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Abstract

The increasing presence of automated systems in industrial frameworks makes the devel-
opment of fully automatized processes more and more necessary, in order to improve cycle
time of single task and optimize the global production. The manipulation of deformable
linear objects (DLOs), such as wires, cables and tubes, represents the most difficult aspect
to be automatized, due to the complex behaviours introduced by this kind of objects. For
these reasons, the manipulation of DLOs, required in several industrial applications, is
today entirely performed by human operators, involving alienating and time consuming
operations.
This thesis proposes a model-based offline planning for a dual-arm robotic manipulation of
a deformable linear object. The aim is to bring the DLO from an initial configuration, to
a final one. A mass-spring dynamical model is exploited in order to perform optimization
and simulation, and an additional Young’s modulus estimation stage provides information
related to the stiffness of the cable, managing to properly handle several deformable linear
objects, with different mechanical properties.
Experiments are performed to validate the proposed method, obtaining good results that
prove robustness of the planner to several DLOs brought in different final configuration.
In addition a wire harness assembly operation is performed by exploiting the planning
algorithm developed in this work.

Keywords: Model-based planning, Optimization, Dual-arm manipulation, Deformable
linear objects, Robotics.
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Abstract in lingua italiana

L’aumento della presenza di sistemi automatizzati nel settore industriale porta all’esigenza
sempre più spinta di sviluppare processi totalmente automatici, in modo da diminuire i
tempi di ciclo delle singole operazioni e di ottimizzare la produzione totale. La manipo-
lazione di oggetti deformabili lineari (DLOs), come cavi e tubi, rappresenta l’aspetto più
difficile in questo contesto, a causa delle complesse proprietà associate a questo tipo di
oggetti. Per questo motivo, la manipolazione di DLO, necessaria in diverse realtà industri-
ali, è al giorno d’oggi interamente eseguita da operatori, spezzando la catena di operazioni
automatiche e introducendo tempi di attesa.
Questa tesi propone un metodo per pianificare la manipolazione di un oggetto deformabile
lineare tramite un robot a due braccia. L’obiettivo è di portare un cavo da una configu-
razione iniziale ad una finale. Si utilizza un modello dinamico massa-molla integrato nella
fase di ottimizzazione e simulazione, inoltre si implementa una fase di stima del modulo
di Young, in modo da ottenere informazioni riguardo la rigidezza associata al cavo. In
questo modo è possibile eseguire la pianificazione per vari DLO con diverse proprietà
meccaniche.
Per convalidare la metodologia vengono eseguiti degli esperimenti finali , che mostrano
buoni risultati e robustezza per diversi tipi di DLO portati in diverse configurazioni. In-
oltre viene eseguita un’operazione di cablaggio, sfruttando l’algoritmo di pianificazione
sviluppato in questo lavoro.

Parole chiave: Pianificazione , Ottimizzazione, Manipolazione dual-arm, Oggetto de-
formabile lineare, Robotica.





v

Ringraziamenti

Vorrei dedicare queste righe a tutti coloro che mi sono stati vicini in questo percorso di
crescita personale e professionale.

Ringrazio i Professori Paolo Rocco e Andrea Zanchettin, che mi hanno permesso di far
parte del loro gruppo di ricerca e lavorare nel MeRLIn lab.

Un ringraziamento speciale ad Andrea Monguzzi, che è stato capace di guidarmi quando
ne avevo bisogno, sapendo dare spazio alla mia creatività e alle mie intuizioni.

Ringrazio i miei amici e compagni di questi cinque anni di Politecnico: Riccardo, Andrea,
Gianluca, Roi e Alessandro, per tutti i momenti di spensieratezza tra una lezione e l’altra.

Ringrazio gli amici delle serate al tetto, e la loro semplicità con la quale mi hanno sempre
tranquillizzato e ricaricato.
Un grazie anche a tutti i miei amici di Moggio, che mi hanno trascinato in un mondo più
leggero quando ne avevo bisogno.

Un grande ringraziamento ad Alessandra, che mi è stata vicina, e mi ha sostenuto nei
momenti più difficili.

Per ultima, ma non per importanza, ringrazio tutta la mia famiglia: Valeria e Flavio, che
stanno trovando la loro strada insieme a me, e i miei genitori, senza i quali non avrei mai
potuto arrivare fino a qui e diventare quello che sono oggi.





vii

Contents

Abstract i

Abstract in lingua italiana iii

Ringraziamenti v

Contents vii

1 Introduction 1
1.1 Robotic manipulation of deformable linear objects . . . . . . . . . . . . . . 1
1.2 Thesis purposes, achievements and methodology . . . . . . . . . . . . . . . 2
1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State of the art 5
2.1 Models for Deformable Linear Objects . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Finite element method applied to DLO dynamical model . . . . . . 5
2.1.2 Elastic rod based DLO model . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Local models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4 Mass-spring based DLO dynamical model . . . . . . . . . . . . . . 7

2.2 Planning for Deformable Linear Objects . . . . . . . . . . . . . . . . . . . 8
2.3 Remarks and thesis contributions . . . . . . . . . . . . . . . . . . . . . . . 12

3 Model description 15
3.1 Introduction to the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 State representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Springs and energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Linear spring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 Bending spring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.3 Torsional spring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



viii | Contents

3.5 Forces computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Damping coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.8 Time discretization and iterations . . . . . . . . . . . . . . . . . . . . . . . 23

3.8.1 Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.8.2 Time discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.9 Enhanced DLO modeling through mass-spring model . . . . . . . . . . . . 23
3.9.1 Bending forces magnitude refinement . . . . . . . . . . . . . . . . . 24
3.9.2 Bending forces direction refinement . . . . . . . . . . . . . . . . . . 26
3.9.3 Energy refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Optimal trajectory planning for dual arm DLO manipulation 27
4.1 Introduction to optimization problems . . . . . . . . . . . . . . . . . . . . 27
4.2 Optimization pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Planning through basic geometrical optimization . . . . . . . . . . . . . . . 32

4.3.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.2 Optimization formalism . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.3 Decision variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.4 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Planning through advanced geometrical optimization . . . . . . . . . . . . 39
4.4.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.2 Decision variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.3 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Planning through physical optimization . . . . . . . . . . . . . . . . . . . . 46
4.5.1 Physical optimization pipeline . . . . . . . . . . . . . . . . . . . . . 46
4.5.2 Decision variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5.3 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 TCPs trajectories definition . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6.1 Auxiliary vector method . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6.2 Minimial rotation identification method . . . . . . . . . . . . . . . . 56
4.6.3 Equivalent rigid rotation method . . . . . . . . . . . . . . . . . . . 59

5 Iterative planning through simulation 65
5.1 Simulation environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Static simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



5.3 Stability check for target pose . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Path stabilization and obstacle avoidance . . . . . . . . . . . . . . . . . . . 72

5.4.1 Obstacle modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.2 Gravity deformation of intermediate shapes and collision detection . 72
5.4.3 Collision avoidance and re-planning through optimization . . . . . . 75

6 Identification of the stiffness of deformable linear objects 77
6.1 Young’s modulus identification . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Data driven optimization tuning . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Experimental analysis and use case 93
7.1 Experimental setup description . . . . . . . . . . . . . . . . . . . . . . . . 93

7.1.1 Camera calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.1.2 Deformable linear objects registration . . . . . . . . . . . . . . . . . 96

7.2 Experimental Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2.1 Young’s modulus identification for USB and Ethernet cables . . . . 99
7.2.2 Quantitative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2.3 Qualitative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3 Use case: Wire harness assembly . . . . . . . . . . . . . . . . . . . . . . . 114
7.3.1 Wire harness assembly for USB cable . . . . . . . . . . . . . . . . . 116
7.3.2 Wire harness assembly for Ethernet cable . . . . . . . . . . . . . . . 120
7.3.3 Wire harness assembly for PU Hose . . . . . . . . . . . . . . . . . . 124

8 Conclusions 129
8.1 Future developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Bibliography 131

List of Figures 133

List of Tables 137





1

1| Introduction

This thesis focuses on robotic manipulation of deformable linear objects (DLOs), like
cables, wires and tubes. In particular, the objective is to develop an off-line planning
strategy, aimed to computing the trajectories for a dual-arm robot, allowing a manipula-
tion of a cable in order to bring it in a desired configuration.

1.1. Robotic manipulation of deformable linear ob-

jects

Deformable Linear Objects (DLOs) are elements, like wires, pipes and ropes, with one
dimension that is bigger than the other two, for this reason they are highly prone to shape
deformations.
Interest in robotic manipulation of deformable linear objects is growing rapidly, especially
in the automotive and the aerospace fields, in which numerous applications involving
DLOs, can be found, such as for example, wiring operations, wire harness manufacturing
or switchgear assembly. In many industrial applications, manipulation of cables, wires or
tubes is needed but while industrial manipulation of rigid objects has been automatized
for a long time, the handling of deformable linear objects is usually performed manually.
The sequence of automated operations must be interrupted to allow a human operator
to manipulate the DLO, affecting the operation cycle-time and making the whole process
time-consuming.
For this reason the DLO manipulation can be considered a bottleneck in industry frame-
works, and this is due to the several issues encountered in automating such tasks.
The main challenges are related to the highly non-linear behaviours and the large number
of degrees of freedom and parameters to deal with.
Those issues lead to complex mathematical models describing the behaviours of the ca-
ble subjected to manipulation constraints. Moreover also the usage of sensor can be a
huge problem. Generally vision sensors are mostly exploited, because they are efficient
and intuitive to use. However although a vision system can recognize an element, for
example by inspecting its color and shape, it’s an hard task to recognize and track a
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deformable linear object, since they are highly subjected to deformation, leading to huge
variation of their shape during the operations, introducing the necessity of detailed and
complex tracking algorithms. Moreover, vision sensors can fail in presence of sub-optimal
environmental conditions, for example in case of presence of obstacles, occlusions and
poor-lighting. Also the presence of a complex back-ground may be an issue, especially if
many similar deformable linear objects are placed together. In addition, the most com-
mon industrial cables and tubes are often composed by transparent or highly reflective
materials, increasing the difficulty of the usage of vision sensors.
Force sensors can be exploited, but despite they are very informative to be used with
rigid objects, some issues may arise with deformable linear objects. In fact the informa-
tion collected by a force sensor usually is not enough to understand the global behaviour
of a cable. More sensor can be exploited in order to inspect the object in many points,
leading to a very expensive set-up. For this reason force sensors are generally used to
inspect local behaviours of deformable linear objects, and the application is limited on
stiff-cables.
To face those issues, a model-based solution can be exploited: all the available information
about the deformable linear object and the working environment should be used, for a
global understanding of the operation behaviour. For this reason a model-based planning
phase is fundamental, as to use in an optimal way all the available information. In the
scientific literature some model-based planning applications can be found [11, 13, 17], that
proposed planning algorithms involving a dual-arm robot that manipulate a cable gripped
at the two ends. The usage of a dual-arm robot exploits the maximum number of degree
of freedom, in order to face the complexity introduced by the cable, and reproducing the
human behaviour.

1.2. Thesis purposes, achievements and methodology

The main purpose of this thesis, is the development of a model-based planning algorithm
of a dual-arm robot for a deformable linear object manipulation, for various kinds of in-
dustrial cables, composed by different materials and with different stiffness. The methods
proposed in the thesis have potential industrial relevance, since they are easily adaptable
to practical applications, facing the need of manipulating cables, wires and tubes.
More in detail, an optimization-based planning is implemented to find intermediate shapes
for a deformable linear object, to let it evolve from an initial condition to a target one.
From the planned intermediate configurations of the cable the intermediate positions and
orientations of the robot grippers can be extracted. Additionally a simulation environment
is set up, to better analyse the cable behaviours and the collision with modeled-obstacles.
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Moreover a re-optimization procedure is performed for obstacle avoidance purposes.
An algorithm for the Young’s modulus identification of a generic deformable linear object
is implemented, that estimates the stiffness related to a cable, even if it is a composite
one. This information is provided to the optimizator and the simulator, that must behave
accordingly.
Finally, several tests are carried out on a real robotic setup to validate the proposed
strategy. The methodology is also applied to a use case, for a wire harness assembly.

The flowchart of the implemented methodology is summarised in Figure 1.1. Different
steps are exploited, each one is fundamental for a different aspect of the work. The
different phases are explained one by one along the thesis, but they are highly intertwined
in the developed planning algorithm.

Figure 1.1: The work can be divided in many phases intertwined one with the other. This
scheme is provided to have a better understanding and a global comprehension of the
methodology developed in this work.
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The achievements of this thesis can be summarized in:

- A planning algorithm for a dual arm robotic manipulation of a deformable linear
object, in two-dimensional and three-dimensional space, generating trajectories for
the robot grippers, and performing obstacle avoidance.

- An identification algorithm for the Young’s modulus of deformable linear objects
(in particular for composite cables), leading to a realistic and reliable estimation.

- An industrial application for the proposed methodology, involving a wire harness
assembly operation.

1.3. Thesis structure

The remaining of this Thesis is articulated into seven main chapters, each one highlighting
a key element in the development of the work.

- Chapter 2 aims to summarize the main past works and contributions, relevant for
modeling and planning for deformable linear objects;

- Chapter 3 describes in detail the deformable linear object model that is exploited
in this work;

- Chapter 4 describes the optimization phase applied to the deformable linear object,
and the strategies used to extract the robot grippers poses for the generation of the
robot trajectories;

- Chapter 5 reports the integration of a simulation environment that follows the
optimization phase, and describes the obstacle avoidance strategy;

- Chapter 6 provides a method for the Young’s modulus identification of a generic
deformable linear object, and describes a stiffness-based adaptation procedure in-
volving the optimization phase and the simulation environment;

- Chapter 7 reports the experimental validation and an industrial use-case applica-
tion for the methodology;

- Chapter 8 describes the conclusions and possible future works to improve the
proposed method.
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This Chapter aims to analyse some modeling and planning strategies involved with the
deformable linear objects, highlighting the contribution of the thesis.

2.1. Models for Deformable Linear Objects

Modeling is central in automation and models are widely used for different tasks, such as
simulation, planning, control and estimation. It is important to highlight that the best
model is the most informative one, that allows us to get all the information we need,
without overloading the computations and the communications. That’s why sometimes
simple but informative models are prefereed with respect to computationally heavy and
more accurate ones.
As stated in [6] due to high-dynamic behaviour of deformable objects, correctly modelling
the deformations of a deformable linear object is one of the main concerns when handling
these kinds of objects. That is the reason why different kinds of models have been studied.
In the following a brief description of different models is proposed.

2.1.1. Finite element method applied to DLO dynamical model

The finite element method (FEM) [8] allows to create a very accurate model, that can
express in a realistic way the deformation of the cable. However generally FEM models
are computationally heavy to be solved, ending in a too complex and time-consuming
procedure. An exemple can be found in [15], where a FEM strategy is used to perform a
detailed analysis for some structural cables (see Figure 2.1).

Figure 2.1: FEM model for a structural cable [15]
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2.1.2. Elastic rod based DLO model

An other way to model the DLOs is to regard them as tiny elastic rods. Two common
methods are used: The Kirchoff elastic rod and the Casserat model.
The Kirchoff elastic rod is exploited in [3] where the outhors used this model to compute
the static equilibrium of the cable, considering the grippers placed at the two ends. This
model allows the computation of the bending and the twisting energy. the Cosserat rod
model, used in [7] is instead a more complete model, allowing also the computation of
stretching and shearing forces. Both those strategies model the cable as a smooth and
continuous elastic rod, by using a framed curve Γ = {γ(s); t(s),m1(s),m2(s)}, where
γ(s) is an arc length parameterized curve in R3 describing the rod’s center-line, and
(t(s),m1(s),m2(s)) is a frame on each point of the center-line, useful to express the twist-
ing and the bending behaviour of the cable.

Figure 2.2: Elastic rod representation [2]

This theory can be extended toward a discrete picture, an example can be the discrete
Kirchoff elastic rod, described in [2].
The elastic rod models involves a very reliable mathematical model, introducing compre-
hensive physical properties. However using those models for simulation or optimization
can be challenging, because of the over complexity introduced. Moreover the introduction
of constraints can be complex.

2.1.3. Local models

On the other side some works in the literature focus on the creation of local simple models
for deformations, exploiting some learning procedures in order to find parameters that well
approximate the system in the point of interest. An example can be found in [14], where a
simple Jacobian matrix is used to model the interaction between the grippers of the robot
and the deformation of the DLO, in the form ẋ = J(x, r)ṙ, where x are the position
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vectors of some points on the cable, and r are the position vectors of the grippers. An
other method is proposed by Navarro et al. [16] where the DLO placed on a 2D surface is
represented with Fourier series, while its physical properties are unknown, a local linear
deformation model is estimated by learning some parameters from the series.
Those strategies give the possibility to handle very simple models, but they express only
local behaviours, without considering the global physical behaviour of the cable: they are
effective only for small deformation control problems, and there is no way to use them for
a wider task, such as path optimization or simulation.

2.1.4. Mass-spring based DLO dynamical model

As a simple but informative model, the mass-spring model is widely used for deformable
objects: it is composed by mass points and various springs, managing to provide the
deformation behaviours of the cable in an intuitive way, and considering the entire cable.
The model was firstly introduced by Humann and Parant [5], representing deformable
objects with particles of mass attached by linear springs. A contribuition to the model is
given by Look et al. [9] by using some “torsional” springs attached to the masses in order
to capture the bending behaviours of the cable.

Figure 2.3: Mass-spring model with “torsional” bending springs, and linear axial springs

Finally Lv et al. [10] added some other torsional springs, in order to express also the
twisting and torsional behaviours of the DLO, bringing the model to be more realistic
and complete, involving the major phisical behaviours of a deformable linear object.

As previously stated, models can be exploited in different frameworks: in this work, we
focus on model-based planning strategy for robotic DLO manipulation.
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2.2. Planning for Deformable Linear Objects

The problem of planning a path for robots, and manipulating rigid objects, has been
studied extensively in the past. Different planner algorithms exist that can generate in
an efficent way a path for a robot in a complex environment.
On the other side a limited number of works in the literature deal with the planning
of paths for robot manipulating deformable objects and several challenges have to be
addressed. In particular the space describing the shape of the DLO has infinite dimensions,
and hence an high number of configurations of the DLO exist for a given pose of the robot.
These challenges have made the motion planning of a DLO an hard problem. That is
the reason why different solutions can be found, exploiting different models and different
algorithms.

In [13], Sintov, Macenski et al. developed a strategy to create a planned path for two
robotic arms, in order to manipulate a cable by modelling it as an elastic rod. The
strategy can be resumed mainly in two steps:

- the first is the exploration phase, in which stable configurations for the elastic rod
are computed.

- the second is the path planning phase, in which with a suitable algorithm the shortest
path connecting the goal and the target configuration is found.

The stable configuration is computed exploiting the Kirchoff discrete elastic rod model,
based on the fact that the equilibrium configurations for an elastic rod is a six-dimensional
smooth manifold, as shown by Bretl and Mc Carthy [3], which provided also a mathe-
matical test to determine if an equilibrium configuration is stable or not.

The curve of the cable is parameterized by t ∈ [0, L], where L is the fixed length of
the cable. The rod shape is described by a map q : [0, L] → SE(3). Some functions
u : [0, L] → R3 are used to describe the strain, in particular u1 describe the twisting
strain, while u2 and u3 the bending one. Finally some functions µ : [0, L] → R6 are
exploited to describe the internal forces and torques along the cable. Force and strain are
related such that ui = c−1

i µi for i = {1, 2, 3}, where c1 > 0 is the torsional stiffness, and
c2, c3 > 0 are the bending stiffness. It is important to highlight that a = µ(0) describe the
forces applied by the gripper on the first end of the cable: this value is known and it can
be used to solve a system of differential equations described in [13] in order to find the
equilibrium shape of the rod. It can be demonstrated that the choice of the point a ∈ R6

uniquely defines an equilibrium condition of the rod.
The authors used this result to map equilibrium conditions into a six-dimensional mani-
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fold A ⊂ R6 , and then derive the subset of stable equilibium conditions Astable ⊂ A. This
subset is finally approximated with a graph AG that is used to perform a path search
from the initial configuration to the final one through a Constrained Bidirectional RRT
algorithm.
This approach involves mainly two problems: first a heavy computation for the solutions
of the model of the cable related to the search of equilibrium conditions and stable config-
urations. The other problem is that the planning strategy is based on the force applied on
the grippers on the cable, this requires some very reliable force actuators. Moreover in this
project the cable is considered inextensible, focusing only on stiff cables, also neglecting
the gravity force.

An other example of model-based planning can be found in [11], where the geometrical
side of the discrete elastic rod model was used to created a path planner algorithm for
deformable linear objects manipulated by two robotic arms. In particular they focused
on the computation of minimal energy shapes by an adapting subdivision of the curve.
They consider the curvature and the torsion of the curve to compute the energy (q):

q =
n∑

i=1

(k21 + τ 2i )si (2.1)

where ki and τi are the curvature and torsion associated to the segment i, and si is its
length.

Figure 2.4: Example of a discretized curve

Then depending on the "complexity of the curve" they change its discretization (the
number of segments that represent the curve) through an optimization problem. The
idea is that a subdivision step will minimize the energy by smoothing the difference in
curvature and torsion between all the segments.
The path planning problem can be stated as:
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- given end-points of the start and goal configuration, find the minimal energy curves
that satisfies the constraints.

- find a deformation of the curve (a path) from the start to the end such that all the
intermediate curves are minimal energy curves.

The path is obtained through a recursive algorithm: each iteration consists of an interpo-
lation of curves plus the application of the subdivision strategy (if the energy associated
is higher than a certain threshold).
This example uses a simpler representation for the deformable linear object (only geo-
metrical), and avoids the need of having reliable force actuators on the grippers of the
robot, providing a path expressed by positions and orientations. As said by the authors
an additional work must be done in order to relax the assumption of constant length of
the curve, in order to add gravity, and also in order to extend the computation of the
energy terms to a more accurate model, since in this solution those are computed only by
looking at the geometrical curve. Moreover this solution introduces an additional degree
of complexity: with the adaptive segmentation of the cable the problem of finding the
minimal energy curve expands into the problem of finding the minimal energy curve plus
the optimal representation for such curve, increasing the computational load.

Roussel et al. [12] provided a solution for the planning problem of an extensible elastic
rod in free or contact space by working with the integration of two models:

- The discrete elastic rod model, used for the quasi-static configurations computation.

- The physical engine eXtended Dynamic Engine (XDE) that offers a realistic multi-
body dynamic simulation with contact for deformable bodies.

Thanks to the dynamical simulation of the cable, the planning algorithm can take ad-
vantage of contacts, by allowing sliding motions in order to plan trajectories in narrow
passages, or in enviroments with many obstacles.

Figure 2.5: Example of planning with sliding on obstacles [12]

The strategy consists in using the elastic rod model in order to sample quasi-static free-
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contacts configurations of the cable in an efficent way, and then to use the dynamic
simulation to extend the exploration of the state space, including also obstacles.
The problem is that the dynamic multi-bodies simulation uses the Finite Element Method
(FEM) in order to discretize the elastic rod, leading to a very massive and heavy compu-
tation: a good dynamic simulation is provided, at the cost of a very high computational
time. The other issue is related to the usage of two different models, and in particular to
the fitting of parameters, to ensure their convergence in quasi-static configurations.

In [17], Zhu et al. proposed a framework that allows robot to use contacts with the
environment in order to shape deformable linear objects, such as cables.

Figure 2.6: Example of contact-based manipulation [17]. The cable should go from the
starting point to the end touching all the obstacle in the right order.

The strategy uses a model-free approach to represent the cable, instead focus on contacts
between the cable and circular obstacles, modelling them through an index: the Angular
Contact Mobility Index (ACMI), that represent the angle around the obstacle for which
the object can move to break free from the contact.
The planning consists in a sequence of “primitive operations”:

- the pull operation: it’s used to move the cable between obstacles.

- the rotate operation: it’s used to create contact between cable and obstacles and in
order to shape the cable around them.

Those primitives are used during the entire task, passing from a phase to an other: The
pre-contact phase, in which the cable is free of contact and it is rotated around its fixed
end; the contact detection phase, in which with a vision system the contact with an
obstacle is detected; The post-contact phase, in which the cable is moved on the obstacle
to change the contact area and its ACMI index. This pipeline is repeated for each obstacle
until the end is reached.
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However, this work manages only 2D problems, and focuses only on not-rigid DLO, such
as ropes or wires. Moreover this method involves a model-free solution to represent the
cable, a physical model of the cable should be introduced, in order to prevent cables from
excessive stress due to pull actions or deflections around obstacles.

In Table 2.1 a summary of different planning strategies analysed in section 2.2 is reported.

Method Model Output Physical
behaviours

Gravity Types
of DLOs

E identifica-
tion

[13] Kirchoff elas-
tic rod

gripper forces bending,
torsion

neglected stiff cables no

[11] Geometrical
model

gripper poses bending,
torsion

neglected geometrical
curves

no

[12] Discrete
elastic rod +
FEM

cable path bending,
torsion,
axial

yes not specified no

[17] Geometrical
2D cable

primitive
operations

neglected neglected soft cables no

[14] local models grippers
motions

neglected neglected not specified no

[16] local models grippers
motions

neglected neglected not specified no

Table 2.1: Analysis of different strategies in literature of planning for deformable linear
objects.

2.3. Remarks and thesis contributions

The main limitation found in literature, concerns the difficulty to model a deformable
linear object, looking for an accurate and reliable model that is not computationally
heavy, in order to be easily integrated in a planning algorithm involving optimization.
Some solutions managed to solve this issue with an elastic rod model, ending in a too
detailed model and focusing on restricted situations.

The objective of this work is to design a planning strategy for a dual-arm robot, that
brings a generic cable from a starting pose to a final one, obtaining the gripper poses
that will lead the cable through some intermediate shapes. Since an explicit planning is
much difficult to be addressed for deformable linear objects, the purpose of this work is
to perform an implicit planning algorithm, getting a minimal energy shortest path for
the cable, focusing on bending and axial forces, and avoiding obstacle collisions. For this
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reason we adopted a mass-spring model, that is much more flexible and intuitive, and in
particular is much less computationally intensive. Moreover, unlike the solution found in
[13], we work for a position-based planning, avoiding the need of accurate force actuators
and sensors for the robot.

In an industrial framework several kinds of cables need to be manipulated, depending on
the operation. An example can be a wire-routing task with electrical cables, that are very
soft, or another example can be an assembling operation that concerns a oil hose in a
motorbike braking system. Hence, one of the goals of this work is to propose a general
methodology, without focusing on a restricted stiffness for the cable to be manipulated. In
particular we implemented a least-square algorithm for the identification of the Young’s
Modulus (E) of the cable, and provide a set of different tuning parameters for the op-
timization algorithms, that depend on the cable stiffness identified, managing to handle
very different types of deformable linear objects.

Our work exploits a single model (the mass-spring model) in two different phases:

- the optimization phase, where the model is used to find the shortest path and the
minimal energy curves from the start to the end configuration, focusing on the axial
and bending forces of the cable, analysing the planning under a quasi-static point
of view.

- the simulation phase, where the dynamical nature of the model is exploited, so as
to integrate the planning algorithm with the torsional forces, the gravity and the
obstacles in the environment.

This solution allows to have a complete domain of the cable behaviour, without increasing
the complexity by the introduction of an additional complex model for the simulation.
Moreover, in order to prevent the optimization computations to be too heavy we di-
vide the geometrical (shortest path) and physical (minimal energy) optimization in two
steps. In particular the intermediate shapes from the initial to the final one are physically
optimized in a decoupled way. In this way we prevent the optimization from being over-
loaded, managing to get better results, and a better understandability of the algorithm
computations.

In Table 2.2 a comparison between the proposed methods and the methods encountered
in literature can be found.
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Method Model Output Physical
behaviours

Gravity Types
of DLOs

E identifica-
tion

[13] Kirchoff elas-
tic rod

gripper forces bending,
torsion

neglected stiff cables no

[11] Geometrical
model

gripper poses bending,
torsion

neglected geometrical
curves

no

[12] Discrete
elastic rod +
FEM

cable path bending,
torsion,
axial

yes not specified no

[17] Geometrical
2D cable

primitive
operations

neglected neglected soft cables no

[14] local models grippers
motions

neglected neglected not specified no

[16] local models grippers
motions

neglected neglected not specified no

Proposed
strategy

Mass-spring
model

gripper poses bending,
torsion,
axial

yes stiff cables,
medium cables,
soft cables

yes

Table 2.2: Contributions of the proposed method.

The main contributions related to this work are: (1) The exploitation of an easier but still
informative model such as the mass-spring model, for an efficient integration of a model-
based optimization and a simulation environment, including axial and bending forces,
torsional behaviours and gravity effects; (2) The combination of a decoupled geometrical
optimization and a physical one, based on the internal forces of the DLO; (3) The imple-
mentation of a Young’s modulus identification for composites cables, and an adaptation
mechanism that allows to work with DLOs of various kinds of stiffness.
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3.1. Introduction to the model

The model we used in this work is a mass-spring model, inspired by the Lv’s work, de-
scribed in detail in [10]. This chapter presents a general description, in order to introduce
the relevant aspects that were used in this work.

Geometrically the cable is represented with a finite number of mass-points connected by
some straight segments called links. The cable is composed by n links and n+1 mass-
points.
The total mass is distributed along the cable through the discrete mass-points. m0 is the
total mass of the cable, mi is the mass of a single point, and they are related such that:

mi =
m0

n+ 1
(3.1)

The initial total length of the cable is l0, and the initial length of each single link is l0i ,
such that:

l0i =
l0
n

(3.2)

Links are used to represent 3 kinds of springs, connecting pairs of masses as shown in
figure 3.1.
Different types of spring describe different physical properties of the cable, in particular:

- Linear springs are used to describe the response of cable under stretching and com-
pressing conditions, and they connect every adjacent mass points.

- Bending springs are used to describe the bending behaviour, and they are attached
to each mass point, except for the first and the last.

- Torsion spring are used to describe the geometrical torsion and twisting behaviour
of the cable
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Figure 3.1: Dynamic mass-spring model.

3.2. State representation

Intuitively the state of the model can be assigned to the collection of positions of the mass
points plus the torsion angle of each link:

xi = (xi, yi, zi)
T for i = 1. . . n+1

ψi for i = 1. . . n.

3.3. Equations of motion

The motion law of the mass points can be computed by applying the Newton’s second
law:

mi
δ2xi

δt2
+ kd

δxi

δt
= Fi = − δU

δxi

+ F e
i (3.3)

where kd is a fictitious damping coefficient, introduced in order to prevent oscillating be-
haviour of the cable. For simplicity this term is not physically modeled through dampers,
but it’s introduced directly in the equations of motions. Fi is the force acting on the mass
point i, and it is composed by the internal forces and the external forces:

Fi = F i
i + F e

i (3.4)

external forces are known because they are the gravity force plus some forces externally
applied on mass points, instead internal forces are computed exploiting the internal energy
of the cable

F i
i = − δU

δxi

(3.5)
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3.4. Springs and energy

U is the total potential energy of the spring system:

U =
n∑

i=1

Ui (3.6)

Each term Ui takes account about the energy introduced by each spring: the linear, the
bending and the torsional spring.

Ui = U s
i + U b

i + U t
i (3.7)

3.4.1. Linear spring

Considering the link connecting the points i-1 and i, the potential energy of the associated
linear spring is:

U s
i =

1

2
ks(li − l0i )

2 (3.8)

where l0i is the length of the link i at rest condition, as shown in equation 3.2, and li is
the actual length of the link i, computed as |xi −xi−1|. ks is the elastic coefficient of the
linear spring.

A linear spring can be considered equivalent to a generic circular rod, and by exploiting
its mechanical properties we know that when it is subjected to an external axial force Fs

then the axial deformation on the length is given by:

∆l =
Fsli
EA

(3.9)

where E is the Young’s modulus of the material in [Pa], A is the section area of the rod,
A = πd2/4, d is the diameter of the section. EA is the stretching stiffness of the rod.

The force introduced by a linear spring with the same deformation ∆l is Fs = ks∆l, and
hence it follows:

ks =
EA

li
(3.10)
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3.4.2. Bending spring

Considering the point i, the potential energy of the associated bending spring is:

U b
i =

1

2
kbβ

2
i (3.11)

where βi is the angle between the link i and i+1 and kb is the elastic coefficient of the
bending spring.

As before, a deflecting spring can be considered equivalent to a generic cantilever beam,
and by exploiting its mechanical properties, we know that when the free end is subjected
to a force Fb, its deflection is given by ω, such that:

ω = liβi−1 =
F bl3i
3EI

(3.12)

where I is the moment of inertia I = πd4/64, and EI is the bending stiffness.

The force introduced on point i by a bending spring attached on point i-1 is Fb = kbβi−1/li,
hence we can derive kb, exploiting the relationship:

kb =
3EI

li
(3.13)

Figure 3.2 shows the equivalence between a link of the model and a cantilever beam:

Figure 3.2: Link deflection as a cantilever beam
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3.4.3. Torsional spring

The torsional behaviours of the cable can be divided in two main aspects:

- The geometrical torsion of the cable, due to an extra rotation of the links on their
own axis. It’s defined once for each link and denoted as φi.

- The original material twisting angle, denoted as θ and uniformly distributed through
the links such that θi = θ

n
.

The total torsion on link i is the sum of the two contributions: ψi = φi + θi.

The potential energy of the spring attached to the link i can be obtained as:

U t
i =

1

2
ktψ

2
i =

1

2
kt(φi + θi)

2 (3.14)

where kt is the elastic coefficient of the torsional spring

Considering the mechanical properties of a generic circular rod subjected to a torque T ,
the relative torsion angle at the free end is:

ψ =
T li
GIp

(3.15)

where G is the shear modulus of the of the rod material, G = E/2(1+v), v is the Poisson’s
ratio of the material, and Ip is the polar moment of inertia, Ip = πd4/32.

The torsion introduced by the torsion spring attached to the link i is T = ktψ, and hence
we can deduce that:

kt =
GIp
li

(3.16)

3.5. Forces computation

As shown in equation 3.5 the forces acting on each mass can be computed from the energy.
In our model we compute the forces in a more direct way, following the analysis carried
out by Lv et al. in [10]:
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- The axial force on each point can be computed as:

F s
i = −δU

s

δxi

= −(
δU s

i

δxi

+
δU s

i+1

δxi

) =

= −ks(li − l0i )
xi − xi−1

|xi − xi−1|
+ ks(li+1 − l0i+1)

xi+1 − xi

|xi+1 − xi|
=

= −ks(li − l0i )ui + ks(li+1 − l0i+1)ui+1 =

= F s,i−1
i + F s,i+1

i

(3.17)

As shown in Figure 3.3 the axial force on a mass-point i can be divided in two
terms: F s,i−1

i and F s,i+1
i , that are forces from the two linear springs connected to

the mass-point i.

Figure 3.3: Axial force decomposition on mass point i

where ui is the unit vector that defines the direction of the link i in the space.

- the bending force on each point can be computed as:

F b
i = −δU

b

δxi

= −(
δU b

i−1

δxi

+
δU b

i

δxi

+
δU b

i+1

δxi

) =

=
kbβi−1

li

ui × (ui−1 × ui)

sin(βi−1)
+
kbβi
li

ui × (ui × ui+1)

sin(βi)
+

+
kbβi
li+1

ui+1 × (ui × ui+1)

sin(βi)
+
kbβi+1

li+1

ui+1 × (ui+1 × ui+2)

sin(βi+1)
=

= F b,i−1
i + F b,i,1

i + F b,i+1
i + F b,i,2

i

(3.18)

The bending force on mass-point i can be divided in 4 terms: F b,i−1
i and F b,i+1

i are
the bending forces acting on point i, due to the bending springs attached to point
i+ 1 and i− 1, instead F b,i,1

i and F b,i,2
i are the forces on mass i introduced by the

bending spring on point i. Note that recursively we have F b,i,2
i = F b,i

i+1 considering
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the next mass point, and that F b,i,1
i = F b,i

i−1 considering the previous one.

Figure 3.4: Bending force decomposition on mass point i

- the twisting force on each point can be computed as:

F t
i = −δU

t

δxi

(3.19)

The twisting force on a mass-point i can be divided into 8 terms, taking account
about the torsional spring attached between mass i and i− 1 and mass i and i+ 1.

3.6. Gravity

Since the mass is distributed along the cable through the points, each point will be affected
by gravity:

Gi = mig, (3.20)

Where g is the gravity acceleration, and mi is the mass of the single mass-point.
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3.7. Damping coefficient

As said in 3.3, the kd coefficient is introduced in order to prevent the system to excessive
vibrations.

Theoretically, in order to estimate this parameter a dynamical experiment should be
performed, however, since it is very hard to measure the vibrations of a cable, we decide
to find a rough estimation, to be used as an upper bound.

For our model the value of kd depends on the cable material, the springs coefficients ks,
kb kt, and the number of mass points. To compute it we can refer to the critical damping
ξ of a generic mechanical system (Figure 3.5):

ξ =
kd

2
√
mk

=
kd

2mω0

(3.21)

where m is the mass of the system, k is the elastic coefficient of the spring and ω0 is the
natural circular frequency.

Figure 3.5: Generic mass-spring-damper system

The mass m can be set to be a single mass-point mi. The values of ξ can be found
tabulated in [1] for different materials, and we can choose an upper bound value referring
to rubber material, that is ξmax = 0.05. The value of k can be found by choosing the
maximum value between ks kt and kb. Generally for DLOs the following relationships are
true: ks >> kb

ks >> kt
(3.22)

hence we can set k = ks.

Finally the relationship 3.21 can be used to determine an upper bound for kd:

kd = 2ξ
√
mks (3.23)
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3.8. Time discretization and iterations

3.8.1. Iterations

The time is discretized into a sequence of small steps ∆τ , at each iteration, according to
the Newton’s second law (3.3) the following equations are solved:

aτ+∆τ
i = (F τ

i − kdv
τ
i )/mi

vτ+∆τ
i = vτ

i + aτ+∆τ
i ∆τ

xτ+∆τ
i = xτ

i + vτ+∆τ
i ∆τ

(3.24)

Where xτ
i , vτ

i , aτ
i are respectively the position, velocity and acceleration of the mass-

point i at instant τ . F τ
i is the total force applied on such mass-point at instant τ .

3.8.2. Time discretization

By choosing the value ∆τ we can regulate the convergence iterations and the number
of steps in which the model must be solved. Very small time steps ∆τ will bring the
computation to be very heavy, hence a safe value ∆τ =

√
(mili)/ks is chosen. This value

can be slightly modified, for example in order to speed up the computation by introducing
less iterations.

3.9. Enhanced DLO modeling through mass-spring

model

This section aims to describe an additional contribution related to the modeling of a
generic deformable object through mass-spring model, developed in the Matlab model
provided by the MeRLIn lab. and implemented in this work.

The objective was to create a model for deformable linear objects for which the rest
condition is not straight. In industry applications often rigid cables are involved, as shown
in Figure 3.6, and many times their rest configuration is curved. The implementation of
the mass-spring model described in [10] does not consider this situation.
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Figure 3.6: Braking hose of a motorcycle.

A refinement on the bending forces is necessary, and it can be computed focusing on two
different aspects: the magnitude and the direction of the forces.

3.9.1. Bending forces magnitude refinement

The magnitude of the force, as shown in equation 3.18 depends on the length of the link
li, on the bending stiffness kb and on the bending angles βi associated to the link i. This
last term is the one to be modified in order to take in account about the original curvature
of the cable.

Some examples of magnitude refinement of bending angles are provided in Figures 3.7
(rest condition), 3.8 (refinement case-1), and 3.9 (refinement case-2).

Figure 3.7: Rest condition for two links of a curved cable.
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Figure 3.8: Case in which the considered bending angle βi must be smaller than the total
one.

Figure 3.9: Case in which the considered bending angle βi must be greater than the total
one.

In the case reported in Figure 3.8 the refinement consist in:

βi = βtot,i − β0,i (3.25)

Instead in the case of Figure 3.9 the refinement is:

βi = βtot,i + β0,i (3.26)
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3.9.2. Bending forces direction refinement

The direction of the force should be refined such that the cable will return in its rest
curvature condition regardless of the motion in the space that has been applied on it.

In other words: if the cable is rotated on a plane and then is allowed to rest, the bending
forces should try to drive the cable to a rotated rest condition, and not to the initial one.

In order to do that, the direction of the forces described in equation 3.18 is modified: the
direction of the force will be refined by subtracting at the direction, a term, consisting in
the original forces direction processed with a rotation matrix that takes into account the
global motion of the cable.

For each mass-point the bending force will be :

F b
i =

kb(β − β0)

li
(uβ,τ −Ri,τuβ,0) (3.27)

where uβ,τ is the direction of the force computed in equation 3.18, uβ,0 is the direction of
the form computed in equation 3.18 in the rest condition, and Ri,τ is the rotation matrix
to be applied at time τ .

3.9.3. Energy refinement

As shown in equation 3.11 also the bending energy is related to the bending angles, and
since energy is a scalar quantity it can be refined by acting on its magnitude. The potential
energy associated to the mass-point i can be computed as:

Eb
i =

1

2
kb(βi − β0,i)

2 (3.28)

where βi is the bending angle associated to the bending spring, and βi,0 is the bending
angle under rest condition.
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dual arm DLO manipulation

This chapter aims to describe the optimization procedure involved in the work. The final
objective is to plan the gripper trajectories for a dual arm robot in order to bring a cable
from an initial pose to the target one.

4.1. Introduction to optimization problems

An optimization problem can be described as a decision-making process, a process where
one needs to make a number of choices trying to minimize a certain value, while satisfying
a number of criteria.

- The choices are called decision variables

- The value to be minimized is the cost function, it can be composed by a number of
additive terms, resulting in a multi-objective optimization problem.

- The criteria to be satisfied are the constraints, they can be divided in equality or
inequality constraints.

Many engineering problems can be described in this way, and especially today it’s im-
portant to find solutions and achieve goals in optimal manner by introducing strategies
to maximize results and minimize costs. This is valid for many sectors in engineering,
involving different levels and timescales, spacing in many applications and different fields.
An example can be a generic industrial case, where optimization can be used in many
layers, from the higher level of managing, to the more restricted one involving a single
manufacturing operation.

Sometimes an optimization problem is not trivial to be solved, due to the presence of
many decision variables or multi-objective cost functions, or simply due to limiting con-
straints, such that experience and intuitions are not enough to get an optimal solution.
We are able to find optimal solutions in an efficient way, regardless of the nature of the
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problem and its complexity, by looking at the optimization problem in a systematic way:
The mathematical modeling is used to build an abstraction layer, where whatever opti-
mization problem is described in the same way, with mathematical symbols.

- Decision variables are modeled as a vector of unknown variables:

x ∈ Rn (4.1)

where n is the number of unknowns.

- The cost is represented as a multivariate scalar function:

f : Rn → R (4.2)

- The constraints are represented by some multivariate vector functions:

g : Rn → Rp, h : Rn → Rq (4.3)

where p is the number of equality and q is the number of inequality constraints.

Functions f, g, h are provided by mathematically modeling the problem. In engineering
applications this often entails knowledge from collected data, physics laws and so on.
The process of modeling produces a representation of the problem in a mathematical
standard form:

min
x

f(x) (4.4)

subject to

g(x) = 0

h(x) ≥ 0

(4.5)

(4.6)

Note that the same problem can be posed in many different ways, for example by looking
at it under other perspective or by changing the definitions of the decision variables.
Accordingly the results can change a lot, in terms of accuracy, efficiency, and sometimes
also in terms of “be able or not be able” to solve the problem at hand.

After the problem is set in the standard form, the approach consists in finding the decision
variables such that the cost is minimized and the constraints are satisfied. The differential
calculus is a rigorous mathematical tool: minima (or maxima) of a function are related
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to stationary points, hence the solution can be found by inspecting the derivative of the
function. Since optimization often deals with multi-variable problems, this results in
inspecting the gradient.
Assuming f to be differentiable, the stationary points x̄ of f(x) can be found by solving
the following set of equations:

∇xf(x̄) = 0 (4.7)

Those equations are generally non linear, and are composed by n equations in n unknowns.
The introduction of constraints is managed by the Lagrange functions, bringing in the
problem an additional set of equations (generally non linear) to be solved.
The set of equations 4.7 can provide an explicit expression for the stationary points, but
only in simple cases. Also, an additional analysis on higher-order derivatives is necessary
to evaluate and classify the minima and maxima. This inspection is impossible to be
performed analytically in many cases, for example with some non-linearities in the model,
or when the problem deals with many decision variables.

To face this complexity problem the numerical analysis is used, giving the possibility
to solve in an approximated and numerical way a set of non-linear equations, and to
overcome complexity in a very efficient way, keeping high accuracy in the results. The
idea is to solve the problem starting from an initial guess x0 and iteratively search by
varying x according to a certain strategy, as shown in Figure 4.1.

Figure 4.1: Example of iterative search, starting from x0, where the dashed lines represent
some level curves for the function f.

The decision variables x are gradually driven to the stationary points, after a certain
number of iterations.
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4.2. Optimization pipeline

This section aims to describe the optimization strategy to be followed in order plan a path
for a robot dual arm that grasps a cable at the two ends, to bring the DLO to a target
pose, starting from an initial one.

As described in Figure 4.3 the strategy consists into:

- Apply an optimization procedure considering the deformable linear object to be
manipulated in the space, in order to find the path of the cable consisting into a
number of intermediate cable shapes.

- Define the robot grippers poses from the computed intermediate shapes (a detailed
description is provided in section 4.6): by knowing the intermediate configurations
of the cable it’s possible to assign the positions and orientations of the grippers
holding the cable. Those poses are used to generate the trajectory of the grippers,
connecting them through linear motions.

Figure 4.2: The grippers poses are extracted from the cable poses, computed by the
optimization procedure.

The complexity of modeling a cable leads to the presence of a very high number of
variables, increasing the difficulty for an optimization problem to be solved. This may lead
to problems associated to a time-consuming procedure, or worse, to the sub-optimality
of the solution. For this reason the resolution of the optimization problem is divided in
different steps, differentiating several aspects that together will lead to an optimal solution,
subdividing the computational complexity in many layers and making the process more
efficient and understandable.

As described in Chapter 3, the mass-spring model is composed by a number of mass-
points, connected through links. This geometrical model is then completed with the
physical meaning of such structure, associating masses to the points, and springs to the
links. This concept is the main key for the tasks subdivision, splitting the resolution in
more steps, involving the geometrical side of the model and the physical one.

The optimization strategy involves three steps: the basic geometrical optimization, the
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advanced geometrical optimization, and finally the physical minimization, as described in
Figure 4.3:

Figure 4.3: Optimization pipeline for the cable path. The total optimization problem is
divided in different steps.

- The basic geometrical optimization generates a gradual and smooth path for the
cable, from the starting pose to the target one, consisting into a number S of
intermediate shapes.

- The advanced geometrical optimization prepares the previous optimized path in
order to be physically minimized, preserving the length of the cable and avoiding
eventual compression that leads to a planning that is smooth under geometrical
point of view, but unstable under energy aspects.

- The physical minimization aims to integrate the physical model in the geometrical
planned shapes, in order to minimize the forces (and hence the energy) associated
to the DLO, providing minimal energy curves.



32 4| Optimal trajectory planning for dual arm DLO manipulation

4.3. Planning through basic geometrical optimization

4.3.1. Problem description

Often in industrial sector, many actions such as assembly tasks or similar manufacturing
operations, suffer the need of working by remaining in a limited area, due to the presence
of obstacles or other stations in the neighbourhood. At the same time it is necessary
to complete the operation with the least possible cost, in terms of motions and time
cycle. This is the purpose that inspired the design of the first optimization step: move
the deformable linear object from the start configuration to the target one in the most
efficient way, including the minimal amount of motion and generating the shortest path.

4.3.2. Optimization formalism

In order to formalize the problem into a standard optimization one, the geometrical mass-
spring model for the DLO is considered, and some data structures are created.

A single cable in a certain pose is called shape, and it is discretized into n links, and n+1

nodes (corresponding to the mass-points of the model), as shown in Figure 4.4.

Figure 4.4: Geometrical discretization of a DLO.

Each node has its own spatial coordinates (x, y, z). A single shape i, called ξi ∈ R3(n+1),
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is defined by the collection of the positions of its nodes. So each shape will be defined by
a number 3(n+ 1) of variables.

ξi =



xi,1yi,1

zi,1


xi,2yi,2

zi,2


· · ·
· · ·xi,n+1

yi,n+1

zi,n+1





(4.8)

The grippers hold the cable with custom designed fingertips, denoted as “clips” in this
work. In particular the first and second clips of the robot are placed respectively in the
intermediate points of the first and last link of the cable, as shown in Figure 4.5.

Figure 4.5: Clips of the robot applied on a shape i, and their distance ∆clip,i.

The optimization problem aims to find a number S of intermediate shapes starting from
the initial pose ξo, to the final one ξf , producing in total S+2 shapes, as shown in Figure
4.6. Then it’s possible to extract intermediate poses for the robot grippers holding the
cable, referring to each intermediate shape.
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Figure 4.6: Initial and final shapes with S planned shapes.

By collecting all the subsequent intermediate shapes into a single structure it’s possible
to define an intermediate distribution of cable shapes, by a matrix ξ ∈ R3(n+1)×S, such
that:

ξ = [ξ1, ξ2, · · · , ξS−1, ξS] (4.9)

It’s important to specify that that each intermediate shape is discretized by the same
number off mass-points n + 1. For this reason the problem of finding an intermediate
shapes distribution for the cable can be interpreted as finding an intermediate distribution
of each mass-points of the cable, from the initial configuration to the final one. Therefore
a number S of intermediate distributions for n + 1 mass points in the space will lead to
a number S of intermediate distribution for the cable shape in the space.

Finally the total path ξtot ∈ R(3(n+1)×(S+2) can be addressed by inserting also the original
and the final shape.

ξtot = [ξo, ξ, ξf ] (4.10)

4.3.3. Decision variables

Since ξo and ξf are given and user-defined, the optimization problem will work on the
matrix ξ, where the intermediate distribution of shapes (and hence the path) are defined.
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The optimization problem will have a number of 3(n+1)S decision variables that coincides
with the definition of the intermediate shapes.

Decision variables:

ξ = [ ξ1, ξ2, · · · , ξS−1, ξS ] ∈ R3(n+1)×S (4.11)

4.3.4. Cost function

The cost is related to the relative distribution of the intermediate shapes with respect
to the initial and final pose of the cable. To express this distribution it’s necessary to
define the distances between adjacent shapes, as shown in Figure 4.7 , this is possible by
considering pairs of nodes between a shape and an other.

Generically we can say that the variation of coordinates between two shapes can be defined
as γ ∈ R3(n+1), and considering the initial and final pose, and all the intermediate shapes
we have that:

γ1 = ξ1 − ξo

γi = ξi − ξi−1 for i = 1 · · · S

γf = (ξf − ξo)−
S∑

s=1

γs

(4.12)

(4.13)

(4.14)
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Figure 4.7: Coordinate variation computation between adjacent shapes.

In this way the decision variables are used to compute a new set of variables. Note that
γf depends on the previous choices and hence it’s not an additional variable, keeping
unchanged the total number of free variables, that still are 3(n+ 1)S.

The coordinate variations are then transformed into distances by the computation of the
2-norm. The idea is to create the cost function by summing all the distances between
adjacent shapes,and introducing a tunable weight wi for each term. Those weights can be
set to equal values in order to have equally spaced poses of the cable, or can be increased
in some areas where a thicker planning is required.

Cost function to be minimized:

min
ξ1,ξ2,··· ,ξS

S∑
i=1

wi||γi(ξi, ξi−1)||2 + wf ||γf (ξo, ξ1, · · · , ξf )||2 (4.15)

The optimization problem is unconstrained, and model-free.
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4.3.5. Numerical results

For a better understanding of the problem, some results are reported below in Figure 4.8
and 4.9.

Figure 4.8: Example of basic geometrical optimization in order to plan the distribution of
a cable shape from a straight pose to a deformed and translated one. The initial length
of the cable is 0.5 m. The number of intermediate shapes is set to S = 5. The number of
discretization links is n = 10.

The accuracy and the complexity of the problem can be modified by addressing parameters
n and S, related to the number of links and the number of intermediate shapes, some
examples of different tuning of those parameters are provided in Figure 4.9. Like in every
optimization problem it’s important to find a right trade-off, because a very accurate
solution may lead to a very complex problem to be solved, instead very small values of
S and n may lead to a very coarse path. Note that the modeling of a deformable linear
object is a very hard task, and it always provides some inaccuracies, moreover the mass-
spring model is an informative model, but not the most accurate one. For this reason it’s
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useless to increase too much n and S parameters, leading to an unnecessary accuracy and
risking to overload the computations.

(a) Planning with n = 20.

(b) Planning with n = 20 and S = 20.

Figure 4.9: Examples of the same optimization problem in Figure 4.8, with variations on
DLO discretization (n) and path discretization (S).

The basic geometrical optimization provides the shortest path: the distribution of the
intermediate shapes that allows to pass from ξo to ξf with the least possible motion of
each mass-point of the cable.
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4.4. Planning through advanced geometrical optimiza-

tion

As said in section 4.2, the optimization problem exploits the division between geometrical
and physical concepts of the model (described in section 3.1) in order to subdivide the
complexity of the planning procedure in more focused steps: the geometrical planning aims
to find the shortest path for the cable, instead the physical planning aims to compute the
minimal energy curves during the path.

The Advanced Geometrical Planning aims to link those two concepts in a smooth and safe
way, by processing the geometrical shortest path to be ready for the physical minimization.
It can be seen as a post-processing procedure for the geometrical planning, and as a pre-
processing procedure for the physical planning.

4.4.1. Problem description

Sometimes the shortest geometrical path is not the best path for a deformable linear
object.

Remark The shortest geometrical path is defined as solution of the optimization prob-
lem described in section 4.3, by considering only “transversal” distances between adjacent
shapes. But the lengths and distances between the mass-points along single shapes are
not considered.

Figure 4.10: “Transversal distances” are represented through arrows, they coincide with
γi computations. Instead we will call “longitudinal distances” the distances between mass-
points along a single shape.
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In some cases a conflict may occur between geometrical goals and physical goals:

- The geometrical optimization aims to find the shortest path, that is a compact path
from the start to the end. Of course the geometry of the cable can be modified a
lot during the path, leading to stressed configurations.

- The physical optimization aims to minimize the forces on the intermediate shapes,
this equals to avoid stressed configurations during the path.

In particular, a problem arises when the cable is compressed during the geometrical op-
timization. In fact since the optimal geometrical path is the shortest one, the cable may
result in compression deformations due to the compact motions in the path, as shown in
Figure 4.11 and in Table 4.1.

Figure 4.11: Example of compression of intermediate shapes in the basic geometrical
planning. The initial length of the cable is 0.7m.

shape 1 shape 2 shape 3 shape 4 shape 5 shape 6 shape 7

Length [m] 0.70 0.59 0.50 0.46 0.50 0.59 0.70

Table 4.1: Length of each shape in Figure 4.11.

This effect may lead to problems in the physical minimization, having to work with very
unstable shapes, involving very high axial forces and bringing often to bad results. For
this reason an additional geometrical optimization procedure has been designed, in order
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to keep the cable stretched along the shortest geometrical path, without compression of
longitudinal distances, and without pull it in an excessive way.

4.4.2. Decision variables

The decision variables of the optimization problem are the configurations of the S inter-
mediate shapes.

Decision variables:

ξ = [ ξ1, ξ2, · · · , ξS−1, ξS ] ∈ R3(n+1)×S (4.16)

4.4.3. Cost function

Through the cost function we have to formalize the purpose described above.

This can be done with a multi-objective function composed by 5 terms. Each term can be
computed starting from the expression of the shapes configurations ξi ∈ R3(n+1)×1, i =

[1, S], and it’s related to a different aspect of the problem.

Cost function to be minimized:

min
ξ1,ξ2,··· ,ξS

S∑
i=1

wi||γi(ξi, ξi−1)||2 + wf ||γf (ξo, ξ1, · · · , ξf )||2

+
S∑

i=1

wδ||δi(ξi)||2 + wclip
1

∆clip,i

+ wβ||βi(ξi)− βo,i||2
(4.17)

- The first and second terms aim to find the shortest geometrical path, by introducing
the cost terms used in the basic geometrical planning. These terms takes care about
the “transversal” distances on the path.

- The third term aims to prevent the cable to be too stretched, with a cost involving
the variation of length of the links in the shape, with respect to their length in the
initial condition.
The length of all the links composing the initial shape are saved in a structure
lengtho ∈ Rn×1 where n is the number of links. For each intermediate shape it’s
computed the variable lengthi ∈ Rn×1, containing the length of all the links related
to the ith shape, with i ∈ [1, S]. Finally the variables δi ∈ Rn×1 can be computed,
for each intermediate shape i ∈ [1, S] , such that δi = | lengthi−lengtho |, describing
the length variation during the planned path.

- The fourth term aims to prevent the compression of the cable, with a cost term
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used for the maximisation of the distances between the two grippers of the robot
that are holding the cable at the two ends (Figure 4.5). For this purpose some
variables are created: ∆clip,i ∈ R describing the distance between the two clips, for
each intermediate shape i ∈ [1, S]. It’s important to note that:

max ∆clip,i = min
1

∆clip,i

(4.18)

with ∆clipi ̸= 0 ∀i, since the position of the clips can’t be the same during the
manipulation.

- The last cost term is related to the curvature of the shapes. The previous terms in-
troduced for the “longitudinal" aspects of the planning may bring the cable to have
a flat geometry ( like in Figure 4.13a ), risking to introduce the curvature required
for the final pose only in the final part of the planning. This is an effect that should
be avoided because it is preferred to have a motion equally distributed along the
path.
On the other side, as we can see in Figure 4.8, the basic geometrical optimization
provides a very smooth and gradual curvature deformation of the cable along the
planning. The idea is to extract the information related to the curvature of the
intermediate shapes in the basic geometrical optimization, in order to impose them
in the advanced geometrical planning, trying to recreate a gradual curvature defor-
mation. The basic geometrical optimization is thus necessary, in order to obtain
curvature data to be used in the advanced one (Figure 4.12).

The curvature information is resumed in the bending angles associated to the links
along the shapes, some vectors are used to collect them in an efficient way: βo,i ∈
R(n−1),1 , for i ∈ [1, S] are the bending angles of the intermediate shapes in the
basic geometrical planning. βi(ξi) ∈ R(n−1),1 , for i ∈ [1, S] are the bending
angles associated to an intermediate shapes in the advanced geometrical planning.
Their difference |βo,i − βi| can be used in a cost term, to impose similar curvature
deformation in the two solutions. An example of a result with and without curvature
correction can be seen in Figure 4.27.
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Figure 4.12: Curvature extraction and final geometrical path.
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(a) Planning without the curvature cost term.

(b) Planning with the curvature cost.

Figure 4.13: Examples of advanced geometrical planning, with and without curvature
correction.
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Some weights are introduced in the cost function, in order to tune the cost by varying the
importance in the problem of each single term.
The problem is unconstrained and model-free.

4.4.4. Numerical results

Figure 4.14: Comparison between the solution of the two geometrical planning optimiza-
tions.

shape 1 shape 2 shape 3 shape 4 shape 5 shape 6 shape 7

Basic 0.50 0.50 0.42 0.35 0.33 0.36 0.50

Advanced 0.50 0.50 0.48 0.46 0.45 0.45 0.50

Table 4.2: Length of each shape in [m], comparison between the basic geometrical planning
and the advanced geometrical one.

As shown in Figure 4.14 and in Table 4.2, the basic geometrical optimization provides
compressed shapes, instead the advanced geometrical optimization keeps the cable length
to be in the neighborhood of its initial length (Table 4.2) , by introducing larger movements
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around the shortest path. This avoids the presence of very stressed configuration of the
cable.

4.5. Planning through physical optimization

The last step aims to process the geometrical planned shapes, in order to physically
minimize the forces associated to the cable. Emphasis has been placed to the bending
and axial forces in the cable, that can be considered the most relevant terms in the
contribution of the energy associated to the cable. Moreover since the orientations of the
grippers holding the cable are not considered yet, torsional forces can’t be inspected in
this phase. Torsional behaviours will be treated during the gripper poses definition.
As it’s described in Chapter 3, energy and forces are strictly related. The minimization
of the energy associated with a shape can be translated into a minimization of the forces
along the cable, and vice versa. Moreover the mass-spring model implementation allows
to extract those forces in a simple way. For this reason the optimization algorithm is
related to the forces computed on the single shapes.

4.5.1. Physical optimization pipeline

The physical optimization is implemented in a decoupled way on the single shapes, and
it’s applied in different steps of the global optimization algorithm:

- For the pre-processing of the target configuration;

- For the energy minimization of the advanced geometrical path.

Pre-processing of the target configuration

It is important to highlight that one objective of this work is the manipulation of de-
formable linear objects following some minimal energy configurations. To this aim the
target pose has to take a minimal energy curve. For this reason, before starting the basic
geometrical optimization and the advanced geometrical optimization, a physical minimiza-
tion is computed on the target final pose. To make sure to bring the cable in a stable
final configuration. Moreover if the minimal energy target pose is much different from the
proposed one a warning is provided by the user.
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Decoupled physical minimization of intermediate shapes

After the geometrical optimizations described in Sections 4.3 and 4.4 have been com-
puted, the path is ready to be processed: all the intermediate shapes ξi, i ∈ [1, S] are
physically minimized one by one, as shown in Figure 4.15.

Figure 4.15: Decoupled application of physical minimization on target pose and interme-
diate shapes.

The decoupled strategy implemented in this step manages to obtain a more efficient
algorithm, that provides better results, avoiding saturation, leading to a more controlled
and scalable process.
In order to explain how the physical minimization works we need to focus on a single
shape minimization. As shown in Figure 4.15, the same algorithm is indeed applied on
each shape.

4.5.2. Decision variables

The strategy consists in slightly moving the mass-points of the shape in order to minimize
the axial and bending forces. Intuitively the decision variables are imposed to be the
positions of the mass-points along the shape and hence the vector ξi associated to the
shape at hand.
The initial condition of the shape is the one contained in the planned geometrical path
and the optimization algorithm drives the associated geometry in order to find the nearest
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minimal energy configuration.

4.5.3. Cost function

The cost function is related to the internal forces of the cable that are generated by the
geometrical pose and it is composed by three terms.

Cost function to be minimized:

min
ξmin

= wσ||σ||2 + wb||Fb||2 + ws||Fs||2

subject to

mass-spring model

(4.19)

- The first term is related to the geometrical variation of the shape: in order to
prevent the cable to assume a shape too different from the geometrical planning
one, a cost term involving the variation σ between the geometrical configuration
and the minimal-energy one is introduced.

σ = ξgeom − ξmin ∈ R3(n+1) (4.20)

where ξgeom is the shape proposed in the advanced geometrical shortest path, and
ξmin is the physically minimized shape.

- The second term is related to the bending forces associated to the shape. By ex-
ploiting the mass-spring model it’s possible to extract the bending forces on each
mass-point Fb,i ∈ R3 ,as described in equation 3.18. The bending forces are then
arranged in a column vector Fb of the form:

Fb =



(
Fb,1

)(
Fb,2

)
· · ·
· · ·(

Fb,n+1

)


(4.21)

– The third term is related to the axial forces on the shape. As described in equation
3.17 the axial force Fs,i ∈ R3 on each mass-point can be computed through the
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mass-spring model, and then it is arranged into a column vector Fs.

Fs =



(
Fs,1

)(
Fs,2

)
· · ·
· · ·(

Fs,n+1

)


(4.22)

Notice that σ, Fb and Fs are functions of ξmin, such that:

σ = σ(ξmin), Fs = Fs(ξmin), Fb = Fb(ξmin) (4.23)

Some weights wσ, wb and ws are introduced for the terms, in order to appropriately tune
the total cost function.

4.5.4. Numerical results

This section aims to analyse some effects of the energy minimization on different cables.
In Figure 4.16 two cables are shown, they are very similar and it could seem that they
are overlapping.

Figure 4.16: In the figure are reported two shapes, an original geometrical shape (blue),
and the respective energy minimized one (yellow). Length = 1[m], n = 10, E = 1 ·106[Pa].
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The difference is that one is the provided geometrical shape, and the other is the minimal
energy one. Since the cable is very soft and the curvature is smooth, the bending forces
are not a problem. The interesting fact relies on the axial forces in the cable.

Figure 4.17: Axial forces on geometrical cable.

Figure 4.18: Axial forces on minimal energy cable.
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In Figure 4.17 the components of the axial forces along the original geometrical cable are
shown, instead in Figure 4.18 the minimal ones are reported, that are much smaller. The
effect of the physical minimization on the geometry of the cable can be inspected with an
analysis on the lengths of the links composing the shapes.

Figure 4.19: Length of the links.

As shown in Figure 4.19, in the minimal energy shape the total length is distributed
uniformly along the links, unlike in the proposed geometrical shape in which the variation
of length is evident, leading to high compression/stretching forces that may bring into
model instability during a simulation.

Moreover, the geometrical effect of the physical minimization on the bending angles can be
seen in the example of Figure 4.20: while the geometrical shapes accentuate the curvature
in the two deflection areas keeping the cable quite straight in the middle part, the minimal
energy shapes aims to distribute the curvature along the cable, providing more smooth
and uniform bending angles.
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Figure 4.20: Optimization steps for a cable of length l0 = 0.5[m], E = 1e7[Pa], discretized
into n = 10 links and n+ 1 = 11 mass-points.

In Figure 4.21 and 4.22 an analysis on the forces related to the geometrical path and the
minimal energy path shown in Figure 4.20 is provided.

- The axial forces are well minimized: the associated mean and variance is decreased
a lot after the physical minimization, leading to very low and uniform forces along
the path, with a benefit on the stability of the planned path.

- Also the bending forces are minimized: The two peaks on mass-points 3 and 9 are
smoothed, leading to an uniform distribution of the bending stress along the shape.
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Figure 4.21: Mean and Variance of the mass-points forces along the shapes, considering
the geometrical path of the example shown in Figure 4.20.

Figure 4.22: Mean and Variance of the mass-points forces along the shapes, considering
the minimal energy path of the example shown in Figure 4.20.
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4.6. TCPs trajectories definition

Once the intermediate shapes for the cable are planned, it is necessary to plan the path
for the grippers of the robot, which have to hold and move the cable during the ma-
nipulation. The goal is to extract the positions and orientations for the robot grippers,
by exploiting the information contained in the planned path ξo, ξ1, · · · , ξS, ξf . Moreover
particular attention must be posed in order to do not involve torsional behaviours with
wrong grippers orientations.
The robot has two clips that grasp the end of the manipulated DLO. Each clip is iden-
tified with a frame placed on it, in this way it’s possible to specify their positions and
orientation. The frames are placed on the robot clips in the exact point where the cable
will be gripped (in the center of the end effector), as shown in Figure 4.23.

Figure 4.23: Frames placed on the two grippers of the robot. The orientations are user-
defined, each frame has a u-axis, a v-axis and a w-axis, creating a right-handed frame.

The positions to be assumed by the clips are extracted from the shapes by exploiting the
middle point on the first and last links of the cable, as described in Figure 4.24. This
because some custom grippers are used, and the size of each gripper on the cable can be
considered equal to the size of a single link.
The u-axis of the clip frames are forced to coincide with the axis of the first link and last
link of the cable, as shown in Figure 4.24.



4| Optimal trajectory planning for dual arm DLO manipulation 55

Figure 4.24: Extraction of positions and u-axes for the clips of the robot, from the planned
shapes ξo, ξ1, · · · , ξS, ξf .

In order to define the other two axes (v-axes and w-axes) of the clip frames some algorithms
have been designed, since the planning and the mass-spring model do not provide the
information to compute them in an unique way.
Three methodologies have been developed: the auxiliary vector method, the minimal
rotation identification method and the equivalent rigid rotation method. Each methodolgy
has some pros and some cons.

4.6.1. Auxiliary vector method

This solution is the simplest one. The idea is to define an user-chosen auxiliary vector,
to be used for the computation of the v-vector of the clips:

- The u-axis vectors of the clips are provided as mentioned above, from each planned
shape.

- The v-axis vectors are obtained by computing the cross product between the u-axis
and a constant user-defined vector.

- Finally the w-axis vector is obtained by computing the cross product between the
u-axis and the v-axis (that are perpendicular), in order to define a right handed
frame.

Due to the constant behaviour of the auxiliary vector, a common component is maintained
along the shapes, resulting in a smooth and gradual rotation of the frames along the path,
as shown in Figure 4.25.
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Some issues may occur, related to the cross-product computation. To overcome those
problems it’s enough to change the auxiliary vector, for example by keeping attention to
do not choose a vector parallel to an u-axes. Note that a change on the auxiliary vector
will change the v-axes and w-axes computed in the algorithm, for this reason sometime
an additional rotation matrix should be designed in order to match the initial frame with
the initial condition of the robot.

Figure 4.25: Example of clips computation by using the auxiliary vector method.

4.6.2. Minimial rotation identification method

This solution aims to gradually rotate the clip frames of the robot, starting from some
initial frames, and applying on each planned step a minimal rotation in order to follow
the u-axes along the planned shapes. The initial orientations of the clips are user-defined,
hence an initial v-axis and w-axis are provided by the user for both clips, depending on
the robot initial configuration. The same procedure is applied on both clips of the robot.

- The u-axes of the robot are known (as described in Figure 4.24), hence we can
process them in order to find the minimal rotation that relates pairs of subsequent
u-axis between adjacent shapes, as shown in Figure 4.26.

Ri−1
i ∈ SO(3) such that ui = Ri−1

i ui−1 (4.24)
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Figure 4.26: Example of rotations relating the u-axes for the clip1, the same is done for
the clip2.

- After the computation of all the rotation matrices along the planned shapes, it’s
enough to apply the identified rotations to the v-axes and w-axes, in order to grad-
ually rotate the initial frame.

Minimal Rotation identification

An optimization problem has been designed in order to find the matrix connecting two
adjacent u-axes. The reason is that two vectors in a three-dimensional space can be
connected by an infinite number of rotations, since some information are missing. This
information is related to the rotation around the own axis of the vectors, that in the
planning problem means including some torsional effects during the manipulation, and
this should be avoided.
For this reason it’s not enough to compute a rotation between adjacent vectors, but the
minimal rotation is needed. For this purpose an optimization strategy solves the problem
in an efficient way.

Decision variables:

The decision variables are the elements of the matrixX i−1
i ∈ R3,3, related with the rotation

to be identified Ri−1
i ∈ SO(3) such that:

Ri−1
i = I +X i−1

i (4.25)

where I ∈ R3,3 is the identity matrix, such that if X i−1
i = 0, then Ri−1

i = I, that means
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a null rotation.
The cost function aims to minimize the variations of Ri−1

i with respect the null rotation
I, and hence a minimization on the decision variables X i−1

i is involved. This can be
interpreted as finding the minimal rotation.

Cost function to be minimized:

min
Xi−1

i

||X i−1
i ||2 (4.26)

The cost function must be minimized by satisfying some criteria: the matrix Ri−1
i =

X i−1
i + I must be a rotation matrix (this can be traduced in imposing orthogonality and

normality to the solution X i−1
i + I) such that it rotates the vector ui−1 to coincide with

ui.

Constraints to be satisfied:

(X i−1
i + I)−1 = (X i−1

i + I)T

det(X i−1
i + I) = 1

ui = (Ri−1
i )ui−1 = (X i−1

i + I)ui−1

(4.27)

(4.28)

(4.29)

Through this optimization problem, the estimation of the minimal rotation between two
vectors is possible. By applying the problem on each pair of vectors ui and ui+1 for the
clip-1 and the clip-2 along the shapes, it’s possible to find all the clip rotations involved
in the path, in order to smoothly rotate the robot.

This solution is more computationally heavy with respect to the auxiliary vector method,
but it provides some improvements:

- the initial frames orientation are user defined, this means that there is no need of
computing an additional rotation matrix.

- there is no need of creating an auxiliary vector for the algorithm, this overcomes all
the problems related to the cross-product computation.

- the algorithm identifies the minimal rotation to move the clip frames form a shape
the the following one, this prevents the inclusion of extra rotation components in
the motion, that may lead to bring undesirable torsional behaviours in the cable.

As it is explained in subsection 4.6.3, the minimal rotation identification method does not
work for cables with high stiffness, therefore another method, “equivalent rigid rotation
method”, is proposed.
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4.6.3. Equivalent rigid rotation method

In many cases in industry applications some cables characterized by high stiffness are
involved in the task. An example can be a brake hose in automotive sector (Figure
4.27b), or a pipe for compressed air (Figure 4.27a). Often the elevated stiffness of the
cables brings to have a rest configuration that is curved, associating to the cable a more
complex geometry with respect to the straight equilibrium configuration.

Hence a new method called “equivalent rigid rotation method” has been designed for those
cases, when the planning algorithm deals with cables for which the rest configuration is
not straight.

(a) Air compressed hose for industrial applica-
tions..

(b) Braking hose of a motorcycle..

Figure 4.27: Examples of DLOs with curved rest condition.

In those cases the minimal rotation is no more the right solution to prevent the introduc-
tion of torsional behaviours in the cable, since the cable has a complex geometry which
must be considered in the extraction of the orientation of the clips. In Figure 4.28 it is
shown that the minimal rotation identification method leads to wrong rotations applied
on the two clips.
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(a) Total planning with wrong clip extraction.

(b) Initial shape grippers. (c) Final shape grippers.

Figure 4.28: Example of wrong clips extraction. The minimal rotation is no more the
right solution. With a comparison between the clips on the initial and final shapes it can
be noticed that the cable is subjected to a torsion about 180° that will compromise the
target shape.

For this reason a more complex algorithm has been developed. The strategy consists
into building an equivalent rigid body around the cable by inspecting its geometry, then
calculate the rotation associated to the body along the path in order to be applied also
to the clips. This procedure is suggested by the high stiffness characterizing this kind of
DLO.
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- The first step aims to create an equivalent rigid body associated to the cable. This
can be done by using the chord of the arc identified by the shape, as shown in Figure
4.29. Then a right-handed frame is obtained by processing the axis of the first link
of the cable, the chord and their perpendicular vector. This procedure is applied on
each planned shape (Figure 4.30).

Figure 4.29: Rigid-body computation and vectors used for the creation of the right-handed
frame.

Figure 4.30: Equivalent rigid-bodies with the associated right-handed frames.

The algorithm is computed two times: the first time for the first clip, by placing
the rigid-body frame in the point in which the first clip will hold the cable; Instead
the second time it’s done the same way but for the second clip. This because the
rigid body is only an approximation of the cable and the links can slightly move in
different ways, hence a focus in the two areas of interest are needed.

- The second step aims to compute the rotation matrices between adjacent shapes
considering the equivalent rigid body frames. This time an optimization procedure
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is not necessary, because all the information is available: in particular the right-
handed frames provide the rotation matrices to be used in the computations, and
the following relationship holds:

Ro
i = Ri−1

i Ro
i−1 (4.30)

where Ro
i ∈ SO(3) is the rotation matrix related to the right-handed frame as-

sociated to the rigid-body on the shape i, for i = [1, S + 2], with respect to the
base frame (the identity). Ri−1

i ∈ SO(3) is the rotation matrix connecting two
consecutive right-handed frames along the path, it can be easily computed as:

Ri−1
i = Ro

i (R
o
i−1)

T (4.31)

- The last step aims to use the computed rotations in order to move the clips according
to the planned path. The identified rotations, computed from the rigid-body frames
are progressively applied to the clips of the robot, starting from their user-defined
configuration, in order to rotate them accordingly.

An example is shown in Figure 4.31, where the equivalent rigid rotation method has been
applied in order to extract the orientations of the clips along the path. The obtained
result can be compared to the one obtained in Figure 4.28.
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(a) Total planning with clip extraction.

(b) Orientation of the clips on the starting shape. (c) Orientation of the
clips on the final shape.

Figure 4.31: Example of manipulation, by inspecting the initial and the final shape it can
be noticed that the cable is not under torsional behaviours.

Table 4.3 summarizes when to use each methodology.
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Method When to be used

Auxiliary vector when cross-product conditions can be easily
checked

Minimal Rotation
identification

when the auxiliary vector method fails, and
it’s necessary to avoid torsion introduction

Equivalent
Rigid Rotation

when stiff and curved cables are involved

Table 4.3: Gripper extraction methodologies.
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5| Iterative planning through

simulation

The optimization phase described in Chapter 4 provides the path for the end-effectors
TCPs (tool center points) of a dual-arm robot to bring a cable from an initial pose to
the final one: a serie of S intermediate distributions of the mass-points composing the
cable is provided. Those mass-points configurations can be translated into a series of S
intermediate shapes of the cable, that can be used to extract the subsequent poses for
the robot grippers. Those poses are connected by linear motions of the TCPs in order to
provide the trajectories for the dual arm robot.

The provided path has the following features:

- The planned path is based on the shortest geometrical one. This aspect is achieved
by the basic and advanced geometrical minimization.

- The shapes of the cable along the path are minimal energy curves, thanks to the
physical minimization step, which minimizes the bending and the axial forces of the
cable.

- The orientations of the robot clips do not introduce torsional stress. This is achieved
thanks to the minimal rotation computation or the equivalent rigid-body method-
ology introduced for the clips extraction from the shapes.

While the optimization phase cares about the geometric planning and the internal forces
in the cable, some external aspects related to the environment are not considered as, for
example, the gravity force acting on the cable and the obstacles involved in the working
area. For this reason an additional phase involving a simulation of the cable exploiting
the DLO physical model introduced in Chapter 3 has been implemented. In particular a
static simulation is performed (explained in section 5.2) for the stabilization of the shapes
and the obstacle avoidance.
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5.1. Simulation environment

The simulation aims to move and simulate the cable under some user defined manipulation
effects. Therefore the mass-spring model described in Chapter 3 is implemented in Matlab,
where constraints related to the grippers of the robot are added.
It is worth mentioning that the mass-spring model describes the behaviour of a deformable
linear object under different types of constraints, for our needs it is necessary to simulate
a dual-arm robotic manipulation and hence those constraints fall to the robot grippers
holding the cable at the two ends: the grippers of the robot are applied on the first and last
link of the cable, providing the motion under which the cable must behave accordingly.
As shown in figure 5.1, the inputs of the simulation are:

- The initial shape of the cable;

- The time history of the positions and orientations of the two grippers (clips), that
will drive the cable ends during the simulation;

- The obstacles can be modeled and introduced as additional constraints.

The simulator will solve the motion equations at each time step ∆τ , as described in
Section 3.8, and the output will be the cable behaviour during the simulation under the
manipulation constraints.

Figure 5.1: Simulation environment. Specifying the time history of the clips holding the
cable, the time history of the cable behaviour is provided.

5.2. Static simulation

Since deformable linear objects are very difficult to be modeled and simulated (considering
also non-idealities involved with the structure of the cable such as plastic deformations),
we prefer to keep low speed while manipulating such objects, to cut off dynamic effects
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and inertia contributes, that may increase the uncertainty of the predicted behaviour.
Hence in this work the simulation phase aims to simulate the cable around points of
equilibrium, managing quasi-static configurations.

The cable shapes provided by the optimization step described in Chapter 4 are processed
with a static simulation: each shape ξo, ξ1, ξ1 · · · ξS , ξf is simulated keeping the associated
planned clips in their fixed position, in this way the cable is free to stabilize under the
gravity effect, leading the shapes to a stabilized configuration. As described in Figure 5.2,
the clips provided are stationary and the final shape of the simulation time history is the
stabilized one.

Figure 5.2: Static simulation of a planned shape.

The static simulations of the intermediate shapes are used for two purposes: A stabil-
ity check for the target pose, and for obstacles avoidance along the planned path. In
particular:

- For the target shape a check is necessary, to inspect if the actual desired configu-
ration is a stable one. For this reason the static simulation is used to stabilize the
shapes under the gravity effect, and a comparison with the planned one is carried
on. This check is fundamental to validate the feasibility of the final user defined
configuration.

- The stable configuration for each planned intermediate shape is also exploited to
inspect collisions with known obstacles in the environment. The collided shapes are
then re-defined, performing obstacle avoidance, and the optimization procedure is
recomputed, in order to change the path, as shown in Figure 5.3.

Section 5.4 details the procedure applied to the intermediate shapes, while Section 5.3
deals with the stability check executed to the user defined final shape, that is the first
check that must be executed to verify that the final configuration is feasible.
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Figure 5.3: Optimization and simulation mechanism for intermediate shapes.

5.3. Stability check for target pose

To avoid creating a ill-posed manipulation it is necessary to perform a detailed inspec-
tion of the desired pose ξf . Such shape is processed by the static simulation procedure,
obtaining the stabilized one ξf,stab.

The stability analysis is provided by computing the distances between relative mass-points
of the ξf and ξf,stab: high distances mean instability of the desired shape, involving large
amount of motions during the stabilization phase. In such cases some warnings to the
user are provided, in order to re-design the target pose for the manipulation at hand,
as described in Figure 5.4. In particular the warning is provided when the maximum
distance between relative mass-points is greater than an user-defined threshold Tcf .

Figure 5.4: Stability check procedure for the target pose.
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In Figure 5.5 an example of target pose stabilization is shown, for an Ethernet cable of
initial length l0 = 0.57m, d = 6mm and Young’s Modulus E = 7.5 ·106Pa. The stabilized
shape is deformed due to the gravity effect.

Figure 5.5: Proposed target shape ξf and stabilized one ξf,stab.

The distances are shown in Figure 5.6: a large motion is experienced in the middle of the
cable, reaching up 6cm of magnitude. This behaviour is due to the low stiffness of the
cable, because the internal forces produced in the shape are not enough to compensate
the gravity effects.

Figure 5.6: Distances between relative mass-points along the two shapes in Figure 5.5.
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An other example in which the cable stabilizes under gravity effects is shown in Figure
5.7 and 5.8.

Figure 5.7: Proposed target shape and ξf and stabilized one ξf,stab.

Figure 5.8: Distances between relative mass-points along the two shapes in Figure 5.7.

In Figure 5.9 and 5.10 a case is shown in which the provided target shape ξf and the
stabilized one ξf,stab are almost equal. The involved DLO is an hose with length l0 =

0.57m, d = 6mm, mass m = 10g and Young’s modulus E = 1 · 108Pa. The stiffness of
the cable allows to compensate the gravity effects, indeed the distances between the two
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mass-points are very small (less than 1mm), since the internal forces are minimized by
the physical minimization procedure, leading to a stable target shape.

Figure 5.9: Proposed target shape ξf and stabilized one ξf,stab.

Figure 5.10: Distances between relative mass-points along the two shapes in Figure 5.9.

While on the final target pose a stabilization analysis is enough, the static simulation
environment has to be applied also on intermediate shapes, in order to inspect gravity
effects on the planned shapes and collision with obstacles, as previously mentioned.
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5.4. Path stabilization and obstacle avoidance

This simulation step aims to inspect the cable configurations along the path, managing
to avoid collisions with obstacles in the environment. As described in the previous sec-
tion, the cable may undergo to gravity effects, providing some deformations. This phase
computes such deformation on each intermediate planned shape ξi with i ∈ [1, S], where
S is the number of intermediate shapes. Then a collision check is computed, referring to
obstacles modeled in the simulation environment. Finally a collision avoidance strategy
and a re-planning through optimization procedure are implemented, leading to a collision
free path, considering the cable during the manipulation.

5.4.1. Obstacle modeling

In assembly operations such as cable wiring operations, the obstacles are supposed to be
lying on the working area. An example can be a component placed in the middle of the
working table. For this reason obstacles are modeled as some prohibitive areas attached
on the ground, as shown in Figure 5.11.

Figure 5.11: The obstacle is modeled as a volume resting on the table.

5.4.2. Gravity deformation of intermediate shapes and collision
detection

Once the obstacle is modeled, a collision check between the intermediate shapes of the path
is necessary. To this aim each intermediate shape is processed by a static simulation, then
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the collision with obstacles is inspected considering the stabilized shapes. As described in
section 5.3, often shapes stabilized under gravity effect provide a downward deformation.
For this reason they are used for collision detection purposes, providing a worst-case
situation, leading to a safer path correction.

In Figure 5.12 an example of stabilized total path is provided: each intermediate shape is
stabilized by the static simulation.

Figure 5.12: Stabilized path for an USB cable with l0 = 0.5m, d = 5mm, m = 10g and
equivalent Young’s modulus E = 2.5 · 106Pa.

It can be noticed that a deformation due to gravity effects is not a problem, since shapes
are stabilized and minimal energy ones. Hence even if the manipulated cable is deformed,
it is not expected to be in stressed configurations. However, problems arise when a planned
shape (or a stabilized one) collides with an obstacle. For this reason, it is necessary to
spot and correct possible collisions of the manipulated cable with the environment.

The collision detection is performed by comparing the modeled obstacles and each inter-
mediate stabilized shape, as shown in Figure 5.13. In particular, mass-points positions are
verified not to be in the prohibitive volume: if this holds, a flag is assigned to the relative
shape, and the maximum collision depth zdepth along z-axis is computed, considering all
the mass-points of the stabilized cable shape at hand.
The maximum collision depth zdepth is the maximum depth for which a mass-point of a
shape lies in the space occupied by the obstacle, along the z-axis, as shown in Figure 5.14.
It is important to notice that more than one mass-point may undergo to a collision, so to
consider the worst-case is necessary, inspecting all the mass-points composing the shape.
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Figure 5.13: Example of collision detection with obstacle and an intermediate shape.

Figure 5.14: Maximum depth of collision computation considering the obstacle and the
stabilized shape, focusing on the example of Figure 5.13.
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5.4.3. Collision avoidance and re-planning through optimization

The strategy used to avoid obstacles is effective and intuitive: the collided shapes are
subjected to a translation along the z-axis. The eight of each mass-point of the collided
shape is increased by a value that is equal to the maximum collision depth zdepth plus a
safety offset zsafety, as shown in Figure 5.15. The safety offset is an user defined value
that can be tuned depending on the case of interest, in order to face uncertainties in the
model of the deformable linear object and in the model of the obstacle.

Figure 5.15: Re-planning of the collided shape focusing on the example of Figure 5.13.
The safety offset is tuned to be zsafety = 2cm.

Once the collided shapes have been re-planned, a re-plan of the entire path is necessary,
to integrate the obstacle avoidance operation into an optimal and smooth motion. To
this aim the optimization procedure described in Chapter 4 is exploited, with the only
difference that the paths to be planned are more than one, and they are connecting the
re-planned shape with the initial configuration and with the final one. Two set up for two
optimization procedures are designed, as described in Figure 5.16:

- The first set up aims to plan the path from the initial shape to the first re-planned
shape;

- The second set up aims to plan the path from the last re-planned shape to the target
one.

The number of intermediate shapes of each re-optimization procedure is automatically set
in order to achieve a final number of shapes that match with the original one.
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Figure 5.16: Re-optimization scheme after collision avoidance.

The optimization procedure, composed by the basic geometrical optimization, advanced
geometrical optimization and physical minimization, results in a number of intermediate
shapes, that must be linked in the total path, to obtain the collision-free planned path
(Figure 5.17).

Figure 5.17: Total path with obstacle avoidance.

As described in section 4.6, after the planning phase for the cable, it is possible to compute
the gripper poses of the robot from the planned shapes of the cable, and to create the
dual arm manipulation trajectories.
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deformable linear objects

In an industrial framework several kinds of cables need to be manipulated, with a wide
variety of properties such as length, composing material and so on. Those properties affect
the behaviour of the cable under manipulation, for example leading to different poses or
different internal forces for an equal manipulation, depending on the cable at hand.

The variation of forces and geometries involved in the manipulation is a critical aspect
for the optimization and the simulation phases, for this reason it’s necessary to some-
how formalize the concept of “cable stiffness”, in order to calculate it and then behave
accordingly.

The answer to this problem is provided by the mass-spring model: as said in Chapter
3 a deformable linear object can be modeled as a series of mass-points connected with
different kinds of springs: axial springs, bending springs and torsional springs. Intuitively
it’s possible to rely on the definition of “stiffness of a spring” and extend the concept to
the whole cable.
The stiffness of a generic spring is denoted by the spring constant k, and exploiting the
Hook’s law, the forces and the geometric deformations are related such that:

F = −k∆x (6.1)

where F is the generated force and ∆x is the deformation.
In the mass-spring model, three spring coefficients are involved: ks, kb and kt, it hods [10]
that:

ks =
EA

li

kb =
3EI

li

kt =
GIp
li

(6.2)

where E is the Young’s modulus associated to the cable material, I is the moment of
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inertia of a link: I = πd4/64, li is the length of the single link: li = l/n, G is the shear
modulus of the material: G = E/2(1 + v) (where v is the Poisson ratio), and Ip is the
polar moment of inertia: Ip = πd4/32.

Notice that the three coefficients (and hence the “cable stiffness” ) depend mainly on three
aspects:

- the length of the cable l0;

- the diameter of the cable d;

- the Young’s modulus of the cable E.

Although the first and the second terms can be easily measured on the cable, for the
Young’s modulus measurement there could be some issues.

The first problem is related to the experiment to be performed for the measurement of E:
the cable should undergo a tensile test, in order to explore the Hook’s law and obtain the
right parameter, but very sensitive and accurate machines are needed, ending in a very
expensive procedure.
The second problem is related to the composites cables: often in industrial frameworks,
cables composed by more than one material are manipulated, such as electrical wires
(Figure 6.1), in which a copper core is coated with a layer of plastic material such as
PVC, or ethylene. In those cases a tensile test could not be effective, since some layers
should behave in different ways with respect to others (for example undergoing a plastic
deformation very soon) leading to an untrue measurement. Moreover, since such cables
are composed by different materials, their tabulated value of E can’t be used, being the
cable a composite one and involving more than one material.

Figure 6.1: Examples of electrical composed wires. A single cable may contain different
material layers and multiple wires.

For this reason our work aims to inspect the Young’s modulus E with an identification
algorithm designed to obtain the right value for our mass-spring model, overcoming issues
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related to the tensile test, and managing also to estimate the equivalent Young’s modulus
for composite cables.

6.1. Young’s modulus identification

The general pipeline for Young’s modulus identification procedure is reported in Figure
6.2 and it consists in performing a manipulation of a cable in the real world and in the
simulation environment. The final poses are compared iteratively repeating the simulation
by varying E, and a least square algorithm is able to estimate the true Young’s modulus.

Figure 6.2: Young’s modulus identification pipeline.

Experiment design and data collection

The manipulation of the cable should be as informative as possible: the stiffness coeffi-
cients are related to axial, torsion and bending deformations, since axial deformations and
torsional behaviours are difficult to be inspected in a real framework, the useful informa-
tion relies on bending geometry of the cable. That’s why the experiment manipulation
should provide a bent final pose, as in Figure 6.3.
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Figure 6.3: Final pose of the designed experiment.

The data collection consists into storing the 3D cable shape, and discretize it in a number
n + 1 of points, as shown in Figure 6.4 , in order to be easily compared with the sim-
ulation outputs. The data collection can be performed with automatic recognition and
discretization of a cable, through the Ariadne algorithm [4], and a vision system described
in section 7.1. In particular during the design of the algorithm the cable configurations
have been inspected and stored through some graph paper, in order to have an as ac-
curate as possible measure. The error introduced by the Ariadne algorithm, comparing
the previous measures, is small, and hence in a second time the cable has been inspected
through the automatic algorithm for cable segmentation.

Figure 6.4: Data collection of the initial and final pose in the identification manipulation.
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Least square algorithm

The identification is a non linear, constrained, simulation-based least square algorithm:
the manipulation is simulated iteratively, varying the Young’s Modulus into a certain
range of values, and comparing the simulation output with the collected datas to get the
errors.

The decision variable is:
E ∈ [Emin, Emax] (6.3)

The cost function to be minimized is:

min
E

||ξdata,f − ξsim,f ||2 (6.4)

where ξdata,f is the final shape configuration stored through the manipulation experiment,
and ξsim,f is the final shape provided by a simulation. Emin and Emax are some values
that should be used in order to limit the research, avoiding unfeasible values of E. An
example can be Emin = 1 · 105[Pa] and Emax = 1 · 1010[Pa].

Time discretization for simulation

Since the algorithm has to perform a high number of simulations, a refined strategy has
been developed, to dicretize the time step of the simulation:

As described in section 3.8 the time step value ∆τ is computed by taking in account about
the axial stiffness coefficient ks:

∆τ =

√
mili
ks

(6.5)

The new strategy consists in creating a fictitious Young’s Modulus Ediscretization considered
only for the time discretization computation, since ks is proportional on it. High values of
E will provide a thicker dicretization, instead smaller ones will provide larger time steps.
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Figure 6.5: Relationship between the stiffness considered for the time discretization and
the real one.

As shown in Figure 6.5 for small values of E the time discretization is not changed, instead
for higher values the time steps are imposed to be larger.

Sensitive analysis on mass-points discretization

Another parameter to be tuned in the simulation for the algorithm is the number of links
n and mass-points n + 1 of the cable. In Figure 6.6 are shown the final pose of three
different simulations for a given value of E, with different cable discretization, compared
with the collected data. By increasing the number of mass-points, the shape of the cable is
smoother, falling more gradually and leading to a more realistic behaviour. On the other
side by inspecting the errors used in the algorithm (the distances between correspondent
mass-points provided in Figure 6.7) not an huge variation is observed. Moreover a thicker
discretization of the cable may lead to a heavy computational load and a time-consuming
procedure. For this reason we prefer to set a restricted number of links, for example
n = 10.

In Figure 6.6 and 6.7 some examples are shown, providing the errors computed by the
algorithm for different discretizations of the cable n = 10, 15, 20, when the data are
collected with a Hose tube with Young’s modulus E = 2 · 109 [Pa] and a simulation is
carried out with E = 1 · 108 [Pa].
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Figure 6.6: Manipulation simulations with different mass-points discretization.
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Figure 6.7: Errors computation with different mass-points discretization.

The algorithm will start from an initial proposed value of E, and then will compute
different simulations varying the Young’s modulus, as shown in Figure 6.8. The algorithm
explores different values, driving the research toward the right value (in this example is
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Ereal = 2 · 109[Pa] ).

(a) Esim = 1e6Pa. (b) Esim = 1e7Pa.

(c) Esim = 1e9Pa. (d) Esim = 4e9Pa.

Figure 6.8: Example of simulations with different values of E.
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6.2. Data driven optimization tuning

When the information about the stiffness of the cable is obtained, it’s possible to use it
in order to adapt the optimization planning algorithm and the static simulation check
algorithm.

- For the static simulation check algorithm, the Young’s modulus is necessary for the
set up. Depending on the provided stiffness, the cable will vary the gravity deforma-
tions, changing the stabilized configuration, and possibly colliding in different ways
with obstacles in the environment. For this reason an adaptation on parameter E
is very important, leading to big variations of the planned path.

- For the optimization planning step the concept is more subtle, but fundamental: a
change on the stiffness of the cable will introduce a change on the relationships be-
tween forces and geometrical deformations. This variation may bring an unbalance
on the cost functions in the problem, leading to huge variations of the convergence
points of the algorithm. For this reason an adaptation of the optimization weights
based on parameter E is necessary.

While in the static simulation step to set in the virtual environment the right value of E is
enough, for the optimization step the solution is not such trivial: in order to compensate
an unbalance of the cost function it’s necessary to act on the weights of the different terms
involved. For this reason we can talk about a data-driven approach for the tuning of the
optimization terms.

Ranges of stiffness

A number of families in which to allocate cables depending on stiffness behaviours are
provided. In particular three categories are created: soft-cables, medium-cables, and
stiff-cables.

The first analysis was carried out by inspecting the ks parameter associated to the cable.
Equation 6.2 shows as ks parameter depends on the Young’s modulus E, the length l0

and the diameter d of the cable. Such analysis leads to a huge number of cases, depending
on the varied parameter, introducing an excessive complexity to the problem. For this
reason the analysis has been limited, considering the environment concerned with our
work: the working area and the robot geometries. For this purpose the length of the
cable is supposed to be around 0.5m with a diameter about 6mm.

In this way the stiffness of the cable can be determined uniquely by the Young’s modulus.
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The three families are then obtained dividing the range of values as shown in Figure 6.9.

Figure 6.9: Ranges division based on the Young’s modulus of the cable.

Optimization tuning

The tuning of the cost function is provided by inspecting the optimization behaviours
in the different identified families. In equations 6.6, 6.7 and 6.8 are reported the cost
functions involved in the optimization, in order to highlight the weights to be tuned.

Basic geometrical cost function:

min
ξ1,ξ2,··· ,ξS

S∑
i=1

wi,b||γi(ξi, ξi−1)||2 + wf,b||γf (ξo, ξ1, · · · , ξf )||2 (6.6)

Advanced geometrical cost function:

min
ξ1,ξ2,··· ,ξS

S∑
i=1

wi,a||γi(ξi, ξi−1)||2 + wf,a||γf (ξo, ξ1, · · · , ξf )||2

+
S∑

i=1

wδ||δi(ξi)||2 + wclip
1

∆clip,i

+ wβ||βi(ξi)− βo,i||2
(6.7)

Physical minimization cost function:

minξmin
=wσ||σ||2 + wb||Fb||2 + ws||Fs||2 (6.8)

The tuning of the Basic geometrical optimization and the Advanced geometrical opti-
mization is unchanged in the three families: it relies only on the geometrical side of the
problem, and since the length and the diameter of the cable and the working area are
fixed it is not necessary a variation. The tuning parameters are shown in Table 6.1.
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Geometrical optimization weights tuning

wi,b wf,b wi,a wf,a wδ wclip wβ

all-stiffness 1 1 20 20 10 0.008 40

Table 6.1: Tuning of the weights in the basic geometrical cost function and in the advanced
geometrical cost function.

As described in section 4.4, the advanced geometrical optimization aims to stretch the ca-
ble along the shortest geometrical path without introducing excessive axial deformations.
The stretching component is managed in the term weighted by wclip, its counterpart is
instead weighted by wδ. Those terms are used in order to balance the geometrical axial
deformation of the cable. An example of wrong tuning can be an excessive small wδ or
an excessive big wclip that may lead to a over-stretched cable. In Figure 6.10 there is
an example of different results with different tuning of the parameters. In Figure 6.10a
the cable is stretched a lot, hence in Figure 6.10b the wclip term has been decreased: the
stretching behaviour is balanced, however the curvature is not very good. For this reason
in Figure 6.10c the weight involving the curvature of the path wβ has been increased,
leading to the final right tuning.
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(a) wclip = 0.1, wδ = 10, wβ = 4.

(b) wclip = 0.008, wδ = 10, wβ = 4.

(c) wclip = 0.008, wδ = 10, wβ = 40.

Figure 6.10: Different geometrical planning for different tuning of the advanced geomet-
rical cost.

In the physical minimization, a variation of the weight costs is necessary, because the
relationship between geometrical deformations and internal forces is exploited in the op-
timization. The tuning is reported in table 6.2.
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Physical optimization weights tuning

wσ wb ws

medium-cables 10 100 1

soft-cables 10 1000 10

stiff-cables 0.1 100 1

Table 6.2: Tuning of the weights in the physical minimization cost function, for cables of
different stiffness.

Inspecting the tuning of the medium-cable case it can be noticed that a grater importance
has been posed on the bending forces. The reason is that for a DLO in general it’s true
that ks >> kb : a small axial deformation of the cable will produce a much higher force
compared to a bending one. For this reason the magnitude of the bending forces has been
increased with respect to the axial ones.

Once the tuning of the medium-cables is provided, a variation of the weights brings to
the tuning for soft-cables and stiff-cables.

- For soft-cables the magnitude of wb and ws has been increased about 10 times. This
because soft cables will have a low Young’s modulus E, that leads to small axial
stiffness ks and bending stiffness kb, causing the cable to produce low forces also in
stressed conditions with unnatural geometries. For this reason it’s necessary a cost
function more focused on the forces in the cable.

- For stiff-cables the magnitude of wσ has been decreased about 100 times. This
because stiffer cables have a very high Young’s modulus E, hence for quite small
deformations, some very high forces are generated. Moreover it can be noticed that,
by moving a very hard cable, the internal forces may lead to limitations on the
range of deformation of the cable. For this reason the geometrical term wσ has been
decreased: the cable should be free to move, in order to avoid excessively stressed
configurations.

Once the three families have a proper tuning, the values of the cost can vary, depending
on the case of interest.
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This adaptation strategy enables the planning for the manipulation of different types of
cables, in the area of interest. The Young’s modulus identification provides a value of the
cable stiffness, that is used to set up the simulation phase and to accordingly tune the
optimization algorithms, as shown in Figure 6.11.

Figure 6.11: Adaptation strategy implemented in the work.

The focus provided on the cable length has been introduced in order to match the size
of the problem with the size of the available area on the working table. Such limitation
can be easily relaxed: with an analysis and a right tuning of the cost functions, whatever
situation can be properly handled.
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7| Experimental analysis and use

case

A series of experimental tests involving DLOs of different materials and mechanical prop-
erties were carried out to validate the proposed method, providing quantitative and quali-
tative analysis. Moreover, a use case regarding a wire harness assembly operation involving
three different cables has also been considered, exploiting the proposed method.
This chapter analyses in detail the experiments performed and the set up used, including
the obtained results, in terms of errors and experienced shapes for different manipulations.

7.1. Experimental setup description

The experimental setup consists into a dual arm robot that manipulates some deformable
linear objects according to the proposed methodology. A vision system has been set up,
to inspect the shapes provided by the manipulation.
The robot used for the experimental phase is an ABB YuMi robot, with some custom
designed grippers for the grasping of the cable, allowing a dual-arm deformable linear
object robotic manipulation. The camera used for the shapes inspection is a RealSense
camera, mounted with an Eye-to-hand configuration: the camera is placed above the
working area, as shown in Figure 7.1. The camera is used to compute the intermediate
cable shapes experienced during the experimental manipulation, referred to the robot
base frame. In this way it is possible to compare the planned shapes with the obtained
ones.

7.1.1. Camera calibration

The camera has to be calibrated before the usage:

- The internal calibration consists into the determination of the intrinsic parameters
of the camera, such as the focal length, and some additional distorsion parameters
involving lens imperfections and misalignements in the optical system. Those pa-
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rameters are automatically provided by the camera, in the Python environment,
once the communication channel with an external PC has been initialized.

- The external calibration consists into the determination of the position and ori-
entation of the camera with respect to an external reference frame (in the set-up
it coincides with the robot base frame). This calibration procedure is carried out
before starting the manipulation, and then the camera must not be moved.

The external calibration provides the homogeneous matrix to be applied to an object, in
order to transform its position and orientation from the camera point of view to the robot
perspective. To this aim three frames are involved:

- The camera frame, placed in the camera focus;

- The robot frame (called also base frame, because it is the main frame placed at the
base of the robot);

- An additional marker frame, provided by a marker (an ArUco), placed with a known
position and orientation with respect to the robot base frame.

Those three frames are linked through some homogeneous matrices, as described in Figure
7.1.

Figure 7.1: Camera frame, Robot base frame and Marker frame, linked with homogeneous
matrices.

In particular Ac
m ∈ SO(3) is the roto-translation matrix that describes the pose of the

marker frame from the perspective of the camera one; Ar
m ∈ SO(3) is the matrix that
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express the pose of the marker frame from the point of view of the robot; and Ar
c ∈ SO(3)

is the matrix that provides the pose of the camera from the robot perspective.
The matrix Ar

c is the matrix computed with the extrinsic calibration, and it is used to
bring, given the position of an object in the working area, the pose sensed in camera frame
to the robot frame. In particular:

- The camera provides the position and the orientation of the object to be detected
Ac

o, and of the AruCo marker Ac
m, referred to the camera frame.

- The position and the orientation of the marker referred to the robot base frame Ar
m

is known, because it is user defined.

- The relationships between known matrices can be exploited in order to find the
position of the object referred to the robot frame Ar

o.

As shown in Figure 7.2, in order to find Ar
o (the pose of the object with respect to the

robot base frame) the following relationship can be exploited:

Ar
o = Ar

m · (Ac
m)

−1 · Ac
o

= Ar
m · Am

c · Ac
o

= Ar
c · Ac

o

(7.1)

Leading to the extrinsic matrix Ar
c, used to convert Ac

o into Ar
o.

Ar
c = Ar

m · (Ac
m)

−1 (7.2)

Figure 7.2: Homogeneous matrices used to provide the position of the object with respect
to the robot base frame.
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Once the extrinsic calibration of the camera is completed, it is possible to find the coor-
dinates in the space with respect to the robot frame of the pixels in the image provided
by the camera.

7.1.2. Deformable linear objects registration

To provide the position of a deformable linear object in the space, it is necessary to provide
the coordinates of a certain number of points, distributed along the cable shape in the
space. Those points are initially computed as pixel coordinates on the image taken by
the camera. They are then transformed in [m] coordinates by processing them with the
intrinsic parameters of the camera and finally they are referred to the robot base frame,
by applying the extrinsic calibration matrix:

p̃r = Ar
c · p̃c (7.3)

where p̃r is the homogeneous representation of the position referred to the robot frame,
and p̃c is the homogeneous representation of the same position referred to the camera
frame.

The pixel points describing the cable shape can be computed by inspecting the images
provided by the camera, or by processing them with an automatic DLO segmentation
algorithm: Ariadne [4]. Such algorithm exploits an over-segmentation of the source im-
age into super-pixels (regions of the image), as shown in Figure 7.3a. Then it inspects
meaningful regions (based on vision similarities, such as curvature, size, or color of the
super-pixels), in order to find the cable shape, by creating a path between super-pixels,
as shown in Figure 7.3b. The super-pixels corresponding to the path give the shape of
the cable.

(a) Super-pixel segmentation. (b) Cable recognition.

Figure 7.3: Super-pixel segmentation and cable recognition through Ariadne [4] algorithm.
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7.2. Experimental Tests

A series of experimental tests have been carried out, to compare the shapes planned
on simulation by our method, and the experienced ones during the dual arm robotic
manipulation.
Each planned manipulation consists into a number S+2 of shapes, and each shape consists
into a distribution in the space of n+1 mass-points. On the other side a shape registered
by the vision system can be discretized into n+1 points, in order to have a match between
registered points and planned mass-points.
In this way a comparison, between a planned shape and a one registered by the camera, is
possible: a measure of error can be provided by computing the distances between planned
mass-points and registered ones.
The average of the errors of mass-points composing a shape will be considered as the error
associated to such shape.

Different types of deformable linear objects have been used for the tests, in order to explore
the robustness of the planner and to validate the chosen weighting in the optimization
procedure, depending on the three different DLOs families described in Chapter 6.
In particular cables with different Young’s modulus are involved, exploiting the different
tuning of the algorithm approaching different stiffness:

- A hose in polyurethane (PU) with diameter d = 6mm, length l0 = 0.50m, Young’s
Modulus E = 1 · 108Pa and mass m = 11g;

- A hose in polyamide (PA12) with diameter d = 6mm, length l0 = 0.50m, Young
Modulus E = 1 · 109Pa and mass m = 9g;

- An USB cable with diameter d = 3mm, length l0 = 0.5m, mass m = 10g and
equivalent identified Young’s modulus E = 2.5 · 106Pa (The stiffness identification
procedure is provided in the next Subsection).

- An Ethernet cable with diameter d = 5mm, length l0 = 0.5m, mass m = 10g and
equivalent identified Young’s modulus E = 7.5 · 106Pa (The stiffness identification
procedure is described in the next Subsection).

It is important to underlie that the first two mentioned DLOs are composed of an unique
known material, hence their Young modulus can be found in tables. On the other hand
the USB and the Ethernet cable are composite materials and hence it is necessary to
identify their Young’s modulus according to the strategy in Chapter 6.

The tests can be divided in two parts: the first part (described in Subsection 7.2.2) involves
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some manipulations that keep the cable to be near a two-dimensional configuration, for
this kind of tests it was possible to inspect the errors in a quantitative way, exploiting the
vision system described in Section 7.1.
The second part of the tests (described in section 7.2.3) involves some three-dimensional
manipulations, in this case a qualitative inspection of the shapes is carried out, since a
tracking algorithm for deformable linear objects in the 3D space was not available, to
have good enough data to perform the comparison and the quantitative analysis.
Finally, a use case about wire harness assembly involving the USB cable, the Ethernet
cable and the PU hose is described in section 7.3.
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7.2.1. Young’s modulus identification for USB and Ethernet ca-

bles

The USB and the Ethernet cables are composite cables, for this reason their Young’s
modulus have been identified with the method proposed in this work (Section 6.1): In
particular, both the cables are subjected to a manipulation, and their final shapes have
been registered to be used in the identification algorithm as shown in Figure 7.4 for the
Ethernet cable, and in Figure 7.5 for the USB cable.

(a) Final manipulation pose. (b) Registered shape and simulated one with Eidentified.

Figure 7.4: Identification manipulation for the Ethernet cable.

(a) Final manipulation pose. (b) Registered shape and simulated one with Eidentified.

Figure 7.5: Identification manipulation for the USB cable.

For both identifications the ranges of values for E are constrained to be between Emin =

1 · 106Pa and Emax = 1 · 108Pa.
The identified values are:

- For Ethernet cables: Eidentified = 7.5 · 106Pa;

- For USB cables: Eidentified = 2.5 · 106Pa.
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Further details about the identification are reported in the Table 7.1. The “Simulations”
parameter describes the number of simulations executed during the research, the “Itera-
tions” parameters describes the number of computations of the gradient of the function
(generally two simulations for each iteration are required), “f(x)” parameter describe the
optimal value of the cost function, the “First Order Optimality” parameter describe the
optimal value of the gradient of the function. Finally “Eidentified” describes the optimal
value of the identified Young’s modulus.

Iterations Simulations f(x) first order optimality Eidentified

Ethernet 22 46 0.0004 4.751̇0−6 7.5 · 106Pa

USB 20 42 0.00039 1.681̇0−5 2.5 · 106Pa

Table 7.1: Identification details for the Young’s modulus of the USB cable and the Eth-
ernet cable.
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7.2.2. Quantitative analysis

For this part of analysis 3 tests are carried out, involving 2 different manipulations (M1
and M2) and 3 different cables (PU hose, USB, PA12 hose). The three tests are:

- A “sinusoidal deformation” manipulation (M1) for the PU Hose (7.2.2);

- A “uniform curvature deformation” manipulation (M2) for the USB cable (7.2.2);

- A “uniform curvature deformation” (M2) manipulation for the PA12 Hose (7.2.2).

Each manipulation is executed and registered 2 times, in order to provide a statistical
analysis on the errors of each shape.

In Table 7.2 some measures are shown, describing the average error experienced in each
test. Such errors are provided computing the mean errors on the mass-points of all the
shapes. Each manipulation is composed by 7 shapes, and each shape is composed by 11

mass-points.

Planned
manipula-
tion

DLO E [Pa] errorx [m] errory [m] errorz [m] errortot [m]

M1 PU Hose 1 · 108 0.0183 0.0193 0.0142 0.0173

M2(USB) USB cable 2.5 · 106 0.0041 0.0062 0.0046 0.005

M2(PA12) PA12 Hose 1 · 109 0.0068 0.0111 0.0020 0.0066

Table 7.2: Results provided by the quantitative analysis.

The z-errors are provided by inspecting the height of the registered points of the cable
manually, providing points in the 3D space. By analysing the results, it can be noticed
that for M2(USB) and M2(PA12) there is not much difference on the errors. Such tests
involve the same manipulation with a stiff and a soft cable. This means that the stiffness
of the cable has a tiny impact on the accuracy of the manipulation.
A bigger difference is noticed in M1, in which a larger error is experienced. In such test
the desired shape is more complex. Hence it can be noticed that the accuracy of the
manipulation is much sensitive on the complexity of the shapes of the cable.

Sinusoidal deformation for PU Hose tube

For such manipulation, the PU Hose tube is used. The stiffness of the cable is enough
to slightly compensate gravity deformations, but at the same time it allows to assume
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quite stressed configurations. The planned manipulation M1 aims to deform the cable in
a target sinusoidal shape as shown in Figure 7.6. A top view (from the RealSense camera
point of view) is shown in Figure 7.7, for each experienced shape during the dual arm
robotic manipulation.

Figure 7.6: Minimal energy shapes planned for the PU Hose tube, according to M1.

(a) Shape ξo. (b) Shape ξ1. (c) Shape ξ2. (d) Shape ξ3.

(e) Shape ξ4. (f) Shape ξ5. (g) Shape ξf .

Figure 7.7: Shapes provided by the dual arm robotic manipulation for the quantitative
test 1 (M1).

Such shapes are registered by the vision system, and compared with the stabilized shapes
provided by the static simulation environment, as shown in Figure 7.8.
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Figure 7.8: Planned shapes (Bold lines) and registered shapes (Dashed lines), referred to
the manipulation in Figure 7.6.

(a) Shape ξo. (b) Shape ξ1.

(c) Shape ξ2. (d) Shape ξ3.

(e) Shape ξ4. (f) Shape ξ5.

(g) Shape ξf .

Figure 7.9: Planned shapes and registered ones, for M1.
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In figure 7.9 the planned shapes and the registered ones are provided, with a focus on
each shape involved in the manipulation.
The mean error of each shape is reported in Figure 7.10. Such errors can be computed con-
sidering the average error on each mass-point composing the registered shape, compared
to the respective planned one, considering all the test carried out.

Figure 7.10: Mean errors on each shape for the manipulation provided in Figure 7.8.

Uniform curvature deformation for USB cable

The planned manipulation M2 aims to deform the cable as shown in Figure 7.11. Such
manipulation can be considered simpler than M1, because a two dimensional shape with
uniform curvature is expected. On the other hand, such manipulation applied on soft
cables is very sensitive to gravity effects. For this reason the manipulation is planned
with two different cables: M2(USB) is defined for an USB cable (analysed in this sub-
section), with a low Young’s modulus, while M2(PA12) is planned for a PA12 Hose tube
(subsection 7.2.2), characterized by an high Young’s modulus able to compensate gravity
deformations.
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Figure 7.11: Minimal energy shapes planned for the USB cable, according to M2(USB).

Figure 7.12 shows the stabilized shapes: the planned shapes are deformed by gravity
effects (especially the last one), due to the low Young’s modulus of the cable. Those
shapes will be used for the error computation.

Figure 7.12: Gravity stabilization for the shapes in the manipulation of Figure 7.11,
according to M2(USB).

The shapes experienced during the dual arm manipulation are provided in Figure 7.13.
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(a) Shape ξo. (b) Shape ξ1. (c) Shape ξ2. (d) Shape ξ3.

(e) Shape ξ4. (f) Shape ξ5. (g) Shape ξf .

Figure 7.13: Shapes provided by the dual arm robotic manipulation for the quantitative
test 2 M2(USB).

The comparison between stabilized shapes and registered ones is provided in Figure 7.14:
the shapes are very similar and a slight error is found due to a small mismatch on the
gravity deformation.
The mean errors on the shapes are provided in Figure 7.15. It can be noticed that a larger
error on x, y and z is achieved on the last shape, with respect to the others. Despite the
simple features of the manipulation, the soft behaviour of the cable leads to a less accurate
prediction of the shape because the cable is less stretched with respect to the other shapes.

Figure 7.14: Planned shapes (Bold lines) and registered shapes (Dashed lines), referred
to the manipulation in Figure 7.11.
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Figure 7.15: Mean errors on each shape for the manipulation in Figure 7.14.

Uniform curvature deformation for PA12 Hose cable

The same target pose ξf is imposed for the manipulation of the PA12 Hose, obtaining the
manipulation M2(PA12). In Figure 7.16 it is shown as the stabilized shapes are almost
identical to the planned ones, due to the high stiffness of the tube. In Figure 7.17 the
real shapes experienced during the manipulation are provided.
The comparison between planned and registered shapes (Figure 7.18) are reported, with
the averaged errors (Figure 7.19).

Figure 7.16: Planned (red) and stabilized (dashed blue) shapes for the M2(PA12) manip-
ulation.
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(a) Shape ξo. (b) Shape ξ1. (c) Shape ξ2. (d) Shape ξ3.

(e) Shape ξ4. (f) Shape ξ5. (g) Shape ξf .

Figure 7.17: Shapes provided by the dual arm robotic manipulation for the quantitative
test 3 M2(PA12).

Figure 7.18: Planned shapes (Bold lines) and registered ones (Dashed lines) for a manip-
ulation of a PA12 Hose.
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Figure 7.19: Average errors on each shape for the manipulation in Figure 7.18.

In this example a smaller error along the z-axis can be noticed with respect to the USB
manipulation case, the reason is that a stiffer deformable linear object undergoes less
deformations due to gravity effects, providing stable shapes that are closer to the planned
minimal energy ones, involving less motions in the stabilization phase.
On the other hand, an higher error is experienced along the y-axis with respect to the USB
cable. That is due to the higher stiffness of the cable, that generates higher bending forces.
Those forces tends to highlight non-idealities of the cable, such as plastic deformations,
that are not considered in the model.
Moreover it can be noticed that the “sinusoidal deformation” experiment linked to M1 is
characterized by higher errors. That’s due to the higher complexity of the manipulation,
that, together with the gravity deformation phase and a quite high stiffness of the PU
Hose can lead to uncertainty in the shape predicted by the mass-spring model used in
this work.
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7.2.3. Qualitative analysis

For this experimental phase two tests are involved:

- The first manipulation (denoted as qualitative test 1) concerns a curved PA12 Hose
tube, the cable is rotated and translated in the space, involving small deformations.

- The second manipulation (denoted as qualitative test 2) concerns the Ethernet cable,
and involves a more various deformation of the cable.

Qualitative test 1

The planned manipulation for the test 1 is provided in Figure 7.20. Such manipulation
can be projected in an industrial framework, where a tube laying on the table must be
raised in order to allow an assembly operation on the two ends.
The shapes experienced during the dual arm manipulation are provided in Figure 7.21,
it can be noticed that the expected configurations are obtained, thanks to the stiffness
properties of the cable.
The Young’s modulus of the cable is E = 1 · 109Pa and it’s labeled as stiff-cable: the
optimization tuning providing the shapes is changed accordingly and the static simulation
environment provides an almost null deformation due to gravity effects, as found in the
real manipulation.
No obstacles are involved in this framework, hence the re-planning phase is not necessary.

(a) Planned shapes. (b) Planned shapes.

Figure 7.20: Different perspective view of the planned shapes for the qualitative test 1,
in order to be compared with the experienced shapes.
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(a) Shape ξo. (b) Shape ξ1.

(c) Shape ξ2. (d) Shape ξ3. (e) Shape ξ4.

(f) Shape ξ5. (g) Shape ξf .

Figure 7.21: Shapes provided by the dual arm robotic manipulation for the qualitative
test 1.

Qualitative test 2

This planned manipulation concerns the Ethernet cable: the planned shapes are provided
in Figure 7.22.
Such manipulation is often required in cabin network assembly operations, in which Eth-
ernet cables are used to connect different components in the switchgears. The cable has
a Young’s modulus about E = 7.5 · 106Pa and it’s labeled as a medium-stiff-cable, the
optimization and the simulation have been tuned accordingly. As we can see in Figure
7.23, the planned shapes undergo some gravity deformation effects, and the same can be
noticed in the experimental phase.
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No obstacles are involved in the manipulation. The experienced shapes during the robotic
manipulation can be found in Figure 7.24.

Figure 7.22: Planned shapes for the qualitative test 2.

Figure 7.23: Final shape and stabilized one for the qualitative test 2.
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(a) Shape ξo. (b) Shape ξ1.

(c) Shape ξ2. (d) Shape ξ3. (e) Shape ξ4.

(f) Shape ξ5. (g) Shape ξf .

Figure 7.24: Shapes provided by the dual arm robotic manipulation for the qualitative
test 2.
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7.3. Use case: Wire harness assembly

In industry, assembly operations often have to deal with deformable linear objects such as
wires, cables or tubes: a wide amount of components need to be connected through those
kinds of objects, some examples can be electric components such as electric motors or
switchgears, or mechanical parts in automotive sectors, in which oil tubes must connect
different components. For this reason the proposed strategy can be easily applied in an
industrial operation, facing the need of manipulate deformable linear objects.
The use case provided in this work takes place in an assembly operation. The operation
is a wire harness assembly task: different kinds of cables must be placed together on an
holder, clipping them in some fixtures and shaping them with some pegs, an example of
such operation is provided in Figure 7.25. Usually this operation is followed by a clamping
phase, in which cables are tied together.

Figure 7.25: Example of harness assembly task.

In the wire assembly task, the operator has to handle cables. Due to complex behaviours
associated to DLOs, the operator has to keep attention during the task, inspecting the
cable behaviours, and deforming the shape of the cable with hands contacts. Those aspects
may over-tire the operator, leading to a slowdown of the cycle time and introducing
possible defects of the mounted components.
The proposed methodology can be applied to automatize the routing of cables in wire
harness assembly. Indeed, the problem consists into manipulating the cable from an
initial position to a final one, providing the necessary curvature to the cable, in order to
be inserted in some fixtures and to fit through some pegs. Moreover, to create a more
complex and industrial setup, an obstacle is introduced on the working table. Once the
deformable linear object has been brought to ξf , it can be inserted in the fixtures by
applying a downward relative motion, performing a clipping operation.
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After the clipping operation, the arms tension the DLO moving of a predefined offset in
the opposite direction with respect to the fixture. The offset is determined exploiting a
simulation carried out with the dynamical mass-spring model, used in order to inspect the
behaviour of the cable in contact with the fixtures and the pegs for the insertion phase.
The tensioning of the cable allows to properly contact the peg.

The considered set up is shown in Figure 7.26, two fixtures are used to clip the cable
at the two ends, and two pegs are used to shape the cables in the desired configuration.
Some plates (mounted on the pegs) are used to provide a support on which the cable can
lay. A generic known obstacle is introduced in the working table.

(a) Use case framework before the manipu-
lations.

(b) Use case framework after the manipulations.

(c) Cables shaped at the end of the operations.

Figure 7.26: Framework set up for the wire harness assembly operation. The cables must
be placed in some fixtures, laying on the plates attached on the pegs

Three cables with different mechanical properties are: the USB cable, the Ethernet cable
and the PU Hose tube, described in section 7.2. The operation results are summarised
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in Table 7.3, since the aim of this work is in an intermediate point between explicit and
implicit planning for DLO manipulation, the analysis of the operations is not provided in
terms of errors related to the shapes, but an analysis on the success rate is provided.
In the following the planning procedure for the three cables (the USB cable, the Ethernet
cable and the PU Hose) is described, together with the obtained shapes during the real
dual arm robotic manipulation.

DLO E TCP speed time experiment success success rate

USB 2.5 · 106[Pa] 100[mm/s] 9s 15 13 86%

Ethernet 7.5 · 106[Pa] 100[mm/s] 9s 15 14 93%

PU hose 1 · 108[Pa] 100[mm/s] 9s 15 12 80%

Table 7.3: Results related to the single operations involved in the use case.

7.3.1. Wire harness assembly for USB cable

The planning procedure is divided in two phases, as shown in Figure 7.27 : the first phase
aims to plan the intermediate shapes of the cable and the intermediate poses of the robot
clips to bring the cable from the initial configuration to the operation area, in particular in
this phase the obstacle avoidance is performed and the curvature of the cable is provided
in order to match with the pegs. The second phase exploits the planning strategy in
order to provide a deformation of the cable for the alignment of the extremities with the
fixtures on the table, preparing it for the insertion. In particular, to properly perform the
clipping procedure, the cable must be locally aligned with the fixtures, meaning that also
the gripper holding that portion must be aligned with the fixture. An additional step is
introduced, that aims to insert the cable into the fixtures exploiting the contact with the
pegs, the fixtures and the plates.

Moreover, the internal forces of the cable during the manipulation phase are inspected,
to verify that the cable is not stressed during the operation: the mean and the variance
of the Bending and Axial forces on each mass points considering all the involved shapes
are computed. A low mean is provided because the shapes are minimal energy ones, and
also a low variance is provided, because the cable deformation is expected to be uniform
during the manipulation.
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Figure 7.27: Planning procedure for the use case.

Some relevant aspects about the 1st phase planning are provided: the planned shapes and
the obstacle avoidance computations are reported in Figure 7.28, the relative analysis on
forces is provided in Figure 7.29.
The planned shapes and the forces analysis for the 2nd step planning are provided in
Figure 7.30 and 7.31.

(a) Collision detection with stabilized shapes.

(b) Re-planned shapes and robotic gripper poses.

Figure 7.28: USB cable planning for phase 1 of the operation.
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(a) Axial forces analysis. (b) Bending forces analysis.

Figure 7.29: Mean and variance of axial and bending forces on each mass-point of the
shape, considering all the planned shapes for the phase-1 of the operation.

During the phase-1, the forces and their variance are very low, leading to low internal
forces and smooth manipulation. It’s possible to notice that in the phase-2, the analysis
(Figure 7.31) leads to higher values for the forces, this is due to the high curvature to be
imposed on the cable (shown in Figure 7.30).

Figure 7.30: USB cable planning for phase-2 of the operation.
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(a) Axial forces analysis. (b) Bending forces analysis.

Figure 7.31: Mean and variance of axial and bending forces on each mass-point of the
shape, considering all the planned shapes for the phase-2 of the operation.

The total dual robotic manipulation with the intermediate shapes experienced is reported
in Figure 7.32.

(a) Shape ξo. (b) Shape ξ1. (c) Shape ξ2.

(d) Shape ξ3. (e) Shape ξ4. (f) Shape ξ5. (g) Shape ξf .

(h) Shape ξ1,alignment. (i) Shape ξf,alignment.

Figure 7.32: Shapes provided by the dual arm robotic manipulation for the USB cable.

The Fixture insertion and the tensioning of the cable are shown in Figure 7.33.
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(a) Insertion in the fixtures. (b) Stretching against the peg.

Figure 7.33: Insertion step for the USB cable operation.

Good behaviours are observed during the manipulation, and good results are obtained in
terms of success rate: the task is repeated 15 times in order to inspect the percentage of
successful operation. The success rate is registered to be 86%, failures are detected when
the cable is not properly gripped, due to the small diameter involved. This, together
with the low stiffness of the cable, brings to the introduction of undesired deformations,
leading to a failure of the operation. For this reason a very good grasping of the cable is
needed when soft cables are involved in the manipulation.
The task is performed with a TCP speed of 100mm/s, and it’s completed in 9s.

7.3.2. Wire harness assembly for Ethernet cable

The planning procedure is the same used for the USB cable: the phase-1 aims to bring the
cable in the operation area, and the phase-2 aims to align the cable with the fixtures. The
manipulation is very similar to the previous case, since an identical operation is required:
the Ethernet cable must be placed in the fixtures in the same configuration of the USB
cable. In the following the planned shapes and the planned grippers for the Ethernet
cable manipulation (reported in Figure 7.34), with the related analysis on the internal
forces of the cable during the manipulation (Figure 7.35 for the 1st phase of the operation,
and in Figure 7.36 for the 2nd phase).
In this case, higher axial and bending forces can be noticed, with respect to the previous
case, the reason is that the Ethernet cable is stiffer than the USB cable, and hence for
a given deformation an higher force is provided. The intermediate shapes experienced in
the experimental phase during the dual arm robotic manipulation are shown in Figure
7.37.
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(a) Phase 1 planning, the analysis on forces is provided in Figure 7.35 .

(b) Phase 2 planning, the analysis of the forces is provided in Figure.

Figure 7.34: Planned shapes and intermediate pose for the robotic grippers in the phase
1 and 2, for the Ethernet cable operation
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(a) Axial forces analysis. (b) Bending forces analysis.

Figure 7.35: Mean and variance of axial and bending forces on each mass-point of the
shape, considering all the planned shapes for the phase-1 of the operation, for the Ethernet
cable.

(a) Axial forces analysis. (b) Bending forces analysis.

Figure 7.36: Mean and variance of axial and bending forces on each mass-point of the
shape, considering all the planned shapes for the phase-2 of the operation, for the Ethernet
cable.



7| Experimental analysis and use case 123

(a) Shape ξo. (b) Shape ξ1. (c) Shape ξ2.

(d) Shape ξ3. (e) Shape ξ4. (f) Shape ξ5. (g) Shape ξf .

(h) Shape ξ1,alignment. (i) Shape ξf,alignment.

Figure 7.37: Shapes provided by the dual arm robotic manipulation of the Ethernet cable.

The Fixture insertion and the tensioning of the cable are shown in Figure 7.38.

(a) Insertion in the fixtures. (b) Stretching against the peg.

Figure 7.38: Insertion step for the Ethernet cable operation.

Good behaviours are observed during the manipulation, the task is performed with a TCP
speed of 100mm/s, and it’s completed in 9s. The success rate is registered to be 93%.
The Ethernet cable is sligthly stiffer than USB, involving less deformations, moreover
an higher diameter allows a better gripping of the cable. On the other side the stiffer
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behaviour of the cable entails the insertion in the fixtures to be more difficult, due to the
resistance of the cable to deform, and due to the creation of stiffer contacts with fixtures
and pegs.

7.3.3. Wire harness assembly for PU Hose

As shown in Figure 7.26c, the PU Hose tube has to be inserted in the fixtures by following
the curvature imposed by the other peg on the table. The curvature is not specular, since
the peg is not centered between the two fixtures, leading to the introduction of higher
internal forces in the cable. Moreover this kind of deformable linear object has a much
grater Young’s modulus that contributes to the generation of internal forces for a given
deformation, making the planning of the manipulation of paramount importance. The
planned shapes and the intermediate poses of the grippers for the 1st phase and the 2nd

phase of the operation are shown in Figure 7.39 and Figure 7.41. The internal forces of
the cable during the operations are provided in Figure 7.40 for the phase 1, and in Figure
7.42 for the phase 2.

(a) Collision detection with stabilized shapes. (b) Re-planned shapes and robotic gripper poses.

Figure 7.39: Hose planning for phase-1 of the operation, two intermediate shapes collided
with the obstacle.
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(a) Axial forces analysis. (b) Bending forces analysis.

Figure 7.40: Mean and variance of axial and bending forces on each mass-point of the
shape, considering all the planned shapes for the phase-1 of the operation, for the Hose.

Figure 7.41: PU Hose planning for the phase-2 of the operation.

(a) Axial forces analysis. (b) Bending forces analysis.

Figure 7.42: Mean and variance of axial and bending forces on each mass-point of the
shape, considering all the planned shapes for the phase-2 of the operation, for the Hose.
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The experienced shapes during the dual arm robotic manipulation are shown in Figure
7.43.

(a) Shape ξo. (b) Shape ξ1. (c) Shape ξ2.

(d) Shape ξ3. (e) Shape ξ4. (f) Shape ξ5. (g) Shape ξf .

(h) Shape ξ1,alignment.(i) Shape ξf,alignment.

Figure 7.43: Shapes provided by the dual arm robotic manipulation of the Hose.

The Fixture insertion and the tensioning of the cable are shown in Figure 7.44.

(a) Insertion in the fixtures.(b) Stretching against the
peg.

Figure 7.44: Insertion step for the Hose operation.

The task is performed with a TCP speed of 100mm/s, and it’s completed in 9s. The
success rate of the operation is registered to be 80%. The failure in the task are mainly
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introduced by the high stiffness of the tube and the higher forces introduced in the op-
eration. Those properties leads to more critical behaviours when the deformable linear
object is in contact with the pegs and the fixtures, leading to unpredictable behaviours
during the insertion phase.
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8| Conclusions

The planning for deformable linear objects manipulation through a dual-arm robot is par-
ticularly challenging, due to the large number of degrees of freedom and variables involved
in the representation of this kind of objects. In particular the limitations encountered in
the modeling phase are projected in the applications of the model, introducing limitations
also in the planning phase. Moreover, it is not sufficient to build a more accurate model,
because a trade-off between accuracy and efficiency must be reached, where a very ac-
curate model is unnecessarily computationally heavy and impacting on the optimization
phase.
Despite the many challenges involved in dealing with deformable linear objects, the
method proposes a solution to plan the motion of a dual arm robot to manipulate DLOs,
that offers good prospects and possibilities for future industrial applications. In particu-
lar, an optimization-based strategy has been developed, that exploits an informative and
computationally-cheap model such as the mass-spring model, in order to plan the trajec-
tories for the robot grippers, exploiting the shortest path for the DLO and by keeping it
near minimal energy configurations.
Low errors and good behaviours are achieved during the experimental validation. Accurate
deformations are experienced on simpler manipulations, while small errors are introduced
with the complexity of the shapes to be imposed to the cable. Moreover, during the
manipulations, the deformable linear objects appear to be in not-stressed configurations,
and the obstacle avoidance is correctly achieved despite the uncertaintly introduced by
the model, achieving the goal of performing an implicit planning involving deformable
linear objects, even in complex and industrial frameworks.
These behaviours are not affected by the material composing the cable. Thanks to the
adaptation strategy based on the stiffness of the DLO, a Young’s modulus identification
procedure is carried out before the planning phase, allowing to determine the equivalent
Young’s modulus for composite cables. This makes the method robust and generalizable
to different kinds of cables and tubes, thanks to an adaption strategy based on the Young’s
modulus for the optimization phase and the simulation one.
The only limit is represented by the speed of manipulation: in order to face the complex-
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ity of the model and filter out uncertainties introduced by dynamical behaviours such as
inertia contributes during the manipulation, the planning aims to generate and analyse
quasi-static intermediate configurations for the deformable linear object. For this reason
the velocities related to the gripper trajectories can’t be too high. However, in the use-
case validation, good time cycle are achieved, performing a wire assembly operation in
less than 10 seconds.

8.1. Future developments

Despite the good results obtained, and the relevance of the method in an industrial con-
text, some future works can be outlined.
A first improvement can be introduced by applying a more accurate model to the opti-
mization technique, such as the discrete elastic rod model: the optimization phase inspects
quasi-static configurations of the model by exploiting the forces and the positions of the
mass-points. It is possible to replace the model that provides those values with a more
accurate one, without changing the optimization structure. On the other hand it’s im-
portant to say that a more accurate and detailed model may bring issues related to the
optimization, leading to a much complex problem to be solved.
Other improvements can be introduced by working on a control structure for the ma-
nipulation. This work aims to provide a path to be followed by the deformable linear
object, and the actuation variables are imposed to be the poses of the grippers holding
the cable. While in this work the main objective is to perform an offline computation of
the grippers trajectories with a model-based analysis of the cable behaviours, an effective
improvement can be achieved by building an online control scheme for the shaping of the
cable, considering the shapes planned in this work as reference shapes. A first example
can be a visual servoing strategy: a tracking algorithm of the cable in the space is nec-
essary, then a local model and a deformation control strategy must be carried out. An
other possibility is the usage of a vision sensor in order to inspect if the obtained shapes
are matching with the planned ones, and if that is not true, a recovery strategy can be
developed.
Finally an improvement can be achieved by the application of reliable force sensors and
actuators on the robotic grippers. This allows the possibility of closing an additional
control loop based on the planned forces exploited by the mass-spring model.
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