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1. Introduction 
Anaerobic digestion (AD) consists of the 
spontaneous degradation of substrates through 
anaerobic bacteria, that in absence of oxygen turn 
the initial matter into biogas – composed 
mainly of methane (50-70%) and carbon dioxide 
(30-50%) – and a liquid-solid residue called 
digestate. At industrial level, the digestion can be 
carried out both through a discontinuous and 
continuous layout, and the efficiency of the process 
highly depend on the operating conditions (e.g., 
temperature, total solids (TS, % w/w) content) and 
on the nature of the feedstock. This project deals 
with the optimization of the composition of the 
feedstock of anaerobic digesters.  
It has been demonstrated that the AD of a single 
kind of substrate (e.g., animal manure, agro-
industrial and organic waste types, sewage sludge) 
might lead to low methane yields due to an 
inappropriate composition, caused by the lack of 
some nutrients or non-optimal parameters. To 
improve methane yield, anaerobic co-digestion 
(AcoD) can be exploited, which consists of the 
simultaneous digestion of multiple substrates that 
possibly show complementary characteristics, and 
then allows to obtain optimal feeding conditions 
[1]. This way, methane yield and process stability 
can be significantly improved, and synergistic 

effects may be observed too. On the other hand, an 
improper choice of co-substrates could lead to a 
system imbalance and create antagonistic effects.  
The aim of the project, therefore, is to create a 
model able to predict the best blending conditions 
to maximize the methane yield of the co-digestion. 

2. Feedstock Parameters 
The first part of the project consisted of accurate 
bibliographic research aimed at identifying the 
most characterizing parameters of AD raw 
materials. Among all the parameters, the most 
relevant ones – that have most been used during 
the building phase of the model – are the C/N ratio 
and the Biodegradability (BD) of the substrates. 

2.1. C/N ratio 
The ratio between the organic carbon and nitrogen 
content is a commonly used parameter to 
characterize feedstock nutrients. To obtain high 
methane yields, it has been demonstrated that the 
C/N should be comprised in a range between 20 
and 40: below this range  the degradation causes 
an increase in ammonia concentration that could 
inhibit the digestion process by microbial growth 
impediment; on the other hand, above this range, 
the substrate results rich in carbon sources, leading 
to the production of high concentrations of VFAs, 
which are another cause of inhibition due to 
bacteria deactivation [1]. 
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2.2. Biodegradability (BD) 
This parameter represents the degradable fraction 
of the substrate: indeed, the organic fraction – that 
could be potentially degraded in ideal conditions, 
expressed as percentage of volatile solids (VS, %TS 
w/w) – may be composed both of readily 
degradable components such as simple 
carbohydrates, proteins and lipids, and of hardly 
degradable compounds, that are the lignocellulosic 
components. In literature, many definitions of this 
parameter can be found, among which it was 
decided to use the one shown in Equation 2.1. 
 

𝐵𝐷 =
𝐸𝐵𝑀𝑃

𝑇𝐵𝑀𝑃
 (2.1) 

 
The 𝑇𝐵𝑀𝑃 (measured in 𝑚𝐿/𝑔 ) is the Theoretical 
Biomethane Potential, that represents theoretical 
methane yield that could be achieved if the organic 
matter would be completely degraded, depending 
on its elemental composition. Supposing to express 
the organic matter with the chemical formula 
𝐶 𝐻 𝑂 𝑁 𝑆 , the 𝑇𝐵𝑀𝑃 is generally calculated 
through a modified Buswell formula [2], reported 
in Equation 2.2. 
 

𝑇𝐵𝑀𝑃 =

𝑐
2

+
ℎ
8

−
𝑜
4

−
3𝑛
8

−
𝑠
4

∙ 22415

12𝑐 + ℎ + 16𝑜 + 14𝑛 + 32𝑠
 (2.2) 

 
The 𝐸𝐵𝑀𝑃 (𝑚𝐿/𝑔 ) is instead the Experimental 
Biomethane Potential, which is the cumulative 
methane yield obtained in lab-scale batch tests – 
namely BMP tests – performed at controlled 
operating conditions (generally, with TS of 5-10% 
and temperature of 35-37°C). This quantity is 
always lower than the 𝑇𝐵𝑀𝑃, since the latter does 
not consider the non-degradable fraction of the 
substrates, being an ideal parameter. Therefore, BD 
is comprised between 0 and 1, and represents the 
degree of degradability of the organic matter 
contained in the substrate.  

2.3. Other Parameters 
Secondary parameters that have been considered 
during the data collection are the TS, VS, and the 
content of the main macro-nutrients – i.e., lipids, 
proteins, sugars, starch, easily-degradable 
carbohydrates, cellulose, hemicellulose, lignin, and 
ash (%TS w/w). 

3. Previous Studies  
Numerous experimental studies have been carried 
out to calculate the optimal blending conditions of 

mixtures of substrates by performing BMP tests 
using design of experiments techniques such as 
Central Composite Design associated with 
Response Surface Methodology. However, the 
results that are obtained from this kind of 
experimentations are not general and can be 
applied only on the analyzed mixture. In addition, 
they are time-consuming and require the use of 
analytical techniques.  
On the other hand, some attempts to build models 
able to predict the optimal feedstock blending have 
been done in the past: in particular, a control model 
based on a linear programming [3] and an 
optimization based on an ant-colony approach [4] 
have been proposed. However, they are both 
intended to be applied as on-line control systems 
and involve the measurement of hardly 
measurable variables using analytical techniques. 
The purpose of this work, instead, is the 
development of an easy-to-use and quick tool that 
with few, simple inputs can estimate with good 
precision the optimal blending ratios of mixtures of 
substrates, aiming at supporting industrial realities 
with decision-making processes related to the 
feedstock management.  

4. Database Construction 
The large number of possible raw materials and the 
high variability of their composition depending on 
their source reflects the high complexity of the 
problem. Therefore, a database was created, as 
shown in Figure 4.1, collecting data about a large 
number of substrates and dividing them into four 
macro-categories. Here, for each substrate, data 
about the main parameters characterizing them – 
TS, VS, C/N ratio, lipids, proteins, sugars, starch, 
easily degradable carbohydrates, lignin, cellulose, 
and hemicellulose content, TBMP, EBMP, BD – 
were collected from more than eighty scientific 
articles.  
Due to the high variability of the compositions of 
substrates, even of the same nature, their 
parameters are characterized by a distribution. 
Consequently, to obtain general and reliable values 
for each parameter, an averaging process was 
carried out, associating to each a standard 
deviation. The obtained mean values were used to 
build the Primary Averaged Database, that was then 
used to identify correlations between the 
parameters by using regression tools.  
After that, a Secondary Averaged Database was built 
by calculating general mean values and the 
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respective standard deviations for each macro-
category. 

5. Mathematical Correlations 
The data of the Primary Averaged Database were 
analyzed to demonstrate the existence of 
mathematical dependencies of the EBMP on 
parameters such as the C/N ratio, the BD, and the 
content of macro-nutrients as lipids and lignin. By 
using a multi-dimensional regression analysis, it 
was possible to create two-, three- and four-
dimensional relationships between these 
quantities. For the sake of brevity, only the three-
dimensional plots are reported in Figure 5.1. There, 
it can be observed that clear relationships between 
the EBMP and substrate parameters exist. 
The EBMP generally reaches a maximum as 
function of the C/N ratio, revealing the optimal 
range mentioned in Section 2.1; it increases 
increasing the biodegradability of substrates and 
decreases at the increase of the lignin content – 

lignin is indeed the main non-degradable 
component of substrates. Moreover, the EBMP 
shows a maximum with respect to the lipids 
content: in fact, high lipids content might lead to 
VFA deactivation. The existence of such 
relationships means that the production of 
methane strictly depends on the characteristics of 
substrates and makes it possible to estimate the 
EBMP of a certain substrate by only knowing the 
value of some of its parameters.  

6. Blending Optimization Model 
Development 

The relationships shown in the previous section 
allow to estimate the EBMP of a substrate by only 
knowing some of its parameters. Since the aim of 
this study is to maximize the methane production 
of mixtures of substrates, besides the EBMPs of the 
single substrates, synergistic effects should be 
considered too. Consequently, an objective 

Figure 4.1: Visual representation of the building process of the Complete Database, Primary Averaged Database and 
Secondary Averaged Database 

   
(a) (b) (c) 

Figure 5.1: Three-dimensional plots of the EBMP as function of various parameters: points correspond to each Primary 
Averaged Database substrate; the surfaces represent the regression models. 
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function representing the co-digestion BMP of a 
mixture has been defined so that, when 
maximized, it returns the highest possible BMP 
and the corresponding feedstock composition in 
terms of mass fractions of the selected substrates. 
The algorithm structure is reported in Figure 6.1. 
The objective function has been defined for the 
anaerobic co-digestion of two and three substrates 
(NC=2,3), and the two definitions are reported in 
Equations 6.1 and 6.2, respectively. 

𝑓 , = 𝐵𝑀𝑃 = 𝑥 𝐸𝐵𝑀𝑃 + 𝑥 𝐸𝐵𝑀𝑃

                              +𝑥 𝑥 𝐵𝑀𝑃   (6.1)
 

𝑓 , = 𝐵𝑀𝑃 = 𝑥 𝐸𝐵𝑀𝑃 + 𝑥 𝐸𝐵𝑀𝑃  

+𝑥 𝐸𝐵𝑀𝑃 + (𝑥 𝑥 + 𝑥 𝑥      

                                   +𝑥 𝑥 + 𝑥 𝑥 𝑥 )𝐵𝑀𝑃    (6.2) 

The quantities 𝑥  represent the mass fractions of 
each substrate i in the mixture, therefore Equations 
6.1 and 6.2 are built in a way that, if a mono-
digestion is performed, the 𝑓  is equal to the 
𝐸𝐵𝑀𝑃  of the single substrate. Moreover, 
interaction terms are added so that the 𝐵𝑀𝑃  
includes the effects of co-digestion synergies. The 
interaction terms involve the definition of the 
quantity named 𝐵𝑀𝑃 . After many tests, 𝐵𝑀𝑃  
has been defined by exploiting one of the three-
dimensional correlations shown in the previous 
section, particularly the one between the EBMP 
and the C/N ratio and BD: 𝐵𝑀𝑃  is indeed 
defined as the EBMP of a pseudo-single substrate 
characterized by weighted C/N ratio and BD with 
respect to the blend composition, as shown in 
Equations 6.3 and 6.4. 

𝐶

𝑁
=  𝑥

𝐶

𝑁
 (6.3) 

𝐵𝐷 =  𝑥 𝐵𝐷  (6.4) 

The 𝐵𝑀𝑃  is therefore calculated through the 
expression of the surface of Figure 5.1 (a), that is 
reported in Equation 6.5, as function of the defined 
mix parameters: 

𝐵𝑀𝑃 = 𝛽 + 𝛽
𝐶

𝑁
+ 𝛽 𝐵𝐷

             +𝛽
𝐶

𝑁
+ 𝛽 𝐵𝐷 (6.5)

 

The coefficients 𝛽  are obtained through the multi-
dimensional regression analysis and are 
followingly reported. 

 

 

⎩
⎪
⎨

⎪
⎧

𝛽 = 21.6613
𝛽 = 1.2558

𝛽 = 445.7076
𝛽 = −0.0223
𝛽 = −7.8201

 (6.6) 

Once having chosen two or three substrates about 
which the EBMP, C/N ratio and BD are known, 
through the maximization of the 𝑓  by varying 
the mass fractions 𝑥 , it is possible to calculate the 
optimal mixture composition. Such maximization 
must be constrained by Equation 6.7.  

𝑥 = 1 (6.7) 

 
The quality of this procedure has been validated by 
comparing the model results with the ones 
obtained in BMP tests of variable mixtures found 
in literature. Overall, eight tests were done: five of 
them involving mixtures of two substrates, and the 
remaining ones with mixtures of three. Two 
examples of test results are shown in in Figure 6.2. 
In Figure 6.2 (a) the comparison between the 
results of BMP tests performed at different mixing 
ratios of food waste (FW) and pig manure (PM) [5] 
and the BMP estimation of the model is reported: 
there, it can be observed that the BMP estimation is 

Figure 6.1: Block diagram of the blending optimization 
algorithm 
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satisfactory at every blending condition with a root 
mean square error (RMSE) of 15.60 𝑚𝐿/𝑔 , as well 
as the estimation of the optimal composition 
(𝑥 , =0.84, 𝑥 , =0.16). A similar situation is 
observed in Figure 6.2 (b) where the results of tests 
on ternary mixtures of dairy manure (DM), pig 
manure (PM), and straw (ST), are reported [6]. Also 
in this case the results are reliable both in terms of 
BMP estimation (RMSE of 20.11 𝑚𝐿/𝑔 ) and 
optimal composition prediction (𝑥 , =0.64, 
𝑥 , =0.27, 𝑥 , =0.09). The results obtained in 
these two trials and in the other ones have made it 
possible to validate the model, confirming its 
predictions as trustworthy – even though, at times, 
a BMP over/under-estimation is observed.  
At times, an absence of synergy is observed. 
Therefore, in those cases another model was built, 
in which the 𝐵𝑀𝑃  is expressed as the weighted 
average of the EBMPs of the single substrates 
(Equation 6.8). 
 

𝐵𝑀𝑃 = 𝑥 ∙ 𝐸𝐵𝑀𝑃  (6.8) 

 
This model was validated with two additional 
tests, however it is currently not possible to 
automatically predict when this applies.  
 

7. Model Improvements for 
Industrial Layouts 

In case of industrial realities, besides the 
composition of the optimal mixture in terms of 
highest methane potential, other issues must be 
faced, like the real availability of the substrates and 
the waste storage capability of the plant. Therefore, 
to consider these additional factors, the model 
presented in the previous section was improved 
with new constraints both in case of batch and 
CSTR-based anaerobic digesters. 

7.1. Batch Digesters  
In case of batch digesters, when optimizing the 
feedstock, it must be considered that each substrate 
has its own availability (in terms of tons per cycle) 
and that the plant has a certain waste storage 
capability that determines the minimum quantity 
of each raw material that has to be disposed in a 
cycle not to have excessive accumulation.  
Supposing to fix the total quantity of substrates 
that can be loaded into the reactor, named 𝑚 , it 
is possible to impose that each  

                                            (a) 

(b) 

Figure 6.2: (a) Comparison between the experimental 
BMPs for a variable mixture of FW and PM, and the 
model results; (b) Comparison between the 
experimental BMPs for a variable mixture of DM, 
PM and ST, and the model results. 

substrate load must be comprised between a lower 
limit, represented by the minimum required 
consumption, and an upper limit, represented by 
the maximum availability (Equation 7.1); in 
addition, the sum of all loads must be 𝑚  
(Equation 7.2). The mass fractions of each substrate 
can be calculated with Equation 7.3. 

𝑚 , ≤ 𝑚 ≤ 𝑚 ,  (7.1) 

𝑚 = 𝑚  (7.2) 

𝑥 =
𝑚

𝑚
 (7.3) 

The objective function can be then calculated and 
maximized by varying the substrate loads – instead 
of their mass fractions. This way the feedstock 
optimization is performed considering supply 
chain requirements. 
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7.2. CSTR Digesters  
In case of a CSTR, the modification of the model is 
analogue to the discontinuous case, except for the 
fact that instead of massive loads, massive flow 
rates (expressed in ton/d) are involved. In this case 
a total massive flow rate �̇�  must be fixed, and a 
lower and higher threshold for each flow rate �̇�  
can be defined depending on the storage capability 
and on the availability of substrates, respectively. 
Equations 7.1, 7.2 and 7.3, therefore, are valid in 
this case too, and the objective function 
maximization can be performed by varying the 
massive flow rates �̇� . This way, optimal flow rates 
for each substrate, complying with the supply-
chain requirements, are obtained.  
To validate the CSTR model configuration, an 
industrial case-study was developed, based on the 
industrial data shared by Thӧni s.r.l. about a 1000 
kW biogas plant. By optimizing the received data, 
an optimized feedstock schedule over the month of 
January 2022 was calculated using the 
optimization tool, and the comparison between 
real and optimized mass flow rates is shown in 
Figure 7.1.  

8. Conclusions 
The purpose of the project was to develop an 
optimization tool able to calculate in a trustworthy 
way the optimal feedstock conditions in different 
industrial settings. The optimization model was 
developed starting from a database obtained 
through the analysis and averaging of data got 
from more than eighty scientific articles and was 
first validated by the comparison with batch 
experimental tests. Then, it was made suitable for 
applications at industrial level to comply to supply 
chain issues. The final optimization model 
demonstrated to yield satisfactory and practical 
results, and was validated by the comparison with 
industrial data provided by the companies Rota 
Guido s.r.l. and Thӧni s.r.l.  
To obtain even more reliable and flexible results, 
improvements should be done to the model. Some 
of the possible improvements are: the addition of 
information about the localization of the plant, in 
order to broaden the consideration of supply chain 
factors; connecting the tool to anaerobic digestion 
models such as ADM1; the introduction of 
correction factors in the objective function to predict 
the synergy between substrates; extending the 
objective function expression to an indefinite 
number of substrates; validating the model with 
dedicated experimental tests. 

 
Figure 7.1: Actual mass flow rates and optimized 
mass flow rates during the month of January 2022 
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