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Abstract 

One of mankind's greatest concerns today is global warming due to greenhouse gas 

emissions from the burning of fossil fuels. In addition to the depletion of non-

renewable resources, the use of renewable energy has become the government's top 

priority. Generally speaking, in the generation of renewable energy by different 

means of production like PVs, wind, etc., having capable battery systems and energy 

storage systems is a must. Above and beyond, electric vehicles (EVs) show great 

performance in terms of efficiency and CO2 emissions reduction and are widely used 

in the automotive industry, which are powered by rechargeable batteries. There is a 

diversity of energy storage technologies, ranging from lead acid to NiMH to lithium-

ion batteries, which are being employed. Lithium-ion (Li-ion) batteries take the lead 

and are commonly used in energy storage systems for renewable energy systems 

such as EVs and power plants due to their high power and energy density and long 

service life. These advantages lead to more focus and investment on this technology 

to increase its robustness and stability. 

In order to protect battery systems and have a reliable control and supply system, a 

battery management system (BMS) is employed, which protects the battery from 

being overcharged or discharged and delivers cell balancing. As a result, BMS must 

be able to anticipate the state of charge (SOC) and state of health (SOC) with 

reasonable accuracy. There are various methods for estimating SOC and SOH that 

can be analyzed, classified, and weighed in terms of pros and cons. 

The purpose of this article is to offer an overview of the SOC and SOH approaches 

now available in the literature, along with the advantages and disadvantages of 

generally used methods, as well as a comparison of the most often used methods. 
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Abstract in lingua italiana 

Una delle più grandi preoccupazioni dell'umanità oggi è il riscaldamento globale 

dovuto alle emissioni di gas serra  dovute alla combustione di combustibili fossili. 

Oltre all'esaurimento delle risorse non rinnovabili, l'uso dell'energia rinnovabile è 

diventato la massima priorità dei governi. In generale, nella generazione di energia 

rinnovabile con diversi mezzi di produzione come il fotovoltaico, il vento, ecc, è 

essenziale avere l'immagazzinamento di energia e  batterie idonee. Inoltre, i veicoli 

elettrici (EV), alimentati da batterie ricaricabili, mostrano grandi prestazioni in 

termini di efficienza e riduzione delle emissioni di CO2 e sono ampiamente utilizzati 

nell'industria automobilistica. Esiste una varietà di tecnologie di immagazzinamento 

dell'energia, che va dall'acido di piombo ,al NiMH, alle batterie agli ioni di litio. Le 

batterie agli ioni di litio (Li-ion) assumono un ruolo grazie alla loro alta potenza, 

densità energetica e alla lunga durata e sono comunemente usate nei sistemi di 

immagazzinamento dell'energia per i sistemi di energia rinnovabile come i veicoli 

elettrici e le centrali elettriche. Questi vantaggi portano a una maggiore attenzione e 

investimenti su questa tecnologia per aumentarne la robustezza e la stabilità. 

Per proteggere i sistemi a batteria e avere un sistema di controllo e alimentazione 

affidabile, viene impiegato un sistema di gestione della batteria (BMS), che protegge 

la batteria dal sovraccarico o dallo scaricamento e fornisce il bilanciamento delle 

celle. Di conseguenza, il BMS deve essere in grado di anticipare lo stato di carica 

(SOC) e lo stato di salute (SOC) con una precisione ragionevole. Ci sono vari metodi 

che possono essere analizzati, classificati e pesati in termini di pro e contro usati per 

stimare SOC e SOH.  

Lo scopo di questo articolo è quello di offrire una panoramica degli approcci SOC e 

SOH attualmente disponibili in letteratura, così come i vantaggi e gli svantaggi dei 

metodi generalmente utilizzati, nonché un confronto tra i metodi più spesso 

utilizzati. 

Parole chiave: Battery, SOC, SOH, State of charge, State of health.  
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Introduction 

One of humanity's most pressing worries today is global warming, which is caused 

by greenhouse gas emissions from the use of fossil fuels. The replacement of fossil 

fuels is a major source of concern for civilization. Global warming, the depletion of 

fossil fuels, and the growing prices of traditional energy sources have all driven the 

development and widespread usage of renewable energy sources. Clean, renewable 

energy is now being used in a variety of industrial sectors. Due to the nature of 

renewable energy sources such as solar energy and wind energy, which are not 

accessible continuously during the day and night, they cannot be used in situations 

where a continual supply of energy is needed. As a result, batteries are used in order 

to maintain power continuity [1]. Above and beyond, electric vehicles (EVs) have 

excellent performance in terms of efficiency and CO2 emissions reduction, and they 

are extensively employed in the automotive sector, where they are powered by 

rechargeable batteries.  From lead acid to nickel-metal-hydride (NiMH) to lithium-

ion batteries, there are many different types of energy storage systems available. 

With its unique and beneficial characteristics, lithium-ion batteries take the lead. 

Because of their high power and energy density, lithium-ion batteries have a long 

shelf life [2] Lithium-ion batteries are also an excellent choice for electric cars in the 

transportation system business because of their minimal weight.  

It is necessary to use a battery management system (BMS) in order to control battery 

systems and eliminate any potential explosion dangers associated with the batteries. 

A battery management system (BMS) is an electronic component that manages a 

battery pack of rechargeable batteries. When BMS is used, the major purpose is to 

keep the batteries in a safe, dependable, and efficient state while also preventing the 

battery pack from being used for a shorter amount of time than intended. In order to 

do so, the BMS must accurately predict the various characteristics of the battery pack 

[3]. State of charge (SOC) and state of health (SOH) are two of the most important 

characteristics to consider. The presence of these states cannot be observed directly 

by sensors, but they may be inferred by measuring associated measurable factors 

such as the voltage and current of the batteries as well as their temperature.  
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SOC is a one of the primary parameters of battery pack which is related to accessible 

capacity of the batteries. By knowing this factor, BMS retrains from overcharging or 

discharging of batteries. SOC can be estimated by using battery model system and 

algorithm. There are several definitions of SOC.  

SOH is another key parameter which provides information about aging status of the 

battery pack. Due characteristics and working condition of the battery pack, internal 

residence grows gradually over time, as well as the capacity decreases. Hence battery 

aging leads to an incremental drop in the power and energy. By tracking of internal 

resistance and power of the battery, SOH can be estimated [4].   

This essay is regarded an overview on methodologies of SOC and SOH estimations, 

comparison most common methods as well as advantages and drawbacks.   
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1 Chapter one 

State of Charge (SOC) definition   

Generally speaking, SOC is defined as the ratio between its current Capacity (𝑄(𝑡)) to 

the nominal capacity (𝑄n). The nominal capacity of a battery is defined as the 

greatest amount of charge that can be held in it, and it is normally stated by the 

manufacturer in the specifications. The following is an illustration of the SOC 

definition in practice (1-1) [5]: 

  

 𝑆𝑂𝐶(𝑡) =
𝑄(𝑡)

𝑄𝑛
 

(1-1) 

 

A more technical definition is the ratio between the amount of energy that can be 

stored in the battery and its maximum storage capacity [2]. The state of charge 

defines as a function of rated available capacity of the battery and varies from 0 

(completely discharged) to 100% (fully charged). In practice, SOC must keep over 

50% and the battery pack start getting re-charged at SOC 50%. Moreover, SoCmax of 

battery get decreased over the time due to aging effect. 

Numerous approaches to SOC estimation are in the literature. The following 

categories may, nevertheless, be recognized in some literary works: 

Among the first are those classified as "Direct measurement," which are cost-effective 

but not precise in terms of measurement accuracy [5]. Since batteries have 

electrochemical characteristics; therefore, the influence of temperature and aging 

cannot be completely eliminated. 

The next category is book-keeping systems, which are based on current monitoring 

and charge counting of the battery as well as other factors [6]. When using this 

approach, the discharging current is used as an input and the SOC is calculated by 

integrating the discharging current over a period of time [5].  
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Regarding SOC estimations, adaptive systems, as the next best option, are critical. 

Because of the unpredictability of both battery and user behavior, building an 

accurate SOC indicator system that is capable of integrating direct and indirect 

measurements is the most difficult component of producing an accurate SOC 

indicator system [6]. A variety of unique adaptive approaches for SOC estimates 

have been developed in recent years, thanks to advances in artificial intelligence (AI). 

When it comes to the functioning of lithium-ion batteries in electric vehicles, there 

are many difficulties to overcome. Predicting the state of charge (SOC) of the battery 

is challenging because of the Nonlinear uncertainty in the battery [7]. Hence, 

nonlinear observer methods are developed.  Furthermore, the development of 

learning and data-driven algorithms have taken a significant stride forward in recent 

years, resulting in an improvement in the accuracy of state of charge estimate [8]. 

Finally, but definitely not least, hybrid methodologies are discussed in order to make 

advantage of the many methods of estimating SOC that are accessible to the user.  

State of Health (SOH) definition  

The state of health (SOH) is often characterized from the viewpoints of capacity loss 

and impedance growth, which are both important considerations. In situations 

where the power capability of batteries is of importance, the impedance-based SOH 

assessment is critical to success. This condition allows for the calculation of 

impedance to be done immediately by referring to the relationship between current 

and voltage response [9]. A large number of SOH estimates have been discussed in 

the literature. The internal resistance, impedance, and capacity of the battery are the 

three basic indications used to estimate SOH. In addition to the battery capacity, 

internal resistance and impedance indicate the battery's power capabilities. In hybrid 

applications, battery power is important, unlike in EVs where battery energy is 

critical [10]. 

Some literature, on the other hand, permits classification into the three groups listed 

below: model-based methods, experimental methods, and data-driven (machine 

learning) methods. Model based methods necessitate the development of a 

mathematical or physical model that accurately captures the many capabilities. 

Experimental methods are based on measurements and data that have been gathered 

in order to analyze the battery's aging behavior. Following that, Data driven methods 

are a hybrid of the two approaches discussed above and are based on features which 

are taken from partial or full Lithium-ion battery charging/discharging data which 

further can be divided into two categories -non-probabilistic and probabilistic [11]. 

Moreover, in photovoltaic systems, in terms of health indicators, the methods for 
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estimating SOH may be classified into two broad categories: terminal voltage and 

other signals. The majority of HIs are derived from terminal voltage, which may be 

classified into four categories based on how the signals are subsequently utilized 

[12]. 

Statement of overall purpose 

To properly categorize SOC and SOH estimate approaches, this study will evaluate 

existing research on the subject in order to classify them properly. Additionally, the 

various SOC and SOH estimate processes are discussed in depth so that the reader 

may select the one that is most appropriate for his or her particular situation. In this 

article, you will find up-to-date information on approaches that will be beneficial in 

the design and analysis of a project from a technical and financial standpoint, which 

includes the battery system. Furthermore, it will be beneficial to students and 

professionals working in the fields of renewable energy systems and electric vehicles.  

 

 



 

 

 

 

2 Chapter two 

As mentioned in pervious section, SOC is one of the most important parameters of 

the battery. In this chapter information about deep review of SOC will be provided.  

SOC definition  

For a better understanding of SOC, additional analytical tasks such as predicting 

useful life and capacity estimates are required, both of which have been presented for 

the last 40 years or so, but have yet to get a formal description [13].  Due to the fact 

that SOC is a good indicator of battery performance, SOC estimation is an important 

component of battery management systems. A SOC estimate with high accuracy tells 

us how much energy remains in batteries, as well as evaluating their reliability. It is 

difficult to determine the SOC of batteries because they contain chemical energy that 

cannot be quickly accessible [14]. 

There are various ways to define SOC. As indicated in Eq (2-1), the current 

integration technique is the most conventional way for estimating SOC. Current 

integration represents the ratio of the available current capacity to the theoretical 

capacity [13]: 

 

 In another definition SOC is Calculated by dividing the battery's current 

capacity(Q(t)) by its nominal capacity (Qn). The nominal capacity is the battery's 

maximum charge as the following equation [5]. The quantity of ampere-hours that 

the cell is capable of delivering at normal operating temperature. Battery activity is 

not adequately described by static descriptions. . [15] 

 𝑆𝑂𝐶 = 1 −
∫ 𝑖𝑑𝑡

𝐶𝑛
 (2-1) 

 Cn= theoretical(nominal) capacity 

t=time 
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The battery's charge (in [Ah]). On a bar graph, 100 percent represents a fully charged 

battery, whereas 0 percent represents an empty battery. [16] When it comes to the 

definition of SoCs, the following parameters might be specified: Depth of discharge 

(DoD) is defined as the ratio of the discharged capacity of a fully charged battery to 

the maximum capacity of the battery which is illustrated in Error! Reference source n

ot found..  

80% Capacity Remaining
Present Charge Available
 In The Battery, i.e. SoC

20% Discharged
Depth Of 

Discharge(DOC)

Battery capacity 100%0%

50%

 

 

Figure 1: SOC, Available Capacity Remaining [17] 

For the battery to operate safely and securely, it is necessary to have accurate and 

strong SOC information available. In case of not anticipated precisely SOC, many 

negative repercussions will occur in the Battery Management System (BMS) as a 

result of this situation, including battery degradation and shortened battery life 

cycles. [7] As a result, this demonstrates the need of precise estimation of SOC 

approaches for BMS.  

SOC Classification  

In terms of SOC classification, in the literature, a large number of methods have been 

presented. This study categorizes the SOC estimate methodologies into six 

categories. The very first methods are Direct measurements which are so called 

Conventional methods and employs the physical features of the battery such as 

voltage, resistance, Impedance and etc. Next category is book keeping systems which 

are based on current measurement and integration. In the technical world, this is 

referred to as coulomb counting, that basically means as "counting the charge going 

to or from the battery [16]. A variety of models and techniques are used to compute 

the SOC via the Adaptive Systems. In order to characterize the nonlinear features of 

batteries and estimate the SOC, the machine learning method need a vast quantity of 

 𝑆𝑂𝐶(𝑡) =
𝑄(𝑡)

𝑄𝑛
 (2-2) 
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training data and extensive computation. In case of extremely non-linear systems, the 

nonlinear observer methods are used. Furthermore, hybrid approaches are offered in 

order to take benefit of more than one way at the same time[18] which improves the 

estimation accuracy. 

 The categorization of SOC estimate methodologies is represented in the Figure 2.  

Direct measurments

Book-Keeping 
System

Adaptive Systems

Machine Learning

Non-Linear Observer

SoC Classification 

Open Circuit 
Voltage(OCV)

Impedance Method

Terminal Voltage

Electro Motive 
Force(EMF)

Coulomb 
Counting(CC)

Modified coulomb 
Counting(MCC)

Kalman Filter
Extended Kalman 

Filter

Cubature Difference 
KF

H Infinity Filter

Particle FactorLinear Kalman FIlter

Non-Linear Kalman 
Filter

Neural Network

Fuzzy Logic

Support Vector 
System

Non-Linear Observer

Proportional-
Integral Observer

Sliding Mode 
Observer

Hybrid Systems

 

Figure 2-SOC classification 

 

 

 

2.1 Direct measurement methods 

In direct measurement techniques, the state of charge of the battery is often 

determined by the connection between various physical properties of the battery. 

The main parameters are Voltage (V), Impedance (Z) and voltage relation time ( 𝜏). 

In a realistic setup, this battery variable should be observable electrically. It is also 
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necessary to monitor the temperature because it has a significant impact on these 

physical quantities. (Equation (2-3)). It is shown in Figure 3 how the SOC idea is 

applied to direct measurements.  

 𝑆𝑂𝐶(𝑡) = 𝑓𝑇(𝑉, 𝑍, 𝜏, 𝑇) (2-3) 
B

a
tt

er
y 

V,T,τ, T SOC=ʃ d-T (V,Z,τ)

 

Figure 3: SOC concept in direct measurement [16] 

Direct measurement systems offer the primary benefit of not requiring constant 

connection to the battery, which is a significant advantage in some applications. The 

measurements may be carried out as soon as the battery is connected. This is in 

contrast to the fact that changes in temperature have a considerable influence on the 

accuracy of the measurement. [16].  

In the following, the direct measurement methods are presented.  

2.1.1 Open Circuit Voltage (OCV)  

The very first usage of OCV method developed in 1975 [19]. The OCV may be 

determined using the following equation(2-4), which is proportional to the battery 

SOC: 

 

 𝑂𝐶𝑉 = 𝑉𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 + 𝐼𝑅 (2-4) 

 

𝑉𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 refers to the voltage of the battery terminal, I is the actual current and R is 

the resistance. In case of I=0, the amount of OCV=𝑉𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 .The SOC estimation 

equals the OCV estimation. Nonetheless, this takes time after a current interruption 

due to the many relaxation processes operating within a battery [20]. It is thus 

feasible to estimate the SOC of a battery using an open circuit voltage after the 

battery has gone through the relaxation process in order for the battery to attain 

equilibriums. This is one of the disadvantages of this strategy since it takes a long 
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time to attain a condition of equilibrium in most cases [21]. This is due to a number of 

factors, including aging, oxidation-reduction potential (ORP), and electrode system 

performance [22]. OCV is generally determined via offline testing at a certain 

temperature, which is not ideal for online SOC calculation of batteries.  

Not all batteries have the same connection between OCV and SOC. Because the 

OCV-SOC relationship varies among batteries, it is difficult to predict the SOC 

precisely [5]. A linear approximate relationship is between SOC and OCV in most 

batteries but some other factors such as battery size and technology have effect on 

this relationship [23]. But when it comes to Li-ion batteries, this relationship not 

linear anymore [24]. Eq(2-5) demonestare the relationship between SOC and Voc [25] 

and Figure 4 demonestrates the relationship between SOC and OCV[26].  

 

 𝑉𝑜𝑐(𝑡) = 𝑎1 + 𝑆𝑜𝐶(𝑡) + a0 (2-5) 

 a0= 𝑉𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 at SOC=0 

a1 is obtained, at SOC=100%, by being aware of a0 and Voc 

 
 

 

Figure 4-Relationship of SOC and OCV   

This approach is not ideal for continuous operation of the battery, it is unsuitable for 

flat OCV-SOC curves, and it is also only applicable to open-loop and offline systems, 

among other limitations. [28]  

2.1.2 Model-based SOC estimation: 

As previously stated, OCV is regarded as an offline approach. Electrochemical 

models and analogous circuit models, which are the two most often used battery 
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models, are used in order to apply a SOC estimation technique in online applications 

such as EVs. Battery performance is widely investigated using the battery 

electrochemical model, which takes into consideration the effects of electrodynamics 

and chemical thermodynamics on a wide range of internal materials and 

components. The electrochemical model can be expressed in the form of the 

following equation. When the battery model characteristics are known, it is 

straightforward to monitor the battery's SOC using the OCV-SOC look-up table [29]`.  

 𝑈 = 𝑈𝑜𝑐 − 𝑈𝑅 − 𝑈𝑝 (2-6) 

 

U= battery terminal voltage 

Uoc=  Ocv  

UR=Voltage across the 

resistance 

Up=electrical potential caused 

by polarization process 

Ref [30]. Took a similar method, in which they employed an equivalent circuit model 

on the basis of nRC networks and took into account the polarization and dynamic 

properties of the lithium-ion battery. Using the recursive least squares (RLS) 

approach with an optimal forgetting factor, an online OCV was built and the results 

were compared to experimental results obtained for various RC networks in the next 

phase. The results of the experiment were used to develop a lookup table for OCV-

SOC. The proposed approach has the potential to reach an online SOC estimation 

accuracy of less than 5 percent. Other models are presented in refs [31, 32].  

2.1.3 Impedance Method. 

Due to the battery's electrochemical processes, in order to improve the measurement 

accuracy and resilience, in this methodology impedance measurement across a broad 

range of frequencies are implemented at different charge and discharge currents 

which sometimes referred to as electrochemical impedance spectroscopy (EIS).  

To apply EIS, an electrochemical model is required, which predicts battery 

impedance utilizing inductances and capacitances across a large frequency range. An 

equivalent circuit was developed by [33] which consisted of an inductive arc 

operating at a high frequency and two capacitive arcs operating at a low frequency, 

respectively. To determine the model impedances, a non-linear least-squares fitting 

approach is employed under a variety of various SOC values. Another almost 

accurate and economical approach is using terminal voltage and discharge current to 

estimate EMF voltage which may work online if the impedance value is normalized. 

However, battery age and temperature variations may cause predicted findings to be 

inaccurate [18].To construct the EIS models, the authors employed a variety of 

techniques to determine the SOC of the battery in refs [34–37] .  
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2.1.4 Terminal Voltage 

Despite the fact that voltage measuring has become increasingly widespread, 

particularly for mobile phone applications, it does not provide the most reliable data. 

While determining a cell's remaining capacity by detecting its voltage level is less 

costly and requires less computational effort than other methods, in practice voltage 

measurements may be quite deceptive. That said, the voltage loss during discharge 

varies substantially with cell temperature and discharge rate [38]. This graph (Figure 

5) illustrates the voltage curve of Li-Ion batteries discharged at various rates.  

 

Figure 5: Li-ion battery voltage curves at different discharge rates. [39] 

Figure 5 depicts the link between cell voltage and discharged capacity. As shown, the 

voltage discharge curve is heavily dependent on discharge rate.  As long as the 

system knows how the battery voltage is related to the cell temperature and 

discharge rate, it can minimize the estimate inaccuracy. When such observed curves 

are taken into consideration, the procedure becomes more involved and costly than a 

Coulomb counting technique. . [39] 

2.1.5 Electromotive Force (EMF) 

Electromotive force (EMF) is the internal driving force of a battery that is responsible 

for supplying energy to a load which generally calculated through thermodynamic 

data and the Nernst equation. Using a technique known as linear interpolation, the 

EMF may be calculated in another way as well, in which the average battery voltage, 

calculated at the same SOC, is inferred from the battery voltages during two 

consecutive discharge and charge cycles using the same currents and at the same 

temperature. [20] Voltage relaxation may be also used to determine the EMF. After 

an interruption in current the voltage will return to EMF value. When a battery is 

almost discharged this process If the battery is nearly completely depleted, the 

process may take a lengthy time, particularly in cold conditions or with an excessive 

discharge current rate [40]. Li-ion battery EMF is an excellent indicator of SOC. If 
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SOC is stated in relative capacity, the connection between EMF and SOC remains 

constant throughout battery cycling. Look-up table, Piecewise linear function and 

Mathematical function, according to the literature, these are the three most prevalent 

EMF solutions in look- up table [6]. 

 

Table 1 illustrates a comparison of direct measuring methods:  

Methods Advantages Disadvantages 
Errors (and ref) 

OCV Easy to set up and 

use with good 

precision 

Offline methods, 

achieving equilibrium 

takes a long time. 

The error varies with 

respect to OCV/SOC 

curves 

[41] 

Model-based Online method 

with good 

accuracy  

 Depends greatly on 

how accurate the 

model is.  

≤ ±5% [30] 

EIS Online low-cost 

technique with 

accurate result (In 

case of 

normalized 

impedance value)  

Inaccurate results 

might be caused by 

battery aging and 

temperature 

fluctuations.  

The error Varies with 

respect to V/SOC 

curves 

[42] 

Terminal 

Voltage 

Cheap and fast Result is affected by 

temperature 

The error Varies with 

respect to V/SOC curve 

[39] 

EMF Conveniently 

priced and ease to 

use  

Achieving equilibrium 

takes a long time. 

≤ ±2% [43] 

Table 1-Direct measurement method comparison 
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2.2 book-keeping systems 

The battery discharge current data are used as input in the book-keeping estimate 

technique and that is on the basis of current measurement and integration[20]. It is 

possible to add certain internal battery effects such as self-discharge, capacity loss, 

and discharging efficiency using this technique. For the purposes of this study, two 

types of bookkeeping estimating approaches were used: Both the conventional and 

modified Coulomb counting methods are used. The counting technique based on 

Coulomb's coefficients. [5]  

A bookkeeping system for a smartphone app depicted in Figure 6. An in-built 

bookkeeping module constantly examines the battery and provides voltage, 

temperature, current and integration to the CPU in order to calculate SOC. In order 

to establish the battery's capacity, the battery identifying data are utilized. The CPU 

regularly refreshes the data in the electrically erasable ROM (EEPROM). Battery 

power, ground and one-wire interface are the only three output connectors 

necessary.  [20] 

 

Figure 6: Block diagram of the book-keeping support module[20] 

Generally, in the literature two primary book-keeping approaches are presented: 

Coulomb counting method and modified Coulomb counting method. [14] 
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2.2.1 Coulomb counting (CC) 

It is the most straightforward and natural manner technique of determining battery 

state-of-charge (SOC). It implies counting the charge entering or leaving the battery 

which is based on the integration of current with respect to time while the battery is 

charging/discharging. SOC is expressed theoretically in equation(2-7) [44]:  

 𝑆𝑂𝐶𝑡 = 𝑆𝑂𝐶(𝑡−1) +
𝐼𝑡(𝑡)

𝑄𝑛
Δ𝑡 (2-7) 

 I(t)= Discharging current  

𝑆𝑂𝐶(𝑡−1)= Previously estimated value 
 

 
  

A long-term monitoring and memory need to makee this approach unsuitable for 

real-time SOC estimates, but essential for evaluating other methods' correctness [45]. 

Several drawbacks can be pointed out in this method:  

1-  As an open-loop method, it is subject to errors as a result of unknown 

disturbances and factors like as noise, temperature, current, and so on [45]. 2- 

2- There are challenges in identifying the beginning value of SOC, which results 

in a cumulative impact [46].  

3- Measurement error of sensor has a sharp cumulative effect on accuracy of the 

estimation. 

4- Last but not the least,  complete discharge of the cell and frequent capacity 

calibration are required for maximum capacity to be achieved, which reduces 

the battery's useful life. [18] 

The results of the laboratory trials show that correcting SOC may reduce 

estimation error to around 4% and that energy efficiency can further reduce 

estimation error [46].  

2.2.2 Modified Coulomb Counting  

A methodology, referred to as the modified Coulomb counting method, is suggested 

in order to enhance the Coulomb counting method. The corrected current (as a 

function of discharging current) is used in conjunction with the modified Coulomb 

counting technique to increase the accuracy of measurement. Corrected current is 

computed using experimental data as (2-8).  [26] :  
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SOC is determined using the modified Coulomb counting technique, which is 

represented by the following equation:  

The modified Coulomb counting approach outperforms the regular Coulomb 

counting method in terms of accuracy. [1]. [14] 

By extending the Peukert equation for discharging to include battery capacity rate 

and temperature dependency, Xie Jiale et al. were able to produce an improved 

coulomb counting strategy which is so called  ampere-hours (Ah) counting. It is 

intended to strike a balance between sampling frequency and accumulation accuracy 

with a frequency-adjustable current sampling system. The findings support the 

effectiveness and generalizability of the proposed technique. [47]  

Another Method was enhanced by Ng et al., who combined simultaneous estimation 

of SOH and SOC with dynamic re-calibration on the maximum releasable capacity of 

a working battery, resulting in a more exact SOC estimation and higher accuracy[45].  

Improved Coulomb counting technique is proposed by He and Guo with real-time 

error correction, which in the unsteady state CC estimation of SOC leads to a 

substantially higher estimation rate. By eliminating the cumulative SOC error of CC, 

numerical iteration technique achieves substantially greater accuracy than the 

standard CC approach, also uses a compensation coefficient to decrease error 

buildup. The experimental findings show that this method has a SOC error of less 

than 1% and a computation cost 94% less than EKF. So it helps to real-time SOC 

estimate in EVs [48]. Although the coulomb counting approach is quite complicated, 

it remains heavily dependent on the accuracy of the current probe; as a result, the 

integration of repeated mistakes results in a rising disparity between the real and 

estimated SOC values [49]. This implies that the SOC estimate should be revised on a 

regular basis using an OCV measurement.  

  

 𝐼𝑐(𝑡) = 𝐾2𝐼(𝑡)2 + 𝐾1𝐼(𝑡) +   𝐾0 (2-8) 

 
𝐾1, 𝐾2,   𝐾0= Constant value of 

exprimental data  

 𝑆𝑂𝐶𝑡 = 𝑆𝑂𝐶(𝑡 − 1) +
𝐼𝑐(𝑡)

𝑄𝑛
Δ𝑡 (2-9) 
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Table 2illustrates a comparison of book- keeping methods:  

Methods Advantages Disadvantages 
Errors (and 

ref) 

CC Easy to set up and 

use, Consumption of 

less energy 

Open loop approach, Inaccurate results 

from unknown disruptions, SOC 

starting value is difficult to determine 

cause cumulative impact  

≤ ±4% [46] 

ICC As same as CC, 

more accurate  

 Complicated, Accuracy depends on the 

current probe.  

≤ ±1% [[30] 

Table 2- Book- keeping method comparison 

2.3 Adaptive systems 

Due to Battery and user unpredictable behavior, it is difficult to develop an accurate 

SOC indicator. In this instance, an adaptive system based on direct measurement, 

bookkeeping, or a mix of both is required [16]. As artificial intelligence has 

progressed, numerous innovative adaptive algorithms for SOC estimates have been 

shaped in recent years. Back propagation (BP) neural networks, radial basis function 

(RBF) neural networks, fuzzy logic approaches, support vector machines, fuzzy 

neural networks, and the Kalman filter are among the newly developed methods. 

Adaptive systems are self-designing systems that can be autonomously altered to 

accommodate changing conditions. Besides, adaptive systems provide excellent 

results for SOC estimation due to non-linearity of SOC in chemical batteries[50]. This 

section will discuss many adaptive SOC systems that are currently available.  

Kalman Filter 

A clever instrument for estimating the battery's SOC, the Kalman filter, which filters 

parameters from unclear, erroneous data. Despite its high computing cost, KF has 

recently become a highly popular method for estimating the battery condition in 

batteries. The self-correcting characteristic of KF makes it ideal for high current 

variations. It is widely utilized in vehicles, radar tracking, aircraft, and navigation 

tracking applications. Using KF has several advantages, the most important of which 

is that it reliably estimates states that are impacted by external disturbances such as 

noise that follows a Gaussian distribution. Despite this, KF cannot be used to forecast 

the state of a nonlinear system in its natural state. Furthermore, it necessitates the use 

of extremely complicated mathematical computations. The KF family algorithm's 

self-correcting feature makes it ideal for model-based online SOC estimation which 

are divided into two categories: linear and nonlinear. [18]  
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  Figure 7: Method for SOC and SOH determination using a Kalman filter [6] 

2.3.1 Linear Kalman Filter  

Linear Kalman filter (LKF) utilizes a linear filtering for estimation of state variables 

and employ discrete mathematical equations of the time domain linear dynamic 

system. In addition to providing optimum state estimation, this recursive approach 

has the main benefit of limiting the minimum mean square error [51].  

Specifically, the KF linear model is composed of two parts: a process Eq.(2-10), which 

predicts the current state 𝑥𝑘 from the prior state 𝑥𝑘−1, and a measurement Eq(2-11), 

which brings the present state closer to its genuine value by updating it [18].  

SOC estimation for lithium-ion batteries using a Kalman filter have been proposed 

by Yatsui and Bai. Experiments show that the Kalman filter works well when used in 

an online environment [26].  In order to characterize KF, an RC battery model 

employed in BMS, which is translated to a state spare model to explain dynamic 

features of the battery. The calculated RMS error of SOC using KF is quite tiny 

compared to measurement error [52]. With the same method, An electrical equivalent 

model of a lithium-ion battery, with a voltage supply and a resistance, was 

 𝑥𝐾+1 = 𝐴𝐾𝑥𝐾 + 𝐵𝐾 + 𝑤𝑘 
(2-10) 

 𝑦𝐾 = 𝐶𝐾𝑥𝐾 + 𝐷𝐾𝑢𝐾 + 𝑣𝑘 
(2-11) 

 

𝑥𝐾+1=State equatiuon 

𝑦𝐾=Measurementequation 

x= Presents the system state 

u=Control input 

w=Process noise 

y=measurement input 

v=measurement noise 

A, B, C and D= the 

covariance matrix, 

dynamics of the system 
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developed which demonstrated less than 5% error in SOC estimation [53]. Using KF 

has the benefit of properly estimating states impacted by external disturbances like 

Gaussian noise. A nonlinear system, however, cannot be predicted using KF directly. 

It also necessitates complicated math [18].  

2.3.2 Non-linear Kalman Filter  

When dealing with linear systems, the linear Kalman filter is the best option. For 

OCV-based estimates, Kalman filters cannot be employed directly because of the 

nonlinearity of the battery system. So, several Kalman Filters have been designed to 

include non-linear signals by using local linearization and optimizing Kalman filters 

for SOC estimate which led to the OCV function be linearized, and the resulting SOC 

estimation can be improved. [54] Among the nonlinear KF algorithms, there are three 

main types: extended KF (EKF), sigma-point KF (SPKF), and cubature KF (CKF), 

which may be further split into central difference KF (CDKF), and unscented KF 

(UKF) [55]. 

2.3.2.1 Extended Kalman Filter (EKF) 

Commonly used for the battery parameter is the Extended Kalman Filter (EKF), 

which is a nonlinear variant of the Linear KF. EKF works by linearizing nonlinear 

functions using partial derivatives and first-order Taylor series expansion[56]. The 

algorithm of EKF is demonstrated as Figure 8:  

 

Figure 8- algorithm of EKF [18] 

Through the use of terminal current and voltage data, an extended Kalman filter 

(EKF) was utilized to estimate concentrations of major chemical species averaged 

throughout a thickness of the active material in order to calculate the state-of-charge 

(SOC) of a lithium-ion battery [57]. This approach is substantially more accurate than 

Coulomb Counting. SOC/SOH, as well as any other battery metrics that may be 
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described by a battery model, can be monitored using this device. The Extended 

Kalman Filter had an average SOC estimating error of less than 1 percent [58].  

EKF was utilized in [59] to identify battery model parameters and state estimation 

which requires the Jacobian matrix to be computed, and impacts the projected SOC 

accuracy. Due to the first-order Taylor expansion in linearization, the EKF method is 

limited to first-order accuracy. The EKF algorithm's accuracy is dependent on battery 

model parameters and previous knowledge of system noise signals. In case of 

incorrect previous information may cause estimate process inaccuracy and 

divergence, leading of improvement in the EKF algorithm [60]. 

To deal with system noise unpredictability and over-reliance on outdated data, Zhao 

et al.[61] projected the adaptive fading extended Kalman filter (AFEKF) which 

combines adaptive extended Kalman with fading extended Kalman by using 

equivalent circuit model and the procedure is validated via an experimental 

platform. The approach improves the speed and accuracy of SOC estimate, and the 

SOC error is smaller than 2%. 

When the amount of observed data are inadequate to forecast the SOC (or SOH), 

another research recommends an integrated model that combines the dual extended 

Kalman filter (DEKF) and autoregressive (AR) models. Derived from the DEKF, the 

AR model performs better in predicting battery state using past data. A health 

indicator is utilized to improve the performance of the prediction model since the 

DEKF has restricted capacity estimate capability. In comparison to outcomes 

achieved using a single variable, the multivariate AR model produces much superior 

results.[62] 

 Another improvement in EKF (IEKF) proposed by Sepasi et al. [56]  which is an 

online method of SOC estimation by considering aging factor and can be used for the 

higher accuracy of SOC estimation in EV. He et al. [63] developed an estimation of 

SOC by using EKF which was composed of five RC models. The estimate algorithm's 

sensitivity to beginning values was tested. The findings showed that robust EKF-

based SOC estimate may effectively minimize initial SOC inaccuracy.   

To deal with system noise unpredictability and over-reliance on outdated data, Zhao 

et al.[61] projected the adaptive fading extended Kalman filter (AFEKF) which 

combines adaptive extended a further alternate approach for determining the states 

of a nonlinear system is the Sigma point Kalman Filter (SPKF) method. When 

employing only a small number of functions, SPKF produces more accurate results 

than EKF in terms of mean and variance. A set of sigma points is selected by the 

procedure that is identical in value to both the mean and covariance of the model 

that is being constructed. Using this model has the benefit of having the same 

computation complexity as EKF without the need to take into account Jacobian 

matrices. The model does not have to compute the derivatives or the original 

function, which is another benefit. Kalman with fading extended Kalman by using 

the equivalent circuit model and the procedure is validated via an experimental 
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platform. The approach improves the speed and accuracy of SOC estimate, and the 

SOC error is smaller than 2%. Adopting an adaptive covariance matrix update 

strategy helps avoid error divergence and biased solution in the adaptive extended 

Kalman filter estimation technique (AEKF) [55].  

2.3.2.2 Cubature Kalman Filter 

The divergence and dimensionality of the EKF and SPKF were enhanced by using 

this strategy. Using the third-degree spherical radial cubature rule, it is possible to 

compute Gaussian weighted noise signals as well as multivariate moment integrals 

using this method. This algorithm is based on the third-order radial volume criteria 

and addresses the issue of nonlinear state estimation by utilizing a volume 

coordinate sequence as its input. CKF was shown to have the highest accuracy while 

requiring more calculation time than EKF, according to the findings. [55]   

In [64], the EKF, UKF, CKF, and PF as four non-linear battery internal state estimate 

approaches that are being compared in terms of their efficiency and complexity.  

Because it strikes a compromise between complicity and accuracy, the CKF-based 

SOC estimation technique is highly recommended. An innovative adaptive CKF 

method (ACKF) has been presented by Xia et al., which is an adaptation of CKF 

based on the model employing the second (RC) equivalent circuit SOC estimation of 

LI-ion battery. The ACKF method outperforms the EKF and CKF algorithms in terms 

of SOC estimate accuracy, convergence to diverse starting SOC errors, and resilience 

to voltage measurement noise. [65] 

2.3.2.3 Particle Filter (PF) 

Another methodology of SOC estimation in a nonlinear system which is indifferent 

to the system's size, is Particle Filter. This method utilizes a collection of random 

particles (weighted random samples) and a non-Gaussian distribution to apply the 

Monte Carlo simulation approach in order to calculate the system's post priority 

density. Eq (2-12) shows the process model of PF [66]:  

 Outcomes of the comparison between PF and EKF  reveal that the PF and EKF have 

equal performance in estimating accuracy, although the PF method can converge to 

 𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(0) − ∫
𝜂𝑖(𝜏)

𝑄𝑛

𝑡

0

𝑑𝜏 (2-12) 

 

𝑆𝑜𝐶(𝑡)=SOC in time t 

𝑆𝑜𝐶(0)=Initial SOC 

𝜂= Proportion Coeff( effect of 

discharging ) 

Qn= Nominal Capacity of 

Cell 

i(τ)= instantaneous 

discharging current at 

time (τ) 
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the actual SOC six times quicker than the EKF, making it more appropriate for 

embedded applications (Figure 9) [67].   

 

Figure 9: SOC using PF and EKF methods [67] 

For a OCV-based SOC estimation, Chen et al. present a particle filter approach. The 

program predicts remaining dischargeable time depending on voltage. The 

prognostics architecture uses two states of charge definitions. Prognostics using 

voltage-based SOC has reduced relative error under various current and temperature 

circumstances. In this case, the voltage-based SOC has better projection of remaining 

dischargeable time [68].  

The unscented particle filter and the extended Kalman filter were compared and 

examined in a series of dynamic driving cycles at different temperatures. Fast 

convergence and good accuracy have been demonstrated by using the suggested 

unscented particle filter approach for dynamic driving schedules [69].  

Zhengxin et al. suggested an accurate and rapid approach that is a mixture of EKF 

and PF as Extended Particle Filter that estimates lithium-ion battery SOC in the 

situation of nonlinear and time-variant lithium-ion battery systems. The results of 

trials on the test bench confirm that the Immune Genetic Extended Kalman Particle 

Filter approach is a potential choice for estimating the SOC of lithium-ion batteries 

[70].  

To address the uncertain open circuit voltage behavior of lithium iron phosphate 

batteries, a stochastic model-based SOC is computed using PF In this case, the 

hysteresis effect is omitted in the Monte Carlo simulation. On EVs and off-grid 

power supplies, model validation is accomplished with great precision [71].  

 

2.3.2.4 H infinity filter 

When using the H Filter, the data about the process noise or measurement noise 

characteristics of the battery is not required. Despite its simple appearance, this 

model is capable of coping with specific situations. However, age, hysteresis, and 

temperature influences might alter the model's accuracy[18]. When it comes to the 

PF SOC 

EKF SOC  

Real SOC 
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characteristics of the H infinite model, it is very efficient in decreasing the effect of 

external interference on the output.  Accordingly, the battery SOC may be 

determined without needing exact statistical features of system and measurement 

errors. In contrast to Kalman filter techniques, the H infinity filter method ensures 

secure SOC estimation error is less than a set attenuation threshold  in the worst-case 

scenario [72].  

Lin et al. proposed a method with the Linear matrix inequality (LMI) - based H-

infinity state observer, the model-based SOC estimators are developed, and their 

usefulness is proven by experimental data acquired from two types of lithium-ion 

batteries running at two EV deriving cycles. The comparison of three single-model 

SOC estimation approaches shows that some local estimation errors have been 

corrected and statistical errors have decreased, indicating that the SOC estimation 

accuracy and reliability has improved against battery materials, driving cycles, and 

inaccurate initial SOC values [73]. Another SOC estimation experiment is done to 

identify the parameters online, proposed a SOC joint estimation technique using H 

infinity filter (HF) and unscented Kalman filter (UKF) algorithms. Different 

temperatures have verified the HF-UKF SOC combined estimate approach. 

However, the approach is adaptable to incorrect beginning SOC values and varying 

operating temperatures [74].  

 

Table 3 illustrates a comparison of adaptive system methods comparison: 

  



24 Chapter two 

 

 

Methods Advantages Disadvantages 
Errors (and 

ref) 

Linear 

Kalman 

Filter 

Estimates accurately states 

impacted by external 

disturbances like noises with a 

Gaussian distribution.  

It necessitates intricate 

math. A nonlinear system's 

state cannot be estimated 

directly with KF.  

≤ ± 5% 

≤ ± 

1.76% 

[53] 

.[75] 

Extended 

Kalman 

Filter (EKF) 

Accurately predicts the state of 

a nonlinear dynamic system.  

If the system is significantly 

non-linear, it may have 

limited robustness, and 

Linearization error may 

arise.  

≤ ±1% [58] 

SPKF Without the use of Jacobian 

matrices, EKF has the same 

computational complexity as 

EKF.  

There are a lot of Complex 

computations involved.  

≤ ±2% [76] 

UKF Compute without Jacobian 

matrix or Gaussian noise.  

Up to third order non-linear 

system states accurately 

estimated.  

a lack of robustness  ≤ ±4% [77] 

Cubature 

Difference 

Kalman 

Filter 

Enhanced divergence and 

dimensionality, more accurate 

compare to EKF 

High complexity 

 

≤ 

±1.5% 

[65] 

Particle Filter 

(PF) 

High accuracy with less 

processing time.  

Mathematical complexity is 

required to tackle the issue.  

≤ 

±3.1% 

[67] 

H infinity 

filter 

Precision, low computing cost, 

and quick response time.  

Accuracy may be 

influenced by factors like as 

aging, hysteresis, and 

temperature variation.  

≤ ± 

2.49% 

[78] 

Table 3-Adaptive system methods comparison 

2.4 Machine learning 

Machine learning methods (also known as Data Driven methods [79]) are a hybrid of 

experimental and model-based approaches. SOC estimate using machine learning is 

becoming an appealing field for scholars to examine as a computer technologies 

progress. To be precise, they employ training data, measurements, and models 

during the learning process in order to predict the battery SOC value (as well as 

SOH). Data training and learning are two steps of machine learning-based SOC 

estimation [80].   To obtain a collection of training data, certain experiments are 
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conducted on the Li-Ion batteries in a supervised environment. Many data sets may 

be generated using CCM based on the connection between input voltage, current, 

temperature, SOH and impedance to output voltage, current, temperature, SOH and 

impedance (SOC).  During the learning phase, SOC estimate is carried out with the 

aid of these data sets. .  [55] 

There are a number of machine learning techniques that can be used for battery SOC 

prediction in the literature. Support vector machine (SVM) and neural network (NN) 

approaches, among others, are becoming increasingly significant in the online 

estimation of SOC[81]. All of these techniques assume the Li-ion batteries is a black 

box model, with internal dynamics discovered by massive amounts of collected 

data[54].   

Historical data are used to evaluate the relationship between SOC and other 

observed variables, such as terminal voltage and current. Temperature is also 

included in these algorithms [82, 83]. When dealing with nonlinear issues, data-

driven tactics are beneficial; nevertheless, the datasets and training methods that are 

used might have an impact on how well they function. Furthermore, the requirement 

for a large amount of data gathering in order to cover all of the possible operational 

scenarios leads in a high overall processing challenge.  [84],[7] 

2.4.1 Neural Network (NN):  

The Neural Network (NN) approach may be used to provide a complicated non-

linear model due to its flexibility and self-learning capabilities. Without knowing the 

battery's data or starting charge state, NN estimates SOC using training data. As with 

the human brain, a NN is composed of interconnected fundamental processing units 

called neurons. When given enough neurons and layers, NNs can approximate any 

nonlinear function, making them excellent for simulating complex systems. NNs 

may learn and modify their internal structure in order to adapt to a changing 

environment. Parallel computation enables neural networks to be incredibly efficient 

at data processing. Due to the data-driven nature of neural networks, it is feasible to 

construct a system model without having a thorough understanding of the system's 

physical characteristics[81]. As seen in the Figure 10, The network is composed of 

three major layers: the input layer, the hidden layer, and the output layer[85].   
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Figure 10: multi-layer feed-forward neural network's architecture 

In order to estimate SOC, data such as current, terminal voltage and temperature are 

required. Because this method copes with nonlinear conditions, a large amount of 

data and memory is required for training, overloading the system [18]. Equation  

(2-13) illustrates the empirical equation for NNs [86]. 

 

This technique's effectiveness has been proven in Li-ion battery testing utilizing a 

neural network-based thermal-electric coupled model [87] . The kinetic model may 

be used to determine the properties of a battery over a longer period of time[7].  

Kuchly et al. developed a neural network model that is capable of correcting initial 

SOC estimate mistakes and handling current measurement bias, while also attaining 

superior estimation performance than a traditional neural network model that takes 

just instantaneous information as an input [88]. Data estimation can also be 

accomplished by combining the neural network with particle filtering techniques 

[89].  The lithium iron phosphate battery's SOC prediction error may be greatly 

reduced thanks to an Improved neural network method developed by Guo [90]. The 

algorithm's efficiency is tested by comparing the lithium batteries SOC value to the 

neural network's estimated SOC value.  As a result of this research, the algorithm can 

efficiently anticipate the SOC of lithium batteries for electric vehicles [90]. An EKF-

 𝑦𝑖 = 𝑠(∑(𝑊𝑖𝑗𝑥𝑗 + 𝑏𝑖)

𝑁

𝑗=1

 (2-13) 

 𝑊𝑖𝑗=Weight to neuron i from neuron j 

𝑦𝐾=Measurement equation 

𝑏𝑖= bias 

𝑥𝑖=input verctors 
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based battery model was proposed by Chen et al., which took into account the 

influence of hysteresis open circuit voltage. For the estimate of SOC, NN was 

combined with EKF and used. The suggested combination model outperforms all 

others in terms of accuracy estimation, with an error of less than one percent in the 

estimation of accuracy [91].  

There are several uses for fuzzy neural networks, notably in the detection of 

unknown systems. By computing the optimal coefficients of the learning mechanism, 

FNN can successfully match the nonlinear system in nonlinear system assessment. 

[30]. Li et al. proposes an improved Fuzzy Neural Network (FNN) to predict SOC of 

a lithium-ion battery using a reduced form genetic method (RGA). A continuous 

nonlinear function was approximated using twelve inputs and one output. The 

validation findings show that the approach can accurately anticipate any degree of 

precision[92].  

2.4.2 Fuzzy Logic (FL)  

By utilizing adequate training datasets, Fuzzy Logic (FL) is another method that can 

present complex, non-linear models. There are four parts in FL employment as 

follows, which is demonstrated in Figure 11 [50]: 

• Output variables are linked to input variables by a set of rules  

• A database providing input and output variable membership functions 

• An inference mechanism, 

• To convert the fuzzy output sets to real-valued. 

 

Figure 11: The Logic of Fuzzy [50] 

With FL's powerful function, a nonlinear model may be predicted with ease; 

nevertheless, this demands a big memory unit, extensive computations, and a high-

end computer system  [18]. 

In ref [93] a SOC and SOH estimation method by utilizing Fuzzy logic to analyzing 

date come from coulomb counting and Impedance spectroscopy are proposed. Using 

the presented model, it is possible to forecast SOC with a maximum error of 5%.  
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In ref [94] a fuzzy logic model employing to estimation of SOC/SOH  of Li-ion 

battery at all temperatures was developed. This model estimates two quantities: the 

cycle number and remaining pulse number for the battery by processing the data.  

Testing for ac impedance and voltage recovery was performed at room temperature 

and 0°C. The results reveal an inaccuracy of one pulse to estimate the remaining 

pulses and a 2.5 error to anticipate the cycle number. 

Malkhandi  developed a model for SOC estimation for by utilizing a learning system 

and coulomb counting. This model ensures that time- dependent variables are error-

free. By employing Fuzzy Logic system   

In [92], FL algorithm is presented for the estimation of SOC model by using the 

coulomb metric method. A learning system is used which adjusts the coulomb metric 

method so that time-dependent variable does not contain any error. The suggested 

system's efficacy is then tested using a microcontroller-based FL system. 

2.4.3 Support Vector Machine (SVM)  

An SVM is an information processing technique that has been employed in a number 

of different applications throughout the past decade. The SVM has been used to the 

problem of regression analysis. A stronger nonlinear estimating approach than a 

Least Squares estimation system, because the SVM is less sensitive to small changes 

than the Least Squares estimation system [96]. SVM is based on the notion of 

structural risk reduction, can outperform traditional neural networks in terms of 

performance since they minimize structural risk. Although this approach has several 

advantages, it also has some drawbacks, including a rising modeling size and a 

single output structure[52]. Because the cost function for developing the model 

rejects any training data that is near (within a threshold e) to the model prediction, 

the model built by SVR is only dependent on a portion of the training data [26].  Eq 

(2-14) illustrates the empirical eq of support vector machine:  

 

Using the correct training data, this approach can predict SOC rapidly and accurately 

in non-linear and high-dimensional models. But the model has a lot of complicated 

 𝑌𝑖 = ∑ 𝑊. 𝐾(𝑥𝑖 , 𝑥) + 𝐵

𝑁

𝑖

 (2-14) 

 

𝑌𝑖=Estimated output 

W=Weight 

K= Kernel 

(𝑥𝑖, 𝑥)=Support vectors 

𝐵= bias 
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calculations in it. Moreover, adjusting a model's parameters requires a lot of trial and 

error, which might take ages [18].  

In ref [96] a support vector machine (SVM) was used to estimate the SOC on a larger 

scale for Li-P batteries. A study has shown that an EKF SOC estimator can be made 

more accurate by using this method, because it costs less than a coulomb counter. 

Because of the use of unscented Kalman filters as well as least-square support vector 

machines. 

  In ref[97] an estimation of SOC using SVM is on Li-Ion batteries was implemented. 

Employing this model by increasing the likelihood reveals even with fewer training 

samples results in more accurate estimation.  

In another experiment of SOC estimation of large-scale batteries, parameters (V, I, T) 

are employed in model building. On working condition of battery, this model 

demonstrated accurate SOC estimation with the coefficient of determination of 0.97. 

[98] .By using an enhanced support vector machine (SVM) method, Hu et al. found 

that regression-based SOC estimate was easier and more accurate than using 

artificial neural networks [78]. SOC is calculated using the weighted least squares 

support vector machine (WLS-SVM) algorithm, according to the approach described 

by Chen et al. in his paper. A number of tests have been conducted to verify the 

approach, and the results have revealed that less sophisticated computing results in 

an improvement in resilience[100].  

 

Table 4 illustrated Machine learning method comparison: 

 

Methods Advantages Disadvantages 
Errors (and 

ref) 

NN It is feasible to implement a 

non-linear system.  

 The training data require a 

considerable amount of storage 

space.  

≤ ± 

4.6% 

[101] 

FL A non-linear dynamic system 

may be modelled with this 

software.  

The training data require a 

considerable amount of storage 

space. 

≤ ±5% [93] 

SVM Exhibits excellent performance 

in non-linear and high-

dimensional models and can 

estimate SOC fast and 

accurately.  

High-complexity computations 

and iterative process of trial and 

error is required to fine tune the 

model's parameters.  

≤ ±6% [98] 

Table 4-Machine learning method comparison 
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2.5 Nonlinear observer- based 

The next sections address the three most prevalent non-linear observer-based 

approaches that are currently available:  

2.5.1 Non-linear Observers (NLO)  

Due to the non- linear features of batteries, using linear methods increase the 

estimation error of measurements. A reliable and robust technique for estimating 

SOC is required due to the fact that the SOC is immeasurable and nonlinearly 

fluctuates with different parameters such as battery degradation, current rate 

ambient temperature. Hence, the other methods so called non-linear observer is 

employed, in this approach non-linear observation equation is applied in linear 

systems [54]. The equivalent circuit model is used to develop the state-space 

equations in Non-Linear observer (NLO) approaches. This technique does not 

necessitate the use of sophisticated matrix operations, and it demonstrates robustness 

in the face of measurement failures and parameter uncertainty. When compared to 

the EK technique, the provided method has lowered the calculation cost while 

maintaining performance comparable and convergence performance in SOC 

estimation. This strategy can both enhance SOC estimate accuracy and speed up 

convergence compare to SMO [102]. 

A SOC estimation of Li-ion batteries is proposed using a NLO based on ISS (input-to-

state stability). In this method by implementing two RC networks in the equivalent 

circuit, the SOC is estimated through ISS based estimator. ISS-based estimator for 

SOC estimation provides excellent accuracy and enhanced resilience, according to 

simulation findings, which are consistent with the literature. [103] 

2.5.2 Sliding Mode Observer (SMO) 

Next robust technique for estimating SOC is the sliding motor observer (SMO). The 

discontinuous feedback signal is a distinguishing characteristic of this method.  

Aside from that, enabling one or more state-space manifolds. There are no 

substantial uncertainties regarding the outcome of this finite time convergent 

controller since it is a finite time controller.  In spite of this, the chatter problem 

cannot be overlooked [104]. In this system with variables s(x)ϵ R, by using it 

switching input, it controls the output to be s(x)=0.  As seen in the following 

equation(2-15), the sliding variables of the r th order sliding mode in a dynamic 

system are defined as follows [105]:  
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Researchers propose an equivalent circuit model identified during experimentation 

to estimate SOC of EV Li-ion batteries by using a non-singular terminal sliding mode 

observer. This non-singular terminal sliding mode, which is second-order quick 

embossing, uses linear and non-singular sliding modes. SMO performs poorly 

compared to the suggested approach for SOC estimation, and this approach can 

cover the slow convergence and chattering inherent to the SMO. Moreover, due to 

model uncertainty, the KF-based approach cannot converge, whereas the suggested 

technique can [106].  

Skrylnyk et al. proposed SOC estimation based on the sliding mode observer on 

Lead-Acid Batteries. In this method due to the robustness of the model, possibility of 

external uncertainty and disturbance are removed. On the hand, due to the 

application of high-frequency switching control, it is necessary to investigate the 

chattering in these systems[107].  

Another method is proposed for SOC and SOH estimation using adaptive sliding 

observer. By using the equivalent circuit model, the experimental result of this 

approach shows the improvement in the SOC and SOH estimation and performance 

under uncertainties. Moreover, this robust method prevents the chattering effect 

from occurring [108].  

2.5.3  Proportional-integral observer (PIO) 

 

PIO, as next non-linear observer- based strategy for SOC estimation, provides an 

efficient and robust control method which as an alternative to feedback control 

systems, it is frequently employed. According to this controller's primary purpose, it 

is able to quickly and precisely converge the estimated voltage to the observed 

voltage [18]. Accuracy, robustness and easy implementation can be named as 

primary features of this strategy. In this method the precision of the battery model's 

characteristics has a significant impact. When the effects of aging, hysteresis, and 

thermal impact are taken into account, the parameters of the battery model will be 

time-varying [109].The structure of PI observer is illustrated in Figure 12 [109].  

 𝑆 = 𝑆′ = 𝑆′′ = 𝑆′′′ = ⋯ 𝑆𝑟−1 = 0 (2-15) 
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Figure 12- Structure of a PI observer 

 

  A SOC estimate technique based on the PI observer is proposed in ref [104], which 

avoids the need for sophisticated calculation and makes use of an RC model as a 

substitute for the Li-Ion battery model. The results demonstrate that the predicted 

SOC approaches the reference in a short period of time. Comparing estimate errors to 

coulomb counting, errors are limited to a tiny range of 2% (small band) when. 

However, the model parameters are fixed, making it difficult to construct an effective 

gain matrix to reduce the error to the smallest possible amount.  

An adaptive PI observer designed by P. Li et al. to estimate  SOC more accurately 

with the updating the parameters at the same time. Moreover, the stability of the 

observer is ensured by the use of Lyapunov stability analyses. The findings reveal 

that the suggested estimation using this adaptive PI observer is much more precise 

and resilient than the estimation using EKF or a non-adaptive PI observer, which is 

consistent with the literature [109].  

Table 5 illustrated Nonlinear observer method comparison: 

 

Methods Advantages Disadvantages 
Errors (and 

ref) 

NLO Accuracy convergence speed and 

calculation cost have been 

improved.  

To decrease the error, it is 

difficult to design a suitable 

gain matrix.  

≤ ± 

4.5% 

[102] 

SMO Stability and robustness are 

guaranteed through improved 

tracking control.  

To manage the sliding 

regime, it is difficult to alter 

the switching gain.  

≤ ±3% [110] 

PIO  Robust method SOC estimation 

with accurately and quickly.   

Could deliver inaccurate 

results if the controller is 

not properly designed. 

≤ ±1% [104] 

Table 5-Nonlinear observer method comparison 
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2.6 Hybrid Systems  

This category is concerned with techniques that make use of the structure of the 

previously described state estimate of two or more distinct approaches in order to 

obtain an optimal model with more merits. Additionally, the cost of the battery 

management system is decreased. Moreover, A hybrid estimating approach can 

optimize the information accessible because the information provided in the 

individual estimating method is restricted. More data and information combinations 

lead to more accurate estimation result. Nevertheless, the process involves 

immensely challenging mathematical computations that necessitate the use of a big 

memory device.  There are a number of hybrid techniques to estimate SOC that may 

be discovered in the literature.  

Zhou et al. proposed a hybrid SOC estimation method based on utilizing EKF and PF 

and recursive least square approach is used to identify the equivalent circuit. Due to 

its capacity to accurately approximate the posterior probability density, the 

suggested technique is a preferable choice for generating proposal distributions in 

particle filter frameworks. The suggested technique outperforms the EKF and PF 

methods in terms of accuracy and in in the longer average discharge phase [111].  

According to another study, a combined SOC estimation method based on Ampher-

hour Counting and multiple OCVs was developed. The available capacity is 

impacted by temperature and current, resulting in inaccurate SOC estimates. The 

suggested improved Ah counting system, which adjusts available capacity and 

coulombic efficiency according to temperature, resolves this problem. When used for 

calibration and as a supplement to compensate for mounting mistakes in Ah 

counting caused by the limited precision of current sensors and the lack of a suitable 

starting SOC, the OCV technique is beneficial to all parties involved. In order to 

estimate beginning SoCs, rated and non-rated OCV–SoCs are computed based on the 

available capacities at different temperatures. The data demonstrate that the 

approach can properly estimate SOC at a variety of ambient temperatures. [112].  

Li and Wang proposes a hybrid method in order to increase SOC estimation speed 

and accuracy of Adaptive Extended Kalman Filter (AEKF) in a nonlinear condition, 

since it is unable to track SOC fast. In order to find working status, an EV operating 

condition estimator is used to determine station and non-stationary situation. The 

AEKF approach is used to estimate SOC when EVs are stable, while the look-up table 

method is utilized when they are not. The experimental findings reveal that the 

suggested hybrid estimation approach has greater SOC estimation accuracy and 

improved convergence rate [113].  

In ref [114], the EKF technique is used to develop an adaptive method for estimating 

SOC that incorporates both coulomb-accumulation and open-circuit voltage method. 

As the NiMH battery system in an EV is highly dynamic, the coulomb-accumulation 

factor is vital for estimating SOC. Because of the limitations of coulomb-



34 Chapter two 

 

 

accumulation, the open-circuit voltage can be employed as an adjunct approach to 

get the SOC closer to its real value in the steady state. A robust, noise-immunity, and 

accuracy feature of the proposed adaptive approach makes it particularly suitable for 

EV applications. 

Using two separate methodologies, a new SOC estimating method may be employed 

in real-time: EMF method during equilibrium and coulomb counting method in 

discharge state. SOC and remaining run-time RRT may be accurately calculated 

using a basic Qmax adoption approach, which also increases the SOC estimate 

system's capacity to deal with the aging impact. The charge state's stability is used to 

modify Qmax for aging in this technique. The Qmax adaptation approach can 

increase the accuracy of the SOC and RRT estimates for a new battery. The finding 

shows that the Qmax adoption approach will improve SOC and RRT estimate 

accuracy by a significant amount [115].   

In ref [49] a SOC estimation technique based on the use of a mix of feedforward 

neural networks to generate an enhanced battery model and the EKF algorithm is 

suggested. The findings indicate that the SOC estimate can converge to the reference 

value even when the starting SOC error and initial capacity error are set incorrectly, 

and after convergence, the SOC estimation errors are within 2% of the reference 

value.  
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High-performance and dependable battery health management systems are 

necessary to meet the new battery application challenges, which range from energy 

storage systems, PV systems to transportation, as well as to assure the safety and 

longevity of electric cars and hybrid electric vehicles [116]. SOH of a battery offers 

crucial information on the battery's performance and lifespan, as well as allowing for 

improved energy management in hybrid vehicles. The SOH of a battery has been 

estimated using a variety of methodologies developed via various research 

investigations. This is a factor that reflects the amount of deterioration of the battery 

[117]. However, determining battery SOC and SOH may be very difficult owing to 

the battery's nonlinear complicated behavior. Battery SOH estimation becomes 

difficult due to the presence of several unknown and unexpected elements that 

influence battery health. 

 They are responsible for the unexpected battery ageing process, and several studies 

have been conducted to better understand this process in the literature [118]. When it 

comes to some application such as EVs Real-time estimation of battery SOH is critical 

since enables the detection of battery malfunctions and the prevention of potentially 

harmful incidents. It allows battery fault diagnosis and help prevent hazardous 

accidents. Electric vehicle batteries are also more difficult to charge since they take 

longer to recharge, therefore charging happens at random when the battery isn't fully 

charged. According to driving habits, traffic circumstances, and other external 

variables, EV batteries deplete dynamically [119].  

The primary goal of this study is to introduce the most recent and most widely used 

battery SOH estimation methods and identify the advantages and disadvantages.   

SOH definition:  

Several indications or conceptions are produced to assess lithium-ion battery aging 

by researchers. The most often utilized indication is SOH. SOH is defined as the 

current condition of an aged battery's ability to offer a specified performance when 

contrasted to its ability to give specific performance when it was in its original state.  

As a result, the relative capacity of batteries is utilized as a measure of their SOH and 

capacity loss. The following formula eq (3-1) can be used to determine the cell's 

relative capacity. For most batteries, "end of life" (EOL) occurs when their capacity 

drops to 80% of what it was when new [120]. 
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In terms of internal resistance, some literatures [121, 122] defined  SOH as following 

eq (3-2) :  

The SOH of a battery may be computed by dividing the actual indicator value 

(capacity, impedance, or resistance) by the original indicator value. To determine the 

battery's SOH, it is important to monitor its changes since Berecibar et al. state battery 

capacity declines as much as 20% and internal resistance increases by up to 160% 

when the battery is at its end of life (EoL) in vehicle applications [123] which is an 

extremely difficult process, as both battery resistance and capacity fluctuate due to 

numerous distinct factors, also in terms of their relations with one another. 

 

SOH estimation challengers:  

There are several difficulties in estimating SOH in the batteries because of the way 

the batteries are designed. For starters, the SOH of a Lithium-ion cell is an internal 

feature of the battery that cannot be measured directly. For correct acquisition of 

SOH characteristics, it is important to have voltage, current, and temperature as 

inputs to the system. Furthermore, the SOH of a lithium-ion cell is influenced by 

internal multi-parameter coupling as well as external stressors such as temperature, 

current, and loading mode, among others. Furthermore, in order to foresee, many 

prediction algorithms currently rely on irreversible off-line state data, which is 

influenced by monomer changes and has little repeatability. The online identification 

method has also been plagued by difficulties; finally, the degradation curve of 

lithium-ion batteries is nonlinear, making it difficult to properly and reliably 

determine the SOH of these batteries in real-world working conditions.  

 𝑆𝑂𝐻 = 𝐶𝑅𝑒𝑙𝑒𝑡𝑖𝑣𝑒 =
𝐶𝑃𝑟𝑒𝑠𝑒𝑛𝑡

𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙
*100% (3-1) 

 
𝐶𝑅𝑒𝑙𝑒𝑡𝑖𝑣𝑒=relative capacity of current cells 

C_present=capacity of current cells 

C_initial=InitialCapacity 

 

  
 

 𝑆𝑂𝐻 =
𝑅𝑒−𝑅

𝑅𝑒−𝑅𝑛
*100% (3-2) 

 

𝑅𝑒=internal resistance in end of life the 
battery 
𝑅 =Internal resistance 
R_n=internal resistance of the new battery 
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SOH classification:  

There are many ways to classify SOH estimation methods. These classification 

criteria inevitably differ slightly from each other, and may even overlap in some 

perspectives. For example, in two distinct articles, the same procedure is classified 

into two different categories. As a result, it may be confusing due to the overlap of 

certain attributes of the naming rules and is not conducive for researchers to have an 

in-depth understanding. Furthermore, the categorization techniques of the relevant 

reviews that have already been published are often insufficient, and there are only a 

few different types of review methodologies to choose from. A deeper comparison 

and description of typical methods might be included, but there is still potential for 

development.  

As we did for SOC classification, Venugopal and T. classified SOH methods into 4 

primary groups, Direct measurement, Adaptive Filter, Data Driven and Model based 

methods [124]. In ref [120]  multiple methodologies were used to describe and 

analyze the aging processes and SOH estimating methods, ranging from microscope 

observations to statistical analysis, each having its own pros and cons features. In 

another research by Yang et al., the factors used to describe SOH, such as capacity, 

impedance, and aging-mechanism parameters, are utilized to categorize SOH 

estimating techniques. According to [126] , they categorized SOH estimation 

techniques based on their distinctive factors and described them from two 

perspectives: short-term and long-term. Lithium batteries' SOH management systems 

were analyzed and compared in ref [12] using various techniques of extracting health 

state information.  In the context of embedded application environments, a new set 

of metrics in  [4] developed for evaluating the operational efficiency of various SOH 

estimation and prediction methods. The majority of existing techniques for 

measuring SOH rely on a capacity fading and electrochemical (EC) model, since as 

battery age increases, the capacity declines and the EC parameters change. All of 

these techniques, on the other hand, estimate SOH under solid assumptions and 

static cycle conditions. Due to the fact that real-world EV batteries require real-time 

SOH calculation and that charging and discharging occur in a dynamic way, these 

conditions are not ideal for testing [127]. In ref [116] the battery internal resistance, 

impedance, and capacity are the three key indications that determine this condition.  

As Noura et al. proposed, SOH in EV application is divided into three primary 

categories: experimental approaches, model-based methods, and Machine Learning 

methods. Machine learning approaches are a hybrid of experimental and model-

based techniques [116]. Photovoltaic systems were the primary topic of a study of 

lithium-ion battery SOH estimate methods conducted by Tian et al. In terms of the 

signals utilized to extract health indicators (HIs), they divide existing approaches 

into two primary categories: terminal voltage and other signals[119].  
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In this paper, SOH estimation methods categorized into 4 main groups: Experimental 

based, model-based, adaptive filters and data-based estimation that can be further 

categorized into different groups. 

Figure 13 demonstrates SOH classification:  
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Figure 13- SOH classification 

 

Experimental methods are almost carried out in labs since they need the use of 

specialized equipment and take a long time to complete. They are based on the 

collection of data and measurements that may be utilized to better understand and 

analyze the aging behavior of the battery over time. In this part, we will discuss the 

most important experimental approaches for estimating the battery SOH. Moreover,  

these methods are expensive to implement and making them unsuitable for real-time 

applications [128].  
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3.1 Experimental methods: 

3.1.1 Direct measurement methods: 

Battery’s Internal Resistance Measurement: 

Battery internal resistance is a key SOH indication that determines how much 

voltage drops when current is delivered to the battery. Aging and deterioration has a 

significant effect on this value, (the value SOH decrease over time). As a result, it is 

frequently employed as a reliable indication for estimating the battery SOH. The 

current pulse approach is the most often utilized method. On the basis of Ohm's 

Law, it works Battery internal resistance is determined by measuring the voltage 

drop that occurs when a specific current is applied [129]. The eq (3-3)  Shows the 

formula [130]: 

Using Electrochemical Impedance Spectroscopy (EIS), Piatowicz et al. present a 

method for measuring the internal resistance of a battery, which is accurate yet 

challenging to apply [11].  

When it comes to hybrid applications, the internal resistance of the battery is a 

significant signal of interest. This indication indicates how much the battery has 

degraded in terms of its capacity to provide electricity [10].  

 

Electrochemical Impedance Spectroscopy (EIS):  

This method measures a battery's internal impedance over a wide range of 

frequencies and currents [131]. In addition, various battery dynamics effect different 

frequency ranges on the EIS measurement, hence impedance spectroscopy may 

monitor the battery's SOH. With impedance spectroscopy, calculating ECM 

parameters is the simplest technique to determine SOH. To employ impedance 

spectroscopy as a diagnostic technique, a battery's electrochemical model is required, 

which is often unique. The ECM is built using 16 parameters in ref [132] ten 

parameters are determined using Particle swarm optimization (PSO) while the rest of 

the parameters remain unaltered. Between 0.025Hz and 4kHz, the experiment is 

 𝑅𝑏(𝑆𝑂𝐶, 𝑇) =
𝑂𝐶𝑉(𝑆𝑂𝐶, 𝑇) − 𝑉𝑏𝑎𝑡(𝑆𝑂𝐶, 𝑇)

𝐼𝑝𝑢𝑙𝑠𝑒
 (3-3) 

 Rb=Battery internal resistance 

OCV= Open Cicuit Voltage 

Vbat= Applied voltages 

Ipulse= Applied current 
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carried out with 100% and 50% charged lithium-ion batteries. Randle's model was 

determined to be 8 times less accurate than the suggested model.  

Due to the high cost and complexity of on-board installation, EIS cannot be used to 

SOH estimate. This approach works well in the lab [133]. 

Based on the equivalent-circuit technique and EIS data, Eddahech et al. have 

developed a model of lithium-ion polymer cells that uses this approach. It was 

possible to accurately predict lithium-ion cell aging behavior using the battery SOH 

indicator built using RNN, which took into account the unique operational settings 

and offered useful data on the predicted battery life. Simulated battery behavior and 

SOH monitoring findings are a promising step toward developing a real-time, 

automated battery monitoring system [134].  

 

Open Circuit Voltage (OCV) 

Depending on whether a battery is being charged or discharged, the voltage of the 

battery will rise or fall. During comparing higher-capacity batteries to lower-capacity 

batteries, higher-capacity batteries have less voltage variation when charging and 

discharging. Using the link between ampere hours charged or drained and the 

voltage differential experienced during the respective charging or discharging, it is 

feasible to determine battery capacity. Laboratory trials, on the other hand, are 

necessary in order to anticipate the relationship between SOH and CV.  Moreover, 

for efficient OCV estimation, an extremely precise battery model with characteristics 

that can be adapted to the battery's ageing condition is necessary [135]. The SOH 

estimate technique based on open circuit voltage (OCV) can be used online or offline. 

In spite of this, rigorous laboratory studies are carried out in order to establish a link 

between SOH and OCV. A battery's capacity deterioration and model parameters are 

analyzed based on the charging curve during various battery cycles in order to 

correctly predict battery SOH. 

SOH was estimated using the OCV model in ref [136]. Battery aging characteristics 

are predicted using incremental capacity analysis (ICA) at various operating temps. 

The model reliably measures the SOH of the battery with an estimation error of only 

1%. Some additional researchers studied battery capacity fading and model 

parameters to properly evaluate SOH by monitoring charging curves at various 

battery lifespans. SOH is estimated with the use of a transformation function and a 

non-linear least square technique utilizing an electrochemical model (ECM) and the 

Constant Current-Constant Voltage charging method. SOH's estimating error is less 

than 3% at all ages [137].  

Coulomb Counting (CC) 

This approach counts the charge transported through the battery during complete 

charge-discharge by continually measuring the input and output current. With this 

information, the remaining capacity is calculated This takes a long time and 
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necessitates a large amount of storage space and in the case of defective initial 

ampere-hour values, inaccurate estimations occur. Hence calibration is required 

often to prevent charge integration problems and the basic approach of Coulomb 

counting frequently requires extra ways to update the value and avoid any mistakes 

[135]. In the CC technique, SOH is determined by dividing the discharge value by the 

rated capacity [138]. In another research [45], depth of discharge (DOD) is used to 

determine the SOH. When comparing the DOD and the battery's capacity, you can 

obtain an idea of how much charge has been released. Because of the efficiency of 

charging and discharging, each charge and discharge cycle is balanced out. It is also 

necessary to recalibrate the battery in order to eliminate the cumulative impact that 

happens when the battery is completely charged and discharged on successive 

occasions. The fact that CC consumes very little electricity is a significant advantage. 

In spite of this, there is a significant estimate inaccuracy of less than 10%, which is 

unacceptable. Accuracy might be improved by 3 percent by including a Kalman filter 

(KF).  

In [139] for lithium-ion batteries, a new improved coulomb counting approach has 

been presented to estimate SOH. Correcting operational efficiency and evaluating 

SOH were both evaluated to increase estimate accuracy. The estimation error may be 

decreased below 1% throughout the operational cycle by re-evaluating the SOH. 

Because of the straightforward computation and basic hardware requirements, the 

suggested approach may be simply implemented in all portable devices, as well as 

electric automobiles, without difficulty. 

In the following Table 6-Experimental methods comparisons, are illustrated:    

Methods Advantages Disadvantages 
Errors (and 

ref) 

Internal 

Resistance 

 -Simple 

-Accurate  

An offline and time-

consumed method 

  

EIS -Allows for a simple 

computation when used as a 

stand-alone technique  

-Offline method 

-Current pattern is distinct 

-Restricted to specific battery  

2% [134] 

OCV -Easy to use -Offline method <1% [140] 

CC -Calculation of data is simple 

-Consume less power  

-Calibration requirement  <1% 
after 28th 

cycle 

when 

correctio

n is 

applied 

[139] 

Table 6-Experimental methods comparisons 
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3.1.2 Model-based method 

Lithium-ion batteries' deterioration and failure mechanisms are used as a model to 

estimate SOH. The model's essential parameters, which indicate the internal aging 

degree, have decay laws whose correctness is dependent on them for estimation. 

[141, 142]. EIS (electrochemical impedance spectroscopy) is a pretty well-established 

approach that may be used in a variety of ways [143]. It may be classified into two 

groups based on the distinction between model construction theory and the 

algorithmic basis of state prediction: electrochemical models and equivalent circuit 

models: 

Electrochemical Model Method 

In the electrochemical model, the lithium-ion battery's electrochemical reaction 

process is a key component. The porous electrode theory and kinetic knowledge are 

utilized to create a physical model by extracting internal characteristics that describe 

the battery's dynamic aging and failure process, which may be used for SOH 

estimate and prediction [144]. There is substantial theoretical backing for the 

electrochemical model technique in order to accurately describe the battery's internal 

electrochemical reaction and intensity as it ages. Lithium-ion movement law and the 

changing trend of active chemicals in positive and negative electrodes at various 

SOH sites may be correctly described by this technique. As a result of its complexity, 

the lithium-ion battery electrochemistry system has a wide range of side effects. 

Because the model's aging condition is complex and includes various characteristics 

linked together, utilizing a single range has limited generality, dynamic forecast 

accuracy, and does not provide online real-time SOH estimate and prediction when 

working conditions change.  

A more accurate modeling of the chemical behavior of a battery, including electrolyte 

volume and concentration, density of active components, corrosion and porosity of 

active components, may be achieved using the EChM model[145]. However, because 

of its complexity and high computing cost, it is unlikely that this model would be 

implemented in a real EV's BMS.  

 

Equivalent Circuit Model: 

A significant amount of electrotechnics is used in the equivalent circuit model; the 

battery is treated as a black box, and its input-output working system is based on the 

construction of electrical components, so it is essentially a mathematical model of the 

lithium-ion battery that has evolved into a circuit model to describe the capacity 

decline characteristics of the lithium-ion battery over time. In order to arrive at a 

solution, the Kirchhoff current and Kirchhoff voltage equations were employed. In 

order to achieve the aim of estimating SOH, the extrapolation of features associated 

with SOH estimation was paired with known values that could be measured [146].  
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Many different algorithms [63, 147] have been devised to determine model 

parameters such as V, I, T, and impedance from basic electrical elements such as 

resistors, capacitors, and voltage sources using basic electrical elements. Although 

the ECM technique is simple to apply in BMS, it necessitates the use of time-

consuming experimental experiments to obtain a wide group of datasets.  

In ref [148] It was discovered that SOH had a considerable influence on the Thevenin 

ECM parameters, as well as SOC and temperature, in addition to other factors. As 

SOH decreases, the ohmic and polarization resistances decrease as well, although the 

polarization capacitance decreases as well.  

Genetic Algorithm (GA) 

Non-linear model parameters may be estimated using this approach in any field of 

physics. It is possible to utilize GA as a decent prediction algorithm by using raw 

data from BMS, such as voltage. Nonetheless, it requires a large volume of data to 

discover values and is challenging to execute online due to the high processing 

power required to do so [135].  

In ref [149], Using real-time measurements of current and voltage, a genetic 

algorithm (GA) is used to predict the battery model parameters including the 

diffusion capacitance. Once the diffusion capacitance has been known, the battery 

SOH may then be calculated. It is also important to take into account the effect of 

temperatures on SOH estimate findings. The proposed approach was further 

validated by testing on a variety of batteries. 

In the Table 7 the main advantages and disadvantages of Model-based SOH method 

are illustrated: 

Methods Advantages Disadvantages Errors (and ref) 

Electrochemical 

Model Method 

-Good accuracy 

-Online 

-Low adaptation - [120] 

Equivalent 

Circuit Model 

-Online 

-Operate without 

data 

-Can be used for 

different kind of LIB 

-Low adaptation 

-Fair predication and 

accuracy 

-Time Consuming 

approach.  

-In a continual discharge 

situation, the battery is 

allowed to cycle.  

Proprietary 

dataset: 0.12% 

NASA dataset 

–0.57% to 0.19 

[120] 

[146] 

GA -Can be 

implemented in 

non- linear systems.  

-High processing power 

is required 

-Difficult to be used as 

Online.  

5.11% [149] 
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Table 7-Model-based methods comparison 

Adaptive Filters 

Kalman filter and its extensions (KF) 

With the Kalman filter, you may estimate the output variable by taking 

measurements in a series over a period of time. The zero-mean distribution of the 

measurement noise and the zero-mean distribution of the process noise are among 

the assumptions that underpin Kalman filtering. There are two phases involved in 

the procedure. In the prediction phase, the Kalman filter predicts the current output 

variable, and in the updating phase, it forecasts the current output variable. After 

that, Kalman filters are used to reduce the discrepancy between estimated and 

observed state variables, which helps to enhance estimates even more. The system 

degradation model, on the other hand, must be present in order to make use of the 

Kalman filter. Originally, the Kalman filter was intended to be utilized in linear 

systems, and this was the case. [150]. As previously stated, the degradation model for 

batteries is complex and non-linear, as seen in the preceding section. If you have a 

nonlinear system, such as those used for SOH estimation, an improved version of the 

Kalman filter can be employed. Examples of such systems are Extended Kalman 

Filter (EKF), Unscented Kalman Filter (UKF), and DKF. Although KF on linear 

systems produces a stable state estimator, the stability of the estimator cannot be 

evaluated because of the heuristic nature of EKF. It is standard practice to use EKF 

for model building since it is a non-linear model internal state that may be changed. 

[151] 

The estimation of SOC and SOH is carried out with the help of UKF and support 

vector regression techniques. This model has been evaluated on a number of cycles 

and aging tests and has been shown to have an estimation error of less than one 

percent. [59]. In ref [152] for estimating SOH, DEKF is used, capacity and voltage 

patterns are utilized to derive the first-order Randle circuit characteristics, 

respectively. The Hamming neural network is used to identify typical patterns in 

order to enhance the SOH forecast. There was a 5% discrepancy in the findings. In 

the Table 8 you can see the details regarding adaptive filter methods:   

 

Methods Advantages Disadvantages 
Errors (and 

ref) 

Adaptive 

Filters (KF) 

-Accurate and capable to 

remove noise 

-Online 

-The calculation is complicated. 5% [152] 

Table 8- Adaptive filters comparison 
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3.2 Data-Based Methods  

Lithium-ion battery properties such as incremental capacity, differential voltage 

(DV), or internal resistance (IR) may be determined analytically from the partial or 

entire charging/discharging cycle data acquired. These methods reduce the need for 

physical models to capture some of the physics connected to deterioration, which is a 

major problem in the context of this research. Many probabilistic and non-

probabilistic methods may be used to link the patient's general health condition to 

these variables (SOH). Because of these qualities, the online implementation of SOH 

is greatly aided by the trade-off between the effectiveness of an algorithm and the 

complexity of a computer system.  Probabilistic and non-probabilistic methods for 

the estimation of SOH based on analytically generated characteristics. Non-

probabilistic models may provide a definitive answer, whereas probabilistic models 

provide a measure of prediction uncertainty.  

3.2.1 Non-probabilistic methods 

3.2.1.1 Machine learning methods  

 

Fuzzy Logic Method 

In order to deal with data obtained from non-linear, complicated systems, fuzzy logic 

employs a set of fuzzy rules. When this is done, the data may be broken down into 

fuzzy subsets. Uncertainty levels are assigned to each of the subgroups. SOH 

estimation accuracy is determined by the accuracy of the fuzzy sets' members, which 

belong to a member function (MF). Selecting the right MF for SOH prediction is 

critical. In case of employing this approach, there is no need to know anything about 

how the system works. This enables for a greater degree of abstraction, which comes 

from real-world testing and applications, to define a complicated system. Although 

this approach has a better level of precision, the quantity of computing required is 

more. 

The index of SOH is calculated using two exponential functions, as indicated in the 

following equation (3-4) [153]:  

 𝑌𝑓𝑖𝑡 = 𝑎0 + 𝑎1𝑒
−(

𝑥
𝛼1

)𝛽1

+ 𝑎2𝑒
−(

𝑥
𝛼2

)𝛽2

 (3-4) 

 x=No of Cycle 

Y= Normalized Capacity Value 
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The fit function is estimated using the fuzzy technique. FL first calculates the health 

index using a fitting curve with an inaccuracy between 5% and 10%. When assessing 

health index, a neural network is employed to minimize the inaccuracy by 5% in step 

2.  

 

Support Vector Machine 

Non-linear systems may benefit from the use of Support Vector Machines, which 

analyze data and identify patterns. SVMs have been extensively utilized in pattern 

recognition to solve classification difficulties. In addition, regression issues may be 

solved using the SVM. As a non-linear estimator, the SVM is often more robust than 

a least squares estimator since it is intolerant to tiny changes. As a result of its 

capacity to handle minimal training datasets, SVM is commonly employed. In 

contrast, as the training data set grows, the number of support vectors grows as well, 

which raises the computational cost [135].  

Researchers [154, 155] have devised an SVM in order to overcome the 

aforementioned difficulties and acquire a precise SOH estimation. Batteries may be 

predicted during various periods of life using an SVM classification and regression 

model[155]. The technique claims to deliver desired outcomes. It's not possible to get 

input vectors for on-board SOH estimation when discharging because of the random 

nature of discharge current.  Nuhic et al. use an SVM method to estimate SOH in a 

wide range of environments and load circumstances  by getting the enormous 

quantity of information on the lithium-ion cell through performing several 

measurements in time. Battery health may be accurately assessed utilizing a variety 

of driving cycles at varying temperatures, according to the validation process [156].  

As part of [154], the SVM algorithm is used in conjunction with rain flow theory to 

forecast the SOH under difficult operational circumstances. However, certain feature 

vectors are challenging to measure and quantify in practice. Hence, real-time 

estimate requires that feature vectors be selected with care.  Because SVM relies on 

huge amounts of data to develop and train models, it can put a strain on the BMS's 

ability to store vast amounts of data.  The SVM-based SOH estimation technique 

should therefore be carefully built to assess fewer data points with high accuracy.  

In ref [157] a new approach for determining a patient's SOH has been developed 

based on partial charge voltage and current data. Discussion and analysis are given 

to extracting feature variables such as energy signal, Ah-throughput and charging 

time. With the SVM kernel function being RBF, the support vector machine is used to 

estimate the SOH value. Full and partial charging data are used to test the SVM's 

ability to predict SOH performance. SOH may be correctly estimated for practical use 

using the mentioned technique, as shown by experiment results.   
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Artificial Neural Network  

As it discussed in chapter 2, There are several layers of an Artificial Neural Network 

(ANN). The ANN, like the human brain, must grow. It employs each neuron's 

weights and biases to learn. This means that ANNs cannot be used on real-life 

models. Any nonlinear mapping may be approached using ANN by extending the 

hidden layers and neurons in the network [158].  It may take many cycles to train an 

ANN. Because of this, the trained ANN can only be utilized for one task. To 

anticipate SOH of batteries with dynamic deterioration, which makes it challenging 

to employ [135]. A broad variety of improved methods are employed in the 

estimation SOC and SOH in lithium battery. Nonlinear self-learning is a key feature 

of ANNs. An accurate estimate and prediction model is built using a large number of 

training data samples and then fine-tuned using these data samples. When it comes 

to battery chemistry and SOH monitoring, in [159] researchers applied the NN 

technique and pattern recognition. High accuracy may be achieved using the NN 

approach, which has shown to be quite promising. More training data, such as 

current and temperature, may help to increase the performance of NN even more.  

Real-time estimation of remaining service life was enhanced in ref [160] by 

immediately adopting 10 sets of real car road test data and selecting the current, 

voltage, temperature, SOC, and SOH factors as the key parameters of the neural 

network at the same time. SOH and SOC fusion estimation was used by [161] to 

develop and propose a new neural network prediction technique. Recursive closed 

loop behavior was used to estimate a SOH estimate, according to researchers. In this 

way, the estimation results were considerably improved by combining the SOH and 

SOC predictions.  

.  

3.2.1.2 Least Square  

With the Least Squares approach (LS), a collection of data points is fitted to the 

displayed curve by reducing the total of the offsets or residuals of the points from the 

curve. Normally, it is represented as regression. Lithium-ion batteries have been 

studied using the Least Square Method (LSM). It is also used to determine battery 

electrical model parameters. It may be used to anticipate capacity deterioration 

without learning the model parameters [135].  

As a statistical methodology, the LS regression analysis is known as the LS regression 

method. The approach is used to determine the line of best fit for a dataset in which 

each point reflects the connection between unknown dependent variables and known 

dependent variables [162]. 

Lithium-ion cell degradation characteristics may be identified using an offline linear 

LS technique provided in [163]. In order to test the deterioration hypothesis and 

estimate SOH, battery resistance and solid phase diffusion time are employed as 

important factors. The data for new and old lithium-ion batteries is updated using an 
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on-line adaptive gradient and an offline linear least squares approach. Solid 

electrolyte interference layer (SEI) layer development is predicted by the suggested 

model [163].  

3.2.1.3 Auto Regression Model  

Time-series data may be utilized to study the underlying pattern of a system and 

make predictions for the near future using the Autoregressive Model. Training an 

AR Model depends on the completeness of previous data. Recursive model training 

and updating is essential in most practical applications since the historical data are 

often missing. Easy parameterization and minimal computing cost are two of the AR 

model's main features. As a result, an underfitting model is generated since the 

battery capacity fading process is generally nonlinear. Moving averages may be used 

in conjunction with the AR model to create an Autoregressive Integrated Moving 

Average (ARIMA) framework to address this issue. Moving averages instead of 

regressions employ the previous prediction mistakes in a regression-like model 

instead of utilizing past predicted values[135].  

SOH and battery cycle life may be calculated using an approach in ref [164] It is their 

goal to enhance the battery capacity for forklift operations by using autoregressive 

integrated modeling averages (ARIMA) and supervised learning (bagging with 

decision trees as the base estimator; BAG).  

Increased rain flow counting was combined with the autoregressive integrated 

moving average modeling estimation method to assess the battery's SOH based on 

the cycle methodology and machine learning notion on lithium-ion batteries by [165] 

A confidence interval approach was developed to accommodate the error range after 

studies with a dynamic testing time and process conditions were completed. The 

proposed strategy has an ideal error of 5.3 percent when using dynamic stress 

testing, and an inaccuracy of 0.8 percent when using the SOH during cycling settings 

as a sample.  

Elman neural network (NN) and autoregressive moving average (ARMA) models 

may be used together to forecast lithium-ion battery SOH, according to ref [166]. As a 

first step, the battery's voltage and capacity deterioration are evaluated over time, 

and the battery's aging health factor is decided based on the voltage profile variation. 

In the second stage, data on capacity deterioration is processed using empirical mode 

decomposition (EMD), which eliminates the problem of modest capacity recovery 

and allows the retrieval of multiple data sequences and related residues. The ARMA 

and Elman NN models are then constructed using these models. Each estimate is 

then combined to get the final SOH sequence estimates. Addressed fusion techniques 

outperform single ARMA and Elman-NN models in SOH estimation.  
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3.2.1 Probabilistic methods 

Analytical characteristics and SOH are linked using probabilistic models in this part. 

Probabilistic models should be used for determining the health of lithium-ion 

batteries in order to take uncertainty into account.  

3.2.1.1 Bayesian Network (BN) 

The Bayesian model assumes that each indicator is interrelated from the other 

predictors, so by utilizing it, a probability for an observation to be categorized as 

belonging to a certain class is calculated. For its competitiveness in practical 

applications, it is well-known sophisticated and resilient to disturbance plus 

incomplete information, it has a number of advantages, including its simplicity and 

efficiency. It also allows for the usage of many classes at once. The Relevance Vector 

Machine and the Particle Filter are used to control the ambiguity of classification or 

regression [135].  

In ref [167], Stochastic battery deterioration processes are shown using a BN-based 

SOH estimate framework, which is verified using real-world data from EV 

operations. SOH dispersion increases with battery age, and results demonstrate that 

the model can accurately predict this tendency. At certain aging stages, the calibrated 

SOH range can be entirely covered by the estimated SOH range.  

SOH estimate and RUL prediction were merged by Dong and colleagues using the 

dynamic Bayesian-PF (DBN-PF) based data-driven technique. In case certain feature 

data are lacking, CC and CV charge periods were merged. They could give an 

accurate and robust assessment of battery SOH and reliable prediction of RUL 

notably for old batteries, the terms of two experimental battery datasets collected 

through various aging trajectories. The self-learning capacity of the suggested 

technique was credited with good estimation accuracy and resilience. Furthermore, 

the proposed approach could be used in a wide range of real-world situations when 

battery operating information was insufficient. [168]. 

3.2.1.2 Hidden Markov Model  

Relying on the Markov Chain, Baum developed the Hidden Markov Model (HMM), 

the foundation of which was built in the 1970s.   

The Hidden Markov Model comprises two stochastic models as follows: 

• Observable sequence (derived from monitored signals)  

• Invisible states of health of the object (Hidden) 

Furthermore, because it is a resource strategy, it is a critical approach for real-world 

application. Based on the complexity of battery simulation models and the accuracy 

of HMM in estimating outcomes, a variety of previous studies have examined ways 

to assess battery life states using an HMM. In reference [170], a technique for 

evaluating battery health statuses is presented that is based on HMM. When 
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evaluating the lifespan of a battery, it is important to take into consideration the 

internal resistance of the battery. The HMM technique is used to determine the 

battery's life phases. Piao et al. propose a strategy for obtaining characteristic values 

from HMMs, which is described in detail below. HMMs have the potential to 

produce forward log-likelihood probabilities. In addition, by relying on only two 

factors, the recommended strategy saves time. This is the foundation upon which 

online battery life prediction is based.  

Based on neural networks (NNs) with feature and weight restrictions, in ref[171]  

researchers employed a Markov chain to correct for estimation errors. SOH estimate 

was shown to be quite accurate, with an error margin of just 1.7% based on the test 

findings.  

3.2.1.3 Sample Entropy 

In 2000, Richman and Moorman [172] presented the use of SampEn to measure the 

complexity of time series, which was an advance on the prior approach, approximate 

entropy (ApEn), developed by Pincus [173]. When it comes to monitoring the 

capacity of a battery, sample entropy is a useful diagnostic tool for assessing the 

battery's variance and complication in voltage behavior. Using this technique, the 

SampEn feature and battery capacity estimates are generated by acquiring data on 

discharge voltage and time. In accordance with IEEE Std. 1188-2005 [174], the time 

capacity of a battery is used to estimate its expected capacity. Hence, SOH is 

calculated using the capacity approach, which is the ratio of the current capacity to 

the capacity of the starting time period [175].  

In addition to analyzing the probability of time series, it may be used to forecast 

battery health performance while assessing the uniformity of a data sequence. 

Sample entropy should be used in conjunction with a machine learning technique 

that uses it as an incoming data characteristic and SOH (usually capacity) as the 

target vector of the learning process [135]. 

Widodo et al. suggested SampEn as a key feature for input training of learning 

systems, notably support vector machines (SVM) and relevance vector machines 

(RVM). Battery health may be predicted using the SOH determined by temporal 

capacity determination in the suggested approach. Using SVM and RVM in SOH 

prediction, findings demonstrates that the proposed strategy is a viable one. RVM 

surpasses SVM-based battery health prognostics in our investigation[176]. 

A novel approach based on empirical mode decomposition sample entropy (EMDSE) 

and support vector machine (SVM) is presented in ref [177] in order to increase the 

accuracy in calculating the SOH of a battery. In contrast to the traditional SE-based 

approach, EMD is used to filter out the noise from the original signal. Afterwards, 

the EMDSE is utilized for SVM training, and the possibility of a correlation between 

the SOH and EMDSE is established. The EMD technique reduces noise in the original 

voltage signal, and the suggested algorithm based on EMDSE improves estimate 

accuracy. 
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3.2.1.4 Particle Factor 

Particle Filters are classified under non-linear filters which combine Bayesian 

learning techniques and sampling to provide good state tracking performance while 

keeping the computational load under control. It is classified as a sequential Monte 

Carlo method, which estimates the state Probability Distribution Function (PDF) 

from a set of particles and the associated weights. The use of weight, helps in 

adjusting the state PDF to its most likely form. However, for particle filter, the 

number of defined samples imposes and important effect on calculation speed and 

accuracy. So, huge number of samples are required for practical application. Also, 

accuracy of particle filter-based model could be easily affected by variable current 

and temperature. 

Battery SOC and maximum usable power are estimated in [178] using PF's non-linear 

dynamic model based on SOC. The battery power is computed using an optimization 

approach in this new algorithm. Charge and discharge data are used to test the 

suggested theory. According to [132], a new mutation particle filter (MPF) may 

identify low-weighted particles for SOH estimate. The model's performance is 

benchmarked. The studies show that the MPF can successfully monitor system 

dynamics and characteristics while lowering RMSE and standard deviation (SD).  

State space models based on PF have been proposed by [179]. Prediction accuracy 

was greatly improved after the use of updated Kalman filtering settings. A 

significant amount of math is required, though.  

More samples led to steadily rising accuracy for SOH prediction as seen by these 

findings. Due to this, a huge number of factors are required to produce the PF 

prediction results more accurate, which considerably increases the complexity and 

quantity of calculation required by the online proposed method, leads to poor timely.  

3.2.1.5 Gaussian Process Regression (GPR) 

In several disciplines, the non-parametric and probabilistic nature GPR approach has 

been used. High dimension, tiny sample, and non-linearity are all examples of 

complicated regression issues that may be handled by this method. In comparison to 

NN and SVM, GPR is easier to implement. Additionally, it may describe the 

uncertainty of estimated findings in the form of a confidence interval with upper and 

lower limits. Thereby helping to make decisions. GPR may be used to estimate the 

state-of-health (SOH) of lithium-ion batteries since the aging process is nonlinear and 

complicated [135].  

For SOH estimate,  Yang et al. has developed an enhanced GPR model . In this study, 

the GRA approach is used to examine the correlation between choosing 

characteristics and SOH. Improvements in the fundamental GPR model are made in 

the areas of similarity measurement and covariance function design so that SOH 

estimates can be more accurately predicted. Batteries in cyclic aging tests have 

minimal SOH estimation errors, according to SOH estimation data. The GPR model 
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suggested in this study has the following advantages: high precision, resilience, 

output probabilism, etc. And a well-built GPR model may be used in a real-world 

application[180].  

Using a multiscale GPR model, lithium-ion batteries' SOH may be predicted in ref 

[181]. Using a wavelet analysis approach, it is possible to isolate the global 

deterioration, local regeneration, and fluctuations in the SOH time series. Because the 

results show that a unified framework for accurate and speedy SOH prediction is 

provided by multiscale GPR modeling, it is useful for SOC estimate and RUL 

prognosis. There are several health management systems with multiscale features 

that the suggested technique might be applied to. A you can see, Table 9 shows the 

comparing between data-based methods:  

 

Methods Advantages Disadvantages 
Errors (and 

ref) 

FL -High precise online with 

simple model, without any 

intermediary processing, 

measure SOH directly.  

-Useful for non-linear system, 

robust and accurate method.  

Temperature and current 

are the only elements 

considered. 

-Highly dependent on the 

training data's quality, 

variety, and amount and 

powerful controller is 

needed  

<2% 

 

 

 

1,4-

9.2% 

[182] 

 

 

[183] 

SVM ­ Accurate  

­ Nonparametric 

- Robust 

-Fast response.  

­ Depend heavily on the 

quality, the diversity and 

the quantity of the training 

data used 

­ Require a high-

performance controller 

2% [184] 

NN ­ Accurate & online 

­ Requires least amount of 

data than Fuzzy Log 

­ Depend heavily on the 

quality, the diversity and 

the quantity of the training 

data used 

­ Require a 

high-performance controller 

<0.5% [59] 

LS ­ Precise  

­ Robust 

­ Simple structure and fast 

response 

­ Relies in terms of accuracy 

on the selected model 

­ Require a high 

performance controller 

-It will take some time to 

refine the controller.  

±5% [185] 
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ARM -Easy parameterization 

-Minimal computing cost 

The association between 

battery aging aspects cannot 

be analyzed in detail, hence 

the estimate findings may 

not be complete.  

0.7-

5/3% 

[166] 

BN -Accurate 

-Robust, 

-Can be used when some 

battery information was 

lacking.  

-Charging time has the 

effect on this method.  

-Temp effect is not 

considered.  

<1.6% [168] 

HMM -It just requires two inputs 

-Time-saving method  

-Strong base for online 

estimation  

-Complexity of 

mathematical equations 

<10% [170] 

Sample 

Entropy 

-Good accuracy  -High degree of difficulty in 

computing  

2% [186] 

PF -Good accuracy  

-Fast response 

-High degree of difficulty in 

computing,  

-Lots of data are required. 

<2% [187] 

GPR -High accuracy,  

-Low computational time.  

-High degree of difficulty in 

computing  

0.49-

0.98% 

[181] 

Table 9- Data-Based Methods 
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4 Chapter 4 

Conclusion  

 

It is prudent to estimate the SOH and SOC values when developing a battery 

management system because they provide a snapshot of the battery's long- and 

short-term health. In order to classify the existing SOC and SOH estimation 

approaches, this study reviewed existing research. We also discuss in detail the 

various estimation processes for SOC and SOH, thereby assisting with the 

development of advanced BMS for applications ranging from electric vehicles, solar 

cells, and large-scale power systems. According to the study, there is no one right 

way to estimate battery states. Rather, the most appropriate approach will depend on 

the application and the requirements of the system.  

A variety of SOC approaches and algorithms are examined in this report. A full 

description, including the advantages and disadvantages of the model. The review 

classified SOC estimation techniques into 6 major groups.  

It is said in this article that while direct measuring methods are simple to use, their 

accuracy is greatly compromised by factors like as age, temperature, and external 

disruptions. The OCV method is the most widely used direct measuring technique. 

The OCV/SOC battery connection is the basis for this technique. The Battery is 

separated from the circuit during OCV measurement, and SOC is computed using 

the OCV as a reference point for the battery. The flat OCV-SOC curves and this 

method's applicability exclusively to open-loop systems exclude its use in continuous 

battery operation.   

Bookkeeping approach was then used to get a more accurate estimate of the battery's 

SOC. The battery charging/discharging current is used as an input in this approach. 

Counting coulombs method is a simple way to use under this accounting system. 

Time-integrated battery charge and discharge currents. This approach is more 

commonly employed in the BMS for SOC estimation because of its simplicity and 

lack of complexity. As a result, this technology has a number of drawbacks, 

including inaccuracies in sensors and a lack of accuracy in open-loop systems.  

Also observed is that an adaptive filter method may anticipate a non-linear dynamic 

state with high precision, while using little computer resources and operating at a 

high level of performance. Only linear systems can be solved using the traditional KF 

approach. EKF and UKF are presented in order to broaden their applications to 

nonlinear systems, which are nonlinear in nature. SOC information based on battery 

state-space analysis is delivered using these approaches, which successfully removed 

process and measurement noise. It is, however, difficult to construct the method for 
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the matrix's mass because of the complexity of the implementation. Moreover, due to 

the high computational cost and weak robustness of the approach, it is not 

recommended.  

Using machine learning approaches, it is possible to simulate a nonlinear dynamic 

system while taking into account factors like as age, temperature, and noise.  The 

SVM and ANN algorithms are complex approaches for predicting the battery's 

precise SOC statistics. Moreover, the approach involves sophisticated calculation and 

necessitates the use of a big storage device to keep the training data. Fuzzy logic 

algorithms are the greatest way to get an accurate assessment of the battery's SOC. 

On the other side, they are similar to ANNs in that they are extremely sensitive to the 

training data they are fed.  

 It has been shown that the nonlinear observer has increased its resilience against 

perturbations and increased its precision, convergent speed, and computing expense. 

In the presence of disturbances and uncertainties, SMO is one of the most reliable 

approaches for estimating the SOC. The system's switching gains are difficult to 

calculate. The model can still generate incorrect results, though, if the controller is 

not built appropriately.  

 

In terms of SOH estimation methods, four major categories of approaches for are 

discussed in depth. The accuracy of experimental procedures is high, and the 

computational approach is easy to understand. Specific equipment, on the other 

hand, is necessary in order to carry out the experimentation. Aside from that, they 

are time-consuming approaches that are best suited for lab and testing environments. 

For model-based techniques, their advantages are that they have a simple structure 

and that they provide accurate and robust estimations. Furthermore, they provide 

quick processing and simple method implementation, but they have certain 

drawbacks, such as the demand for pre-validation during the development phase of 

the process. Additionally, in terms of accuracy and computing time, these strategies 

rely greatly on the model. Adaptive filters are capable of removing noise and 

providing precise estimate in real time. Using the upgraded version of KF, it is 

possible to work with nonlinear systems. The computing procedure, on the other 

hand, is time-consuming.   The last category consists of data-based approaches, 

which provide very exact results while being simple to apply. Furthermore, they are 

often known for their quick response times. On the other hand, the vast majority of 

them require a strong controller, which is expensive. Furthermore, some approaches 

involve a lengthy and complicated computing procedure.  

 



56 Chapter 4 

 

 

The findings of this article might lead to the reader selects the one that is most 

appropriate for his or her particular situation. In this paper, you find up-to-date 

information on approaches that will be beneficial in the design and analysis of a 

project from a technical and financial standpoint, which includes the battery system. 

Furthermore, it will be beneficial to students and professionals working in the fields 

of renewable energy systems and electric vehicles. 
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