
Executive Summary of the Thesis

Towards Real-Time Inference: A Fusion of Pose Estimation and
Object Tracking

Laurea Magistrale in Computer Science and Engineering

Author: Greta Corti

Advisor: Prof. Matteo Matteucci

Co-advisors: Francesco Lattari Simone Mentasti Riccardo Santambrogio

Academic year: 2022-2023

1. Introduction
In the dynamic realm of computer vision, object
pose estimation models have demonstrated ex-
ceptional accuracy in capturing and predicting
the spatial orientations of various objects. De-
spite their exceptional capabilities, integrating
these models seamlessly into real-time scenar-
ios, especially on resource-constrained systems,
such as wearable devices, presents an impressive
challenge due to their demanding computational
nature. The issue lies in the complex compu-
tational processes that are integral to these so-
phisticated models. Recognizing detailed spatial
information often comes with a high parame-
ter count, resulting in computationally intensive
processes that become a bottleneck, introducing
delay. This issue is crucial especially in resource-
constrained environments and in real-time con-
texts that require rapid decision-making or in-
teraction. The importance of investigating how
to overcome this challenge is particularly pro-
nounced in wearable applications, such as aug-
mented reality glasses, where rapid and precise
spatial information is paramount.
Starting from this problem, the work proposed
addresses this challenge through a multi-faceted
approach, introducing a novel framework that

unifies pose estimation and object tracking. The
primary objective is to significantly enhance in-
ference speed, making real-time applications on
wearable devices not just a possibility but a re-
ality.
The key contributions of this work encompass
a comprehensive quantitative analysis of diverse
embedded platforms, the introduction of an in-
novative framework, and the development of
a flexible, lightweight deep-learning-based net-
work dedicated to object tracking. The strategic
integration of pose estimation and object track-
ing is exemplified through (SwiftTrack), an ad-
vanced model designed to ensure high-speed and
precise pose estimation tailored for wearable de-
vices.
As we delve into the executive summary, the fol-
lowing pages will provide a detailed exploration
of the challenges addressed, methodologies em-
ployed, and the compelling outcomes achieved
through the amalgamation of pose estimation
and object tracking. This pioneering approach
not only pushes the boundaries of computa-
tional efficiency but also opens new possibili-
ties for the seamless integration of sophisticated
computer vision models into real-world, resource
constrained environments.

1



Executive summary Greta Corti

2. Proposed Method
The method proposed involves the integration
of a pose estimation algorithm and an object
tracking algorithm, leveraging the strengths of
both neural networks. While pose estimation
algorithms excel in accuracy, they often lag in
speed during inference. On the other hand, ob-
ject tracking models are designed for real-time
applications with high inference speed but may
compromise accuracy over time. Our innova-
tive model, represented in Figure 1, strategically
utilizes the pose estimation neural network at a
lower frequency for accurate initial pose estima-
tion. Simultaneously, at a higher frequency, it
employs the object tracking model, called Swift-
Track, to track the object’s pose in subsequent
frames. This dynamic interplay ensures that
the object tracking network continuously bene-
fits from the pose estimation network’s accurate
predictions, avoiding delays and providing real-
time performance.
GDR-Net [4] is chosen as the pose estimation al-
gorithm, with a new developed object tracking
model, SwiftTrack, discussed in detail later. The
proposed framework’s flexibility allows for the
incorporation of various pose estimation mod-
els, provided they output both the object’s 2D
bounding box and 3D pose.

Figure 1: Structure of the proposed framework.

2.1. SwiftTrack
SwiftTrack is a novel object tracking model de-
signed to estimate frame poses at an impres-
sive speed of approximately 250 frames per sec-
ond. SwiftTrack stands out for its innovative
approach, overcoming size-complexity trade-offs
and ensuring both speed and precision in pose
estimation. Given two RGB images, one at time
t−1 and another at time t, the network directly
outputs the relative transformation needed to
obtain the new 3D pose and object bounding
box from the initial pose and bounding box of
the object. The network uses two cropped por-

tions for each frame: the first crop focuses on
the object’s previous location, the second on
its current location, both padded for contextual
information, and then resized to 64x64 pixels.
The initial crop helps the network recognize and
position the object, while the second aids in
analyzing the broader search region. The two
cropped and scaled RGB images are concate-
nated into a six-channel tensor input, as shown
in Figure 2. The backbone network, based on
FlowNet Simple architecture [1], employs con-
volutional layers to extract features related to
spatial and temporal variations. The processed
features are used to predict the optical flow vec-
tors and subsequently undergo further process-
ing to predict object transformation parame-
ters, including center, bounding box dimensions,
translation vector, and rotation matrix of the
object in the new image.

Figure 2: SwiftTrack architecture.

To streamline the complexity and optimize the
performance of the neural network, a disentan-
gled representation is employed, where individ-
ual components of relative transformations are
isolated to simplify the learning process. The
proposed method, inspired by Li et al.[2]’s work,
involves decoupling the estimation of relative ro-
tation and translation. This is achieved by ad-
justing the center of rotation and using axes par-
allel to the camera frame. Given the absence of
depth information, it is quite difficult to obtain
the relative 3D translation directly from 2D im-
ages. Instead of directly predicting the 3D vec-
tor, the network is trained to regress changes in
the object’s 2D positioning vx and vy while ac-
counting for scale modifications vz, using these
three formulas:

vx = fx(
xf
zf

− xi
zi
),

vy = fy(
yf
zf

− yi
zi
),

vz = log(
zi
zf

),

(1)

2



Executive summary Greta Corti

where fx and fy are the focal lengths of the cam-
era.
Rotation estimation is approached using the
gnomonic projection, with a specific implemen-
tation of the Cayley transform for rotation ma-
trices. This methodology focuses on small ro-
tations and provides advantages in terms of nu-
merical stability.
In conclusion, the proposed representation of rel-
ative transformation offers several benefits, in-
cluding independence of translation estimation
from rotation, utilization of basic translation
and scaling variables, and the elimination of the
need for prior knowledge about the object.
The network outputs four elements for object
localization: the center and dimensions of the
bounding box, the translation vector, and the ro-
tation matrix at time t. The total network loss
is defined as a combination of losses for these
elements, considering L1 distance for measure-
ments. To address the challenge of balancing
losses with different scales, the losses are merged
into two components:

Lnetwork = αLbbox + βLpose, (2)

where Lbbox is the bounding box loss and Lpose

is the pose loss. The bounding box loss is cal-
culated using mean absolute error between pre-
dicted and target bounding boxes. For the uni-
fied pose regression loss, a geometric reprojec-
tion error is employed, measuring the mean dis-
tance between 2D projections of 3D points based
on estimated and ground truth poses. This ap-
proach ensures a comprehensive evaluation of
object localization and orientation.

3. Experimental Setup and
Evaluation Methods

In this section, we will explain the system setup
used to conduct the experiments and investigate
the effective ability of our system in predicting
2D bounding boxes and 3D poses. Before that,
the dataset creation process is depicted.

3.1. Dataset
The research employs the YCB-Video dataset
for training and evaluating a model designed
for object tracking. This dataset consists of 92
RGB-D videos capturing 21 objects in real-world
and synthetic scenarios. For training, 80 videos

are used, with an additional 12 for testing and
15 for validation.
Initially, a large training dataset is created with
over 400,000 samples, but due to computational
constraints, it is later reduced to 28,954 sam-
ples by randomly selecting 100 frames from each
video. The dataset includes synthetic images,
challenging scenarios, and diverse environmen-
tal conditions.
The study identifies a problem in the neural net-
work’s behavior during training, where it strug-
gles to recognize object movements between con-
secutive frames due to minimal pixel shift. To
address this, a custom dataset is created, focus-
ing on pairs of images separated by 10 frames,
improving the model’s ability to track object
movements.
For validation, four datasets are established,
varying in frame distance (1 frame and 10
frames) and the application of data augmen-
tation. These datasets assess the model’s per-
formance in different scenarios, including ideal
conditions and situations with augmented in-
put. They are named "Static Single Frame"
(SSF ), "Dynamic Single Frame" (DSF ), "Static
10 Frames" (S-10F ), and "Dynamic 10 Frames"
(D-10F ).

3.2. Training Setup
The model is trained on the YCB-Video dataset
using a network initialized with pre-trained
FlowNet-Simple weights. The architecture con-
sists of ten convolutional layers with a stride of 2
in six layers, LeakyReLU non-linearity after each
layer, and decreasing filter sizes. The network
utilizes a 7x7 kernel for the first layer and 5x5
for the next two, followed by 3x3 from the fourth
layer. Feature maps double in the deeper layers,
and two fully connected layers with output di-
mension 512 are followed by four fully connected
layers with dimensions 2, 2, 3, and 9, outputting
center, dimensions of bounding box, translation
vector, and rotation matrix.
The project is implemented in PyTorch with ad-
ditional libraries. Training batches consist of
512 image pairs, and validation batches have
64 pairs. Training is performed on an NVIDIA
GeForce GTX 1080 with 4 CPUs using the
Adam optimizer with a learning rate of 10−4.
The bounding box increase is fixed at 50%, and
input model images have dimensions of 64x64

3



Executive summary Greta Corti

pixels. Early stopping with a patience of 20
epochs is employed to prevent overfitting, mon-
itoring the validation dataset’s loss for image
pairs 10 frames apart with no data augmenta-
tion. Training halts if the loss fails to decrease
further.

4. Results
Different tests are conducted to evaluate the per-
formance and the efficiency of the object track-
ing model SwiftTrack. One of the most impor-
tant aspects related to this research is perfor-
mance. For this reason first of all we have con-
ducted an investigation of how pose estimation
algorithms perform on different embedded plat-
forms. Then, we provide an account of the ex-
periments conducted to arrive at the final model.
Lastly, we unveil the outcomes derived from out
proposed framework to address our problem.

4.1. Preliminary Analysis
The analysis on different embedded devices is
conducted utilizing two different pose estima-
tion algorithms: GDR-Net, a pose estimation
network built for processing RGB images, and
DenseFusion [3], a pose estimation algorithm
that utilizes both RGB images and depth infor-
mation. We examine these two models to evalu-
ate whether the input given to the network has a
significant impact on timing and accuracy. The
goals of this investigation are:

• Assessing whether there is a significant de-
crease in performance when using a stan-
dard RGB camera compared to an RGB-D
camera in a practical application.

• Establishing whether using lower-
performing hardware results in a significant
performance decrease in inference times
on embedded systems. Such hardware,
though, is ideal for real-world applications
with limited available space.

Both neural networks perform accuracy and in-
ference calculations on the LineMOD dataset.
The DenseFusion model achieves the highest av-
erage accuracy of 95.23%, achieving an astonish-
ing level of accuracy exceeding 98% in few ob-
jects, while GDR-Net has an accuracy of 93.69%.
In Table 1, the performance obtained by the
two pose estimation networks on different em-
bedeed platform is shown. Using the time li-
brary in Python, we can compute the duration

required by the models to determine the position
for each image in the LineMOD test dataset. It
is evident that GDR-Net achieves faster infer-
ence times than DenseFusion. Also, as expected,
the best timings are obtained using a GPU, and
inference times improve whenever a Jetson de-
vice with better hardware specifications is used.
Finally, it is evident that the inference timings
are very similar when using a CPU and a Jetson
Nano, so if we perform an inference analysis on
one of the two devices, we can get an idea of
what the timings will be on the other hardware.

Embedded
Platform

GDR-Net
Inference (fps)

DenseFusion
Inference (fps)

4 CPU 9 5
GPU 70 52
Jetson Nano 7 5
Jetson TX2 - 6
Jetson AGX Xavier 25 21

Table 1: Comparison among the inference time
obtained in different embedded platforms using
two different pose estimation algorithms.

4.2. SwiftTrack Experiments
In this section, we thoroughly analyze the results
of our experiments to gain a comprehensive un-
derstanding of the factors that affect our model’s
performance.

4.2.1 Comparing Loss Changes

We conduct a comparative analysis of the use
of four losses versus two losses to determine the
subtle effects of different loss functions on our
model’s overall performance. As shown in Fig-
ure 2, the model outputs four components, thus
the most straightforward method for creating
the loss function of the model is to add up the
L1 losses of each component (Multifaceted Loss).
The varying nature of the components causes
the singular loss contributions to affect the total
loss in different ways, thus to ensure equal train-
ing of all components, the network loss must be
balanced. Determine the optimal coefficients for
the Multifaceted Loss is very difficult, therefore
to simplify our objective, we seek a loss represen-
tation for all network outputs with fewer com-
ponents. We consolidate the center and size of
the bounding box into a single vector that signi-
fies the top-left and bottom-right corners of the
bounding box, while we opt to compute the 3D
dimensions of the object’s bounding box in the

4



Executive summary Greta Corti

Experiment Video 2

Loss Weights IoU
(%)

ADD
(mm)

Lmul

α = 1
β = 4.75
γ = 1495
δ = 1200

81.72 27.04

Less θ = 0.17 85.38 23.24

Table 2: Comparison between Multifaceted Loss
and Essential Loss models and various balancing
configurations on video 2, each composed of 1000
frames and with ground truth updates every 30
frames.

real world by combining the translation vector
and the rotation matrix obtaining the Essential
Loss. Due to the shift from four to two compo-
nents for the total loss, we only need to tune one
coefficient now, making the loss balancing pro-
cess easier. In addition, this change has brought
to an increase in accuracy on both bounding box
and pose estimation as shown in Table 2.

4.2.2 Augmenting Training Data

As a crucial aspect of model training, data aug-
mentation plays a pivotal role in enhancing the
robustness and adaptability of our model against
spatial variations. We opt to solely use transla-
tion as a form of data augmentation, as it mir-
rors the most accurate depiction of the real sce-
nario where the prediction at instant t− 1 devi-
ates from the object’s center point represented
in the image at instant t. The process of apply-
ing this transformation is not straightforward as
SwiftTrack operates on inputs with varying di-
mensionality: the 2D bounding box in the image
plane and the 3D pose in the real world. The ap-
proach for data augmentation involves retaining
the original image pairs and translating the 3D
object into world coordinates. Consequently, we
derive a new position in the 2D image plane,
which is further utilized to select and crop the
two input images. The experiments presented
in Table 3 are executed with consistent hyper-
parameter configurations, with the sole distinc-
tion being the inclusion of data augmentation
in the training dataset. It is evident that data
augmentation substantially enhances the accu-
racy of the model’s predictions, making it no-

tably more robust.

Experiment Video 2
Data

Augmentation
IoU
(%)

ADD
(mm)

No 78.19 26.75
Yes 87.12 25.79

Table 3: Comparison between models trained
with and without the use of data augmentation
in the training dataset on video 2, each com-
posed of 1000 frames and with ground truth up-
dates every 30 frames.

4.2.3 Multi Task Learning

Multi-task learning (MTL) is a paradigm in ma-
chine learning that differs from the traditional
approach of training models for singular ob-
jectives. Instead of solely focusing a model’s
proficiency in one task, MTL involves simulta-
neously mastering multiple, frequently related,
tasks. The model specializes in two tasks: esti-
mating the 2D bounding box in the image and
estimating the 3D pose in the object’s world.
Model performance is highly sensitive to weight
selection and this can significantly impact the re-
sults. Tuning weight hyper-parameters can be a
costly and time-consuming process, often requir-
ing several days for each trial. Therefore, we at-
tempt to apply MTL techniques to find the opti-
mal weights and evaluate if there are substantial
improvements in the estimation accuracy of our
tasks compared to manual loss balancing. As
shown in Table 4, we mainly utilize three multi-
task learning: Random Loss Weighting,
Homoscedastic Uncertainty, and Conflict-
Averse Gradient Descent. Experiments with
Uncertainty and RLW show a decrease in the
IoU score, but have distinct behaviours consid-
ering the ADD metric. RLW exhibits improve-
ment, while Uncertainty experiences a deteriora-
tion in pose estimation. This suggests that RLW
is better able to balance the losses compared to
the model with Uncertainty. Finally, the experi-
ment with CAGrad demonstrates improvements
in bounding box estimation but shows a decline
in pose estimation.

5



Executive summary Greta Corti

Experiment Video 2

Balancer IoU
(%)

ADD
(mm)

No Balance 87.12 25.79
RLW 86.78 23.18
Uncertainty 87.09 49.15
CAGrad 88.46 43.93

Table 4: Comparison between models with dif-
ferent Multi-Task Learning algorithms on video
2, each composed of 1000 frames and with
ground truth updates every 30 frames.

4.3. GDR-Net and SwiftTrack
We unveil the outcomes derived from the pro-
posed framework expounded in Section 2. Our
findings distinctly showcase that the integration
of an object tracking algorithm significantly con-
tributes to the improvement of pose estimation
method inference times, rendering it well-suited
for real-time applications. The fundamental ar-
chitecture of our proposal involves employing
GDR-Net, the selected pose estimation model,
at a low frequency, while SwiftTrack assumes
the role of predicting every frame at a higher fre-
quency. As demonstrated in Table 5, SwiftTrack
is significantly faster in inference compared to
GDR-Net, showcasing its remarkable effective-
ness in estimating tasks in real-time. Thanks to
this capability, it can be utilized for the major-
ity of the time, while GDR-Net is employed at
a lower frequency to enhance pose prediction in-
termittently. An example of 2D bounding box
and pose estimation on a frame is shown in Fig-
ure 3.

GDR-Net SwiftTrack
Average

Inference (fps) 70 256

Table 5: Time inference of GDR-Net and Swift-
Track calculated using GPU.

5. Conclusions
Our investigation into embedded platforms re-
veals that the NVIDIA Jetson Nano, despite its
economical and compact nature, performs sim-
ilarly to a CPU. This discovery implies that
inference analysis on either device can reliably

estimate timings on the counterpart hardware.
The study underscores the significance of hard-
ware considerations in optimizing performance
across embedded platforms. SwiftTrack, despite
its simple structure, excels in accurately predict-
ing object bounding boxes and 3D poses using
only RGB images. Operating at an impressive
speed of 256 frames per second, it proves effec-
tive for real-time applications. The model’s ver-
satility is highlighted by its ability to swap back-
bones, underscoring its adaptability to varying
computational demands without compromising
core strengths. In conclusion, our study estab-
lishes the effectiveness of the novel framework
composed of the GDR-Net method and the ob-
ject tracking algorithm for seamless real-time
operation. The framework’s flexibility accom-
modates various pose estimation methods, en-
hancing real-time processing across diverse ap-
plications. This adaptability opens avenues for
widespread utilization. Future research could
explore alternative datasets beyond YCB-Video,
experiment with Recurrent Neural Networks for
improved prediction accuracy, and fortify the
object tracking model against challenging sce-
narios such as changes in light and high occlu-
sion.

Figure 3: Example of bounding box and pose
estimation of SwiftTrack. Ground truth for the
2D bounding box and object pose is denoted by
green and light blue, while the model predictions
are indicated by red and pink.

References
[1] Alexey Dosovitskiy, Philipp Fischer, Eddy

Ilg, Philip Hausser, Caner Hazirbas,
Vladimir Golkov, Patrick Van Der Smagt,

6



Executive summary Greta Corti

Daniel Cremers, and Thomas Brox. Flownet:
Learning optical flow with convolutional
networks. In Proceedings of the IEEE
international conference on computer vision,
pages 2758–2766, 2015.

[2] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang,
and Dieter Fox. Deepim: Deep iterative
matching for 6d pose estimation. In Proceed-
ings of the European Conference on Com-
puter Vision (ECCV), pages 683–698, 2018.

[3] Chen Wang, Danfei Xu, Yuke Zhu, Roberto
Martín-Martín, Cewu Lu, Li Fei-Fei, and Sil-
vio Savarese. Densefusion: 6d object pose
estimation by iterative dense fusion, 2019.

[4] Gu Wang, Fabian Manhardt, Federico
Tombari, and Xiangyang Ji. Gdr-net:
Geometry-guided direct regression network
for monocular 6d object pose estimation,
2021.

7


	Introduction
	Proposed Method
	SwiftTrack

	Experimental Setup and Evaluation Methods
	Dataset
	Training Setup

	Results
	Preliminary Analysis
	SwiftTrack Experiments
	Comparing Loss Changes
	Augmenting Training Data
	Multi Task Learning

	GDR-Net and SwiftTrack

	Conclusions

