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1. Introduction
Failure management in communication networks
is a critical issue nowadays, as a single failure
in the network can lead to service disruption
for thousands or millions of users at the same
time. Therefore, preventing failures from oc-
curring is a crucial task for network operators
to meet Service Level Agreements (SLAs) to its
customers and this requires network’s data col-
lection and analysis. Machine Learning (ML)
is a possible approach used to automate and
speed up the whole network management pro-
cess by leveraging data retrieved monitoring the
network. In our work, we take into consideration
failure management in microwave networks, fo-
cusing on the failure-cause identification prob-
lem. Specifically, we use supervised machine
learning models to address the classification of
hardware failure in microwave networks under
the condition where there is lack of abundant
data from the field. The challenge of address-
ing these issues with a scarce number of data
is generally referred to as “data scarcity”. This
problem harms the training and thus the per-
formance of ML algorithms, which need a large
amount of labelled data to be trained efficiently.

The main contributions of this work can be listed
as follows:
• We model the hardware failure identifica-

tion problem as a machine learning classifi-
cation problem.

• We use different supervised learning models
to identify classes (i.e., failure causes) where
classification performance is poor, showing
the correlation between data scarcity and
poor model performance.

• We investigate different methodologies to
deal with the data scarcity problem, to un-
derstand which is the most appropriate for
our scope.

• We conduct an in-depth analysis on syn-
thetic data generation as a methodology to
address data scarcity, proposing a proce-
dure to identify which classes to actually
generate synthetic data on and with what
percentage.

The rest of the document is organized as fol-
lows. In Section 2 we present an overview of
previous work on the use of ML for failure man-
agement in microwave networks, and on the use
of synthetic data generation to deal data scarcity
problem. In Section 3 we introduce our problem
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and data. In Section 4 we present the baseline
supervised learning models adopted to identify
classes (i.e., failure causes) where classification
performance is poor. In Section 5 we present the
ML methodologies adopted to address the prob-
lem of data scarcity when performing failure-
cause identification in microwave networks. In
Section 6 we conduct the in-depth analysis on
synthetic data generation with SMOTE. In Sec-
tion 7 we present our final results, and in Section
8 we report the conclusion on this work.

2. Related works
Several works have investigated the use of ML
techniques to address failure management in
microwave networks. In [3] the authors give
an overview on supervised and semi-supervised
learning approaches for automated failure-cause
identification in microwave networks, showing
that supervised ML enables very accurate fail-
ure identification reaching 93% classification ac-
curacy. Then, they addressed data scarcity
investigating a semi-supervised learning ap-
proach to automate labeling procedure, based
on autoencoders-like Artificial Neural Networks.
Other works address data scarcity by using dif-
ferent methodologies, such as transfer learning
[4], active learning [1], data synthesis via gener-
ative adversarial network or via variational au-
toencoders, and data augmentation via SMOTE
[2].
To the best of our knowledge, no existing work
has investigated the problem of data scarcity
when performing hardware failure-cause identifi-
cation in microwave networks, comparing differ-
ent methodologies to enhance the performance
of supervised learning algorithms. Another valu-
able aspect in our paper is that we conduct an in-
depth analysis aimed to identify on which classes
and with what percentages to generate the syn-
thetic data.

3. Problem Statement and
Data

We model the failure-cause identification prob-
lem as a supervised multi-class classification
problem. The data we use are provided by
SIAE Microelettronica and are a collection of
hardware failures states taken from a real mi-
crowave network, where devices alarms status

is monitored by a Network Management System
(NMS) with 15-minutes intervals. These failures
events have been analysed by domain experts
and labelled in 4 macro-categories and 22 micro-
categories of failures. To make it suitable for
the machine learning algorithms, we undertook
some preprocessing actions, obtaining a result-
ing dataset composed of 1045 entries, i.e., 1045
different failure events, distributed in 17 differ-
ent categories, a.k.a classes, of hardware failures,
as shown in the following Table 1:

MACRO
CATEGORY

MICRO
CATEGORY CATEGORY DATA

POINTS

0 0 0 13
0 1 1 7
0 2 2 21
0 3 3 8
0 4 4 264
0 5 5 89

1 0 6 87
1 1 7 6
1 2 8 130
1 3 9 91

2 0 10 29
2 1 11 20
2 3 12 15

3 0 13 43
3 1 14 39
3 2 15 150
3 3 16 33

Table 1: Categories of hardware failures in mi-
crowave network. Due to confidentiality reasons,
we do not report the description of the specific
failures, and instead provide a masked represen-
tation.

As shown in Table 1, the dataset is affected by
data scarcity, since for several failure categories
there are only few data points available.
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Figure 1: SMOTE pipeline with hyperparameters optimization.

4. Failure-Cause Identifica-
tion with baseline Machine
Learning models

In this section we present the baseline ML mod-
els used in this work, i.e., XGBoost, Support Vec-
tor Classifier (SVC) and Artificial Neural Net-
work (ANN).
XGBoost is a gradient boosting algorithm that
uses decision trees ensembles as base learners,
i.e., an individual learner of the ensemble, to
iteratively improve the predictions of the model.
SVC is a specific type of SVM (Support Vec-
tor Machine) that is optimized for classification
tasks with linearly separable data. The goal of
SVC is to find the optimal hyperplane that sepa-
rates the data into different classes by maximiz-
ing the margin, that is the maximum distance
between data points of different classes.
ANN is a machine learning model that is in-
spired by the structure and function of the hu-
man brain. It is composed of interconnected
nodes, or neurons, that process and transmit in-
formation.
These baseline models are used to determine
the baseline performance on Accuracy, Preci-
sion, Recall, and F1-score metrics, that we aim
to enhance with the methodologies presented in

Section 5.

5. Machine Learning method-
ologies to address Data
Scarcity

In this section we present the methodolo-
gies used to address the data scarcity. We
will present Synthetic Minority Over-sampling
Technique (SMOTE), Transfer Learning (TL),
Auxiliary-Task Learning (ATL), and Denoising
Autoencoders (DAE).
SMOTE is a data augmentation technique that
works by creating synthetic samples from the mi-
nority class, that is over-sampled by taking each
minority class sample and introducing synthetic
examples along the line segments joining any/all
of the k minority class nearest neighbors. With
this methodology our goal is to address data
scarcity enriching the pre-processed dataset with
synthetic data generated by SMOTE. Figure 1
illustrates the proposed pipeline for the training
and testing of this methodology:

1. BLK-1: we split the dataset in 5 folds us-
ing Stratified k-fold Cross-Validation to val-
idate the aforementioned performance met-
rics.

2. BLK-2: on the train set we apply SMOTE,
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obtaining a new train set composed by real
data and synthetic data.

3. BLK-3: we use the synthetic train set for
the hyperparameters optimization; each hy-
perparameter set chosen is cross-validated
using Stratified k-fold Cross-Validation to
optimize the chosen performance metric
that is the accuracy.

4. BLK-4: we test the Best SMOTE Models,
i.e., XGBoost, SVC and ANN trained on
the Synthetic Train Set with best set of hy-
perparameter, on the test set. We store the
performance metrics obtained on this split.

5. BLK-5: at the end of the five iterations,
we compute the average performance
metrics for each model.

TL is a methodology based on the concept of
knowledge transfer, i.e., unlike in traditional ma-
chine learning models which are trained from
scratch, here the knowledge acquired by a model
on one or more source tasks is transferred to
a target task. The goal of applying Trans-
fer Learning is to address data scarcity by
first training an ANN model to classify macro-
categories and then re-training a TL model de-
rived from it, able to classify the 17 defined cat-
egories of hardware failures.
ATL is an extension of Multi-task Learning
where the main-tasks, i.e., the ones produc-
ing the required outputs, are flanked by the
auxiliary-tasks, i.e., easy to learn tasks of mi-
nor importance, and then their loss functions
are combined into a final multi-task loss func-
tion that allow to benefit from both contribu-
tions. In our work the main-task is the classifi-
cation on the 17 categories of hardware failure,
while the auxiliary-task is the macro-category
classification. We expect that this defined loss
function will benefit from the auxiliary loss to
enhance the classification on the 17 categories
of hardware failures.
DAE is an autoencoder (AE), i.e., a self-
supervised learning model trained to encode the
input x into some representation c(x) so that
the input can be reconstructed from that repre-
sentation, that receives as input corrupted data
by adding noise. DAE can address data scarcity
learning not only a compressed representation of
the features but also the structural relationships
within them. We expect that this model will be

able to learn relationships between the alarms,
such as:
• if alarm “a” or set of alarms “A” are on, also

alarm “b” or set of alarms “B” are on.
• if alarm “a” or set of alarms “A” are off, also

alarm “b” or set of alarms “B” are off.
• if alarm “a” or set of alarms “A” are on,

alarm “b” or set of alarms “B” are off.
• if alarm “a” or set of alarms “A” are off,

alarm “b” or set of alarms “B” are on.

6. SMOTE Analysis
In this section we present an in-depth analysis
conducted on SMOTE.
The first step of this analysis is to identify a met-
ric that, based on the per-class F1-score, defines
the criticality of the single class, i.e. how poor
is the performance score on that class of hard-
ware failures. The chosen metric is the first and
second quantile score computed on the per-class
F1-score given by the three Best Baseline Mod-
els, i.e., XGBoost, SVC and ANN trained with
their respective best sets of hyperparameters. In
particular, we assigned a color to each class ac-
cording to its F1-score value and the quantiles,
following this criteria:
• RED: if F1-score is below than or equal to

first quantile (<=25%). This means that
the class is considered as very critical.

• ORANGE: if F1-score is below than the sec-
ond quantile (<50%). This means that the
class is considered as critical.

• GREEN: if the F1-score is greater than
or equal to the second quantile (=>50%).
This means that the class is considered as
not critical.

Once we have for each class the colors given
by the three considered classifiers, we assign a
global class color according to the following cri-
teria:
• If the tree classifiers give a unique class

color, that is the global color we assigned
to that class.

• If the three classifiers give two different class
colors, we assigned as global class color to
that class the predominant one, i.e., the one
given by largest number of classifiers.

• If the tree classifiers give a different class
color, we assigned as global class color to
that class the orange color.

The second step of this analysis is to define two
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Figure 2: Performance comparison.

“sampling strategies” by which SMOTE will be
applied:
• Critical-classes: which considers only the

critical classes, i.e., the ones that have RED
or ORANGE as global class color.

• All-classes: which considers all the classes
independently from the global class color
assigned.

With the purpose of identifying the amount of
synthetic data to be generated on the classes,
we establish four “percentages” of synthetic data
generation, i.e, “12%”, “35%”, “50%” and “65%”,
where each percentage represents the number of
data points, i.e., real data points plus synthetic
data points, in the train set of a specific class.
We compute these percentages taking as refer-
ence the class with the highest number of data
points, i.e., class 4 with 264 data points.
The third step of this analysis is to understand
whether it is possible to find for each class of
hardware failure a combination of strategy and
percentage that allows for improvements regard-
less of the type of classifier used. For this reason,
we propose a procedure based on selecting the
best strategy common to the three classifiers by
taking as a starting point the best combinations
found for each individual classifier.

7. Results
In this section we perform numerical evalua-
tion of the Machine Learning (ML) methodolo-
gies adopted to address the problem of data
scarcity when performing failure management in
microwave networks. Figure 2 shows the results
in terms of Accuracy, Precision, Recall, and F1-
score we obtain using the presented methodolo-
gies. The main takeaways from the use of these

methodologies are:
1. The use of TL or DAE does not improve

the data scarcity problem. In fact, with TL
we obtain an F1-score of 78.8% and with
DAE an F1-score of 84.5%, while with the
baseline classifier we obtain an F1-score of
89.4%.

2. The use of SMOTE or ATL does improve
the data scarcity problem. In fact, with
SMOTE we obtain an F1-score of 92.6%
and with ATL an F1-score of 92.3%, while
with the baseline classifier we obtain an F1-
score of 89.4%.

3. Analyzing the per-class F1-score obtained
with SMOTE and ATL, we observe that
with SMOTE we have higher F1-score im-
provement on classes characterized by few
points than with using ATL, as shown in
the following Table 2:
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CLASS BASELINE ATL SMOTE

0 0.853 0.853 0.905
1 0.2 0.2 0.3
2 0.646 0.788 0.833
3 0.693 0.6 0.893
4 0.912 0.963 0.962
5 0.921 0.949 0.959
6 0.977 0.966 0.967
7 0.4 0.533 0.4
8 0.977 0.981 0.989
9 0.955 0.979 0.965
10 0.864 0.964 0.982
11 0.876 0.949 0.914
12 0.871 0.92 0.86
13 0.673 0.684 0.692
14 0.776 0.808 0.836
15 0.928 0.935 0.925
16 0.769 0.817 0.816

Table 2: Comparison between per-class F1-score
values obtained using baseline model (“BASE-
LINE”), a ML model built on Auxiliary-Task
Learning (“ATL”) methodology and a ML model
built on SMOTE methodology.

From these results we obtain that SMOTE is
the most suitable technique to deal with data
scarcity, so we focus on it the in-depth analysis,
summarized below.
We identify these classes as critical, i.e. class
1, 2, 3, 7, 11, 13, 14 and 16, and applying the
strategies and percentages defined to SMOTE
methodology, we obtain these main takeaways:

1. Regardless of the baseline classifier consid-
ered, in most cases synthetic data help to
improve the global performance of the base-
line classifier.

2. There are combinations of strategies and
percentages that achieve better results than
SMOTE without the use of the combina-
tion.

3. Generally, generating synthetics data on all
the classes performs better than generating
it only on critical classes. This tells us that
to improve the overall performance of the

classifiers, in generating the synthetic data
it is not enough to consider only the criti-
cal classes but it is necessary to consider all
classes, in order not to get the dataset un-
balanced again towards the critical classes.

4. Generally, the highest performance is ob-
tained when considering low percentages of
synthetic data, while moving to higher per-
centages the performance drops.

The last result we obtain is the one regarding the
proposed procedure to select the best per-class
combination of strategy and percentage that al-
lows for improvements regardless of the type of
classifier adopted. From this analysis, we select
the classes on which to generate the synthetic
data with the respective number of synthetic
data to be added. Applying this procedure we
obtain a per-class F1-score improvement on 6 of
8 critical classes for XGBoost, on 2 of 8 critical
classes for SVC, and on 4 of 8 critical classes for
ANN. These results show us how our proposed
procedure for selecting classes and percentages
actually enhances the overall results, improving
the F1-score of classes characterized by a low
number of data points and thus affected by data
scarcity.

8. Conclusion
We adopted different ML-based classification
methodologies to address data scarcity in
failure-cause identification in microwave net-
works. Overall, we obtained that SMOTE is
the best performing methodology for this scope.
Our in-depth analysis mainly show how generat-
ing synthetic data through SMOTE helps to im-
prove classification on classes affected by data
scarcity, as long as we understand on which
classes and with what percentages to generate
the synthetic data.
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