
A Human-in-the-Loop Approach for Post-hoc Explainability of CNN-
based Image Classification

Tesi di Laurea Magistrale in
Computer Science and Engineering - Ingegneria Informatica

Antonio De Santis, Matteo Bianchi, 10639721, 10582370

Advisor:
Prof. Marco Brambilla

Co-advisors:
Dr. Andrea Tocchetti

Academic year:
2021-2022

Abstract: Transparency and explainability in image classification are essential
factors for establishing trust in machine learning models and detecting biases and
errors. State-of-the-art explainability methods generate heatmaps that highlight
the regions of the image where a specific class is identified, without providing a
complete explanation of how the model arrived at its decision. Striving to cover
such a need, we propose a post-hoc technique for generating comprehensive local ex-
planations that provide an overview of the feature extraction process of the model.
These explanations consist of a layer-wise visualization of the features extracted
by the model from the input image and we refer to them as Abstract Network
Visualizations (ANV). Such features are represented by heatmaps generated from
clustering and merging similar Feature Maps to which we associate a weight using
Grad-CAM, a local explainability technique. These heatmaps are also described
by a set of labels collected by means of a gamified crowdsourcing activity, which
further improves the interpretability of our local explanations. Finally, we show
that labels can also enable the production of global explanations by aggregating
similarly labeled maps across multiple images.

Key-words: explainability, image classification, machine learning, gamification, crowdsourcing.

1. Introduction

1.1. Context and Problem Statement

In recent years, Deep Neural Networks have transformed the field of Artificial Intelligence by revolutionizing the
way machines learn. Convolutional Neural Networks have emerged as the state-of-the-art for image classification
tasks [21], thanks to their exceptional ability to recognize patterns and features in images. However, as AI
models have become more powerful, their decision-making process has become increasingly complex and less
transparent. As a result, the use of the term black-box has become prevalent to describe such models, since only
their input and output are known, while what happens inside is too intricate for humans to comprehend. This
issue leads to opacity in AI decisions, which is a serious concern [52] that can lead users to lose trust in such
systems [24]. Furthermore, blindly trusting AI can have disastrous repercussions, including the loss of human
life in fields such as healthcare or autonomous driving in which image classification systems are becoming
increasingly employed [9, 50]. In response to these concerns, the EU’s General Data Protection Regulation

1



(GDPR) introduced a right to obtain an explanation for automated decisions1. Furthermore, the European
Commission later proposed the Artificial Intelligence Act (AIA) which introduced transparency requirements
for high-risk AI systems2.

The problem of transparency is not only a matter of trust. Debugging black-box models is a challenging task
without insights into how the model generated its predictions. Without understanding the reasoning behind
errors and biased predictions, it can be challenging to address and fix these errors. This increasing need for
transparent AI has been recognized by the scientific community, which led to the rise of a new research area
called Explainable Artificial Intelligence (XAI). XAI has made significant progress in developing techniques for
producing explanations of AI decisions, although some critical limitations still need to be addressed. For image
classification, these techniques mainly focus on producing visual explanations in the form of heatmaps that
highlight the pixels of the image that contributed the most to the output. While these heatmaps allow users
to know whether the AI is looking at the "right thing", a complete explanation should also provide insights
into how the AI produced the correct classification. Furthermore, current XAI techniques tend to focus on
providing local explanations (i.e., explanations of the output for a certain input image) only. While this is not
an issue for tabular data, where locally important features can be generalized to produce global explanations (i.e.,
explanations of the overall behaviour of the system), the same cannot be said for images. If local explanations
only consist of highlighted pixels, they are very difficult to generalize because the location of these pixels only
has meaning in the context of the analyzed image. To overcome these limitations, local explanations must
provide a comprehensive overview of the entire decision-making process of the machine. At the same time,
it should be possible to aggregate them to produce global explanations since local ones may not accurately
represent the model’s general behaviour when taken individually.

1.2. Proposed Solution

We propose a technique called Abstract Network Visualizations (ANV) that involves the use of human knowledge
to create comprehensive local explanations for image classifications performed by Convolutional Neural Networks
(CNNs), without requiring any modification or performance trade-off. These visualizations offer a detailed view
of the image features and patterns the CNN identifies at each stage of its execution, along with their respective
importance towards the output. We believe that having an overview of the AI decision-making process can
increase transparency, thus establishing greater trust in machine classifications.

These features/patterns the machine identifies are extracted by clustering feature maps (i.e, the outputs of
each neuron of the network), whose importance can be computed as a scalar weight using Grad-CAM, a state-
of-the-art XAI technique for the explainability of CNNs. Moreover, our approach incorporates crowdsourcing
and gamification to associate visual explanations with human concepts in the form of labels. For example, if
the machine detects the presence of the sky as an important feature in identifying a plane, this information is
represented as a heatmap highlighting the sky, labeled with the word "sky". Such a hybrid approach that com-
bines visual and textual explanations significantly improves interpretability [47] while enabling the generation
of global explanations by aggregating multiple local ones.

1.3. Document Structure

The rest of the document is organized as follows. Section 2 provides an introduction to AI and CNNs, along
with a discussion of the current state-of-the-art explainability approaches. In Section 3, Abstract Network
Visualizations are presented and thoroughly explained. Section 4 describes the necessary systems implemented,
including the clustering process and the crowdsourcing platform. In Section 5, we report on the experiments
conducted to validate our methodology and discuss the final results obtained. Finally, in Section 6, we draw
some conclusions discussing the limitations of our approach and provide insights into how these limitations can
be overcome in future research.

2. Background and Related Works

This section aims to introduce Convolutional Neural Networks, the model we are seeking to explain, and
the state-of-the-art explainability of these models. We begin by providing an overview of CNNs. Following,
we present a summary of the available explainability techniques for CNN-based image classification and how
human knowledge has been effectively incorporated into this field.

1https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679
2https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0206

2

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0206


2.1. Artificial Intelligence and Convolutional Neural Networks

Artificial Intelligence (AI) is a rapidly growing field aiming to develop systems capable of performing tasks that
normally require human intelligence, such as perception, reasoning, and decision-making. One of the most widely
recognized approaches is Machine Learning (ML), a subset of AI that focuses on developing algorithms allowing
systems to improve their performance through experience. These algorithms are designed to automatically learn
from data and make predictions without the need for explicit guidance [56].

One of the most popular and powerful types of ML approaches is called Deep Learning (DL). DL utilizes
Artificial Neural Networks (ANNs), i.e., sophisticated models designed to approximate a transfer function that
maps the inputs and outputs of a certain dataset. They are made up of layers of fully interconnected nodes (as
represented in Figure 2), called neurons. Each neuron receives input signals from the neurons of the previous
layer in the form of numerical values. These inputs are multiplied by their associated weights and then summed
together. The neuron then applies a non-linear mathematical operation called activation function (e.g., ReLU)
to this sum. The output of the activation function is then passed on to the next layer of neurons in the network,
where it is used as input. The process is repeated until the last layer is reached, at which point its final output
is provided. This structure is particularly powerful since it can approximate almost any function [55].

Figure 1: Venn Diagram for AI, ML & DL.

Figure 2: Example of an Artificial Neural Network with two
Hidden Layers. The inputs (x) are passed to the Input Layer,
processed through the Hidden Layers and a score (y) for each
output class is finally computed in the Output Layer.

The main reasons ANNs and DL have become increasingly popular in recent years, besides their high flexibility,
are the availability of huge amounts of data for training and the big improvements made in computational
power. This combination has made it possible to build and train neural networks with many layers, called Deep
Neural Networks (DNNs), which can learn very complex non-linear relationships from large amounts of data
[39].

The current standard for computer vision tasks, such as image classification [22] and object detection [16], is
represented by a subtype of DNNs called Convolutional Neural Network (CNN) [36]. As it is impractical to
directly feed images into a basic DNN because of their high dimensionality with a multitude of non-essential
information, a CNN introduces convolutional and pooling layers. The former can extract meaningful information
from the input image while the latter condense this information in a lower dimensionality. Convolutional layers
perform a convolution operation between the input and a set of matrices of trained weights called filters, followed
by the application of a non-linear activation function. The result of these operations is a set of feature maps
which represent where a certain feature is found in the image. Pooling layers are then used to reduce the size of
the feature maps, condensing the extracted features. The sequential application of convolution and pooling is
named feature extraction. When the dimensionality of the image is reduced to the level of a vector of numerical
values, it is fed to a set of fully connected layers for classification. An example of a basic CNN architecture is
shown in Figure 3.

3



Figure 3: An example of a typical CNN consisting of multiple convolutional and pooling layers, followed by one
fully connected layer.

The development of CNNs, or more in general of DNNs, improved the performance and the accuracy of ML
models in a way that completely revolutionized the field of artificial intelligence. At the same time, the quantity
and complexity of mathematical operations they perform have made their decision process incredibly difficult to
be understood. For this reason, they are usually referred to as “black-box” models. The output of these models
is known and often very accurate, although their internal logic is too complex to be interpreted by humans.

2.2. Explainability

The lack of transparency in black-box models has hindered trust and acceptance towards AI especially in
sensitive domains such as medicine, defence, finance, and law where the consequences of a decision can be
significant [12, 52]. Aiming to address this issue, the field of Explainable Artificial Intelligence (XAI) was created
to make ML systems explainable. While there is no universal agreement on the definition of explainability, it
can be described as a method of building an interface between humans and the AI system that can provide
accurate explanations of the AI decisions that are also comprehensible to humans [3].

Developing an interface to understand the decision-making process of a trained black-box model is referred to
as Post-hoc Explainability [57]. In contrast, Ante-hoc Explainability aims to make a model interpretable from
the start of the training process by using so-called white-box models (e.g. Decision Trees) that are inherently
transparent but not always as accurate or powerful as black-box models. The act of modifying the architecture
of a black-box model to improve its transparency is also considered ante-hoc explainability since it requires to
re-design and re-train the model. An example of a successful implementation of this idea is the interpretable
CNN designed by Zhang et al. [59], which is characterized by a modification in the training algorithm to push
the filters of the last convolutional layer towards the representation of a specific object part (e.g., head or torso
of an animal). It is possible to gain insight about the patterns learnt by the CNN by then visualizing the outputs
of these filters for different inputs. Another interesting example is InterpNET [5] which is an interpretable model
based on a concatenation of a CNN with a language-generating neural network. InterpNET can provide both
a classification of the image and its description which can be used as an explanation, although the drawback is
the need for a big dataset of explanations and a potential problem of "explaining the explainer" (i.e., the fact
that the explanation process is a black-box that in turn must be explained to be trustworthy). While ante-hoc
explainability is an important aspect of model development, it has major limitations and it may not always be
practical or possible for deployed black-box models. In these scenarios, post-hoc techniques become essential
for understanding and interpreting the outputs of these models.

Figure 4: Two main categories of Explainable AI: transparency design (ante-hoc) and post-hoc [57].

4



The scientific literature has further classified post-hoc explainability into two main categories: model-agnostic
and model-specific [17].

2.2.1 Model-Agnostic Explainability

Model-agnostic approaches for explainable AI refer to XAI methods that are independent of the underlying ML
model and can be applied to any model regardless of its architecture or type. These methods don’t access the
internal workings of the model but instead focus on studying the input-output relationship. One of the most
well-known contributions to the model-agnostic approach is the technique of Local Interpretable Model-Agnostic
Explanations (LIME) [38]. LIME aims to explain the predictions of a black-box model by generating a set of
perturbed versions of the input and analyzing how the output changes for each perturbation. This allows LIME
to compute the most important input features contributing to the prediction made by the black-box model. In
the context of image classification, features are represented by regions of the image (as represented in Figure 5),
hence LIME provides visual explanations.

(a) Husky classified as wolf. (b) LIME’s explanation.

Figure 5: LIME was able to identify that the region of the image containing the snow was the most important
in the classification [38].

A similar approach to LIME is CIU (Contextual Importance and Utility) [2]. It explains a model’s predictions
by identifying the input features deemed important for the model’s outcome (Contextual Importance) while
assessing the positivity or negativity of their contribution to the prediction (Contextual Utility) and providing
an estimation of how favorable or unfavorable the feature value is for a given output class. Besides being in
its early development, CIU has shown performance comparable to LIME [15] or even superior, especially in
the medical domain [20]. Another very popular model-agnostic technique that focuses on measuring feature
importance is SHapley Additive exPlanations (SHAP) [27]. It computes the contribution of each feature for
a specific prediction by considering all possible coalitions of features and averaging their output predictions.
This is done by using Shapley values, a method from cooperative game theory used to distribute a value among
multiple players. For images, SHAP assigns importance scores to each pixel by calculating its contribution
to the final prediction and then it provides a heatmap of the most important regions of the image. SHAP,
LIME, and CIU are straightforward techniques to generate simple visual explanations for the predictions of any
black-box model and they represent the state-of-the-art for model-agnostic explainability. However, their main
limitation is that they don’t extract information directly from the internal structure of a model since they only
have access to inputs and outputs, and therefore may not be able to provide a robust explanation for certain
predictions [1].

2.2.2 Model-Specific Explainability for CNNs

Model-specific approaches are techniques for explaining the decisions made by a specific ML model. These
methods try to "open the black-box" and reverse engineer its internal structure to provide insights into how
the algorithm is making its decisions. In our case, we consider CNN architectures. Zeiler et al. [58] were
among the first to examine the internal workings of CNNs through their research on Deconvolutional Networks.
They created a method for reconstructing activations of intermediate layers and projecting them back to the
input pixel space, hence providing a visual representation of the information extracted (i.e., features) by the
network from the input image up to a chosen layer. In a later study, Simonyan et al. [42] proposed a gradient-
based visualization method to generate saliency maps, which they demonstrated to be a generalization of
the deconvolution approach. Gradient-based visualization uses the back-propagation method to compute the
gradients of the score function (i.e., the transfer function) with respect to the input image. The gradient reflects
the responsiveness of the score to changes in a given pixel, i.e., higher gradients indicate that the score is more
susceptible to changes for that pixel and, as a result, the pixel has a greater impact on the prediction. Hence,

5



gradients can be used to generate saliency maps that emphasize the important pixels in the image. SmoothGrad
[43] and Guided Backpropagation [44] are two widely adopted techniques that are built upon this idea to further
improve the quality of visualizations that can be generated.

Despite their effectiveness and ease of implementation, it has been shown that relying on gradients can sometimes
result in an inaccurate assessment of feature importance. According to Sundararajan et al. [45], this is due to the
saturation of gradients, which occurs when the score function flattens in the vicinity of the input. Consequently,
the gradients become either very small or equal to zero even if the inputs have significant importance due to
a significant output value of the score function. A solution to the saturation problem was provided by the
DeepLIFT [41] method, which calculates the contribution of each feature in relation to a baseline input (i.e.,
a black image). In 2017, Sundararajan et al. [46] introduced Integrated Gradients, combining the gradient-
based approach with the baseline input concept used in DeepLIFT. This methodology was able to overcome
the limitations of gradient-based methods by integrating the gradients of the prediction over a path from a
baseline input to the actual input. Additionally, it addressed the issue of implementation invariance, which
occurs when the method is potentially sensitive to unimportant model implementation aspects, one of the main
limitations of DeepLIFT. Nevertheless, a major disadvantage of Integrated Gradients is that it is significantly
more computationally intensive than other gradient-based techniques and despite being more faithful this is
rarely a worthwhile trade-off [28].

A different approach for extracting feature importance is through the extraction of activation maps (i.e., feature
maps) which was originally presented by Zhou et al. [61]. They proposed substituting the complicated-to-
understand fully connected layers with a Global Average Pooling (GAP) layer to reduce the feature maps into
a single scalar value that represents a particular feature. Then, it is possible (as shown in Figure 6) to do a
weighted linear sum of the feature maps to obtain a Class Activation Map (CAM), since the weights can be
interpreted as the feature maps’ importance towards the prediction of a certain class. The CAM can be upscaled
to the size of the input image and turned into a heatmap that can be used to identify the most important regions
for a particular class. The CAM can be interpreted as a weighted average of the sections of the input image
that were observed by the CNN just before the final prediction is made.

Figure 6: The fully connected layers of a CNN are substituted by a GAP and its weights towards a specific
class are extracted. The CAM is then computed through a weighted sum of the feature maps and highlights
the class-specific most important regions [61].

Compared to the methods mentioned so far, CAM stands out as the only method that can provide class-specific
explanations. Its visualizations are unique for each class as they exclusively highlight the regions that are relevant
to the chosen class. On the other hand, the main limitation of CAM is that it can only be applied to a specific
kind of CNNs employing a GAP layer before prediction. For architectures using fully connected layers, CAM
requires architectural changes that are significant enough to stress the concept of post-hoc explainability, such
as substituting and re-training the last layer which can sometimes even hinder model accuracy [25]. Selvaraju
et al. [40] later introduced a generalized version of CAM called Gradient-weighted Class Activation Mapping
(Grad-CAM) which can be applied to any CNN architecture. The main idea behind Grad-CAM is that the
weights needed to combine the feature maps can be calculated by applying a global average pooling on the
gradients of the score (before the softmax) for a given class with respect to the feature maps (2.1). The final
maps for a specific class are then generated by applying a ReLU to the weighted sum of the feature maps (2.2),
ensuring that only features that positively impact the prediction are taken into consideration. The authors refer

6



to the final map as Class-discriminative Location Map since it highlights the class location.

wc
k =

1

Z

∑
i

∑
j︸ ︷︷ ︸

global avg pooling

gradients︷ ︸︸ ︷
∂yc

∂Ak
ij

(2.1) Lc
Grad−CAM = ReLU

weighted sum︷ ︸︸ ︷(∑
k

wc
kA

k

)
(2.2)

Since Grad-CAM lacks fine-grained pixel-scale representations, it is often used in conjunction with other methods
that provide greater detail in contexts where a higher degree of pixel-level detail is required. An example of
such a combination is Guided Grad-CAM [40], which combines Grad-CAM with Guided Backpropagation.

Grad-CAM was a big step forward thanks to its computational efficiency, wide applicability and capability to
outperform other visualization methods in a variety of contexts [11, 60]. Furthermore, another advantage of
Grad-CAM is that it can be applied to any convolutional layer, although visualizations become progressively
worse while moving to shallower layers as they have smaller receptive fields (i.e., elements of the feature map
refer to a smaller area of the input image) and therefore focus on less semantic local features. An improved
version of Grad-CAM called Grad-CAM++ was proposed by Chattopadhyay et al. [10]. This new version
incorporates higher-order derivatives into the calculation of the class activation maps by considering second and
third-order gradients and only using the positive ones. Lerma et al. [23] later observed that Grad-CAM++
is nearly equivalent to standard Grad-CAM with positive gradients, which they refer to as Grad-CAM+. The
Grad-CAM+ algorithm differs from the original Grad-CAM in that it applies a ReLU directly to the gradients
before the GAP step. According to Lerma et al., the reason for this modification is to eliminate negative
gradients which are associated with regions containing features from classes other than the one being analyzed.
Several other variants of Grad-CAM have been developed (e.g., Eigen-CAM [34], Smooth Grad-CAM++ [35],
and Score-CAM [53]). They usually perform better than Grad-CAM in specific contexts and slightly worse in
others.

The presented methods generate heatmaps that highlight regions of the image with the highest influence on the
prediction. However, what is lacking is an explanation of why these regions are relevant. While these regions are
important as they contain patterns that the network has learnt to recognize, the interpretation of what these
patterns may consist of is highly subjective. For example, if a Grad-CAM heatmap highlights the region of a
cat’s nose as being important for the prediction "cat", this might suggest that the network is using information
about the nose to make the prediction. However, without further information about the specific features that
the CNN has learnt, it is impossible to know for certain. Following on the cat’s image example, it could be that
the network is using information about the texture of the fur near the nose, or about the presence of whiskers,
to make its prediction (see Figure 7).

(a) Correctly classified cat. (b) Grad-CAM explanation.

Figure 7: Grad-CAM highlights the region near the nose as the most significant for predicting a "cat", but it
cannot be said for certain whether the network learnt to recognize the nose specifically, or possibly the fur or
whiskers.

The authors of Grad-CAM proposed a possible way to address this issue by combining textual and visual
explanations. Their idea was to combine Grad-CAM with a technique proposed by Bau et al. [6] to automatically
assign names to neurons by training the model using images manually labeled with the names of the objects or
features present in it. These names are then used as a textual description of what the Grad-CAM generated
heatmap is highlighting to significantly improve the comprehensibility of these explanations.

Another way to identify the features a CNN has learnt was proposed by Kim et al. [19] in the form of a technique
named Testing with Concept Activation Vectors (TCAV). This technique makes it possible to determine the
importance of a specific feature or human concept for predicting a specific class. The method works by inputting

7



example images containing only one specific feature and observing the network’s predictions. For instance, they
could input an image of stripes in a CNN that classifies zebras to determine if the network is using the concept
of stripes in its prediction. This method can be used in detecting specific biases in neural networks (e.g., related
to race) and can be considered complementary to Grad-CAM. Indeed, it provides a global understanding of
model behaviour (i.e., global explanations) while Grad-CAM provides explanations of a specific prediction (i.e.,
local explanations). Both Grad-CAM and TCAV are still very effective in detecting biases and explaining AI
decisions but at the same time, it has been shown that they can also introduce bias in the explanations. For
Grad-CAM this happens when humans misinterpret why a region is highlighted due to biased assumptions while
for TCAV the bias can be introduced by the images that are selected for representing a feature [49]. Therefore,
it is crucial for future explainability frameworks that include these techniques to develop methods for mitigating
any potential bias they may introduce.

2.2.3 Human Knowledge and Crowdsourcing

Despite the multitude of techniques and advancements in AI explainability, there are still limitations in ensuring
that explanations are fully accurate and understandable from a human perspective. For this reason, many
researchers [13, 29, 54] have turned to human-centred (i.e., human-in-the-loop) techniques that utilize human
insight and reasoning to improve explanations of machine learning models. Mishra et al. [31] developed a
crowdsourcing method for collecting high-level concepts for image classification explanations. The method
involves presenting users with images and their correct labels, asking them to outline the location of the entity
together with the features they used to identify it. The resulting data is then aggregated on a per-image and
per-class basis to generate both global and local explanations. Later, Tocchetti et al. [48] proposed a two-
player gamified crowdsourcing activity for collecting human concepts that can then be used for explainability
purposes. In the proposed activity, one player is asked to guess the entity in a picture without seeing it by
asking about its features through closed questions to the other player who provides the answers and takes note
of the guessed features while also outlining them on the image. These methods can generate simple explanations
and collect human-interpretable features using only input images. Despite easing the data collection process,
such approaches should be combined with existing visual explanation techniques to contextualize them to an
actual ML model prediction.

Among the researchers who employed human knowledge in conjunction with other explainability methods were
Lu et al. [26]. They proposed using a game based on "Peek-a-Boom" to evaluate visual explanations generated
by different XAI techniques (i.e., Grad-CAM, SmoothGrad, Guided Backpropagation, and Saliency Maps). In
their implementation, only a small part of an image is initially shown, starting from the region deemed the most
important by an explainability method. If the player cannot guess the image, more pixels are revealed. The
number of pixels needed for the player to guess correctly determines a score for each explainability method,
representing how well humans can interpret it. Grad-CAM ended up with the highest score since it was able to
convey more human-understandable information in fewer pixels.

(a) Exposure rate of 5%. (b) Exposure rate of 15%.

Figure 8: Example of a Peek-a-Boom game where an image of a cat is gradually revealed to the players at
different exposure rates [26].

8



Human-in-the-loop approaches are not just effective at evaluating explanations but they also have the potential
to significantly improve them [14]. Mitsuhara et al. [32] proposed a framework to improve the explainability
and the performance of Attention Branch Networks (ABNs) (i.e., a DNN that integrates attention mechanisms
into the standard CNN) by combining human knowledge and Grad-CAM location maps. They had these
maps manually edited by human experts and then used them to fine-tune the attention process. Another
approach that focuses on global explainability was introduced by Balayn et al. [4]. They suggested augmenting
the heatmaps generated by explainability methods by incorporating semantic concepts through crowdsourcing
annotations. The main advantage of their approach is that the annotations are aggregated to allow the use
of different statistical mining techniques to generate global explanations about the model behaviour. Overall,
these methods demonstrated the value of incorporating human knowledge in the explainability of ML models,
hence foreseeing a promising direction for advancing the field of XAI.

3. Methodology

3.1. Abstract Network Visualizations

State-of-the-art XAI methods provide explanations for image classification predictions, by identifying the most
important region of the image that contributed to them. However, while these methods can explain where the
entity of the classification was identified, they do not offer a complete understanding of the machine rationale.
In order to have a comprehensive understanding of the rationale for an AI decision, we need to examine the
entire AI decision-making process. In the case of CNNs for image classification, this process includes multiple
stages of feature extraction from input images that happens through multiple layers. For example, considering
the classification of a dog’s image, one layer might identify the quadruped shape, the subsequent could extract
more specific features such as ears or eyes, and then the final layer could identify the dog’s head and body and
consequently classify the image as "dog". Having an overview of this feature extraction process can significantly
enhance the transparency of the classification. For this reason, the main objective of this work is to develop
a process to generate local explanations in the form of Abstract Network Visualizations (ANV), providing
human-understandable and accurate visualizations of the features extracted by the CNN at each layer. An
ANV (as shown in Figure 9) is composed of layers, each consisting of a set of heatmaps, which provide a visual
representation of the areas of the input image where important features were identified.

Figure 9: The ANV shows the feature extraction process layer by layer. Each layer contains a variable amount
of heatmaps that visually represent the features extracted by the network in that layer. Each heatmap is
associated with a weight and a set of labels that contains the human concepts describing these features. The
weights represent the contribution of each feature towards the output. They do not sum up to 100% because
features with very low weight are excluded.

9



These heatmaps represent groups of feature maps clustered by similarity (i.e., feature maps focusing on the
same region of the image are grouped together). The number of heatmaps is not fixed and can be different for
each layer. The final visualization also includes, for each heatmap, the relative importance of its corresponding
group of feature maps with respect to the final predicted class. In addition, each heatmap in the ANV is linked
to a set of crowdsourced labels that indicate the human concepts it represents. We use a set of labels instead
of a single one because sometimes feature maps highlight a combination of multiple features. For instance,
a heatmap might highlight a person, the sky, and a plane as this combination leads the network to predict
the parachute class, rather than any of these three features individually. Moreover, labels obtained through
crowdsourcing may not have equal relevance since one could be mentioned more frequently than another, hence
they are ranked and represented in a plot. Additionally, labels provided directly by humans have the unique
advantage of being human-understandable, enhancing the interpretability of our explanations.

The ANV can be built considering all layers of the CNN, as well as a selected subgroup of interest. Since shallow
layers usually focus on detecting basic shape information (e.g., edges, outlines, corners, etc.), it might be a more
efficient approach to focus on deeper layers which should contain more semantic concepts as their receptive
fields are bigger (see Section 2.2.2). After deconstructing the feature extraction process into its constituent
parts, it is possible to analyze each part individually to identify any potential biases. For example, it might
be discovered that the classification of a golf ball is strongly influenced by the importance given to the "grass"
feature. However, this approach also allows for the investigation of potential correlations between features
extracted by different layers leading to a more comprehensive understanding of how they relate to each other. A
significant advantage of using crowdsourced labels to describe the extracted features is the ability to aggregate
multiple local explanations, thereby extending the explanation from a local to a global perspective. By analyzing
the features extracted by a CNN to recognize a particular class across multiple images, we can develop a global
explanation of how the network generally identifies that class. Our explainability method is post-hoc, meaning
it doesn’t require any modification or re-training of the model. Additionally, ANVs can potentially explain
both correct and incorrect classifications, although, for the purposes of this work, we will focus solely on the
former. In the next section, we will provide a detailed overview of the process and the essential steps required
for generating the presented visualizations.

3.2. Method Overview

Given a CNN trained for image classification and an input image, the following steps must be followed to build
the ANV, as outlined in Figure 10:

1. Feature Maps Analysis: Feature maps and their relative weights are extracted and clustered. Clusters
are merged to generate representative heatmaps for each cluster that we refer to as cluster maps.

2. Human Knowledge Collection: In this step, labels are collected through crowdsourcing to enhance the
interpretability of previously generated Cluster Maps.

3. Label Analysis: The collected labels are processed using data analysis techniques to make them structured
and free of errors. Cluster maps with similar labels are also merged.

10



Figure 10: A pipeline depicting the process for building the ANVs. The process involves three main steps. In
the first step, feature maps and their weights are extracted from the CNN. These feature maps are clustered
to generate representative heatmaps (cluster maps) for each cluster. In the second step, human knowledge is
collected to assign labels for the clusters. In the final step, the labels collected from the previous step are cleaned
up and cluster maps with the same labels are merged.

3.3. Feature Maps Analysis

The first step of our process is to extract as much meaningful information from executing the CNN on an input
image in terms of feature maps and their importance. These feature maps are then clustered and merged to
generate a set of cluster maps for each layer.

3.3.1 Feature Maps and Weights

Feature maps are extracted after applying the activation function for each convolutional layer. In case the
activation function is not a ReLU, a ReLU is applied to the feature maps to consider positive activations only.
Some of these feature maps may become empty and thus are removed. Next, feature maps are associated with
their corresponding class-specific weights towards the predicted class, which will be computed using a local
explainability method. For this purpose, we used the Grad-CAM algorithm (2.1) as it is a straightforward
approach that works with any CNN architecture. We have opted to use the version of Grad-CAM that utilizes
Guided ReLU, a modified version that only considers positive gradients to regions of positive activations (i.e.,
the positive elements of the feature maps). Practically, this means that non-positive gradients and gradients
corresponding to non-positive activations are both set to zero before the GAP. This modification has been
shown to perform better by Selvaraju et al. [40], especially when the objective is not to discriminate between
two classes in the same image, which is not our case since in ANVs we consider only the weights towards the
predicted class.

We performed unit normalization to enhance the interpretability of these weights. This technique guarantees
that the total weight for each layer sums up to one, allowing for their importance to be visualized as percentages

11



per layer. Feature maps whose weights are equal to or less than zero are removed and a positive weight threshold
can optionally be selected to exclude feature maps with low importance, further optimizing the clustering
process. The threshold of importance is relative to the number of feature maps a layer produces, hence it is
a heuristic that varies based on the layer and the network of interest. The idea behind this thresholding is to
reduce the number of feature maps while retaining the vast majority (e.g., 70-90%) of the total weight. At
this stage, the number of feature maps per layer can often be in the order of hundreds or more, which can be
an overwhelming amount of information for humans to handle. However, they can be clustered and merged
together into cluster maps since multiple filters of the same layer typically produce very similar feature maps.
In the next section, we’ll explore how this can be accomplished.

3.3.2 Pre-processing

Some pre-processing steps are necessary to improve clustering performance. Feature maps are normalized using
min-max normalization (i.e., scaling their values to a range between 0 and 1, based on the minimum and
maximum values of the feature map). This normalization makes the feature maps comparable in terms of
which image regions they are focusing on the most. The subsequent pre-processing step consists in performing
a dimensionality reduction algorithm since feature maps are highly susceptible to the curse of dimensionality.
For this purpose, we used a combination of two techniques: Principal Component Analysis (PCA) [30] and
t-distributed Stochastic Neighbor Embedding (t-SNE) [51]. The reason behind using t-SNE is its ability to
visualize data in a low-dimensional space while preserving its local structure, which makes it powerful for
identifying clusters in complex datasets such as images. We use PCA to reduce the number of dimensions to
a reasonable amount (e.g., 30-50) before applying t-SNE since it requires a high computational effort. The
parameters of these algorithms cannot be standardized and must be selected specifically for each model and
layer because the number and size of feature maps can vary across different models and layers. While a possible
heuristic is outlined in Section 4.2, it is important to optimize these parameters based on the results obtained
in the given context.

3.3.3 Clustering

After performing dimensionality reduction, we apply a clustering algorithm for each layer of the network. In our
method, we use Agglomerative Clustering, a widely employed type of Hierarchical Clustering. This technique
is more suitable for our problem than density-based and centroid-based approaches as the former removes noisy
points that could be important in our analysis while the latter performs better under specific assumptions (e.g.,
spherical distribution of variables) that are unlikely to always be true for our data. Furthermore, hierarchical
clustering has the advantage that it produces many clustering results for an incremental number of clusters
allowing for freedom in its choice.

The optimal number of clusters can be different for each layer and depends on the number of features a
convolution layer extracts for a specific input image, which can’t be known beforehand. Therefore, we used the
silhouette score metric (i.e., a measure of cohesion and separation of clusters) to select the optimal number of
clusters for a given input image and layer. Generally, the evaluation of this metric involves visual inspection.
However, we rely only on the average silhouette score as visual inspection is impractical due to the large number
of clustering executions required per image. However, we cannot consider every possible number of clusters since
the ultimate objective is to produce explanations that need to be understood by humans. Therefore, the number
of clusters per layer should not be overwhelmingly high. Having too many clusters can also be problematic during
the labeling phase, as it would require a substantial number of participants. For these reasons, a reasonable
range (e.g., 3-8) must be chosen based on model size, availability of resources for crowdsourcing, and human
comprehensibility. Regarding the choice of parameters for the clustering algorithm, it follows the same principle
discussed at the end of Section 3.3.2 for pre-processing parameters.

3.3.4 Merging Feature Maps

Once the clustering process is complete, each cluster is merged using a weighted average approach. This produces
cluster maps representing an entire cluster of feature maps. Each cluster map is assigned a weight value that
indicates its significance towards the predicted class. This value is computed by summing the weights of all
feature maps belonging to that cluster. More formally, these weights are derived for a given cluster starting
from the Grad-CAM formulation (2.2), which can be applied to every layer. Considering n clusters, by grouping
the terms wjA

j that correspond to feature maps belonging to a specific cluster Ci, we can factor out the sum
of their weights to obtain a new term wCi

which represents the cluster weight, multiplied by a term ACi
that is

the cluster map obtained through the weighted average. The Equation (3.1) shows that when using this method

12



to compute the clusters’ weight, the Grad-CAM location map remains unchanged, hence cluster maps can be
seen as condensed feature maps.

LGrad−CAM =
∑
k

wkA
k =

n∑
i=1

∑
j∈Ci

wjA
j =

n∑
i=1


∑

j∈Ci

wj


︸ ︷︷ ︸

wCi

·

ACi︷ ︸︸ ︷∑
j∈Ci

wjA
j∑

j∈Ci
wj

 =

n∑
i=1

wCiACi (3.1)

After obtaining a set of cluster maps for every layer and their corresponding weight, we can optionally choose
a threshold to exclude cluster maps with low overall weight, although this decision depends on the resources
available for the data collection process. At this point, we are ready to enhance the interpretability of the
cluster maps through the employment of human knowledge which will be the topic of the following section.

3.4. Human Knowledge Collection

The goal of this step is to collect labels, representing the human concepts highlighted in each cluster map.
In order to ensure these concepts are human-understandable, they are obtained through crowdsourcing, i.e.,
the practice of obtaining knowledge from a heterogeneous group of people often referred to as "crowd". This
enables us to associate visual explanations with meaningful concepts that are familiar and interpretable to
humans. Furthermore, collecting labels from multiple people with a variegated background can significantly
reduce the interpretation bias addressed at the end of Section 2.2.2.

3.4.1 Masking Cluster Maps

Before designing the crowdsourcing activity, we need to address what precisely participants should see during
the labeling of cluster maps. The general approach to obtain an interpretable visualization of a feature map is
to generate an overlay of the input image and the feature map after normalization, up-scaling, blurring, and
color mapping. We use the same technique for cluster maps, obtaining an overlay such as the one shown in
Figure 11a. However, asking participants to label these cluster map overlays has a problem. If we let humans
know the subject of the image before labeling, they will most likely lose focus on the highlighted areas. Hence,
the labels might not accurately describe the highlighting features. For example, a cluster map highlighting
a portion of grass on a soccer field may be labeled as "soccer field" instead of "grass", if the entire image
is displayed. Although the label "soccer field" is acceptable, "grass" is more focused and describes only the
highlighted area. Hence, we need to hide the non-highlighted portions to prevent such behaviours. This can be
achieved by computing a mask (i.e., a binary image) that defines which pixels to show. A masked image is then
obtained by overlaying the mask on top of the input image, as shown in Figure 11b.

(a) Cluster Map overlay. (b) Masked overlay.

Figure 11: An example of an overlay of a cluster map that focuses on a dog’s muzzle, along with its corresponding
masked image that reveals only the highlighted area.

By choosing an estimate3 of the percentage of pixels to show, we can filter only the most important pixels of
a cluster map by computing the percentile relative to the former estimate and considering only the values of
the map greater than or equal to the percentile value. Such a percentage parameter can be adjusted to create

3Note that repeated values may be present, particularly when up-scaling cluster maps significantly smaller than the
original image. Consequently, the number of values that are greater than or equal to the percentile might be slightly
higher than the chosen percentage. Additionally, blurring can be applied to enhance the visualization quality, which can
modify the actual number of pixels displayed.

13



different masks showing gradually larger portions, which will be useful in the subsequent step. The purpose of
the parametrization is to produce a finite number of masks, with a percentile that increases non-linearly, since
the information density decreases while moving away from the most highlighted pixels. An example can be seen
in Figure 12.

(a) 2.5%. (b) 4.5%. (c) 8%. (d) 13%. (e) 20%. (f) 30%.

Figure 12: Six masks generated by gradually increasing the pixel percentage parameter.

3.4.2 Gamification

For collecting the labels, we employ a gamified activity since it offers several benefits. In particular, it makes it
easier to attract a wide range of participants, including those who may not find a survey interesting. Additionally,
according to Morschheuser et al. [33] gamification can significantly increase engagement, leading participants
to put more effort and thought into their responses, ultimately resulting in higher-quality labels. However, such
a choice is not given solely by these benefits. The main reason behind gamification is that we want to make
participants behave similarly to the neural network by having them observe and analyze features to guess the
correct class. The actual activity consists in playing an online game we designed called Deep Reveal (whose
process is reported in Figure 13) in which users are presented with the masked image of a cluster map and are
required to guess its class and explain their decision. Naturally, the same individual won’t play with cluster
maps generated from the same input image multiple times.

Figure 13: A pipeline describing the label collection process through Deep Reveal. The masked version of the
cluster map is shown to the user who can try to guess right away or show more of the image. After guessing,
users are asked to provide the labels to explain their decision.

Users can choose a class from a set of options, which are a subset of the model’s classes chosen at random
including the correct one. The number of options should not exceed a reasonable amount (e.g., five to ten) since
displaying every possible class is not feasible, given that models might have hundreds of classes. Additionally,
using deterministic approaches to select the options, such as considering the prediction confidences, can introduce
bias and lead to recognizable patterns for users. For instance, when the model identifies a dog, the class "cat"
may have a higher confidence score than other classes. As a result, the options "dog" and "cat" may frequently
appear together when the correct class is "dog". Such a pattern may lead the user to choose the option "dog"
independently of what he sees.

Similarly to the Peek-a-Boom game described in Section 2.2.3, users of Deep Reveal can gradually increase the
displayed area, allowing them to get more clues. Such a mechanism is implemented by generating multiple masks
as shown in Section 3.4.1. However, a user can increase the displayed area up to five times (i.e., generating five
additional masks), after which the game provides them with the option to resign. Analyzing lost games and

14



resignations is also important since it helps in determining whether the cluster map is focusing on the subject
or not.

Once the user selects an option, the game prompts them to specify which features they recognized that helped
them guess. These inputs are then used as labels for the cluster maps. The reason we ask participants to guess
the image before labeling is to focus their attention on the features that are truly discriminative. Additionally,
the label generation should happen openly to avoid introducing any biases, meaning players should not be
limited to a finite number of characteristics to choose from. This is because users may infer something that they
would not have otherwise seen if provided with a range of options. We also include a scoring system (e.g., the
more users reveal of the image the fewer points they earn) and a leaderboard to further increase engagement
and competition. Additionally, some masked maps are purposefully very easy, allowing the exclusion of data
collected from untrustworthy users. Further details about Deep Reveal design and implementation are presented
in Section 4.4.

3.5. Label Analysis

After collecting sufficient labels for each cluster map, we proceed with the label analysis step. Since we let
users insert labels openly to avoid any bias, the data could contain errors and impurities (e.g., long phrases,
synonyms, stop-words, misspelt words, etc.). For this reason, it is required to perform data cleaning on the
collected labels. More specifically, labels consisting of multiple words are split into different labels, and stop-
words are discarded. Then, we manually map labels referring to the same feature to a single word (e.g.,
"column", "pillar" and "pilaster" all become "pillar") to handle synonyms and misspellings. Alternatively, it is
possible to apply Natural Language Processing (NLP) techniques to automate the process. However, due to the
lack of context and the fact that humans use words with different meanings to refer to the same visual entity
(e.g., logo and brand, grass and field), these techniques may not be precise enough for our problem. However,
further research could address the applicability of such techniques in a context similar to ours.

The next step is to evaluate each label by assigning them a score that allows us to emphasize the most relevant
ones within each cluster. This score takes into account the label frequency as well as the percentage of the image
revealed to the humans who assigned that label. The method for computing the score is an implementation-
dependent heuristic in which we give more importance to the frequency. Our formulation (Equation 3.2) shows
how to compute the score(C, l) for label l in cluster C. The frequency of l in C is multiplied by a term that
accounts for the average number of "show more" used by users when inserting l. The value of this term ranges
from 1 when l is observed using only the smallest masks (i.e., no hints used) to 0.5 when l is observed using only
the largest mask (i.e., all hints used). For intermediate values, the term decreases linearly, taking into account
the average number of hints used while submitting l. Here, n_masks− 1 denotes the number of hints available
when playing. The score of labels coming only from users who guessed wrongly counts only as one-fourth of a
normal score as they have a higher probability of being imprecise.

score(C, l) = frequency(C, l)×
(
1− avg_show_more(C, l)

2× (n_masks− 1)

)
(3.2)

Assigning a score to each label allows us to identify the labels that best describe their respective cluster maps.
However, it is possible that certain cluster maps may represent the same feature and, therefore, be labeled in
a similar manner. This can happen due to imperfections in the clustering process, or because the same feature
is present in different regions of the image. For example, in an image of a parachute, there could be multiple
cluster maps looking at different regions of the sky, all labeled as "sky". Similarly, a fish with multiple fins
could have multiple cluster maps labeled as "fin", looking at different regions of the image. Since cluster maps
are meant to represent the different features extracted at each layer, the final step before constructing the ANV
is to merge clusters with the same most relevant labels. More specifically, we merged the clusters that shared
at least one among the labels with the maximum score, which could be more than one in case of a score draw.
Furthermore, if two clusters had one best label in common, and one of them shared one of its best labels with
a third cluster, the three are merged (see Algorithm 1).

15



Algorithm 1 Cluster merge on maximum scoring labels
for all l ∈ layers do

repeat
for all ci, cj ∈ l.clusters, i ̸= j do

if ci.best_labels ∩ cj .best_labels ̸= ∅ then
create new cluster having best_labels = ci.best_labels ∪ cj .best_labels
delete ci and cj from l.clusters
add new cluster to l.clusters
break

end if
end for

until l.clusters changes
end for

The cluster maps are merged through a weighted average and the final weight will be the sum of the weights of
the merged maps, for the reasons discussed in Section 3.3.4. The labels of the merged clusters are also combined
through a weighted average of their score. Finally, the ANV of an image can be generated by organizing its
cluster maps, together with their weights and labels, into one column for each layer.

4. Implementation

In this section, we provide an overview of the systems we implemented to validate our methodology. Specifically,
we will describe the CNN model, its training and the libraries and parameters utilized for feature map extraction,
pre-processing, and clustering. Additionally, we provide details about the design and implementation of Deep
Reveal. In terms of the data analysis steps, there is not much to discuss other than the usage of the Pandas
library to manipulate the data extracted from the database in CSV files.

4.1. CNN Setup

Having a reference CNN model is essential before implementing the necessary systems for generating ANVs.
We implemented the model using Keras, a high-level deep learning API that runs on top of TensorFlow which
is a well-known software library for creating and training ML models in Python. Keras provides many pre-
built models, from which we imported the VGG-16 model pre-trained with ImageNet (i.e., a large-scale image
database). VGG-16 is a standard CNN architecture that consists of 13 convolutional layers, 5 max-pooling
layers and 3 dense (i.e., fully connected) layers. TensorFlow enables the modification of pre-built models by
changing their parameters, such as the input shape and output classes, to adapt them to different classification
problems. In our case, we kept the convolutional and pooling layers of VGG-16, initialized with their ImageNet
weights, while changing the input shape, dense layers, and output classes, as shown in Figure 14.

16



Figure 14: Visual representation of the considered
CNN. The functional layer is a subnet consisting of the
convolutional and pooling layers of VGG-16 for images
of size 256x256.

Figure 15: Plots representing the history of loss
and accuracy obtained both during the transfer
learning (TL) and fine-tuning (FT) phases in rela-
tion to the epochs.

As our dataset we used Imagenette4, a small subset of ImageNet consisting of ten classes and 13394 images.
Its classes include Cassette Player, Chainsaw, Church, English Springer, French Horn, Garbage Truck, Gas
Pump, Golf Ball, Parachute, and Tench. We applied various techniques such as image augmentation, early
stopping, dropout, transfer learning, and fine-tuning to prevent excessive overfitting during training. Initially,
we performed two training iterations (both initialized at 200 epochs and early stopping with patience set to
10), starting with transfer learning, allowing the network to train only its fully connected layers with a learning
rate of 1e-3. Then we reduced the learning rate to 1e-5 and enabled training for the last three convolutional
layers to fine-tune the model. The final accuracy for both training and validation sets were 96.65% and 97.45%,
respectively. A detailed view of the training history is provided in Figure 15. Moreover, we did not conduct
extensive testing as the network was not intended to be used as a classifier in real-world scenarios.

4.2. Feature Maps Extraction and Clustering

In order to extract the feature maps, we built a new Keras model for each convolutional layer of our trained
model. These new models have the same input as the original model and the corresponding convolutional
layer output (i.e., the feature maps) as output. The subsequent step is to calculate the weights for each
feature map. Hence, we utilized TensorFlow’s automatic differentiation technique (i.e., GradientTape) to
calculate the gradients required for implementing the Grad-CAM formula (2.1). After obtaining the weights,
they are normalized using unit normalization while feature maps are normalized using max-min normalization.
Furthermore, as stated in Section 3.3, we defined a threshold for considering only feature maps whose weights
are above it. The value of such threshold varies according to the number of feature maps composing a layer,
hence it depends on the model architecture. In our case, considering VGG-16 and its convolutional layers, we
defined the thresholds shown in Table 1.

4https://github.com/fastai/imagenette

17

https://github.com/fastai/imagenette


Number of feature maps 64 128 256 512
Threshold 1.4 0.7 0.35 0.175

Table 1: A table that associates the number of feature maps in a layer and the weight threshold under which
feature maps were excluded.

Regarding the clustering phase, we utilized the Scikit-learn library to implement the entire procedure. To begin,
we selected feature maps layer by layer and applied dimensionality reduction, as stated in Section 3.3.2. For
each layer, we transformed the normalized feature maps into one-dimensional vectors and then conducted PCA
with a number of components equal to the minimum of either 50 or the default value defined by the library
(i.e., the minimum between the number of feature maps and the number of pixels). Finally, we applied TSNE
using its default parameters (i.e., 2 components with a perplexity of 30 and 1000 iterations). After completing
this pre-processing step, as described in Section 3.3.3, we utilized Agglomerative Clustering with euclidean
distances and Ward linkage, linking the two clusters that minimize the increase in the sum of squares distances
between clusters. We tested the clustering algorithm with a number of clusters ranging from 3 to 8 and selected
the solution that maximized the average silhouette score. We tested the parameters of the applied algorithms
using images from the network dataset and obtained better results with the selected parameters. Next, we
computed the cluster weight and cluster maps using the methods discussed in Section 3.3.4. Additionally, as
a post-processing step, we applied a threshold to exclude clusters with low weights. This was chosen due to
limited resources for the labeling phase, as we aimed to have more labels for the most important clusters rather
than fewer labels for all the clusters. The threshold (Equation 4.1) is computed as the maximum value between
one-third of the weight of the most significant cluster and half of the average weight of all clusters in that layer.
This formulation is an heuristic designed specifically for our network and resources, hence similar approaches
may also be applied.

cluster_threshold(layer) = max(max(cluster_weights(layer))/3, mean(cluster_weights(layer))/2) (4.1)

4.3. Masking Cluster Maps

The masking procedure has been implemented with the Sci-kit and Numpy libraries, according to Algorithm 2.
Firstly, the cluster map is up-scaled to be of the same shape of the image, then we compute the p-th percentile
of the heatmap, where p is a percentage of choice. Successively the mask is computed as a matrix having
entries equal to one only where the values of the heatmap are greater than or equal to the percentile computed
previously. Before applying the mask to the image (i.e., showing only the pixels where the corresponding value
of the mask is equal to one), we apply Gaussian blurring to the former to have a smoother visualization. For this
task, we used the Scikit-image implementation of the Gaussian filter with parameters depending on the ratio
between the shape of the image and the shape of the image, as shown in Table 2. Finally, we overlay the blurred
mask over the image to get the masked cluster map. As specified in Section 3.4.2, the gamification process
requires six masked images, each revealing an increasingly larger portion, hence it is required to select six values
for the parameter p of the algorithm. We tested a wide variety of images with different values, resulting in the
six values displayed in Table 3.

Input image shape 512x512
Heatmap shape 256x256 128x128 64x64 32x32 16x16
sigma parameter (3,3) (6,6) (12,12) (16,16) (24,24)
truncate parameter 1.5

Table 2: A table representing the values chosen for the Gaussian filter implementation in function of the shape
of the input image and the cluster heatmap.

Hints used 0 1 2 3 4 5
p parameter 2% 4.5% 8% 13% 20% 30%

Table 3: A list of the values chosen for the parameter of the masking algorithm when used for Deep Reveal.

18



Algorithm 2 Apply a mask to an image given a feature map and a percentile
function MaskImage(image, heatmap, p)

heatmap_up← UpscaleHeatmap(heatmap, image.shape) ▷ enlarges the heatmap
percentile← ComputePercentile(heatmap_up, p) ▷ p-th percentile of the heatmap
for pixel in heatmap_up do ▷ map computation

pixel← 1 if pixel ≥ percentile else 0
end for
size_ratio← image.shape/heatmap.shape
blur_sigma← ComputeBlurSigma(size_ratio) ▷ the higher ratio, the higher sigma
mask ← ApplyGaussianFilter(heatmap_up, blur_sigma, truncate = 1.5)
masked_image← ApplyMask(image,mask) ▷ overlay the mask on the image
return masked_image

end function

4.4. Deep Reveal

As discussed in Section 3.4, the objective of Deep Reveal is to enable users to participate in a gamified image-
guessing activity and provide descriptive labels for the part of the images they see. In this section, we discuss
the requirements of Deep Reveal and provide further details on its implementation.

4.4.1 Requirements and Design

Login. A login system is implemented to ensure a user does not encounter the same image more than once. To
register in the system, a user only needs to provide a username, an email address (required for password reset),
and a password. However, if a user does not want to register, the option to play as a guest is also available.
For registered users, the system ensures that they don’t encounter the same image twice. The same applies for
guest users, but only within a session.

Home Page and Leaderboard. After logging in, the user is directed to the Home Page where he can access his
game statistics such as his score, number of games played, win rate, and win streak. From there, the user can
logout, read the game instructions, start a new game, or view the leaderboard. The leaderboard shows the top
50 users with the highest scores, along with their game statistics.

Gameplay. During the game, the players start with 300 points and are shown a partially obscured image (i.e.,
the masked heatmap) where only a small portion is visible. By using the "show more" button, they can increase
the visible region up to five times, with each increase incurring a cost of 50 points. The players are presented
with six options to choose from (i.e., five randomly chosen classes plus the right one). A win streak bonus
awarded for consecutive victories is also displayed on the game screen. Once the players select an option, they
are prompted to enter the characteristics that drove their choice, for which they are awarded 25 bonus points.
Once they confirm their selection and the associated characteristics, the content of the image, the correct class,
and the points earned are displayed. Then, the players can choose to play another game or return to the home
page. Furthermore, they have the option to return to the Home Page or close the web page at any time and
resume the game later.

Other requirements. Each player’s third match always presents the same image which is a straightforward and
easily recognizable picture of a dog (shown in Figure 17). Whether a player guesses correctly or not helps to
determine which participants are more trustworthy in providing accurate labels. Additionally, the application
balances the number of games per cluster map to ensure that no clusters are left with an excessive amount of
labels while others are left with very few.

The interaction flow diagram illustrated in Figure 16 presents a visual representation of Deep Reveal application
design.

19



Figure 16: An IFML diagram that illustrates the interaction flow of the Deep Reveal application between its
four main pages: Login, Home, Leaderboard, and Game. The Game Page is slightly different depending on the
phase of the game. The game begins with the guessing phase, followed by the labeling phase, and finally, the
outcome phase which displays the game results in terms of points earned and whether the player won or lost.

4.4.2 Implementation details

Deep Reveal was implemented as a web application to facilitate the label collection process as it is accessible from
any device. The application’s backend was implemented in Python to ease the integration with previous steps.
Specifically, we utilized Django REST framework to generate the application server APIs, and a PostgreSQL
database to store the collected data. Python was chosen also to reuse the masked images generation algorithm
(2) at run-time, which significantly reduces the required database size compared to generating all masked images
beforehand.

On the client side, Deep Reveal was implemented using Flutter Web, a highly portable platform that also allows
deployment as a mobile app or desktop app. Flutter Web is also ideal for creating game applications that
require simple animations. Finally, the web application was deployed using Nginx, an open-source software for
web serving, with uWSGI as a web server gateway interface. Figure 17 displays a screenshot of the Game Page
during the labeling phase.

20



Figure 17: A screenshot showcasing the labeling phase of the game. The user is prompted to insert the
characteristics he saw in the form of tags which can also consist of multiple words.

5. Experiments and Discussion

In this section, we describe the experiments we conducted to validate our methodology and discuss the final
results obtained.

5.1. Experiment Setup

In this section, we report the setup of every phase of the experiment and the respective intermediate results
obtained.

5.1.1 Number of images and layers. Considering the CNN presented in Section 4.1, we conducted the experiment
using 5 images per class that were correctly classified by our model. Since the network classifies 10 classes, we
explained a total of 50 predictions. Furthermore, knowing that we had limited resources for crowdsourcing, we
decided to study only the last 9 convolutional layers of the network. The reason we focused on the deeper ones
is that, as already mentioned in Section 3.1, the initial layers primarily extract basic shape information such as
edges and outlines, so they focus on less semantic local features that are less associated with semantic concepts.

5.1.2 Feature Maps Analysis. Once the images were chosen, the first step was to extract the feature maps and
their respective weights for each image. We then proceeded with normalization and weight thresholding. After
pre-processing the feature maps using PCA and t-SNE, we performed clustering with a range of 3 to 8 clusters
and selected the result with the highest silhouette score. Finally, we performed cluster thresholding using the
formula described in (4.1). The final clustering results are presented in Table 4. The proportion of removed
feature maps was significantly higher in deeper layers, while the total weight left over was relatively constant
(refer to Figure 18). This suggests that the weights became more concentrated in deeper layers, allowing us to
condensate more relevant information in fewer clusters. Finally, we merged the feature maps of each cluster,
resulting in a total of 1954 cluster maps to be labeled.

21



Figure 18: The graph illustrates how the percent-
age of removed feature maps increases as we move
from shallow to deep layers. On the other hand,
the total weight of the remaining feature maps re-
mains relatively constant, showing a slight upward
trend.

vgg16 remaining leftover cluster
layer fmaps fmaps weight count
5 256 134.94 70.24% 4.28
6 256 131.46 68.63% 4.36
7 256 118.28 65.16% 4.78
8 512 238.14 71.87% 4.24
9 512 229.72 72.13% 4.76
10 512 183.68 72.65% 5.20
11 512 155.88 73.85% 4.58
12 512 130.10 72.48% 3.60
13 512 75.04 78.39% 3.32

Table 4: The table presents the results of the clus-
tering phase for each layer. The figures for re-
maining feature maps, leftover weight, and cluster
count are averages per image and are considered
after the cluster thresholding. The leftover weight
indicates the combined percentage of importance
of the remaining feature maps.

5.1.3 Human Knowledge Collection. For the labeling phase, we deployed Deep Reveal web application and
shared it with 210 participants. Furthermore, we asked them to fill out a usability and workload questionnaire
(which can be found in Appendix D) at the end of the experiment to validate the design and implementation of
Deep Reveal and find possible issues. The usability questions were based on the System Usability Scale (SUS)
[7], and the workload questions were inspired by the NASA-TLX [18] method. In the questionnaire, we also
added the option to give additional feedback about the app’s user experience. The results of the questionnaire
are discussed in Section 5.2.3. We allowed participants to insert labels both in Italian and English to collect
more labels, at the cost of having to perform a translation step during data analysis. At the end of this phase,
we collected 9968 raw labels evenly distributed among the cluster maps. Only one user guessed wrongly on the
test image and his data was discarded. A more comprehensive view of the results of the crowdsourcing activity
is provided in Table 5.

Games Wins Losses Resigns Total raw labels Raw labels per map Hints per game
7948 7150 688 110 9968 5.096 1.6

Table 5: The table presents the results of the Deep Reveal activity. We collected approximately 5 raw labels
per cluster map. Users guessed correctly in the vast majority of the games played and used an average of 1.6
hints per game.

5.1.4 Label Analysis. After splitting the raw labels into single words and removing stop-words, a translation
from Italian to English was performed and manually validated. This is necessary to avoid losing the contextual
meaning of certain labels. For example, the Italian word "Esso" is automatically translated to "it", but in
the context of a gas pump, it refers to a company name. The mapping of contextual synonyms with the same
word was also done manually for the same reasons. The processes of validating translations and mapping
synonyms were done simultaneously providing a unique translation and mapping to every unique word. During
this process, irrelevant labels (e.g., seems, like, see) were discarded. The result of these steps is a set of single-
word polished labels to which we assigned a score computed using the Formula 3.2 described in Section 3.5.
Finally, we merged cluster maps according to their maximum-scoring labels (Algorithm 1) and obtain the results
presented in Table 6, which will be used to generate the visualizations presented in the next section.

Total Unique Labels per map Cluster maps Weight per map
labels labels (pre-merging) (post-merging) (post-merging)
12082 430 6.18 1192 27.07%

Table 6: The table shows the results of the label analysis step, including the number of processed labels obtained
and the cluster maps resulting from merging the labels. It’s important to note that the labels per map are non-
unique and represent an average value before merging. The weight per cluster map is also an average but it is
considered after merging.

22



5.2. Results and Discussion

We conclude by presenting and discussing the resulting ANVs and their validity as a local explanation method
for our CNN. Subsequently, we explore the possibility of further aggregating the labeled visualizations to obtain
global explanations for the model. The last subsection is a short discussion about the Deep Reveal questionnaire
results.

5.2.1 Abstract Network Visualizations: Case studies

Based on the structure of the ANV outlined in Section 3.1, we organized the heatmaps for each cluster map into
columns, displaying their respective weight and highest-scoring label (example in Figure 19). Moreover, each
feature has a detailed visualization (example in Figure 20) which includes a plot of all labels, their respective
score, the number of feature maps comprising the cluster, and additional game-related information such as
the masked image, wins, losses and resigns. In this section, we present and discuss three case studies, while
additional examples are available in Appendix B. All detailed visualizations for the 50 images are accessible
online5.

The first case we discuss is the ANV for an image of a chainsaw, which is illustrated in Figure 19. It is evident
that the prediction was primarily determined by the presence of a motor and a sawchain, with the former being
the most important. As the layers get deeper, the focus on the motor and sawchain regions increases, which
is a reasonable behaviour since these features are class-discriminative. On the other hand, non-discriminative
features like "tree", "green" and "grass" acquire a certain level of relevance in more shallow layers, although
their significance decreases as we go deeper, to the point where they disappear entirely. Moreover, some users
recognized the motor through its orange color, a classical feature of a chainsaw motor, and it is possible that
the network has learnt to recognize this pattern as well. In fact, when a fully orange image was introduced
into the network, the predicted class was "Chainsaw" (although with only a 30% confidence), suggesting that
analyzing human rationales can provide insights into the machine’s behaviour. However, we acknowledge that
these statements are conjectures that require further validation, which may be the subject of future research.

Figure 19: This is an ANV for an image of a chainsaw, showcasing the labeled features extracted by the network
from the last 9 convolutional layers. The weight of each feature is presented as a percentage per layer. The sum
of the weights for each layer is less than 100% since some less important feature maps and clusters were removed
during the process. The most important features for the prediction were the motor and the sawchain. However,
other elements such as the presence of vegetation in the background, a log, and the handle also contributed to
the correct classification.

Although the visualization offers a detailed explanation for the prediction, it is not flawless. For instance, in
the first cluster of layer 6, it is unclear what the heatmap is highlighting, and the label "case" does not help in

5https://github.com/antonio-dee/abstract-network-visualizations

23

https://github.com/antonio-dee/abstract-network-visualizations


describing it. Interestingly the weight of the feature is significantly high, meaning that intermediate layers can
still be quite difficult to interpret. Furthermore, the distinction between the concepts of "tool", "handle" and
"motor" may seem ambiguous. However, one cluster map can represent multiple concepts, which is evident in
the detailed visualization of the first cluster of Layer 10 (see Figure 20). The cluster was obtained by merging
two clusters on the label "handle" and contains additional concepts such as "color", "log", "tool" and "motor".
Neither can be deemed incorrect as the network is focusing on every described feature.

Figure 20: A detailed visualization of a cluster map relative to an image of a chainsaw. A masked image is
shown on the top left, which represents the average portion of the image revealed by users when guessing the
class and labeling the cluster map. The visualization also provides games information which includes the wins,
resigns and losses. More information regarding the cluster is shown on the top left, including the cluster map
overlay, its importance and the number of feature maps it represents. The bar plot at the bottom shows all
labels describing the cluster map ordered by score. Furthermore, the plot underlines the fact that the cluster
map originated from a merge between two and highlights the contributions of each one in terms of the labels’
score.

The second ANV we are examining is depicted in Figure 21. The input in this case is an image of a tench, a
type of fish. The primary feature used to identify the class was the presence of gills, as well as the back fin and
the person visible in the background. While the person and his hand holding the fish appear to contribute to
the process of recognizing the tench, unlike the background vegetation in the chainsaw example, this feature
maintains a significant weight in the final layer, suggesting a slight overfitting. This is even more evident
considering that the "fin" feature appears to be less significant than the person feature, despite both clusters
containing the same number of feature maps. The "lake" feature also contributes to the prediction, but it
disappears in the final layer. Other features that contributed to the prediction were the scales, eye, and mouth,
which may have helped to identify the body and head of the fish. As a rough validation, the network was
fed with an image containing only the scales, and it produced the prediction "Tench" with 90% confidence,
indicating that the network is capable of associating this feature with the concept of tench.

Before moving on to the next case study, we would like to make one final observation. Sometimes, the heatmaps
of the final layer may appear less precise in highlighting certain features. For example, the person in layer 12
and layer 13 of Figure 21. This is due to the gradient saturation problem which, as described in Section 2.2.2,
is a significant limitation of gradient-based approaches, including Grad-CAM. Similarly, the weight of 15.39%
may be a slight underestimation due to this issue. However, our method can work with any local XAI technique

24



that can compute a weight for each feature map, including other explainability techniques that may effectively
overcome this limitation. Nonetheless, having a visualization across multiple layers could slightly mitigate this
problem.

Figure 21: An ANV for an image of a tench. The most significant features for predicting its classification were
the gills, fin, and the person in the background. However, the presence of a lake was also identified as a relevant
feature with a non-negligible weight. Additionally, the tench classification was also influenced by the presence
of its eye, mouth, and scales.

The final case study we present concerns an image of a French horn (see Figure 22). We specifically selected this
example because our method performed poorly compared to other images. In this case, there were an excessive
number of merging operations, mainly on the label "brass". On one hand, the feature "brass" is likely important
for recognizing a French horn, but on the other hand, it was not the sole focus of every cluster map. Similar
reasoning can be made for the horn and pipes. From the ANV, we may conclude that the model solely focuses
on the horn, pipes, and brass to recognize a French horn, which may be an oversimplification. Furthermore, the
cluster maps do not clearly show where these features were identified. This outcome can be explained by the
fact that the features of the class of interest can be difficult to describe and require specific knowledge in the
domain of musical instruments. If we combine this observation with the fact that a French horn is generally
made of brass pipes, the result is that the vast majority of participants focused mainly on these features to
recognize the class. Although a few participants included more detailed labels such as "valves" or "pistons",
these did not appear frequently enough to show in the main visualization.

25



Figure 22: An ANV for an image of a French horn. The three most relevant features for the prediction were
the brass, the pipes and the horn. This particular visualization is presented because it is one of the worst we
obtained, which can be attributed to the fact that participants lacked domain-specific knowledge and focused
on the same features in each cluster map.

From the presented case studies, we observed that ANVs are capable of providing a comprehensive overview of
the features that contribute to correctly predicting a class, along with their corresponding importance and insight
about the identification process of such features. These visualizations also offer valuable insights into less obvious
features, such as the orange color of a chainsaw’s motor or the scales of a tench. However we need to incorporate
more sophisticated validation approaches for such features since the fact that humans are able to classify an
image using a certain feature suggests that the network may do the same, but it doesn’t necessarily imply that
it does. Moreover, we have noticed that the lack of domain knowledge may oversimplify the visualization in
some cases, which may lead to preferring domain expert users. While this could be beneficial because of the
higher level of detail in the labels that they could provide, it’s important to note that a combination of expert
and non-expert users could offer different levels of detail and a broader view. Furthermore, relying solely on
experts could result in highly detailed visualizations, which may overestimate the network’s degree of specificity
since our CNN works with very diverse classes.

5.2.2 Exploring Visualizations for Global Explanations

As mentioned in earlier sections, labeled cluster maps have the advantage that they allow for representing
image features in a tabular format. This makes it easier to aggregate local explanations and create global ones.
Starting from the tabular representation, various data mining and statistical analysis techniques can be applied
to extract insights and knowledge regarding the overall behaviour of the model. While our work primarily focuses
on using ANVs as a local explanation technique, we would like to present a possible approach for aggregating
features of multiple images to generate class-specific global explanations. However, it is important to note that
our experiment was limited by the relatively small sample size of only five images per class. As a result, the
explanations we provide in this section should be considered a preliminary approach to the problem rather than
a definitive result. Due to the limited number of images, there is a possibility of bias in our findings, since these
images may not be enough to represent an entire class.

We considered only the labels with the maximum score for each cluster since the score of a label represents
a proxy for its trustworthiness and ability to describe a cluster map. Furthermore, we construct our global
explanations with a hierarchical visualization, grouping layers three by three, thereby extending the concept of
the ANV to a global perspective. Features are ordered by their global score, computed as the sum of the scores
of a label when it appears as the maximum-scoring label in a cluster. The global score serves as a measure
of label quality across multiple images, therefore acting as a generalization of the original scores. For each
feature, the visualization also provides a set of cluster map examples in which the label score was the highest.
Additionally, each label is assigned a weight computed as the average of the weights of the cluster maps where
it appeared as the maximum scoring one.

Figure 23 depicts the global explanation for the class "Chainsaw". In this visualization, we display six labels per
group of layers, as the global score decreases significantly beyond this point, which could potentially impact the
label reliability6. The main objective of the visualization is to provide an overview of the features the network

6For instance, a global score of 4.2 indicates that approximately 5 users added that label across the three layers and
all images of that class.

26



generally extracts for the class "Chainsaw" and their average importance. For instance, we can observe that the
network primarily focused on the handle and the sawchain in every layer and the presence of wood and gloves
significantly contributed to the prediction.

Figure 23: An example of a global explanation for the class "Chainsaw". For each row, we can observe the
main features extracted from each group of layers with a weight that signifies the feature’s importance in the
prediction and a global score that is a measure of the label’s trustworthiness.

We present another example of a global explanation for the class "Tench", as shown in Figure 24. As with the
local explanations, the presence of the person and his hand is highly important. The person’s weight and the
hand’s weight are consistently high in every group of layers, particularly in shallower layers. This highlights
the importance of having a sufficient number of images for global explanations. Without images containing the
person, we would not be able to identify this behaviour. As a result, other significant features may be absent
from global explanations because they were not included in the five images we selected. Nonetheless, in the last
layers, the fish’s gills and eyes are still the predominant features in terms of average weight.

Figure 24: An example of a global explanation for the class "Tench". We chose this example to illustrate that
certain features, such as the person and his hand, can be highly relevant for recognizing a class, even if we
do not expect them to be. This highlights the importance of having a sufficient number of images to generate
proper global explanations, as the limited samples we used may not contain all the features that the network
deems relevant for predicting a certain class.

27



The global explanations presented in this section were generated by grouping layers into groups of three, but
the size of these groups can be of any choice. We chose this grouping to avoid combining cluster maps generated
from feature maps of different sizes and to prevent the overwhelming amount of information that would be shown
without any grouping. By adjusting this parameter, it is also possible to generate simple and straightforward
explanations by combining all layers together, as shown in Figure 25. However, it is important to note that such
explanations may appear clearer but they provide a lower level of detail. Furthermore, weights are excluded
from the visualization as they may lose meaning if averaged out between shallow and deep layers. Other global
explanations are available in Appendix C, while results for every class are available online7.

Figure 25: This figure provides a simple and straightforward global explanation for the class "Tench", generated
by grouping the features extracted at all layers. It summarizes the most relevant features that the network has
used to recognize the tench in our five images. The advantage of using this kind of visualization is its ease of
understanding. However, it lacks significant details, such as the importance of each feature and the process by
which these were identified through the various layers of the network.

5.2.3 A discussion of Deep Reveal questionnaire results

In this section, we present the results of the Deep Reveal participation questionnaire, which can be found in
Appendix D. We also discuss how these results can suggest possible improvements in the proposed gamification
activity. The questionnaire was completed by 152 participants, and the final scores for usability and workload
are displayed in Table 7, along with a user experience score which was overall positive with a rating of 3.95
out of 5. The final SUS score was approximately 80.9, corresponding to a percentile ranking of 90, indicating
that the system is considered between good and excellent [8]. However, the NASA-TLX score8 was 38.1. This
score is considered somewhat high [37], suggesting that Deep Reveal has more room for improvement in terms
of workload aspects rather than usability. One interpretation could be that guessing and labeling require effort
and are not easy tasks.

Participants identified the biggest weak point of Deep Reveal to be the images to guess, as shown in Figure
26. Additionally, a significant amount of feedback indicated that some games were disproportionately more
difficult than others, causing frustration and confusion. This can be attributed to the fact that not all cluster
maps highlighted relevant information to discriminate between classes. A takeaway for future implementations
is to design games with a more balanced difficulty, which could be achieved by revealing slightly more of the
image if the weight of the corresponding cluster map is lower than the average. Another approach could be
introducing different difficulty levels based on the cluster map weight. This idea derives from the fact that users
used slightly fewer hints when playing with more important cluster maps, as shown in Figure 27.

The second most significant weakness was the process of adding characteristics. Users noted that it was some-
times challenging to assign labels to features they were unfamiliar with or that they don’t know the name
of. This emphasizes the importance, for real-world applications, of including expert users that have adequate
knowledge about the classes to label. Furthermore, according to users, other improvements can be made in
the gameplay, which was sometimes repetitive, and future implementations with better graphics and a more
elaborated score system could enhance the user experience.

7https://github.com/antonio-dee/abstract-network-visualizations
8For practical reasons, we opted for the simplified version of the NASA-TLX that excludes the weighing step.

Therefore, the resulting score should be considered more of an estimate than an accurate evaluation.

28

https://github.com/antonio-dee/abstract-network-visualizations


Figure 26: A visualization of the weak points of Deep Reveal, ac-
cording to the participants of the questionnaire. The main ones
were the in-game images, the process of adding characteristics and
the gameplay.

Scores
Rating SUS NASA-TLX
3.95/5 80.9/100 38.1/100

Table 7: The table displays the
scores obtained for the System Us-
ability Scale (SUS), NASA-TLX,
and a Rating of the application.
Higher scores for SUS and Rat-
ing respectively indicate better us-
ability and overall user experience,
while a higher score for NASA-TLX
indicates a higher workload, there-
fore the lower the better.

Figure 27: A box-plot depicting the relation between the number of hints used and the weight of the cluster
maps. We can observe a slight trend, where additional hints correspond to a lower weight. Since the number
of hints can be seen as a proxy of the difficulty, we can infer that higher weights correspond to masked cluster
maps that may be easier to guess.

6. Conclusion and Future Works

We presented Abstract Network Visualizations, a novel approach for generating post-hoc local explanations
within the context of CNN-based image classification. Using our approach, we generated a highly detailed
visualization of the features extracted from the input image at each layer through clustering and merging of
feature maps. We utilized the Grad-CAM formula to obtain a weight for each of these features and measure their
contribution towards the prediction. Furthermore, we associated human-understandable concepts with these
features in the form of labels by engaging humans in a gamified activity that consisted in playing an online
image-guessing game named Deep Reveal. Finally, we showed that these labels can be aggregated to generate
global explanations and provide insights into how the model recognizes a particular class. Such explanations
not only increase the transparency of the model but can also be used for the diagnosis of the network, e.g. by
identifying any features on which there may be overfitting.

The results of our experiments proved the potential of our explainability method, although some open questions
and improvements still need to be addressed by future research. These questions include how to extend Deep
Reveal for collecting labels relative to images predicted wrongly by the network and how to methodically validate
the correctness of the labels. Regarding the former question, one approach could be to consider only the labels
provided by users who made the same mistake as the machine. As for the latter question, one possible solution
could be to combine our method with TCAV, using it to evaluate the model’s sensitivity to the features our
method identified as the most important. Additional future work could involve exploring the possibility to
associate CNN filters and the labels assigned to cluster maps once a certain level of knowledge about a specific

29



CNN has been obtained and labels have become saturated. This could lead to the possibility of generating an
ANV of an image concurrently with the CNN execution, meaning that the crowdsourcing step is needed only
once per model.

References

[1] David Alvarez-Melis and Tommi S. Jaakkola. On the robustness of interpretability methods. CoRR,
abs/1806.08049, 2018.

[2] Sule Anjomshoae, Kary Främling, and Amro Najjar. Explanations of black-box model predictions by
contextual importance and utility. 05 2019.

[3] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto
Barbado, Salvador García, Sergio Gil-López, Daniel Molina, Richard Benjamins, Raja Chatila, and Fran-
cisco Herrera. Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges
toward responsible ai, 2019.

[4] Agathe Balayn, Panagiotis Soilis, Christoph Lofi, Jie Yang, and Alessandro Bozzon. What do you mean?
interpreting image classification with crowdsourced concept extraction and analysis. In Proceedings of the
Web Conference 2021, WWW ’21, page 1937–1948, New York, NY, USA, 2021. Association for Computing
Machinery.

[5] Shane Barratt. Interpnet: Neural introspection for interpretable deep learning, 2017.

[6] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection: Quantifying
interpretability of deep visual representations. CoRR, abs/1704.05796, 2017.

[7] John Brooke. Sus: A quick and dirty usability scale. Usability Eval. Ind., 189, 11 1995.

[8] John Brooke. Sus: a retrospective. Journal of Usability Studies, 8:29–40, 01 2013.

[9] Lei Cai, Jingyang Gao, and Di Zhao. A review of the application of deep learning in medical image
classification and segmentation. Annals of Translational Medicine, 8(11), 2020.

[10] Aditya Chattopadhyay, Anirban Sarkar, Prantik Howlader, and Vineeth N. Balasubramanian. Grad-
cam++: Generalized gradient-based visual explanations for deep convolutional networks. CoRR,
abs/1710.11063, 2017.

[11] David Cian, Jan van Gemert, and Attila Lengyel. Evaluating the performance of the LIME and grad-cam
explanation methods on a LEGO multi-label image classification task. CoRR, abs/2008.01584, 2020.

[12] Juan Manuel Durán and Karin Rolanda Jongsma. Who is afraid of black box algorithms? on the episte-
mological and ethical basis of trust in medical ai. Journal of Medical Ethics, 47(5):329–335, 2021.

[13] Vladimir Estivill-Castro, Eugene Gilmore, and René Hexel. Human-in-the-loop construction of decision
tree classifiers with parallel coordinates. In 2020 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pages 3852–3859, 2020.

[14] William Ferguson, Dhruv Batra, Raymond Mooney, Devi Parikh, Antonio Torralba, David Bau, David
Diller, Josh Fasching, Jaden Fiotto-Kaufman, Yash Goyal, Jeff Miller, Kerry Moffitt, Alex Oca, Ram-
prasaath Rs, Ayush Shrivastava, Jialin Wu, and Stefan Lee. Reframing explanation as an interactive
medium: The equas (explainable question answering system) project. Applied AI Letters, 2, 11 2021.

[15] Kary Främling, Samanta Knapič, and Avleen Malhi. ciu.image: An R Package for Explaining Image
Classification with Contextual Importance and Utility, pages 55–62. 07 2021.

[16] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation, 2013.

[17] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Dino Pedreschi, and Fosca Giannotti.
A survey of methods for explaining black box models, 2018.

[18] Sandra G. Hart and Lowell E. Staveland. Development of nasa-tlx (task load index): Results of empirical
and theoretical research. In Peter A. Hancock and Najmedin Meshkati, editors, Human Mental Workload,
volume 52 of Advances in Psychology, pages 139–183. North-Holland, 1988.

30



[19] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, and Rory
Sayres. Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). 2017.

[20] Samanta Knapič, Avleen Malhi, Rohit Saluja, and Kary Främling. Explainable artificial intelligence for
human decision support system in the medical domain. Machine Learning and Knowledge Extraction,
3(3):740–770, 2021.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification with deep convolutional
neural networks. Neural Information Processing Systems, 25, 01 2012.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional
neural networks. Communications of the ACM, 60:84 – 90, 2012.

[23] Miguel Lerma and Mirtha Lucas. Grad-cam++ is equivalent to grad-cam with positive gradients, 2022.

[24] Zachary Chase Lipton. The mythos of model interpretability. CoRR, abs/1606.03490, 2016.

[25] Tianyuan Liu, Hangbin Zheng, Jinsong Bao, Pai Zheng, Junliang Wang, Changqi Yang, and Jun Gu. An
explainable laser welding defect recognition method based on multi-scale class activation mapping. IEEE
Transactions on Instrumentation and Measurement, 71:1–12, 2022.

[26] Xiaotian Lu, Arseny Tolmachev, Tatsuya Yamamoto, Koh Takeuchi, Seiji Okajima, Tomoyoshi Take-
bayashi, Koji Maruhashi, and Hisashi Kashima. Crowdsourcing evaluation of saliency-based XAI methods.
CoRR, abs/2107.00456, 2021.

[27] Scott Lundberg and Su-In Lee. A unified approach to interpreting model predictions, 2017.

[28] Andreas Madsen, Nicholas Meade, Vaibhav Adlakha, and Siva Reddy. Evaluating the faithfulness of
importance measures in NLP by recursively masking allegedly important tokens and retraining. CoRR,
abs/2110.08412, 2021.

[29] Lucie Charlotte Magister, Dmitry Kazhdan, Vikash Singh, and Pietro Liò. Gcexplainer: Human-in-the-loop
concept-based explanations for graph neural networks. CoRR, abs/2107.11889, 2021.

[30] Andrzej Maćkiewicz and Waldemar Ratajczak. Principal components analysis (pca). Computers & Geo-
sciences, 19(3):303–342, 1993.

[31] Swati Mishra and Jeffrey M. Rzeszotarski. Crowdsourcing and evaluating concept-driven explanations of
machine learning models. Proc. ACM Hum.-Comput. Interact., 5(CSCW1), apr 2021.

[32] Masahiro Mitsuhara, Hiroshi Fukui, Yusuke Sakashita, Takanori Ogata, Tsubasa Hirakawa, Takayoshi
Yamashita, and Hironobu Fujiyoshi. Embedding human knowledge in deep neural network via attention
map. In VISIGRAPP, 2019.

[33] Benedikt Morschheuser, Juho Hamari, and Jonna Koivisto. Gamification in crowdsourcing: A review. 01
2016.

[34] Mohammed Bany Muhammad and Mohammed Yeasin. Eigen-cam: Class activation map using principal
components. CoRR, abs/2008.00299, 2020.

[35] Daniel Omeiza, Skyler Speakman, Celia Cintas, and Komminist Weldemariam. Smooth grad-cam++: An
enhanced inference level visualization technique for deep convolutional neural network models. CoRR,
abs/1908.01224, 2019.

[36] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks. CoRR, abs/1511.08458,
2015.

[37] Atyanti Dyah Prabaswari, Chancard Basumerda, and Bagus Wahyu Utomo. The mental workload analysis
of staff in study program of private educational organization. IOP Conference Series: Materials Science
and Engineering, 528(1):012018, may 2019.

[38] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?": Explaining the
predictions of any classifier, 2016.

[39] Sarat Kumar Sarvepalli. Deep learning in neural networks: The science behind an artificial brain, 10 2015.

31



[40] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell, Devi Parikh, and
Dhruv Batra. Grad-cam: Why did you say that? visual explanations from deep networks via gradient-based
localization. CoRR, abs/1610.02391, 2016.

[41] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through propa-
gating activation differences. CoRR, abs/1704.02685, 2017.

[42] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising
image classification models and saliency maps. CoRR, abs/1312.6034, 2013.

[43] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viégas, and Martin Wattenberg. Smoothgrad:
removing noise by adding noise. CoRR, abs/1706.03825, 2017.

[44] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Riedmiller. Striving for
simplicity: The all convolutional net. CoRR, abs/1412.6806, 2014.

[45] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Gradients of counterfactuals. CoRR, abs/1611.02639,
2016.

[46] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. CoRR,
abs/1703.01365, 2017.

[47] Maxwell Szymanski, Martijn Millecamp, and Katrien Verbert. Visual, textual or hybrid: The effect of user
expertise on different explanations. In 26th International Conference on Intelligent User Interfaces, IUI
’21, page 109–119, New York, NY, USA, 2021. Association for Computing Machinery.

[48] Andrea Tocchetti, Lorenzo Corti, Marco Brambilla, and Irene Celino. Exp-crowd: A gamified crowdsourc-
ing framework for explainability. Frontiers in Artificial Intelligence, 5, 2022.

[49] Schrasing Tong and Lalana Kagal. Investigating bias in image classification using model explanations,
2020.

[50] Tolga Turay and Tanya Vladimirova. Toward performing image classification and object detection with
convolutional neural networks in autonomous driving systems: A survey. IEEE Access, 10:14076–14119,
2022.

[51] Laurens van der Maaten and Geoffrey Hinton. Viualizing data using t-sne. Journal of Machine Learning
Research, 9:2579–2605, 11 2008.

[52] Warren von Eschenbach. Transparency and the black box problem: Why we do not trust ai. Philosophy
& Technology, 34, 12 2021.

[53] Haofan Wang, Mengnan Du, Fan Yang, and Zijian Zhang. Score-cam: Improved visual explanations via
score-weighted class activation mapping. CoRR, abs/1910.01279, 2019.

[54] Jun Wang, Changsheng Zhao, Junfu Xiang, and Kanji Uchino. Interactive topic model with enhanced
interpretability. In IUI Workshops, 2019.

[55] Ming-Xi Wang and Yang Qu. Approximation capabilities of neural networks on unbounded domains, 2019.

[56] Hans-Dieter Wehle. Machine learning, deep learning, and ai: What’s the difference? 07 2017.

[57] Feiyu Xu, Hans Uszkoreit, Yangzhou Du, Wei Fan, Dongyan Zhao, and Jun Zhu. Explainable AI: A Brief
Survey on History, Research Areas, Approaches and Challenges, pages 563–574. 09 2019.

[58] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. CoRR,
abs/1311.2901, 2013.

[59] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolutional neural networks. CoRR,
abs/1710.00935, 2017.

[60] Yunyan Zhang, Daphne Hong, Daniel McClement, Olayinka Oladosu, Glen Pridham, and Garth Slaney.
Grad-cam helps interpret the deep learning models trained to classify multiple sclerosis types using clinical
brain magnetic resonance imaging. Journal of Neuroscience Methods, 353:109098, 2021.

[61] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features
for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

32



A. Appendix Overview

In the appendix, we provide:
1. More examples of Abstract Network Visualizations
2. More examples of Global Explanations
3. Deep Reveal experiment participation questionnaire

B. More examples of Abstract Network Visualizations

Continuing from the results presented in Section 5.2.1, we also provide additional ANVs for different images
and classes in Figures 28, 29, 30, and 31.

Figure 28: An ANV was generated for an image of a parachute. The network successfully recognized the shape
and color of the canopy, as well as the posture of the person in the image. However, the context of the image,
including the landscape, mountain, and sky, also played a significant role in predicting the classification.

33



Figure 29: An ANV is presented here for an image of an English Springer. The muzzle and hair were found
to be the most significant features for predicting its classification, and the network was also able to recognize
its spots and ears, which are the principal characteristics of this breed. It should be noted that some labels
may appear to be completely wrong, such as the "body" label in layer 9. However, this cluster map contained
three labels with equal scores: "body", "head", and "face," and the former was displayed only because of the
alphabetic order.

Figure 30: An ANV for an image of a church. Every layer concentrated on the bell tower, which is the most class-
discriminative feature in this image together with the cross and the roof. We can also observe that shallower
layers are focusing mostly on the shape of the building and the tower.

34



Figure 31: An ANV for an image of a gas pump. Similar to the church image, the heatmaps show that the
network focused on the building’s shape in the shallower layers, and more semantic features such as the canopy,
the lights, and the pump itself in deeper layers. Interestingly, the visualization reveals that the network was
capable of recognizing the "Q8" logo as an important feature for a gas pump. Furthermore, a weak point of
this explanation is that the heatmap for the canopy in the final layer is slightly inaccurate, possibly due to the
gradient saturation issue discussed in the main document (see Section 2.2.2).

C. More examples of Global Explanations

Building upon the results outlined in Section 5.2.2, we have incorporated additional global explanations for
various classes illustrated in Figures 32, 33, and 34.

Figure 32: A global explanation for the "Cassette Player" class. The most relevant features were buttons and
speakers. However, speakers are not always part of the cassette player, so assigning them high importance may
not be ideal. Interestingly, the network recognized the written text "cassette" and the forward symbol.

35



Figure 33: An example of a global explanation for the class "Golf Ball". The network examined various features
such as the ball’s shape and texture, while also making use of contextual clues to help in its predictions. For
instance, it associated the presence of grass, tees, clubs, and holes with a golf ball context. Furthermore, some
users recognized the golf balls using the Nike symbol. However, it is difficult to determine whether the network
did it too, or if it solely relied on the ball’s shape and texture. As stated in the main document, further
validation is required for such features.

Figure 34: An example of a global explanation for the "English Springer" class. The dog’s head was primarily
identified by examining its muzzle, eyes, nose, and ears. Meanwhile, its body was recognized by its hair, legs,
and spotting patterns. It’s worth noting that the person also appears to have a higher-than-expected weight.
However, this can be justified since the cluster map was also slightly focused on the dog.

36



D. Deep Reveal experiment participation questionnaire

D.0.1 Participant information

1. Please provide the email address that you used to register on Deep Reveal.

D.0.2 Usability

Strongly
Disagree

Strongly
Agree

1. I think that I would like to play Deep Reveal often. 1 2 3 4 5

2. I found Deep Reveal to be unnecessarily complex. 1 2 3 4 5

3. I found Deep Reveal to be easy to use. 1 2 3 4 5

4. I think that I would need the support of a technical
person to be able to use Deep Reveal.

1 2 3 4 5

5. I found the various functions of Deep Reveal were well
integrated.

1 2 3 4 5

6. I thought there was too much inconsistency in Deep Re-
veal.

1 2 3 4 5

7. I would imagine that most people would learn to use
Deep Reveal very quickly.

1 2 3 4 5

8. I found Deep Reveal very cumbersome to use. 1 2 3 4 5

9. I felt very confident using Deep Reveal. 1 2 3 4 5

10. I needed to learn a lot of things before I could get going
with Deep Reveal.

1 2 3 4 5

D.0.3 Workload

How mentally demanding was Deep Reveal?

0 1 2 3 4 5 6 7 8 9 10
Very Low Very High

How strenuous was to use Deep Reveal?

0 1 2 3 4 5 6 7 8 9 10
Very Low Very High

How hurried or rushed was the pace of the game?

0 1 2 3 4 5 6 7 8 9 10
Very Low Very High

How successful were you in playing Deep Reveal?

0 1 2 3 4 5 6 7 8 9 10
Perfect Failure

How hard did you have to work to accomplish your level of performance?

0 1 2 3 4 5 6 7 8 9 10
Very Low Very High

How insecure, discouraged, irritated, stressed, and annoyed were you?

0 1 2 3 4 5 6 7 8 9 10
Very Low Very High

37



D.0.4 Feedback

1. Which of the following would you consider to be the weak points of the game? (Multiple choices allowed)
A. Gameplay B. Graphics C. In-game images D. Score system E. Adding characteristics
F. None of the above G. Other:

2. How did you find the overall experience? 1 2 3 4 5

3. Additional feedback (Optional)

38



Abstract in lingua italiana

La trasparenza e la spiegabilità nei processi di classificazione di immagini sono fattori essenziali per instaurare
fiducia nei modelli di apprendimento automatico e rilevare discriminazioni ed errori. Le tecniche di spiegabilità
più avanzate generano mappe di calore che evidenziano le regioni dell’immagine in cui viene identificata una
classe specifica, senza fornire però una spiegazione completa di come il modello sia arrivato alla sua decisione.
Per rispondere a questa esigenza, proponiamo una tecnica post-hoc per la generazione di spiegazioni locali
che forniscono una panoramica del processo in cui il modello estrae caratteristiche dalle immagini. Queste
spiegazioni consistono in una visualizzazione delle caratteristiche estratte dal modello per ogni suo layer e sono
denominate Abstract Network Visualizations (ANV). Tali caratteristiche sono rappresentate da mappe di calore
generate dalla fusione di Feature Map simili raggruppate con tecniche di clustering, alle quali associamo un peso
utilizzando Grad-CAM, una tecnica di spiegabilità locale. Queste mappe di calore sono, inoltre, descritte da
un insieme di annotazioni raccolte tramite un’attività di crowdsourcing gamificata, che migliora ulteriormente
l’interpretabilità delle nostre spiegazioni locali. Infine, dimostriamo che tali annotazioni possono anche consen-
tire la produzione di spiegazioni globali, aggregando mappe annotate in modo simile su più immagini.

Parole chiave: spiegabilità, classificazione di immagini, apprendimento automatico, gamificazione,
crowdsourcing.

39



Ringraziamenti

Questo spazio è dedicato a tutti coloro che in un modo o nell’altro sono stati al mio fianco nel raggiungimento
di questo piccolo traguardo.
Naturalmente ringrazio il professore e mio relatore Marco Brambilla che è stato un punto di riferimento per
questo lavoro ed in generale per tutto il percorso universitario inclusa la triennale.
Ringrazio Andrea Tocchetti che è stato il miglior correlatore che si potesse mai chiedere sia dal punto di vista
umano che di preparazione, e non è assolutamente una esagerazione.
Ringrazio naturalmente Matteo che, oltre ad essere un amico e un ottimo collaboratore, è tra le persone che
sono più grato di aver conosciuto durante questo percorso.
Ringrazio inoltre ognuna delle persone che hanno preso parte all’attività di crowdsourcing che ha reso possibile
questo lavoro. È inutile dire che senza di voi questa tesi non sarebbe stata possibile e per questo il lavoro fatto
ed i risultati ottenuti sono anche in parte di ognuno di voi.
Un ringraziamento speciale va poi ai miei genitori che hanno fatto sacrifici credendo in me e questo mi ha reso
orgoglioso e mi ha dato senso di responsabilità. Vi voglio bene e questo traguardo lo dedico a voi.
Ringrazio mia sorella Chiara che è la persona a cui sono legato di più al mondo. Mi hai costantemente iniettato
autostima e mi scuso se a volte non sono riuscito a fare altrettanto.
Ringrazio zio Mino, che è stato come un secondo padre in questi anni ed il mio principale punto di riferimento
quando a 18 anni mi sono ritrovato solo e lontano da casa.
Ringrazio comunque tutta la mia famiglia, ma in special modo nonno Lucido, zia Michela e zio Sergio che
purtroppo non ci sono più.
Ringrazio anche nonna Giovanna che per me è stata come una mamma e mi dispiace che questa volta non potrà
essere insieme a me a festeggiare.
Ringrazio infine gli amici e compagni universitari che ho conosciuto durante questo percorso, tra cui volevo
citare in particolare Riccardo che negli anni è diventato sempre più come un fratello per me.
Grazie veramente a tutti per mi avermi insegnato che le soddisfazioni più grandi si raggiungono sempre e solo
insieme.

Antonio De Santis
04/05/2023

Dedico questo spazio a tutti coloro che mi hanno supportato in questo lungo percorso di crescita professionale
e personale.
Innanzitutto, desidero ringraziare il mio relatore Marco Brambilla, per la possibilità di lavorare a questo progetto
e per tutti i preziosi consigli durante il suo svolgimento.
Un sentito ringraziamento va al mio correlatore Andrea Tocchetti, per la disponibilità e per tutti i puntuali
aiuti nella stesura di questa Tesi.
Non posso non ringraziare Antonio, il mio co-autore, con cui ho condiviso l’intero percorso universitario. Grazie
per aver accettato di lavorare assieme a questo progetto, e per avermi sopportato per tutta la sua durata. Sono
felice di poter condividere questo traguardo assieme a un caro amico.
Ringrazio tutti coloro che hanno partecipato e aiutato nell’esperimento di questa tesi, senza il quale tutto questo
lavoro non sarebbe stato possibile.
Un Grazie a tutti i miei familiari, per aver sempre creduto in me e per avermi aiutato a credere in me stesso. In
particolare, un doveroso Grazie va ai miei genitori, che nonostante i miei difetti mi sono stati vicini e mi hanno
sempre sostenuto in questo insidioso percorso, nel bene e nel male. Grazie di tutto.
Infine ringrazio gli amici, universitari e non, che mi hanno aiutato a crescere e con il quale ho potuto condividere
gli anni migliori della mia vita. Grazie per ogni momento.
Grazie infinite a tutti.

Matteo Bianchi
04/05/2023

40


	Introduction
	Context and Problem Statement
	Proposed Solution
	Document Structure

	Background and Related Works 
	Artificial Intelligence and Convolutional Neural Networks
	Explainability
	Model-Agnostic Explainability
	Model-Specific Explainability for CNNs 
	Human Knowledge and Crowdsourcing 


	Methodology 
	Abstract Network Visualizations
	Method Overview
	Feature Maps Analysis 
	Feature Maps and Weights
	Pre-processing 
	Clustering 
	Merging Feature Maps 

	Human Knowledge Collection 
	Masking Cluster Maps 
	Gamification

	Label Analysis 

	Implementation 
	CNN Setup 
	Feature Maps Extraction and Clustering 
	Masking Cluster Maps
	Deep Reveal 
	Requirements and Design
	Implementation details


	Experiments and Discussion 
	Experiment Setup
	Results and Discussion
	Abstract Network Visualizations: Case studies 
	Exploring Visualizations for Global Explanations 
	A discussion of Deep Reveal questionnaire results 


	Conclusion and Future Works 
	Appendix Overview
	More examples of Abstract Network Visualizations 
	More examples of Global Explanations 
	Deep Reveal experiment participation questionnaire 
	Participant information
	Usability
	Workload
	Feedback



