
POLITECNICO DI MILANO

SCHOOL OF INDUSTRIAL AND INFORMATION ENGINEERING

Master of Science in Mechanical Engineering

BEST VIEW METHODOLOGY ENHANCED BY

BAYESIAN OPTIMIZATION FOR ROBOTIC MOTION

PLANNING IN QUALITY INSPECTION TASKS

Supervisor:

Prof. Giuseppe Bucca

Co-Supervisor:

Eng. Ph.D. Loris Roveda

Candidates:

Marco Maroni
En. No. 919691

Loris Praolini
En. No. 920676

Academic Year: 2019-2020

The truth in life is that we will all make choices and eventually

regret them. It is called failure, and it can be something good

because it teaches how to be better people. As we age,

our goal should be to minimize the number of failures that leads to

repentance. In the end, we are our choices.

Jeff Bezos

La verità nella vita è che tutti faremo delle scelte e alla fine

ce ne pentiremo. Si chiama fallimento, e può essere una cosa positiva

perché ci insegna come essere persone migliori. Invecchiando il nostro

obiettivo dovrebbe essere quello di ridurre al minimo il numero di

fallimenti che portano a pentirsi. Alla fine siamo le nostre scelte.

Jeff Bezos

Ringraziamenti

A conclusione di questo lavoro di Tesi, è doveroso porre i miei più sentiti

ringraziamenti alle persone che ho avuto modo di conoscere in questo

importante periodo della mia vita e che mi hanno aiutato a crescere sia

dal punto di vista professionale che umano. E’ difficile in poche righe

ricordare tutte le persone che, a vario titolo, hanno contribuito a rendere

migliore questo periodo.

Un ringraziamento necessario al Professor Giuseppe Bucca, relatore

di questo elaborato, per l’esempio che mi ha dato, e che io considero

indimenticabile, di come sia possibile amare e far amare lo studio e la

conoscenza di una materia non sempre facile, attraverso dialoghi e con-

fronti mai banali ma anzi sempre costruttivi. È un bagaglio importante,

sia culturale che di impostazione mentale, che porterò ovunque con me.

Al correlatore, Ingegner Loris Roveda, per la capacità che ha di-

mostrato di saper stimolare il mio interesse per l’argomento qui discusso,

di mostrarmi aspetti relativi allo stesso che senza di lui probabilmente

avrei ignorato, e infine, per la sua pazienza, fiducia ed entusiasmo che mi

ha trasmesso.

Al Professor Mario Covarrubias Rodriguez, per aver messo a dispo-

sizioni gli spazi del Suo laboratorio per condurre gli esperimenti neces-

sari allo svolgimento dell’elaborato quando le condizioni al contorno, per

svariati motivi, non lo avrebbero permesso.

Grazie

Contents

1 Introduction 2

1.1 Aims of the Thesis . 2

1.2 Thesis Structure . 4

1.3 State of the Art . 5

1.3.1 Pose Estimation 5

1.3.2 Next Best View Estimation 9

2 Vision System 12

2.1 Sensor’s Overview . 12

2.2 Intel® RealSense D400 Series 15

2.3 Sensor Performances . 17

3 Hardware and Software 18

3.1 Franka Emika Panda Manipulator 18

3.2 ROS: Robot Operating System 20

3.3 MoveIt! and RVIZ . 23

4 Planner Offline 26

CONTENTS

4.1 General Overview . 26

4.2 Bayesian Optimization Node 28

4.3 De-Normalizer Node . 31

4.4 Hidden Point Removal Node 34

4.5 Planner Node . 37

4.6 Surface Matcher Node 38

5 Planner Online 48

5.1 General Overview . 48

5.2 End Effector - Sensor

Transform Calibration 50

5.3 Point Cloud Scene Reconstruction 54

5.4 Online Algorithm . 57

6 Experimentation Results 60

6.1 Graphical User Interface 61

6.2 Model and Scene . 63

6.3 PPF and HALCON Pose Estimation Algorithms Com-

parison . 64

6.4 Bayesian Optimization and Sphere Grid Algorithms Com-

parison . 68

6.5 Sensitivity Analysis of Bayesian Optimization Parameters 75

6.5.1 Alpha Parameter 75

6.5.2 Matching Score and Cost Function Values

Comparison between J1 and J2 77

CONTENTS

6.6 High Occlusion Level Scene Analysis 80

6.7 Sensor Reconstructed Pointcloud

Scene Analysis . 85

Conclusions 92

Bibliography 94

List of Plots

1.1 Next Best View Steps 10

2.1 Depth Estimation through Triangulation Principle 13

2.2 Triangulation Methods 14

2.3 Intel RealSense D435 in the foreground and D415 in the

background . 15

2.4 Passive and Active Stereoscopy Evaluation 15

2.5 D415 No Depth Data due to Non-Overlappping Region of

FOV at 400 mm distance (left) and 800 mm (right) . . 16

2.6 Theoretical Random Error Sensors comparison 17

3.1 Panda Robot by Franka Emika 18

3.2 Schematic Representation of Communication between Roscore

and different Nodes . 21

3.3 Schematic Representation of Communication between Nodes

through Publisher and Subscriber 22

3.4 Schematic Representation of Communication between Nodes

through Server and Client 22

3.5 MoveIt! Architecture . 23

LIST OF PLOTS

3.6 Flange Designed to mount Sensor on Robot’s End Effector 24

3.7 Null Robot’s Reference Frame on the left, particular of

End Effector TF on the right 25

3.8 Difference between Sensor’s TF and End Effector’s one . 25

4.1 Schematic Representation of the Planner Offline Algorithm 26

4.2 Iterative Process Representation of the Bayesian Opti-

mization Algorithm . 29

4.3 Spherical Reference System and Sensor Origin 31

4.4 HPR Operator - Left: spherical flipping (in red) of a 2D

curve (in blue) using a sphere (in green) centered at the

view point (in magenta). Right: back projection of the

convex hull. 34

4.5 False positives,negatives and their sum, of a specific model

with 70K points. The automatically calculated R is shown

in brown. 35

4.6 The Point Pair Feature definition for a model’s point pair

(mr,ms). 40

4.7 Representation of the modeling and matching steps of the

Point Pair Features voting method.(a) modeling example

for three point pairs from the model; (b) matching example

for one point pair from the scene. 42

4.8 Representation of the local coordinate LC system used by

the point pair features method; (a) scene oriented point;

(b) corresponding object model oriented point; (c) align-

ment of the model with the scene by using the two oriented

points and the α angle. 43

LIST OF PLOTS

4.9 Representation of the LC α angle definition from two cor-

responding pairs (sr, ss) and (mr,ms). 45

5.1 Schematic Representation of the Planner Online Algorithm 48

5.2 Schematic Representation of the Calibrator Algorithm . 50

5.3 From Left to Right: AprilTag Input image - Step 1: De-

tection of line segments using the least square method on

clusters of similar pixel gradients. - Step 2: Based upon

the gradient direction, all possible quads are detected in

an image. - Step 3: A quad with a valid code scheme is

extracted to detect the pose. - Step 4: A pose of AprilTag

in camera frame of reference is returned using homograph

and intrinsic estimation. 51

5.4 Representation of Robot’s different Position and of April-

Tag’s Reference System 52

5.5 Three different Point Cloud Scans of the Scene and its

Reconstruction . 54

5.6 Different examples of voxel downsampling size. Top Left:

Original Reconstructed Scene. Top Right: Reconstructed

Scene with voxel size=1 mm. Bottom Left: Reconstructed

Scene with voxel size=2 mm. Bottom Right: Reconstructed

Scene with voxel size=3 mm 55

5.7 Sequential images: before creating Octomap, Sensor Depth

View and after Octomap Creation. 59

5.8 Octomap of the Reconstructed Scene 59

6.1 Graphic User Interface Coded. In blue is possible to see

the robot representation, in green the scene uploaded and

in red the points generated on the surface of the sphere . 61

6.2 Graphic User Interface: File Manager 62

LIST OF PLOTS

6.3 Virtual and Physical Models of the chosen Scene 63

6.4 Virtual and Physical Models of the chosen Object to be

Recognized . 63

6.5 RGB Image (Top Left), Sensor’s Point Cloud (Top Right),

Uniform Sampled CAD Scene (Bottom Left) and .stl CAD

Scene (Bottom Right) 64

6.6 HPR Error due to Lack of Surface Points in .stl CAD Scene 65

6.7 3D Surface Score Distribution of HALCON (Top) and

PPF (Bottom) Matching Algorithms with a .stl Scene . . 66

6.8 3D Surface Score Distribution of HALCON (Top) and

PPF (Bottom) Matching Algorithms with Uniform Point

Sampled Scene . 67

6.9 Example of Perfect (left) and Missed (right) Matching be-

tween the Model and the Scene. The only parameter that

vary is the viewpoint enhanced in yellow, in first case the

object is visible, in second one not, leading to a wrong

match. 68

6.10 Representation of I/O and intermediates passages of Bayesian

Optimization: Input Variables, Cost Function Calcula-

tion, Mean and Variance Generation and Output Variables 69

6.11 Graphical Representation of Sphere Grid (left) and BO

with Cost Function J1 (right) 70

6.12 Surface Plot Representing Matching Score Values varying

φ and θ coordinates with data coming from Offline Algorithm 71

6.13 Surface Plot Representing Cost Function Values varying φ

and θ coordinates with data coming from Offline Algorithm 72

6.14 Graphical Representation of the Points used for Valida-

tion: Sphere Grid (left) and Bayesian Optimization (right) 73

LIST OF PLOTS

6.15 Offline and Online Sphere Grid Algorithm Validation . . 73

6.16 Offline and Online Bayesian Optimization Algorithm Val-

idation . 74

6.17 Influence of parameter α on Score Matching Values for

Cost Function J1. Red Cross Represent if the specific Po-

sition can not be reached by robot’s joint limits, Green

Circle if can be reached 76

6.18 Influence of parameter α on for Cost Function J1 Values 77

6.19 Comparison of Matching Values on Linear J1 and Quadratic

J2 Cost Function with parameter α fixed 78

6.20 Comparison on Linear J1 and Quadratic J2 Cost Functions

Values with parameter α fixed 78

6.21 Second Scene Tested with higher Occlusion Rate 80

6.22 Optimal Positions for Model Recognizing in Scene without

Occlusion, Score and Cost Function 3D Plots 81

6.23 Optimal Positions for Model Recognizing in Scene with

Occlusion, Score and Cost Function 3D Plots 82

6.24 Surface Plots Representing Score and Cost Function Val-

ues with Occlusion in different Perspectives 83

6.25 Graphical Representation of the Points used for Validation

with Occlusion: Sphere Grid (left) and Bayesian Opti-

mization (right) . 84

6.26 Offline and Online Sphere Grid (top) and Bayesian Opti-

mization (bottom) Algorithm Validation with Occlusion . 84

6.27 Side Views of the Reconstructed Point Cloud Scene start-

ing from five different Scans 85

LIST OF PLOTS

6.28 Surface Plot Representing Matching Score Values varying

φ and θ coordinates with data coming from Offline Algo-

rithm based on the Reconstructed Scene 86

6.29 Surface Plot Representing Cost Function Values varying

φ and θ coordinates with data coming from Offline Algo-

rithm based on the Reconstructed Scene 87

6.30 Graphical Representation of the Two different Matching

Areas . 88

6.31 Graphical Representation of the Points used for Validation

with Occlusion: Sphere Grid (left) and Bayesian Opti-

mization (right) . 88

6.32 Offline and Online Sphere Grid Validation referred to the

Reconstructed Point Cloud 89

6.33 Offline and Online BO Validation referred to the Recon-

structed Point Cloud . 89

List of Tables

2.1 Sensors Technical Data 16

4.1 Example of ROS message sent from De-normalizer Node:

Sensor Position and Quaternion Orientation 33

4.2 Example of ROS message sent from Planner Node: Sensor

Position, Quaternion Orientation and Reachability Index 37

4.3 Example of ROS message sent from Surface Matcher Node:

Sensor Position, Quaternion Orientation, Reachability and

Matching Score Index 47

4.4 Part of File Generated by Offline Algorithm 47

5.1 Components of Output File exiting from Offline Algo-

rithm: Position, Quaternion Orientation, Reachability In-

dex, Pose Score Index . 57

6.1 Parameters used for Sphere Gridding Simulation 69

6.2 Parameters used for Sphere Grid Simulation 70

6.3 Best View Positions from Offline Algorithm 72

6.4 Parameters used for J2 Cost Function 77

6.5 Best View Positions from Offline Algorithm without and

with Occlusion . 80

LIST OF TABLES

6.6 Best View Positions from Offline Algorithm without and

with Reconstructed Scene as Model 86

Abstract

Combined robot-vision systems are increasingly popular nowadays, lead-

ing to a wide range of manufacturing tasks, such as locating tools, in-

specting parts geometry, and checking alignments in assemblies. Al-

though these systems are developing in many fields of application, their

huge potential is only partially exploited. The quality control of mounted

pieces using a sensor attached to a robot is the field in which this algo-

rithm has been applied. The development of an approach, capable of

choosing the best vision system pose for a quality control task with mo-

tion planning verification, is the goal this work. The entire algorithm

coded is divided in two macro sections. The Offline Architecture, that

predicts the best sensor pose in function of environment model and cam-

era location. The Online Architecture, to carry out pose estimation of

inspecting piece while controlling robot’s movement inside the real envi-

ronment, avoiding any kind of collisions, also not expected and forecast.

To validate the code, a series of experiments have been conducted using

Franka Emika Panda robot. Results shows that the algorithm, enhanced

by Bayesian Optimization, outperforms standard methods as grid point

sampling, reducing drastically the numbers of data needed and compu-

tation times. In addition, this algorithm does not use the manipulator

during the Offline part, allowing further optimization and the use of the

robot at the same time.

Sommario

In questi ultimi anni, i sistemi combinati tra robot e sensori di visione

sono sempre più diffusi, aprendo la strada allo sviluppo di un’ampia

gamma di attività di produzione, come la localizzazione di strumenti,

l’ispezione della geometria delle parti ed il controllo dell’allineamento

all’interno di assiemi. Sebbene questi sistemi si stiano sviluppando in

molti campi di applicazione, il loro enorme potenziale è solo parzialmente

sfruttato. Il controllo qualità di componenti, usando un sensore montato

su robot, è il contesto sul quale questo lavoro viene basato. Lo sviluppo

di un algoritmo, in grado di determinare la miglior posa del sistema di

visione con verifica della pianificazione del moto, è lo scopo di questa

tesi. L’intero codice è diviso in due macro sezioni. L’architettura Offline,

che prevede l’estrazione del miglior posizionamento del sensore in fun-

zione della scena e del punto di vista del sensore stesso. L’architettura

Online, per effettuare la stima della posa del componente pianificando

i movimenti del robot all’interno dell’ambiente, evitando qualsiasi tipo

di collisione, anche non prevista. La validazione dell’algoritmo passa at-

traverso una serie di esperimenti effettuati con il manipolatore Panda

di Franka Emika. I risultati dimostrano che il codice, perfezionato at-

traverso l’utilizzo dell’ottimizzazione Bayesiana, supera in termini di per-

formance metodi standard quali campionamento di punti, riducendo i

dati necessari e i tempi di calcolo. In aggiunta, questo algoritmo non

utilizza il robot durante la parte Offline, permettendo ulteriore ottimiz-

zazione e l’utilizzo del manipolatore nello stesso tempo.

Chapter 1

Introduction

1.1 Aims of the Thesis

The integration of 3D vision systems is a crucial aspect for robot environ-

ment interaction, allowing reconstruction of the scene in which the ma-

nipulator works, making the robot more conscious. In recent years, many

industrial applications are gearing up for the use of combined robotic and

vision systems to keep pace with technological development. A critical

aspect for many companies is the quality control of their product, as it is

done with obsolete or manual techniques. This is the context from which

this work forms, trying to cope with a need that is, often, underestimated.

For industrial and manufacturing businesses, the cost of assembly

and installation errors may be as much as thirty percentage of reported

failure and associated repair costs. An accurate manual quality control

of the several parts in the industrial assembly would require an enormous

amount of work hours compared to the profit that the company would

derive from it. For this reason it is often carried out quickly and very

roughly. The use of automated systems instead, is often exploited in the

wrong way, making the system process a huge amount of data, without

taking into account whether that data is actually useful. A solution for

this type of trouble is the implementation of algorithm that allows to

avoid wasting time and totally automates the process. For data collec-

2

Methodology for Robot Motion Planning in Quality Inspection Tasks

tion, the main aspect to consider is the vision system pose, since only a

partial of the entire set of data acquirable by the sensor, are effectively

useful for the task. In many real applications, the setting of the vision

system pose can be carry out manually by the operator, but that would

require huge idle times and user experience.

Algorithms capable of identifying, in a short time, the most effec-

tive vision system pose to carry out quality control could be the turning

point for many real applications. In this thesis an approach based on

a 3D vision system mounted on the end effector of a robot arm is pre-

sented, which through the estimation of the optimal vision system pose,

carried out by our algorithm, allows to overcome the issue of time con-

suming, automating the entire process and obtaining a fair quality con-

trol. Mounting the vision system on the end effector gives the advantage

that it can be moved by the robot to an optimal viewing position.

In particular, this work analyses the response of the system, when it

is used to carry out a quality control of industrial parts, using a feature-

based algorithm that output the 3D pose of the piece sought.

3

Chapter 1 Introduction

1.2 Thesis Structure

The thesis presents in the current Chapter, a summary of the state of

art inherent to Pose Estimation techniques and a section explaining Next

Best View algorithm. In Chapter 2, the chosen Vision System description

is provided, in addition to a review of triangulation principle and the

sensors performance in state of art.

Continuing in Chapter 3, a briefly description of the main Hard-

ware and Software components used is presented, meaning explanation

of the robot’s characteristics and control programs. Finally, the coded

Offline and Online algorithm architecture are explained in Chapter 4 and

Chapter 5 respectively. In these two parts the explanation of the vari-

ous nodes, with their functionalities, which form the written algorithm,

are reported. Finally in Chapter 6 the summary of the entire set of

experiments conducted to validate our algorithm is reported.

4

Methodology for Robot Motion Planning in Quality Inspection Tasks

1.3 State of the Art

1.3.1 Pose Estimation

Pose estimation of 3D objects is a crucial task toward flexible and reliable

highly complex autonomous systems. It represents the basis for object

inspection, grasping or manipulator system. Visual image processing,

object detection and localization are considered as an essential part of

object recognition and scene understanding problems, representing one of

the main motivations and research directions in the computer vision field.

The availability of low cost RGB-D sensors enabled the development of

novel methods that can infer scale and pose of the object more accurately

even in presence of occlusions and clutter. The main pose estimation

techniques can be categorized in feature-based, template matching and

machine learning methods.

Feature-based methods, in which the object recognition is based on

the use of 3D data, are commonly divided in two groups: local and global

methods. The local ones are based on matching descriptors of local sur-

face characteristics and include three main stages: 3D keypoints detec-

tion, local surface feature description and surface matching. The first

phase is the major one in which a set of points are labelled as keypoints

in function of the detection methods exploited (surface sparse sampling,

mesh decimation, fixed-scale, adaptive-scale. . .). These points will be

the ones on which object recognition will be based. Once a keypoint

has been detected, geometric information of the local surface around the

keypoint can be extracted and encoded into a feature descriptor. Ac-

cording to the approaches employed to construct the feature descriptors,

it is possible to classify the existing methods into three broad categories:

signature based, histogram based, and transform based methods.

Finally, the surface matching step establishes a set of feature cor-

respondences between the scene and the model by matching the scene

features against the model features. A comprehensive survey of these ex-

isting methods is described in [1]. Global feature-based methods instead,

5

Chapter 1 Introduction

follow a different pipeline for which the whole object surface is described

by a single or small set of descriptors. Global point cloud descriptor is

explained in an exhaustive manner in [2].

In general, local feature-based techniques are more robust to clutter

and partial occlusions, that are frequently present in real-world applica-

tion, while global feature-based methods are suitable for model retrieval

and 3D shape classification, especially with the weak geometric struc-

ture. An approach based on the exploitation of both techniques, using

the PCL library, is presented in [3].

In another direction, template matching techniques have also been

proposed for RGB-D data, an example is [4] in which a method based on

quantized surface normal as depth cue is proposed. In a similar fashion,

recently, Hodan et al. [5] applied the concept of multimodal matching of

[4] on an efficient cascade-style evaluation strategy.

In conclusion, even techniques based on supervised machine learn-

ing have been used for object recognition and pose estimation on RGB-D

data. In [6] a review of classification techniques used in supervised ma-

chine learning is described, explaining how the goal of supervised learning

is to build a concise model of the distribution of class labels in terms of

predictor features and the different classification techniques. One of the

methods to perform pose estimation is represented by a deep learning

approach to category-level 3D object pose tracking on RGB-D data with

the use of key points [7]. This algorithm tracks in real time novel ob-

ject instances of known object categories such as bowls, laptops, and

mugs, it learns to compactly represent an object by a handful of 3D key

points, based on which the interframe motion of an object instance can

be estimated through key point matching.

Another algorithm for real-time 6 DOF pose estimation and tracking

of rigid 3D objects, uses a monocular RGB camera [8]. The key idea is

to derive a region-based cost function using temporally consistent local

color histograms. While such region-based cost functions are commonly

optimized using first-order gradient descent techniques, in this paper a

6

Methodology for Robot Motion Planning in Quality Inspection Tasks

Gauss-Newton optimization scheme is proposed, which gives rise to dras-

tically faster convergence and highly accurate and robust tracking per-

formance. In numerous experiments they demonstrate that the proposed

Gauss-Newton approach outperforms existing approaches in presence of

cluttered backgrounds, heterogeneous objects and partial occlusions.

HybridPose [9] instead, leverages on multiple intermediate represen-

tations to express the geometric information in the input image for pose

estimation. In addition to key points, this type of algorithm integrates

a prediction network that outputs edge vectors between adjacent key

points. As most objects possess a partial reflection symmetry, Hybrid-

Pose also utilizes predicted dense pixel-wise correspondences that reflect

the underlying symmetric relations between pixels.

This hybrid representation enjoys a multitude of advantages. First,

HybridPose integrates more signals in the input image: edge vectors

include object skeleton structure and symmetry correspondences incor-

porate interior details. Second, it offers far more constraints than using

key-points alone for pose regression, enabling accurate pose prediction

even if significant fractions of predicted element are under occlusions. In

addition, symmetry correspondences stabilize the rotation component of

pose prediction, especially along the normal direction of the reflection

plane.

Another work wants to demonstrate that neural networks coupled

with a local voting-based approach can be used to perform reliable 3D

object detection and pose estimation under clutter and occlusion [10]. An

investigation on Deeply learning descriptive features from local RGB-D

patches was done and use them afterwards to create hypotheses in the

6D pose space was.

In practice, they train a convolutional autoencoder using random

patches from RGB-D images with the goal of descriptor regression. With

this network codebooks were created from synthetic patches sampled

from object views where each codebook entry holds a local 6D pose vote.

In detection phase patches was sampled in the input image on a regular

7

Chapter 1 Introduction

grid, computing their descriptors and match them against codebooks

with an approximate k-NN search. Matching returns a certain number

of candidate votes which are cast only if their matching score surpasses

a determined threshold. This algorithm allows training on real data,

efficient matching between synthetic and real patches and that it can

perform a good generalization on unseen data with an extremely high

recall.

8

Methodology for Robot Motion Planning in Quality Inspection Tasks

1.3.2 Next Best View Estimation

The recognition of objects within an everyday human environment is

a challenging task for autonomous mobile robots. Object locations are

continuously changing, which is why the robot cannot simply rely on

fixed set of views from which it can observe an object but it needs to

plan in a continuous space where to stand and where to look. The robot

must select a view from the infinite set of possible views which allows to

observe the sought object. Matters are further complicated by dynamic

obstacles which might hinder the robot to take a particular view, or rel-

evant features of an object can be occluded by other objects and/or by

the object itself (self-occlusion). Finally, other conditions such as light-

ing and sensor noise can influence the performance of object recognition

tasks. For these reasons, the active planning of the views from which

an object could be perceived can significantly improve the overall perfor-

mance of the activity. The approach, relating to view planning [11], is

based on online aspect graphs and selects the next best view after having

identified an initial object candidate. This approach is mainly composed

of two phases: in the first one the visibility of the “candidate” object

is analyzed from a series of “candidate” views reachable by the robot.

Subsequently, the visibility of object features is analyzed by projecting

the model of the most likely object into the scene.

The next best view planning is based on using a realistic sensor

model of an RGB-D camera to generate online aspect graphs and takes

the kinematic constraints of a mobile robot platform into account. “As-

pect Graph” is a simulation method that allows to estimate which fea-

tures of the object can be seen from different angles around the robot.The

Figure 1.1 represents in a synthetic way the main steps of the approach.

The fist part relates to the analysis of the environment, in this phase the

available poses are evaluated, i.e. those reachable by the robot within the

workspace, which allow good visibility of the object. These poses are then

included in the analysis of the model. Within this phase, the visibility

of the main characteristics of the object is evaluated. The combination

of these two analysis determines the Next Best View.

9

Chapter 1 Introduction

Figure 1.1: Next Best View Steps

A hypothesis about an object’s identity and its estimated pose are

the inputs into the planner. As output, the planner provides the next best

view from which it determines the robot has the best chance of identifying

the object. The view planning process carried out after receiving the

identity of a candidate can be summarized in the following points:

• Potential viewing locations are checked for dynamic obstacles on

the local cost map.

• Views that are reachable by the robot are subjected to an environ-

ment analysis to determine if any visual occlusion block the view

of the candidate object.

• Views which survive environmental analysis undergo model analysis

to determine the amount of visible surface area from each point of

view.

After the environmental and model analysis, at each pose is assigned

a score representing its visual coverage of the candidate object, and the

pose with the highest score is defined as the Next Best View, which

will be sent to the component of robot navigation. Once in the new

location, the robot will accept or reject the initial identity estimate or

10

Methodology for Robot Motion Planning in Quality Inspection Tasks

start determining another next best view if the first one did not lead

to recognition. The results of the experiments carried out show that

this type of approach improves the performance of object recognition

compared to that performed in a single view, and also allows the robot

to better differentiate between objects that have similar characteristics.

11

Chapter 2

Vision System

2.1 Sensor’s Overview

A 3D vision system, from hardware point of view, is a transducer that

measures the light intensity and produces depth image in function of

it. These devices usually produce simple depth images or videos but

can also generate point clouds or meshes. They can also be considered

shape acquisition devices as they return x, y and z coordinates of the 3D

objects. For this work, the choice of the sensor is a fundamental aspect,

allowing the manipulator to locate the target object, whose geometry

is known, and to determine its position and orientation with respect to

the robot reference frame, in order to verify the correct execution of the

assembly phase in the industrial process.

Today exists different techniques to acquire depth information from

the scene based on triangulation principle, as in Figure 2.1. This method

estimates the depth by observing the target from different perspectives.

Figure 2.1 shows a simplified model for the triangulation principle. It

simulates a stereoscopic sensor in which the two cameras (with sensor

center in Ol and Or respectively) have the same focal length, parallel

optical axes and observe a point P located a distance z. The figure

also underlines pl and pr that represents the optical projections of P on

the left and right camera plane. The depth z can be estimated through

12

Methodology for Robot Motion Planning in Quality Inspection Tasks

Equation 2.1, pointing out the inverse proportionality with the disparity

d (xr - xl), fundamental concept that represents the horizontal parallax

between projections pl and pr.

Figure 2.1: Depth Estimation through Triangulation Principle

z =
B · f
xr − xl

(2.1)

B indicates the baseline, optical centers distance, and f the focal

length of the sensors. Stereoscopic techniques are generally grouped into

two main categories, Active and Passive, in function of the sensor’s work-

ing principle; the latter, like pure Stereoscopy, perform depth measure-

ments using two cameras to triangulate over homologous key points on

the scene. In these sensors the triangulation is created between the object

and two sensors, then an algorithm is implemented to establish the corre-

spondence between image features in different views of the scene and to

calculate the relative displacement between features coordinates in each

image. Active methods instead enhance the acquisition of depth infor-

mation through controlled source of structured energy emission, such as

scanning laser source or projected pattern of light.

The two major families of devices that use this method are Struc-

tured Light sensors, that perform triangulation through the use of a

single camera and projecting an IR laser, and Active Stereoscopy sen-

sors in which the triangulation is done by two different cameras and the

projected laser is used to better represent the scene in critical contest.

13

Chapter 2 Vision System

Furthermore, a new class of active depth sensing system based on the

time-of-flight (ToF) principle is emerging on the market. These devices

estimate the depth by sending lighting signals on the scene and measur-

ing the time that light signal goes back-and-forth. ToF cameras based

on the principle of pulsed light sources measure the time that it takes

for a light pulse to travel from the emitter to the scene and then back

after reflection, while Time-of-Flight devices that use continuous waves

detects the phase shift of the reflected light, so modulating the ampli-

tude is possible to create a light source of sinusoidal form with desired

frequency and estimate the phase shift through the detector. In Figure

2.2 the triangulation methodologies introduced above are represented in

a simple way.

Figure 2.2: Triangulation Methods

The devices used to carry out the tests for the thesis are both active

stereoscopic sensors. This choice is mainly due to the fact that this type

of sensors responds better to situations in which the context is not well

defined (texture-less and dark areas) and faster in their work space (0.5-

4.5m) than passive sensors. For these reasons, the choice of an active

sensor compared to a passive one seems more logical for this kind of

application.

In detail, the sensors used are Intel RealSense D415 and Intel Re-

alSense D435. Both are active stereoscopic sensor with the possibility

to change manually the laser power value, having the opportunity not

only to compare the two sensors but also to compare Active and Passive

principle, simply by turning off the laser.

14

Methodology for Robot Motion Planning in Quality Inspection Tasks

2.2 Intel® RealSense D400 Series

Intel® RealSense Depth Camera D400 Series is a family of depth camera

based on infrared active stereoscopy technology, in which the depth is

estimated in-hardware, as a proportional inverse of the pixel disparity

from the left IR image to the right IR image. Following Eq. 2.1 intro-

duced above, through an imaging ASIC (Application Specific Integrated

Circuit) that processes the infrared streams together with the RGB one,

performs frames correlation with census cost function to identify homol-

ogous point and reconstructs the disparity.

Figure 2.3: Intel RealSense D435 in the foreground and D415 in the background

The infrared projector enhances the stereo camera system’s ability

to determine depth, by projecting a static infrared pattern onto the scene

to increase its texture. A comparison between passive and active stere-

oscopy is presented in Figure 2.4, in which is possible to understand how

areas characterized by no depth information, are drastically decreased

by the IR projection. This active stereo depth computation makes these

depth cameras suitable for acquisitions both indoors and outdoors under

reasonable illumination.

Figure 2.4: Passive and Active Stereoscopy Evaluation

15

Chapter 2 Vision System

The depth data generated with stereo vision uses the left image as

the reference for stereo matching, resulting in a non-overlapping region

on the field of view as is visible in Figure 2.5. Therefore, there is no

depth data at the left edge of the frame. Closer scenes result in a wider

invalid depth band than scenes at further distances.

Figure 2.5: D415 No Depth Data due to Non-Overlappping Region of FOV

at 400 mm distance (left) and 800 mm (right)

Both the sensors estimate depth with an active stereoscopic tech-

nology but with two different intents. The D415 is intended for finer

reconstructions in a narrow field-of-view, whereas the D435 is intended

for acquisitions over a much wider field-of-view, but with a worst spa-

tial resolution. This stands out immediately from the cameras’ technical

data as reported in table below: the D415 has a larger baseline and a

greater focal length than the D435. Also, it is worth noting that the

D435 has a global shutter sensor, whereas the D415 has a rolling-shutter

one, hence the latter is expected to be more accurate when dealing with

static scenes, but would not perform well in highly dynamic scene.

D415 D435 MU

IR Camera Resolution 1280× 720 1280× 720 pixel

RGB Camera Resolution 1920× 1080 1280× 720 pixel

Maximum Frame Rate 90 90 Hz

Optical Centers Distance (B) 55 50 mm

Horizontal FOV (HFOV) 69.4 91.2 ◦
Vertical FOV (VFOV) 42.5 65.5 ◦

Focal Length (f) 1.88 1.93 mm

Measurement Range 0.3− 10 0.2− 10 m

Table 2.1: Sensors Technical Data

16

Methodology for Robot Motion Planning in Quality Inspection Tasks

2.3 Sensor Performances

A metrological qualification of the Intel D400 Active Stereoscopy Cam-

eras has been carried out in [12], in that book the theoretical random error

in space due to pixels spatial quantization and the real one is compared.

The theoretical random error in space has been calculated considering

the focal length and the baseline. The spatial resolution along the z-axis

has been computed assuming a unity disparity error. Figure shows the

results for both sensors in function of the depth. As is possible to see the

D415 has better theoretical performances.

Figure 2.6: Theoretical Random Error Sensors comparison

The test to predict the random error in operating conditions has

been realized fixing on the robot end effector the sensor and a target

on a second robot. The random component of the uncertainty in space

is evaluated along the depth and the results show that is bounded by

2 mm for distances below 1100 mm. As expected from the theoretical

depth resolution the random error grows quadratically with the depth.

The systematic component of the uncertainty instead has been evaluated

as the difference between the displacement measured by the camera at

each step and the reference one imposed by the robot arm. The bias is

bounded by 5 mm for distances below 1100 mm and grows quadratically.

The conclusion of the study [12] is that the D415 is more precise than

D435, this is partially due to the larger FOV of the D435 that leads into

a worst spatial resolution, hence a worst precision in the triangulation

process.

17

Chapter 3

Hardware and Software

3.1 Franka Emika Panda Manipulator

The robot used to carry out the experimental phase is the Franka Emika

Panda robot, with seven revolute joints, each of them closed-loop con-

trolled and equipped with torque sensor, with maximum payload of 3 kg.

Figure 3.1: Panda Robot by Franka Emika

One of the main aspects of this collaborative manipulator is redun-

dancy. Indeed, with its seven degrees of freedom, can reach the same

18

Methodology for Robot Motion Planning in Quality Inspection Tasks

position in different configurations or, if a robot joint reaches its me-

chanical limit, probably other joints can make up for execution of the

final prescribed movement. Technically, the size of the operating space

is smaller than the size of the joint space. This characteristic allows also

an increase on flexibility in performing tasks, and thanks to torque sen-

sors mounted on all joints, can detect real-time applied forces. All these

aspects lead to consider Franka Emika Panda as an excellent solution for

carrying out assembling, testing or inspecting tasks, as in our case.

The robot can be controlled by Franka Control Interface (FCI), able

to provide, via libfranka interface at a maximum frequency of 1 kHz,

joint positions and velocities, as well as link side torques. Manipulator

can be controlled in different modalities, according to the user require-

ments:

• torque mode: user provides a joint torque vector to the robot mo-

tors.

• joint position mode: user gives the desired joint position vector.

• velocity mode: user defines the desired joint velocity vector.

19

Chapter 3 Hardware and Software

3.2 ROS: Robot Operating System

Developing a robot with a computer brain requires a bunch of software

tools on the computer side as software drivers, third party tools for com-

puter vision and simulation tools. Instead of reinventing the wheel every

time, some frameworks can help you by gathering all these tools and

managing how you develop code for your robot. ROS is one of these

frameworks initially developed by the Stanford AI Laboratory in 2007 for

developing robots. The Open Source Robotics Foundation now maintains

ROS.

The concept of ROS goes far beyond just a framework. ROS is an

OS in concept, because it provides all the services that any other OS

does, as hardware abstraction, low-level device control, implementation

of commonly-used functionality, message-passing between processes, and

package management. Even though ROS is still a framework that isn’t

a standalone operating system and isn’t the only framework for robots,

it seems to be adopted widely and have a large developers community.

The Robot Operating System, best known as ROS, is a very powerful

collection of libraries and tools aimed at configuring and writing robots’

software. In this work, ROS Melodic, LTS version, has been installed

on Ubuntu 18.04. The reason why this operating system is spreading

more and more, is because of the innovative way of describing and han-

dling the many parts that are going to characterize the final behavior

of the intended robot: industrial manipulators, drones as well as other

mobile platforms up to highly complex humanoids with state-of-the-art

AI capabilities. In practice, this result has been achieved with a modular

programming method, stimulating collaborative work. As a matter of

fact, ROS is organized mainly in nodes, topics and messages. A pro-

grammer builds a node, a mini-core of the overall structured software,

that adds one or more particular capabilities and is able to send and

receive messages through channels called topics.

To keep communication organized, a master node handles the most

20

Methodology for Robot Motion Planning in Quality Inspection Tasks

basic functions such as subscriptions and publications on topics. In broad

terms, this application requires to read mechanical values from the arm,

to elaborate suitable trajectories, to collect data from an RGB-D camera

and to detect a specific object. All of these will be the main cores of

the software, and they will exchange information or services thanks to

proper messages that the sender is able to write and the listener is able

to receive and process.

The following are some of the key terms for understanding ROS:

• ROSCORE : master coordination node, it administrates all the nodes

connected to it, managing their parallel execution and communica-

tion between them.

• NODE : executable script which can be either a user-developed code

or a software package provided by ROS.

• TOPIC : sort of temporary node in which other nodes can write

and read numbers or strings.

• MESSAGES : specific data type sent to a topic.

• SERVICES : client-server type messages that expect a reply to a

sent data

Figure 3.2: Schematic Representation of Communication

between Roscore and different Nodes

The communication between nodes can be assigned to different types

methodologies:

• Publisher and Subsciber : asynchronous communication mode in

broadcasting which consists in writing a message on a topic, made

21

Chapter 3 Hardware and Software

available by roscore. All nodes wishing to receive the message can

request it from the roscore via the topic.

Figure 3.3: Schematic Representation of Communication between

Nodes through Publisher and Subscriber

• Service: synchronous communication mode, according to the re-

quest and reply semantics. A node sends a request to all nodes

that can fulfill it, from these nodes it will receive a response.

Figure 3.4: Schematic Representation of Communication

between Nodes through Server and Client

22

Methodology for Robot Motion Planning in Quality Inspection Tasks

3.3 MoveIt! and RVIZ

MoveIt! is a state of the art software for mobile manipulation, incor-

porating the latest advances in motion planning, manipulation, 3D per-

ception, kinematics, control and navigation. It provides an easy-to-use

platform for developing advanced robotics applications, evaluating new

robot designs and building integrated robotics products for industrial,

commercial, RD and other domains. The development of open-source

frameworks like ROS and MoveIt! has made robotics more accessible to

new users in the last years, both in research and consumer applications.

MoveIt! provides the core functionality for manipulation in ROS.

Figure 3.5: MoveIt! Architecture

In the top section of the Figure 3.5, we notice that move group reads

three parameters representing the model of the robot, in a format that

this software is able to understand. The Unified Robot Description For-

mat, URDF, lists all the details of the kinematic chain, links and joints,

transforms tree hierarchy and whichever constraint we may set as effort,

position, velocity and acceleration. Its correspondent Semantic Robot

Description Format, SRDF, is generated after the first configuration is

23

Chapter 3 Hardware and Software

completed, and contains the most useful information on Panda robot as

joint limits, pre-defined positions, planning groups, end-effector structure

and finally a list of links that are always or never in collision, in order to

slim computations. From robot’s sensors, the central move group node

always keeps track of the overall structure’s position and orientation. In-

deed the TF tree is refreshed at high frequencies, up to 1 kHz, to cope

with dynamic environment. With obstacles spawning in arm’s workspace

it allows planning respecting chain’s design limits and avoiding any kind

of collisions. Once a trajectory is successfully planned, execution is pos-

sible. The Robot Controllers, in this case Franka Control Interface, are

interfaced with the move group node to perform this task.

The way in which a programmer can interact with this Moveit! ar-

chitecture is basically described by the topics, actions or messages that

can be exploit to communicate with the move group node. Particular ac-

tions exist for a pick and place application, the user may define collision

object by script and place them in the map or attached to the robot: in

the latter case, the planner keeps that object into account in elaborating

trajectories. Moreover, is possible to exchange information on Inverse

Kinematics calculations, generated paths and planning scene structures.

Figure 3.6: Flange Designed to mount Sensor on Robot’s End Effector

RVIZ is a powerful GUI used to have graphical feedback from ROS

and MoveIt! applications. It listens to various topics in order to visualize

results coming from motion planning algorithms. The most basic ones

allow sending commands as well as retrieve information on the overall

structure of the robot as kinematic chain, parent-child relationships, and

24

Methodology for Robot Motion Planning in Quality Inspection Tasks

reference frames from all the rigid bodies. This last one is the Transforms

tree, TF. At this point it is important to notice that in this work appli-

cation, the sensor must be mounted on robot’s end-effector. To allow

the assembly, a flange was designed and then 3D printed. Figure 3.6 can

clarify the idea of mounting.

Figure 3.7: Null Robot’s Reference Frame on the left, particular

of End Effector TF on the right

Obviously, to consider possible self-collisions and external one, a

modification to robot’s URDF and SRDF was carried out. The sensor

and flange collision mesh files were uploaded linking them throw geomet-

rical TF to robot’s end effector reference frame. For this purpose, two

different figures are proposed. Figure 3.7 indicates the null robot refer-

ence frame at its base, and the TF of the end effector. Figure 3.8 instead

aims to clarify the idea on the difference between the camera and end

effector reference frames.

Figure 3.8: Difference between Sensor’s TF and End Effector’s one

25

Chapter 4

Planner Offline

4.1 General Overview

This part of the whole algorithm consists in sampling the best robot

configuration, and consequently, sensor position and orientation to per-

form the pose estimation of the studied piece inside the real environment.

This portion is all computer-based and no real interfacing with reality

is performed. It is mainly composed into five different nodes in circular

motion, each of them with a specific task to be completed. Communica-

tion among nodes is insured by customized and standard ROS messages,

allowing not only data transfer but also timing optimization. The neces-

sary inputs to this part of the code are a CAD model of the scene or a

reconstructed point cloud acquisition and a CAD model of the piece to

be recognized. A schematic representation of the algorithm is proposed:

Figure 4.1: Schematic Representation of the Planner Offline Algorithm

The decision of the best robot configuration is assigned to a Bayesian

26

Methodology for Robot Motion Planning in Quality Inspection Tasks

Optimization algorithm, which, through a cost function and other param-

eters, enables time-saving sampling of the point surrounding the object

on study. Secondly, a De-Normalizer node elaborates data coming from

Bayesian Optimization. It calculates from space coordinates, the posi-

tion and orientation of the sensor to achieve a good visual, and finally

the end effector pose to assign to robot controller. During third step,

after controlling the reachability of the pose, a collision-free path for the

robot is generated. Whereupon, to perform the virtual matching, a sen-

sor view simulation algorithm is implemented to extrapolate only the

surfaces that the real sensor will acquire. Obtained the cut sensor view,

a surface matching algorithm returns the possible pose of piece with re-

spect to the reference frame with an assigned score, that represents the

confidence of the possible pose. Once all is done, the cycle restarts until

Bayesian Optimization reaches the determinate number of iterations.

27

Chapter 4 Planner Offline

4.2 Bayesian Optimization Node

Bayesian Optimization, from now on also BO, is a model-based, black-

box optimization algorithm that is tailored for very expensive objective

functions. It is suited for optimization over continuous domains and

tolerates stochastic noise in function evaluations. As a black-box opti-

mization algorithm, Bayesian optimization searches for the maximum of

an unknown objective function from which samples can be obtained. Like

all model-based optimization algorithms, Bayesian optimization creates

a model of the objective function with a regression method, uses this

model to select the next point to acquire, then updates the model, etc.

It is called Bayesian because, in its general formulation, this algorithm

chooses the next point by computing a posterior distribution of the ob-

jective function using the likelihood of the data already acquired and a

prior on the type of function. Without loss of generality, Bayesian Opti-

mization addresses the general problem of identifying the maximum of a

real valued objective function:

x∗ = argmaxf(x) (4.1)

This problem could be solved by optimizing the objective function

directly. However, when individual evaluations of the objective incur

high costs, algorithms which rely on many evaluations are inappropriate.

To reduce the number of function evaluations the BO approach uses a

Bayesian prior model of the objective function and exploits this model to

plan a sequence of objective function queries. Essentially, BO algorithm

trades computational resources, expended to determine queries points,

for a reduced number of objective function evaluations. The process

proceeds as follows:

• A query is selected by optimizing a measure of improvement. Typ-

ically, the improvement measure incorporates an exploration strat-

egy that directs search to poorly modeled regions of the solution

space.

28

Methodology for Robot Motion Planning in Quality Inspection Tasks

• The query is evaluated by the true objective function through real

data gathered from the optimized system.

• The system observes the performance at the query point and up-

dates the posterior model of the objective function.

• The process returns to the first step.

The next figure aim to clarify the idea on how Bayesian Optimization

works.

Figure 4.2: Iterative Process Representation of the Bayesian Optimization Algorithm

The implementation of Bayesian optimization uses this Gaussian

process model to search for the maximum of the unknown objective func-

tion f(x). It selects the next variable value to test by selecting the max-

imum of the acquisition function, which balances exploration, improving

the model in the less explored parts of the search space, and exploitation,

favoring parts that the models predicts as promising. Once an observa-

tion is made, the algorithm updates the Gaussian process to take the

new data into account. In classic Bayesian optimization, the Gaussian

29

Chapter 4 Planner Offline

process is initialized with a constant mean because it is assumed that all

the points of the search space are equally likely to be good. The model

is progressively refined after each observation.

The developed algorithm starts choosing a set of two random coor-

dinates. In this case, these numbers represent the two angles φ and θ

generating a point belonging to a sphere of given a radius. The sphere

representation, stated its center, allows to achieve a different prospective

vision of the object to be studied. Bayesian Optimization will so gener-

ate points only belonging to the sphere, described by the coordinates φ

and θ. Two are the parameters that in the analyzed case will be given as

input to this node: reachability, which represents if the robot can reach

that specific position, and pose score, representing the surface matching

quality. Whereupon when the pose score and index of reachability, this

node performs the optimization on the cost function:

JBO = f(reachability, pose score) (4.2)

After cost function minimization, the new set of coordinates are

ready to be fed again into the algorithm. It is important to remember

that the two numbers exiting from Bayesian Optimization node are nor-

malized between zero and one, so a denormalization process is necessary.

To enhance the understanding of BO’s power, it will be compared

with a simple uniform sampling of φ and θ coordinate, creating a grid

around the sphere. The comparation will be exploited both in terms of

time and accuracy reaching the best scored pose.

30

Methodology for Robot Motion Planning in Quality Inspection Tasks

4.3 De-Normalizer Node

As explained before, from Bayesian Optimization node a normalized vec-

tor containing φ and θ coordinates is obtained. In this algorithm φ and

θ are denormalized in the given range to obtain the sphere coordinates.

The range varies on the position and orientation of the piece that must be

studied, remembering that all the coordinates must be referred to robot

origin reference system with the aim to obtain comparable results. After

that, sphere coordinates are transformed in cartesian coordinates and the

sensor orientation is calculated. The expression describing sensor direc-

tion is computed in rotation matrix form, that can be also manipulated

to obtain a quaternion which will be given to the robot control program.

Figure 4.3: Spherical Reference System and Sensor Origin

The figure above explains the direction of the radial, tangential, and

circumferential versors er, eθ, eφ, generated by the sphere coordinates.

For having the sensor pointing towards the center of the sphere, where

the object is located, a further orientation transform is needed. Imagine

to constitute a right-hand reference system with the sphere versors er, eθ

and eφ corresponding to axis x, y, and z.

Once known the sensor reference system, as in the image, it is pos-

sible to obtain a transform to get z axis pointing radially towards the

sphere center and axis x along circumferential direction. The transform

that allows this kind of transformation is a simple rotation among eθ

versor of a γ = −90 degrees angle. To perform the transformation, we

had to define a rotation matrix using Euler theorem:

31

Chapter 4 Planner Offline

R(~u, γ) = R(~eθ,−
pi

2
) = (4.3)


e2θxm+ cos(γ) eθxeθym− eθzsin(γ) eθxeθzm+ eθysin(γ)

eθxeθym+ eθzsin(γ) e2θym+ cos(γ) eθyeθzm− eθxsin(γ)

eθxeθzm− eθysin(γ) eθyeθzm+ eθxcos(γ) e2θzm+ cos(γ)


in which m = 1 − cos(γ) and eθx , eθy , eθz are the eθ components

among the three reference axis. We can finally identify the homogeneous

matrix describing the sensor orientation towards sphere center from origin

as:

[T(o−sens)] = [T(o−sc)][R(~u, γ)] (4.4)

in which [T(o−sens)] represents the homogeneous matrix from origin

to sphere coordinates and [R(~u, γ)]) the homogeneous matrix from sphere

coordinates to sensor reference system allowing the pointing towards the

center of the sphere.

Another consideration that must be done represents the fact that

robot planner is able to plan and execute trajectories only referring to end

effector reference system. After designing and 3D printing a support to

anchor the sensor to robot’s end effector, the pure geometrical translation

and quaternion vector between this and sensor camera reference system

can be calculated:

~t =


−0.02

0

0.05285

 ~q =
[
0 0 0 1

]
(4.5)

Obviously, due to 3D printing errors of the flange connecting end

effector to sensor, the real vectors differs from analytical ones, so a cal-

ibration procedure will be exploited. Described as [To−ee] the homoge-

neous matrix from origin to the robot’s end effector, [To−sens] from origin

to sensor and [Tee−sens] from the end effector to sensor, it is possible to

determine the end effector position and orientation by:

[To−ee] = [To−sens][Tee−sens]
−1 (4.6)

32

Methodology for Robot Motion Planning in Quality Inspection Tasks

After the calculation, the algorithm will transform [To−ee] into a vec-

tor of three translation and a quaternion for representing the orientation.

Furthermore, these two elements are packed in a customized ROS mes-

sage and sent to the next node, in which will be elaborated. An example

of the ROS message is reported:

x y z qx qy qz qw

float64 float64 float64 float64 float64 float64 float64

0.5000 0.2000 0.2000 0.8212 0.0000 0.5023 0.2851

Table 4.1: Example of ROS message sent from De-normalizer Node:

Sensor Position and Quaternion Orientation

33

Chapter 4 Planner Offline

4.4 Hidden Point Removal Node

The aim of this part of code which simulated the cut sensor’s vision is

deleting points of a complete scene CAD model which are not visible from

a given viewpoint. In this way it is possible to enhance matching results

dependency from sensor position. At this scope, is necessary [To−sens]

homogeneous matrix, representing sensor position and orientation from

null reference frame.

This function is based on the work of Katz,Tal and Basri [13]. Given

a set of points P = {p1 | 1 ≤ i ≤ n} ⊂ RD, which is considered a

sampling of a continuous surface S, and a viewpoint, camera position C,

the goal is to determine ∀ pi ∈ P whether pi is visible from C. The main

function is divided into two steps: inversion and convex hull construction.

• Inversion: starting from the set of points and the viewpoint, placed

on the origin, a spherical flipping is performed in order to reflect a

point pi ∈ P with respect to the sphere accordingly to the following

equation:

p̃1 = f (pi) = pi + 2 (R− ||pi||)
pi
||pi||

(4.7)

Figure 4.4: HPR Operator - Left: spherical flipping (in red) of a 2D

curve (in blue) using a sphere (in green) centered at the view point

(in magenta). Right: back projection of the convex hull.

Intuitively, spherical flipping reflects every point pi internal to the

sphere along the ray from C to pi to its image outside the sphere,

as shown in Figure 4.4.

34

Methodology for Robot Motion Planning in Quality Inspection Tasks

• Convex Hull Construction: as can be understood, points can be

considered visible if their reflection lies on the convex hull. Mathe-

matically this can be expressed as a point pi ∈ P is marked visible

from C if its inverted point p̂i lies on the convex hull of P ∪ {C}.

The main features of this algorithm can be summarised as:

• Low complexity o(nlog (n)), with n the number of points in the

cloud.

• All the points marked visible by HPR operator are visible from C.

• Convex shapes and slanted planes are correctly handled, while con-

cave sections only if the curvature is sufficiently low.

The main parameter influencing the results HPR function is the ra-

dius R of the sphere. By increasing this value, the number of points that

are considered not visible while they are instead visible, false negative,

decreases. On the other hand, if R increases, the amount of false positive

also increases.

Figure 4.5: False positives,negatives and their sum, of a specific model

with 70K points. The automatically calculated R is shown in brown.

One of HPR limits includes that the real sensor’s field of view is

not taken into account. This could lead to wrong results if the distance

between sensor and the scene is too small. Secondly, the density of

35

Chapter 4 Planner Offline

the point cloud is not function of the distance of the points from the

viewpoint. This could lead to different results if the density of the real

point cloud differs too much with the distance.

36

Methodology for Robot Motion Planning in Quality Inspection Tasks

4.5 Planner Node

The customized ROS message transfers data from the previous node to

the one that is going to be analyzed. Indeed, the robot’s end effector

position and orientation are given as input through two vectors. The aim

of this algorithm is understanding if the pose generated by the Bayesian

Optimization is reachable, according to robot’s joints limits and self-

collision. Not only these two factors are considered, also the CAD model

of the scene or a point cloud can be loaded to warn the planner of the

possible real obstacles, avoiding them, if possible.

Once determined if the pose is reachable, the ROS message com-

ing from the De-normalizer node is updated, adding a more number.

Number zero will be written if the position is reachable, number −1 if

not. Assume that the planner generates a −1, in this case the message

is returned to Bayesian Optimization node asking for generating a new

set of coordinates. In this case the cost function will be immediately

calculated and the not reachability of the position will generate a huge

negative number, moving away the optimizer in calculating a new posi-

tion near the not reachable one. Let us now analyze the 0 case. In this

instance, the number is written into the ROS message and sent to the

next part of the algorithm. The ROS message now appears:

x y z

float64 float64 float64

0.5000 0.2000 0.2000

qx qy qz qw reach

float64 float64 float64 float64 float64

0.8212 0.0000 0.5023 0.2851 1.0000

Table 4.2: Example of ROS message sent from Planner Node: Sensor

Position, Quaternion Orientation and Reachability Index

37

Chapter 4 Planner Offline

4.6 Surface Matcher Node

This part is aimed to describe how the matching score between the CAD

model and the cut scene is extrapolated. For this work, two different

types of feature-based algorithms have been used. The first is a commer-

cial one, created by MV Tec© and named HALCON, while the second

is open source and called Point Pair Feature. Further investigation and

experimentation on the matching quality and certainty will be exploited

with some comparison between the two algorithms. A brief description

of how HALCON and PPF works will be presented in the next pages.

MV Tec© HALCON is a standard software for machine vision with an

integrated development environment, HDevelop, and an HelpWindow al-

lowing an overview of the main function available. HALCON’s flexible

architecture facilitates rapid development of any kind of machine vision

application. The software provides the latest state-of-the-art machine

vision technologies, such as comprehensive 3D vision and deep learning

algorithms. For our application, Surface Matching libraries has been

used.

The entire code is based on find surface model operator which serves

the purpose to find the best matches for a target model in a 3D working

environment returning the homogeneous transformation matrix between

the environment and the model. The matching of this function is based

on three main steps:

• Approximate matching : the approximate surface model’s poses in-

side the scene are searched. Firstly, scene points are sampled uni-

formly, controlling the sampling distance through the parameter

RelSamplingDistance. Then, a set of keypoints is selected from the

sampled scene points with the parameter KeyPointFraction. For

each selected keypoint, the optimum pose of the surface model is

computed under the assumption that the keypoint lies on the sur-

face of the object. This is done by pairing the keypoints with all

other sampled scene points and finding the point pairs on the sur-

face model that have a similar distance and relative orientation.

38

Methodology for Robot Motion Planning in Quality Inspection Tasks

The sampled scene pose for which the largest number of points lies

on the object is considered to be the best pose for this keypoint.

The number of sampled scene points on the object is considered

to be the score of the pose. From all keypoints the poses with the

best scores are selected and used as approximate poses.

• Sparse pose refinement : in this second step, the approximated

poses are further refined. This will increase their accuracy and

the significance of the score value. The sparse pose refinement uses

the sampled scene points from the approximate matching. The

pose is optimized such that the distances from the sampled scene

points to the plane of the closest model point are minimal. The

plane of each model point is defined as the plane perpendicular to

its normal. Since each keypoint produces one pose candidate, the

total number of pose candidates to be optimized is proportional to

the number of key points. The score of each pose is recomputed

after the sparse pose refinement.

• Dense pose refinement : accurately refines the poses found in the

previous steps. This step works like the sparse pose refinement and

minimizes the distances between the scene points and the planes

of the closest model points. The difference is that only the poses

with the best scores from the previous step are refined and all

points from the original scene are used for the refinement. Taking

all points from the scene increases the accuracy but is slower than

refining on the subsampled scene points.

The final accuracy of the refined pose depends on several factors.

The internal refinement algorithm has an accuracy of up to 10−7 times

the diameter of the model. This maximal accuracy is only achieved for

best possible conditions. Other factors affect the final accuracy of the

algorithm such as the shape of the model, the number of points in the

scene, the noise of the scene points, the visible part of the object instance

and the position of the object.

From now on, the second surface matching functioning algorithm is

presented. First introduced by Drost et al.[14], the Point Pair Features

39

Chapter 4 Planner Offline

voting approach is a feature-based solution combining a global modeling

and a local matching stage within a local pipeline using sparse features.

The method details have been explained in several publications[14][15],

however, it is considered important to offer a general overview of the ap-

proach with special emphasis on some specific points. Using point cloud

representations of oriented points (i.e., points with normals), the method

relays on four-dimensional features extracted from pairs of points to glob-

ally describe the whole object from each surface point in a way that later

the object can be locally matched with the scene. This four-dimensional

feature, called Point Pair Feature or PPF, defines an asymmetric descrip-

tion between two oriented points by encoding their relative distance and

normal information, as shown in the figure below.

Figure 4.6: The Point Pair Feature definition for a model’s point pair (mr,ms).

In detail, having a set of points in the 3D space M ⊂ R3 representing

the model object, for a given 3D point mr ∈ M , called reference, and a

given 3D point ms ∈ M , named second, such that mr 6= ms, with their

respective unit normal vectors n̂mr and n n̂ms , a model four-dimensional

feature fm ∈ (Fm ⊂ R4)is defined by the next Equation:

Frs(mr,ms, n̂mr, n̂ms) = (4.8)[
||~d||, 6 (n̂mr , ~d, 6 (n̂ms , ~d), 6 (n̂mr , n̂ms)

]
where ~d = (msx − mrx ,msy − mry ,msy − mry) and 6 (~a,~b) is the angle

between the vector ~a and ~b. In the same way, having a set of point

S ⊂ R3 representing the scene data, the function Frs can be applied to

compute a scene PPF using a pair of scene points sr, ss ∈ S such that

sr 6= ss, with their respective unit normal vectors n̂sr and n̂ss . Notice

40

Methodology for Robot Motion Planning in Quality Inspection Tasks

that, if the object model has |M | points, the total number of features

is defined by |Fm| = |M2| − |M |. With the aim to reduce the effect

of this square relation on the method performance, the input data of

both model and scene are downsampled with respect to the model size,

effectively decreasing the complexity of the system. The method can be

divided into two main stages: modeling and matching. On modeling,

the global model descriptor is created by computing and saving all the

possible model pairs with their related PPF. During the matching stage,

the model pose in the scene is estimated by matching the scene pairs with

the stored model pairs using the PPF. This matching process consists of

two distinctive parts: find the correspondence between the pairs using

the four-dimensional features and group the correspondences generating

hypotheses poses.

The correspondence problem between similar point pairs is efficiently

solved by grouping the pairs with the same quantized PPF on a hash table

or, alternatively, a four-dimensional lookup table. Quantizing the feature

space defines a mapping from each four-dimensional space element to the

set of all point pairs that generate this specific feature. In particular, for

the object model, this mapping from quantized features to sets of model

pairs defines the object model description expressed by the function L :

Z4 → P (Mpp), where Mpp = {(mr,ms) |mr,ms ∈ M,mr 6= ms)} and

P (X) represents the power set of X. In other words, point pairs that

generate the same quantized PPF are grouped together on the same table

position pointed by their common quantized index, effectively grouping

pairs with similar features. This process of model construction is done

during the modeling stage, as shown in Figure for three sample point

pairs.

Using this model description, given one scene pair, similar model

pairs can be retrieved by accessing a table position pointed by the PPF

quantized index. The quantization index is obtained by a quantization

function Q : Z4 → R4 using the step size ∆dist for the first dimension

and ∆angle for the remaining three dimensions. The quantization step

size will bound the similarity level, i.e., correspondence distance, between

matching features, and hence point pairs. Defining a function N : R3 →

41

Chapter 4 Planner Offline

Figure 4.7: Representation of the modeling and matching steps of the Point Pair

Features voting method.(a) modeling example for three point pairs from the

model; (b) matching example for one point pair from the scene.

R3 that computes a normal from a point, the correspondence matching

subset of model pairs S ⊂ Mpp for a given scene pair (sr, ss) and its

related quantized feature ~f s = Q(Frs(sr, ss, n̂sr , n̂ss) is defined by:

L(~f s) = {(mr,ms) ∈Mpp |Q(Frs(mr,ms, N(mr), N(ms))) = ~f s} (4.9)

From each scene-model point pair correspondence, a 6D pose trans-

formation, or hypothesis, can be generated. Specifically, for a corre-

sponding point pair (mr,ms) ∈ A, the matched reference points (sr,mr)

and their normals (n̂sr , n̂mr) constrain five degrees of freedom, aligning

both oriented points, and the second points (ss,ms), as long as they are

non-collinear, constrain the remaining degree of freedom, which is a rota-

tion around the aligned normals. However, the discriminative capability

of a single four-dimensional feature from two sparse oriented points is

clearly not enough to uniquely encode any surface characteristic, pro-

ducing wrong correspondences. Therefore, the method requires a group

of consistent correspondences to support the same hypothesis. Actually,

more correspondences support a single pose, more likely this will be. In

this regard, grouping consistent point pair correspondences, or, alterna-

tively, 6D poses obtained from corresponding pairs have a high dimension

complexity. In order to effectively solve this problem, a local coordinate,

which we will refer to as LC, is used to efficiently group the poses within

a two-dimensional space. As with two corresponding pairs, for a given

scene point si ∈ S that belongs to the object model, a 6D pose can be

defined by only using one corresponding model point mj ∈ M and a

rotation angle α around their two aligned normals, i.e., n̂si and n̂mj
.

42

Methodology for Robot Motion Planning in Quality Inspection Tasks

In this way, for the scene point si, a 6D pose transformation can-

didate T SM ∈ SE(3) can defined by the LC represented by the param-

eters (mj, α), as shown in the next Figure. To solve this transforma-

tion, both points and normals are aligned respectively with the ori-

gin and x-axis of a common world coordinate system {W}. Taking

the scene point, this alignment can be expressed by the transforma-

tion TWS = (R, t) ∈ SE(3). The rotation that aligns the normal vec-

tor n̂si to the x-axis êx is defined by the axis-angle representation θ~v,

where θ = 6 (n̂si , êx) and ~v =
n̂si×êx
||n̂si×êx||

. Therefore, the rotation matrix

R ∈ SO(3) can be efficiently found using the Rodrigues’ rotation formula

[16]. In turn, the translation t ∈ R3 is defined by t = −Rsi. Exactly in

the same way, the transformation TWM ∈ SE(3) is found for the model

point mj and its normal n̂mj
. Using these two transformations and the

rotation angle, the 6D pose for a given object instance is defined by:

T SM = (TWS)−1Rχ(α)TWM (4.10)

where Rχ(β) ∈ SO(3) represents a rotation of β angle around the

x-axis. Using the LC, the correspondence grouping problem can be in-

dividually tackled for any scene pair created from si by grouping the

corresponding model pairs in a two-dimensional space using the param-

eters (mj, α).

Figure 4.8: Representation of the local coordinate LC system used by the point

pair features method; (a) scene oriented point; (b) corresponding object model

oriented point; (c) alignment of the model with the scene by using the two

oriented points and the α angle.

During grouping and hypothesis generation, for every reference scene

point si, the method intends to find the LC, i.e., (mj, α), which defines

43

Chapter 4 Planner Offline

the best fitting model pose on the scene data or, in other words, that

maximizes the number of pairs correspondences that support it. This

correspondence grouping problem is solved by defining a two-dimensional

voting table or accumulator, in a Generalized Hough Transform manner,

representing the parameter space of the LC, where one dimension rep-

resents the corresponding model point mj and the other the quantized

rotation angle α. In particular, for each possible scene pair generated

from si, i.e., (sr, ss) ∈ {(sk, sl) | sk, sl ∈ S, sk 6= sl, sk = si}, a LC will be

defined by a corresponding pair (mr,ms) reference point, i.e., (mj = mr),

and the rotation angle α defined by the two second points (ss,ms). The

corresponding model pairs are retrieved from the lookup table using the

quantized PPF and, for each obtained LC, a vote is cast on the table, as

represented by Figure 4.7b for a single pair. After all pairs are checked,

the peak of the table represents the most supported LC, and hence the

most likely pose, for this specific si point. This process is applied to all

or,alternatively, a fraction of the scene points, obtaining a set of plausible

hypotheses.

To increase the efficiency of the voting part, which requires to com-

pute the α angle for each pair correspondence, it is possible to split the

rotation angle α in two parts; one part related to the model point, αm,

and one part related to the scene point, αs. In detail, taking into account

that in the intermediate world coordinate system the α angle is defined

around the x-axis, the rotation on the two-dimensional yz-plane can be

divided with respect to the positive y-axis. In this case, the αm and αs

will be defined as the rotation angles between the positive y-axis vector êy

and the yz-plane projection of the vectors obtained by the world trans-

formed second points of the model pair TWM ms and scene pairs TWS ss.

As shown in Figure 4.9, these angles can be defined as αs = atan2(az
ay

)

and αm = atan2(bz
by

), where a = TWS ss, b = TWM ms and atan2(β, γ) rep-

resents the multi-valued inverse tangent. With this solution, the model

angle can be pre-computed during the modeling stage and saved along-

side the reference point in the lookup table (mr, αm) (mr, am). Later,

during the matching stage, for each scene pair, the α angle is computed

44

Methodology for Robot Motion Planning in Quality Inspection Tasks

Figure 4.9: Representation of the LC α angle definition from two

corresponding pairs (sr, ss) and (mr,ms).

by adding the two angles. Considering that is defined from the model

to the scene, the total angle can be computed as α = αs − αm. Finally,

in order to join similar candidate poses generated from different scene

reference points, the method is completed with a clustering approach

that groups similar poses that do not vary in rotation and translation

more than a threshold.Understood the mechanism on how PPF surface

matching works, is important to re-focus the attention on this part of

the algorithm. The CAD model of the piece that must be recognized is

exported in .ply format with all the mesh surface normals.

The point cloud is loaded into the PPF Training part in which all the

point pair features are calculated. Remembering that the number of cal-

culations increase quadratically with the number of points, a downsample

can be exploited to reduce the training time, taking into consideration

that precision will diminish. After that, the cut scene point cloud com-

ing from the hidden point removal node to simulate the sensor vision is

loaded, and the surface normals are calculated. In this case, the mesh

normals are not calculated directly by the CAD software, because in the

real application, the sensor acquires a point cloud and not a mesh. So,

the scene normals computation must be calibrated very well to match

piece normals. With this aim, two are the main parameters for scene

normals calculation:

• Sphere radius : for every point in the point cloud, a sphere will

be generated and only the point inside will be considered for the

normals calculation referred to that specific point.

45

Chapter 4 Planner Offline

• Maximum number of neighbors : inside the sphere created, a huge

amount of points can be present. This parameter allows to select a

specific number of points to average the results and create a plane

for which normal can be computed.

Once defined all scene point cloud normals, surface matching can be

exploited. The matching process terminates with the attainment of the

pose. However, due to the multiple matching points, erroneous hypoth-

esis, pose averaging and other factors, such pose is very open to noise

and many times is far from being perfect. Although the visual results

obtained in that stage are pleasing, the quantitative evaluation shows 10

degrees variation, which is an acceptable level of matching. Many times,

the requirement might be set well beyond this margin and it is desired

to refine the computed pose. Furthermore, in typical RGBD scenes and

point clouds, 3D structure can capture only less than half of the model

due to the visibility in the scene as in our case. Therefore, Iterative Clos-

est Point algorithm has been inserted to obtain a robust pose refinement.

At the end of this last part of the offline algorithm, the interest

is not on the pose itself, but on the matching score obtained from the

matching. In PPF, the pose score is returned as the number of different

matching that supports a single pose inside the hash table. Indeed, more

the pose is supported by other PPF, more will be the score assigned to

the specific homogeneous matrix obtained. On the other hand, a problem

arises because no maximum score value can be defined. This generates

a small uncertainty on the fact that the matched pose will be effectively

right. To avoid the problem, some tests can be done also controlling if

the pose is correct and doing a cycle of random generated sphere points

to find the maximum value. After that, pose score can be normalized

in a number between 0 and 1. As concerns HALCON, the same process

is exploited, with the difference that no training stage and no specific

attention on surface normals calculation is required. Also, the problem

of the matching score does not exist since the output score is already

normalized between 0 and 1 and it is not based on the number of votes

sustaining a specific pose.

46

Methodology for Robot Motion Planning in Quality Inspection Tasks

x y z

float64 float64 float64

0.5000 0.2000 0.2000

qx qy qz qw reach score

float64 float64 float64 float64 float64 float64

0.8212 0.0000 0.5023 0.2851 1.0000 0.5702

Table 4.3: Example of ROS message sent from Surface Matcher Node: Sensor

Position, Quaternion Orientation, Reachability and Matching Score Index

Finally, for both PPF and HALCON a response to Bayesian Opti-

mization can be given. The customized ROS message will send reacha-

bility and score parameter to the first node in order to calculate the cost

function and generate a new optimized point to be observed. After that,

all the cycle resume until Bayesian Optimization node reach a minimum

value of the cost function. A .txt file is generated with all the sensor po-

sition and orientation in terms of quaternions also saving the reachability

index and the pose score.

x y z

0.5000 0.2000 0.2000

0.6123 0.2856 0.3421

0.4523 0.3425 0.1564

0.3654 0.9231 0.5639

qx qy qz qw reach score

0.8212 0.0000 0.5023 0.2851 1.0000 0.5702

0.1567 0.7224 0.2853 0.6354 1.0000 0.8765

0.7223 0.1567 0.5843 0.3524 -1.0000 0.9234

0.0000 0.0000 0.0000 1.0000 -1.0000 0.3476

Table 4.4: Part of File Generated by Offline Algorithm

47

Chapter 5

Planner Online

5.1 General Overview

After that the Bayesian Optimization has found all the positions and

orientations guaranteeing the best score matching, the quality control can

be performed. The online algorithm is composed by five different sub-

programs, each one with a specific task, that, as before, communicates

each other through ROS messages.

Figure 5.1: Schematic Representation of the Planner Online Algorithm

All the algorithm starts with a node which aim is to read the file

generated by the offline code. In this file sensor’s three positions and the

orientation quaternion are registered. For each of these couples, score

and reachability are also assigned. Poses are sort for highest score and

48

Methodology for Robot Motion Planning in Quality Inspection Tasks

sent to planner node. In real environment, the position with highest

score, maybe, cannot be reached due to obstacles that was not considered

and, if executed, can lay to collisions. To face this kind of problematic,

Octomap© library has been used. It is aimed to create occupied vol-

ume space inside the real environment reconstruction starting from sen-

sor point cloud data. Therefore, collision can be avoided because robot

planner recognizes as obstacles the occupied volume spaces and conse-

quently plan a trajectory not in collision with them. Once the robot is

in position, a point cloud scan is acquired and then surface matching is

computed. Based on matching score, the algorithm decides if a further

scan is necessary to be sure of the object pose. If score is high, the ho-

mogeneous matrix between robot reference system and the target object

is saved in a file which will be compared to the desired pose.

49

Chapter 5 Planner Online

5.2 End Effector - Sensor

Transform Calibration

As explained in the previous chapter, knowing the real transform from

robot’s end-effector to sensor is crucial to obtain valuable results. The

pure geometry transform is not enough, indeed, from firsts experimenta-

tions, errors in order of few centimeters were achieved. Obviously, this

scale of variations is not acceptable. To overcome the problematic, an

algorithm able to calculate the transform was used. The code can be

divided into three main nodes. The first is aimed to place the robot

in different positions and extract, from robot server, the transform be-

tween the null reference frame and robot end effector [To−ee], to publish

it on a specific topic. The second one extrapolates the transform from

a QR Code framed by the camera and the camera itself [Tsens−QR], with

the aim to publish it in a different topic. The third one reads the two

transforms and execute calculations in order to achieve the homogeneous

matrix from end effector to the sensor’s point cloud origin [Tee−sens].

Figure 5.2: Schematic Representation of the Calibrator Algorithm

Let’s now analyze in details the three different nodes. Initially, a

robot position and orientation are generated and executed, so that we

have robot in a specific position. The robot’s transform [To−ee] is ex-

trapolated from the server and published on the related topic. At this

50

Methodology for Robot Motion Planning in Quality Inspection Tasks

point, AprilTag node starts. AprilTag code, uses an embedded 2D-coded

marker for QR tag detection. AprilTag is one of the most used fiducial

markers that can be used both indoors and outdoors for ground truth

generation in 6 DOF.

The proposed research has established that both distance and orien-

tation of viewing camera from the target tag effects accuracy. However,

uncorrected orientation uncertainty is a more significant source of accu-

racy degradation. AprilTag’s accuracy is maximum when the viewing

camera is pointed towards the center of the tag. The visual QR marker

tag can be of any size with a square dimension. The tag is printed on

a white background with a black outline square. Inside the square is an

embedded black bar-code. AprilTag uses a unique detection algorithm

for fast, robust detection and to minimize the effect of small occlusions.

Figure 5.4 shows the algorithmic passages of AprilTag. In the first step,

it computes the magnitude and direction of a gradient at every pixel in an

image that contains the AprilTag. Afterward, these calculated gradients

are grouped into clusters called components based on similar gradient at-

tributes using a graph-based method. By using a weighted least square

technique, a line is fitted on every component such that the direction of

the gradients determines the direction of the fitted line.

Figure 5.3: From Left to Right: AprilTag Input image - Step 1: Detection of line

segments using the least square method on clusters of similar pixel gradients. - Step

2: Based upon the gradient direction, all possible quads are detected in an image. -

Step 3: A quad with a valid code scheme is extracted to detect the pose. - Step 4: A

pose of AprilTag in camera frame of reference is returned using homograph and

intrinsic estimation.

Moreover, gradient direction determines the direction of the line

segments. Hence each line has a dark side on its left and a lighter side on

its right. Furthermore, after identifying all lines, possible quad shapes

are detected. The quad shape with a valid code scheme is extracted out.

51

Chapter 5 Planner Online

Also, a 6 DOF pose of the tag in the camera frame of reference is returned

by using homography and intrinsic estimation over an extracted tag.

Once that also the [Tsens−QR] has been published on the relative

topic, the process of generating a new coordinate for robot, executing and

detecting AprilTag is repeated for n number of times. At this point on

the two different topics will be presentn [To−ee] and [Tsens−QR] transforms.

Figure 5.4: Representation of Robot’s different Position and

of AprilTag’s Reference System

Calibrator node reads the 2n transforms from the topics and starts

calculating [Tee−sens]. The process is based on the equality of QR code

pose respect to null reference frame. Indeed, also if the position of the

robot changes, the post-multiplication sequence of transforms must be

equal, because QR code has not been moved. To understand better this

concept, assign to number 1 the first pose reached by robot, with 2 the

second and so on. For the first couple 1− 2, we can write:

[
T 1
o−ee

] [
T 1
ee−sens

] [
T 1
sens−QR

]
=
[
T 1
o−QR

][
T 2
o−ee

] [
T 2
ee−sens

] [
T 2
sens−QR

]
=
[
T 2
o−QR

] (5.1)

Remembering that the pose of the QR does not change during all

calibration process, the following equation is accomplished:

52

Methodology for Robot Motion Planning in Quality Inspection Tasks

[
T 1
o−ee

] [
T 1
ee−sens

] [
T 1
sens−QR

]
= [T 2

o−ee][T
2
ee−sens][T

2
sens−QR][

T 2
o−ee

]−1 [
T 1
o−ee

] [
T 1
ee−sens

]
= [T 2

ee−sens][T
2
sens−QR][T 1

sens−QR]
−1

[A]
[
T 1
ee−sens

]
= [T 2

ee−sens][B] (5.2)

The solution of equations as [A] [X] = [X][B] can be found in [17]

and has been discussed in linear algebra. Theoretically, only a pair of

points is necessary to extract the value of [Tee−sens] but noise meddle.

Noise can vary in dependence of many factors as lightning conditions,

centering of the camera respect to QR, reflectivity of the QR code print-

ing and so on.

To overcome this kind of problematic, for every pair of points reached

by robot, [Tee−sens] will be calculated. At the end, a square minimization

error procedure will be performed to extract the best candidate trans-

form. Accomplished this passage, another aspect must be considered.

The [Tee−sens] calculated, is referred to the RGB camera inside the sen-

sor and not on the RGBD one, because the QR recognition is achieved

through the RGB image. So, a further known sensor’s factory transform

needs to be inserted inside the process.

[Tee−rgb] = [Tee−rgbd][Trgbd−rgb][
Tee−sens] = [Tee−rgbd] = [Tee−sens][Trgbd−rgb]

−1 (5.3)

At the end of calibration procedure, the real position and quaternion

orientation linking end effector to sensor that has been found is reported:

~t =


−0.0210606

0.0004631

0.0498742

 (5.4)

~q =
[
0.0066612 −0.0114342 0.0115436 0.999845

]

53

Chapter 5 Planner Online

5.3 Point Cloud Scene Reconstruction

Not always a CAD model of the scene can be available. For this purpose,

an algorithm able to reconstruct the scene starting from single sensor

scans in different positions has been implemented. The idea is to place

the sensor attached to the robot’s end effector in different locations and

acquire different point cloud scans. After that, the scene is reconstructed

by referencing all the points to robot reference frame multiplying them

for the homogeneous matrix from the reference frame to the camera. Let

us define ~psens as the homogeneous vector of a generic point acquired by

the sensor in sensor reference system. Identically, ~po will be the same

point but in robot reference frame. The reference frame transformation

is exploited with [To−sens] matrix through the following equation:

~po = [To−sens]~psens (5.5)

In the next image an example of three different scans that are merged is

reported.

Figure 5.5: Three different Point Cloud Scans of the Scene

and its Reconstruction

54

Methodology for Robot Motion Planning in Quality Inspection Tasks

The positions in which camera will move can be defined in two dif-

ferent ways: manually or through a pre-defined path. In the first case,

the robot is moved with the help of an operator which decides the best

poses and orientation with the aim to reconstruct the scene. On the

other hand, the automatic algorithm has the input necessity of a rough

object position, around which a spherical path will be generated. For

every position in both manual and automatic case, a sensor point cloud

scan is saved with the coordinates and orientation of the camera. As

concerns the manual casuistry, the pose and orientation of the camera is

asked to the robot server to obtain the most accurate numbers.

In automatic modality instead, the position and orientation are cal-

culated by the computer and then sent to the robot controller. Unfortu-

nately, the coordinates that are established not always are executed with

high accuracy, some tenths of millimeter can vary. This variation causes

amplification of noise in the scene reconstruction, meaning to a not com-

pletely true representation of the reality. For avoiding the problem, also

Figure 5.6: Different examples of voxel downsampling size. Top Left: Original

Reconstructed Scene. Top Right: Reconstructed Scene with voxel size=1 mm.

Bottom Left: Reconstructed Scene with voxel size=2 mm. Bottom Right:

Reconstructed Scene with voxel size=3 mm

55

Chapter 5 Planner Online

in this case, the exact position and orientation are asked to the robot

server to obtain more precise numbers.

Once that all scans points have been referenced to robot reference

frame, the problematic of multiple points describing the same target

object parts must be faced. At this purpose, a special function able

to concentrate all very close points into a single one has been used. The

only input to this function is called voxel size and represents the side

dimension of a cube. For all the points in the point cloud, a voxel size

cube is created and all the point inside are merged into a single one

averaging by distance. In Figure 5.6, is possible to notice that lower the

voxel size parameter lower will be the density of points and more precise

respect to reality will be the processed point cloud.

56

Methodology for Robot Motion Planning in Quality Inspection Tasks

5.4 Online Algorithm

The first node of the online algorithm has the aim to read the file gen-

erated by the previous part, the offline algorithm. This .txt file contains

all the sensor position that was sampled by Bayesian Optimization. For

each of this position are associated orientation, reachability and match-

ing score indexes. In the next table a piece of the file is presented to

allow a better comprehension.

x y z

0.5000 0.2000 0.2000

0.6123 0.2856 0.3421

0.4523 0.3425 0.1564

0.3654 0.9231 0.5639

qx qy qz qw reach score

0.8212 0.0000 0.5023 0.2851 1.0000 0.5702

0.1567 0.7224 0.2853 0.6354 1.0000 0.8765

0.7223 0.1567 0.5843 0.3524 -1.0000 0.9234

0.0000 0.0000 0.0000 1.0000 -1.0000 0.3476

Table 5.1: Components of Output File exiting from Offline Algorithm:

Position, Quaternion Orientation, Reachability Index, Pose Score Index

Once the file has been loaded into the program as a matrix, it is

sorted by highest matching score, which characterizes the best pose to

observe the piece. Also, a control on the reachability index is performed.

As instance, if the position with the highest score is not approachable

by the robot due to joints limits, the second one will be chosen and so

on. Determined the robot position based on the parameters just ex-

plained, pose and orientation are packed into a customized ROS message

and sent to the second part of code. Planner online has the aim to ver-

ify if pose and orientation received from reader node are achievable in

robot joints space. Before explaining in detail this section, as introduced

before, a specific set of cartesian coordinates cannot be reached by the

57

Chapter 5 Planner Online

robot, maybe due to obstacles that were not considered in the offline

part. Aiming to resolve this kind of issue, Octomap library has been

used.

Before planning robot trajectory based on reader information, the

sensor is started. The Octomap node capture, for every frame, the point

cloud generated by the sensor and publish the points on a specific ROS

Topic. A standard HD resolution of 1280 × 720 pixels generates near

a million points. Higher the resolution, higher will be the point cloud

density and precision, but also higher will be the computational power

needed to handle this kind of data.

Once published the points in the ROS Topic, Octomap library per-

form a downsample, and for every point creates a cube of occupied volume

space of pre-defined size. In that cube and near it, Move-It cannot plan

a robot trajectory, avoiding possible robot collisions. Octomap library

can be customized with different parameters as input:

• Sampling number : This parameter determines the sampling num-

ber. As instance, if it is set to 5, a fifth of the points will be used.

• Refresh rate: indicates at which frequency the Octomap is updated.

• Occupied Volume Size: represents the width size of the cube of

occupied volume space generates around the specific point.

• Maximum sample depth: is the maximum depth for which a point

is considered. If a specific point exceeds this value in depth coor-

dinate, will be discarded in Octomap creation.

During running of Octomap node, robot is moved through joints

trajectory previously decided and surely collision-free because controlled

by the operator. This movement is aimed to create a sort of map of the

real volume occupied before executing the quality control preventing any

sort of collision. Finished the Octomap creation, sensor is stopped.

After Octomap has been created, planner online node assign to the

robot planner the coordinates and orientation coming from the reader. If

58

Methodology for Robot Motion Planning in Quality Inspection Tasks

Figure 5.7: Sequential images: before creating Octomap, Sensor

Depth View and after Octomap Creation.

the set of numbers can be planned also considering Octomap, end effec-

tor positions and orientation are calculated thanks to Equation 4.6 and

trajectory will be executed by the robot. Once reached the placement,

a ROS message is sent to point cloud Scanner node to start the sensor.

The first frames are skipped due to light exposure adjustments, the point

cloud scan is acquired and saved in a .ply file. Sensor is stopped and the

file is read by the matching node. Surface Matching between the CAD

model and the real point cloud scanned by the senor is performed, using

both the algorithms of PPF and HALCON. The homogeneous matrix

between robot reference frame and the object is saved and compared to

the desired one to understand if the object is correctly mounted.

Figure 5.8: Octomap of the Reconstructed Scene

59

Chapter 6

Experimentation Results

The proposed Offline algorithm, described in Chapter 4, and the On-

line one, referenced in Chapter 5, have been validated in order to show

their performances, strengths and weaknesses on real applications. In

particular, this part of the overall work will presents:

• A description of the Graphical User Interface created for simplifying

code usage

• A comparison between the two presented matching code HALCON

and PPF and the one relatively chosen

• A comparison between the Grid Sampling and Bayesian Optimiza-

tion in Offline mode

• A method for validating Offline algorithm respect to reality coming

from sensor located in the best view positions

• A sensitivity analysis to achieve a calibration on the main Bayesian

Optimization parameters with different Cost Functions

• An application on real scene with high occlusion rate

• The results of the developed algorithm on a reconstructed scene

60

Methodology for Robot Motion Planning in Quality Inspection Tasks

6.1 Graphical User Interface

For easier parameters setting during experiments and comparisons, a

graphic interface has been coded. Through the GUI, is possible, in a

fast and visible manner, to understand if the points of the sphere are

effectively reachable by robot and whether such poses are useful.

Once all the parameters are effectively settled, the configuration is

saved in a .txt file, which will be read by the nodes of the developed

algorithms. Another functionality allows to change directly the wanted

parameters from file and then update all the variables in the GUI for a

visual check.

Figure 6.1: Graphic User Interface Coded. In blue is possible to see the

robot representation, in green the scene uploaded and in red the points

generated on the surface of the sphere

In the initialization of the graphic interface, it is possible to insert

the point cloud of the scene and the robot model, respectively in green

and blue in Figure 6.1.

61

Chapter 6 Experimentation Results

The View simulator parameter sections allows to set:

• The positions and orientation of the scene respect to the robot null

reference frame

• Sphere features as center, radius, minimum and maximum azimuth

and polar angles

• The matching Parameters of both PPF and HALCON Algorithms

• The Bayesian Optimization Cost Functions Parameters

Figure 6.2: Graphic User Interface: File Manager

The File Manager section instead is the one that allows to under-

stand which files are used by the presented algorithm. Every node in the

algorithm that has been coded, starts with reading the file generated by

the GUI and extracting the necessary parameters of the specific program.

In this way, the user is helped in all the modifications of the parameters

values because is all condensed in a simple file instead of opening different

scripts and modify the specific lines of code.

62

Methodology for Robot Motion Planning in Quality Inspection Tasks

6.2 Model and Scene

It has been decided to test the algorithms using, as scene, a 3D printed

robot that we built in a previous university course. This scene had been

chosen because presents an enhanced complexity with the possibility to

occlude objects in function of the given viewpoint.

Figure 6.3: Virtual and Physical Models of the chosen Scene

As model to be recognized, it has been chosen to use a 3D printed

prosthesis prototype. This model presents curved surfaces and holes,

which enhance the complexity recognition of the matching algorithm.

Figure 6.4: Virtual and Physical Models of the chosen Object to be Recognized

It has been decided to introduce the model inside the scene in a

specific position, making it not visible from all the possible viewpoints.

This choice is useful to test if the BO algorithm is able to to find a

position in which the object can be seen.

63

Chapter 6 Experimentation Results

6.3 PPF and HALCON Pose Estimation

Algorithms Comparison

As presented in the previous chapters, two algorithms for Pose Estima-

tion have been tested. The first, PPF, is an open source code based on

Point Pair Feature, while the second, HALCON, is a proprietary soft-

ware for which an academic licence was asked. For choosing which one

can be considered the best for this application, some analysis have been

performed.

Figure 6.5: RGB Image (Top Left), Sensor’s Point Cloud (Top Right),

Uniform Sampled CAD Scene (Bottom Left) and .stl CAD Scene (Bottom Right)

As can be exploited by the figure, some problematic in scene sim-

ulation need to be faced. The use of scenes generated by .stl CAD file

characterized by a not uniform point distribution can lead to the rising

of errors in matching phase. This aspect is due to the fact that this file

extension is focused on surfaces geometry reconstruction, consequently

all the sampled points are associated to a specific face of the object.

Higher the complexity of the geometry, higher will be the number of

points used to describe it. As instance, a curve will require a number of

64

Methodology for Robot Motion Planning in Quality Inspection Tasks

sampled points drastically increased respect to a plane. Obviously, the

real point cloud acquired by the sensor is not comparable with this type

of extension since HPR operator in simulation will delete a considerable

amount of points depending on the sensor’s location. In order to simulate

in a correct manner the point cloud generated by the sensor, a uniform

sampling of the CAD geometry has been necessary. To enhance the un-

derstanding of this concept, further experiments with the two different

matching codes have been performed.

Figure 6.6: HPR Error due to Lack of Surface Points in .stl CAD Scene

In Figure 6.6 the visualization of an incorrect HPR scene elaboration

is reported. The lack of points in the .stl case leads to a fail in the Hidden

Point Removal process, which is no longer able to represent the cut point

cloud from the viewpoint in a proper manner. This is probably due to

HPR process that leads to remove hidden points in function of the scene

point density. High variations in density may lead to errors in the actual

estimation of the visible points. Indeed, as emphasized by the figure, the

recognition of the model happens even if it is not actually visible from

the analyzed pose.

In order to evaluate the differences between the .stl and uniform

sampled scene, a grid with 400 sampled points for the evaluation of 3D

Surface Score Distribution has been performed with HALCON and PPF

matching methods. In terms of understanding the settings, both are valid

choices, while comparing the easiness in finding the specific values of

65

Chapter 6 Experimentation Results

parameters to be assigned to a peculiar scene and model, the proprietary

one overcomes the other. In addition, the biggest limit in the open source

algorithm is its inability in returning an absolute and normalized value of

the matching score, representing the quality and safety of the performed

matching. Indeed, the only value that can indicate how good is a pose is

the number of votes for possible poses inside the hash table (Figure 4.7).

Figure 6.7: 3D Surface Score Distribution of HALCON (Top)

and PPF (Bottom) Matching Algorithms with a .stl Scene

It can be noticed that the score evaluated by the two software shows

significant variations using a .stl scene. Both HALCON and PPF are

able to correct estimate the pose of the model inside the scene. The

former presents a smooth tendency in score distribution. The latter evi-

dences a high function gradient variation for the input variables φ and θ

underlined by multiple peaks.

66

Methodology for Robot Motion Planning in Quality Inspection Tasks

Figure 6.8: 3D Surface Score Distribution of HALCON (Top)

and PPF (Bottom) Matching Algorithms with Uniform Point Sampled Scene

As before, also for the uniform sampled scene, the same trend for

both algorithms is shown. In this case the peaks problematic is empha-

sized due to difficulties of the open source code to find the model in the

scene. This causes the generation of a smaller area evidenced in Figure

6.8 in which score can be considered acceptable. Score function smooth-

ness, proper stable matching and correct pose estimation are starting

points for the definition of a reliable optimization.

The last factor to be considered is the time consume in finding model

pose. As example, with the model and scene described in Figures 6.3

and 6.4, the open source code employs considerable higher time for every

matching procedure. For the motivations just expressed, all the following

tests were performed with HALCON algorithm.

67

Chapter 6 Experimentation Results

6.4 Bayesian Optimization and Sphere Grid

Algorithms Comparison

To test performances, a ROS node that creates a uniform grid of view-

points on sphere surface has been coded. Sphere Grid has the aim to

compare in terms of time and performances in matching score, how BO

behaves in comparison to a simple sampling approach. In this case, for

each viewpoint, the matching procedure is performed, regardless if the

matching provides a correct pose of the object or not. On the other side,

BO consider if the pose score is low and avoid that area.

Figure 6.9: Example of Perfect (left) and Missed (right) Matching between the

Model and the Scene. The only parameter that vary is the viewpoint enhanced in

yellow, in first case the object is visible, in second one not,

leading to a wrong match.

A simulation with 400 points was performed in order to have a good

point density useful for comparison. Remembering that φ represents the

polar angle and θ the azimuth angle as were explained in Figure 4.3, given

a fixed radius ρ in accomplish to joint limits of the robot, the main pa-

rameters set are reported in Table 6.1. In order to improve performances

and smartness this work implies the use of Bayesian Optimization. As

discussed before, BO can be seen as black box, which makes forecast and

try to optimize an unknown function. The behaviour of the algorithm

depends on the cost function, which is a formula able to tell to BO how

good the forecast is in a sampled point.

68

Methodology for Robot Motion Planning in Quality Inspection Tasks

Parameter Value MU

φmin 5 °
φmax 90 °

φ samples 20

θmin -150 °
θmax 150 °

θ samples 20

ρ 0.5 m

HPR radius 200 m

Table 6.1: Parameters used for Sphere Gridding Simulation

The shape and the parameters taken into account by this cost func-

tion are arbitrary and defined by the user. In this work, it has been

decided to implement and test two different cost functions:

J1 = Kr · Reachability +Ks · (Score− 1) (6.1)

J2 = Kr ·Reachability +Ks · (Score− 1)+

−{Kp · [Score−max(Score, Scorep)]}2+
+Kb · [Score−min(Score, Scoreb)]

(6.2)

where Kr represents the Reachability multiplier, Ks the Score one,

Kp the Penalty one, Kb the Boost one and Scorep and Scoreb the mini-

mum Score Penalty and Boost thresholds.

Figure 6.10: Representation of I/O and intermediates passages of Bayesian

Optimization: Input Variables, Cost Function Calculation, Mean and Variance

Generation and Output Variables

It can be noticed that the cost function J2 in equation 6.2 contains a

quadratic term, which is useful to speed up the optimization, and a boost

term to reward if the score is higher than a specific threshold. In addition,

69

Chapter 6 Experimentation Results

it is important to evidence the fact that Bayesian Optimization algorithm

maximizes from −∞ to 0. All of the parameters can be set using the

Graphical User Interface created without the necessity to rebuild the

code, which would imply idle time for each modification. Also in this

case the main used parameters are reported in the table below.

Parameter Value

Cost Function Used J1

Kr 3000

Ks 5000

α 20000

BO samples 10

BO iterations 40

Table 6.2: Parameters used for Sphere Grid Simulation

The last two parameters that need an explanation are BO samples

and BO iterations. The former has the aim to initialize the Cost Func-

tion, which means that are the calculation executed on random points

to start generating Gaussian means, variances and a rough build of the

Cost Function before starting the real optimization.

Figure 6.11: Graphical Representation of Sphere Grid (left)

and BO with Cost Function J1 (right)

70

Methodology for Robot Motion Planning in Quality Inspection Tasks

BO iteration instead identifies after how many points the algorithm

stops its research on the Cost Function maximum. Depending also on

parameter alpha, as explained before, BO samples and iteration must be

coherent numbers.

In figure 6.11, the graphical representations of results are reported.

It can be clearly understood that Bayesian Optimization algorithm, with

very few points sampled, is able to find the optimum viewpoint area.

Moreover the maximum score found by the optimization algorithm is

slightly increased to the one found by sphere grid method. Indeed, while

grid has space between sphere meridians, BO has all the infinite points

of the sphere available. In conclusion, BO is able to give slightly better

results if compared to sphere grid using less than a tenth of the over-

all time. Next, two plots representing the variation of Matching Score

and Cost Function Values will be proposed using J1 varying φ and θ

coordinates.

Figure 6.12: Surface Plot Representing Matching Score Values varying

φ and θ coordinates with data coming from Offline Algorithm

The surface has been created using an interpolation of the Score

values coming from the Offline code with grid sampling, while green

points represent the Bayesian Optimization Iterations.

As can be possible to exploit, BO climbs the Score surface to reach

the maximum values. It is interesting to notice that BO never overcomes

the limit of around θ = 250°, also if scores becomes slightly higher. This

71

Chapter 6 Experimentation Results

because it recognizes the high gradient of the cost function due to the not

reachable robot’s poses. In order to clarify the concept, also the Figure

6.13 representing Cost Function Values must be compared in the same

time.

Figure 6.13: Surface Plot Representing Cost Function Values varying

φ and θ coordinates with data coming from Offline Algorithm

From upper figure, Bayesian Optimization’s trend is presented, al-

lowing a better understanding of why some areas of the surface are not

considered by BO itself. The best position coming from simulations, for

both sphere grid sampling and Bayesian Optimization are now presented.

Optimal φ Optimal θ Score

Bayesian Optimization 55 ° 244 ° 0.552

Sphere Grid Sampling 72 ° 262 ° 0.541

Table 6.3: Best View Positions from Offline Algorithm

In order to validate the Offline Algorithm respect to reality, a sample

of reachable points, in terms of joint limits, has been generated as can

be seen below. Only the quarter of the sphere with high matching score

was used because the aim is comparing the ones coming from the Offline

code with the ones coming from Online, so from real sensor scans in the

established positions, to verify if their trend in Offline is equal to the

ones in Online.

72

Methodology for Robot Motion Planning in Quality Inspection Tasks

To allow a better comprehension of validation position, a color gra-

dient based on positions is assigned to each of them and will be used

for the plot of results. Matching scores in the colored position can be

extracted from the graphs.

Figure 6.14: Graphical Representation of the Points used for Validation:

Sphere Grid (left) and Bayesian Optimization (right)

Once understood how the validation points has been positioned, the

correlation of matching score in simulation and with real sensor data is

evidenced by the graph below.

Figure 6.15: Offline and Online Sphere Grid Algorithm Validation

The figure is divided into two different regions: a green one, indi-

cating the good quality of the model matching in the real scene, and a

red one reporting the coordinates where the HALCON matching code

fails the pose estimation, generating false positives due to lack of visi-

bility of the model in real scene with consequently high score gaps. For

completeness also wrong results are evidenced. To compare simulation

and reality, only the green zone has to be considered.

It is possible to notice that the first positions have the same trend in

simulation and reality, the latter evidencing also little peaks and valleys

73

Chapter 6 Experimentation Results

in score values, probably due to variation of lightning condition between

the different points analyzed and random noise. The locations are or-

dered by score values indicating the best successive sensor’s poses to

observe the real object to be studied. In addition, the real acquisition

score trend curve has an offset if compared to simulation, which increases

going further from the best position. This phenomenon can be explained

through sensor’s point cloud quality. Indeed changing from the best

position to the consecutive ones in terms of score, sensor’s orientation

influence point cloud acquisition: more it is angled respect to the object

to study, lower will be the quality of the surfaces, reducing the matching

score. Also the point normals calculation influences the result because

they are not coming from a mesh with rigidly calculated faces. This

further authenticates the fact that the algorithm in reality follows the

behavior of simulations validating the all sphere grid system. The same

graph indicating Bayesian Optimization score trends is now presented.

Figure 6.16: Offline and Online Bayesian Optimization Algorithm Validation

As can be noticed, BO reaches the same matching score of sphere

grid, the latter executed in its optimum range. It is important to under-

line that the firsts BO poses are in the neighbourhood of the optimal one

presenting a nearly constant behavior in matching values. Also in this

case, green and red zone indicates where the object is recognized through

matching algorithm and where it is not, due to its complete or too low

partial lack of visibility. It is possible to conclude that both sphere grid

and Bayesian Optimization Offline codes simulates the reality behavior.

74

Methodology for Robot Motion Planning in Quality Inspection Tasks

6.5 Sensitivity Analysis of Bayesian Opti-

mization Parameters

Starting from default values for the used open source algorithm LIMBO

RESIBOT©, a proper sensitivity analysis for the main Bayesian Opti-

mization parameters has to be accomplished. The main targets are:

• Improving speed of the research

• Escaping from local minima

• Setting good parameters for Cost Functions

• Understanding which Cost Function from Equations 6.1 and 6.2,

accomplish the best performances

6.5.1 Alpha Parameter

One of the key steps of the BO algorithm is the definition of the next point

to evaluate. The used library provides several methods such as Gradient-

based Optimization, Expected Improvement Algorithm and Upper Con-

fidence Bound. In this work has been decided to use the last option

because best fits the purposes. The equation that describes the UCB

method is:

xt+1 = argmax [µt (x) + α · σt (x)] (6.3)

Where α is a user-defined parameter that tunes the trade-off be-

tween exploration and exploitation. The UCB function can be seen as

the maximum value, argmax, across all solutions of the weighted sum

of the expected performance, mean of the Gaussian µt (x), and of uncer-

tainty, standard deviation of the Gaussian σt (x), for each solution. This

sum is weighted by the α factor. Lower α signifies that BO gives more

importance to optimization problem, surely if it is too low, maybe BO

can not find a reasonable optimum stopping in a local maximum area,

75

Chapter 6 Experimentation Results

continuously trying to further searching the best values in the neighbor-

hood of the local maximum itself. Increasing α instead, more importance

in exploration of the unknown cost function will be achieved, raising the

probability that at the first maximum reached and after a very low num-

ber of BO iterations to optimize it, the successive ones will focus on find-

ing another maximum. In these analysis three values of α were tested

using J1 Cost Function with parameters described in Table 6.4:

α = 103 α = 104 α = 105

Figure 6.17: Influence of parameter α on Score Matching Values for

Cost Function J1. Red Cross Represent if the specific Position can not

be reached by robot’s joint limits, Green Circle if can be reached

From the image can be understood how varying α parameter in-

fluence exploration and exploitation of Bayesian Optimization. In the

first graph, with the lower value of α, BO converges only after ten itera-

tions, remembering that the first ten are random points aimed to have a

rough reconstruction of the cost function. In the second one, are found

two different optimum values, respectively at tenth and thirtieth itera-

tions. In the last, multiple peaks can be seen, sign that exploration is

too preferred on exploitation. Remembering that red crosses evidence

the positions that are not reachable by the robot’s joints limits, associ-

ated to a reachability score equal to −1, is it possible to understand how

the penalty score Kr works on reducing the values of J1 Cost Function.

76

Methodology for Robot Motion Planning in Quality Inspection Tasks

Figure 6.18: Influence of parameter α on for Cost Function J1 Values

Indeed, in Figure 6.18 multiple negative peaks are in correspondence

of red crosses due to the high value of Kr. Convergence is ensured by

Ks(̇Score−1), lower the Matching Score value, higher will be the negative

number added to the Cost Function Value.

6.5.2 Matching Score and Cost Function Values

Comparison between J1 and J2

In this section a comparison between Linear and Quadratic Cost Function

is presented. For the simulations of J2, the parameters described in the

Table below were used. For both J1 and J2, the value of α is set to 104.

Parameter Value Parameter Value

Kr 3000 Scorep 0.2

Ks 5000 Scoreb 0.4

Kp 1000 BO samples 10

Kb 2500 BO iterations 40

Table 6.4: Parameters used for J2 Cost Function

In the graphs below are reported the score values in function of the

number of iterations. As can be seen with low values of α the optimiza-

77

Chapter 6 Experimentation Results

Figure 6.19: Comparison of Matching Values on Linear J1

and Quadratic J2 Cost Function with parameter α fixed

tion tends to prefer exploitation with respect the exploration. Indeed,

this behaviour could lead to the convergence and stuck of the algorithm

in a local minimum as in the first case. The quadratic function J2 allows

a convergence in lower time with a higher matching score, giving time to

further exploration on other points.

Figure 6.20: Comparison on Linear J1 and Quadratic J2

Cost Functions Values with parameter α fixed

The same behavior can be seen also in the graphs that represent

the cost functions in relation to iteration number. The cost function is

78

Methodology for Robot Motion Planning in Quality Inspection Tasks

another key part of the BO that influence its working method.

The behaviour of J2 respect to J1 is more uncertain due to the

quadratic part of the function, but also more ready and able to react to

every factor. Due to this ability, from now on all the experiments will

be conducted with J2 Cost Function and a value of α = 104, that have

been proved to be the better parameters in terms of trade off between

exploration and exploitation.

79

Chapter 6 Experimentation Results

6.6 High Occlusion Level Scene Analysis

Once determined that the entire algorithm is able to produce very good

results, further experiments on more complicated scene have been carried

out. With this aim, in the scene tested until now, a box is introduced in

a specific position to partially occlude the model to be found. The box

was placed in order to occlude the best positions generated by Bayesian

Optimization and sphere grid expressed in Table 6.5.

Figure 6.21: Second Scene Tested with higher Occlusion Rate

Using this new scene, all the Offline simulation was carried out both

with Bayesian Optimization and Sphere Grid methods.

Optimal φ Optimal θ Score

without Occlusion

Bayesian Optimization 55 ° 244 ° 0.552

Sphere Grid Sampling 72 ° 262 ° 0.541

with Occlusion

Bayesian Optimization 59 ° 225 ° 0.485

Sphere Grid Sampling 72 ° 228 ° 0.484

Table 6.5: Best View Positions from Offline Algorithm

without and with Occlusion

In the upper table are described the new best position coordinates

with relatives score in the new scene simulated with box as an occlusion.

80

Methodology for Robot Motion Planning in Quality Inspection Tasks

In order to allow a better comprehension of the φopt and θopt values, in the

next image a graphical representation is reported in terms of an arrow,

symbolizing also the orientation. First, the results of the non occluded

scene are presented and then compared with the occluded one.

Figure 6.22: Optimal Positions for Model Recognizing in Scene without

Occlusion, Score and Cost Function 3D Plots

81

Chapter 6 Experimentation Results

Figure 6.23: Optimal Positions for Model Recognizing in Scene with Occlusion,

Score and Cost Function 3D Plots

In this terms, seems that BO can not reach the exact position gained

by grid approach. In reality, this is due to the high level of gradient cre-

ated by the cost function, zone where BO tends to avoid due to dropping

values of cost function itself.

82

Methodology for Robot Motion Planning in Quality Inspection Tasks

To clarify the concept, two different perspectives of surface graphs

are now presented describing score and cost function values for the scene

with occlusion.

Figure 6.24: Surface Plots Representing Score and Cost Function Values

with Occlusion in different Perspectives

The insertion of the occlusion causes a variation in both score and

cost function distribution. Indeed, for a value 40°< φ < 90°, correspond-

ing to θ = 260°, there was the optimum without occlusion, a huge drop

in score and cost function can be exploited, if compared to the ones of

Figure 6.22. Where before there was an almost constant plane in cost

function, now there is a valley evidencing the decreasing scores of match-

ing. This evidences that the algorithm coded is able to adapts to changes

in work environment.

Also in this case, to validate BO respect to Grid Sampling, a reduced

number of reachable positions, presented in Figure 6.25, are compared

with decreasing score. The same trend as in Figures 6.15 and 6.16, with

an offset between score in simulation and reality has been obtained. The

same considerations done for the red and green zones are valid, the for-

mer represents an optimum matching between scene and model, why the

latter a missed one. So, results must be considered valid only inside the

green zone.

83

Chapter 6 Experimentation Results

Figure 6.25: Graphical Representation of the Points used for Validation with

Occlusion: Sphere Grid (left) and Bayesian Optimization (right)

The graph below evidences the fact that BO in its optimal posi-

tion reaches a matching score in reality slightly better than sphere grid

methodology. The colormap is used to allow a better comprehension of

the robot’s in 3D space, while for extracting the score at a specific posi-

tion, in Figure 6.27, color needs to be interpolated with graph points.

Figure 6.26: Offline and Online Sphere Grid (top) and Bayesian Optimization

(bottom) Algorithm Validation with Occlusion

Concluding, also with an obstacle occluding the view, the code is

able to find another optimum position for object studying which has

been validated through real experiments.

84

Methodology for Robot Motion Planning in Quality Inspection Tasks

6.7 Sensor Reconstructed Pointcloud

Scene Analysis

In this part of the overall work, attention will be focused on performing

the same Offline and Online analysis not on a CAD file of the scene but on

the reconstructed one. Indeed, thanks to the methodology explained in

Section 5.3, starting from multiple sensor’s scans, a single reconstructed

point cloud scene was carried out.

Figure 6.27: Side Views of the Reconstructed Point Cloud Scene

starting from five different Scans

As can be possible to imagine, using a point cloud scan as reference

model, may lead to raising challenges that were not considered before. As

instance, not all the surfaces can be reconstructed due to lack of visibility,

generating more difficulties in matching procedure and increasing the

probability to obtain false positives. Surface normals used in matching

procedure are not rigidly calculated by a mesh and must be estimated,

including uncertainties in their esteem. Also matrix [Tee−sens] calculated

by calibration and used for the reconstruction of the point cloud will

introduce some alignment errors in the reconstruction itself.

All of these problems have been overcome thanks to a fine tuning of

the matching, normal calculation and alignment parameters. From now

all the graph presented in the previous section of this chapter will be

reported with data coming from Offline and Online nodes based on the

reconstructed scene.

85

Chapter 6 Experimentation Results

Figure 6.28: Surface Plot Representing Matching Score Values varying

φ and θ coordinates with data coming from Offline Algorithm based

on the Reconstructed Scene

In the upper figure the matching score 3D surface plot varying φ

and θ is presented. Comparing it with the one coming from Figure 6.12

is possible to notice that using the reconstructed scene as model, the

highest matching score decreases by around 20% and the area with score

higher than 0.4 is drastically decreased in only a peak.

Optimal φ Optimal θ Score

Bayesian Optimization 55 ° 244 ° 0.552

Sphere Grid Sampling 72 ° 262 ° 0.541

with Reconstructed Scene

Bayesian Optimization 89 ° 234 ° 0.419

Sphere Grid Sampling 84 ° 234 ° 0.421

Table 6.6: Best View Positions from Offline Algorithm

without and with Reconstructed Scene as Model

86

Methodology for Robot Motion Planning in Quality Inspection Tasks

Table 6.6 evidences the score drop using a reconstructed scene and

the drastic change in φ for Bayesian Optimization best position and in

both φ and θ for grid approach. The phenomenon of changing the op-

timal variables values is strictly correlated and highly dependant on the

position in which the point cloud scans has been acquired. Indeed, based

on that specific locations, little parts of the model can not be seen or re-

constructed in a correct manner. As will be possible to understand also

by the results that will be presented, the preferred position for executing

the quality control generated by the offline algorithm is possible that will

not be the best one, because maybe the reconstructed point cloud misses

some details based on the scan location. Also the highest matching score

reached by BO is slightly lower than the one obtained by grid approach.

This fact can be explained due to the high cost function gradient that is

close to that area.

Figure 6.29: Surface Plot Representing Cost Function Values varying

φ and θ coordinates with data coming from Offline Algorithm based

on the Reconstructed Scene

87

Chapter 6 Experimentation Results

In cost function surface plot instead it is possible to evidence that

there are two different areas of lower cost function values. This is due

to the two different matching zones that gives high scores enhanced by

Figure 6.30. Obviously, the one that sees the model from behind has

gained lower score also due to the partial lack of visibility on the model

itself.

Figure 6.30: Graphical Representation of the Two different Matching Areas

Also in this case, a set of points for validating the Offline algorithm

respect to reality has been chosen and are represented in the figure below.

Figure 6.31: Graphical Representation of the Points used for Validation with

Occlusion: Sphere Grid (left) and Bayesian Optimization (right)

In the following plots, comparison between acquisition and simu-

lation score trend, for both Sphere Grid and Bayesian Optimization,

concerning the reconstructed point cloud is presented.

88

Methodology for Robot Motion Planning in Quality Inspection Tasks

Figure 6.32: Offline and Online Sphere Grid Validation referred

to the Reconstructed Point Cloud

Analysing the graph above it is possible to understand how the real

score trend differs from the simulated one. This aspect, as mentioned

above, is mainly due to the fact that the analyzed poses refer to a re-

constructed point cloud, and therefore do not properly represents reality.

The real scan acquisitions allow to take into account parts of the model

that are missing or not well defined in the reconstructed point cloud

leading to obtain better score values in those poses in which the model

is only partially matched in simulation. The sphere grid poses analyzed

have strong variations in matching score and this greatly emphasizes the

difference between real and simulated acquisition, since the processed

data are not equal.

Figure 6.33: Offline and Online BO Validation referred

to the Reconstructed Point Cloud

As concerns tests conducted to validate Bayesian Optimization, score

progress is shown in the graph above. In this case the acquisition trend

follows the simulation one. This is due to the fact that the simulated

poses do not change as much as in case of spherical grid but they stay

closer to the optimal one. The preferred pose obtained in simulation

is similar to one used for the reconstruction, for this reason even small

89

Chapter 6 Experimentation Results

movements around it bring to comparable results in the real acquisition,

as the scans analyzed differ slightly. The high score values obtained are

due to the consideration of a single specific point of view for the recon-

structed cloud. Probably, real scan evidences characteristics that are not

present in simulation leading to increase the matching score.

This analysis highlights as Bayesian Optimization, for reconstructed

scene, prevails in estimation of best pose over a simple spherical sam-

pling. The difference in trends found between offline and online grid

does not allow the effective estimation of preferred location, as the vari-

ation of the poses totally changes the real acquisition from that obtained

in simulation. The results obtained through the BO are closely related

to reconstructed scene, this may not lead to a global optimal position es-

timation but allows to obtain comparable results among acquisition and

simulation.

90

Conclusions

In this work the possibility to inspect the quality of mounted pieces was

presented using an automated process with the employment of a sensor

attached to the end effector of a robot. The problem of choosing the

best position of the sensor to extract the object pose in real space was

faced and a solution found. The possibility of robot’s collisions with the

real environment was controlled by sensor’s data. The experiments per-

formed demonstrate that Bayesian Optimization produces a time saving

option with respect to other proposed methods. In particular, the usage

of a quadratic cost function and a parameter that accomplish the best

trade off between exploration and exploitation has been motivated for

their utilization. In addition, the trends generated by matching scores in

simulations and reality had been proved to achieve the same behaviour,

validating the model of algorithm proposed. The complex model and

scene employed in the application produce an additional confirmation to

the initial hypotheses. The insertion of obstacles in the scene had been

demonstrated that can be overcome by the algorithm, also in terms of

robot’s motion planning, thanks to the real time scene update.

In conclusion, the quality inspection was performed positioning the

sensor in the best location for recognizing the model inside the scene.

92

Bibliography

[1] Y. Guo et al. “3D Object recognition in Cluttered Scenes with

Local Surface Features: A Survey”. In: IEEE Trans. Pattern Anal.

Mach. Intell (2014).

[2] J.P.S. do Monte Lima and V. Teichrieb. “An Efficient Global Point

Cloud Descriptor for Object Recognition and Pose Estimation”. In:

IEEE (2016).

[3] K. Alhamzi, M. Elmogy, and S. Barakat. “3D Object Recognition

Based on Local and Global Features Using Point Cloud Library”.

In: ResearchGate (2015).

[4] S. Hinterstoisser et al. “Multimodal templates for real-time detec-

tion of texture-less objects in heavily cluttered scenes”. In: Inter-

national Conference on Computer Vision (2011).

[5] T. Hodan et al. “Detection and fine 3D pose estimation of texture-

less objects in RGB-D images”. In: IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (2015).

[6] S.B. Kotsiantis. “Supervised Machine Learning: A Review of Clas-

sification Techniques”. In: Informatica (2007).

[7] C. Wang et al. “6-PACK: Category-level 6D Pose Tracker with

Anchor-Based Keypoints”. In: arXiv:1910.10750v1 (2019).

[8] H. Tjaden et al. “A Region-based Gauss-Newton Approach to Real-

Time Monocular Multiple Object Tracking”. In: arXiv:1807.02087v2

(2018).

94

Bibliography

[9] C. Song, J. Song, and Q. Huang. “HybridPose: 6D Object Pose Es-

timation under Hybrid Representations”. In: arXiv:2001.01869v1

(2020).

[10] W. Kehl et al. “Deep Learning of Local RGB-D Patches for 3D Ob-

ject Detection and 6D Pose Estimation”. In: arXiv:1607.06038v1

(2016).

[11] C. McGreavy, L. Kunze, and N. Hawes. “Next Best View Planning

for Object Recognition in Mobile Robotics”. In: Intelligent Robotics

Lab School of Computer Science University of Birmingham (2016).

[12] S. Giancola, M. Valenti, and R. Sala. “A Survey on 3D Cameras:

Metrological Comparison of Time-of-Flight, Structured-Light and

Active Stereoscopy Technologies”. In: Springer briefs in computer

science (2018).

[13] R. Basri, S. Katz, and A. Tal. “Direct Visibility of Point Sets”. In:

ACM Transactions on Graphics (2007).

[14] B. Drost et al. “Model globally, match locally: Efficient and robust

3D object recognition.” In: Proceedings of the 2010 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition

(2010).

[15] Hinterstoisser S. et al. “Going Further with Point Pair Features.”

In: Computer Vision—ECCV (2016).

[16] Dai J.S. “Euler–Rodrigues formula variations, quaternion conjuga-

tion and intrinsic connections.” In: Mech. Mach. Theory (2015).

[17] Shiu Y. C. and Ahmad S. “Calibration of Wrist-Mounted Robotic

Sensors by Solving Homogeneous Transform Equations of the Form

AX=XB”. In: IEEE Transactions on Robotics and Automation

(1989).

95

