici che gli sviluppatori possono ottenere usando il nostro approc-
cio. Dimostriamo come diversi casi d’uso possono trarre vantaggio da questo nuovo
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sistema attraverso la simulazione a eventi discreti, poiché l’esecuzione del nostro pro-
totipo su un’emulazione di una rete edge globale era impossibile a causa dell’enorme
quantità di risorse necessarie per emulare anche una piccola rete edge.

Keywords: Edge Computing, Serverless, FaaS, Stateful
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1| Introduction

1.1. Context

With the increasing number of connected devices and with Internet-of-Thing (IoT)
implementation now becoming more widespread, in some cases cloud-centric archi-
tectures are starting to be ineffective. Numerous devices are generating a lot of data
at the end of the network and many applications are already being deployed at the
edge to process the information. Cisco Systems predicts that an estimated 29 billion
devices will connect to the Internet by 2023 [35].

Due to the volume, variety and velocity of data generated at the end of the network,
the cloud cannot fully support applications that must meet compelling latency or
bandwidth constraints: huge distances need to be covered by the communication,
increasing the latency and making a large quantity of data pass through the network.
Indeed, the considerable increase in the amount of data produced at the end of the
network was not accompanied by a comparable increase of available bandwidth
from/to the cloud [32].

1.2. Research Questions

An increasing trend in edge computing has been found in the last years, however
the industry lacks the presence of a development abstraction with stateful support
that allows developers to easily exploit the power of the edge. The absence of this
abstraction makes developers still prefer cloud-centric approaches despite the related
problems.

A non-technology and non-infrastructure dependant framework is needed in order
to allow the development of applications with strict constraints of latency and band-
width.

Therefore this work aims at answering the following research questions (RQ):
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RQ.1 Which use cases are predominantly affected by bandwidth and latency con-
straints? What are the common characteristics of these use cases?

RQ.2 Which frameworks allowing computation on the edge are currently available in
the industry? Can the available frameworks accomplish the use cases seen in
RQ.1?

RQ.3 Can a new approach accomplish the use cases seen in RQ.1? How can such
approach be implemented?

RQ.4 Does the new approach simplify the development? Is it easy to use?

RQ.5 Does the new approach obtain better performance? What are the practical
measurable benefits? How much resources does it use? What are its drawbacks?

We use the answers to these questions to propose an innovative framework that
allows the developers to abstract away both the infrastructure and the location of
the users.

1.3. Research Methodology

The research approach adopted in this thesis can be summarized at high-level with
the following steps:

• A review and analysis of the state-of-the-art research on edge and fog com-
puting, with a particular emphasis on data processing and identification of
objectives;

• Identification of common use cases and formulation of the key requirements
needed to better fulfill the use cases;

• A review of the publicly available frameworks provided by the industry
in the field of edge computing, stateful logic on the edge and Function-as-a-
Service (FaaS).

• Design of a novel problem solution based on the identified requirements;

• Evaluation of the solution through the development of a prototype and
through simulations.

A thorough literature review is the basis of this thesis. For this purpose, we do not
limit the analysis scope to the edge data processing problem and instead enlarge
our focus generally to edge and fog computing. We started from surveys on edge
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computing, then moved to papers presented at the "IEEE International Conference
on Fog and Edge Computing (ICFEC)", especially focusing on papers about data
processing, and finally we performed specific searches to have a deeper emphasis on
the data processing part. We gained understanding of the main issues and collected
the motivating use cases (RQ.1 ).

We then moved to a review of publicly available frameworks provided by the indus-
try and analyzed their usability in relation with the motivating use cases collected
(RQ.2 ). As we will show we did not find any framework able to sufficiently fulfill
the use cases, so we tried to propose a novel solution.

To analyze the effectiveness of our solution we implemented a working prototype
(RQ.3 ) and by using our implementation we were able to study its value and benefits
(RQ.4 ). Due to the size of an edge network, emulating our prototype to study its
performance on a similar setup was infeasible, so we developed a discrete-event
simulation to simulate the behavior of our approach in a scenario more similar to
the real (RQ.5 ).

The resulting artifacts of our research have been released as open-source software
[25].

1.4. Thesis Outline

The remainder of this thesis is organized as follows.

In Chapter 2, we review and analyze state-of-the-art solutions in the field of Edge
Computing, starting from surveys and general concepts and then moving our focus
to the data processing part. We then define the open problems by collecting, or-
ganizing and commenting the use cases which we have encountered in our research.

In Chapter 3, we present the solutions made available publicly by the industry in
the field of Edge Computing. We show that the current solutions do not cover in
an adequate way the use cases collected.

In Chapter 4, we develop the idea of our solution, showcasing the intended usage
of our APIs.

In Chapter 5, we show our actual implementation of the solution we proposed.

In Chapter 6, we investigate the gains developers may obtain by using our approach
and we demonstrate how several use cases can benefit from this new system though
discrete-event simulation.



4 1| Introduction

We conclude in Chapter 7, summarizing our contributions and highlighting possible
future research directions.
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2| Preliminaries and Open

Problems

2.1. Preliminaries

We started our research with a broad vision of the current situation in the field of fog
and edge computing. In this field, the subject of data processing was for us the
most interesting due to our background and expertise, so we then aimed our focus
on this subject. We studied relevant papers presented at the "IEEE International
Conference on Fog and Edge Computing (ICFEC)" and performed specific searches
to have more emphasis on the data processing part of edge computing.

2.1.1. Edge Computing Background

In the Edge Computing paradigm computing and storage nodes are placed at the
Internet’s edge in close proximity to mobile devices or IoT sensors, so "edge" can
be considered any computing and network resources along the path between data
sources and cloud data centers. The origin of Edge Computing dates back
to the late 1990s when Content Delivery Networks (CDNs) were introduced to in-
crease web performance [16]. A CDN uses machines at the edge of the network to
cache frequently requested contents, allowing to save bandwidth and improve the
latency. Now CDNs are expected to deliver 72% of Internet traffic by 2022 [17].
Edge computing generalizes and extends the CDN concept with the goal of moving
core-centric applications to a geo-distributed environment as in an edge network.

Edge Computing can address many concerns like response time requirements, mobile
devices’ limited battery life, as well as bandwidth cost saving [31].

An improved latency can be provided thanks to the proximity between the edge
server and the client that allows to avoid the travel-distance needed to make the
client communicate to the central cloud platform.
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Mobile devices’ battery life can be saved by offloading the computation to the
nearest edge server, instead of computing it locally. This is particularly useful for
battery powered IoT sensors or other devices stringently limited in power.

And ultimately bandwidth costs can be saved thanks to reduced usage of the
network and by allowing to run compression techniques directly at the edge near
the client.

2.1.2. Data Processing

Data processing on the edge is clearly a field in development, many different ideas
are being presented with innovative concepts. In several papers it is applied the
concept of stream processing, a branch of data processing which Russo [30] defines
as a process in which "data are streamed through a network of so-called operators,
which apply specific transformations (e.g., filtering) or computations (e.g., pattern-
matching) against input data".

Stream Processing

For stream processing long-running operators are placed in the network and data
is bound to be flowing through these operators. Renart et al. [29] propose at the
2017 ICFEC a framework to evaluate data streams at runtime to decide how and in
which node to process their data. In the same year at the ICFEC Brogi et al. [9] show
their implementation of a simulation that can be used to select the best deployment
for a fog infrastructure, the simulation models links from historical behaviour. Two
years later Hiessl et al. [19] expand the idea of Brogi et al. [9] by selecting the best
deployment in the specific context of stream processing on the edge, selected by
modeling and then solving an Integer Linear Programming problem.

At the 2019 ICFEC, Wiener et al. [37] propose to consider, in the context of stream
processing, the inherent context changes of edge nodes which are less reliable than
a cloud data center, thus allowing to relocate certain elements of stream processing
pipelines.

Scarcity of Resources

A recurring topic is also the management of less abundant resources, which is for
sure a clear distinction in respect to a classic core-centric infrastructure.

At the 2018 ICFEC, Lujic et al. [23] try to optimize data storage on the edge in
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the context of data analytics scenarios by providing an architecture and an adaptive
algorithm to find a balance between high forecast accuracy and the amount of data
stored in the space-limited storage.

At the 2019 ICFEC, Zehnder et al. [38] instead focus on improving the existing
solutions in the field of bandwidth reduction, these existing solutions typically aim
to reduce network load either by pre-processing events directly on the edge or by
aggregating events into larger batches, so these solutions are using a static approach,
they instead introduce methods for publish/subscribe systems deployed on the edge
to dynamically adapt payloads of events at runtime.

Serverless

A few articles studied by us during our research proposed also to use serverless
solutions for data processing and data analytics on the edge.

Nastic et al. with their article "A Serverless Real-Time Data Analytics Platform for
Edge Computing" [26] expose how current approaches for data analytics on the edge
force developers to resort to ad hoc solutions tailored to the available infrastructure,
a process that is largely manual, task-specific, and error-prone. They defined the
main prerequisites and the architecture of a platform which can allow data processing
and analytics on the edge while abstracting the complexity of the edge infrastructure.
The main concepts of their idea are the following:

• The edge should focus on local views while the cloud supports global views;

• Developers should simply define the function behavior and data processing
logic without dealing with the complexity of different management, orchestra-
tion, and optimization processes;

• A function wrapper layer should manage user-provided functions, wrapping
the functions in executable artifacts such as containers;

• An orchestration layer should use the scheduling and placement mechanisms
to determine the most suitable node (cloud or edge) for an analytics function
to reduce the network latency;

• A runtime layer determines the minimally required elastic resources, provisions
them, deploys, and then schedules and executes functions;

• For stateful functions, these wrappers also provide implicit state management:
the wrapper should transparently handle state replication and migration,
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and access to a function’s state is controlled via the exposed API.

As we will see, some of these concepts are the main inspiration behind our work.

With the paper "Serverless Data Analytics with Flint", Kim et al. [22] show their
framework, this time in the context of cloud computing, that uses a FaaS archi-
tecture to perform analytical processing on big data on the cloud. In this cloud
scenario the results are promising and show a trade-off between a bit of performance
and elasticity in a pure pay-as-you-go cost model.

At last, in the context of serverless computing, we studied the paper "Enabling Data
Processing at the Network Edge through Lightweight Virtualization Technologies"
[24] in which the authors empirically demonstrated that employing virtualization
technologies on top of a limited edge hardware has an almost negligible impact in
terms of performance when compared to native execution.

Other remarks

There are many considerations that can be done in regards to the potentialities that
Edge Computing has to offer. We report here a few considerations that we found
notable for our setting.

Such as the consideration made by Plumb et al. [27] in their article: they analyzed
the theoretical benefits of using a Peer-to-Peer architecture for a mobile game after
moving the logic to the edge, in view of the fact that edge servers can be trusted
while devices out of the control of the developer cannot be trusted. We believe this
concept of trust applies also to many other use cases and applications, and not
only to games.

At the 2020 ICFEC, Karagiannis et al. [20] showed a simulation used to produce
quantitative results in order to examine and compare the efficiency of different ar-
chitectures for different use cases. They showed that a hierarchical architecture
(in which devices communicate only with upper, same-level and lower levels) gener-
ally brings an higher communication latency to reach the cloud but provides lower
bandwidth utilization and lower latency among neighbours in respect to a flat ar-
chitecture (in which devices communicate without the use of layers).
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2.2. Open Problems

During our research we collected and organized the high-level applications and the
more specific use cases, which have been used to motivate the work done by the
research in the field of data processing on the edge. We believe these use cases can
be the basis from which we can build a project that can then have useful practical
implications.

2.2.1. Edge Applications

In the Table 2.1 we report a survey we created of the high level applications where
Egde Computing can be used and that have been found during our research.

A common characteristic present in all the applications is the absence of the need
for a fully global view. If a global view is needed, of course a core-centric approach
would be preferred since with all the information in one point it becomes easier to
create a result that collects all the information.

Instead the applications usually present a dependency with a user (e.g., Wear-
able healthcare devices, Online shopping cart), a device (e.g., Connected vehicles,
Surveillance footage analysis) or a geographical area (e.g., Smart home, Smart
city, Building environment control).

Some of the applications necessarily need a state (e.g., Games application, Online
shopping cart) while a few may not need it (e.g., Surveillance footage analysis).

We also see a clear difference between applications that have a static approach
to changes of location and applications that instead are dynamic in changes.
For example Wearable healthcare devices is for sure a dynamic application where
the person wearing the device can change location frequently, while the Building
environment control application is clearly static in changes.

And finally we noticed how these applications all have the need of a high write
throughput, they do not have a clear predominance of read actions with reference
to write actions. In fact applications with high read and low write throughput can
be already fulfilled by Content Delivery Networks or similar solutions.

Application Where to perform the
computation?

How it has been moti-
vated?
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Smart Home [33] The device itself;
Cloudlet; Small data
center.

Privacy: keep data in-
home.

Smart City [33] [29] Cloudlet; Small data cen-
ter.

Large quantity of data;
Latency; Location aware-
ness.

Augmented reality [31] The device itself;
Cloudlet; Small data
center.

Latency; Need more com-
putational power.

IoT for transports, en-
vironment, supply chain
management, etc... [24]

IoT themselves; Cloudlet;
Small data center.

Large quantity of data;
Latency.

Wearable healthcare de-
vices [1]

Devices themselves;
Cloudlet; Small data
center.

Privacy; Latency.

Connected vehicles [1]
[31]

The car themselves;
Cloudlet in a 5G tower.

Latency; Location aware-
ness.

Games application [27] The smartphones;
Cloudlet; Small data
center.

Latency.

Surveillance footage anal-
ysis [1] [31] [32]

The camera themselves;
Small server in-loco;
Cloudlet.

Latency; Bandwidth to
send the stream of the
video.

Mobile app data analyt-
ics [1]

The smartphones; Small
data center.

Bandwidth if sending
many data.

Building environment
control (temperature,
humidity) [1]

The devices themselves;
Small server in-loco;
Small data center.

Bandwidth.

Any sensor related mea-
sure (e.g. ocean control
with sensors, smart agri-
colture) [1] [9]

The sensors themselves;
Small-server near.

Latency; Bandwidth.

Wearable cognitive assis-
tance (e.g. Google Glass)
[15]

The devices themselves;
Cloudlet; Small data cen-
ter.

Latency; Bandwidth.
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Online shopping cart [32] Cloudlet; Small data cen-
ter

Latency.

Automated energy man-
agement systems [1]

The devices themselves;
Small server in-loco;
Cloudlet; Small data
center.

Latency; Privacy.

Urban logistics with
robots [37]

The devices themselves;
Small server in-loco;
Cloudlet; Small data
center.

Latency; Bandwidth.

Table 2.1: Survey on edge applications

2.2.2. Edge Use Cases

In this section we present the more specific use cases that we collected during our
research. For each use case we report why it has been deemed necessary an edge
implementation, how an implementation can be made and where this implemen-
tation can be placed (e.g., stateless servers, stateful servers, on the data producers
devices).

We can notice how the usage of the edge, in many of the use cases, has been moti-
vated by the research with the goal of bandwidth reduction. In fact the growth
in the amount of data produced was not accompanied by a comparable increase
of available bandwidth to the cloud [32], furthermore the number of devices are
expected to continue to increase significantly due to increasing popularity of IoT
sensors.

A recurring motivation is also the location awareness which comes for free when
working on the edge of the network. The location awareness feature can be used in
interesting use cases like Trending Topics and Road Traffic Monitoring.

Video Upload

Upload a video to an application or service (e.g., like in a social network).

• Why on the edge? - Reduce bandwidth;

• How can it be implemented? - Use edge resources to resize and compress
the video (e.g., with FFmpeg);
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• Where can it be performed? - Stateless serverless at the edge; Custom
servers; on the producers.

Trending Topics

Find trending topics of a certain area in an application (like trending users in a
social network, or trending searches).

• Why on the edge? - Location awareness; Reduce bandwidth;

• How can it be implemented? - Send to the edge the actions of users
(views, searches, etc...), process them locally since they all come from near
locations and perform a trending algorithm (e.g., most viewed or most searched
elements);

• Where can it be performed? - Stateful edge servers.

Road Traffic Monitoring

Analyze video footage to monitor the traffic in a certain road.

• Why on the edge? - Location awareness; Reduce bandwidth;

• How can it be implemented? - Send to the edge the video footage, then a
Machine Learning model can provide an estimation of the traffic in the road
section. This information can be used to provide a better navigation system;

• Where can it be performed? - Stateful edge servers; Custom servers.

Anomaly detection with IoT sensors

Find anomalies in the time series reported by IoT sensors.

• Why on the edge? - Reduce bandwidth;

• How can it be implemented? - Compare IoT sensors value with past sensor
value or by doing a time series prediction and see if it varies significantly;

• Where can it be performed? - Stateful edge servers; Custom servers.

Wearable Healthcare

Anomaly detection using data coming from wearable healthcare devices.

• Why on the edge? - Reduce bandwidth; Could provide more privacy (data
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deleted after some time for example);

• How can it be implemented? - Detect fall by analyzing accelerometer
values; Detect patient’s changing health condition;

• Where can it be performed? - Stateful edge servers; Custom servers; On
the producers.

Conversely, detecting patterns in very large amounts of historic data requires ana-
lytics techniques that depend on the cloud.

Smart City

Features to improve the quality of life in cities, e.g., allowing people with physical
impediment to choose paths with less dense crowds by analyzing camera footage.

• Why on the edge? - Reduce bandwidth of camera footage; Location aware-
ness;

• How can it be implemented? - Local edge servers analyze the footage
provided by video cameras and provide an estimation on the crowds, the user
then asks the nearest server for a less crowded path.

• Where can it be performed? - Custom servers mounted in the city; May
also use some computation on the camera themselves;

Smart Agriculture

Make agriculture more efficient with monitoring and automatic irrigation of crops.

• Why on the edge? - More privacy; Reduce bandwidth; Location awareness;

• How can it be implemented? - Local edge servers obtain the stream-
ing dataset of sensors’ value, they process the data and automate actions or
provide feedback to the owner;

• Where can it be performed? - Custom servers near the field.

Massively Multiplayer Online Games

Games where numerous players interact with each other.

• Why on the edge? - Game logic must not be on the client otherwise cannot
be trusted; Reduce latency;



14 2| Preliminaries and Open Problems

• How can it be implemented? - Use local edge servers to run the game
logic, players then connect to the local edge servers;

• Where can it be performed? - Custom servers.

Message Aggregation Caching

Aggregate messages in batch before sending them to the cloud.

• Why on the edge? - Reduce bandwidth;

• How can it be implemented? - Use local edge servers to combine multiple
messages together and send a batch simultaneously at delayed intervals;

• Where can it be performed? - Stateful edge servers; Custom servers; On
the producers.

Urban Logistics

Logistics performed with robots that autonomously pick up packages at dedicated
hubs and deliver them to the customers.

• Why on the edge? - Reduce bandwidth to cloud; Reduce Latency; Location
awareness;

• How can it be implemented? - Devices can process sensors values to avoid
obstacles; An external server should organize the coordination of all the robots.

• Where can it be performed? - Stateful edge servers; Custom servers.

Industrial IoT Data Compression

IoT sensors in industrial scenarios creates a huge amount of data, many of which
are redundant.

• Why on the edge? - Reduce bandwidth;

• How can it be implemented? - Compress and optimize the data sent
through edge, so that the cloud still keeps all the useful data but it’s more
lightweight (e.g. send only value change of the sensor, apply compression,
etc..)

• Where can it be performed? - Stateful edge servers; Custom servers; On
the producers.
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In this chapter we present the current frameworks publicly available in the industry
to perform serverless computations on the edge on a large scale.

We will show the discrepancy between the approaches proposed in research and in
industry. Research frequently assumes the possibility of running virtual machines or
long-running containers, which can be used for example to set up a stream processing
architecture. However, real-world web infrastructure companies do not provide such
capabilities due to the limited resources available in the edge.

Finally, in this chapter we will also show the latest frameworks that allow the setup
of a FaaS architecture.

3.1. Serverless Edge Computing

In this section we show the serverless frameworks made publicly available by the
industry to perform edge computations. For each of them we analyze the stateful
support that the company offers.

3.1.1. AWS Lambda@Edge

With AWS Lambda@Edge it is possible to run code in a serverless manner on the
edge network of AWS [5]. Currently the only stateful support they offer publicly is
with CloudFront, which is the Amazon Content Delivery Network. Therefore with
this system, only caching, stateless or forwarding use cases can be fulfilled.

3.1.2. Cloudflare Workers

Cloudflare Workers allow developers to run serverless code across the globe on the
edge network of Cloudflare [13]. Workers are severely capped in terms of CPU and
memory usage (max 50ms CPU time limit and max 128MB of RAM), so they are
not intended for a CPU intensive task, but they are extremely fast even during cold
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starts (a cold start is the phenomenon in which a function that was not used in a
long time need to be re-instantiated). Workers in fact use an innovative technology
to run code in isolates instead of containers, these isolates work in a way similar to
the sandbox of a web browser (e.g., Chrome) when opening a new tab and allows to
have cold starts that last just a few milliseconds.

For Workers, Cloudflare offers publicly two types of stateful support: the Cloudflare
cache system and the Workers KV. The first one is a cache support which exploits
the Cloudflare Content Delivery Network, while Workers KV is a global key-value
data store. Every write performed on Worker KV is propagated in an eventual
consistent way to all the other edge locations, therefore Workers KV is intended for
use cases with frequently read but infrequently written values.

3.1.3. Akamai EdgeWorkers

A competitor of Cloudflare is Akamai, and in fact the two companies provide a very
similar service: also Akamai offers serverless computation on the edge equipped with
the possibility of storing data with the Akamai EdgeKV, a global key-value DB
with eventual consistent writes, perfect for use cases with number of reads greatly
larger than the number of writes [2].

3.1.4. Appfleet

Appfleet allows developers to easily deploy long-running containers in multiple
locations across the globe, with the goal of running the services closer to the users [4].
Unfortunately their network can’t be defined as an edge network since it is currently
composed of only 5 locations. However, in August 2021, Appfleet was bought by
Cloudflare [3], therefore we can expect a growth of the network in Appfleet or the
introduction of support to long-running containers in Cloudflare.

3.2. Solutions Summary

Current frameworks do not provide stateful support for use cases with frequent
write operations, we saw in fact support only for caching, stateless, forwarding or
infrequent-write use cases. If we apply the frameworks seen in the previous section
to the use cases we collected and presented in Section 2.2, we can fulfill only a few
use cases like the "Video Upload" use case which is stateless, and the "Industrial
IoT Data Compression" use case which can employ a stateless compression. All the
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other use cases require an abundant rate of write operations, making the available
frameworks unsuitable for the tasks.

Considering this situation in the industry and the need to be efficient we believe
researchers should raise the effort in studying systems that can run on demand on
the edge, without the need of using long-running containers.

In view of the fact that the available frameworks do not provide write-frequent
stateful support, we tried to think of a new solution which can fulfill the use cases
we collected.

3.3. FaaS Platforms

Before thinking about a new solution we studied the platforms that can be used
to set up a FaaS architecture, with the idea in mind to build a prototype of our
solution on this infrastructure.

Indeed we have seen in the previous sections that the FaaS paradigm is the most
used paradigm to allow computations on the edge in the industry, while long-running
solutions are not widespread, this is expected since the FaaS paradigm can allow to
reach an high efficiency which in the edge is essential.

Therefore we studied the open-source FaaS platforms and in this section we present
our findings.

3.3.1. Apache OpenWhisk

Apache OpenWhisk allows running functions with support to many different lan-
guages (e.g., Go, Java, NodeJS, .NET, PHP, Python, Scala, etc...). The project
has a very active community and updates are provided periodically. The architec-
ture used by OpenWhisk is quite complex and internally uses a document-oriented
database (CouchDB) and a messaging platform (Kafka) to process requests that
then are forwarded to the Invoker which runs the code inside a Docker container
[36].

Apache OpenWhisk supports extreme levels of scalability, however this come with
the cost of size and burdensome, in fact just running the core components, before
running any actions, would require about 2.5 GB of RAM [8]. This make its use
infeasible on the edge. Therefore a fork of Apache OpenWhisk has been created
to make the platform more lean, the fork has been called "Lean OpenWhisk", this
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fork removes the need of the Kafka server by using instead an in-memory queue [8].

Unfortunately this lighter version has been discontinued, and it only uses an old
"incubator" (beta) version of OpenWhisk.

3.3.2. Fission

This active and well supported FaaS platform currently supports NodeJS, Python,
Ruby, Go, PHP. However language-specific parts are isolated which make it exten-
sible to any language. Fission works on top of Kubernetes (a well-known container-
orchestration system) and it uses a configurable pool of containers to have a low
cold-start latency (≈ 100ms). Functions can auto-scale based on the CPU usage
and are triggered by HTTP requests.

Internally Fission works in the following way: a stateless Router component re-
ceives the HTTP requests (by being stateless this component can be easily scaled
up or down), the Router asks to the Executor component the service address of
the function requested (this address is then stored in cache), then redirects the re-
quest to this address. The Executor component starts Function Pods for running
functions. A Function Pod, when started, fetches the function information from the
Kubernetes Custom Resource Definitions, pulls the code archive and then can start
serving requests that are forwarded by the Router [28].

3.3.3. OpenFaas

OpenFaas, differently from other projects we reported before, provides two flavours
of their system. The faas flavour allows vast scalability but comes with a big-
ger overhead, while the faasd flavour cannot scale horizontally but can run on
hardware-limited devices. This allows the system to be run even on edge devices
equipped with a small amount of memory, in fact we were able to try the system
also on our Raspberry Pi 3 Model B+ (a 35$ device that has only 1 GB of RAM).

The architecture of the faas flavour is the following: each function is built into an
immutable Docker Image and published to a Docker Registry ; when a node needs to
be setup to run the function the Docker Image is pulled from the Docker Registry
and run in a container on the Kubernetes container-orchestration system. In fact all
the internal components are also run as containers in Kubernetes. To allow auto-
scaling the faas system has a container running Prometheus (a well-known open-
source monitoring system), from which a component called AlertManager reads the
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usage metrics (requests per second) in order to know when to scale up or down.

Instead faasd is different in the following way: rather than using Kubernetes, with
faasd containers are run on containerd (a container runtime daemon). Moreover
faasd does not allow to have more than one replica of the container running the
function, so it does not scale up.

3.3.4. Other Platforms

We found and list here also other platforms which we will not explain in details since
all of them have been discontinued or are not very utilized:

• OpenLambda: a research project with the goal of "enabling exploration of
new approaches to serverless computing" [18];

• Fn Project: the platform is an evolution of the IronFunctions project de-
veloped by the company Iron; the development of Fn Project seems to have
stopped in 2019.

• Qinling: Qinling has been developed by the creators of OpenStack, its goal
was allowing Function-as-a-Service in OpenStack; unfortunately the project
has been retired in 2020.
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The high-level concepts of our solution consist in splitting the infrastructure in
hierarchical levels and allowing the developers to specify on which levels the
clients save and access the data.
Our API allows to:

• Specify the hierarchy of the infrastructure, in serverless setups this should
be done by the web infrastructure companies;

• Deploy geo-distributed functions exactly where needed;

• Have a geographically-partitioned stateful support, where each location
(e.g., the cloudlet in a city) has its own set of data;

• Save data easily by only specifying one or multiple levels, then the actual
location is obtained by the framework.

These concepts allow a lot of versatility where the developer can process the data
at a certain level and then organize the results in geographic partitions, without
actually specifying where to save the results, but only specifying the levels and
letting the framework handle the rest.

In Figure 4.1 we show an example with three levels. Clients can invoke functions
on the nearest location of a certain level, these functions can be used for both
sending data or requesting data. When clients send data, the function written
by the developer can process the data and then save the results in the provided
stateful support. The results can be saved on different and multiple levels.
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Figure 4.1: High-level architecture of an example setup

We will now go into the details of the reasoning behind the decisions we made and
the features we embedded into the solution.

4.1. Managing the Network

Let’s imagine a global infrastructure with many edge locations. Some web infras-
tructure companies already provide a network with many locations, like the one of
Cloudflare with more than 250 locations worldwide located in more than 100 differ-
ent countries [12], or the network of Amazon Web Services (AWS) with more than
265 edge locations [6]. These networks are only the beginning of the development
of edge networks: AWS is currently introducing AWS Wavelength [7] a new service
in partnership with popular telecommunication providers (i.e., Verizon, Vodafone)
to scale across global 5G networks.
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By having such a vast and heterogeneous network the first step in our approach
is to abstract away the difficult management of the deployment to the many edge
locations. In a traditional cloud setup the developer specifies individually on which
data center to deploy, this cannot be done efficiently for a vast edge network because
the developer would have to specify hundreds of specific deployments. The developer
could also want to use only more powerful data centers and not the limited cloudlets
at the border of the network.

Figure 4.2: An example of the
hierarchy.

To allow flexibility in the deployments and to al-
low the geographical aggregation we can organize
the various machines running in the data centers
and cloudlets in a hierarchy with multiple lev-
els. In Figure 4.2 we reported an example: we
first have a division by continent (or large regions),
then by country, territory, city and district. Note
that each element in the hierarchy should not nec-
essarily be a different data center: a big data cen-
ter in Milan can be both a receiver for "city" and
"country" deployments/aggregations.

4.1.1. Specifying Locations

The job of specifying the available locations should be the responsibility of the
web infrastructure company, but still the developer may want to customize the
arrangement or may want to use their personal infrastructure.

So we must provide a way to specify the infrastructure, we chose to implement the
API in the following way:

• Levels: the list of levels characterized by their identifiers (e.g., "central",
"continent", "country", "territory", "city", "district");

• Hierarchy: a way to specify the hierarchy, starting from the uppermost level
and going down to the lowest level. Each level can contain multiple locations,
and each location will aggregate data of the relative area;

• Location: each location must be associated to an entry point that defines the
actual cloudlet or data center to be used (so for the location there must be
defined gateway, port and password).
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4.1.2. Specifying Deployments

Now that we have the hierarchy specified we can use this hierarchy to make a
powerful deployment API. The developer should be able to deploy on a specific level
of the hierarchy only in a certain area and to exclude a specific subsection
from this area.

To allow such deployment we established the following concepts:

• inEvery : a string representing the level on which to deploy the function.

• inAreas : a list of string of areas, specifying in which areas to deploy. If
unspecified we can assume the developer wants it deployed on every area of
the level specified in inEvery .

• exceptIn : a list of strings of areas that are an exception to what was previ-
ously defined before. In these areas the developer does not want to perform
the deployment.

Example

Deploy on every district worldwide. Becomes:

• inEvery : "district"

• inAreas : [ ]

• exceptIn : [ ]

Example

Deploy on every city in Europe and Asia, excluding the cities in Italy and
excluding the city of Tokyo. Becomes:

• inEvery : "city"

• inAreas : ["europe", "asia"]

• exceptIn : ["italy", "tokyo"]

Example

Deploy on every district in Europe and India, excluding the districts in France
and excluding the districts in Milan. Becomes:

• inEvery : "district"
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• inAreas : ["europe", "india"]

• exceptIn : ["france", "milan"]

In the examples we saw that the developer should also be allowed to mix the levels
of the areas specified, using different levels of the hierarchy inside the inAreas

and exceptIn lists.

4.2. Managing Limited Resources

Edge locations have limited resources compared to central data centers, so web
infrastructure companies have to work around the limitations in order to provide
a reliable service. Due to these limitations, Function-as-a-Service (FaaS) is the
current de facto standard for companies that provide computing resources at the
edge to the public. Examples of services are AWS Lambda@Edge (an evolution of
the famous AWS Lambda service on the cloud) [5] or Cloudflare Workers [13]. It can
be easily understood that providing Infrastructure-as-a-Service (IaaS) or Platform-
as-a-Service (PaaS) to the public on the limited resources available at the edge is
clearly less efficient for companies.

Therefore we decided to use in our framework the FaaS paradigm as a way to
allow the users of the framework (the developers) to perform computation on the
edge. The developer should also be able to specify the Random Access Memory
(RAM) allocated for the function. The default allocated memory can be a low
value, but if there is a more complex function requiring additional memory usage
the developer can change the allocated memory (the web infrastructure company
can then charge more based on the memory requested).

Resources are not only limited in the sense of computation, also storage resources
are limited on the edge. To take into account the aforementioned issue we decided
to use a key-value database for the stateful part of our approach. A key-value
database allows us to perform extremely efficient (but simple) queries, and is perfect
for the limited resources available on the edge. To avoid accumulating data we
also introduced in our framework a Time-To-Live (TTL) which the developer must
specify. For example with a TTL of 5 days, after making a write to the database
the data, if not updated, can be deleted after 5 days.
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4.2.1. Writing Data

Our goal is to provide the developers an easy way to create geographical ag-
gregations of data. If for the data it does not make sense to create geographical
aggregations then it would make more sense to use a core-centric approach to manage
this data. In our approach by having the data geographically distributed it means
that those data correspond to information coming from the respective geographic
area.

Furthermore in Section 2.2 we outlined use cases which are static in the sense of
location, or for which having discontinuity in the data is not a problem. Therefore
we decided to not introduce any session consistency to avoid the cost of managing
such sessions: heavy communications between the locations. This means that if we
are performing a "city" aggregation and a client that is sending data is currently
travelling and changes its position to a new "city" area, then its old data will remain
in the previous "city" area and will not transfer to the new one.

To manage such conditions our approach should have the following properties:

• Write Action: the action to perform for writing data (e.g., set, add to list, ...)

• Key: The key that will be associated to the value as in a standard key-value
database.

• Data: the data to be associated to the key (so it can be then obtained from
the key) or the data to be added to the list specified by the key.

• Referring Area Level: the highest level on which to aggregate the data.

• Should Save In Intermediate Levels: a true or false property that if set to true
saves the data only in the level specified by the Referring Area Level, otherwise
the data is saved on the receiving level and on all the other upper levels, up
until the level specified by Referring Area Level.

• Time To Live: limits the lifespan of the data.

To provide some examples, we see a few write calls that a developer can make:

Example

The developer makes the following write call on a function deployed at the
"city" level:

• Write Action: set
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• Key: mykey1

• Data: data1

• Referring Area Level: continent

• Should Save In Intermediate Levels: false

• Time To Live: 10 days

The framework will save the data only at the continent level (so if the code
is executed in the "milan" location, the data will be saved in the "europe"
location). The framework will create (or update) key "mykey1" with the value
"data1" and will set a lifespan of the data to 10 days.

Example

The developer makes the following write call on a function deployed at the
"city" level:

• Write Action: set

• Key: mykey2

• Data: data2

• Referring Area Level: continent

• Should Save In Intermediate Levels: true

• Time To Live: 30 days

The framework will save the data at the continent, country, territory and city
levels (so if the code is executed in the "milan" location, the data will be saved
in the "milan", "it-north", "italy" and "europe" locations). In each of these
locations the framework will create (or update) key "mykey2" with the value
"data2" and will set a lifespan of the data to 30 days.

Example

The developer makes the following write call on a function deployed at the
"city" level:

• Write Action: add to list

• Key: mylist1
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• Data: data1

• Referring Area Level: country

• Should Save In Intermediate Levels: false

• Time To Live: 1 day

The framework will save the data only at the continent level (so if the code is
executed in the "milan" location, the data will be saved in the "italy" location).
The framework will add to the list associated with the key "mylist1" the value
"data1" and will set a lifespan to the single element of the list to 1 day.

4.2.2. Reading Data

As we have seen the developer has to think carefully how to handle the writing of
the data with the objective to partition geographically the data. But after data
have been thoughtfully partitioned then the reading of the data is instantaneous.
When running the code in a certain location, by specifying only the reading action
and the key, the framework obtains the data present in the location and associated
with that key.

Therefore only the following two properties are used for making reads:

• Read Action: the action to perform for reading data, "get" to obtain the single
value from the key saved with "set", "get list" to obtain all the values saved
with "add to list".

• Key: The key of the value or the list to be read.

Example

The developer makes the following read call on a function deployed at the "con-
tinent" level:

• Read Action: get

• Key: mykey1

The framework will obtain the value associated to the key "mykey1" if present
and if not expired due to the TTL.

Example

The developer makes the following read call on a function deployed at the "coun-
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try" level:

• Read Action: get list

• Key: mylist1

The framework will obtain all the not expired elements contained in the list
associated to the key "mylist1".

4.3. Finding the Nearest Location

Our solution assumes the presence of the ability to contact the nearest server
automatically, without the intervention of the developer (the developer just needs
to send the request to the function’s URL).

This process has already been proved to be feasible and is in fact exploited by
many web infrastructure companies to provide a Content Delivery Network or to
provide serverless edge computing (AWS Lambda@Edge and Cloudflare Workers
automatically find the nearest server with the URL as the only input). The most
common procedures to perform the process are the following:

• Anycast Routing: this routing procedure uses the Border Gateway Protocol
(BGP) to route clients using the natural network flow, indeed the information
collected by the BGP protocol about network neighbors is used to efficiently
route traffic based on hop count ensuring the shortest traveling distance be-
tween the client and its final destination [11].

• Unicast Routing: a process which can be incorporated into the standard Do-
main Name System (DNS) resolution process by using recursive DNS queries
which redirect clients to the server closest to the DNS resolver (and usually
the DNS resolver is physically near the client) [10].

• Manual Routing: a procedure in which the client computes on its own which
is the most appropriate server to contact, with this procedure GPS-equipped
devices can use more precise information about the location.

In this thesis we assume to have the ability to contact the nearest server: in the
implementation of our prototype we use a Manual Routing procedure where the
clients would manually contact the nearest server, but in a real scenario a process
like Unicast Routing or Anycast Routing could be preferred.
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4.4. Suitable Use Cases

Our solution, for how has been thought, is clearly suitable for use cases with the
following characteristics:

• Stateful computation: the use case needs a stateful support with frequent
writes and reads.

• Location awareness: the use cases works on geographic partitions of the
data;

• Location is static: data producers do not change location;
OR
Location is dynamic but it’s not a problem to have a discontinuity
in the data: e.g., if there is an aggregation of “city” and a data producer exits
the city, its data will have a discontinuity;

• Session consistency is not needed: the concept of session, where the user
maintains consistency of the data even when the connected server changes, is
not provided by our solution;

4.5. Applying the Solution to Use Cases

In this section we show how the solution we thought can be applied to various use
cases we showed.

IoT Data Compression

In this use case we try to compress the data of IoT sensors by sending only significant
value changes, this concept can be applied for example to a temperature sensor where
the value can be pretty much equal for very long periods of time.

We can implement this use case by having a stateful function that checks whether
the new value is equal or almost equal to the previous value.

With our solution a possible execution can be the following:

Example

Deployment:

• inEvery : "building"
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• inAreas : [ "factory1", "factory2" ]

• exceptIn : [ ]

With this deployment we are deploying a function in every location at the
"building" level.

Reads:

• Read Action: get

• Key: sensor1

Here we read the previous value of "sensor1" and we can compare it to the value
sent by the sensor, if it differs substantially the function can forward the value
to the cloud or can also fire an alert.

To update the value stored in the stateful support of the function we do the
following write action:

• Write Action: set

• Key: sensor1

• Data: «value sent by the sensor»

• Referring Area Level: building

• Should Save In Intermediate Levels: false

• Time To Live: 5 days

This stores the value locally in the location where the code is deployed, since
the function has been deployed to the "building" level and the Referring Area
Level is the same "building" level.

Road Traffic Monitoring

In this use case we analyze video footage data to get an insight on the road traffic
and then use such insight in an algorithm to find the fastest path between two points.

We can implement this use case with two functions: the first function receives the
data from the cameras, converts the footage in a value of traffic and finally saves
this value; while the second function computes the fastest path between two points
by using the information of the traffic saved by the first function.

Therefore the first function can work like this
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Example

Deployment:

• inEvery : "district"

• inAreas : [ "us" ]

• exceptIn : [ ]

With this deployment we are deploying a function in every location at the
"district" level in the area corresponding to the United States.

Writes:

• Write Action: set

• Key: «camera ID»

• Data: «value of traffic computed from footage»

• Referring Area Level: central

• Should Save In Intermediate Levels: true

• Time To Live: 30 minutes

With this database action that we are performing at the "district" level (since
the function is deployed at the "district" level) we are saving data in the key
that corresponds to the camera that sent the input. We are using a low TTL
value since if the camera goes offline and does not provide an update, then we
can consider the value stored to not be reliable after 30 minutes. We are saving
the value with Referring Area Level "central" and also saving in intermediate
levels, this means that every level in between "district" and "central" (both also
included) will have a copy of the data.

The second function instead can be deployed at multiple levels and can work in the
following way:

Example

Reads:

• Read Action: get

• Key: «camera ID»
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This read action can be performed for multiple camera IDs depending on the
possible paths that can be taken between the two points. By having the in-
formation of the traffic an algorithm can be created to compute which path is
likely to be faster.

Trending Topics

In this use case we want to find the trending topics in a certain region in an appli-
cation (like trending users in a social network, or trending searches).

We can divide the implementation of this use case in two parts: a first part where
we aggregate the data of the topics per region; and a second part that periodically
finds the trending topics from the raw data.

We may also want to aggregate this data with different granularities: "city", "terri-
tory", "country".

So with our solution a possible execution for the first part can be the following:

Example

Deployment:

• inEvery : "city"

• inAreas : [ ]

• exceptIn : [ ]

With this deployment we are deploying a function in every location at the "city"
level.

Writes:

• Write Action: add to list

• Key: trending-topics

• Data: «topic seen or searched by the client»

• Referring Area Level: country

• Should Save In Intermediate Levels: true

• Time To Live: 4 hours
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With this database action that we are performing at the "city" level (since
the function is deployed at the "city" level) we are adding data to the list of
"trending-topics". The Referring Area Level is "country" so the data will be
aggregated to the "country" level, but since we are also saving in intermediate
locations this data will be also sent to the respective "territory" location and
saved locally in the current "city" location.

We make an example with actual names to be more clear: a client is search-
ing the topic "My search" and the client is located in the city of Milan. This
client sends the topic to the deployed function, the function has been deployed
at the "city" level so it will be executed in a data center in Milan. This func-
tion executing in Milan can perform a pre-process on the input (e.g., making it
lowercase) and then adds the input to the list "trending-topics". The write is
performed with Referring Area Level "country" but also saved in intermediate
locations, therefore the input will be forwarded to the respective "country" lo-
cation (in this case a data center that refers to the Italy area), to the "territory"
location (in this case a data center that refers to the Northern region of Italy)
and also saved locally in the data center in Milan.

While a possible execution for the second part of finding the trending topics (in this
case the trending topics of the territory) can be the following:

Example

Deployment:

• inEvery : "territory"

• inAreas : [ ]

• exceptIn : [ ]

With this deployment we are deploying a function in every location at the
"territory" level.

Reads:

• Read Action: get list

• Key: trending-topics

With this database action that we are performing at the "territory" level (since
the function is deployed at the "territory" level) we are reading all the non-
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expired data in the list "trending-topics". In our case this list contains all the
topics searched by the users in the last 2 days in the respective "territory" area
where this function is executed. This function can then be executed periodically
to update the trending topics.

Since the list is obtained in its entirety the trending algorithm can be anything
the developer prefers (e.g., most-frequent analysis, derivative of the frequency,
etc...).
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In this chapter we will show the implementation of the prototype running the API
that we presented in the previous chapter.

5.1. The FaaS Platform

We saw in Chapter 3 the current frameworks to setup a FaaS platforms, we saw
also a very valid implementation focused on edge use cases like the one of Cloudflare
Workers, which can reach extremely fast cold-start latencies (≈ 5ms), but unfor-
tunately, being a proprietary solution, it cannot be applied in our framework. So
we resorted to an open source solution and we chose the solution provided by
OpenFaaS since they provide two versions of their system, one version for high-
performing machines with more overhead but that can scale greatly, and another
more efficient version for edge devices with a smaller overhead but that cannot scale
horizontally (there can only be one replica of the container running the function).

5.1.1. Specifying Functions

We implemented two FaaS triggers in our prototype: an HTTP trigger (the func-
tion gets activated by a simple HTTP request) and the cron trigger (the function is
automatically called periodically based on the current time). In practice the HTTP
trigger is always present, and when the cron trigger is activated it periodically calls
the relative HTTP endpoint of the function.

The following YAML code can be written to specify two functions, one with only
the HTTP trigger, the other with the cron trigger:

1 f un c t i on s :
2

3 myHttpFunction:
4 l ang : n o d e 1 4
5 handler : . / m y H t t p F u n c t i o n F o l d e r
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6 image : d o c k e rHubRe f / myHt t pFun c t i o n : l a t e s t
7 l im i t s :
8 memory: 2 5 6 Mi
9 cpu: 1 0 0 0m

10 r eque s t s :
11 memory: 4Mi
12 cpu: 1m
13

14 myCronFunction
15 l ang : n o d e 1 4
16 handler : . / my C r o nF u n c t i o n F o l d e r
17 image : d o c k e rHubRe f / myCronFunc t i on : l a t e s t
18 l im i t s :
19 memory: 2 5 6 Mi
20 cpu: 1 0 0 0m
21 r eque s t s :
22 memory: 4Mi
23 cpu: 1m
24 annotat ions :
25 t op i c : c r on − f u n c t i o n
26 schedu le : ∗ /2 ∗ ∗ ∗ ∗

We now analyze the example provided to better understand the architecture of our
prototype. OpenFaas automatically scales and runs Docker images in response to
HTTP requests; these Docker images execute the code provided by the developer.

The actual code is a npm project written in Node.js (in this case using Node
version 14) placed in the folder specified in the handler section of the YAML.
For example the function with name myHttpFunction has its code specified in
the folder ./myHttpFunctionFolder . This code during deployment is compiled
into a Docker Image and published to a Docker Registry (specified in image

section of the YAML), so that machines that receive the deployment can pull the
Docker Image from the Docker Registry and execute the function when requested.

OpenFaas adopted this architecture so that, when a function becomes idle for a lot
of time and the machine is in need of resources, the cached Docker Image can be
discarded since it can be easily re-obtained again from the Docker Registry.

In the YAML the developer can also specify the CPU and RAM usage. In the
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limits section of the YAML the developer can specify the maximum amount of
RAM and CPU the instance can use, while in the requests section there can be
specified the minimum amount of resources the machine must have free to run the
instance.

Finally in the annotations section of the YAML the developer can optionally
specify the cron trigger of the function with the standard Unix cron syntax [21].

5.2. Deployments

We saw in the previous Chapter how our API can help the developer make precise
deployments even on large scale networks thanks to the fields inEvery , inAreas

and exceptIn . We implemented these fields in a Command Line Interface
(CLI) that we built and which interacts with the APIs provided by OpenFaas to
perform the deployment on the whole network.

To make any deployment we must first provide a way to specify the network with
its hierarchy. The network can be specified by the web infrastructure company or
by the developer (when using a proprietary network).

5.2.1. Specifying the Hierarchy

We provided a way to specify the hierarchy associated with the infrastructure by
using the JavaScript Object Notation (JSON) format. Below we provide an example
of a hierarchy with 4 levels: continent, country, city, district.

1 {

2 "areaTypesIdentifiers": ["continent", "country", "city"

, "district"],

3 "hierarchy": {

4 "europe": {

5 "main -location": { },

6 "italy": {

7 "main -location": { },

8 "milan": {

9 "main -location": { },

10 "milan001": { },

11 "milan002": { }

12 },
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13 "turin": {

14 "main -location": { },

15 "turin001": { },

16 "turin002": { }

17 }

18 },

19 "france": {

20 "main -location": { },

21 "paris": {

22 "main -location": { },

23 "paris001": { },

24 "paris002": { }

25 },

26 "nice": {

27 "main -location": { },

28 "nice001": { },

29 "nice002": { }

30 }

31 }

32 }

33 }

34 }

We used the hierarchical structure of JSON to represent the infrastructure hier-
archy. In this example we have one "continent" location called "europe", containing
two "country" locations called "italy" and "france", containing four "city" loca-
tions called "milan", "turin", "paris" and "nice", in turn containing eight "district"
locations.

To simplify the visualization of the JSON we didn’t show in this example the details
of the machines associated to the areas; this information must be written in the
places where two empty braces { } are present. The fields that are inserted in the
empty braces are the following:

• openfaas_gateway : the entrypoint for the OpenFaas API (e.g.,
"10.211.55.33:31112");

• openfaas_password : the password for the OpenFaas entrypoint;
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• redis_host : the location that the code running in OpenFaas can use to access
the Redis Database (e.g., "aaa.bbb.svc.cluster.local");

• redis_port : the port that the Redis Database is using (e.g., "6379");

• redis_password : the password for accessing the Redis Database;

5.2.2. The Command Line Interface

The CLI can then be used by the developer to perform the actual deployment. By
issuing the command deployer deploy –help , the CLI shows the usage of the
"deploy" command:

1 Usage: deployer deploy [options] <functionName > <

infrastructure >

2

3 Deploys the function to the infrastructure specified.

4

5 Options:

6 --inEvery <areaTypeIdentifier > In which area type to

deploy the function. If not specified the function

is deployed to the lowest level.

7 --inAreas <areas...> The name of the areas

in which to deploy the function. If not specified

the function is deployed everywhere.

8 --exceptIn <areas...> The name of the areas

in which to NOT deploy the function.

9 -f, --yaml <path > Path to the YAML file

describing the function. (default: "stack.yml")

For the "deploy" command two fields are required, the functionName field speci-
fying which function to be deployed and the infrastructure field specifying the
path to the infrastructure JSON. Then we have the inEvery , inAreas and
exceptIn fields that are used to specify where to make the deployments (if some
of these fields are not specified a default value is assumed). And at last the yaml

field is used to specify the path to the YAML file describing the function as seen in
Subsection 5.1.1.

To better understand how the CLI works we now present an example:
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1 deployer deploy myHttpFunction infrastructure.json --

inEvery district --inAreas italy paris --exceptIn

milan paris001 --yaml stack.yml

In this example the function called myHttpFunction , specified in the YAML file
stack.yml , is deployed to the infrastructure. The function is deployed at the dis

trict level in all the districts contained in the areas of italy and paris , but
excluding the districts contained in the area of milan and excluding the district
paris001 .

The CLI first analyzes the infrastructure and the deployment locations specified with
the fields inEvery , inAreas and exceptIn . After listing all the locations where
the deploy is needed the CLI builds the code of the function into a Docker Image,
then it publishes the Docker Image to the Docker Registry and finally performs the
actual deployments by calling the OpenFaas API of the machines running in the
locations collected.

5.3. Stateful Support

To provide support for stateful computations we created an API that interacts with
a Redis instance running on the machine. In our prototype we run the Redis
container (a Docker Image) as a Persistent Volume on the container-orchestration
system that runs OpenFaas.

5.3.1. Reads and Writes

For allowing the developer to make writes and reads on the Redis instance we wrote
a JavaScript API that can be added as a dependency in the npm project of a
function. In this early prototype we provided the following APIs:

• get : gets the value associated to a key;

• getList : gets the list of values associated to the key;

• set : sets the key to hold the provided value;

• addToList : adds a value to the list specified by the key (if the list does not
exists it is automatically created).

The two "read" APIs allow only to read the values that the current location contains,
so if the developer wants to access "continent" level data, the developer will need
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to deploy a function at the "continent" level and perform a get operation in the
function. While the two write APIs allow saving the data on one or multiple levels.
Since the processing should be done on a lower level so that it is performed as close
as possible to the user, these APIs only allow forwarding data on upper levels. In
every write action there must also be specified a Time-To-Live that will be applied
to that value, this forces developers to not accumulate data in the stateful support.
Accumulating data should be avoided due to the more bounded resources present
at the edge of the network.

Get

The provided get API uses the parameters reported below:

• key : the key to be used for getting the value associated to it.

Example

Get the value associated to the key "my_key1".

const edgeDb = require(’edge -db’);
const value = await edgeDb.get("my_key1");

GetList

The provided getList API uses the parameters reported below:

• key : the key to be used for getting the list associated to it.

Example

Get the list associated to the key "my_list1".

const edgeDb = require(’edge -db’);
const list = await edgeDb.getList("my_list1");

Set

The provided set API uses the parameters reported below:

• referringAreaType : the identifier of the level in the hierarchy where we want
the aggregation to happen (e.g., "district", "city", "country").

• saveAlsoInIntermediateLevels : a boolean that if set to true will save the
value to all levels starting from the current level where the function is deployed,
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up until the level specified in referringAreaType . If false the value will be
only saved at the level specified in referringAreaType .

• ttl : the Time-To-Live of the value.

• key : the key where to save the value.

• data : the value to be saved.

The set API also offers two optional parameters for some more advanced configura-
tions:

• onlySetIfKeyDoesNotAlreadyExist : set to true if the write should be per-
formed only if the key does not already exist.

• onlySetIfKeyAlreadyExist : set to true if the write should be performed
only if the key already exists.

Example

Suppose the function is to be deployed in the "city" level. Here we set the value
of the key "my_key1" equal to "myValue1".

const edgeDb = require(’edge -db’);
const dataDomain = { referringAreaType: "continent",

saveAlsoInIntermediateLevels: false , ttl: 60*60*1000 };
const isSuccess = await edgeDb

.withDataDomain(dataDomain)

.set("my_key1", "myValue1");

The referringAreaType is set to "continent" and the write happened with
the saveAlsoInIntermediateLevels boolean set to false, so the write will
be only performed on the corresponding "continent" location.

Example

Suppose the function is to be deployed in the "city" level and that the levels in
the hierarchy are the following in an increasing order of size: "district", "city",
"country", "continent". Here we set the value of the key "my_key1" equal to
"myValue2".

const edgeDb = require(’edge -db’);
const dataDomain = { referringAreaType: "continent",

saveAlsoInIntermediateLevels: true , ttl: 60*60*1000 };
const isSuccess = await edgeDb
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.withDataDomain(dataDomain)

.set("my_key1", "myValue2");

The referringAreaType is set to "continent" and the write happened with
the saveAlsoInIntermediateLevels boolean set to true, so the write will be
performed on the corresponding "city", "country" and "continent" locations.

AddToList

The provided addToList API uses the parameters reported below:

• referringAreaType : the identifier of the level in the hierarchy where we want
the aggregation to happen (e.g., "district", "city", "country").

• saveAlsoInIntermediateLevels : a boolean that if set to true will save the
value to all levels starting from the current level where the function is deployed,
up until the level specified in referringAreaType . If false the value will be
only saved at the level specified in referringAreaType .

• ttl : the Time-To-Live of the value.

• key : the key associated to the list.

• data : the value to be saved in the list.

Example

Suppose the function is to be deployed in the "city" level. Here we add the
value "myValue1" to the list specified by the key "my_list1".

const edgeDb = require(’edge -db’);
const dataDomain = { referringAreaType: "continent",

saveAlsoInIntermediateLevels: false , ttl: 60*60*1000 };
const isSuccess = await edgeDb

.withDataDomain(dataDomain)

.addToList("my_list1", "myValue1");

The referringAreaType is set to "continent" and the write happened with
the saveAlsoInIntermediateLevels boolean set to false, so the value "my-
Value1" will be only added to the list "my_list1" present in the corresponding
"continent" location.



46 5| The Prototype

Example

Suppose the function is to be deployed in the "city" level and that the levels in
the hierarchy are the following in an increasing order of size: "district", "city",
"country", "continent". Here we add the value "myValue2" to the list specified
by the key "my_list1".

const edgeDb = require(’edge -db’);
const dataDomain = { referringAreaType: "continent",

saveAlsoInIntermediateLevels: true , ttl: 60*60*1000 };
const isSuccess = await edgeDb

.withDataDomain(dataDomain)

.addToList("my_list1", "myValue2");

The referringAreaType is set to "continent" and the write happened with
the saveAlsoInIntermediateLevels boolean set to true, so the value "my-
Value2" will be added to the list "my_list1" present in the corresponding "city",
"country" and "continent" locations.

5.3.2. Internal Communication

In some of the write calls, locations need to communicate internally to exchange
the data. For example in a scenario where a simple "set" is performed at the
"city" level with referringAreaType equal to "continent", the edge-db needs
to forward the data to the corresponding "continent" location. In our solution this
exchange only happens starting from a location of a lower level, going into a location
of an upper level. There is no internal communication happening up-to-down or
mid-level.

To implement the communication we chose to use the same OpenFaas system
used for running functions written by the developer: we implemented an HTTP-
triggered function that receives the data and can save it in the database of the
location. Having a function makes the architecture more modular, and it will be
easier to add filters or a more advanced authentication to the communication.

5.4. Applying the Prototype to Use Cases

In this section we show a few examples where we apply our solutions to solve the
same use cases that we presented in Section 4.5.
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IoT Data Compression

As we showed, in this use case we are trying to compress the data of IoT sensors by
sending only significant value changes.

This has been done by developing a stateful function that checks whether the new
value is equal to the previous value:

Function code (placed in the folder "iot-data-reduction"):

const edgeDb = require("edge -db");
const ioTDataDomain = { referringAreaType: "location",

saveAlsoInIntermediateLevels: false , ttl: 5*24*60*60*1000 }; //
5 days TTL.

module.exports = async (event , context) => {
const iotData = event.body.iot_data;
const sensorName = event.body.sensor_name;
const previousIotData = await edgeDb.get("latest_data_of_" +

sensorName);

if(iotData !== previousIotData) {
await edgeDb

.withDataDomain(ioTDataDomain)

.set("latest_data_of_" + sensorName , iotData);

// Send value to the cloud.

return context
.status (200)
.succeed(’Value updated.’);

} else {
return context

.status (200)

.succeed(’Value not changed.’);
}

}

Function specification:

1 f un c t i on s :
2

3 i o t−data−reduct ion :
4 l ang : n o d e 1 4
5 handler : . / i o t −data − r e d u c t i o n
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6 image : d o c k e rHubRe f / i o t −data − r e d u c t i o n : l a t e s t
7 l im i t s :
8 memory: 2 5 6 Mi
9 cpu: 1 0 0 0m

10 r eque s t s :
11 memory: 4Mi
12 cpu: 0m

Deployment command:

1 deployer deploy iot -data -reduction infrastructure.json --

inEvery building --inAreas factory1 factory2

Essentially we developed a stateful function that compares the saved value of a
sensor with the current value, and if different this value gets updated and forwarded
to the cloud.

Road Traffic Monitoring

As we showed, in this use case we analyze video footage data to get an insight on
the road traffic and then use such insight in an algorithm to find the fastest path
between two points.

It has been implemented by using two functions: an HTTP trigger that receives
data from the cameras, converts the footage in a value of traffic and finally saves
this value; and another HTTP trigger that is called by the user when interested in
obtaining the fastest path between two points.

Code of the first function (placed in the folder "video-footage-receiver"):

const edgeDb = require("edge -db");
const trafficStatusDataDomain = { referringAreaType: "central",

saveAlsoInIntermediateLevels: true , ttl: 30*60*1000 }; // 30
minutes TTL.

module.exports = async (event , context) => {
const videoFootageData = event.body.footage_data;
const cameraId = event.body.camera_id;
const trafficStatus = await analyzeCrowdStatus(videoFootageData);
const response = await edgeDb

.withDataDomain(trafficStatusDataDomain)

.set("traffic_" + cameraId , trafficStatus);
return context
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.status (200)

.succeed(response);
}

Code of the second function (placed in the folder "get-fastest-path"):

const edgeDb = require("edge -db");

module.exports = async (event , context) => {
const startingPoint = event.body.starting_point;
const destinationPoint = event.body.destination_point;

const cameraIds = await getCameraIdsForPossiblePaths(
startingPoint , destinationPoint);

const trafficStatuses = [];
for(const cameraId of cameraIds) {

const trafficStatus = await edgeDb.get("traffic_" + cameraId);
if(trafficStatus === null || trafficStatus === undefined)

trafficStatuses.push (1.0);
else

trafficStatuses.push(trafficStatus);
}

const bestPath = await computeBestPath(cameraIds , trafficStatuses
);

return context
.status (200)
.succeed(bestPath);

}

Functions specification:

1 f un c t i on s :
2

3 video−footage−r e c e i v e r :
4 l ang : n o d e 1 4
5 handler : . / v i d e o − f o o t a g e − r e c e i v e r
6 image : d o c k e rHubRe f / v i d e o − f o o t a g e − r e c e i v e r
7 l im i t s :
8 memory: 2 5 6 Mi
9 cpu: 5 0 0m

10 r eque s t s :
11 memory: 4Mi
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12 cpu: 0m
13

14 get−f a s t e s t −path :
15 l ang : n o d e 1 4
16 handler : . / g e t − f a s t e s t −pa th
17 image : d o c k e rHubRe f / g e t − f a s t e s t −pa th
18 l im i t s :
19 memory: 2 5 6 Mi
20 cpu: 1 0 0 0m
21 r eque s t s :
22 memory: 4Mi
23 cpu: 0m

Deployment commands:

1 deployer deploy video -footage -receiver infrastructure.

json --inEvery district --inAreas us

2

3 deployer deploy get -fastest -path infrastructure.json --

inEvery city --inAreas us

4

5 deployer deploy get -fastest -path infrastructure.json --

inEvery country --inAreas us

Trending Topics

As we showed, in this use case we want to find the trending topics in a certain region
in an application (like trending users in a social network, or trending searches).

It has been implemented using two functions: an HTTP trigger that receives the
topics from the users and aggregates the data; and a cron trigger that gets called
periodically to find the trending topics from the list of topics present in the region.

Code of the HTTP-triggered function (placed in the folder "search-analytics-data-
receiver"):

const edgeDb = require("edge -db");
const trendingSearchesDataDomain = { referringAreaType: "country",

saveAlsoInIntermediateLevels: true , ttl: 4*60*60*1000 }; // 4
hours TTL.
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module.exports = async (event , context) => {
const searchData = event.body.search_data.toLowerCase ();
const response = await edgeDb

.withDataDomain(trendingSearchesDataDomain)

.addToList("latest_searches_list", searchData);
return context

.status (200)

.succeed(response);
}

Code of the cron-triggered function (placed in the folder "search-analytics-performer"):

const edgeDb = require("edge -db");

module.exports = async (event , context) => {
const latestSearchesList = await edgeDb.getList("

latest_searches_list");

const trendingSearches = await getTrendingSearches(
latestSearchesList);

return context
.status (200)
.succeed(trendingSearches);

}

async function getTrendingSearches(latestSearchesList) {
// Compute trending searches from searches list.

}

Functions specification:

1 f un c t i on s :
2

3 search−ana l y t i c s −data−r e c e i v e r :
4 l ang : n o d e 1 4
5 handler : . / s e a r c h − a n a l y t i c s −data − r e c e i v e r
6 image : d o c k e rHubRe f / s e a r c h − a n a l y t i c s −data −

r e c e i v e r
7 l im i t s :
8 memory: 2 5 6 Mi
9 cpu: 1 0 0 0m

10 r eque s t s :
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11 memory: 4Mi
12 cpu: 0m
13

14 search−ana l y t i c s −performer :
15 l ang : n o d e 1 4
16 handler : . / s e a r c h − a n a l y t i c s −p e r f o r m e r
17 image : d o c k e rHubRe f / s e a r c h − a n a l y t i c s −p e r f o r m e r
18 l im i t s :
19 memory: 2 5 6 Mi
20 cpu: 1 0 0 0m
21 r eque s t s :
22 memory: 4Mi
23 cpu: 0m
24 annotat ions :
25 t op i c : c r on − f u n c t i o n
26 schedu le : " 0 ,30 * * * * "

Deployment commands:

1 deployer deploy search -analytics -data -receiver

infrastructure.json --inEvery city

2

3 deployer deploy search -analytics -performer infrastructure

.json --inEvery territory
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6| Experimental evaluation

In this chapter, we present experimental results on the system proposed. Two types
of evaluation are present: a first assessment done on the working prototype run-
ning on multiple Virtual Machines (VMs) and an evaluation using simulations run
on a discrete-event simulator. In the first case, since it’s not possible to emulate
a network similar to a real edge network due to the amount of resources needed,
we focus on the effectiveness, efficiency and usability of the framework. While
with the discrete-event simulation at hand we can focus on the latency and the
bandwidth consumed.

6.1. Emulation

We tested our prototype on an emulation of an edge network.

Emulating a node required running a Virtual Machine (VM), installing Kubernetes
on the VM and installing OpenFaas and Redis on top of Kubernetes. These services
require the usage of hardware resources, so we were only able to test our prototype
with a small number of nodes, and not on an emulation with hundreds of nodes,
which would be more similar to a real edge network.

6.1.1. Performance

We found that, after paying the cold-start price where the initialization of the
container running the function would create a noticeable latency, functions were
executed in milliseconds even when using the (local) stateful support. This speed of
the stateful support has been possible thanks to the usage of an in-memory database
like Redis.

We also tested the scalability of our solution when using the faas flavour of Open-
Faas: we made 10’000 sequential calls to a node running a simple function and
analyzed with the tools provided by Kubernetes the internal situation of contain-
ers. We noticed that new containers were immediately created to fulfill the stream
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of requests. After the 10’000 calls ended and no new calls were made, OpenFaas
automatically scaled down and brought the number of idle containers to one.

6.1.2. Usability

In Section 5.4 we presented an implementation of a few use cases using our prototype.
We believe that, after understanding the functioning of our solution, implementing
new use cases becomes straightforward.

Our solution allows developers to forget about the location, which instead is handled
internally, and forget about handling the complex management of hundreds of geo-
distributed nodes. This avoids the creation of custom solutions that overfit on the
available infrastructure, creating a code that becomes task-specific and difficult to
extend and maintain.

In fact if a developer where to implement the "Road Traffic Monitoring" (seen in
Section 5.4) use case on an edge infrastructure, they would need to manually forward
the processed video footage to upper levels in the hierarchy, a hierarchy that would
have to be manually specified. And all the deployments would need to be carefully
made since there is no tool that allows to deploy the functions by hierarchy level.
Also developers would need to set up the infrastructure all by themselves, a process
which can create errors or malfunctions, while the serverless FaaS architecture in
our solution allows to forget about the handling of the infrastructure.

6.2. Simulation

Using a popular discrete-event simulator written in Python, called SimPy [34], we
developed a simulation of our approach. Then we compared our approach with the
simulation of a core-centric approach.

6.2.1. Components

To simulate the framework we developed the following abstract components in
SimPy:

• Client : a simplified abstraction of a machine that sends or requests data;

• Transmission : a simplified abstraction of a virtual link between two ma-
chines;
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• ProcessingUnit : a simplified abstraction of a machine that performs a pro-
cessing job;

In the following section we see in the details the behaviour of these abstract com-
ponents, and their respective realization.

Client

There are two realizations of the Client abstract component:

• DataProducerClient : produces a message with a significant amount of data
and always sends the message in a deterministic way to a single Processin

gUnit (when simulating our edge approach it sends the message to the lowest
level of the hierarchy);

• DataReaderClient : that produces a message with a small amount of data,
this message is used to simulate the retrieval of aggregated data. In the edge
scenario the level contacted to make the read request can be any level of the
hierarchy.

Transmission

The Transmission component allows to simulate the communication between a
Client and a ProcessingUnit or between two ProcessingUnit components.
The Transmission is initialized with two inputs: the information about the
distance between the two machines and a boolean value ( is_weak_network )
specifying if the communication passes through only the faster backbone network.
The job of the Transmission component is converting the two inputs into a single
value of latency and simulating this latency.

To compute the latency the Transmission component does as follows:

latency = network_delay + distance_delay

network_delay =

weak_network_delay, if is_weak_network

robust_network_delay, otherwise

distance_delay =
distance

SPEED_OF_SIGNAL
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The network_delay is a value representing a constant latency toll that needs to
be paid when making the communication, this value depends only on the boolean
is_weak_network . The network which is used by the client (i.e., Wi-Fi, LTE,
copper cables) is considered to be weak.

The distance_delay is a value that is proportional to the distance that the signal
needs to travel.

The constant SPEED_OF_SIGNAL is computed in the following way:

SPEED_OF_SIGNAL = c · 0.67 · 0.50 · 1√
2

Where c is the speed of light in a vacuum; 0.67 denotes how fast a signal travels
through the optical fiber media [14]; 0.50 is used to take into consideration the round
trip time; 1√

2
(≈0.707) is used to take into consideration the fact that cables cannot

make a direct path between two points, this offset allows us to put as input the
straight line distance between two points.

ProcessingUnit

A ProcessingUnit component waits for data coming from a Transmission

component. When new data arrives it is put in an unbounded queue that is used
by the cores for starting the processes, so by having N cores it means that the Pro

cessingUnit can execute N processes in parallel. When a core is free it takes as
input the data from the queue and starts simulating the data processing. The simu-
lation time needed for the data processing is computed as the sum of start_delay

and time_to_process . The value of start_delay is used to simulate a constant
delay needed to start the processing and initializing the required resources, while
time_to_process is a value that is computed as:

time_to_process =
megabytes_of_data

bandwidth_capability

Where megabytes_of_data represents the quantity of data sent in the message
and bandwidth_capability represents the Megabytes per unit of time that the
core can process. As we will see, a core of an edge device is assumed to be less
performing than a core in a big cloud data-center.

The realizations of ProcessingUnit are shown below in Figure 6.1.
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Figure 6.1: Concrete realizations of the ProcessingUnit component.

6.2.2. Matching the Abstractions to a Use Case

To better narrow down the abstractions we can see in one of our use cases how these
abstractions match a real scenario: in the "Road Traffic Monitoring" use case the
DataProducerClient represents the camera producing frames of the road. The
camera sends the frame to the lowest level in the hierarchy, which in our example
architecture corresponds to the "district" level ( ProcessingLocationDistrict ).
While in the core-centric scenario the camera sends the frame to the central cloud
( ProcessingLocationCentral ).

The action of sending the frame is simulated using the Transmission compo-
nent. The frame is then processed by applying an image recognition algorithm, an
algorithm which is simulated by the receiving ProcessingUnit .

In the core-centric scenario the output data is ready when finished processing. While
in our edge scenario the ouput data is sent to the specified aggregating Processin

gUnit which needs to save the data. The communication is again simulated using
the Transmission component, while the saving of data is simulated as a small
processing of data in the aggregating ProcessingUnit .

A client can then need to know the traffic in a specific area. This is simulated using
the DataReaderClient component which can send a read request message, sent
using the Transmission component and processed by the receiving Processin

gUnit .
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6.2.3. Simulation Setting

Since the setting is similar in the various experiments, we present in the tables below
the default values of the variables used in the experiments. The actual value will
be extracted case by case from a normal distribution truncated to the left at zero.
If the standard deviation is zero the value is actually a constant. Unless specified
otherwise the values specified here are the ones used in the experiments.

Variable Mean Standard deviation

Number of clients 2000 0
Time between requests 10s 3s

Message size 423KB 150KB

Table 6.1: Default values for variables of DataProducerClient

Variable Mean Standard deviation

Number of clients 2000 0
Time between requests 5s 2s

Message size 10KB 1KB

Table 6.2: Default values for variables of DataReaderClient

Variable Mean Standard deviation

Weak network delay 12ms 8ms
Robust network delay 3ms 1ms

Table 6.3: Default values for variables of Transmission

Variable Mean Standard deviation

Number of districts 1000 0
Distance client-district 20km 8km

Number of cores per district 2 0
Processing bandwidth per core 10MB/s 0

Processing start delay 5ms 2ms

Table 6.4: Default values for variables of ProcessingLocationDistrict
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Variable Mean Standard deviation

Number of cities 400 0
Distance client-city 60km 15km

Distance district-city 50km 15km
Number of cores per city 2 0

Processing bandwidth per core 10MB/s 0
Processing start delay 5ms 2ms

Table 6.5: Default values for variables of ProcessingLocationCity

Variable Mean Standard deviation

Number of territories 200 0
Distance client-territory 300km 100km

Distance district-territory 290km 100km
Number of cores per district 4 0

Processing bandwidth per core 15MB/s 0
Processing start delay 4ms 1ms

Table 6.6: Default values for variables of ProcessingLocationTerritory

Variable Mean Standard deviation

Number of countries 80 0
Distance client-country 700km 300km

Distance district-country 690km 300km
Number of cores per country 4 0

Processing bandwidth per core 15MB/s 0
Processing start delay 4ms 1ms

Table 6.7: Default values for variables of ProcessingLocationCountry
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Variable Mean Standard deviation

Number of continents 7 0
Distance client-continent 1500km 500km

Distance district-continent 1490km 500km
Number of cores per continent 1000 0
Processing bandwidth per core 20MB/s 0

Processing start delay 4ms 1ms

Table 6.8: Default values for variables of ProcessingLocationContinent

Variable Mean Standard deviation

Distance client-central 5000km 2000km
Distance district-central 4990km 2000km

Number of cores 1000 0
Processing bandwidth 20MB/s 0
Processing start delay 4ms 1ms

Table 6.9: Default values for variables of ProcessingLocationCentral

6.2.4. Results

In each experiment we ran our SimPy simulation and let thousands of clients connect
to the hundreds of cloudlets and data centers, we collected data about latencies,
distances and traffic and now we show in this section the results. By having
many variables extracted from the truncated normal distributions, we are effectively
running random experiments where it makes sense to show a confidence interval
calculated on the list of samples obtained. But collecting numerous samples is
easy in a simulation, in fact we obtained in all the experiments a really tight 95%
confidence interval on the average that cannot even be seen on the plot.

Write by level

In this experiment we suppose that the developer wants a single geographical aggre-
gation, this means that we are simulating as if we were using our framework with
the saveAlsoInIntermediateLevels set to false . The clients send their data
to the bottom level of the hierarchy ( ProcessingLocationDistrict in case of
the edge approach, ProcessingLocationCentral in case of the cloud approach).
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The data is then processed and, in the case of the edge approach, forwarded to the
referringArea that aggregates the data.

Figure 6.2: Details on the average write latency compared between various aggre-
gation in the edge setup and compared to the cloud setup.

In Figure 6.2 we can see the average write latency for each setup. For the edge
approach we show the result of five different setups with five different levels of
aggregation (city, territory, country, continent, central). This average write latency
comes from four different operations:

• First link latency: latency of the communication between the client and the
receiving machine.

• Processing latency: latency that considers the wait time for a core to be free
and the processing time for the data sent by the client. We can see in the plot
that the processing time of the cloud solution is close to half of the processing
time in the edge setups, this is due the fact that the core bandwidth of a core in
ProcessingLocationCentral is supposed to be double the core bandwidth
of a core in ProcessingLocationDistrict .

• Second link latency: latency of the communication between the receiving Pro

cessingUnit and the aggregating ProcessingUnit . This latency is only
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present in the setups using the edge approach.

• Aggregation latency: time required by the aggregating ProcessingUnit to
save the data received from the ProcessingLocationDistrict . This time
is the sum of the wait time for a core to be free and the time to save the
processed data.

This result shows that with the edge approach using any aggregation level we have
a smaller average latency than the cloud solution thanks to a much smaller travel
distance needed to reach the aggregating ProcessingUnit . The only exception
is the central aggregation of the edge approach, which is expected since it has the
same travel distance of the cloud solution, but by doing the processing on the lower
level of the hierarchy we have a smaller processing power.

Using this same experiment we now analyze the huge improvements our edge ap-
proach gives to the traffic in the network.

Figure 6.3: Traffic per distance generated in the network.

In Figure 6.3 we show the total traffic in megabytes multiplied by the distance
travelled. This visualization is used to show that the cloud solution clogs the entire
network, instead by processing the data near the client we obtain a huge saving in
terms of bandwidth used in the network.
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Figure 6.4: Traffic per distance generated in the network (cut at a lower traf-
fic*distance value).

In Figure 6.4 we zoom on the values of the setups of the edge approach by cutting
the plot at a lower traffic*distance value. We can see how the traffic*distance values
in the first link for the edge approach are very much similar since in all five setups
we have the same communication between the DataProducerClient and the Pro

cessingLocationDistrict . While for the second link we find an increase in the
traffic*distance due to the fact that the distance increases between the Processin

gLocationDistrict and the aggregating ProcessingUnit .

Write all levels

In this experiment, for the edge approach, we suppose that the developer uses the
boolean saveAlsoInIntermediateLevels set to true and sets the refer

ringAreaType in our framework to the highest level of the hierarchy (central).
Meaning that all writes made at the receiving ProcessingLocationDistrict are
forwarded to the upper levels. This setup is compared to the cloud setup in which
data is sent to a central data center that can aggregate them by location.

Writes to upper levels happen in parallel, so we expect to have an average latency
similar to the latency of the edge setup with central aggregation of the previous
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experiment. This is in fact what we obtain as can be seen in Figure 6.5. In terms of
latency we are clearly in a case of disadvantage here since as it has been seen in the
previous experiment that by doing a central aggregation, like the cloud approach
does, we are not exploiting our edge approach to the max.

Figure 6.5: Average write latency of the single edge setup compared to the cloud
setup.

Many more messages are sent in parallel to the various aggregating ProcessingU

nit so we expect the traffic*distance in the network to increase compared to the
previous experiment. This is in fact true as can be seen in Figure 6.6, but still the
cloud setup clogs the network 2000% more than the edge setup.
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Figure 6.6: Traffic per distance generated in the network.

We saw in this experiment that even in a disadvantageous situation where our ap-
proach is used to aggregate the data in a central manner, which is not the intended
use case, the increase in write latency is less than 27%, but the improvement in
terms of traffic sent in the network is tremendous.

Write all levels, with cores performance as parameter

As in the previous experiment we are working in a scenario where the developer
imposes writes on all levels in the edge approach.

In our simulation we represented the performance of the cores as a processing band-
width, so we specified how much megabytes a core can process in a second. In the
previous experiments we used the default values reported in Section 6.2.3, so we
arbitrarily assumed that the ProcessingLocationDistrict and ProcessingLo

cationCity have 50% of the performance of ProcessingLocationCentral . We
now analyze the behaviour of the latency while slowly changing this percentage to
show that the increase in write latency is not substantial.
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Figure 6.7: Average write latency of the edge solution as a function of the cores
performance of lower levels

In Figure 6.7 it is shown the changing write latency of the edge solution due to the
changing performance of the ProcessingUnits cores, compared to the constant
latency of the cloud solution.

Note that the value 0.1 on the x-axis means that the performance of the core at the
edge is 0.1 times (10%) the performance of the core of the cloud solution.

From 1.0 to 0.40 we have an almost linear increase, which is not substantial. Then
down from 0.40 the cores can’t keep up with the requests and start to put them in
queue, creating an exponential increase in the latency.

So this experiment shows the following:

• By having a lower performance in the ProcessingUnits at the edge the
processing latency increase linearly, making the write latency also increase
linearly;

• By having a lower performance in the ProcessingUnits at the edge it
becomes easier to reach a limit where the cores can’t keep up with the requests,
creating an exponential increase in the write latency.
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Write all levels, with number of clients as parameter

In this experiment we are again working in the scenario where the developer imposes
writes on all levels while using the edge approach. But now we want to simulate,
in this extreme setup, how our framework behaves when the number of clients rises
without modifying other parameters. We start from 1000 clients, rising up to 350’000
clients.

Figure 6.8: Average write latency as a function of the number of clients

As expected we see in Figure 6.8 that, when the number of clients becomes too much
to handle, both the cores at the edge and the cores in the cloud are overwhelmed
and can’t keep up with the requests causing the queues to grow indefinitely and
consequently making the average latency grow.

We can also notice how the number of cores affects the latency: in the edge approach
by having a low number of cores it’s easier to be unlucky and having a momentary
spike where the ProcessingLocationDistrict can’t keep up with the requests,
causing new requests to be queued for a short time. Basically by increasing the
number of clients it becomes more probable to have a random spike in the requests,
that a single ProcessingLocationDistrict cannot handle immediately since it
is equipped with only 2 cores. This phenomenon causes a continuous increase in
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the average latency for the edge solution. Instead in the cloud solution, to start to
queue requests we have to first fill the 1000 cores, and for that to happen it needs
many more clients.

It’s important also to consider that in our simulation we are not modelling the access
to the database: in a cloud scenario in which writes happen to a single instance of the
database it can easily become a bottleneck if not replicated and handled correctly.

But again the improvements relative to the traffic generated in the network are
immense. In Figure 6.9 we show the total traffic*distance as a function of the
number of clients. Both the edge solution and cloud solution have a linear increase,
but the coefficient of the increase in the cloud solution is evidently bigger than the
one of the edge solution.

Figure 6.9: Total traffic*distance as a function of the number of clients

In this experiment we showed that our framework can keep up effectively with heavy
load, with only minor random congestions at the lower levels of the hierarchy. But
still provide immensely benefits in terms of traffic through the network.
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Read by level

We now start with a new type of experiment, focusing on the reads and not on
the writes. We will immediately see the benefit on the latency since by having a
geographical aggregation we can avoid travelling huge distances. In practice in this
experiment we have different setups in which every DataReaderClients in the
setup communicates to a certain level of the hierarchy of the edge solution. While in
the cloud solution clients can only communicate to the central cloud. In the figures
reported below we can see, for each level of aggregation, the average latency and
the average distance traveled, compared to the cloud solution.

Figure 6.10: Average latency and average distance traveled for the district aggrega-
tion compared to a central aggregation

Figure 6.11: Average latency and average distance traveled for the city aggregation
compared to a central aggregation
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Figure 6.12: Average latency and average distance traveled for the territory aggre-
gation compared to a central aggregation

Figure 6.13: Average latency and average distance traveled for the country aggrega-
tion compared to a central aggregation
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Figure 6.14: Average latency and average distance traveled for the continent aggre-
gation compared to a central aggregation

If we go up in the hierarchy to perform the aggregation we become more distant to
the reading client, creating a bigger latency on average.

We can see also how the average latency is proportional to the average distance:
when the distance increases, so does the latency due to the bigger travel distance.

If we compare the best scenario, in which the aggregation is performed at the lowest
level, to the cloud solution we see that the cloud solution creates a latency 350%
bigger than the district (19.5 ms compared to 88.5 ms).

Read all levels

This time we allow clients to perform the reads on every level, this means that
to have the data available the writes must have happened with the saveAlsoIn

IntermediateLevels boolean set to true . In the 51 setups that we ran we
increased the probability of making a read on an upper level of the hierarchy. The
first setup performs all the read requests at the district level, in the intermediate
setup the clients perform the read requests with almost an equal probability to all
levels, while the last setup performs all the read requests to the single central level.
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Figure 6.15: Average read latency as a function of the probability of making the
read request to an higher level

Figure 6.16: Average distance traveled for the request as a function of the probability
of making the read request to an higher level
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As expected we see a monotonic increase in the latency and a strict correlation
between the average distance traveled and the average latency.

Read district level, with cores performance as parameter

In this experiment clients make read requests to the lowest level of the hierarchy, the
district level, and we study the latency as a function of the cores performance of this
level. We arbitrarily assumed that the ProcessingLocationDistrict has 50%
of the performance of ProcessingLocationCentral , but now we slowly change
this percentage to analyze the behaviour of the latency.

Figure 6.17: Average read latency of the edge solution as a function of the cores
performance of lower levels

As can be seen in Figure 6.17, the effects of slower cores start to affect the latency
only when reaching very low percentages i.e., 10%, and still even at 1% of the
performance the latency is smaller than the one of the cloud solution. This is
because a read request is a fast operation and is not a processing intensive task, so
the cores can manage the load comfortably.
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Read district level, with number of clients as parameter

As a last experiment we see how the framework performs in the simulations with
a varying number of clients (and consequently a varying load). Similarly here read
requests are made to the lowest level of the hierarchy, the district level.

Figure 6.18: Average read latency of the edge solution as a function of the number
of clients

The read operation is a fast operation that does not require heavy processing, this
allows both the cloud solution and the edge solution to fulfill a million of requests
in a small amount of time before starting to not keep up with the load.

6.2.5. Simulation Summary

Thanks to the various experiments performed on the simulation we showed that
by using our framework we get immense benefits in terms of reduced traffic in
the network while allowing faster reads when the data aggregation needed is not
central. In a case where a central aggregation is still needed we showed that the
write requests suffer an increase in latency, but the increase is not substantial.

We also noticed how our edge solution can be affected by random spikes in the
requests due to the small number of cores and resources in the lowest level of the
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hierarchy, so there is a clear room for improvements on this matter, but still the
increase in latency is not drastic.
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7| Conclusions and Future

Developments

7.1. Conclusions

The large diffusion of smart devices and IoT sensors has resulted in an unprece-
dented growth in the amount of collected data. Core-centric approaches have
shown to be inefficient as they need to transfer data back and forth between the
core and the devices, generating notable latencies. Therefore new approaches, which
exploit the tremendous power of the edge of the network, are replacing the core-
centric approaches.

In this thesis we have studied the problem of performing stateful computations in
a geo-distributed and heterogeneous scenario, that is the edge of the network.

After analyzing the state of the art in the literature, we defined key research ques-
tions that guided our research. We started by collecting and organizing the use
cases predominantly affected by bandwidth and latency constraints. With the use
cases at hand we studied the current frameworks provided by the industry and
we noticed that some of the use cases were left out and couldn’t be fulfilled by the
available frameworks. This situation forces developers to create ad hoc solutions on
the infrastructure, a process which is error-prone and task-specific.

Therefore we tried to solve the gap of fulfillment present in the use cases, by propos-
ing a new solution which supports the characteristics of the use cases left out. We
designed and then implemented a prototype for this solution which brings stateful
computations and location awareness in contexts where a change of location of the
clients does not occur or is not important (the solution in fact does not provide
session consistency).

We then evaluated the performance and usability of our prototype in a simple
scenario. Instead to evaluate the solution in a complex but more realistic scenario we
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resorted to a discrete-event simulation. We found that, by using our framework
with the right use cases, we get immense benefits in terms of reduced traffic in
the network and in terms of lower latencies, especially in cases where the data
aggregation needed is not central. However we also noticed how our solution can be
affected by a latency increase due to random spikes in the requests and due to the
small number of cores and resources at the edge of the network. Nevertheless the
results of the evaluation confirmed the power and effectiveness of the proposed
solution.

7.2. Future Developments

In this thesis, we have addressed several key issues related to stateful serverless
computing on the edge by designing and implementing a new solution. However,
with our solution, not every use case can be fulfilled, in fact the absence of session
consistency makes the usage impractical in a dynamic context where the location
of the client changes. Therefore a possible improvement and a possible research
direction could be session consistency in the context of stateful serverless computing
on the edge.

Another problem with our solution is the possibility for edge locations to be over-
whelmed due to random spikes in requests targeting a specific location: our solution
does not support the offload of the computation to free up some resources from
an overloaded node. On the contrary, for how we thought our solution, in some use
cases it’s important to be static and to always reach the same node.

In the context of serverless computing a common problem is the phenomenon of
cold-start, which impacts processing latency. As we saw, there exist solutions that
firmly mitigated the problem reaching milliseconds cold-start latencies (Cloudflare
Workers), but unfortunately these solutions are currently proprietary.
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The resulting artifacts of our research have been released as open-source software
[25]. Here we present a concise guide on how to run and use these artifacts.

Note that this guide is not meant to be universal, and instead shows the steps we
performed to run the system in our specific setup.

A.1. Running the Prototype

For running the prototype we used the faas flavour of OpenFaas, which runs on top
of Kubernetes. If faasd, the lighter version of OpenFaas, is needed, then a slightly
different setup would be necessary.

A.1.1. Prerequisites

The following applications and Command Line Interface programs are needed to
setup the framework:

• npm: the default package manager for the Node.js runtime environment;
More info at this link: docs.npmjs.com/downloading-and-installing-node-js-
and-npm

• arkade: a portable marketplace for downloading popular devops CLIs and
installing helm charts;
It can be installed with curl -sLS https://get.arkade.dev | sudo sh ;
More info at this link: github.com/alexellis/arkade

• faas-cli: the Command Line Interface of OpenFaas ;
It can be installed with arkade get faas-cli ;

• helm: the Kubernetes package manager;
It can be installed with arkade get helm ;

• minikube: a local Kubernetes engine;

https://docs.npmjs.com/downloading-and-installing-node-js-and-npm#using-a-node-version-manager-to-install-nodejs-and-npm
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm#using-a-node-version-manager-to-install-nodejs-and-npm
https://github.com/alexellis/arkade
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On our setup running macOS Big Sur with a x86-64 CPU it was installed with
brew install minikube ;
More info at this link: minikube.sigs.k8s.io/docs/start/

• deployer: the CLI tool that we developed and that allows to deploy functions
on the architecture;
It can be installed by running the following command in the directory where
the source code of the CLI is stored: npm install -g ;

A.1.2. Kubernetes Setup

To run Kubernetes we used minikube, a software which allows to easily create a
Virtual Machine environment equipped with Kubernetes. Note that in a production
environment minikube is not recommended, but in our emulation it was perfect to
run multiple nodes that emulate the nodes in an edge network.

The following are the commands we used to start the Virtual Machines (note that
as virtualization software connected to minikube we used Parallels Desktop):

1 minikube delete --all # Delete previous VMs

2

3 minikube config set driver parallels # Set Parallels as

virtualization software

4

5 minikube config set cpus 2 # Set 2 CPUs per VM

6

7 minikube config set memory 2048 # Set 2048MB of RAM per

VM

8

9 minikube start --profile p1 # Start a new VM with name

p1

10

11 minikube start --profile p2 # Start a new VM with name

p2

12

13 minikube ip --profile p1 # Get IP address of p1

14

15 minikube ip --profile p2 # Get IP address of p2

16

https://minikube.sigs.k8s.io/docs/start/
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17 kubectl config get -contexts # Print Kubernetes contexts

(should show two Kubernetes machines , p1 and p2)

18

19 kubectl config use -context p1 # Use p1 for the next

commands

20

21 kubectl get po -A # List all pods running on Kubernetes

At the end of these commands the results are, in this case, the creation of two empty
VMs running Kubernetes, without any external software installed on it. Now the goal
is to install the framework we developed on top of these Kubernetes installations.

Three steps are still needed:

• Install the faas flavour of OpenFaas on top of Kubernetes ;

• Install Redis on top of Kubernetes;

• Deploy on OpenFaas the function we developed that allows locations to receive
forwarded write actions.

A.1.3. OpenFaas Setup

On each Kubernetes environment it is needed to install OpenFaas. The installation
can be performed in the following way:

1 # Use p1 for the next commands (should be changed for

every VM)

2 kubectl config use -context p1

3

4 # Apply OpenFaas configuration

5 kubectl apply -f https ://raw.githubusercontent.com/

openfaas/faas -netes/master/namespaces.yml

6

7 # Write OpenFaas password in a secret

8 kubectl -n openfaas create secret generic basic -auth --

from -literal=basic -auth -user=admin --from -literal=

basic -auth -password =" customOpenFaasPassword"

9

10 # Install OpenFaas
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11 helm upgrade openfaas --install openfaas/openfaas --

namespace openfaas --set functionNamespace=openfaas -fn

--set basic_auth=true

12

13 # Install the cron addon

14 helm upgrade --install cron -connector openfaas/cron -

connector --namespace openfaas

15

16 # Login to OpenFaas running on machine p1 that we have

just installed

17 echo "customOpenFaasPassword" | faas -cli login -u admin

--password -stdin --gateway http ://$(minikube ip --

profile p1):31112

At the end of this step we have the faas flavour of OpenFaas installed on every node.

A.1.4. Redis Setup

On each Kubernetes environment it is needed to install Redis. The installation can
be performed in the following way:

1 # Use p1 for the next commands (should be changed for

every VM)

2 kubectl config use -context p1

3

4 # Install Redis

5 helm install my-openfaas -redis bitnami/redis --namespace

openfaas -fn --set auth.password =" customRedisPassword"

--set master.persistence.enabled=false

At the end of this step we have a Redis instance installed on every node on top of
Kubernetes. Now we can put all the IP addresses of the machines in the JSON of
the infrastructure.
The IP addresses can be obtained, as seen, with minikube ip –profile p1 .
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A.1.5. The Receiver Function

After the infrastructure JSON file is ready we can deploy the function "edge-db-
data-receiver" which allows locations to receive forwarded write actions.

1 # Move in the directory where the "edge -db-data -receiver"

function is stored

2 cd ./ framework/functions -main/

3

4 # Build and publish the "edge -db -data -receiver" function

on a Docker Registry

5 faas -cli publish --filter edge -db -data -receiver --

platforms linux/arm/v7,linux/amd64

6

7 # Deploy the function on every level , except the lowest

level

8 deployer deploy edge -db -data -receiver infrastructure.json

--inEvery city

9 deployer deploy edge -db -data -receiver infrastructure.json

--inEvery country

10 deployer deploy edge -db -data -receiver infrastructure.json

--inEvery continent

At the end of this step the framework is ready to receive custom functions, that can
be created by the developer as seen in Chapter 5.

A.1.6. Deploying Custom Function

To deploy new custom functions it is simply needed to perform the following com-
mands:

1 # Move in the directory where the "stack.yml" file is

defined

2 cd ./ framework/functions -main/

3

4 # Build and publish the function on a Docker Registry

5 faas -cli publish --filter my-function -name --platforms

linux/arm/v7,linux/amd64

6
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7 # Deploy the function

8 deployer deploy my-function -name infrastructure.json --

inEvery district --inAreas italy paris --exceptIn

milan

A.2. Debugging the Prototype

A.2.1. Debugging Custom Functions

The following commands can be used to print the logs of a function:

1 # Select which node to debug

2 kubectl config use -context p1

3

4 # Print the logs of the function running on that node

5 kubectl logs -n openfaas -fn deploy/my-function -name -f

Or alternatively the faas-cli can be used as follows:

1 faas -cli logs my -function -name --gateway http ://$(

minikube ip --profile p1):31112

A.2.2. Debugging the Framework

To debug the framework itself or to understand why a function is having issues
starting up, the following commands can be used:

1 # Select which node to debug

2 kubectl config use -context p1

3

4 # List all pods and components running on Kubernetes

5 kubectl get po -A

6

7 # Print many info about a single component (in this

example the gateway component)

8 kubectl describe -n openfaas deploy/gateway

9 kubectl logs -n openfaas deploy/gateway

10

11 # Print events happened in the openfaas namespace
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12 kubectl get events -n openfaas --sort -by=. metadata.

creationTimestamp

A.3. Running the Simulation

The Simulation is composed of many Phython files, one file for each scenario. To
run a scenario it is simply possible to run the Python file with a Python IDE (e.g.,
PyCharm).

Note that a single configuration in some scenarios may simulate millions of machines
and the simulation of such a huge number of machines requires an high utiliza-
tion of RAM. For example the scenario included in simulation_read_district_

level_clients_ratio.py can use up to 14 GB or RAM for the simulation. If
such usage of RAM becomes a problem, it is possible to make a modification to
the trade-off between the speed of the execution of the simulation and the usage of
RAM by modifying the following line:
pool = multiprocessing.Pool(processes=4)

and replacing the 4 with a lower number to use less RAM, while also using less par-
allelism for the simulation, resulting in a slower execution. In practice this number
represents how many configurations of the scenario can be run in parallel on the
given processes.
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