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Abstract

In the future cellular networks, there will be cell densification, in which cells are becoming
smaller. For this reason, the number of handovers that a moving User Equipment (UE)
faces increases significantly if a conventional handover decision scheme is used. The
increased number of handovers causes more signaling overhead for the network. Further-
more, the Handover Failure (HOF)s due to the serving or target cell’s low signal quality
will also increase. So it is very important to decrease the number of handovers and HOFs,
So the UE can transmit and receive data with more sophisticated Modulation and Coding
Schemes (MCS) and achieve a higher data rate.
The advances in Machine Learning (ML) and Artificial Intelligence (AI) research open up
the door for prediction techniques of channel state information. The predicted channel
state information can be used to decrease the number of handovers and HOFs. This
thesis focuses on a handover optimization scheme that relies on predicted channel state
information to minimize the number of HOFs and unnecessary handovers while maintain-
ing the signal quality as high as possible. The proposed scheme assigns UE to one cell
at each time step by posing an Integer Programming (IP) optimization problem. The
performance of solutions to the original IP problem with solutions to its Linear Program-
ming (LP) relaxation is compared.
The proposed scheme is evaluated using the ns3-ai simulator with the help of the SUMO
simulator using a map of Berlin.

Keywords: Handover procedure, Handover Failure, Too Late Handover, Too Early Han-
dover, Wrong Cell Selection, Ping-pong Handover, Optimized Network, Convex Optimiza-
tion.





Abstract in lingua italiana

Nelle reti cellulari del futuro, si avrà una densificazione delle celle, le quali diventaranno
più piccole. Per questa ragione, se si utilizza uno schema di decisione di handover con-
venzionale, il numero di handover che un UE in movimento deve affrontare, aumenterà
significativamente. L’aumentare dei handover, potrà causare un maggiore overhead di
segnalazione per la rete. Inoltre, per via della scarsa qualità del segnale della cella di
servizio o di destinazione, potranno aumentare anche i HOF. Pertanto, è molto impor-
tante ridurre il numero di handover e HOF, in modo tale per cui l’UE possa trasmettere e
ricevere dati con MCS più sofisticati e inoltre possa raggiungere una velocità di trasmis-
sione più elevata.
Gli sviluppi nella ricerca di ML e AI aprono la strada a tecniche di previsione delle in-
formazioni sullo stato del canale. Le informazioni sullo stato del canale previste, possono
essere utilizzate per ridurre il numero di handover e HOFs. Questa tesi si concentra su uno
schema di ottimizzazione dell’handover che si basa sulle informazioni previste sullo stato
del canale per ridurre al minimo il numero di HOFs e handover non necessari, mantenendo
la qualità del segnale il più alta possibile. Il metodo proposto assegna l’UE ad una cella
in ogni intervallo di tempo mediante la formulazione di un problema di ottimizzazione
IP. Le soluzioni al problema originale IP vengono confrontate con le soluzioni alla sua
relazione di rilassamento LP per valutare le prestazioni del metodo proposto.
Lo schema proposto è valutato utilizzando il simulatore ns3-ai con l’aiuto del simulatore
SUMO utilizzando una mappa di Berlino.
Keywords: Procedura di handover, Handover Failure, Too Late Handover, Too Early
Handover, Wrong Cell Selection, Ping-pong Handover, Rete ottimizzata, ottimizzazione
convessa.
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1| Introduction

1.1. Background

In today’s cellular networks, having reliable communication with a minimum amount of
service disruption is crucial. As we approach five-generation (5G) and six-generation (6G),
high demand in mobile applications such as video streaming, V2V, V2X, etc. requires
high network capacity, so it will be necessary to adopt small cell utilization[1] [2].
While the moving UE transmits and receives data to its current cell,it measures signal
power from other cells. At some point, It is necessary to get disconnected from its serving
cell and switch to another due to the degradation of the current cell’s signal strength.
This process is called handover.
The time it takes to perform a handover from one cell to another is called Handover
Interruption Time (HIT). This process usually takes between 30ms to 60ms [3]. During
this period, the user cannot transmit any data since there is a signaling procedure being
done between the serving and target cells.
Cells usually have overlaps in coverage. This overlap helps UE not to fall into Radio Link
Failure (RLF) while the handover is being performed. If the UE moves along the border
of two cells, there will be many handovers from one cell to another and vice versa. This
type of handover is called ping-pong handover, and it causes unnecessary signaling for the
network.
Even though the cells have coverage overlap, there might be RLF before, during, or after
the handovers. This event is called HOF. HOF can be due to low signal quality in the
current or target cell. If it is because of the current cell’s low signal quality, the HOF
is called too late handover. If it is because of the target cell’s low signal quality, the
HOF is called too early handover. Furthermore, the UE may do a handover to the wrong
cell and fall into RLF. In this case, the HOF is categorized as the wrong cell selection.
After the HOF, the UE needs to reconnect to one cell [4]. This process takes hundreds of
milliseconds to a couple of seconds[5]. During this process, the UE is not able to transmit
any data.
The total time that the UE cannot transmit and receive data due to performing handovers
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and HOFs is called Mobility Interruption Time (MIT).
The UE faces many more handovers and HOFs by using small-cell technology. So, keeping
the number of HOF and ping-pong handovers as little as possible is very important.
Nowadays, cellular networks use an event-based handover mechanism. One of the methods
used in event-based handover is called A3-event handover. In A3 event handover, the
handover executes if the target cells serve with an offset better than the current cell for
a specific amount of time. This amount of time is called Time To Trigger (TTT).
In order to be able to minimize the number of handovers and HOFs, networks use the
concept called Self Organized Network (SON). A SON is a network that can adapt and
optimize itself without the involvement of humans. One of the main features of SON is
Mobility Robustness Optimization (MRO)[6]. MRO tries to find the best set of offset and
TTT to minimize the number of handovers and HOF. However, MRO is not the best
solution to minimize the number of handovers and HOF.

1.2. Thesis Contributions

There are a lot of different handover algorithms that try to mitigate the handover and HOF
at the same time. All existing methods are reactive because they only have current and
past information, so it is impossible to decrease the handover and HOF simultaneously.
However, if we had perfect knowledge of the future, we could avoid HOF and decrease
handovers. For this reason, we are trying to use the prediction that approximates future
knowledge[7].
The main contribution of this thesis is to see if it is possible to reduce the number of
handovers HOF simultaneously while keeping the received signal quality as high as possible
by using the predicted channel information from the future time instance and finding
algorithms that perform handover.
For this purpose, the ns3-ai and SUMO simulators have been used. The SUMO simulator
generates the user’s mobility based on the map data. Then the channel value data, which
in our case is quantized Reference Signal Received Quality (RSRQ), has collected by
running ns3, and finally, the handover decision is optimized.

1.3. Thesis Outline

The main contribution of the thesis is described in this section. Chapter two defines
essential concepts such as handover procedure, unwanted handovers, and RLF. Also, the
current problem solution is discussed in this chapter. Chapter 3 defines the theoreti-
cal background and optimization method, the main idea to solve the problem, and an
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optimization algorithm. Chapter 4, simulation and numerical results, the scenario config-
uration of the thesis is discussed, and finally, the result with the explanation is written.
Chapter 5 closes the thesis by combining the components provided in each chapter. Then
describes methods for future work based on the ideas proposed in this thesis.
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In this section, the handover procedure will be described in detail. Then the handover
event, ping-pong handover, and different types of HOF are defined. Finally, the related
works to decrease the number of handovers and HOF are expressed.

2.1. Handover Procedure

When specific requirements are met, The UE sends commands to the serving cell, and
the serving cell decides to start a handover. As it is shown in fig 2.1, if the handover
command is sent through the X2 interface, which connects two eNodeB (eNB) directly,
the handover is called X2 handover. On the other hand, if the handover command is
carried through the S1 interface, which connects tow eNBs through the Evolved Packet
Core (EPC), the handover is called S1 handover. The X2 interface is initialized by
neighbor identification and based on Automatic Neighboring Relation Function (ANRF)
Process.[8]

As it can be seen in fig 2.2 and 2.3 the handover procedure is done in 5 phases :

• Before Handover: The UE is attached to the source eNB, and the Dedicated

Figure 2.1: X2 and S1 interface
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Radio Bearers (DBRs) and Signalling Radio Bearers (SRBs) are established, which
allows a Uplink (UL)/Downlink (DL) transmission between the source eNB and the
UE.

• Handover Preparation: The UE sends the periodic measurement report to the
source eNB. This report contains information about all the neighboring cells. Based
on the information, the source eNB chooses the best target cell and sends the han-
dover request to the target cell.As it is illustrated in fig 2.2, the handover request is
sent through the X2 interfaces where eNBs are directly connected while in fig 2.3 the
eNBs are communicating through the S1 interface. Then the target eNB performs
admission control. If it can provide the requested resources for the new UE, it sends
a handover request acknowledgment (ACK) to the source eNB. Finally, the source
eNB sends the handover command message, which changes the UE status to the
Radio Resource Control (RRC) idle. This message contains the information needed
to perform the handover.

• Handover execution: The source eNB sends the Sequence Number (SN) status
transfer message. Then, UE is synchronized with the target based on the given
parameters. Finally, the handover completion message is sent to the target cell by
UE.

• Handover Completion: The target eNB receives the RRC Connection Recon-
figuration Complete message, which changes the UE’s status from idle to the RRC
connected.Afterward, the source eNB UE context is released via receiving the UE
release context message from the target eNB.

• After Handover: UE is attached to the target eNB, and UL/DL traffic is trans-
mitted as in the initial step.
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Figure 2.2: X2 Handover Procedure
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Figure 2.3: S1 Handover Procedure
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2.2. Definition of Relevant Events

2.2.1. Handover Events

As it was discussed in the previous section, one of the most critical steps of the handover
decision is the measurement report from UE. The eNB decides whether or not to do a
handover based on the measurement report. 3rd Generation Partnership Project (3GPP)
defines predefined sets of measurement report mechanisms to be performed by UE, called
"Events." Each event has two conditions, one to start sending the event to eNB and one
to stop. In this section, Events A1, A2, A3, A4, and A5 are going to be defined[9].

• Event A1 : As you can see in figure 2.4 event A1 triggers when the current serving
cell becomes better than a defined threshold:

RSRQserv − Hys1 > Threshold1

This event stops when the following condition is satisfied :

RSRQserv +Hys1 < Threshold1

Figure 2.4: A1 Event Handover
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Figure 2.5: A2 Event Handover

• Event A2 : As you can see in figure 2.5, event A2 triggers when the current
serving cell becomes worse than a threshold.

RSRQserv +Hys2 < Threshold2

This event stops if the serving cell becomes worst than the threshold :

RSRQserv − Hys2 > Threshold2

• Event A3: As you can see in figure 2.6, event A3 triggers when an adjacent cell
becomes better than the current serving cell by an offset.

RSRQneigh +Oneigh + CIOneigh +Hys > RSRQserv +Oserv + CIOserv +Off

where :

– RSRQneigh : measurement result of the neighbouring cell.

– RSRQserv : measurement result of the serving cell.

– Oneigh : Frequency-specific offset of the frequency of the neighbor cell.
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– Oserv : Frequency-specific offset of the frequency of the serving cell.

– CIOneigh : Cell individual offset of the neighbour cell.

– CIOserv : Cell individual offset of the serving cell.

– Off : Specific offset for this event.

– Hys : Hysteresis parameter for this event.

This event stops if the following condition is satisfied:

RSRQneigh +Oneigh + CIOneigh − Hys < RSRQserv +Oserv + CIOserv +Off

In order to make the equation simpler, we define the following:

Hys3 = −Oneigh − CIOneigh +Oserv + CIOserv +Hys

So the condition for the A3 event to trigger can be rewritten as:

RSRQneigh − Hys3 < RSRQserv

Figure 2.6: A3 Event Handover
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Figure 2.7: A4 Event Handover

Figure 2.8: A5 Event Handover

• Event A4 : As you can see in figure 2.7, event A4 Triggers when a neighbor cell
becomes better than a defined threshold.

RSRQneigh +Oneigh + CIOneigh − Hys4 > Threshold4
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This event stops if the following condition is satisfied:

RSRQneigh +Oneigh + CIOneigh +Hys4 < Threshold4

• Event A5 : As you can see in figure 2.8 event A5 Triggers if two condition are
satisfied :
1. Current serving cell becomes worse than the first threshold
2. Neighbor cell becomes better than the second threshold.

RSRQserv +Hys5 > Threshold51

and
RSRQneigh −Oneigh + CIOneigh − Hys5 > Threshold52

This event stops if one of the following conditions is satisfied:

RSRQserv − Hys5 < Threshold51

and
RSRQneigh −Oneigh + CIOneigh +Hys5 < Threshold52

As mentioned at the beginning of this section, the network decides to do a handover
based on the measurement report, which consists of a series of events. In the following
subsection, two different configurations for the network will be defined, and the handover
can be done based on them.
A3 event Handover:
The network can be configured to operate A3 event handover. This type of handover
triggers when the neighboring cell serves better than the threshold concerning serving the
cell for a specific amount of time. The threshold is defined in measurement control,
and this amount of time is TTT[10].

RSRQneigh − Hys3 < RSRQserv for t0 − TTTT,A3 < t < t0

A2 A4 event Handover:
The network can be configured to operate to start a handover while events A2 and A4 oc-
cur concurrently. When the serving cell serves less than the threshold, and the neighboring
cell serves better than the threshold, the measurement report is sent to the serving cell,
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which sends the handover request to the best target cell with the best signal quality[10].

RSRQserv +Hys2 < Threshold2

and
RSRQneigh +Oneigh + CIOneigh − Hys4 > Threshold4

2.2.2. Undesired Handovers

Event-based handovers are based on real-time measuring, so the UE falls into many un-
desired handovers. There are four different undesired handovers, Too Late Handover, Too
Early Handover, Wrong Cell Selection, and ping-pong handover, which will be explained
in the following.

Too Late Handover :
As it is illustrated in fig 2.10, too late handover is recognized by the network if the UE
stays connected to its serving cell so long that during the TTT or during the procedure
of handover, it falls into RLF and then reconnects to a cell which is different than a serv-
ing cell [11].The RLF is reported by the destination cell to the originating cell through
the X2 or S1 interface, and the originating cell identifies a handover that occurred too late.

Too Early Handover:
As it is illustrated in fig 2.11, too early handover happens when the UE moves into a tar-
get cell too soon. The connection is instantly lost due to low link quality after a successful
handover in a target cell. The UE then reconnects to its previous cell. The serving cell
identifies the too-early handover [11].

Wrong Cell Selection :
As it is illustrated in fig 2.12, a wrong cell handover is detected by the network when
an RLF occurs shortly after a successful handover to the target cell, and then the UE
reconnects to a cell which is neither the serving cell nor the target cell. The last connected
cell informs the target cell of the first handover about the failure. The target cell can
recognize that this RLF is not due to a too-late handover but to a wrong-cell handover
and notifies the originating cell [11].



2| Literature review 15

Ping-Pong Handover :
As it is illustrated in fig 2.9 ping-Pong handover is recognized by the network when the
UE moves along the border of two cells and does a successful handover to the target cell
but shortly does a handover to its previous cell [11].

Figure 2.9: Pingpong handover.

Figure 2.10: Too Late handover.

Figure 2.11: Too Early handover.
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Figure 2.12: Wrong Cell handover.

Radio Link Failure :
As it is illustrated in fig 2.13, the RLF is detected as follows :
If 20 consecutive frames do not decode due having low Signal to Interference and Noise
Ratio (SINR) value, an out-of-sync indication is sent to the UE RRC layer. When the
number of consecutive out-of-sync indications matches the value of the N310 parameter,
the T310 timer is started. During this timer, the number of frames that were able to
be decoded due to having higher SINR is counted. The UE is considered back in-sync
if the number of consecutive in-sync indicators matches N311. Otherwise, the RLF has
happened [5].

Figure 2.13: Too late handover.
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2.3. Defenition of Relevant KPI

In this section, the KPIs that are used in simulation and performance evaluation are de-
fined.

Reference Signal Received Power : The term Reference Signal Received Power
(RSRP) refers to the strength of the reference signal received by a mobile device from a
Base Station in a wireless communication system.
The reference signal is a known signal sent by the base station that the mobile device uses
to evaluate the performance of the wireless channel and decide the appropriate transmis-
sion strength for the UL channel. The RSRP for a given cell is computed by calculating
the linear average of the Resource Element (RE)s power contributions that carry the
cell-specific reference signal within the measurement frequency bandwidth under consid-
eration [12].
Received Signal Strength Indicator : Received Signal Strength Indicator (RSSI) is
a measurement of the overall received power detected by the UE from all sources within
a certain measurement bandwidth is the Long Term Evolution (LTE) carrier RSSI. This
comprises thermal noise, neighboring channel interference, the power received from the
serving cell, as well as the power received from other cells (both serving and non-serving)
[12].
Reference Signal Received Quality : As it was described in the section 2.2.1, the
events in measurement reports are measured based on RSRQ. RSRQ is obtained based
on the following formula :

RSRQ =
N ×RSRP

RSSI
(2.1)

• N : The number of REs of the LTE carrier RSSI measurement bandwidth.

When the UE sends a measurement report to eNB, it does not send the RSRQ value. It
maps the RSRQ to an integer value between 0 to 34 based on the defined table in 3GPP
specification[13].In this thesis, the RSRQ value is used as a channel value.

Mobility Interruption Time : MIT is the total time that the UE is not able to
transmit and receive any data to its current cell due to handover or HOF. In this thesis,
the handover is assumed to take 60 ms, and HOF is assumed to be one second.

Note that the number of ping-ping handovers and HOFs such as Too Late Handover,
Too early Handover, and Wong Cell Selection which was defined in 2.2.2 are used as a
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KIP for performance evaluation.

2.4. Related works

2.4.1. Self organized network

Network systems are becoming more complex due to heterogeneity. The complexity chal-
lenges their management, and SON aims to address complexity through automation.
SONs are Radio Access Network (RAN) that automatically configure, optimize, and heal
themselves to increase efficiency, stability, and quality of service in mobile networks[6].

2.4.2. Mobility Robustness Optimization

The MRO function has been introduced by the 3GPP group as a part of the SON func-
tions. It is an effective solution for mobility management mobile networks. MRO performs
automatic adjustments for Handover Control Parameter (HCP) settings to maintain the
connection quality of the UEs. The main aim of MRO is to automatically optimize HCP
settings such as TTT and hysteresis. The optimization process is based on various meth-
ods depending on the designed algorithms. The designed algorithms aim to maintain the
channel value between the UEs and the serving eNB above a certain value during com-
munication [14].
Several MRO algorithms have been proposed throughout the literature to address mobil-
ity issues, and some of these methods will be explained.
In [15], the authors have proposed an algorithm for adjusting handover parameters, which
is based on several influenced factors such as distance, channel condition, cell load, and
user velocity. Furthermore, each function’s weight is considered to estimate an accurate
handover parameter.
In [16], the authors have examined undesirable handovers and RLF and calculated the
optimum Cell Individual Offset based on geometry, user position, and velocity to mini-
mize RLFs and ping-pong handovers at the same time.
In [17], the authors propose an Auto Tuning Optimization (ATO) algorithm that updates
hysteresis and TTT based on user speed and received signal reference power to adapt
hysteresis and TTT. The proposed algorithm reduces the frequent handovers and HOF
ratio.
In [18], to reduce the number of handovers, HOF and enhance mobility management,
a handover mechanism is introduced that dynamically modifies handover parameters in
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response to the detection of HOF.

2.4.3. Fuzzy Logic Scheme

The authors use the fuzzy logic scheme to improve handover performance in [19] and [20].
A control system built on fuzzy logic is known as a fuzzy control system.
In [19], the authors offer a self-optimizing fuzzy logic-based approach for adapting a
hysteresis for handover decisions depending on user velocity and radio channel quality.
The suggested algorithm aims to decrease the number of ping-pong handovers and the
HOF ratio while allowing UEs to benefit from dense small-cell deployment. In [20], The
author has designed a Fuzzy Logic Controller (FLC) that inputs the Call Drop Rate and
HOF. The first step translates the input into a fuzzy set with linguistic terms such as
very high, high, low, and very low. In the second step, the fuzz sets are translated to the
actions the FLC should execute. The output is ∆hysteresis, which should be added to
the hysteresis.

2.4.4. Conditional Handover

As a part of 3GPP Release 16[21], Conditional Handover (CHO) has been proposed. The
idea and principle have been discussed in [22] to improve the reliability of the handover.
CHO was introduced to decrease the number of handovers and RLF by dividing the
handover into two steps. At first, the UE is configured with measurement control and
periodically observes the current and neighbors’ cell signal power. If the preparation
condition which can be seen in equation 2.2 is satisfied, the UE sends a measurement
report to its serving cell. Based on the measurement report, the serving cell chooses
a set of target cells and sends the preparation handover command to them. Target
cells configure themselves based on the commands and allocate resources to the UE.
Then instead of executing the handover, the UE waits and monitors target cells until the
handover execution condition 2.3 is satisfied and performs the handover. So, in this case,
multiple candidates are prepared for the handover, and there is more robustness with
respect to baseline handover.
CHO can be formulated as follows :

Pserv(m) + oexecserv,target(m) < Ptarget(m) for mexec − TTTT,exec < m < mexec (2.2)

Pserv(m) + oexecserv,target(m) < Ptarget(m) for mexec − TTTT,exec < m < mexec (2.3)
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Where :

• Pserv(m) : serving cells power

• Ptarget(m) : target cells power

• TTTT,prep : reparation time to trigger

• TTTT,exec : execution time to trigger

• oprepserv,target(m) : preparation hysteresis

• oexecserv,target(m) : execution hysteresis

2.4.5. Machine Learning Methods

In recent years, ML methods have been used to improve handover optimization by de-
creasing the number of HOF and redundant handovers.
In [23], the authors developed an intelligent handover management method that improves
target cell selection. In their method, the handover algorithm learns from its previous
experience using machine learning techniques how the handover decision to a specific cell
influences the UE’s Quality of Experience (QoE). A supervised learning approach based
on a neural network is used to predict the most appropriate cell for handover.
In [24], the author has presented a Data-driven Handover Optimization (DHO) strategy
to mitigate mobility issues such as undesired and Ping-pong handovers. In this tech-
nique, data is collected using mobile communication measurements, and then a model is
provided to predict the relationship between the HOFs and features from the obtained
dataset. Based on the model, the handover parameters, such as the hysteresis and TTT,
are tuned to minimize the HOFs.

2.5. Simulation tools

In this section, the simulation tools that are used in this thesis are explained.

2.5.1. ns-3

ns-3 is a discrete-event network simulator primarily intended for research and education.
ns-3 is free software accessible for research, development, and use under the GNU GPLv2
license [25]. ns-3 is written in C++ and Python and supports scripting. Python wraps
the ns library using the pybindgen package, which delegates the parsing of the ns C++
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headers to castxml and pygccxml to build the necessary C++ binding glue automatically.
Finally, these automatically generated C++ files are built into the ns Python module,
allowing users to interact with the C++ ns-3 models and core via Python scripts. The ns
simulator has an integrated attribute-based system for managing simulation parameter
default and per-instance settings.

2.5.1.1. LTE-EPC Model

The LTE model includes the LTE Radio Protocol stack (RRC, PDCP, RLC, MAC, PHY).
These entities reside entirely within the UE and the eNB nodes. The LTE model has been
designed to support the evaluation of the following aspects of LTE systems:

1. Radio Resource Management

2. QoS-aware Packet Scheduling

3. Inter-cell Interference Coordination

4. Dynamic Spectrum Access

The EPC model includes core network interfaces, protocols, and entities. These entities
and protocols reside within the SGW, PGW, and MME nodes and partially within the
eNB nodes.
The main objective of the EPC model is to provide means for the simulation of end-to-
end IP connectivity over the LTE model. To this aim, it supports the interconnection of
multiple UEs to the Internet via a radio access network of multiple eNBs connected to
the core network, as shown in Figure Overview of the LTE-EPC simulation model.
[26]

Figure 2.14: LTE EPC model
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2.5.2. ns3-ai

The ns3-ai module [27] consists of two components, the ns-3 interface developed by C++
and the AI interface developed by Python. This module provides a high-level interface
for the rapid development of DL/RL algorithms, as well as the core module for data
transfer from one C++ application to another Python one. The main idea behind the
interface between AI frameworks and ns-3 is to allow data to be transferred in numerous
processes. Each process has its own user address space, and the global variables of one
process cannot be accessed by the other; therefore, data interchange between processes
must go through the kernel’s buffer. Several methods for communicating across processes
include pipe, socket (used by ns3-gym), and shared memory. The density and complexity
of networks are quickly increasing in the next generation of wireless communication net-
works, increasing data and training time. Hence, the capacity to exchange a considerable
amount of data in a short period should be prioritized, which pushes us to select shared
memory as the main module for data transmission.

Figure 2.15: ns3-ai architecture

2.5.3. SUMO

"Simulation of Urban MObility" (SUMO) is an open-source, highly portable, microscopic,
and continuous traffic simulation tool designed to manage large networks. It is primarily
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being developed by the German Aerospace Center’s Institute of Transportation Systems
personnel. It supports intermodal simulation, including pedestrians, and has a compre-
hensive set of scenario-creation tools. SUMO is released under the terms of EPL 2.0.
With each simulation run, SUMO allows making different results. They range from simu-
lated induction loops to single car locations written in each time step for all vehicles and
to sophisticated data like trip information or aggregated measurements along a street or
lane. In addition to traditional traffic metrics, SUMO now includes noise and pollution
emission/fuel consumption models[28].
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3| Theoretical Background and

Optimization Method

In this chapter, the optimization techniques such as constrained optimization, discrete
optimization, IP, Mixed Integer Programming (MIP), Linear Relaxation (LR), and convex
optimization will be explained in detail. The problem formulation of the thesis and
optimization algorithm will be discussed.

3.1. Constrained Optimization

Constrained optimization is an optimization problem in which the objective function must
satisfy one or more constraints to obtain an optimal solution. In other words, the purpose
of constraint optimization is to find the optimum solution to an optimization problem
while considering specific restrictions or limits[29]. A constraint optimization problem
can be formulated as follows:

argmin f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

(3.1)

(3.2)

(3.3)

Where:

• f(x) is the objective function to be minimized.

• x ∈ Rn is the vector of decision variables

• gi(x) ≤ 0 is the inequality constraints

• hj(x) = 0 is the equality constraints

The goal is to find the values of x that minimize f(x) while satisfying the constraints.
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3.1.1. Discrete Optimization

Discrete optimization is a branch of constrained optimization that deals with problems
where the set of feasible solutions is discrete. In contrast to continuous optimization, where
the decision variables can take on any value in a continuous range, discrete optimization
focuses on finding the best solution from a finite set of possible solutions[29].

Discrete optimization can be defined as follow :

argmin f(x)

subject to x ∈ S

(3.4)

(3.5)

Where:

• f(x) is an objective function to be minimized or maximized.

• x is a decision variable that takes values from a discrete set S of feasible solutions.

• The constraint x ∈ S ensures that the solution x is selected from the set of feasible
solutions.

3.1.2. Integer Programming

IP is a type of constrained optimization in which the decision variables are restricted to
take integer values. It solves optimization problems where the decision variables repre-
sent discrete choices. Integer programming aims to find the optimal combination of de-
cision variables that maximizes or minimizes the objective function subject to the given
constraints[29]. IP can be defined as follows :

argmin cTx

subject to Ax ≤ b x ∈ Zn

(3.6)

(3.7)

Where:

• c is a vector representing the objective function to be maximized or minimized.

• x is a vector of decision variables to be optimized.

• A is a matrix of coefficients representing the constraints on the decision variables.
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• b is a vector of constants representing the right-hand side of the constraints.

• Zn denotes the set of integer values that each element of x can take.

The above formulation represents a minimization problem where the goal is to find the
values of the decision variables x that minimize the objective function cTx, subject to the
linear constraints represented by Ax ≤ b. The constraint x ∈ Zn ensures that the decision
variables must take integer values.

3.1.3. Mixed Integer Programming

MIP is a constrained optimization type involving solving a linear or nonlinear optimiza-
tion problem subject to continuous and integer variables. In MIP, some variables are
restricted to integer values, while others can take continuous values.
MIP aims to find the optimal values for all variables that satisfy the problem’s constraints
and optimize the objective function, which is a linear or nonlinear function of the vari-
ables. The solution of a MIP problem is a set of values for all continuous and integer
variables that maximize or minimize the objective function while satisfying all the con-
straints of the problem.

minimize cTx+ dTy

subject to Ax+By ≤ b x ∈ Rn y ∈ Zm

(3.8)

(3.9)

where:

• x ∈ Rn is a vector of continuous variables

• y ∈ Zm is a vector of integer variables

• c ∈ Rn and d ∈ Rm are coefficient vectors for the objective function

• A ∈ Rp×n and B ∈ Rp×m are matrices of coefficients for the constraints

• b ∈ Rp is a vector of constraint bounds.

The goal is to find values of x and y that minimize the linear objective function subject
to the linear constraints. The variable y is constrained to integer values.

3.1.3.1. Linear Relaxation

LR is a technique used in mathematical optimization, particularly in the context of integer
programming and mixed integer programming. It involves relaxing the integer constraints
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of an optimization problem to obtain a problem that can be solved using linear program-
ming.
The basic idea of LR is to remove the integer constraints from the optimization problem,
allowing the variables to take on continuous values. This results in a linear programming
problem that can be solved using efficient algorithms, such as the simplex or interior-point
methods.
Solving the LR of an integer programming problem provides a lower bound on the optimal
objective value of the original problem. The gap between the solution of the LR and the
IP problem is referred to as the integrality gap[30].
However, it is essential to note that the solution of the LR may only sometimes provide a
good approximation to the optimal solution of the original integer programming problem,
mainly if the integrality gap is significant.

3.1.4. Convex Optimization

Convex optimization is a field of mathematical optimization that deals with the problem
of minimizing a convex function subject to a set of convex constraints. In convex opti-
mization, both the objective function and the constraint set are convex, which makes the
problem well-behaved and allows for efficient optimization algorithms[29].
Here is the mathematical definition of a general convex optimization problem:

minimize f(x)

subject to gi(x) ≤ 0, i = 1, 2, . . . ,m

(3.10)

(3.11)

where:

• x is a vector of variables

• f(x) is a convex function of x

• gi(x) is convex functions of x.

The optimization problem is convex if both the objective and constraint functions are
convex and if it is a minimization problem.
A function f(x) is convex if for any two points x1 and x2 in its domain and any scalar θ

between 0 and 1, the following inequality holds:

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)

This inequality is known as the convexity condition, implying that the function lies above
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or equal to any of its tangents.

3.1.5. Convex Set

A set S is convex if for any two points x1 and x2 in the set and any scalar θ between 0
and 1, the point θx1 + (1− θ)x2 is also in the set.

3.2. Model Predictive Control

Model Predictive Control (MPC) is an advanced control approach used to maximize the
performance of dynamic systems in engineering and process control systems. It is a model-
based control technique that uses a predictive model of the system’s behavior to identify
the optimal control inputs resulting in the highest system performance while considering
operational limits or limitations.MPC begins by developing a mathematical model of the
system to be controlled. This model represents the system’s behavior and how it reacts
to various inputs. The model may be a linear or nonlinear function.MPC uses it to
forecast the system’s future behavior given a set of probable control inputs. Based on
this prediction, MPC selects the optimum set of control inputs to achieve the highest
system performance while respecting any operational constraints, which is accomplished
by solving an optimization problem that aims to minimize a cost function while being
constrained by a set of constraints that represent the physical restrictions or operational
needs of the system. After the optimal control inputs are identified, they are applied to
the system for a short period before the process is repeated. The model is updated, and
the optimization problem is addressed again using the new data. This iterative process
continues, with MPC continually predicting and optimizing the system’s behavior across
a time horizon into the future to achieve the required performance. As a consequence,
a closed-loop control system, as it is illustrated in figure 3.1 is created that modifies
the system’s behavior in real time depending on the system’s present state and expected
future behavior.
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Figure 3.1: Model Predictive Control

3.3. Proposed Predictive Handover Optimization

As discussed, the event-based handover scheme falls into many handovers and HOF since
it relies only on channel information from its current and past measurements. By pre-
dicting the channel’s value, the performance can be improved. In order to improve the
performance, the MPC scheme is used. As it is shown in fig 3.2, First of all, the UE gets
connected to the strongest cell. Each time step has a time window in which the channel
value is predicted. Then an optimizer computes the cell assignment from time step t to
the t + window size based on the predicted data. Then, the optimizer’s output value at
t+1 is used to decide if the UE should stay connected to its previous cell or do a handover
to another cell. If the chosen cell at t+1 falls into the RLF, the UE reconnects to the best
cell and repeats the same procedure. Otherwise, it repeats the same procedure based on
the current cell that it has connected.
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Figure 3.2: system block diagram overview

As discussed above, one optimization problem is solved at each time step. Let’s focus on
one of these problems:

3.3.1. Problem Formulation

The UE wants to achieve the average maximum data rate at each time step. Since it is
not easy in practice and simulation to acquire this data rate, the RSRQ is taken as an
approximation. So instead of maximizing over achievable data rate, the maximization is
done based on the RSRQ.
As shown in the table 3.1, there is a matrix of RSRQ in which rows represent the cell and
columns represent the time instance. So RSRQi,j means that at time instance of j, if the
UE gets connected to cell i, it will get the RSRQi,j. After the optimization, the second row
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RSRQ11 RSRQ12 RSRQ13 RSRQ14 ... RSRQ1T

RSRQ21 RSRQ22 RSRQ23 RSRQ24 ... RSRQ2T

RSRQM1 RSRQM2 RSRQM3 RSRQM4 ... RSRQMT

Table 3.1: RSRQ values for optimization based on time window at each time step

is used for the handover decision since it represents the next time steps channel values.

Let us assume that there are M number of cells. We want to maximize the averaged
received RSRQ, but We let the user have an at last N number of handovers. The assump-
tions can be represented mathematically as follows :

Handover Number : N

Set of all cells : M = {1, ...,M}

Time Sets : T = {1, ..., T}

RSRQ : R = [rij] ∈ R++
M×T

Optimization Variable : X = [x1, x2, ..., xT ] = [xij] ∈ RM×T
++

The optimization problem can be represented as follows:

max
X∈RM×T

M∑
i=1

T∑
j=1

rijxij

T

subject to xij ∈ {0, 1} ∀i ∈ M,∀j ∈ T

M∑
i=1

xij = 1 ∀j ∈ T

|{j ∈ T ′ : xj ̸= xj+1}| ≤ N T ′ = {1, ..., T − 1}

• The objective function of this optimization problem is the maximize the average
predicted RSRQ achieved by the cell assignment according to X.

• The first constraint states that the decision variable xi,j is binary. The practical
meaning of this constraint is that if xi,j = 1, cell i at time instance j has been chosen
to get connected to. and if xi,j = 0 the corresponded cell is not selected.

• The second constraint states that the summation of all the rows at each time
instance of the decision matrix is one. Since the decision variable is binary, the
practical meaning of this constraint is that it assures that the user gets connected
to one and only one cell at each time step.
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• The third constraint states that the number of consecutive columns that are
not equal should be less or equal to the constant N. In practice, this constraint
ensures that the number of handovers should be less or equal to N. Because if the
UE connects to the cell i at time j, the vector xj is one in the i-th row and zero on
the rest of the vector. If it stays connected to cell i at time j+1, the vector xj+1 has
the same value as vector xj . However, if it does handover to cell k ̸= i, the vector
xj+1 does not equal xj. The X is a plan for UE, which will be updated at each time
step.

At each time step, the handover occurs if and only if x0 ̸=x1. If xj ̸=xj+1, it does not
mean that there will be a handover from time step j to j+1 since at each time step, the
RSRQ matrix is being updated every time step, so in order to see if there is a handover
from time step j to j+1, we should consider the matrix of RSRQ while its first column
represents the time step j, then optimize it based on the given constraint and see if x0 =
x1 or not.

Note that whenever there is a handovers in matrix X, we have the following condition :∑T−1
j=1

∑M
i=1 |xij+1 − xij| ≦ 2

So, the optimization problem can be written as follows :

max
X∈RM×T

M∑
i=1

T∑
j=1

rijxij

T

subject to xij ∈ {0, 1} ∀i ∈ M,∀j ∈ T

M∑
i=1

xij = 1 ∀j ∈ T

T−1∑
j=1

M∑
i=1

|xij+1 − xij| ≤ 2N

This is an IP optimization problem. Solving an IP problem could be computationally
complex for large problems. To solve this problem, we use LR and let x be any value
between 0 and 1.
The original optimization problem will be relaxed to the following :
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max
X∈RM×T

M∑
i=1

T∑
j=1

rijxij

T

subject to xij ∈ [0, 1] ∀i ∈ M, ∀j ∈ T

M∑
i=1

xij = 1 ∀j ∈ T

T−1∑
j=1

M∑
i=1

|xij+1 − xij| ≤ 2N

(3.12)

Note that
∑T−1

j=1

∑M
i=1 |xij+1 − xij| ≤ 2N can be rewritten as :∑T−1

j=1 ||X(:, j)−X(:, j + 1)||1
The obtained problem is convex. Here is the proof :
To prove that the optimization problem is convex, we need to show that its objective
function and constraints are convex.
The objective function is:

argmax
X∈RM×T

M∑
i=1

T∑
j=1

rijxij

τ
(3.13)

This is a linear function of x, and linear functions are both convex and concave.
First, constrain :

xij ∈ [0, 1] ∀i ∈ M (3.14)

we need to show that the set of points that satisfy these constraints is a convex set.
A set is convex if, for any two points x and y in the set, the line segment between x and
y is also in the set. In other words, if 0 ≤ xi,j ≤ 1 and 0 ≤ yi,j ≤ 1 for all i and j, then
0 ≤ (1− θ) ∗ xi,j + θ ∗ yi,j ≤ 1 for all t between 0 and 1.
To see why this is true, consider the expression (1− θ) ∗ xi,j + θ ∗ yi,j. This is a weighted
average of xi,j and yi,j, with weights (1 − θ) and θ, respectively. Since both xi,j and yi,j

are between 0 and 1, the weighted average is also between 0 and 1, which means that
(1− θ) ∗ xi,j + θ ∗ yi,j satisfies the constraint 0 ≤ (1− θ) ∗ xi,j + θ ∗ yi,j ≤ 1.
Therefore, the set of points that satisfy 0 ≤ xi,j ≤ 1, for all i,j is a convex set, and the
constraint is convex.
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The second constraint

M∑
i=1

xij = 1 ∀j ∈ T

(3.15)

is a linear equality constraint, and linear constraints are always convex.
To prove this, let x(1) and x(2) be two feasible solutions, i.e.,

∑
i x

(1)ij = 1 and
∑

i x
(2)ij =

1 for all j. Let θ ∈ [0, 1] be a scalar. Then the convex combination x(3) = θx(1)+(1−θ)x(2)

satisfies:

∑
i

x(3)ij =
∑
i

(θx(1)ij+(1−θ)x(2)ij) = θ
∑
i

x(1)ij+(1−θ)
∑
i

x
(2)
ij = θ ·1+(1−θ)·1 = 1,

for all j. Therefore, x(3) is also a feasible solution.
Since any convex combination of two feasible solutions is also a feasible solution, the con-
straint

∑
i xij = 1 for all j is a convex constraint.

The third constrain is convex :
Let X and Y be two feasible points to the main problem, and let Z = θX + (1 − θ)Y

be their convex combination, where θ ∈ [0, 1]. We want to show that Z also satisfies the
constraint:∑T−1

j=1 ||Z(:, j)−Z(:, j + 1)||1 ≤ 2N

Expanding the 1-norm, we have:

T−1∑
j=1

||Z(:, j)−Z(:, j + 1)||1 =
T−1∑
j=1

N∑
i=1

|Z(i, j)−Z(i, j + 1)|
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Substituting the definition of Z, we obtain:

T−1∑
j=1

||Z(:, j)−Z(:, j + 1)||1 =

T−1∑
j=1

N∑
i=1

|θX(i, j) + (1− θ)Y (i, j)− θX(i, j + 1)− (1− θ)Y (i, j + 1)| =

T−1∑
j=1

N∑
i=1

|θ(X(i, j)−X(i, j + 1)) + (1− θ)(Y (i, j)− Y (i, j + 1))| ≤

T−1∑
j=1

N∑
i=1

θ|X(i, j)−X(i, j + 1)|+ (1− θ)|Y (i, j)− Y (i, j + 1)| =

θ
T−1∑
j=1

||X(:, j)−X(:, j + 1)||1 + (1− θ)
T−1∑
j=1

||Y (:, j)− Y (:, j + 1)||1

The last inequality follows the triangle inequality and the fact that θ ∈ [0, 1]. Since X
and Y are feasible solutions to the main problem, we have:∑T−1

j=1 ||X(:, j)−X(:, j + 1)||1 ≤ 2N∑
j = 1M−1||Y (:, j)− Y (:, j + 1)||1 ≤ 2N

Thus, we have:∑T−1
j=1 ||Z(:, j) − Z(:, j + 1)||1 ≤ θ · 2N + (1 − θ) · 2N = 2N Therefore, Z is a feasible

solution to the main problem, and the constraint is convex.

After solving this convex optimization problem, the obtained decision matrix X has a
continuous value between 0 and 1, while in order to do a cell assignment, the value should
be binary, and at each time step, one cell should be chosen. To achieve this property, we
use the following heuristics:
We define a function ϕ that maps any vector to one-hot vector: ϕ : RM 7→ {0, 1}M . The
function maps the vector x to one-hot vector based on the following equation:

∀i ∈ M, ϕ(x)|i =

1 if i = i∗

0 otherwise

where i∗ is : min{i ∈ M |xi = max{x1, ..., xM}}
This mapping function is performed on the vector of each time step of X and converts X
to X̂, which consists of a series of one-hot vector columns. Cell assignment will be done
based on the second column of X̂
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3.4. Optimization Algorithm

Algorithm 3.1 shows how the system works. The algorithm works as follows:
First, lookahead, which is the time frame in which the channel value is predicted, and a
handover budget, which is a constraint on the number of handovers allowed for a UE, is
determined. Once the UE is allocated to a cell, the channel values of all the cells from
the current time step t to the t + T are predicted. Using the channel value matrix, and
the handover budget, an optimization problem is formed. This optimization problem is
solved using LR to determine the best handover decision. The output of this optimization
problem is a matrix X, which contains elements that may not be binary. Instead, each
element of the vector has a continuous value between 0 and 1. To convert the output
matrix to a matrix X̂ consisting of a series of one-hot vectors at each time step, the
following heuristic is used :
ϕ : RM 7→ {0, 1}M to map X to X̂ that is made of series of one-hot vectors at each time
step. The second column of X̂ which represents the cell assignment at t+1 is used to
decide whether a handover is needed. No handover is required if the chosen cell in this
column is the same as the cell to which the UE is currently connected. Otherwise, the
UE is handed over to the next cell. The process then repeats for the next time step. If, at
any time instance, the UE falls into RLF, it is connected to the cell with the best RSRQ
value at the current time, and the entire process restarts from the beginning.
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Algorithm 3.1 Preditive Handover Optimization Algorithm
1: t = 0
2: Lookahead = T
3: Handover Budget = N
4: Connect to the strongest cell
5: while t < τ do
6: t = t + 1
7: if UE in RLF then
8: go to step 5
9: end if

10: data = Prediction[t : t+T]
11: pose the optimization problem with linear relaxation
12: X = optimize(data,N)
13: X̂ = ϕ : RM 7→ {0, 1}M
14: potential next cell = argmax(X̂[:,1])
15: if potential next cell == current cell then
16: go to step 7
17: else
18: handover to next cell
19: go to step 7
20: end if
21: end while



39

4| Simulation and Numerical

results

4.1. Scenario and Configuration

This section explains the scenario and configuration of the thesis, such as cell configuration
and street map data.

4.1.1. mobility Configuration

The simulation is performed using berlin’s map data. The map data was collected using
OpenStreetMap, shown in fig 4.1. Then the data is exported to SUMO simulation, and
the UE mobility is obtained.
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Figure 4.1: map

4.1.2. Cell Configuration

In our scenario, one three-sector Macrocell with 18 microcells is used. The distance
between each microcell is 300 meters, and the Macro cell is located in the center of the
map. The following table shows the configuration of the Macro and microcells :

Macrocell Microcell

Tx Power(dBm) 15 40

Bandwidth(MHz) 20 20

sceduler RrFfMacScheduler RrFfMacScheduler

Height(m) 30 30

Horizontal Beamwidth 100 –

Table 4.1: Cell Transceiver Configuration.

figure 4.2 shows the position of cells on the map :
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Figure 4.2: Cell Polistions of simulation

The Radio Map of the environment based on the location of the cell can be seen in the
figure 4.3 :

Figure 4.3: Radio Map of the enviroment
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4.2. Data Collection

In this thesis the quantized RSRQ is used for the handover decision. The reason is that
the UE sends quantized RSRQ to the eNB instead of RSRQ value. Furthermore, since the
RSRQ is obtained based on RSRP and RSSI, It also takes into account the interference
caused by neighbors’ cells while RSRP only takes into account the power from the cell
that the being measured.
First of all, user mobility has been obtained using the SUMO simulator. Then this
mobility is fed to ns3, and the simulation is run for this specific mobility.
While the simulation is running, The UEs quantized RSRQ from all the cells in the
environment can be collected at each time step. In our case, the duration of each time
step is 200 ms.
The quantized RSRQ at each time step is saved and reused while the ns3-ai is running.
The optimizer uses the RSRQ value of the user of all the cells from the current time of
simulation to the time obtained by the time window.
The simulation was done for 100 users with varying mobility to confirm the results. The
simulation takes 400 seconds to complete. The outcome was then averaged.

4.3. Handover Failure and Ping-Pong Handover De-

tection

In this thesis, the threshold to detect handover failure and ping-pong handover is set to
2 seconds.

• If the UE does a successful handover, a timer starts to count. If it falls into RLF
and reconnects to the previous cell before the threshold, The HOF marked As Too
Early Handover

• If the UE does a successful handover, the timer starts to count. If it falls into RLF
and reconnects to neither the previous cell nor the current cell before the threshold,
The HOF marked as Wrong Cell Selection

• If the UE falls into RLF, the timer starts to count. if it reconnects to a cell different
than its previous cell, the HOF is marked As Too Late Handover

• If the UE does a successful handover, the timer starts to count. If it does another
handover to its previous cell, the handover is marked as Ping-Pong Handover
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Note that since in too early handover and wrong cell selection, the handover fails duo
do target cell’s signal quality, in this thesis, they are both considered as Too Early
Handover.

4.4. Results

4.4.1. Conventional method

In existing systems, the handovers are performed using A3-event-handover scheme de-
scribed in section 2.2.1. The simulation was run for TTT starting from 100 ms to 2000ms
and hysteresis starting from 1 to 4 dB:
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(a) Average number of handovers for 100
simulations for conventional method
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(b) Average number of ping-pong handovers for 100
simulations for conventional method

As it is shown in figure 4.4a, the number of handovers decreases as the TTT increases.
This is because the UE should observe the neighboring cells for more periods to send the
measurement report to the serving eNB. Furthermore, the number of handovers decreases
as we increase the hysteresis. This is because the next cell should serve stronger on the
specific period to send the measurement report to the eNB.
As a result, since the total number of handovers is decreasing, The number of ping-pong
handovers is also decreasing. this effect can be seen in figure 4.4b.The total number of
ping-pong handovers goes to zero as we reach the TTT of 2000ms since we define this
value as a distinguish of Ping Pong handovers.
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Figure 4.4: Average number of Handover Failures handovers for 100 simulations for con-
ventional method

As it is shown in the figure 4.4, by increasing the TTT, The HOF increases. This is
because, based on the loss model used in the simulation, The UE falls into many Non
Line of Sight (NLOS). The NLOS effect leads to an increasing number of HOF. However,
as we increase the TTT more and more, the number of HOF decreases slightly. This does
not mean that the target cell is being chosen more efficiently. It is because the UE is
observing for a more extended period and does not do a handover. And some times it is
not necessary to do a handover while the UE is in NLOS since either it might cause a Too
Early Handover or the UE still can be served by the current cell. As a result, the HOF
on target cells decreases, but the number of HOFs remains large.
Furthermore, there is no pattern in increasing the hysteresis while kipping the TTT
on the same value. This is because, at some point, the UE may fall into a too early
handover; then, by increasing the hysteresis, the HOF goes away. However, if it increases
the hysteresis more, it falls into too-late handovers, and in HOFs increase.
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Figure 4.5: Average RSRQ for 100 simulations for conventional method

As it is shown in the figure 4.5, by increasing TTT and keeping hysteresis constant, The
received RSRQ in decreased because the number of handovers is decreased, and the UE
is connected to its serving cell for a more extended period rather than doing handover
and connect to the cell with better signal quality. This effect also can be seen while the
hysteresis is increased and TTT is kept constant because the UE searches for a stronger
cell to do a handover and eventually stays connected to its serving cell for more period of
time.
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Figure 4.6: Average MIT for 100 simulations for conventional method

As discussed before, MIT is the most important KPI that the best option will be chosen
based on. It brings the handover number and HOF together. MIT is the time that the
UE is not able to transmit data due to performing handover and HOF. As it is shown
in the 4.6, By using the conventional scheme, the UE experiences high MIT, and this is
because they rely on current and previous measurements.
Based on MIT, the best configuration is TTT of 100 ms with Hysteresis of 3dB. However,
this setting falls into the number of ping-pong handovers leading to huge signaling for the
network
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4.4.2. Integer Programming vs. Linear relaxation

As it was discussed in section 3.3.1, the original problem that needs to be solved every
time step is IP, and linear relaxation is used in order to solve it. In this subsection, the
result based on solving the problem using linear relaxation and IP is being compared.
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(a) Average number of handovers for 100
simulations for IP vs LR
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(b) Average number of ping-pong handovers for 100
simulations for IP vs LR

As it can be seen in fig 4.10a, increasing the time window, known as lookahead in figures,
results in fewer handovers. Additionally, the number of handovers while employing linear
relaxation differs slightly from the IP approach. This is because the heuristic used to
convert the optimized linear relaxation matrix, which is a continuous value between 0 and
1, to the matrix made of a series of one-hot vectors would violate the handover constraint
and result in a different number of handovers than the IP method, which guaranteed that
the number of handovers at each step would not exceed the defined handover budge. This
effect can also be seen in the number of ping-ping handovers, which is shown figure 4.10b.
In conclusion, the proposed method, which is not as high computational hard for large-
scale problems as IP solving, works almost the same as IP method.
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Figure 4.7: Average number of Handover Failures handovers for 100 simulations for IP vs
LR

As shown in figure 4.7, increasing the lookahead leads to experiencing more number of
HOFs. However, the number of HOFs is much less than the conventional method. Fur-
thermore, the linear relaxation method leads to having less HOF than the IP, and this
is because of violation in a number of handovers of the heuristic that is used in order to
obtain a matrix of one-hot vectors.
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Figure 4.8: Average RSRQ for 100 simulations for IP vs LR

Figure 4.8 shows that increasing the lookahead leads to having less quantized RSRQ be-
cause the UE tends to connect to one cell than doing the handover. However, the linear
relaxation method leads to having more quantized RSRQ, compared to the optimized
value, and this is due to the fact that the UE falls into more number of handovers and
less number of HOF.
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Figure 4.9: Average MIT for 100 simulations for IP vs LR

Figure 4.9 shows how lookahead affects the MIT. As it is shown, staring from lookahead
1, by increasing the lookahead, the MIT decreases at first and it is because of the fact
that we face less number of handovers while keeping the HOF low, but as we increase the
lookahead more and more, we face more number of HOF which leads to increasing the
MIT. Furthermore, for each specific value if lookahead and handover budget, The MIT of
LR method is less than IP method, and this is due to the fact that for each configuration,
the number of handovers HOF in IP value is more than relaxation method.
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4.4.3. Optimization for Continuous Values

As stated in section 3.3.1, the optimization problem is changed to convex after the re-
laxation. So, the handover budget can be a fractional value instead of an integer. Even
though fractional handover does not have physical meaning, it can be used for cell assign-
ment after using the heuristic and mapping it to the matrix made of one hot vector.
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(a) Average number of handovers for 100
simulations for decimal handover values
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(b) Average number of ping-pong handovers for 100
simulations for decimal handover values

Each point on this chapter’s figures is the value obtained by multiplying the corresponding
lookahead that can be seen on the x-axis along with the handover budget. For example,
if you look at lookahead of 10 and 0.2 ho per second, the corresponding point in fig 4.10a
is the number of handovers obtained by choosing a handover budget of 0.2 ∗ 10 = 2.
As it is written in subsection 3.3.1, the handover constraint is

∑T−1
j=1

∑M
i=1 |xij+1 − xij| ≤

2N . So, as long as 2N < 1, the optimizer gives zero handovers as an output. In contrast,
the number of handovers changes from 0 to a higher value after the 2N > 1.
As can be seen in all the figure 4.10a, if by increasing the lookahead, the handover budget
changes from a fractional value to an integer, there is an increase in the number of han-
dovers while between each two integer values, the number of handovers decreases slightly.
This effect can be seen in figure 4.10b.
As a result, the optimizer between each two integer values of the handover number de-
creases the number of handover and ping-ping handovers.
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Figure 4.10: Average number of Handover Failures handovers for 100 simulations for
decimal handover values

Figure 4.10 shows the number of HOF while using decimal numbers as a handover con-
straint in the optimization problem. As shown in the figure, the number of HOF is very
high when the 2N < 1.
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Figure 4.11: Average RSRQ for 100 simulations for decimal handover values

Figure 4.11 shows the average RSRQ of 100 simulations running for 400 seconds. As shown
in the figure, the average RSRQ decreases between two consecutive handover constraints
because the number of HOFs increases.
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Figure 4.12: Average MIT for 100 simulations for decimal handover values

Figure 4.12 shows the MIT for different numbers of lookahead and handover budgets.
MIT is the most important KPI. It brings a number of handovers and HOFs together. As
shown, 0.2 ho/sec has the best performance and leads to having the minimum MIT, and
0.6 handover per 3 seconds has the minimum MIT.
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4.5. Comparison of Linear Relaxation, Integer Pro-

gramming, Decimal handover, and Conventional

method

In order to evaluate the proposed handover optimization scheme, two baselines have been
chosen. First, the UE gets connected to maximum RSRQ at each time step. The second
one is the best configuration based on MIT in a conventional method which is TTT of
100 ms and hysteresis of 3dB. The option for decimal handover constraint is 0.6 handover
per 3 seconds, and the best choice with integer value is one handover per 5 seconds. So
one handover per 5 seconds using IP and LR has been included in the comparison.
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(b) Comparison of Average Ping-Pong Handover Num-
bers

Figure 4.13a and figure 4.13b show that in the proposed handover optimization scheme
with LR, the UE experiences a much lower number of handovers and ping-pong handover
with respect to the best configuration in the conventional method and maximum RSRQ.
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Figure 4.13: Comparision of average number of Handover Failures
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(b) Comparision of average number of too late handovers

Figure 4.13 shows that by using a predictive handover optimization scheme with LR, the
number of HOF is much lower than the best configuration in the conventional method.
Figure 4.14a and figure 4.14b show that the number of too late handover and too early
handovers are both less that the conventional method.
By connecting the UE to maximum RSRQ at each time step, the UE falls into no HOF
but at the same time experiencing many numbers of handovers leads to having massive
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signaling for the network.
Note that 0.4 number of HOFs means that there are 40 HOFs in 100 simulations.
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Figure 4.14: Comparision of average received RSRQ

Figure 4.14 shows that even though in the proposed method the UE falls into less number
of handovers with respect to the conventional method,by choosing the right cell, the
average RSRQ is more than the conventional method.
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Figure 4.15: Comparision of average MIT

Fig 4.15 is the most important KPI. As shown, in the proposed method, the UE experi-
ences MIT much less than the conventional method and maximum RSRQ.

The described comparison can be summarized as follows :

Maximum
RSRQ

Conventional
Method

0.6 ho / 3 sec-
onds

1 ho / 5 sec-
onds of LR

1 ho / 5 sec-
onds of IP

Handover 257.5 95.3 40 37 35
Ping-Pong 141 28 1.3 2.9 5
HOF 0 0.4 0.02 0.12 0.2
Too Late 0 0 0 0.02 0.05
Too Early 0 0.4 0.02 0.1 0.15
RSRQ 29.25 28 28.83 28.52 28.25
MIT 15.45 (sec) 6.68 (sec) 0.71 (sec) 1.11 (sec) 2.11 (sec)

Table 4.2: Comparison of LR, IP, Decimal number of handovers, and Conventional
method
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4.5.1. Effect of Prediction Error

In this subsection, the effect of inaccurate predicted channel state information has been
examined.
Constant Prediction error :
In order to see how robust is our optimization method to prediction error, a normal Gaus-
sian noise prediction error was added to the RSRQ with zero mean and standard deviation
starting from 1 to 9 dB. The reason that the constant normal noise over time is chosen
is that we have assumed to have a map of RSRQ, and we know in advance where the
UE is going. Since the error of your map is constant in space, the RSRQ prediction error
will be consistent over time. The result is compared with the best configuration using the
conventional method.
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(b) Average number of ping-pong handovers by adding
constant prediction error

As it is shown in fig 4.16a and fig 4.16b, adding the prediction error leads to increasing
the number of handovers and ping-pong handovers, but they are still much lower than
the number handovers and handover failure in the conventional method.
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Figure 4.16: Average number of Handover Failures by adding constant prediction error

Fig 4.16 shows that by increasing the prediction error, the UE falls into more number of
HOF.this is due to the fact that the UE chooses the wrong cell to do a handover and falls
into RLF.however, the number of HOF remains less than the conventional method for a
prediction error of less than 5 dB.



4| Simulation and Numerical results 61

0 2 4 6 8
Prediction Error (dB)

27.8

28.0

28.2

28.4

28.6
rs
rq

 rsrq
0.6 handover per 3 second
1 handover per 5 second
Conventional Method

Figure 4.17: Average obtained RSRQ by adding constant prediction error

Figure 4.16 shows that by increasing the prediction error, the UE receives less RSRQ.
This is because the UE chooses the wrong cell to do a handover and falls into RLF so it
receives less RSRQ. However, the UE still receives a higher RSRQ than the conventional
method for a prediction error of less than 7 dB.
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Figure 4.18: Average MIT by adding constant prediction error

Figure 4.16 shows that by increasing the prediction error, the UE experiences more MIT,
however; it still experiences less MIT compared to the conventional method.

Time Variant Prediction Error :
In a real scenario, the prediction error increases as the value is predicted for a longer
time instant. So we assumed the following model for the channel state information :
RSRQi,j = RSRQi,j +N (µ, σ2)

where σ = j ∗ 0.2
The reason is that each time step in RSRQ represent 0.2 second.The simulation was run
for lookahead of 3 seconds and handover budget of 0.6 seconds.

Conventional 1.5 dB/s 3 dB/s 4.5 dB/s 6 dB/s
Handover 95.3 44.7 46.7 47.7 51.6

PingPong 24.8 2.29 3 3.5 5.2
HOF 0,97 0.4 0.51 0.29 0.7
RSRQ 28 28.5 28.4 28.5 28.2
MIT 6.6(sec) 3(sec) 3.3(sec) 3.1(sec) 3.7(sec)

As it is shown in the table 4.5.1, as the time proportional prediction error increases, the
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number of handovers, ping-pong handovers, and HOFs are increasing; however, they are
still lower than the conventional method. Furthermore, the average RSRQ decreases as
the number of HOFs increases, but since the number of HOFs are still less than the
conventional method, the UE receives higher RSRQ. As a result, the MIT remains below
the conventional method.
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5| Conclusions and future

developments

In this thesis, an overview of the existing handover techniques was provided. Since exist-
ing techniques result in many ping-pong handovers and HOFs, the predictive handover
optimization scheme was introduced to perform cell assignment based on the predicted
RSRQ to minimize the number of handovers and HOFs. In this method, at each time
step t, the cell assignment is computed for the next T time steps to maximize the average
RSRQ while constraining the number of handovers. Then the UE gets connected to the
cell based on the cell assignment at t+1.
The results in section 4.4 show that the proposed method is able to decrease the number of
ping-pong handovers and HOF simultaneously and the UE falls into much lower number
of handovers and HOFs compared to conventional schemes. Using this method, the UE
receives higher RSRQ on average compared to the best configuration in the conventional
method. Higher RSRQ means that more sophisticated MCS can be used to transmit and
receive data, leading to an increase in the maximum achievable data rate. Furthermore,
using the proposed method, the UE experiences lower MIT compared to the A3-event
handover.

The effect of inaccurate channel state information has also been examined in this thesis.
The results show, by the prediction error, the number of HOFs and averaged MIT increases
while the average RSRQ decreases. However, the number of HOFs and average MIT
remain lower than for the conventional method, and the average RSRQ is higher. So the
proposed method is robust to prediction errors.
As a future extension of the thesis, the proposed handover scheme could be evaluated
using multi-users. A realistic prediction error should be added to the predicted RSRQ.
Since the algorithm to solve optimization problems is general purpose, it can be replaced
with a dedicated algorithm with lower complexity.
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6| List of Abbreviations

3GPP 3rd Generation Partnership Project
5G five-generation
5G five-generation
6G six-generation
ACK acknowledgment
ACK acknowledgment
AI Artificial Intelligence
ANRF Neighboring Relation Function
ATO Auto Tuning Optimization
ATO Auto Tuning Optimization
CHO Conditional Handover
DBRs Dedicated Radio Bearers
DHO Data-driven Handover Optimization
DL Downlink
eNB eNodeB
EPC Evolved Packet Core
FLC Fuzzy Logic Controller
HCP Handover Control Parameter
HIT Handover Interruption Time
HOF Handover Failure
IP Integer Programming
LP Linear Programming
LR Linear Relaxation
LTE Long Term Evolution
MCS Modulation and Coding Schemes
MIP Mixed Integer Programming
MIT Mobility Interruption Time
ML Machine Learning
MPC Model Predictive Control
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MRO Mobility Robustness Optimization
NLOS Non Line of Sight
QoE Quality of Experience
RAB Radio Access Beare
RAN Radio Access Network
RE Resource Element
RLF Radio Link Failure
RRC Radio Resource Control
RSRP Reference Signal Received Power
RSRQ Reference Signal Received Quality
RSRQ Reference Signal Received Quality
RSSI Received Signal Strength Indicator
SINR Signal to Interference and Noise Ratio
SN Sequence Number
SON Self Organized Network
SRBs Signalling Radio Bearers
TTT Time To Trigger
UE User Equipment
UL Uplink
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