
Optimization of cost and discrep-
ancy for architectural building re-
drawing using prefabricated wall el-
ements

Tesi di Laurea Magistrale in
Computer Science Engineering - Ingegneria Infor-
matica

Author: Tiberio Galbiati

Student ID: 952607
Advisor: Prof. Federico Malucelli
Co-advisors: Prof. Pietro Luigi Belotti
Academic Year: 2021-22

i

Abstract

Off-site and prefabricated construction is a promising alternative to traditional on-site
building. It has benefits in cost-effectiveness, environmental impact, and development
speed. In order to take advantage of off-site construction, architects need to consider
some geometric constraints in their drawings, given by the prefabrication manufacturing
processes. However, most building projects are not designed with a prefabrication mind-
set. Therefore, manufacturers of prefabricated elements need to redraw the models to fit
them with their elements. This time-consuming process is currently performed manually,
which does not guarantee optimal results. This thesis proposes a method to automate
the redrawing of architectures. Given a 3D building design and a set of prefabricated ele-
ments, it outputs a minimum discrepancy new version assembled with the set’s parts. A
Mixed Integer Programming model is developed and tested to address this problem. The
optimization’s target is to minimize the modifications from the original design and the
cost, with constraints on obtaining a closed polygonal perimeter. The method is tested
with different building geometries and gives fast results. It is the first step toward a fully
automated software for prefabrication building design redrawing.

Keywords: optimization, operation research, MIP, IFC, prefabrication, off-site construc-
tion, design for manufacturing and assembly (DfMA)

Abstract in lingua italiana

La costruzione off-site e prefabbricata è una alternativa promettente alla costruzione
tradizionale in cantiere. Presenta vantaggi in termini di economicità, impatto ambien-
tale e velocità di realizzazione. Per trarre vantaggio dalla costruzione off-site, è necessario
che gli architetti considerino alcuni vincoli geometrici nei loro disegni, definiti dai processi
produttivi di prefabbricazione. Tuttavia, la maggior parte dei progetti edilizi non viene
progettata con la consapevolezza della prefabbricazione. Pertanto, i produttori di ele-
menti prefabbricati sono costretti a ridisegnare i modelli per adattarli ai loro componenti.
Si tratta di un processo laborioso, attualmente eseguito manualmente, che oltremodo non
garantisce risultati ottimali. Questa tesi propone un metodo per automatizzare il ridise-
gno delle architetture, per la sua soluzione è stato ideato, sviluppato e testato un modello
di Programmazione Lineare Misto-Intera. Dato un progetto di edificio in 3D e una lista
di elementi prefabbricati, il metodo produce una nuova versione del disegno, assemblato
con elementi della lista e con la minima discrepanza rispetto all’originale. L’obiettivo
dell’ottimizzazione è minimizzare le modifiche rispetto al modello originale ed il costo
finale, con il vincolo di ottenere un perimetro poligonale chiuso. Il metodo è stato tes-
tato con diverse geometrie di edifici e ha dato risultati in tempi rapidi. È il primo passo
verso un software completamente automatizzato per il ridisegno di progetti di edifici per
la prefabbricazione.

Parole chiave: ottimizzazione, ricerca operativa, MIP, IFC, prefabbricazione, off-site

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 Background 5
1.1 Off-site Construction background . 5

1.1.1 Definitions . 5
1.1.2 Market and adoption, current state 7
1.1.3 Potential of OSC . 8
1.1.4 Challenges in the adoption of OSC 9

1.2 BIM . 9
1.2.1 IFC standard . 9

2 Problem formulation and state of the art 17
2.1 Approach . 17
2.2 Challenges and requisites in quantity extraction from IFC files 18

2.2.1 Misclassified entities . 19
2.2.2 Clash detection . 19
2.2.3 Spatio-semantic consistency . 19
2.2.4 Inner and outer walls . 20

2.3 Similar works . 21
2.3.1 Optimization focus . 22
2.3.2 IFC and BIM focused . 23

3 Mixed Integer Linear Optimization Model 25
3.1 Input data structure . 25

vi | Contents

3.2 Optimization model . 27
3.2.1 Input . 27
3.2.2 Decision variables . 27
3.2.3 Constraints . 29
3.2.4 Objective . 31

3.3 Complete final model . 33

4 Geometry processing from IFC files 35
4.1 Preconditions . 35
4.2 High-level flow . 36
4.3 Initial processing and walls extraction . 36
4.4 Abstraction of walls in 2D . 38
4.5 Outer wall detection . 40
4.6 Connection graph of walls . 41
4.7 Cycles identification . 43
4.8 Manual extraction of geometry from floor plans 44

5 Implementation, testing and results 45
5.1 Implementation . 45

5.1.1 Libraries used . 45
5.1.2 Code structure . 48
5.1.3 Hardware used . 49

5.2 Optimization model testing . 49
5.2.1 Parameters used for the optimization 50
5.2.2 Exploration of the Pareto frontier 52
5.2.3 Comparison of geometries . 55
5.2.4 Execution time performance . 56

5.3 Case study . 57
5.3.1 Construction system specifications 57
5.3.2 Comparison with the redrawing process in industry 59

6 Conclusions 65
6.1 Future works and improvement . 66

6.1.1 MIP model . 66
6.1.2 IFC processing . 67

6.2 Possibilities of application . 68

Bibliography 69

List of Figures 77

List of Tables 81

Acronyms 83

Acronyms 83

Acknowledgements 85

1

Introduction

This thesis intersects three disciplines: Operation Research, Computational Geometry,
and Construction Engineering. It uses methods and tools of Computer Science, Op-
timization, and Computational Geometry to help manufacturers deal with architecture
projects for off-site construction. In off-site construction, structural elements, such as wall
panels, are made in an off-site factory and assembled later on the building site. The goal
of this thesis is to automate the design for off-site manufacturing.

The issue. Building project contractors should decide to use off-site construction ahead
to adapt the design to consider the constraints and information given by the manufactur-
ers. However, this rarely happens. The manufacturers of prefabricated elements instead
receive building drawings that have not been designed considering their production con-
straints. Thus, they must redraw the models to fit them with their construction system.
A construction system consists of different elements with pre-defined geometry and tech-
nical properties produced in an off-site factory and later assembled on-site. Redrawing
building projects is a task currently performed manually: it is time-consuming as there are
no automation tools that can be adopted for every project. Moreover, manual redrawing
does not guarantee the optimal results in terms of the final design costs and, simultane-
ously, to minimize the discrepancy with the original model. Some final customers of a
building are willing to accept slight modifications in the structure’s geometry provided
that the project’s final cost and development time using prefabrication are lower than
in traditional construction methods. Hence, optimizing the redrawing task is crucial to
prove the advantages of prefabrication to customers.

At the current state of the art, no completely automatic solution can transform a 3D
building project into another one made of discrete prefab elements. This is a barrier to
the adoption of prefabrication. That is why the industry needs to implement automation
methods for the redrawing process to make it more manageable, precise and fast.

What is presented. The approaches presented in this thesis prove that, given a 3D
building model, it is possible to generate a new geometry made out of parts specified

2 | Introduction

in an element library given by the manufacturer. The output will either be optimized
for having the minimum difference from the original one in geometric dimensions, the
minimum cost of manufacturing using prefabricated elements, or a combination of the
previous two. This thesis demonstrates that it is possible to build almost any geometry
floor plan using standardized elements with slight changes in the original design.

Why is it useful. In the first instance, this thesis approach optimizes for a combination
of minimum cost and output discrepancy. If the method can satisfy both requirements, it
means that a wall manufacturer could reduce the costs of building products and guarantee
limited changes over the original design geometry not intended for prefabrication. In
contrast, the manual process currently adopted does not guarantee the fulfilment of those
goals.

Secondly, the method proposed will decrease the time spent on the task of redrawing.
Interviews with prefab manufacturers in the industry revealed that this process takes an
average of one human working day using the available tools. This thesis approach can
lower the time to less than a minute. Reducing time is relevant, especially for companies
that perform the redrawing process to provide a cost estimate for a project bidding.
Providing a fast and accurate estimate of the project’s cost can help reduce the resources
needed for the bidding calculations, increasing the ability to provide price quotes and
resulting in more orders.

Finally, the impact of the approach in this thesis can be even more profound and sub-
stantial: this work wants to be one step forward in increasing the adoption of off-site
construction. Automated tools for redrawing can make off-site construction (OSC) more
competitive than the traditional methods. Allowing the adaptation of current designs
by architects will help in shifting the paradigm in the construction industry. The reason
is that it will be possible to adopt standardized industrialized production of buildings
without starting the design phase over again.

Lastly, buyers of buildings are increasingly considering waste reduction and environmen-
tal impact. Optimizing a standardized production can fulfil those target goals, providing
better quality and value for money without sacrificing customization entirely. Customers
are expected to accept standardized products and processes as long as the final result
costs less money and is faster to produce [1].

How this thesis is structured. This thesis is the report of a process that involved
the creation of an original optimization model and a method to extract data from the 3D

| Introduction 3

drawings generated by the Computer-Aided Design (CAD) software used by architects.
The first part is the core of the thesis; it uses methods of Operation Research to create
an optimization model. It consists of a Mixed-Integer Programming (MIP) model with a
twofold objective: minimum discrepancy redrawing of a 2D floor plan geometry using a
list of defined elements and minimum manufacturing cost.

The second part presents an approach for automatic quantity and geometry extraction
from Industry Foundation Classes (IFC) files; this part is needed as a step to prepare
the necessary data for the optimization. IFC files contain no explicit information about
the quantities and the geometry structure of elements needed to perform the optimization.

Chapter 1 briefly introduces Architecture, Engineering and Construction (AEC) industry
to contextualise this thesis’s work. Definitions of off-site construction types, elements,
and methodologies used in industry, such as Building Information Modeling (BIM) and
Industry Foundation Classes (IFC), are provided. The market of prefabrication and its
adoption are discussed to justify the need for the thesis.

Chapter 2 defines the specific problem addressed in this thesis and the approach taken to
solve it. The scope is defined in terms of the input available and the desired output. This
chapter presents other relevant works in the literature and discusses them, comparing
their objectives and content with this thesis.

Chapter 3 formally and mathematically describes the optimization problem to be solved.
A Mixed-Integer Programming (MIP) model is presented with input specifications, vari-
ables, constraints, and objective function(s).

Chapter 4 presents the original algorithms developed to extract the relevant geometric
data from IFC files to perform the optimization part. It is a method to decompose a
complex building architecture model into a minimal, yet exhaustive, data structure to
represent its geometry.

Chapter 5 firstly discusses this work’s implementation details, such as the software, tools
and libraries used. Secondly are presented a batch of tests of the optimization part to
evaluate the model on different input instances. Finally, it presents a case study where
the approaches of this thesis are tested from the geometric extraction to the optimization

4 | Introduction

part, comparing them with the industry standards.

Chapter 6 derives the conclusions of this thesis and introduces future works and improve-
ments.

5

1| Background

This chapter aims to briefly overview the industry to which this thesis’s optimization
process and geometrical model will be applied. Here are presented the definitions relative
to the construction industry, architecture, and the data structures used in computer
science applied to building modeling.

1.1. Off-site Construction background

The first section presents the specific part of Architecture, Engineering and Construction
(AEC) to which this thesis applies, namely off-site construction (OSC).

1.1.1. Definitions

The term off-site construction (OSC) refers to producing building components and ac-
cessories (such as floor slabs, wall panels, staircases, and balconies) in a factory. Those
are then transported for assembly on-site later in a different location. Different types of
off-site construction exist. Terms like prefabrication and modular construction are used
interchangeably to specify different methods of implementing the broader term of off-site
construction.

The term modular design emphasizes the increase of standardization of building elements
which can be built in series and combined. With the term prefabricated building, the
focus is on the practice of transferring a large amount of work from the traditional on-site
operation to an off-site factory.

Therefore, a core aspect of OSC is the production of building elements, which can have
different scales and complexity. [2] categorizes the elements that can be produced off-site
as follows:

• Components: non-structural elements such as doors and windows. Those are
infeasible to be produced on-site;

• Panels: structural elements such as walls, roofs, and floors. They are defined also

6 1| Background

as non-volumetric;

• Pods: 3D structures self-contained. An example: bathroom or kitchen pods, which
are then assembled to a frame on-site;

• Modules: ready to use building elements, including complete fixtures and fittings;

• Complete buildings: the entire building is manufactured off-site as a single unit
and then transported on-site to be installed and connected to the foundation.

Figure 1.1 shows a fully finished wall panel made by a structural framing with exterior
cladding and fenestration; prefabricated walls can also include water/air/vapour barriers
and insulation. After being built in a factory, walls are transported on-site, where they
are lifted and installed.

Figure 1.1: Example of installation of a wall element in a construction site in Oslo, Norway.
Source: author personal collection.

To better understand the scale and scope of prefab elements, Figure 1.2 reports a schema
of possible elements used in OSC, showing different levels of complexity of the element
and the scale in terms of the physical dimensions of the element itself. A broad and
continuous spectrum of elements can be considered under the umbrella of OSC elements.
However, there is another more straightforward way to categorize these elements, just
dividing them into two main types: 2D panelized and 3D volumetric.

This thesis directly addresses the 2D panelized paradigm of OSC, focusing on the geo-
metric optimization for those panels. One example of wall panels is the Cross-laminated
timber (CLT) which consists of different layers of timber, usually spruce, larch or pine,
combined with structural adhesives [4].

1| Background 7

Complexity and scale of modular construction—comparison of approaches

Source: Case studies; interviews; McKinsey Capital Projects & Infrastructure

Fully serviced
and !nished
single unit

Fully serviced
and !nished

walls

Fully serviced
and !nished

room

Fully serviced
and !nished

house

Transitional
single unit

Single discipline,
 individual units

Panels Volumetric units Complete
structures

Pre-!nished
panel

Pre-!nished
room

Pre-!nished
house

Largely
structural
(concrete,

steel, or
wood)

Limited
!xtures

in one
or more

materials

Fully
functional

with
complex
!xtures

Increasing
complexity

Increasing scale

Modular construction covers a broad set of approaches.

2019
Modular
Exhibit 1 of 4Exhibit 2
Modular construction covers a broad set of approaches.

Further along the spectrum are two-dimensional panels (which can be open or closed), while three-
dimensional volumetric units with full fixtures are yet more complex. Wood, concrete, or steel can be used
separately or in hybrid systems in various forms.

This report focuses on two major types of modular products: 2D elements that call for more assembly
onsite; and 3D volumetric units, which are more fully fitted-out offsite. Each has its advantages and will
be suitable for different parts of the real estate sector (Exhibit 3). These two approaches can also be

8

Capital Projects & Infrastructure

Modular construction: From projects to products

Figure 1.2: Scale and complexity of modular construction element. Source: [3].

1.1.2. Market and adoption, current state

Modular or prefabricated construction is nowadays just a niche market in most of the
world, but it is expected to grow rapidly soon.

There is no uniform geographical distribution of the percentage of adoption and the type
of elements mainly used. As an example, volumetric pre-assembly is the de-facto approach
in North America and Australia [5], while the 2D-panelized one is the most used in many
European countries [6].

According to [7]:

In North America, the modular building industry has increased from 2.37% of
construction expenditure in 2014 to 3.17% in 2017, while the off-site construc-
tion share in the Japanese market is 12–15%, and 50–90% in Sweden where

8 1| Background

panelized construction is dominating the market.

In China, according to [8] :

During the 13th Five-Year Plan period, the average annual growth rate of
new prefabricated building areas reached more than 50%. In 2020, 630 million
square meters of prefabricated building area will be started, accounting for
20.5 percent of China’s total new construction area that year.

Prefabricated elements have been used not only for new buildings but also to retrofit
existing ones to improve energy efficiency [9].

1.1.3. Potential of OSC

This section addresses the reasons why OSC can have substantial advantages over tra-
ditional construction methods. [10] discusses the main drivers and advantages of OSC,
which can be summarized in the following points:

1. faster construction time;

2. reduction in construction cost;

3. increased quality;

4. waste minimization;

5. reduction in carbon emissions.

The first advantage, reduction in construction time, is intrinsic in OSC since the time
spent on site is reduced by prefabricating the elements in an off-site factory using indus-
trialized approaches. This reduction in time has been estimated to be around 20–50%
compared to on-site [3, 4]. Reduction of construction time leads to another advantage:
faster solvency for developers and cost-effectiveness, which also turns into a faster return
on investment [10]. All-weather production is another advantage of OSC, especially for
countries in northern Europe.

The second advantage can refer to the construction cost and the life-cycle costs. On-
site operation costs are drastically reduced using prefab elements that only need to be
assembled on-site. Regarding life-cycle costs, for example, the airtight joining of compo-
nents and superior insulation placement given by factory-driven precision will reduce the
life-cycle cost of heating in a prefab building [5].

Finally, reducing carbon emissions is another crucial aspect of modular construction,
especially if the modules are made of wood. Using timber elements allows storing almost

1| Background 9

50% of carbon in the mass of the structure [9].

1.1.4. Challenges in the adoption of OSC

It is also crucial to understand in which contexts OSC will have the most impact. It has
traditionally been considered when the structure has a degree of repeatability and the
costs of transporting the elements are less than the on-site operations [3]. However, this
thesis wants to prove that it is possible to build almost any geometric floor plan using
mostly standardized elements. This will help solve the lack of standardization for prefab
elements [4].

Other obstacles to adopting OSC are regional differences in regulations, which make
prefabrication a risk for some property developers not used to this paradigm. Evaluations
on whether to choose prefabrication to develop a project are out of the scope of this
thesis. However, the methods presented here can be used to assess better if a project is
suitable for prefabrication. This is because this thesis method will provide an exact list
of elements needed to prefab a project, which can help assess the final costs.

1.2. BIM

The second part of the background is about the tools and the methodologies of the Ar-
chitecture, Engineering and Construction (AEC) industry related to Computer Science.

The first concept to be introduced is Building Information Modeling (BIM). BIM can
be defined as a technology that allows representing a digital virtual model of a build-
ing structure, including details coming from different engineering and design disciplines.
BIM is based mainly on 3D models, enriched with information database technology and
includes the software tools needed to operate with the models. The use of BIM is spread
across different stakeholders in a construction project, such as architects, engineers, and
contractors [11]. BIM is considered a core part of the digitization of AEC, but there are
still barriers to its adoption in the industry [12].

1.2.1. IFC standard

One of the challenges in BIM is the need to exchange information between different parties
involved in a construction project. That is where the need arises for a recognized standard
to implement a data structure to allow collaboration and communication between systems
and stakeholders.

10 1| Background

Industry Foundation Classes (IFC) is an ISO standard, ISO 16739-1:2018 [13], created
by BuildingSMART, which creates a “standardized, digital description of the built asset
industry which is vendor-neutral and usable across different software platforms, hardware
devices, and interfaces for different use cases” [14].

One core aspect of this data model is that it is made out of a representation of both the
geometry and semantic structure of a building model using an object-oriented approach.
This means that a building is represented by splitting it down into different building
component entities with a geometric representation and some semantic properties and
relationships.

The IFC schema codifies objects, properties and relationships from different domains
related to the AEC industry. Those domains include building and architectural elements
and processes and management related to the building. IFC helps different stakeholders
in a construction project exchange information relative to architecture, building service,
structural engineering, procurement, construction planning, facility management, project
management, client requirement management, and building authority for permits and
approval.

This thesis focus is only on the architectural part of the IFC schema.

IFC encodings

IFC files can be encoded in different ways; the most commonly used is the STEP Physical
Format (SPF or IFC-SPF), the most compact format available for encoding [15]. Other
formats include XML and JSON, but these have larger dimensions. IFC-SPF is based
on the ISO standard for clear text representation of EXPRESS data models ISO 10303–
21 [16]. In this thesis are used IFC-SPF files. An extract of one of those is reported on
Listing 23 as an example of how the data is structured. Some peculiar aspects of the
EXPRESS language are:

• An entity type is the equivalent of a class in object-oriented programming theory;

• For every entity type, different attributes can be defined;

• An attribute can either be: explicit (where a direct value is assigned), derived
(when the attribute refers to another entity type), inverse (the same as derived but
referring to the other end of the relationship);

• Derived attributes are used to describe relationships between different entity types.
For example, type A can have as attribute an object of type B. This creates a
relationship A → B;

1| Background 11

• Inverse attributes define the relationship in reverse order, so in the example above,
type B will have an inverse attribute which relates to type A;

• An entity type can be the subtype of another entity type and also a supertype.
In other words, the EXPRESS schema implements the object-oriented concept of
inheritance.

The first level of subdivision of an IFC-SPF file is in two parts:

1. HEADER section, containing metadata about the file itself (lines 2–6 in Listing 23);

2. DATA section, containing the project information (lines 8–17 in Listing 23).

This thesis considers only the DATA part. Every line in the data part encodes an IFC
entity. Every line starts with a unique ID, called ExpressID, representing univocally an
entity in the file. For example, considering the entity (#323), after the ExpressID there
is the name of the entity type. In this case, it is IfcWallStandardCase.

After the name of the class, in round brackets, there is the list of attributes of the entity.
In this example, the first one is the UUID 0BM7tu9KX2pBqXi82G7tTo. The second is a
reference to another entity, in this case it is to (#13) of type IfcOwnerHistory, the fourth
is the name given to the entity (’mywall’) and so on. The EXPRESS schema gives the
complete list of the attributes, inverse attributes and rules. Figure 1.3 gives an example of
EXPRESS schema with some annotation to describe the different parts of the definition
of an entity type.

Figure 1.3: Example of EXPRESS definition for entity type IfcProduct Source: [17].

12 1| Background

1 ISO-10303-21;
2 HEADER;
3 FILE_DESCRIPTION((’ViewDefinition␣[CoordinationView]’,’Option␣[Filter:␣

VisibleElements]’),’2;1’);
4 FILE_NAME(’examplefilename.ifc’,’2010-10-27T21:32:24’)
5 FILE_SCHEMA((’IFC2X3’));
6 ENDSEC;
7
8 DATA;
9 #13= IFCOWNERHISTORY(#12,#5,$,.ADDED.,$,$,$,1288207919);
10 #36= IFCDIRECTION((0.,0.,1.));
11 #54= IFCPROJECT(’247zxMA4zFuef9Vjr$GJAi’,#13,’Default␣Project’,$,$,$,$

,(#51,#145,#247),#26);
12 #247= IFCGEOMETRICREPRESENTATIONCONTEXT(’Plan’,’Model’,3,1.0000000E-5,#44,#243);
13 #320= IFCLOCALPLACEMENT(#125,#317);
14 #323= IFCWALLSTANDARDCASE(’0BM7tu9KX2pBqXi82G7tTo’,#13,’mywall’,$,$,#320,#393,’0

B587DF8-2548-42CC-BD-21-B080901F7772’);
15 #380= IFCARBITRARYCLOSEDPROFILEDEF(.AREA.,$,#376);
16 #381= IFCAXIS2PLACEMENT3D(#40,#36,#28);
17 #384= IFCEXTRUDEDAREASOLID(#380,#381,#36,500.);
18 #387= IFCSHAPEREPRESENTATION(#247,’Body’,’SweptSolid’,(#384));
19 #393= IFCPRODUCTDEFINITIONSHAPE($,$,(#354,#387));
20 #15559= IFCPRODUCTDEFINITIONSHAPE($,$,(#15543,#15555));
21 #15543= IFCCARTESIANPOINT((349.64918,70.,1459.2768));
22 #15567= IFCMATERIAL(’Betong’);

Listing 1.1: Example of IFC file with STEP encoding.

1| Background 13

Figure 1.4: Inheritance graph for IfcElement. Extract of the IFC schema [14].

For this thesis work, it was essential to understand the EXPRESS language to work with
IFC files, especially for developing the algorithms in Chapter 4.

Boundary Representation

The IFC standard uses different ways to represent 3D solid objects: including boundary
representation (B-rep), swept solid, constructive solid geometry (CSG), clipping, mapped
representation, and, in some cases, surface model [18]. Figure 1.4 reports an extract of
the IFC schema with the inheritance graph for an entity of type IfcElement, for which
it is defined an attribute Representation. Following the nested relationships comes the
RepresentationType which can be of type Brep.

In this thesis, all the geometry from IFC files has been converted to B-rep. In a B-
rep, a solid is represented by surfaces that create a boundary between the inner and the
outer surrounding the solid itself. An example is given in Figure 1.5. The boundary
representation of a model is made of two parts: topology and geometry. The topology
defines the structure of the model, the geometry its shape [19].

The topological part is made out of vertices, which, connected, make an edge. Then
edges are connected to create the faces. The geometry part consists of points, curves and
surfaces. A face is a bounded portion of a surface, an edge is a bounded piece of a curve,
and a vertex lies at a point.

14 1| Background

Figure 1.5: Example of block geometry represented as boundary representation (B-Rep).

Figure 1.6 reports a schema of the data structure of the boundary representation.

1| Background 15

GEOMETRY

OBJECT

SHELL

LOOP

FACE

EDGE

VERTEX

SURFACE

CURVE

POINT

TOPOLOGY

Figure 1.6: Data structure of Brep representation. Source: [19].

17

2| Problem formulation and state

of the art

This chapter discusses the problem to be solved with this thesis work. The target users
are wall panel manufacturers who work off-site. A typical scenario is when a manufacturer
receives a building model from an architect that has not developed it with prefabrication
in mind.

The model received usually consists of an IFC file since it is the open standard for data
exchange in the construction industry. It is not always possible to assemble the model’s
exact geometry with discrete length panels. Lots of variability in the model dimensions can
occur, and the lack of parametrization brings the need to redraw it. The manufacturer
performs manually this redrawing, using its elements as essential pieces to generate a
new geometry, usually using CAD tool. During this process, the manufacturer wants
to minimize the cost of the prefabricated building. However, simultaneously, it aims to
modify the geometry to the minimum.

This thesis wants to automate the process of redrawing and optimizing architectural
designs. Specifically, given as input a 3D model of a building and a list of prefabricated
elements, the goal is to return a new model made using the elements provided. The output
should have the minimum discrepancy over the input and the minimum manufacturing
cost.

2.1. Approach

The problem of automation of the redrawing consists of two main parts. The first is
obtaining a method to decompose a complex building architecture model into a minimal
but exhaustive data structure to represent its geometry. The second part uses the above
data structure and the prefabrication constraints to create a new optimized model. The
order of exposition of the two parts is inverted in this thesis. Chapter 3 discusses first
the optimization part, and then Chapter 4 the geometry extraction from IFC files. The

18 2| Problem formulation and state of the art

inversion is to underline the importance of the optimization part more.

Input: IFC file

3D → 2D
Geometry
extraction
of features

MIP opti-
mization

Input: prefab
components list

Output: 2D
floor plan

made of prefab
elements

2.2. Challenges and requisites in quantity extraction

from IFC files

Without a standardized input, it is impossible to feed the optimization model in an
automated way using relevant architectural data. For this reason, it has been chosen to
use IFC files as the process’s input. However, the extraction of quantities from those files
is a challenge itself. The next part of this chapter discusses the technical complications
regarding extracting information from those files, which are well pointed out in [20]:

It is challenging for construction practitioners to obtain quantities in con-
nection with construction activities from a BIM design model. Considerable
human intervention must thus be involved to interpret the process model and
to manually quantify the BIM product model in accordance with the process
description.

The main challenge resides in the semantic/spatial separation of information in IFC files,
which makes them ambiguous, highly redundant, offering multiple ways to define objects,
relations and attributes [21]. This is well explained in [22]:

BIM models are able to represent many facets of a building, in addition to ge-
ometrical and relational information, for example by using predefined and ex-
tensible property set or reference to external data sources. However, datasets
from practice (DURAARK 2015) show that BIM models typically contain this
information only partly and have heterogeneous levels of information. Meta-
data records that might exist for one building might be absent for the other.

In the following subsections are discussed some issues in the quality of IFC files which
make the data extraction a challenge.

2| Problem formulation and state of the art 19

2.2.1. Misclassified entities

One prerequisite for this thesis work is that IFC entities are correctly labelled. Without
a correct assignment of the IFC types to the entities, it is impossible to filter out only
the walls from all other entities in an IFC file. This is needed because the optimization
step needs only data relative to wall elements; it is not applicable if incorrect geometric
data is given. Another case is if there is no entity classification in an IFC file. Experience
from industry and IFC datasets shows that some BIM files lack type metadata. It can
happen that in some IFC files most of the entities are of IfcBuildingElementProxy type1.
This generic entity type holds no information on the real use of an entity in an IFC. Just
by reading the semantic data, it is impossible to distinguish a wall from a slab or a roof.

This is a problem known in the literature: [23] proposes a method to classify IFC elements
using a supervised Geometric Deep learning algorithm, using only the geometry of the
entities. The accuracy is 85% for their custom dataset, but for the needs of this thesis
and the challenges in BIM it is necessary to reach an accuracy of almost 100%, especially
for the classification of IfcWalls.

2.2.2. Clash detection

Since the IFC files are human-generated with a CAD software, it can happen that two
elements in the design overlap in the same space. In IFC files, physical constraints, such as
avoiding overlapping, are not enforced. That is why software exists to solve the problem
of clash detection, identifying if, where, or how two parts of the building (e.g., plumbing,
walls, etc.) interfere with one another [24].

This thesis work assumes that the step of geometrical clash detection has already been
taken.

2.2.3. Spatio-semantic consistency

Another issue that IFC files can present is how the spatial structure is represented. This
is because there is a separation between the semantic description and the geometry in
IFC. The first is the description of properties and the relationship between entities, which
can also have a geometry description. An example can be the semantic description of
the relationship belonging to a storey between an entity like a wall and the storey that
contains that wall. In IFC this relationship is called IfcRelContainedInSpatialStructure.

1The IfcBuildingElementProxy is a proxy definition that provides the same functionality as an
IfcBuildingElement, but without having a defined meaning of the particular type of building element
it represents [14].

20 2| Problem formulation and state of the art

However, the wall’s geometrical representation is not bound to this relationship, so a wall
entity belonging to the second storey of a model may be actually geometrically positioned
on the first floor. In other words, the IFC standard does not ensure that if an object
is said to be contained within a particular building story, it must be spatially located
in that story. This problem is discussed in [25] where a Query Language for Building
Information Models (QL4BIM) [26] is used to check the spatial and semantic consistency
in IFC models.

[22] presents a Supervised Learning approach based on Neural Networks in order to detect
a storey in a BIM file automatically. The approach can segment into floors, metadata
that is not semantically available in the IFC file but can be extracted by the supervised
method, feeding it with spatial data.

This thesis assumes that the spatio-semantic consistency has already been checked in the
input models, since it is a prerequisite for the proper extraction of data.

2.2.4. Inner and outer walls

When assembling a project with prefabrication, inner and outer walls are made of diverse
materials. There are manufacturing enterprises that can only supply the outer walls of
a building, and then the internal ones can either be built by another company or, more
commonly, cut on-site.

Therefore, when dealing with a digital building project for prefabrication, it is crucial to
include this metadata information for each wall entity. The IFC schema allows adding to
an entity of type IfcWall a boolean property called IsExternal. This property is part of
the Pset_WallCommon. However, adding this metadata property is optional and must
be done manually.

Nevertheless, the ontological fact of being an outer or inner wall can be inferred from the
geometrical structure. [27] defines an internal wall as “the one which has two of its biggest
vertical faces intersecting shell representations of spaces. If a wall shares two common
faces with a space, then it is not external”. Whereas an external wall “is not separating
two internal spaces”. Using the above definition, they classified inner and outer walls in an
IFC file with a geometric algorithm. However, as the authors stated, the results relied on a
proper definition of entities and the proper modelling of spaces. Without these conditions,
it misclassifies the walls regarding their externality. Again, the prerequisite of the correct
classification of entities is essential. Other methods are presented in the literature, such
as a ray-tracing method for inner/outer contour detection [28]. Commercial software able

2| Problem formulation and state of the art 21

Figure 2.1: Example of entity that is both inner and outer. Courtesy of Modulize AS [29].

to classify inner and outer walls exists, like the Modulize platform [29].

Ontology of IFC elements

Here we briefly address the ambiguity problem when representing a physical entity dig-
itally. Figure 2.1 shows a floor plan generated from an IFC file. In red is marked one
singular IFC entity. It can be noted that the entity spans all over the building and is
both inner and outer. For prefabrication purposes and data extraction in this thesis, a
more coarse subdivision of entities is needed. In theory, an architect could even merge all
walls into one entity in an IFC file, making it impossible to distinguish different structural
elements from a manufacturing point of view. In [21], the need to have a standardized
ontology for IFC files is discussed to remove ambiguities associated with differing view-
points.

This thesis assumes that the input file is correctly split regarding the elements when
dealing with the geometric extraction.

2.3. Similar works

This section reports a brief literature review of similar articles and papers to this thesis.
It is divided into two parts to reflect the dual nature of the problem to solve. In the first

22 2| Problem formulation and state of the art

part are reviewed articles mainly focusing on the optimization of building design; in the
second part are reviewed articles primarily focused on the automatic geometric extraction
of quantities from IFC files.

2.3.1. Optimization focus

Optimization is being applied to different building design problems such as: massing,
orientation, facade design, thermal comfort, day-lighting, life cycle analysis, structural
design analysis, energy and cost [30]. The methods used to perform the optimization
are based on simulations and parametric modeling [31]. However, those methods are not
always implemented, especially with a focus on prefabrication. Usually, the optimization
methods should be applied in the preliminary design phase. However, this thesis addresses
specifically the optimization of the geometry with constraints given by the prefabrication
manufacturing processes. Therefore, the optimization that needs to be applied in this
work is an added step after the initial design, made without prefabrication constraints.

In this section are reviewed some relevant works which apply operation research optimiza-
tion to various problems in the construction industry. Those works are then compared
with what is intended to do in this thesis.
[32] exposes an optimization model to optimize the configuration of the wall panels, sub-
jected to panel fit constraints. Multi-wall panels are made of single-wall panels, all of the
same height, framed together. The problem was formulated as a one-dimensional cutting
stock optimization. The objective function was to maximize the length of multi-wall pan-
els, which resulted in minimizing the number of multi-wall panels to be manufactured.
The constraints were on the maximum and minimum length of the multi-wall panel. In
their work, only one dimension was considered in the optimization, and constraints on the
final geometry of the building were not added. The proposed solution was implemented
as an add-on to the commercial software Autodesk Revit. They did not state which op-
timization solver was used. The most significant advance of this thesis work, compared
to [32], is considering 2D constraints on the final geometry of the building and not just
mono-dimensional ones.

[33] proposes a framework to optimize the design of buildings concerning construction
waste. The core part of this work is to use a database of building elements that contains
data regarding the waste. Then they propose an optimization at the design stage that
involves human decisions when designing a building. Their pipeline is very similar to
what we intend to do with this work; it only differs in the objective function. In real-life

2| Problem formulation and state of the art 23

design and construction practice, construction waste minimization will not be the only
objective but needs to be considered in conjunction with other criteria such as time, cost,
quality, safety, sustainability.

[34] proposes a method to optimize the generation of floor plans for residential housing.
The paper aims to optimize the house’s design parameters, such as the functionality, insu-
lation, shielding from external noise, and outside view attractiveness. This work method
is based on generating first some floor plans, then applying optimization to choose the best
fitting ones from the set of the generated ones. This is a multi-objective optimization with
the use of quadratic assignment. The novel contribution of [34] was modelling a subjective
attribute, such as aesthetic attractiveness, into an optimization problem. Comparing [34]
with the present thesis, they did not consider prefabrication in the generation of the
floor plans. However, the present thesis focuses only on geometric optimization. Consid-
ering both geometric and functionality objectives can be an expansion of the present work.

[35] proposes an optimization model of floor plans generated with Generative Adversarial
Networks (GANs). The objective was to minimize the area of the building. In order to
keep the optimization problem linear, the authors used the sum of the height and width
of the bounding box of the floor plan as the objective function.

2.3.2. IFC and BIM focused

[36] presents an automatic method to extract quantities from a BIM file. The goal of this
work was to facilitate the process of quantity takeoff of wall-framing from BIM files. This
implementation uses a proprietary visual programming extension called Dynamo for Au-
todesk Revit. The use of proprietary software is a limitation of the cited paper compared
to the present thesis, which uses only open formats to achieve a more extensive use by
stakeholders in construction. Another requirement of the cited article was not to change
the input geometry. In contrast, this thesis allows slight changes in the geometry to allow
higher degrees of standardization to reduce the costs.

[37] discusses the limits of using IFC files for the specific requirements of prefabricated
construction. The researchers propose expanding the IFC schema that can be useful to
model information relative to a prefabricated wall. A new IfcPrefabricateWall entity type
is proposed to specialize the IfcWall type, adding new properties to describe the connec-
tion method of the elements and the reserved holes in the prefabricated element. This

24 2| Problem formulation and state of the art

proposed expansion of the IFC schema could be helpful in the future to represent the
output of this thesis using the IFC format, mainly thanks to the modelling of connection
relationships.

[38] shows a method to query IFC files after transforming them into a graph data structure,
where nodes are the IFC entities, and the IFC relationships give the edges. However, the
connection relationship is not always present in IFC files. The connection relationship is
the most relevant for this thesis work. For this reason, the methods explained in [38] were
not used. Instead, this thesis presents in Section 4.6 a method based on the geometry
data of IFC to create a graph of connection of walls.

25

3| Mixed Integer Linear

Optimization Model

This chapter presents the original optimization model developed for floor plan geometry
redrawing.

3.1. Input data structure

This chapter assumes data is ready and already computed with the structure requested
for the optimization.

Some notes regarding the terminology used here: “segment of a wall”, or “subwall” are
terms used to refer to a part of a wall that does not contain any opening or is completely
enclosing an opening. A visualization of this subdivision is in Figure 3.1.

Figure 3.1: Explanation of the subdivision of the walls. In red is the main wall. In blue and grey
are the segments of a wall (also named subwalls) that compose the wall. The subwalls entirely
enclosing an opening are in blue.

26 3| Mixed Integer Linear Optimization Model

The data needed in input for the model is a dataframe where every row describes a segment
of a wall. The subwall can represent a part of solid wall or piece of wall containing an
opening, with the following columns:

• type of subwall: either solid part of a wall or opening;

• length;

• orientation;

• order;

• coordinates x0 , y0, x1, y1 of the two extremes;

Table 3.1 is an example of a dataframe for wall segments. Here it is used the column
opening_id to determine if it is an opening (opening_id 6= 0) or a part of a solid wall
(opening_id = 0). There is also a column wall_id to identify, for every subwall, to which
wall it belongs. It is possible to derive another dataframe with unique values of wall_id,
which will be the union of all the segments that compose that wall.

For the database of prefabricated wall elements, the optimization model needs only a list
of the lengths of each element. For example, the user can input this as a comma-separated
list of values, like 0.3, 0.6, 1, 1.5.

Requisites The dataframe must satisfy the following requisites to represent the polyg-
onal perimeter of a house:

• the orientation of the walls can only be of those values 0◦, 90◦, 180◦,−90◦;

• all rows with the same wall_id should have the same orientation (deg column value
should be the same);

• the value column len should be equal to the Euclidean distance between (x0, y0) and
(x1, y1):

len =
√

(x1 − x0)2 + (y1 − y0)2 (3.1)

• given two consecutive rows m,n (the order given by index_col):

index_col(n) = index_col(m) + 1 =⇒ x1(m) = x0(n) ∧ y1(m) = y0(n) (3.2)

3| Mixed Integer Linear Optimization Model 27

• given the first row a and the last row z

x1(z) = x0(a) ∧ y1(z) = y0(a) (3.3)

wall_id opening_id x0 y0 x1 y1 len deg index_col

26008 0 -0.105 -0.105 -0.105 0.101 0.206 90.0 0
26008 26135 -0.105 0.101 -0.105 1.601 1.5 90.0 1
26008 0 -0.105 1.601 -0.105 3.956 2.355 90.0 2
26008 28322 -0.105 3.956 -0.105 5.756 1.799 90.0 3
.....
31085 37723 2.35 -0.105 0.097 -0.105 2.253 180.0 41
31085 0 0.097 -0.105 -0.105 -0.105 0.202 180.0 42

Table 3.1: Example of some rows of the .csv input for the optimization.

3.2. Optimization model

This section describes the Mixed-Integer Programming (MIP) model used to optimize the
input geometry to use prefabricated walls and opening elements.

3.2.1. Input

• I : set of walls in the building;

• K : set of prefab elements to use;

• Ji : set of subwalls of wall i which are not enclosing openings;

• Oi : set of openings of wall i, which are not filled walls: Ji ∩Oi = ∅;

• lij : length of wall segment j ∈ Ji in wall i, referred as subwall ij;

• lio : length of opening o ∈ Oi in wall i, referred as subwall io;

• mk : length of prefab module k in list K.

3.2.2. Decision variables

In an optimization model, the decision variables are used to describe the quantities that
the decision-makers would like to determine. In this thesis model, it has to be decided
the number and type of prefab elements needed to build each wall of the building. This
thesis does not consider determining the position of the prefab elements inside each wall

28 3| Mixed Integer Linear Optimization Model

of the output. It is sufficient to know the number and the type of elements to assemble
each wall.

The other decision is how much discrepancy to allow between the original input and the
redrawn.

Here is a recap of the variables introduced in the model:

• ∀i ∈ I,∀j ∈ Ji,∀k ∈ K xijk : integer number of prefab elements of type k needed
to build subpart wall j of wall i ;

• ∀i ∈ I,∀j ∈ Ji δ+ij : continuous positive tolerance upward of approximation for
subwall (ij);

• ∀i ∈ I,∀j ∈ Ji δ−ij : continuous positive tolerance downward of approximation for
subwall (ij).

In the variables above, two tolerances are needed. The reason is to avoid divergence of the
objective function since it is a minimization problem. Therefore the tolerance variables
used in the objective are positive continuous variables. Whereas in the constraints, the
sign is added to make them respectively a tolerance upward and downward.

Some optimization tests have been performed with only the variables defined above. How-
ever, it happened to get an infeasible problem for certain combinations of geometry input
and database of prefab lengths K. To solve this issue is needed to enrich the database of
prefab elements with some “custom elements” that can have any length in a given range.
A semi-continuous variable for every subwall ij that does not contain an opening is added
to model the presence of custom elements. A semi-continuous variable is defined by [39]
as “a variable that may be either zero or else in between one and some larger specified
upper bound”. Here follows the added variable:

• ∀i ∈ I,∀j ∈ Ji cij : semi-continuous variable, either 0 or in range [Cmin, Cmax].

Where Cmin is the minimum, and Cmax is the maximum allowed length of a custom wall
part.

In a linear model, semi-continuous variables are not allowed. Therefore the semi-continuous
variable introduced must be decomposed. In practice, a binary variable is introduced for
every semi-continuous variable, and other constraints are added [40]. In this case, the
binary variable is:

• ∀i ∈ I,∀j ∈ Ji yij : binary variable, 0 if a custom element is not used to build

3| Mixed Integer Linear Optimization Model 29

subpart j of wall i otherwise 1.

The constraints added are:

∀i ∈ I,∀j ∈ Ji : cij ≥ yijCmin (3.4)

∀i ∈ I,∀j ∈ Ji : cij ≤ yijCmax (3.5)

Where cij is now a continuous variable, bounded between [0, Cmax], although, due to the
constraints defined, it will have value either 0 or in range [Cmin, Cmax].

3.2.3. Constraints

The first set of constraints ensures that the version made out of prefab walls approximates
the design wall’s length. In other words, the δ variables can be considered a “penalization”
for the output. The δ− is subtracted from the δ+. This difference gives the actual
discrepancy of the output length since δ− and δ+ are both non-negative.

For every subwall ij:

∀i ∈ I,∀j ∈ Ji :
∑
k∈K

mkxij,k +
(
δ+ij − δ−ij

)
= lij (3.6)

Considering as well the custom elements the equation becomes:

∀i ∈ I,∀j ∈ Ji : cij +
∑
k∈K

mkxij,k +
(
δ+ij − δ−ij

)
= lij (3.7)

Then the following constraint is added to ensure that for every subwall not an opening,
the output will use at least one prefab element.
For every subwall ij of every wall i:

∀i ∈ I,∀j ∈ Ji :
∑
k∈K

xij,k ≥ 1 (3.8)

Cycle constraints

Then have been considered the constraints to obtain an output perimeter closing in a
loop. This means the output is a closed polygon. Under the assumption of orthogonality
of wall joints (see Section 3.1), couples of subsets are identified, vertical “positive” walls

30 3| Mixed Integer Linear Optimization Model

and vertical “negative” walls. The same goes for the horizontal orientation.

The set of walls I is partitioned into four subsets K, two for each direction, vertical and
horizontal:

I = Khor
1 ∪Khor

2 ∪Kvert
1 ∪Kvert

2 (3.9)

The partition into subsets is obtained by grouping walls with the same orientation. Ac-
cording to requisites 3.1, the values in the deg column can only be of four distinct values,
which guarantees the subdivision into the cycles. Figure 3.2 shows an example of subdi-
vision of a perimeter of a building into cycles.

Figure 3.2: Example of visualization of the cycles of a floor plan. Horizontal cycle 1 is in dark
blue, cycle 2 is light blue. Vertical cycle 1 is red, vertical cycle 2 is dark red.

Finally are written the following constraints for couple of subsets:

• Horizontal cycles: ∑
i∈Khor

1

Γi =
∑

i∈Khor
2

Γi (3.10)

3| Mixed Integer Linear Optimization Model 31

• Vertical cycles: ∑
i∈Kvert

1

Γi =
∑

i∈Kvert
2

Γi (3.11)

Where Γi represents the output length of wall i. It is calculated with a sum of the
following: the sum of all apertures, the optional custom piece and the sum of all parts of
walls made of prefab pieces.

Γi =
∑
o∈Oi

lo +
∑
j∈Ji

(
cij +

∑
k∈K

mkxijk

)
(3.12)

Combining the (3.12) with the (3.10) and the (3.11), respectively, the two cycle constraints
are obtained:

Horizontal cycles:

∑
i∈Khor

1

[∑
o∈Oi

lo +
∑
j∈Ji

(
cij +

∑
k∈K

mkxij,k

)]
−
∑

i∈Khor
2

[∑
o∈Oi

lo +
∑
j∈Ji

(
cij +

∑
k∈K

mkxij,k

)]
= 0

(3.13)

Vertical cycles:

∑
i∈Kvert

1

[∑
o∈Oi

lo +
∑
j∈Ji

(
cij +

∑
k∈K

mkxij,k

)]
−
∑

i∈Kvert
2

[∑
o∈Oi

lo +
∑
j∈Ji

(
cij +

∑
k∈K

mkxij,k

)]
= 0

(3.14)

3.2.4. Objective

In this problem, two distinct objective functions differ in the goal to be achieved when
choosing the variables. The first objective is obtaining the minimum discrepancy of the
output concerning the original input lengths. The second optimization objective is to
reduce the project cost calculated by counting the wall elements used. When modelling
the cost of a wall panel, it has been considered unitary for any of the standard elements.
After some direct meetings with wall manufacturers, the author was told to consider
custom elements of a quadruple cost compared to the standard ones.

In order to handle the multi-objective optimization problem described above, this thesis

32 3| Mixed Integer Linear Optimization Model

uses the weighted-sum method. This consists of multiplying each objective with a user-
defined weight [41, 42]. A convex combination of the objective is used in the present
problem, with the coefficients λ and 1− λ, and λ ∈ [0, 1].

Minimum discrepancy

When optimizing for the minimum output discrepancy, the tolerances for each subwall
are the target to minimize.

In Section 3.2.2 two tolerances were introduced for each subwall: δ+ and δ−, both of
them positive continuous variables. When those are summed, the total approximation
error for each wall of the input is obtained. Therefore ∆i is defined as the sum of the
approximation error for wall i

∆i =
∑
j∈Ji

δ+ij + δ−ij (3.15)

Equation 3.15 is the first objective function.

Minimum cost

When optimizing for the minimum output cost, the number of elements used is the target
to minimize. A unit cost value is given to the standard elements and a quadruple cost to
the optional custom element.

For a wall i has been defined Ni as the number of standard elements used to assembly
the output wall i :

Ni =
∑
j∈Ji

∑
k∈K

xijk (3.16)

Ci is defined as the number of custom elements used to assemble the output wall i. This
value is the cardinality of the set of semi-continuous variable cij when it has a non-zero
value:

Ci = |cij > 0| ∀j ∈ J (3.17)

However, since the semi-continuous variable cij is modelled with a binary decision variable
yij, the value of Ci is as follow:

Ci =
∑
j∈Ji

yij (3.18)

Assuming the binary variable is taking the integer values 1, 0 when is True and False
respectively.

3| Mixed Integer Linear Optimization Model 33

The second objective function is:

Ni + 4Ci (3.19)

Finally, the convex combination of the two objectives is expressed as:

min
∑
i∈I

λ∆i + (1− λ)(Ni + 4Ci) (3.20)

Writing the Equations (3.15), (3.16), (3.18) in Equation (3.20) it is obtained the following
complete objective function:

min
∑
i∈I

[
λ

(∑
j∈Ji

δ+ij + δ−ij

)
+ (1− λ)

(∑
j∈Ji

∑
k∈K

xijk +
∑
j∈Ji

yij

)]
(3.21)

3.3. Complete final model

Here is reported the final MIP model.

min
∑
i∈I

[
λ

(∑
j∈Ji

δ+ij + δ−ij

)
+ (1− λ)

(∑
j∈Ji

∑
k∈K

xijk +
∑
j∈Ji

yij

)]
s.t.

∑
k∈K

xijk ≥ 1 ∀i ∈ I,∀j ∈ Ji,

cij +
∑
k∈K

mkxij,k +
(
δ+ij − δ−ij

)
= lij ∀i ∈ I,∀j ∈ Ji,

∑
i∈Khor

1

[∑
o∈Oi

lo +
∑
j∈Ji

(
cij +

∑
k∈K

mkxij,k

)]
,

−
∑

i∈Khor
2

[∑
o∈Oi

lo +
∑
j∈Ji

(
cij +

∑
k∈K

mkxij,k

)]
= 0 ∀i,

∑
i∈Kvert

1

[∑
o∈Oi

lo +
∑
j∈Ji

(
cij +

∑
k∈K

mkxij,k

)]
,

−
∑

i∈Kvert
2

[∑
o∈Oi

lo +
∑
j∈Ji

(
cij +

∑
k∈K

mkxij,k

)]
= 0 ∀i

35

4| Geometry processing from IFC

files

The quantities needed to feed the optimization model are not directly available in IFC
files. There is a need to develop algorithms to extract them from the geometry data of
the IFC. This chapter presents an innovative method to automatically select the walls in
an IFC file suitable for prefabrication and calculate their dimensions. In this thesis work,
the relevant part of the building consists of the external perimeter.

In addition, an automated way to get spatial relationships between walls is presented to
understand how those are connected and their relative positioning. All this information
is implicit in the geometry of IFC files and needs to be derived using the algorithms
presented here.

4.1. Preconditions

The first step is to identify the target building types that can be used to apply the present
method. As discussed in Section 2.2, IFC files present considerable variability and can
represent a wide range of different buildings. Therefore, the domain of possible input
buildings needs to be restricted to obtain consistent and meaningful results in the prefab-
rication optimization part.

Here are the preconditions that a generic IFC file must have before starting the extraction
of features:

P.1 All the walls subjected to the feature extraction must be of the IfcWall type;

P.2 Elements that do not represent a wall cannot be of type IfcWall ;

P.3 Every wall to be optimized must have rectilinear edges;

P.4 When two walls intersect, the angle between them must be a multiple of 90◦;

36 4| Geometry processing from IFC files

P.5 The height of all walls on a floor should be the same;

P.6 The perimeter of every floor must be a closed polygonal chain of walls.

Some of those preconditions are restricting the geometry of the input file that will be
within the scope of this work, such as the case of curved walls and walls not orthogonal in
their joints. Relaxing those preconditions are possible future improvements of the current
method, which are discussed in Chapter 6.1.

Other preconditions are relative to the correctness of the input model, namely the correct
definition of the type of the entities, a fundamental challenge in IFC, which is discussed
in Section 2.2.1.

4.2. High-level flow

Here follows the high-level description of the steps needed for the geometric extraction.

1. Opening of IFC file;

2. Extracting the IfcBuildingStoreys and selection of the target floor;

3. Extraction of all wall entities in the floor;

4. Extraction of all the opening entities in the floor;

5. Extraction of all faces, for each wall in the floor;

6. Filtering faces perpendicular to the floor;

7. Detection of outer faces;

8. Extraction of 2D quantities;

9. Generation of a connection graph;

10. Perimeter detection;

11. Ordering the walls;

12. Export to .csv.

4.3. Initial processing and walls extraction

The process’s first step consists of extracting geometry from an IFC file. This task will
not be done using an original algorithm because it has already been solved by different

4| Geometry processing from IFC files 37

Figure 4.1: Extract from the IFC EXPRESS schema, showing how the spatial structure is repre-
sented. In blue are the container elements such as IfcBuilding and IfcStorey. In yellow are the
relationships between those and the element in purple.

software packages, which have been reviewed more in-depth in Section 5.1.1. It is re-
quired to extract all entities of the IFC files and convert them to the B-Rep geometric
representation, which is discussed in Section 1.2.1. Then the IFC file is queried to detect
all IfcBuildingStorey entities which represent the different storeys of the building. After
that, it is possible to get all the entities, particularly walls, openings, and slabs that be-
long to each storey previously detected. For this purpose, the objectified relationship of a
storey entity called IfcRelContainedInSpatialStructure has been used, which references all
entities of type IfcProduct contained in the storey. Figure 4.1 shows how IFC represents
the spatial structure of a building. For example, given a wall in the IFC, using the inverse
relationship IfcRelContainedInSpatialStructure, it is possible to get the IfcBuildingStorey
where the wall has been positioned. Looping over all IfcWalls, it has been possible to
extract all the walls divided by the placing storey.

This thesis approach consists in selecting a storey manually to apply the processing.
Usually, it has been considered the first floor.

38 4| Geometry processing from IFC files

4.4. Abstraction of walls in 2D

Since this thesis only considers buildings in which all the walls on a floor must have the
same height, as in precondition P.5, there is no need to extract data regarding the vertical
dimension of the walls.

The minimum-discrepancy output building project will have only a standardized height,
depending on the type of prefab modules used. So, a 2D feature extraction from the 3D
geometry is needed to reduce the optimization part’s complexity, which does not need to
consider the height. That is why from now on, it will be only handled the geometry of
the building from a 2D view.

This part of the algorithm aims to obtain a dataframe of walls from the IFC file. In this,
there will be the vertexes of a wall and the vertexes of the openings in it. An important
assumption was to ignore the detailed geometry of the door or window element contained
in an IfcOpeningElement. A similar approach was used in [43]. The reason is that the
geometric representation of elements such as doors and windows includes particulars not
needed for the goal of prefabrication. The only relevant aspect to consider is the type of
opening and the width.

4| Geometry processing from IFC files 39

Algorithm 4.1 Generation of a 2D Series of vertexes from B-rep shape representing a wall
Input: allWalls, openingsByWall
Output: wallVertexesDf

1: wallVertexesDf = new dataframe
2: for wall in allWalls do
3: wallVertexes = wall.vertexes
4: wallHull = ConvexHull(wallVertexes)
5: for vertex in wallHull do
6: wallVertexRowDf = {}
7: wallVertexRowDf[id] = wall.id
8: wallVertexRowDf[x] = vertex.x
9: wallVertexRowDf[y] = vertex.y
10: wallVertexRowDf[openingId] = 0
11: wallVertexesDf.addRow(wallVertexRowDf)
12: end for
13: openingsOfWall = openingsByWall[wall]
14: for opening in openingsOfWall do
15: boundingBoxOpening = computeBoundingBox(opening)
16: sectionOpeningWall = computeSection(boundingBoxOpening, wallShape)
17: sectionVertexes = sectionOpeningWall.vertexes
18: 2dVertexesOpening = delete coordinate z from sectionVertexes
19: for vertex in 2dVertexesOpening do
20: openingVertexRowDf = {}
21: openingVertexRowDf[id] = wall.id
22: openingVertexRowDf[x] = vertex.x
23: openingVertexRowDf[y] = vertex.y
24: openingVertexRowDf[openingId] = opening.id
25: wallVertexesDf.addRow(openingVertexRowDf)
26: end for
27: end for
28: end for

Algorithm 4.1 takes as input:

• allWalls: the list of all the relevant walls, in the form of an array of the boundary
representation of the geometry of the walls;

• openingsByWall: a key-value dictionary that associates, for each wall entity, the

40 4| Geometry processing from IFC files

geometry of all its openings in boundary representation.

And creates as output:

• wallVertexesDf: a dataframe (implemented with the pandas library [44]) of all the
relevant vertexes of each wall.

Figure 4.2 reports the scatter plot of the vertexes extracted from the 3D geometry using
the method explained.

0 2 4 6 8 10 12 14

−2

0

2

4

6

8

is_opening
False
True

Extracted vertexes

x (m)

y
(m

)

Figure 4.2: 2D plot of extracted vertexes from IFC geometry.

4.5. Outer wall detection

One step needed to solve the problem is to detect the external perimeter of a building
in an automated way. This is because the optimization model presented works only with
the external walls. Therefore, segmentation of all the walls into the inner and outer
categories is needed. Different algorithms that can be applied to solve this problem have

4| Geometry processing from IFC files 41

been reviewed in Section 2.2.4.

This thesis uses a proprietary algorithm developed by Modulize AS [29] able to detect the
outer faces of a building from an IFC file. Figure 4.3 shows the results of applying the
detection algorithm to an IFC building model.

Figure 4.3: Result of the inner and outer detection algorithm applied to an IFC building model.
In green are identified the outer faces of IfcWalls present in a storey of the input model. In grey
the inner ones. The red dots indicate the vertexes of the outer faces.

4.6. Connection graph of walls

The information about which walls are connected is not explicitly present in most of the
IFC files [20]. Therefore, it is needed to extract the relationship between the walls that
will be joined together when using prefabricated elements from the geometric domain of
IFC. This thesis proposes the creation of a connection graph of walls from IFC files to
solve the issue of identifying connected elements.

The goal is to obtain a graph where nodes and edges are defined as follows:

• Node: represents a wall;

• Edge: between wall a, b if wall a is connected to wall b.

Algorithm 4.2 explains the steps for the creation of the connection graph. The input

42 4| Geometry processing from IFC files

required are the list of the external walls (externalWallList), and a constant parameter
(COLLISION_DIST) which is the minimum distance to identify two connected walls. In the
implementation of this thesis it has been used as collision distance threshold a value of
half of the minimum wall thickness of the building.

Algorithm 4.2 Generation of graph of connected external walls
Input: externalWallList, COLLISION_DIST
Output: adjGraph

1: visitedWall = new Set()
2: adjGraph = new Graph()
3: for i in externalWallsList do
4: points_i = i.pointList
5: adjGraph.addNode(i)
6: visited.push(i)
7: for j in externalWallsList do
8: if j not in visited then
9: points_j = j.pointList
10: for point_i in points_i do
11: for point_j in points_j do
12: dist = euclideanDistance(point_i, point_j)
13: if dist < COLLISION_DIST then
14: adjGraph.addEdge(i, j)
15: end if
16: end for
17: end for
18: end if
19: end for
20: end for

Figure 4.4 shows the results of applying the algorithm to compute the connection graph
for the outer walls.

4| Geometry processing from IFC files 43

0 2 4 6 8 10 12 14

−2

0

2

4

6

8

Adjacency graph for external walls

x (m)

y
(m

)

Figure 4.4: Graph visualization of the outer walls of the building. In orange are the extracted
segments representing the walls’ outer profile. The black dots are the nodes of the graph, posi-
tioned in the xy plane at the centre of the wall they represent. Then the nodes are connected by
edges to create the connection graph.

4.7. Cycles identification

The creation of the connection graph was an intermediate step to identify the cycles of
walls. With wall cycles in this thesis is intended a partition of the set of walls of a floor
plan, such as in each cycle there are walls with the same orientation. The orientation
should be considered regarding the floor plan of a building, which is a plane parallel to
the ground. Therefore, the orientation here considered is in 2 dimensions.

When representing the perimeter of a house with the connection graph, it is expected
to obtain a cyclic graph, according to the canonical definition of graph theory. This is
because the thesis is applied to the building projects where the perimeter of a floor is
a closed polygonal chain, as stated in Precondition P.6. Without this assumption, it is
not possible to continue with the identification of cycles because the graph cycle is not
guaranteed to be cyclical.

44 4| Geometry processing from IFC files

4.8. Manual extraction of geometry from floor plans

When performing the testings reported in Chapter 5, it was hard to find enough IFC
files that satisfy the constraints for the automatic extraction of the geometric features. A
manual pre-processing of the input was still needed in most of the IFC files used to apply
the feature extraction algorithm successfully. The manual pre-processing could consist
in splitting wall entities, filtering out non-relevant entities, and correctly marking the
properties of the entities. This would have been too complex and would have taken too
much time to prepare the dataset. Given those obstacles and the need to have enough
data for the following optimization problem, the author decided to use an alternative
approach to obtain the input data needed for batch testing. This approach involves
using proprietary software to draw on top of existing PDF files in order to extract the
2D geometry. The advantage was the speed of manual generation of floor plan data.
Figure 4.5 shows how a PDF floor plan looks after the manual marking of the geometry.
The ordering needed to extract cycles was performed manually, and the software generated
a .csv file automatically with the exact structure of rows and columns required for the
optimization process.

Figure 4.5: Example of pdf after manual marking of outer perimeter. In light blue are marked
the openings, and in green the solid walls. Source: Courtesy of Modulize AS [29].

45

5| Implementation, testing and

results

The goal of this Chapter is to show the implementation and the results of the application
of this thesis’s method to different instances of building architectures. Firstly are given the
implementation details on how the software was written and tested. Then are reported the
tests performed relative to the optimization model. Finally, a case study is given, where
the geometric extraction algorithms are tested on an IFC file of building architecture and
compared with the industry manual approach.

5.1. Implementation

This section describes the computer program developed to implement the solution to the
problem explained in Chapter 2. The language used for the implementation was Python,
version 3.9.6, with the help of the open-source libraries described in this section.

The number of lines of code written for the current project is as follows:

• Geometry extraction: ≈ 1k;

• MIP model: ≈ 500;

• Auxiliary functions and drawing tools: ≈ 600.

5.1.1. Libraries used

This section presents the external software libraries used to implement the algorithms in
this thesis. A brief review of the available packages is given, comparing their advantages
and disadvantages in choosing them for the current work.

46 5| Implementation, testing and results

IFC parsing

The first step of geometric processing consists of parsing and extracting geometry data
from the IFC STEP files. This task is already solved in literature and industry, so there
was no need to implement a parser from scratch. Different IFC parsers and tool libraries
are available, either open or closed source, with free or commercial licence. In [45, 46],
different BIM/IFC libraries and software available on the market are compared, listing
their peculiarities. Here is a brief list of the most used ones:

• IfcOpenShell: an open-source (LGPL) software library written mainly in C++
that uses under the hood Open CASCADE to convert the implicit geometry in
IFC files into explicit geometry that any software CAD or modelling package can
understand [47];

• IFC.js: a suite of open-source software packages that includes a C++Web assembly
parser and a Javascript/Typescript API to render IFC modules in a browser using
Three.js rendering [48];

• Xbim toolkit: a .NET open-source software development BIM toolkit, the core
libraries for data manipulation are all written in C#. The core of its geometry
engine is written in C++ [49, 50];

• IFC ++: an open-source (MIT license) IFC implementation for C++. It was
originally developed at the Bauhaus University Weimar [51];

• IFC Engine: a paid software that is able to load, edit and create Step Physical
Files (as well as the XML notation) and their schema’s via its own object database.
This includes all currently available IFC versions [15].

The final choice was for the IfcOpenShell library [47], which satisfies the requirements
desired for this thesis. These include: being open-source, allowing parsing of most of the
available IFC files (mainly 2x3 and 4x1), allowing the extraction of elements geometry
to a B-Rep format easy to integrate with other 3D graphic kernel libraries. Another
advantage of this library is the presence of a Python module which allows fast prototyping
of algorithms using Jupyter notebooks [52].

3D Graphic Kernel library

This work uses OpenCasCade Technology (OCCT), an open-source CAD kernel designed
with reference to the STEP standard ISO-10303-42. OCCT includes a set of C++ class
libraries providing services for 3D surface and solid modelling, visualization, data exchange

5| Implementation, testing and results 47

and rapid application development [53]. This work uses also s Python wrapper for the
C++ OCCT library to integrate better with the rest of the code; the repository is called
PythonOCC [54]. It is possible to implement all the work done in this thesis in C++
as well, but using this language would have increased the development time. In order to
create a production-ready solution, faster to execute, it can be considered to rewrite all
the code in C++ to use the OCCT library without a wrapper.

MIP modelling

Python-MIP is a collection of Python tools for modelling and solving Mixed-Integer Pro-
gramming (MIP) [55]. With Python-MIP, it is possible to define variables, constraints
and the objective function using the high-level syntax of Python with their classes to
manage the model. An advantage of Python-MIP is the ability to use different solvers
with the same model formulation.

Mathematical programming solver

Python-MIP comes with the open-source COIN-OR CBC [56] programming solver. How-
ever, after testing it for some instances of the problem, it was decided to switch to the
proprietary GUROBI [57] solver. GUROBI is the leading optimization software and is
recognized as the current state of the art in terms of performance when optimizing a MIP
problem. This was confirmed by testing some instances of this problem, especially with
the increasing dimensions. A brief comparison of the execution time for optimization with
the two solvers is given in Table 5.2.

The specific version used in this thesis work was:
Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (mac64[rosetta2]).

Other libraries

Other software libraries used are:

• NetworkX: Python library for “the creation, manipulation, and study of the struc-
ture, dynamics, and functions of complex networks”, used for the graphs [58];

• pandas: Python data analysis library, used to manage the optimization input
dataframes and .csv files [44];

• plotly: Python data visualization library, used to create all the original figures and
graphs [59].

48 5| Implementation, testing and results

5.1.2. Code structure

The code was structured into two main Python Jupyter notebooks [52] and some Python
script files containing additional classes and methods. One notebook was used for the
IFC processing, and the other was used only for the optimization, using in input the .csv
files containing the data, either generated by the IFC processing notebook or with the
manual method explained in Section 4.8. The Jupyter notebooks were chosen because
PythonOCC offers a 3D renderer based on WebGL that can be used to display entities’
geometry from the IFC file quickly. The same goes for the presence of graphing libraries
to display inline in the notebook 2D plots and graphs. Figure 5.1 reports a high-level
class and module diagram of the code written.

IFC extraction module Optimization module

PDF manual extraction
(external software)

Model Manager

+ model: Python-MIP Model

+ prefab_len: float[]

+ cycles: int[][]

+ wall_data: dict

+ max_custom: float

+ min_custom: float

+ lambda: float

+ optimize: Optimization result

+ print_report: string

.csv geometry data

.csv geometry data

IFC OpenShell

PythonOCC

Use

2D Geometry extraction

CSV Preprocessor

+ input_data: csv

+ generate_wall_data: dict

+ get_cycles: int[][]

Cycles extraction

Figure 5.1: High-level module and class diagram of the structure of the code implemented.

5| Implementation, testing and results 49

5.1.3. Hardware used

All the tests and the development of this work were accomplished with an Apple MacBook
Pro (16-inch, 2021) with Apple M1 Pro (ARM architecture), 10 physical cores processor,
and 16 Gb of memory.

5.2. Optimization model testing

This section shows the results of executing the optimization process described in Chapter 3
with various test cases. The total number of test instances is 8. The input consists of
PDF files representing a floor plan of residential housing. The test cases are picked to
represent diverse geometries and dimension of floor plans. Since the results are consistent
for different cases, it was not needed to use more test instances. The floor plans have been
used to extract a list of walls and openings with their dimension. To do so, the author
used the method explained in Section 4.8, which consists in manually drawing on top of
the PDF files to measure the suitable segments of walls. The subdivision in cycles has
been performed manually as well.

The result consists of a .csv table for each floor plan. These tables have the exact structure
required for the optimization model, as presented in Section 3.1. The test instances have
different types of floor plan geometry. Some are simple rectangular shaped, and others are
polygonal, both convex and concave. Figure 5.2 shows some examples of those floor plans.
On the left column is a representation of the original PDF floor plan file, and on the right
is the graph obtained from the .csv representation of the plan. The openings are in blue,
and in red are the standard parts of a wall. It is essential to underline that all testing
instances were obtained from floor plans used in construction. This ensures applying the
optimization to actual cases and not to artificially generated data. However, Section 7.1
introduces as possible future work the use of augmented or automatically generated input
data to perform further tests.

Table 5.1 presents a summary of the main features of the 8 test plans used for this part
of the thesis. The number of walls, subwalls and openings for each test case is reported.
Other dimensional information includes the total length of the floor’s perimeter, the sum
of all openings and the non-opening segments.

Naming convention In order to identify each test case, from now on it has been used
the following naming convention for the test instances:

plan_XXwall_Y Y Y sub_ZZop

50 5| Implementation, testing and results

sum length (m) all walls openings non openings
n. walls n. subwalls n. openings

0 4 52 25 85.49 27.80 57.69
1 6 16 6 56.99 6.40 50.59
2 8 32 13 48.02 16.35 31.67
3 8 36 15 45.89 16.88 29.01
4 10 32 12 60.57 17.27 43.30
5 12 56 21 78.07 23.88 54.19
6 16 44 15 63.72 18.54 45.18
7 68 127 43 176.14 76.23 99.91

Table 5.1: List of the 8 test instances used, representing floor plans. First column is the index
number of the instance.

Where XX is the number of walls, Y Y Y the number of subwalls, ZZ the number of
openings in the test instance.

5.2.1. Parameters used for the optimization

Here follow the list of the parameters used for the tests of the optimization model:

• Database of prefab element lengths: 0.3m, 0.6m;

• Minimum length of custom element: 0.2m;

• Maximum length of custom elements: 1.5m;

• No mandatory corner elements.

Those values have been chosen to fit the typical constraints of prefabricated wall manufac-
turers. In particular, those parameters are similar to the one used by the EON Element
AS construction system [60], with the only exception of not considering the presence of
corner elements here. More information regarding the EON construction system is given
in Section 5.3.1.

During the development of this thesis, other parameters have been tried. However, the
differences in terms of the performance of the model were not significant. Using the model
with other parameters from industry constraints gave similar results. Therefore, exploring
different construction system parameters is not part of this series of tests.

5| Implementation, testing and results 51

plan_16wall_044sub_15op

plan_04wall_052sub_25op

plan_68wall_127sub_42op

Figure 5.2: Some examples of floor plans used for the testing. The column on the left reports
the original floor plan created by architects and exported in PDF format. On the right column,
for each floor plan, its representation of the outer perimeter used for the model testing. The plot
is generated from the .csv representation of the floor plan. In blue are represented the positions
of the openings; in red are the walls without openings. The floor plans are courtesy of Modulize
AS [29].

52 5| Implementation, testing and results

5.2.2. Exploration of the Pareto frontier

Having two objectives in the minimization formula, as explained in Section 3.2.4, the
parameter λ has been used to weigh the contribution of each of the objectives to minimize.
The first analysis explores the Pareto frontier with an approximated method based on
plotting a graph with the two objectives. Figure 5.3 reports a graph where: the x-axis
describes the total discrepancy of the output (in meters), and the y-axis the cost of the
output. Those values have been obtained by running the optimization to all the different
test files, repeating the optimization with λ values for 150 evenly-spaced samples of the
range [0 − 1]. It can be noticed that the scatter plot has the same shape for all the
instances.

0 10 20 30 40
0

50

100

150

200

250

300

350

400
filename

plan_06wall_016sub_06op
plan_08wall_032sub_13op
plan_10wall_032sub_12op
plan_08wall_036sub_15op
plan_04wall_052sub_25op
plan_16wall_044sub_15op
plan_12wall_056sub_22op
plan_68wall_127sub_42op

Multiple instances comparison

Output discrepancy (m)

To
ta

l e
le

m
en

ts
 c

os
t

Figure 5.3: Comparison of the two objective functions for all the test instances. The scatter plot
is given for different lambda values.

The previous graph has been split into different instances to understand better the effect
of the choice of the λ parameter. Figure 5.4 shows the approximated Pareto frontier
graph, divided by the test instance. In the x-axis is reported the objective function of

5| Implementation, testing and results 53

minimizing the output discrepancy (in meters). In the y-axis, there is the second objective
function of minimizing the cost of the solution in terms of a linear combination of the
number of standard and custom elements used. The different sub-plots in Figure 5.4 do
not have the same scale on the y-axis. This is because the test instances have different
dimensions regarding the number of walls and openings. This makes the total cost have
different values for different instances. Using not the same spacing in the y axis was done
on purpose to provide a normalized view of the cost function. Another aspect to notice is
that the cost functions had the same values for multiple lambda values. In other words,
points in the scatter plot correspond to different λ values. For this reason, the dots in
Figure 5.4 have been plotted with slight transparency to show better the overlaps.

Having multiple points overlapping means that linear changes of the λ parameter are not
resulting in linear changes over the values of the two objectives. Figure 5.5 shows on the x-
axis the λ parameter and on the y-axis the output discrepancy error (in meters). Looking
at the graph, it is evident that the discrepancy error objective function is discrete. Specific
λ threshold values can be identified, which change the discrepancy error objective for all
instances. The most evident finding is that λ values in the range ≈ [0.1, 0.6] produce the
same discrepancy in the output.

Number of elements

Since the objective function modelling the cost of the solution is a linear combination of
the number of standard and custom elements used, it is relevant to see how different λ
values affect the output model in this regard. Figure 5.7 displays the number of standard
elements the optimization model picks for each test instance when the λ parameter is
varying. In those graphs, the y-axis scale is not the same for all the different instances
because those have different dimensions in terms of walls and subwalls. The findings are
that a minimum baseline number of elements is needed to create the new geometry. For
λ → 0, the model is optimizing only to reduce the number of elements, leading to a
massive discrepancy in the output, which is represented by the colour scale of the scatter
plot. For λ→ 1, the model is optimizing more to reduce the discrepancy, so the number of
standard elements increases, but not linearly. Then for λ ' 0.9, the model starts to reduce
the number of standard elements. This reduction can be explained by looking at the dual
graphs in Figure 5.8, where the custom elements are on the y-axis. It can be noticed that
when λ ' 0.9, the model adds more custom elements to reduce the discrepancy further.
Those custom elements are replacing the standard ones and increasing the cost function.

54 5| Implementation, testing and results

0 5 10 15 20 25
50

100

150

200

10 20 30 40

100

200

300

400

0 5 10 15 20

50

100

150

0 10 20 30 40
40

60

80

100

120

140

0 5 10 15

50

100

150

0 10 20 30

40

60

80

100

120

0 5 10 15 20
20

40

60

80

100

120

0 5 10 15 20 25

40

60

80

100

0

0.2

0.4

0.6

0.8

1
λ

Output discrepancy vs element cost

Output discrepancy (m) Output discrepancy (m)

To
ta

l e
le

m
en

ts
 c

os
t

To
ta

l e
le

m
en

ts
 c

os
t

To
ta

l e
le

m
en

ts
 c

os
t

To
ta

l e
le

m
en

ts
 c

os
t

plan_12wall_056sub_22op plan_68wall_127sub_42op

plan_04wall_052sub_25op plan_16wall_044sub_15op

plan_10wall_032sub_12op plan_08wall_036sub_15op

plan_06wall_016sub_06op plan_08wall_032sub_13op

Figure 5.4: Comparison of the two objective functions for all the test instances, split by each
instance. The subplots for instances have different y-axis scale.

5| Implementation, testing and results 55

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

filename
plan_06wall_016sub_06op
plan_08wall_032sub_13op
plan_10wall_032sub_12op
plan_08wall_036sub_15op
plan_04wall_052sub_25op
plan_16wall_044sub_15op
plan_12wall_056sub_22op
plan_68wall_127sub_42op

Discrepancy by lambda

λ

O
ut

pu
t d

is
cr

ep
an

cy
 (m

)

Figure 5.5: Change of the total discrepancy of the output for different lambda values.

5.2.3. Comparison of geometries

To conclude the analysis of the effects of the choice of the λ parameter, here follows a
graphical comparison of the building geometries.

Figure 5.6 shows the impact of the parameter λ over the geometry of the building. The
original geometry and the optimized one are displayed together. In black are the original
walls in the input. In blue are the openings, for both the input and the output since the
dimension of those is not changing. In red are the prefab elements used in the output.
In green are the custom elements used in the output. One test case has been picked, and
the optimization was performed for several λ values. Then, only some relevant values
have been chosen to be displayed here. As already discussed, for low λ values, the output
geometry has a huge discrepancy regarding the input. Whereas for λ ' 0.9, the output
discrepancy is almost non-noticeable.

Section 6.1 discusses the possible future improvement of considering the discrepancy in
the difference in the area of the two perimeters.

56 5| Implementation, testing and results

10 15 20 25 30

6

8

10

12

14

16

18

20

λ= 0.5

10 15 20 25 30

6

8

10

12

14

16

18

20

λ= 0.8

10 15 20 25 30

6

8

10

12

14

16

18

20

λ= 0.9

10 15 20 25 30

6

8

10

12

14

16

18

20

λ= 0.99

Figure 5.6: Input vs output floor plan geometry for one specific test instance. In black are the
original walls in the input. In blue are the openings, for both the input and the output, since the
dimension of those is not changing. In red are the prefab elements used in the output. In green
the custom elements used in the output. The axes dimensions of the floor plans are in meters.

Conclusions on the choice of λ The choice of the λ parameter must be made by
the end-users, depending on what aspect is most valued to be optimized. After analyzing
the test results, it can be suggested to pick a value close to 0.9, which provided low
discrepancy and reasonable cost without needing a massive number of custom elements.

5.2.4. Execution time performance

After running the optimization model with different instances with the GUROBI solver,
the performance in terms of execution time has not changed significantly. Whereas, using
the CBC solver, it can be noticed that the execution time increases when expanding the
model dimensions in the number of rows and columns in input.

Table 5.2 reports a summary of the execution time for the different instances with the

5| Implementation, testing and results 57

two solvers tested.

optimization time (s) CBC Gurobi
filename model_cols model_rows

plan_06wall_016sub_06op 66 46 0.042 0.029
plan_10wall_032sub_12op 126 86 0.056 0.069
plan_08wall_036sub_15op 132 90 0.630 0.010
plan_04wall_052sub_25op 168 114 0.612 0.019
plan_16wall_044sub_15op 180 122 0.086 0.027
plan_12wall_056sub_22op 210 142 0.577 0.156
plan_68wall_127sub_42op 504 338 26.186 0.180

Table 5.2: Comparison of execution time of optimization for two solvers: Gurobi and CBC. The
instances are ordered by increasing model rows. The execution time is in seconds.

5.3. Case study

This section analyzes one case study, where an IFC building model was optimized using
all the methods discussed in this thesis and, in parallel, manually redrawn by an employee
of Eon Element AS, a prefab wall manufacturer based in Norway [60].

Figure 5.10 is a graphical visualization of the input building model. The target of this
case study is a 2-storey residential family house building. The IFC file was given by gentle
concession from Modulize AS [29].

5.3.1. Construction system specifications

EON Element is a patented environmentally friendly building system made of wood ele-
ments. The elements are complete wall parts with a framework, wind and vapour barrier
and insulation. The elements are assembled with bolts in pre-drilled holes and ready for
interior and exterior cladding. It can be approved as a passive house wall [60]. In a passive
house, “the heat requirement is so low that a separate heating system is not necessary and
there is no loss of comfort” [61]. There are different standards and certifications regarding
passive houses, such as the German Passive House Standard and the Norwegian criteria
NS3700:2010. Those certifications aim to establish benchmarks to measure energy effi-
ciency.
In this thesis, the focus is on the geometry of the construction system. The following
parameters define the Eon Element AS design:

58 5| Implementation, testing and results

• Standard wall elements of length either 0.3m or 0.6m;

• Thickness: 0.3 m;

• Height: from 0.3m to 3m in steps of 0.3m;

• Minimum allowed custom element length 0.2m;

• Maximum allowed custom element length 1.5m;

• Corner elements can be inner or outer. Both are 90◦ corners. The height can be
2.4m, 2.7m or 3m.

The above parameters are similar to those used to perform all the previous tests of the the-
sis. The presence of corner elements slightly changed the model in the output but without
changing the performance. Figure 5.11 shows no significant differences in optimization
elapsed time when adding some fixed corners in the output. Automatic corner identi-
fication has not been considered part of this work, therefore the corners were manually
detected.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

model
EON
STD

λ

op
tim

iz
at

io
n

tim
e

(s
)

Figure 5.11: Comparison of execution time of the standard model (STD) and the same with fixed
corners (EON).

5| Implementation, testing and results 59

5.3.2. Comparison with the redrawing process in industry

The final part of this Chapter compares and validates this thesis method with the current
methods adopted in the industry for redrawing building projects. Figure 5.12 shows the
steps to manually redraw the case study building geometry using the EON construction
system. The manual redraw process uses a CAD tool to create new geometry in 3D. Direct
interviews with workers in the industry estimated the average work needed to redraw a
medium-sized house to have a minimum time of 1h and range till one day of work. The
instance object of this case study was considered “very design-friendly for our system” by
the employees of Eon Element and took around one hour of work to redraw.

On the other hand, when using this thesis method, the total redrawing time was about
one minute, considering the complete execution of all scripts, both optimization and IFC
data extraction. This thesis method produced a 2D view of the redrawing geometry,
whereas the drawing obtained by the industry experts consists of a 3D representation.
However, a 2D plan contains still all the relevant information regarding the number of
prefab elements and which part of the building must be fit. Therefore the manual work
performed by EON Elements has been sliced into a floor plan to be compared with the
result produced by this thesis approach. A 2D visualization makes it possible to compare
the two results, as shown in Figure 5.14.

Regarding how this thesis outputs the results, Listing 42 shows the optimization output
for the current case study in text format. It consists of a breakdown for each wall of
the input project with a list of elements needed to assemble it. This sort of output is
particularly relevant for the manufacturer for two reasons: first can provide information
to the factory on how many elements to produce, and secondly, it can be used to produce
a very detailed price quote.

60 5| Implementation, testing and results

** For wall #12358 of len 4.355m **************************
Adding starting corner of len 0.15m
For subwall #25 of len 4.355m

Use 7 prefab walls of 0.6m
Adding ending corner of len 0.15 m

Output len is 4.5 m, discrepancy: 0.145m

** For wall #12473 of len 2.155m **************************
For subwall #22 of len 0.155m

Use 1 prefab walls of 0.3m
Opening 23 keeping 1.0m
For subwall #24 of len 1.0m

Use 1 prefab walls of 0.6m
Use 1 prefab walls of 0.3m

Adding ending corner of len 0.15 m
Output len is 2.35 m, discrepancy: 0.195m

** For wall #26008 of len 6.21m **************************
Adding starting corner of len 0.15m
For subwall #0 of len 0.207m

Use 1 prefab walls of 0.3m
Opening 1 keeping 1.5m
For subwall #2 of len 2.355m

Use 1 prefab walls of 0.6m
CUSTOM element of 1.25m

Opening 3 keeping 1.8m
For subwall #4 of len 0.348m

Use 1 prefab walls of 0.3m
Adding ending corner of len 0.15 m

Output len is 6.05 m, discrepancy: -0.16m

** For wall #30962 of len 3.8m **************************
Adding starting corner of len 0.15m
For subwall #5 of len 3.8m

Use 6 prefab walls of 0.6m
Output len is 3.75 m, discrepancy: -0.05m
...

Total number of custom elem: 2
Standard elem: 7 of 0.3m, 41 of 0.6m, total 48 elements

Listing 5.1: Breakdown of the floor plan into a prefab list of elements. The lengths have been
rounded to the third decimal. Some more walls have been omitted for display purposes.

5| Implementation, testing and results 61

0 0.5 0.8 0.9 1

50

60

70

80

90

0 0.5 0.8 0.9 1
80

100

120

140

160

180

0 0.5 0.8 0.9 1

40

60

80

100

0 0.5 0.8 0.9 1
40

50

60

70

80

0 0.5 0.8 0.9 1
20

30

40

50

60

70

0 0.5 0.8 0.9 1
20

30

40

50

0 0.5 0.8 0.9 1
20

40

60

80

0 0.5 0.8 0.9 1

30

40

50

5

10

15

20

25

30

35

40

45
Output discrepancy (m)

Number of standard elements for different lambda values

λ λ

St

an
da

rd
 e

le
m

en
ts

St

an
da

rd
 e

le
m

en
ts

St

an
da

rd
 e

le
m

en
ts

St

an
da

rd
 e

le
m

en
ts

plan_12wall_056sub_22op plan_68wall_127sub_42op

plan_04wall_052sub_25op plan_16wall_044sub_15op

plan_10wall_032sub_12op plan_08wall_036sub_15op

plan_06wall_016sub_06op plan_08wall_032sub_13op

Figure 5.7: Number of standard elements the optimization model picks, divided by test instance,
by varying the λ parameter. The scale on the y-axis for the different subplots is not the same
to normalize the result and make them comparable. The colour of the points indicates the total
discrepancy of the output.

62 5| Implementation, testing and results

0 0.5 0.8 0.9 1
0

5

10

15

20

25

30

0 0.5 0.8 0.9 1
0

20

40

60

0 0.5 0.8 0.9 1
0

5

10

15

20

25

0 0.5 0.8 0.9 1
0

5

10

15

0 0.5 0.8 0.9 1

5

10

15

20

0 0.5 0.8 0.9 1

5

10

15

0 0.5 0.8 0.9 1

2

4

6

8

10

0 0.5 0.8 0.9 1

2

4

6

8

10

5

10

15

20

25

30

35

40

45
Output discrepancy (m)

Number of custom elements for different lambda values

λ λ

C

us
to

m
 e

le
m

en
ts

C

us
to

m
 e

le
m

en
ts

C

us
to

m
 e

le
m

en
ts

C

us
to

m
 e

le
m

en
ts

plan_12wall_056sub_22op plan_68wall_127sub_42op

plan_04wall_052sub_25op plan_16wall_044sub_15op

plan_10wall_032sub_12op plan_08wall_036sub_15op

plan_06wall_016sub_06op plan_08wall_032sub_13op

Figure 5.8: Number of custom elements the optimization model picks, divided by test instance,
by varying the λ parameter. The scale on the y-axis for the different subplots is not the same
to normalize the result and make them comparable. The colour of the points indicates the total
discrepancy of the output.

5| Implementation, testing and results 63

Figure 5.9: Example of visualization of the case study IFC file, using the open source
OpenIFCViewer.

Figure 5.10: Same model with section over the storey considered in this case study.

64 5| Implementation, testing and results

Figure 5.12: Work breakdown of manual redraw made with a CAD software by employees of Eon
Element [60]. Reproduced with permission.

Figure 5.13: 2D floor plan visualization of the output created by EON Elements employees.

0 2 4 6 8 10 12 14

−2

0

2

4

6

8

Figure 5.14: 2D floor plan visualization of the output generated with this thesis method. In red
are the prefab wall elements used in output. In blue the openings, in green the custom elements
and in purple the corners.

65

6| Conclusions

This chapter examines the results of this thesis, possibilities of applications and further
improvements.

This thesis aimed to automate the process of redrawing building designs using prefabri-
cated components. The novel approach proposed in the thesis was split into two methods
to achieve this goal. The first consisted of a MIP optimization model and the second of
a computational geometric extraction process from 3D IFC files.

This thesis results demonstrated that under some assumptions on the geometry of the
input, it is possible to build almost any geometry floor plan using standardized elements
with slight changes in the original design. The primary assumption was on the orthogo-
nality of joints of walls in the original input design. Moreover, the results were optimized
to reduce the cost of manufacturing. This means that a prefab wall manufacturer can re-
duce the costs of building projects and guarantee limited changes over the original design
geometry not intended for prefabrication.

The optimization model was tested using eight test instances and a final case study to
assess its performance. The performance evaluated were: total element cost and entire
length discrepancy input versus output. Optimization time was analyzed for different
solvers and instances. The results were fast in execution, with an average time of a few
seconds for the test cases. An approximated subset of the Pareto frontier was given as a
scatter plot view of the objective space to deal with the presence of two main objectives.

Finally, a complete example of applying this thesis’s method to a building project was
compared with the manual process currently used in the industry. The employees of a
manufacturing company of prefabricated wall panels considered the results very promising
since this thesis could decrease the time spent on the task of redrawing, from hours of
human work to minutes of automatic execution of the scripts.

66 6| Conclusions

6.1. Future works and improvement

This section discusses some possible ways to improve the current work. The improvements
are divided into two parts, one relative to the optimization model and one to the geometric
processing from IFC files.

6.1.1. MIP model

Increasing the scope of the model The model presented in this thesis was developed
with some prerequisites that made it simpler to handle in the first instance. Relaxing some
of the requisites on the input can be helpful to scale the model to be adapted to more
building projects. The model’s first and most significant expansion can be allowing walls
not orthogonal to each other. This is because some building drawings use different angles
of wall junctions which are not always 90 degrees. The subdivision into cycles of wall
directions must therefore be updated to consider the freedom in the connection angle
between walls.

Secondly, this thesis assumed that the project opening dimensions were correct and corre-
sponded to the actual dimensions of the doors and windows to be installed in the building.
However, it can happen to have input data where the opening dimensions are incorrect or
do not fit with the requirements of the manufacturing with prefabrication. In this case,
if a database of opening elements is also available, the model can be expanded by adding
a decision variable to replace the input opening with an opening from the database.

Finally, this thesis did not consider the position of the elements in each output subwalll
because it was not relevant for the on-site assembly. However, some construction systems
could have added constraints in positioning some elements. For example, Eon Element
uses particular corner elements, distinguishing inner and outer corners. Expanding the
model to work with other manufacturers’ constraints is a possible future work.

Alternative constraints In this thesis the main constraints on the geometry are the
cycle ones, used to preserve the closed polygonal In this thesis, the main constraints on
the geometry are the cycle ones used to preserve the closed polygonal perimeter of the
walls. Then, one objective is to minimize the discrepancy of the output redrawn model
compared to the input one. However, this discrepancy can make the output building
project too big to fit the requirements of a construction site. Therefore, some property
developers might want to add a constraint on the maximum allowed area of a building.
This necessity comes because the terrain’s dimensions can have specific limits, which vary
for each project. To avoid adding a non-linear constraint, like the area calculation, this

6| Conclusions 67

can be simplified, splitting it down into two constraints, one for each of the two dimensions
of the floor plan of the building. When adding the above constraints, knowledge of the
land area measurements is necessary.

More detailed cost estimation This thesis assumed that the cost of elements is
unitary and the cost of custom elements to be four times the standard ones, as suggested by
domain experts of one manufacturing company. When dealing with off-site construction,
an essential part of the cost to be considered is the cost of transporting elements. This
cost heavily depends on the site’s location and other factors that were out of the scope
of this thesis. Therefore, knowing an exact cost function for each element in the prefab
database can better estimate the cost function to minimize.

The output discrepancy was not counted in monetary cost in this thesis work. If given
a cost function per square meter of the increased surface of a building, the discrepancy
could be better used in the objective function to make it homogeneous.

Testing This thesis method was tested with eight real building projects. The test cases
were picked to represent diverse geometries and dimensions of floor plans. The results
were consistent; consequently, it was not needed to use more test instances. However, to
test the limits of the model, it can be considered as future work the implementation of
automatic generation of geometries as test cases.

Furthermore, this thesis used an approximated method to explore the Pareto frontier.
A possible future work can include obtaining an exact Pareto frontier using a different
solver.

6.1.2. IFC processing

This thesis provided a method to automate the extraction of quantities and geometry
data from an IFC file. The IFC files have been carefully picked during this thesis work to
satisfy all the requirements for good quality. However, as discussed in 2.2, IFC files are
not well standardized, which introduces the need to consider many edge cases. Dealing
with malformed files can lead to complete automation of this task in the future.

Future works can investigate the addition of pre-processing of IFC files to create a pipeline
of automated checking of the designs before applying the method for geometric extraction
given in this thesis. Examples of automation tasks include adding a collision checking
phase, classifying IFC entities, and automatic wall splitting.

68 6| Conclusions

6.2. Possibilities of application

The software developed during this thesis work is considered a significant step forward in
automating the redrawing process for the prefabrication of buildings. Direct interviews
with experts in the field of prefab wall manufacturing evaluated this work as a promis-
ing step toward automating the redrawing task they currently need to perform entirely
manually.

This thesis is part of a project Modulize AS is currently bringing forward to help manu-
facturers of prefab element to achieve their full potential creating a software solution for
offsite construction, optimizing design, planning, and procurement.

69

Bibliography

[1] A. G. F. Gibb, “Standardization and pre-assembly- distinguishing myth from reality
using case study research,” Construction Management and Economics, vol. 19, no. 3,
pp. 307–315, Apr. 2001, issn: 0144-6193, 1466-433X. doi: 10.1080/01446190010020435.
[Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/01446190010020435
(visited on 05/05/2022).

[2] B. Ginigaddara, S. Perera, Y. Feng, and P. Rahnamayiezekavat, “Typologies of
offsite construction,” 2019, Accepted: 2019-10-31T04:21:21Z. doi: 10.31705/WCS.
2019.56. [Online]. Available: http://dl.lib.uom.lk/handle/123/15373 (visited
on 04/14/2022).

[3] N. Bertram, S. Fuchs, J. Mischke, R. Palter, G. Strube, and J. Woetzel, “Modu-
lar construction: From projects to products,” McKinsey & Company, Jun. 2019,
p. 34. [Online]. Available: https://www.mckinsey.com/business-functions/
operations/our-insights/modular-construction-from-projects-to-products.

[4] S. Lehmann, “Low carbon construction systems using prefabricated engineered solid
wood panels for urban infill to significantly reduce greenhouse gas emissions,” Sus-
tainable Cities and Society, vol. 6, pp. 57–67, Feb. 2013, issn: 22106707. doi: 10.
1016/j.scs.2012.08.004. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S221067071200056X (visited on 04/13/2022).

[5] D. Steinhardt, K. Manley, L. Bildsten, and K. Widen, “The structure of emergent
prefabricated housing industries: A comparative case study of australia and sweden,”
Construction Management and Economics, vol. 38, no. 6, pp. 483–501, Jun. 2, 2020,
issn: 0144-6193, 1466-433X. doi: 10.1080/01446193.2019.1588464. [Online].
Available: https://www.tandfonline.com/doi/full/10.1080/01446193.2019.
1588464 (visited on 05/05/2022).

[6] C. Rausch, “Algorithms for geometric optimization and enrichment in industrialized
building construction,” Ph.D. dissertation, University of Waterloo, Mar. 1, 2021.

[7] T. Salama, O. Moselhi, and M. Al-Hussein, “Overview of the characteristics of the
modular industry and barriers to its increased market share,” International Jour-
nal of Industrialized Construction, vol. 2, no. 1, pp. 30–53, Jul. 30, 2021, Num-

https://doi.org/10.1080/01446190010020435
http://www.tandfonline.com/doi/abs/10.1080/01446190010020435
https://doi.org/10.31705/WCS.2019.56
https://doi.org/10.31705/WCS.2019.56
http://dl.lib.uom.lk/handle/123/15373
https://www.mckinsey.com/business-functions/operations/our-insights/modular-construction-from-projects-to-products
https://www.mckinsey.com/business-functions/operations/our-insights/modular-construction-from-projects-to-products
https://doi.org/10.1016/j.scs.2012.08.004
https://doi.org/10.1016/j.scs.2012.08.004
https://linkinghub.elsevier.com/retrieve/pii/S221067071200056X
https://linkinghub.elsevier.com/retrieve/pii/S221067071200056X
https://doi.org/10.1080/01446193.2019.1588464
https://www.tandfonline.com/doi/full/10.1080/01446193.2019.1588464
https://www.tandfonline.com/doi/full/10.1080/01446193.2019.1588464

70 | Bibliography

ber: 1, issn: 2563-5034. doi: 10.29173/ijic249. [Online]. Available: https://
journalofindustrializedconstruction.com/index.php/jic/article/view/

249 (visited on 05/11/2022).
[8] N. Liang and M. Yu, “Research on design optimization of prefabricated residential

houses based on BIM technology,” Scientific Programming, vol. 2021, e1422680,
Nov. 9, 2021, Publisher: Hindawi, issn: 1058-9244. doi: 10.1155/2021/1422680.
[Online]. Available: https://www.hindawi.com/journals/sp/2021/1422680/
(visited on 05/04/2022).

[9] F. Pittau, L. E. Malighetti, G. Iannaccone, and G. Masera, “Prefabrication as large-
scale efficient strategy for the energy retrofit of the housing stock: An italian case
study,” Procedia Engineering, vol. 180, pp. 1160–1169, 2017, issn: 18777058. doi:
10.1016/j.proeng.2017.04.276. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S1877705817317836 (visited on 04/13/2022).

[10] I. Y. Wuni and G. Q. P. Shen, “Holistic review and conceptual framework for the
drivers of offsite construction: A total interpretive structural modelling approach,”
Buildings, vol. 9, no. 5, p. 117, May 2019, Number: 5 Publisher: Multidisciplinary
Digital Publishing Institute, issn: 2075-5309. doi: 10.3390/buildings9050117.
[Online]. Available: https://www.mdpi.com/2075- 5309/9/5/117 (visited on
05/28/2022).

[11] S. Kubba, “Chapter 5 - building information modeling,” in Handbook of Green Build-
ing Design and Construction, S. Kubba, Ed., Boston: Butterworth-Heinemann,
Jan. 1, 2012, pp. 201–226, isbn: 978-0-12-385128-4. doi: 10.1016/B978-0-12-
385128- 4.00005- 6. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/B9780123851284000056 (visited on 05/26/2022).

[12] T. D. Oesterreich and F. Teuteberg, “Behind the scenes: Understanding the socio-
technical barriers to BIM adoption through the theoretical lens of information sys-
tems research,” Technological Forecasting and Social Change, vol. 146, pp. 413–
431, Sep. 1, 2019, issn: 0040-1625. doi: 10.1016/j.techfore.2019.01.003.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0040162518304852 (visited on 05/26/2022).

[13] ISO, “16739-1: 2018: Industry foundation classes (IFC) for data sharing in the con-
struction and facility management industries—part 1: Data schema,” International
Organisation for Standardisation: Geneva, Switzerland, 2018.

[14] buildingSMART. “Industry foundation classes (IFC),” buildingSMART Interna-
tional. (2022), [Online]. Available: https://www.buildingsmart.org/standards/
bsi-standards/industry-foundation-classes/ (visited on 05/26/2022).

https://doi.org/10.29173/ijic249
https://journalofindustrializedconstruction.com/index.php/jic/article/view/249
https://journalofindustrializedconstruction.com/index.php/jic/article/view/249
https://journalofindustrializedconstruction.com/index.php/jic/article/view/249
https://doi.org/10.1155/2021/1422680
https://www.hindawi.com/journals/sp/2021/1422680/
https://doi.org/10.1016/j.proeng.2017.04.276
https://linkinghub.elsevier.com/retrieve/pii/S1877705817317836
https://linkinghub.elsevier.com/retrieve/pii/S1877705817317836
https://doi.org/10.3390/buildings9050117
https://www.mdpi.com/2075-5309/9/5/117
https://doi.org/10.1016/B978-0-12-385128-4.00005-6
https://doi.org/10.1016/B978-0-12-385128-4.00005-6
https://www.sciencedirect.com/science/article/pii/B9780123851284000056
https://www.sciencedirect.com/science/article/pii/B9780123851284000056
https://doi.org/10.1016/j.techfore.2019.01.003
https://www.sciencedirect.com/science/article/pii/S0040162518304852
https://www.sciencedirect.com/science/article/pii/S0040162518304852
https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/
https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/

| Bibliography 71

[15] IFC engine. [Online]. Available: http://rdf.bg/product-list/ifc-engine/
(visited on 05/07/2022).

[16] ISO, “ISO 10303-21:2016,” 2016. [Online]. Available: https://www.iso.org/cms/
render/live/en/sites/isoorg/contents/data/standard/06/31/63141.html

(visited on 04/14/2022).
[17] A. Borrmann, J. Beetz, C. Koch, T. Liebich, and S. Muhic, “Industry foundation

classes: A standardized data model for the vendor-neutral exchange of digital build-
ing models,” in Building Information Modeling: Technology Foundations and Indus-
try Practice, A. Borrmann, M. König, C. Koch, and J. Beetz, Eds., Cham: Springer
International Publishing, 2018, pp. 81–126, isbn: 978-3-319-92862-3. doi: 10.1007/
978-3-319-92862-3_5. [Online]. Available: https://doi.org/10.1007/978-3-
319-92862-3_5 (visited on 05/26/2022).

[18] J. Zhu, P. Wu, M. Chen, M. J. Kim, X. Wang, and T. Fang, “Automatically pro-
cessing IFC clipping representation for BIM and GIS integration at the process
level,” Applied Sciences, vol. 10, no. 6, p. 2009, Mar. 15, 2020, issn: 2076-3417.
doi: 10.3390/app10062009. [Online]. Available: https://www.mdpi.com/2076-
3417/10/6/2009 (visited on 04/13/2022).

[19] I. Stroud and H. Nagy, Solid modelling and CAD systems: how to survive a CAD
system. London ; New York: Springer, 2011, 689 pp., OCLC: ocn701813173, isbn:
978-0-85729-258-2 978-0-85729-259-9.

[20] H. Liu, M. Lu, and M. Al-Hussein, “Ontology-based semantic approach for construction-
oriented quantity take-off from BIM models in the light-frame building industry,”
Advanced Engineering Informatics, vol. 30, no. 2, pp. 190–207, Apr. 2016, issn:
14740346. doi: 10 . 1016 / j . aei . 2016 . 03 . 001. [Online]. Available: https :

//linkinghub.elsevier.com/retrieve/pii/S1474034616300246 (visited on
06/18/2022).

[21] M. Venugopal, C. M. Eastman, and J. Teizer, “An ontology-based analysis of the
industry foundation class schema for building information model exchanges,” Ad-
vanced Engineering Informatics, vol. 29, no. 4, pp. 940–957, Oct. 2015, issn: 14740346.
doi: 10.1016/j.aei.2015.09.006. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S1474034615001019 (visited on 04/13/2022).

[22] T. Krijnen and M. Tamke, “Assessing implicit knowledge in BIM models with ma-
chine learning,” Jan. 1, 2015, pp. 397–406, isbn: 978-3-319-24206-4. doi: 10.1007/
978-3-319-24208-8_33.

[23] F. C. Collins, A. Braun, M. Ringsquandl, D. M. Hall, and A. Borrmann, “Assessing
IFC classes with means of geometric deep learning on different graph encodings,”
presented at the 2021 European Conference on Computing in Construction, Jul. 26,

http://rdf.bg/product-list/ifc-engine/
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/31/63141.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/31/63141.html
https://doi.org/10.1007/978-3-319-92862-3_5
https://doi.org/10.1007/978-3-319-92862-3_5
https://doi.org/10.1007/978-3-319-92862-3_5
https://doi.org/10.1007/978-3-319-92862-3_5
https://doi.org/10.3390/app10062009
https://www.mdpi.com/2076-3417/10/6/2009
https://www.mdpi.com/2076-3417/10/6/2009
https://doi.org/10.1016/j.aei.2016.03.001
https://linkinghub.elsevier.com/retrieve/pii/S1474034616300246
https://linkinghub.elsevier.com/retrieve/pii/S1474034616300246
https://doi.org/10.1016/j.aei.2015.09.006
https://linkinghub.elsevier.com/retrieve/pii/S1474034615001019
https://linkinghub.elsevier.com/retrieve/pii/S1474034615001019
https://doi.org/10.1007/978-3-319-24208-8_33
https://doi.org/10.1007/978-3-319-24208-8_33

72 | Bibliography

2021, pp. 332–341. doi: 10.35490/EC3.2021.168. [Online]. Available: https:
//ec- 3.org/publications/conferences/2021/paper/?id=168 (visited on
04/13/2022).

[24] S. Gijezen, T. Hartmann, K. T. Veenvliet, H. Hendriks, and N. Buursema, “Orga-
nizing 3d building information models with the help of work breakdown structures
to improve the clash detection process,”

[25] S. Daum and A. Borrmann, “Checking spatio-semantic consistency of building infor-
mation models by means of a query language,” Proceedings of the 13th International
Conference on Construction Applications of Virtual Reality, 2013. [Online]. Avail-
able: https://www.semanticscholar.org/paper/Checking-spatio-semantic-
consistency-of-building-by-Daum-Borrmann/3475f6bf35d010cff6c73fa8424e15525364137f

(visited on 05/24/2022).
[26] S. Daum and A. Borrmann, “Processing of topological BIM queries using bound-

ary representation based methods,” Advanced Engineering Informatics, vol. 28,
no. 4, pp. 272–286, Oct. 2014, issn: 14740346. doi: 10.1016/j.aei.2014.06.
001. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S1474034614000391 (visited on 05/24/2022).

[27] J. Luttun and T. F. Krijnen, “An approach for data extraction, validation and
correction using geometrical algorithms and model view definitions on building
models,” Proceedings of the 18th International Conference on Computing in Civil
and Building Engineering (ICCCBE 2020), vol. 98, 2020, Publisher: Springer, issn:
2366-2557. doi: 10.1007/978-3-030-51295-8_38. [Online]. Available: https:
//repository.tudelft.nl/islandora/object/uuid%3Af26ec1dc-5cac-42e0-

81e2-0ae84cb6d128 (visited on 04/14/2022).
[28] D. Jankovics, “Customized topology optimization for additive manufacturing,” Ph.D.

dissertation, Aug. 1, 2019.
[29] “Modulize AS.” (2022), [Online]. Available: https://www.modulize.io/ (visited

on 04/14/2022).
[30] V. Machairas, A. Tsangrassoulis, and K. Axarli, “Algorithms for optimization of

building design: A review,” Renewable and Sustainable Energy Reviews, vol. 31,
pp. 101–112, Mar. 1, 2014, issn: 1364-0321. doi: 10.1016/j.rser.2013.11.036.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1364032113007855 (visited on 06/13/2022).

[31] D. Yang, S. Ren, M. Turrin, S. Sariyildiz, and Y. Sun, “Multi-disciplinary and multi-
objective optimization problem re-formulation in computational design exploration:
A case of conceptual sports building design,” Automation in Construction, vol. 92,
pp. 242–269, Aug. 1, 2018, issn: 0926-5805. doi: 10.1016/j.autcon.2018.03.023.

https://doi.org/10.35490/EC3.2021.168
https://ec-3.org/publications/conferences/2021/paper/?id=168
https://ec-3.org/publications/conferences/2021/paper/?id=168
https://www.semanticscholar.org/paper/Checking-spatio-semantic-consistency-of-building-by-Daum-Borrmann/3475f6bf35d010cff6c73fa8424e15525364137f
https://www.semanticscholar.org/paper/Checking-spatio-semantic-consistency-of-building-by-Daum-Borrmann/3475f6bf35d010cff6c73fa8424e15525364137f
https://doi.org/10.1016/j.aei.2014.06.001
https://doi.org/10.1016/j.aei.2014.06.001
https://linkinghub.elsevier.com/retrieve/pii/S1474034614000391
https://linkinghub.elsevier.com/retrieve/pii/S1474034614000391
https://doi.org/10.1007/978-3-030-51295-8_38
https://repository.tudelft.nl/islandora/object/uuid%3Af26ec1dc-5cac-42e0-81e2-0ae84cb6d128
https://repository.tudelft.nl/islandora/object/uuid%3Af26ec1dc-5cac-42e0-81e2-0ae84cb6d128
https://repository.tudelft.nl/islandora/object/uuid%3Af26ec1dc-5cac-42e0-81e2-0ae84cb6d128
https://www.modulize.io/
https://doi.org/10.1016/j.rser.2013.11.036
https://www.sciencedirect.com/science/article/pii/S1364032113007855
https://www.sciencedirect.com/science/article/pii/S1364032113007855
https://doi.org/10.1016/j.autcon.2018.03.023

| Bibliography 73

[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0926580517309317 (visited on 05/23/2022).

[32] H. Liu, B. Holmwood, C. Sydora, G. Singh, and M. Al-Hussein, “Optimizing multi-
wall panel configuration for panelized construction using BIM,” Proceedings of In-
ternational Structural Engineering and Construction, vol. 4, no. 1, E. Pellicer, J. M.
Adam, V. Yepes, A. Singh, and S. Yazdani, Eds., Jul. 2017, issn: 2644-108X. doi:
10.14455/ISEC.res.2017.15. [Online]. Available: https://www.isec-society.
org/ISEC_PRESS/ISEC_09/html/C-19.xml (visited on 04/13/2022).

[33] W. Lu, C. Webster, K. Chen, X. Zhang, and X. Chen, “Computational building
information modelling for construction waste management: Moving from rhetoric
to reality,” Renewable and Sustainable Energy Reviews, vol. 68, pp. 587–595, Feb. 1,
2017, issn: 1364-0321. doi: 10.1016/j.rser.2016.10.029. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1364032116306797

(visited on 05/04/2022).
[34] M. Zawidzki and J. Szklarski, “Multi-objective optimization of the floor plan of a

single story family house considering position and orientation,” Advances in Engi-
neering Software, vol. 141, p. 102 766, Mar. 2020, issn: 09659978. doi: 10.1016/j.
advengsoft.2019.102766. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S0965997819301310 (visited on 04/13/2022).

[35] W. Para, P. Guerrero, T. Kelly, L. Guibas, and P. Wonka, “Generative layout model-
ing using constraint graphs,” in 2021 IEEE/CVF International Conference on Com-
puter Vision (ICCV), Montreal, QC, Canada: IEEE, Oct. 2021, pp. 6670–6680, isbn:
978-1-66542-812-5. doi: 10 . 1109 / ICCV48922 . 2021 . 00662. [Online]. Available:
https://ieeexplore.ieee.org/document/9710899/ (visited on 04/13/2022).

[36] C. Khosakitchalert, N. Yabuki, and T. Fukuda, “BIM-based wall framing calculation
algorithms for detailed quantity takeoff,” Nov. 8, 2019.

[37] Z. Xu, J. Abualdenien, H. Liu, and R. Kang, “An IDM-based approach for infor-
mation requirement in prefabricated construction,” Advances in Civil Engineering,
vol. 2020, e8946530, Jan. 27, 2020, Publisher: Hindawi, issn: 1687-8086. doi: 10.
1155/2020/8946530. [Online]. Available: https://www.hindawi.com/journals/
ace/2020/8946530/ (visited on 06/04/2022).

[38] E. Tauscher, H.-J. Bargstädt, and K. Smarsly, “Generic BIM queries based on the
IFC object model using graph theory,” p. 8,

[39] E. M. L. Beale, “Integer programming,” in Computational Mathematical Program-
ming, K. Schittkowski, Ed., ser. NATO ASI Series, Berlin, Heidelberg: Springer,
1985, pp. 1–24, isbn: 978-3-642-82450-0. doi: 10.1007/978-3-642-82450-0_1.

https://www.sciencedirect.com/science/article/pii/S0926580517309317
https://www.sciencedirect.com/science/article/pii/S0926580517309317
https://doi.org/10.14455/ISEC.res.2017.15
https://www.isec-society.org/ISEC_PRESS/ISEC_09/html/C-19.xml
https://www.isec-society.org/ISEC_PRESS/ISEC_09/html/C-19.xml
https://doi.org/10.1016/j.rser.2016.10.029
https://www.sciencedirect.com/science/article/pii/S1364032116306797
https://doi.org/10.1016/j.advengsoft.2019.102766
https://doi.org/10.1016/j.advengsoft.2019.102766
https://linkinghub.elsevier.com/retrieve/pii/S0965997819301310
https://linkinghub.elsevier.com/retrieve/pii/S0965997819301310
https://doi.org/10.1109/ICCV48922.2021.00662
https://ieeexplore.ieee.org/document/9710899/
https://doi.org/10.1155/2020/8946530
https://doi.org/10.1155/2020/8946530
https://www.hindawi.com/journals/ace/2020/8946530/
https://www.hindawi.com/journals/ace/2020/8946530/
https://doi.org/10.1007/978-3-642-82450-0_1

74 | Bibliography

[40] D. Bienstock and G. L. Nemhauser, Eds., Integer programming and combinatorial
optimization: 10th International IPCO Conference, New York, NY, USA, June 7-11,
2004: proceedings, Lecture notes in computer science 3064, Meeting Name: Confer-
ence on Integer Programming and Combinatorial Optimization, Berlin ; New York:
Springer-Verlag, 2004, 443 pp., isbn: 978-3-540-22113-5.

[41] K. Deb and K. Deb, “Multi-objective optimization,” in Search Methodologies: In-
troductory Tutorials in Optimization and Decision Support Techniques, E. K. Burke
and G. Kendall, Eds., Boston, MA: Springer US, 2014, pp. 403–449, isbn: 978-1-
4614-6940-7. doi: 10.1007/978-1-4614-6940-7_15. [Online]. Available: https:
//doi.org/10.1007/978-1-4614-6940-7_15 (visited on 05/28/2022).

[42] “Multi-objective optimization,” in Multi-objective Management in Freight Logistics:
Increasing Capacity, Service Level and Safety with Optimization Algorithms, M.
Caramia and P. Dell’Olmo, Eds., London: Springer, 2008, pp. 11–36, isbn: 978-1-
84800-382-8. doi: 10.1007/978-1-84800-382-8_2. [Online]. Available: https:
//doi.org/10.1007/978-1-84800-382-8_2 (visited on 05/28/2022).

[43] A. A. Khan, A. Donaubauer, and T. H. Kolbe, “A multi-step transformation pro-
cess for automatically generating indoor routing graphs from existing semantic 3d
building models,” p. 20,

[44] J. Reback, Jbrockmendel, W. McKinney, J. Van Den Bossche, T. Augspurger, M.
Roeschke, S. Hawkins, P. Cloud, Gfyoung, Sinhrks, P. Hoefler, A. Klein, T. Petersen,
J. Tratner, C. She, W. Ayd, S. Naveh, J. Darbyshire, M. Garcia, R. Shadrach, J.
Schendel, A. Hayden, D. Saxton, M. E. Gorelli, F. Li, M. Zeitlin, V. Jancauskas,
A. McMaster, T. Wörtwein, and P. Battiston, Pandas-dev/pandas: Pandas 1.4.2,
version v1.4.2, Apr. 2, 2022. doi: 10.5281/ZENODO.3509134. [Online]. Available:
https://zenodo.org/record/3509134 (visited on 06/21/2022).

[45] H. Hecht and Š. Jaud, “TUM OpenInfraPlatform: The open-source BIM visualisa-
tion software,” p. 8, 2019.

[46] E. Valero, D. D. Mohanty, and F. Bosche, “Development of an open-source scan+BIM
platform,” presented at the 37th International Symposium on Automation and
Robotics in Construction, Kitakyushu, Japan, Oct. 14, 2020. doi: 10 . 22260 /

ISARC2020/0033. [Online]. Available: http://www.iaarc.org/publications/
2020_proceedings_of_the_37th_isarc/development_of_an_open_source_

scanbim_platform.html (visited on 05/07/2022).
[47] IfcOpenShell. [Online]. Available: https://github.com/IfcOpenShell/IfcOpenShell

(visited on 06/22/2022).
[48] A. Viegas. “IFC.js.” (2022), [Online]. Available: https://IFCjs.github.io/info/

(visited on 05/07/2022).

https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1007/978-1-84800-382-8_2
https://doi.org/10.1007/978-1-84800-382-8_2
https://doi.org/10.1007/978-1-84800-382-8_2
https://doi.org/10.5281/ZENODO.3509134
https://zenodo.org/record/3509134
https://doi.org/10.22260/ISARC2020/0033
https://doi.org/10.22260/ISARC2020/0033
http://www.iaarc.org/publications/2020_proceedings_of_the_37th_isarc/development_of_an_open_source_scanbim_platform.html
http://www.iaarc.org/publications/2020_proceedings_of_the_37th_isarc/development_of_an_open_source_scanbim_platform.html
http://www.iaarc.org/publications/2020_proceedings_of_the_37th_isarc/development_of_an_open_source_scanbim_platform.html
https://github.com/IfcOpenShell/IfcOpenShell
https://IFCjs.github.io/info/

6| BIBLIOGRAPHY 75

[49] Xbim toolkit. [Online]. Available: https://docs.xbim.net/ (visited on 05/07/2022).
[50] S. Lockley, C. Benghi, and M. Černý, “Xbim.essentials: A library for interoper-

able building information applications,” Journal of Open Source Software, vol. 2,
no. 20, p. 473, Dec. 7, 2017, issn: 2475-9066. doi: 10.21105/joss.00473. [Online].
Available: https://joss.theoj.org/papers/10.21105/joss.00473 (visited on
05/07/2022).

[51] IFC++, original-date: 2015-04-01T13:53:19Z, Jun. 21, 2022. [Online]. Available:
https://github.com/ifcquery/ifcplusplus (visited on 06/22/2022).

[52] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, K.
Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing,
and J. d. team, “Jupyter notebooks - a publishing format for reproducible com-
putational workflows,” in Positioning and Power in Academic Publishing: Players,
Agents and Agendas, F. Loizides and B. Scmidt, Eds., Netherlands: IOS Press, 2016,
pp. 87–90. [Online]. Available: https://eprints.soton.ac.uk/403913/.

[53] Open CASCADE technology - open cascade. [Online]. Available: https://www.
opencascade.com/open-cascade-technology/ (visited on 04/14/2022).

[54] T. Paviot, pythonOCC, May 1, 2022. [Online]. Available: https://github.com/
tpaviot/pythonocc (visited on 05/04/2022).

[55] H. G. Santos, T. Toffolo, Tommy, S. Spoorendonk, P. Larsen, M. Jurasovic, S. Brito,
S. Heger, A. Marvin, F. Bonelli, I. Larchenko, L. Singer, Q. Fortier, S. Vigerske, X.
Chen, luvik, tekgrizzly, A. Phillips, D. Zhou, brmanuel, P. S. Lopes, P. Lietz, R. P.
A, and pabloazurduy, Coin-or/python-mip: 1.14.0, Jun. 17, 2022. doi: 10.5281/
zenodo.6657233. [Online]. Available: https://zenodo.org/record/6657233
(visited on 06/22/2022).

[56] Cbc. [Online]. Available: https://github.com/coin-or/Cbc (visited on 05/07/2022).
[57] Gurobi optimizer reference manual. [Online]. Available: https://www.gurobi.com/

(visited on 05/07/2022).
[58] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dy-

namics, and function using NetworkX,” in Proceedings of the 7th Python in Science
Conference, G. Varoquaux, T. Vaught, and J. Millman, Eds., Pasadena, CA USA,
2008, pp. 11–15.

[59] Collaborative data science, 2015. [Online]. Available: https://plot.ly.
[60] “EON element AS.” (2022), [Online]. Available: https://www.eonelement.com/en/

(visited on 05/30/2022).
[61] W. Feist, “Life-cycle energy analysis: Low-energy house, passive house, self-sufficient

house,” International Symposium of CIB, pp. 183–190, Jan. 1, 1997.

https://docs.xbim.net/
https://doi.org/10.21105/joss.00473
https://joss.theoj.org/papers/10.21105/joss.00473
https://github.com/ifcquery/ifcplusplus
https://eprints.soton.ac.uk/403913/
https://www.opencascade.com/open-cascade-technology/
https://www.opencascade.com/open-cascade-technology/
https://github.com/tpaviot/pythonocc
https://github.com/tpaviot/pythonocc
https://doi.org/10.5281/zenodo.6657233
https://doi.org/10.5281/zenodo.6657233
https://zenodo.org/record/6657233
https://github.com/coin-or/Cbc
https://www.gurobi.com/
https://plot.ly
https://www.eonelement.com/en/

77

List of Figures

1.1 Example of installation of a wall element in a construction site in Oslo,
Norway. Source: author personal collection. 6

1.2 Scale and complexity of modular construction element. Source: [3]. 7
1.3 Example of EXPRESS definition for entity type IfcProduct Source: [17]. . . 11
1.4 Inheritance graph for IfcElement. Extract of the IFC schema [14]. 13
1.5 Example of block geometry represented as boundary representation (B-

Rep). 14
1.6 Data structure of Brep representation. Source: [19]. 15

2.1 Example of entity that is both inner and outer. Courtesy of Modulize AS [29]. 21

3.1 Explanation of the subdivision of the walls. In red is the main wall. In blue
and grey are the segments of a wall (also named subwalls) that compose
the wall. The subwalls entirely enclosing an opening are in blue. 25

3.2 Example of visualization of the cycles of a floor plan. Horizontal cycle 1 is
in dark blue, cycle 2 is light blue. Vertical cycle 1 is red, vertical cycle 2 is
dark red. 30

4.1 Extract from the IFC EXPRESS schema, showing how the spatial structure
is represented. In blue are the container elements such as IfcBuilding and
IfcStorey. In yellow are the relationships between those and the element in
purple. 37

4.2 2D plot of extracted vertexes from IFC geometry. 40
4.3 Result of the inner and outer detection algorithm applied to an IFC building

model. In green are identified the outer faces of IfcWalls present in a storey
of the input model. In grey the inner ones. The red dots indicate the
vertexes of the outer faces. 41

78 | List of Figures

4.4 Graph visualization of the outer walls of the building. In orange are the
extracted segments representing the walls’ outer profile. The black dots
are the nodes of the graph, positioned in the xy plane at the centre of the
wall they represent. Then the nodes are connected by edges to create the
connection graph. 43

4.5 Example of pdf after manual marking of outer perimeter. In light blue are
marked the openings, and in green the solid walls. Source: Courtesy of
Modulize AS [29]. 44

5.1 High-level module and class diagram of the structure of the code implemented. 48
5.2 Some examples of floor plans used for the testing. The column on the left

reports the original floor plan created by architects and exported in PDF
format. On the right column, for each floor plan, its representation of the
outer perimeter used for the model testing. The plot is generated from the
.csv representation of the floor plan. In blue are represented the positions
of the openings; in red are the walls without openings. The floor plans are
courtesy of Modulize AS [29]. 51

5.3 Comparison of the two objective functions for all the test instances. The
scatter plot is given for different lambda values. 52

5.4 Comparison of the two objective functions for all the test instances, split
by each instance. The subplots for instances have different y-axis scale. . . 54

5.5 Change of the total discrepancy of the output for different lambda values. 55
5.6 Input vs output floor plan geometry for one specific test instance. In black

are the original walls in the input. In blue are the openings, for both the
input and the output, since the dimension of those is not changing. In red
are the prefab elements used in the output. In green the custom elements
used in the output. The axes dimensions of the floor plans are in meters. . 56

5.11 Comparison of execution time of the standard model (STD) and the same
with fixed corners (EON). 58

5.7 Number of standard elements the optimization model picks, divided by
test instance, by varying the λ parameter. The scale on the y-axis for the
different subplots is not the same to normalize the result and make them
comparable. The colour of the points indicates the total discrepancy of the
output. 61

| List of Figures 79

5.8 Number of custom elements the optimization model picks, divided by test
instance, by varying the λ parameter. The scale on the y-axis for the
different subplots is not the same to normalize the result and make them
comparable. The colour of the points indicates the total discrepancy of the
output. 62

5.9 Example of visualization of the case study IFC file, using the open source
OpenIFCViewer. 63

5.10 Same model with section over the storey considered in this case study. . . . 63
5.12 Work breakdown of manual redraw made with a CAD software by employ-

ees of Eon Element [60]. Reproduced with permission. 64
5.13 2D floor plan visualization of the output created by EON Elements employees. 64
5.14 2D floor plan visualization of the output generated with this thesis method.

In red are the prefab wall elements used in output. In blue the openings,
in green the custom elements and in purple the corners. 64

81

List of Tables

3.1 Example of some rows of the .csv input for the optimization. 27

5.1 List of the 8 test instances used, representing floor plans. First column is
the index number of the instance. 50

5.2 Comparison of execution time of optimization for two solvers: Gurobi and
CBC. The instances are ordered by increasing model rows. The execution
time is in seconds. 57

83

Acronyms

AEC Architecture, Engineering and Construction. 3, 5, 9, 10

BIM Building Information Modeling. 3, 9, 19, 46

B-rep boundary representation. 13

CAD Computer-Aided Design. 3, 19

CLT Cross-laminated timber. 6

IFC Industry Foundation Classes. 3, 10, 13, 20, 35–38, 40, 41, 44, 46, 77

LGPL GNU Lesser General Public License. 46

MIP Mixed-Integer Programming. 3, 27, 47

OSC off-site construction. 2, 5, 6, 8, 9

85

Acknowledgements

The author thanks the advisors, Prof. Federico Malucelli and Prof. Pietro Luigi Belotti,
for their constant presence at meetings to discuss and refine the optimization model and
the computational geometry part.
The author thanks Modulize AS for providing the database of IFC files and PDF floor
plans used for this thesis and for providing the initial thesis question topic.
The author thanks Eon Element AS for giving detailed information regarding their con-
struction system and for validating the thesis work with their approach.
Finally, the author is thankful to Amandine Elise Maria Toso, Lucas Carstens and Brian
Fitzpatrick, who read this thesis and helped to refine the writing part of the thesis.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Background
	Off-site Construction background
	Definitions
	Market and adoption, current state
	Potential of OSC
	Challenges in the adoption of OSC

	BIM
	IFC standard

	Problem formulation and state of the art
	Approach
	Challenges and requisites in quantity extraction from IFC files
	Misclassified entities
	Clash detection
	Spatio-semantic consistency
	Inner and outer walls

	Similar works
	Optimization focus
	IFC and BIM focused

	Mixed Integer Linear Optimization Model
	Input data structure
	Optimization model
	Input
	Decision variables
	Constraints
	Objective

	Complete final model

	Geometry processing from IFC files
	Preconditions
	High-level flow
	Initial processing and walls extraction
	Abstraction of walls in 2D
	Outer wall detection
	Connection graph of walls
	Cycles identification
	Manual extraction of geometry from floor plans

	Implementation, testing and results
	Implementation
	Libraries used
	Code structure
	Hardware used

	Optimization model testing
	Parameters used for the optimization
	Exploration of the Pareto frontier
	Comparison of geometries
	Execution time performance

	Case study
	Construction system specifications
	Comparison with the redrawing process in industry

	Conclusions
	Future works and improvement
	MIP model
	IFC processing

	Possibilities of application

	Bibliography
	List of Figures
	List of Tables
	Acronyms
	Acronyms
	Acknowledgements

