
Path planning of redundant free-
floating space robots with base atti-
tude restoration and obstacle avoid-
ance

Tesi di Laurea Magistrale in
Space Engineering - Ingegneria Spaziale

Author: Andrea Bersani

Student ID: 977341
Advisor: Prof. Mauro Massari
Academic Year: 2022-23

i

Abstract

The exploitation of autonomous satellite-mounted robotic manipulators for servicing pur-
poses is a topic of interest for the sustainability and affordability of the space industry.
These systems are able to efficiently perform activities that are either dangerous or im-
possible for astronauts, including repair of malfunctioning spacecrafts and removing space
debris of different sizes.
However, while the technology has been demonstrated and multiple missions are under de-
velopment, there are no currently active spacecrafts incorporating an autonomous robotic
arm.
This work’s aim is to propose a new approach that generates multiple possible trajectories
that account for the key criticalities of Spacecraft-Manipulator Systems for the capture a
target satellite.
The paths are generated incrementally exploiting the sampling of the joint space, following
the scheme of Rapidly-Exploring Random Tree algorithms and including the minimization
of a cost function assigned to each trajectory.

Keywords: On-orbit operations, Space robotics, Path planning, RRT algorithm

iii

Sommario

L’uso di manipolatori robotici montati su satelliti per la manutenzione è un argomento
di grande interesse per la sostenibilità e l’accessibilità del settore spaziale. Questi sistemi
sono in grado di svolgere efficientemente attività che sono pericolose o impossibili per gli
astronauti, come le riparazioni di veicoli spaziali malfunzionanti e la rimozione di detriti
di diverse dimensioni.
Nonostante questa tecnologia sia stata dimostrata e ci siano più missioni in fase di
sviluppo, non esistono al momento satelliti attivi che incorporano un braccio robotico
autonomo.
L’obiettivo di questo lavoro è di proporre un nuovo approccio che generi più traiettorie
che tengono in conto delle criticalità dei sistemi satellite-manipolatore per la cattura di
un satellite obiettivo.
Le traiettorie sono generate in maniera incrementale sfruttando il campionamento dello
spazio dei giunti, seguendo lo schema di un algoritmo RRT e includendo la minimizzazione
di una funzione obiettivo, che viene assegnata ad ogni traiettoria.

Parole chiave: Operazioni spaziali, Robotica spaziale, Pianificazione del moto, Algo-
ritmo RRT

v

Contents

Abstract i

Sommario iii

Contents v

1 Introduction 1
1.1 On-Orbit Servicing and Active Debris Removal 1

1.1.1 Space Robots for OOS and ADR 2
1.2 Space Robotics: Review of key technologies 4

1.2.1 Path Planning Problem . 6
1.3 Proposed Approach . 10
1.4 Thesis Structure . 11

2 System Modelling 13
2.1 Definitions and Notation . 13

2.1.1 Euler Angles Representation . 14
2.1.2 Quaternion Representation . 16

2.2 Reference Scenario . 17
2.2.1 Reference Frames Definition . 17

2.3 Target Motion Model . 19
2.3.1 Target Attitude Kinematics . 19
2.3.2 Target Attitude Dynamics . 20
2.3.3 Grasping Point Motion . 20

2.4 Space Manipulator System Model . 21
2.4.1 Kinematics . 21
2.4.2 Manipulator Direct Kinematics . 22
2.4.3 Manipulator Differential Kinematics 25
2.4.4 Dynamics . 29

2.4.5 Generalized Equations of Motion 32
2.4.6 Generalized Jacobian Matrix . 38
2.4.7 Overall Equations of Motion . 39

3 Path Planning Algorithm 41
3.1 Rapidly-Exploring Random Trees . 42
3.2 Proposed Algorithm . 47

3.2.1 Sampling and Metric . 49
3.2.2 Steering Method . 50
3.2.3 Obstacle Avoidance . 53
3.2.4 New Node Optimization . 56
3.2.5 Connection to Goal . 58
3.2.6 Spline Smoothing . 61

4 Simulation Results 65
4.1 Simulation Setup and Parameters . 65

4.1.1 Physical Parameters . 66
4.1.2 Simulation Parameters . 69

4.2 Results . 72

5 Conclusions 81

Bibliography 83

List of Figures 89

List of Tables 91

1

1| Introduction

The exploitation of space has created an endless amount of new possibilities and tech-
nologies, including telecommunications, Earth protection and monitoring, navigation and
exploring missions that massively improved our understanding of the Universe and its
origins.
However, the space sector features criticalities that have to be kept into account and,
eventually, overcome: the environment is hazardous, missions and spacecrafts have very
high costs, and the most commonly exploited orbits (e.g. Geosynchronous Orbits) are
seeing an increase in the number of inhabiting spacecrafts.
For these reasons, spacecrafts are required to have a high degree of autonomy when
launched, and accomplishing the mission goals is made difficult by many possible hazards
of the space environments: radiation, oxidation, and impact with the growing number of
debris. Besides, the biggest differences with respect to non-space industry are the limited
possibility to remove non-functioning spacecrafts, the effort required in order to create
larger orbital structures and the limited possibility of maintenance and repair of orbiting
structures after launch, which causes many missions that could be saved if accessible to
be indefinitely compromised.
On-Orbit Servicing (OOS), Active Debris Removal and On-Orbit Assembly attempt to
remedy these problems, and employing robotics in order to accomplish them has received
a high amount of attention over the past years.

1.1. On-Orbit Servicing and Active Debris Removal

On-orbit servicing refers to tasks such as inspecting, refuelling, upgrading, repairing or res-
cuing satellites that are employed to lengthen a mission’s lifetime. Active Debris Removal
refers to the activity of removing non-functioning satellites from their current economi-
cally and scientifically useful orbits to bring them towards disposal orbits [30]. On-Orbit
Assembly is the set of activities to be performed to build larger orbital structures that
cannot be launched altogether but require multiple smaller modules.
The concept of OOS has been proposed in the 1960s and it has been implemented in many

2 1| Introduction

missions within the last century, with examples ranging from repairing the solar arrays
and microwave antenna of Skylab in 1973, to the Space Shuttle program that successfully
serviced the Solar Maximum Satellite (SMM), Palapa 2 and Westar 6, and ultimately, the
Hubble Space Telescope, that has received a total of five servicing missions [20].
Most of these missions have been carried out either by remotely controlled devices, or by
astronauts through what is typically referred to as Extravehicular Activities (EVA), that,
however, present limitations due to the hazardous environment, typically require careful
planning, and are sometimes unfeasible.
Besides, ADR cannot be performed through these methodologies, and thus robotics can
be employed to perform all of these activities: it revolves around the usage of a chaser or
servicing satellite operating on a target or client satellite or structure.
The most straightforward solution to the problem revolves around using satellite-mounted
robotic arms, named Spacecraft-Manipulator Systems (SMS), to expand the available ser-
vicing missions to environments where manned operations are impossible, such as Geosyn-
chronous Orbits, and to reduce the costs of these operations.
The currently operational robotic arms in space are teleoperated, and they are on board
of the ISS.
The Canadarm2 is a 7-Degrees of Freedom (DoF) teleoperated robotic manipulator that
assists astronauts in their EVAs, aids in on-orbit assembly of the station itself, and it has
also been utilized for On-Orbit Servicing demonstrations. It is based on the Canadarm1
which has been used for Space Shuttle missions utilized to deploy, capture and repair
satellites.
Other manipulators currently operated on board are the Remote Manipulator System
(JEM-RMS) and the European Robotic Arm (ERA), tasked with managing payloads and
assisting activities for astronauts.

1.1.1. Space Robots for OOS and ADR

While no completely autonomous robotic mission has yet been launched for On-Orbit
Servicing, Active Debris Removal or On-Orbit Assembly, several proposed missions and
demonstrators have attempted to show the potentiality of the usage of space robots for
these tasks.
The pioneer mission in the field has been the Engineering Test Satellite-VII (ETS-VII),
which was launched on 28th November 1997. It included an assembly of a client and
servicer, and the latter was provided with a robotic manipulator arm to verify on-orbit
technologies such as autonomous rendez-vous and docking, monitoring of the target satel-
lite, replacement of its units, refuelling and assembly.

1| Introduction 3

The Demonstration of Autonomous Rendezvous Technology (DART) included a secondary
satellite that has been launched on 15th April 2005 and encountered failure during its op-
erations. Its mission goal included an autonomous rendezvous, approach, and flyby of a
target satellite.
Another successful demonstration of autonomous On-Orbit Servicing has been the Orbital
Express, developed by DARPA and Boeing since 1999 and finally launched in 2007. The
main goal of the mission was to establish on-orbit satellite servicing infrastructure for
routine, cost-effective and autonomous resupply and reconfiguration. More in detail, the
mission’s operations included the launch, the far-field and near-field rendezvous, and ulti-
mately the capture and mating operations, followed by release, separation, and disposal.
The mission included two spacecrafts, ASTRO and NEXTSat. The former had the role of
a servicer with a 3 meters length robotic arm, utilized to replace expendable components,
while the latter functioned as the client satellite that included multiple features to ease
its capture by the servicer.
DARPA has also developed the Front-end Robotics Enabling Near-term Demonstration
(FREND), a 7-degrees-of-freedom robotic arm in the context of the Spacecraft for the
Universal Modification of Orbits (SUMO), which successfully tested and evaluated critical
challenges in the combination of stereophotogrammetric imaging with the FREND robotic
manipulator arm on ground in the Naval Research Laboratory (NRL). The FREND arm
and these evaluation will be key in the development of the future projects of DARPA,
the Robotic Servicing of Geostationary Satellites (RSGS) which is aimed at developing a
Robotic Servicing Vehicle (RSV), capable of capturing and manipulating targets through
the usage of a manipulator arm; and the Phoenix program, aimed at the removal and
eventual reuse of parts of decommissioned satellites in GEO orbits.
The Deutsche Orbital Servicing (DEOS) mission has been studied by Deutsche zentrum
für Luft- und Raumfahrt (DLR), and it involved the design of an on-orbit servicing satel-
lite with robots and related manipulation tools, with capability of capturing and servicing
faulty satellites in multiple orbits, and it was expected to carry a servicer and a client
in order to perform tests for series of key technologies, such as rendezvous and docking,
manipulation, disposal to graveyard orbits or atmospheric reentry.
The European Space Agency (ESA) has also promoted the CleanSpace initiative, for which
a first mission study, e.Deorbit, has been carried out first as a debris removal of ENVISAT,
to then being renamed and modified to CleanSpace-1 to accomplish a wider variety of
functions than ADR, including On-Orbit Servicing of multiple satellites. The spacecraft
for this mission will capture targets utilizing multiple arms that will wrap around them.

4 1| Introduction

1.2. Space Robotics: Review of key technologies

A Space Robot, or Space Manipulator System (SMS), is generally constituted by a base
satellite on which one or multiple manipulator arms are mounted, that typically carry
end-effectors, devices mounted at the free extremity of the arm and that will accomplish
capture and manipulation tasks.
Many categorizations of space robots can be found in literature, and a brief summary is
hereby given in order to more accurately describe the key technologies this work will refer
to.
A first differentiation can be made between arms mounted on large space structures, such
as the ISS, and manipulators mounted on spacecrafts of comparable size and inertia [35].

• Manipulators mounted on large orbital structures : Currently operational manipula-
tors in space are on board of the ISS, and have been listed in previous paragraphs.
They can be treated as fixed-base manipulators due to the fact that the mass and
inertia of such structures are very high in comparison to mass and inertia of the
manipulators, and that even when a heavy payload is transported by a manipulator,
the influence on the state of the orbital structure can be in most cases neglected.

• Manipulators mounted on small satellites : Whenever the manipulators are of com-
parable mass and size with the satellites they are mounted on, the coupling dy-
namic between the motion of the manipulator and position and orientation of the
base satellite becomes of greater effect. These systems are non-holonomic, and the
coupling effect shall either be compensated by the Attitude and Orbital Control Sys-
tem (AOCS) of the satellite, or be minimized within the manipulator arm trajectory
planning.

Within small satellite-mounted manipulators, a further division can be traced between
scenarios in which the Attitude and Orbital Control System is acting during the capture,
and other scenarios in which it is completely turned off [7].

• Free-flying space robot : Free-flying space robots are characterized by an active AOCS
through the duration of the capture manoeuvre. In this way, thrusters or other
actuators such as reaction wheels can compensate for the effect of the torques on
the base induced by the motion of the manipulator. The satellite’s position and
orientation can follow a prescribed trajectory, and end-effectors can reach their
target in pre-determined configurations, requiring the simultaneous control of the
base and of the manipulator.

1| Introduction 5

• Free-floating space robot : Free-floating space robots assume to have no external
forces acting on the system (including the AOCS), thus since linear and angular
momenta are conserved, they will feature a base that moves due to the reaction
forces and torques imposed my the motion of the manipulator. It has the advantage
of not utilizing thrusters during the operations, hence of reducing fuel consump-
tion. The system shows nonholonomic behaviour due to the non-integrability of the
momentum equations.

Differences can also be individuated in terms of the mission objective to be accom-
plished. In particular, the target satellites can be classified between cooperative and
non-cooperative [33].

• Cooperative targets : cooperative targets are defined as those satellites that typically
feature an AOCS that is at least partially functioning. This means that they can
aid the servicer satellites by correcting their position and attitude. These targets
are typical of OOS missions.

• Non-cooperative targets : these targets are either unable to control their attitude
because of a damaged AOCS or they are at the end of their lifetime, thus showing a
behaviour of uncontrolled tumbling. These are the common targets of ADR missions
and require much more careful planning for the chaser operations.

Typically, the capturing process starts with far and close-range rendezvous manoeuvres,
and then the operations for robotic arms can be subdivided into three or four main phases
[9, 33].

1. Observation and Planning Phase is the initial required phase in which the chaser is
put at a safe distance from the target such that it can estimate its state in terms
of position and velocity and its parameters like its mass or its geometrical features
with the highest accuracy possible, to then be able to plan effectively the subsequent
phases of the mission.

2. Pre-Grasping Phase includes the final approach of the satellite-manipulator system
towards the grasping point.

3. Post-Grasping Phase is the final phase, it includes the impact of the manipulator
end-effector with the target satellite, the effective capture and finally the post-
capturing stabilization, necessary to accomplish the mission goals of OOS or ADR.

6 1| Introduction

1.2.1. Path Planning Problem

The path planning of space-manipulator systems constitutes the pre-grasping phase and
it is the determination of the displacement, velocity and acceleration of the space robot
to have its end-effector reach an identified grasping point on the target satellite.
Path planning can be performed in the Cartesian space, defining the end-effector trajec-
tory, velocity and acceleration to then employ techniques such as inverse kinematics or
dynamics [40] to compute the relative time evolution of the joint variables or the required
torques; it can be performed in the configuration space, where the joint variables trajec-
tories are defined to then calculate the resulting end-effector position and orientation [6].
The main complication for space robots with respect to Earth-based robots is that the
latter are typically considered as fixed-base, while for space robots the base is uncon-
strained and sometimes uncontrolled, leading to 6 more Degrees of Freedom (DoF) for
the problem [39].
For this reason, research for this environment had to not only take into account typical
parameters to be maximized such as manipulability, or to be minimized such as control
effort for the manipulator, but also a minimization on the impact of the robotic manipu-
lator motion on the base attitude and translation.
Furthermore, Space is typically a dynamic environment, where multiple moving obstacles
can be present in the workspace of the robot. Thus, the techniques for obstacle avoidance
have to take this into account.

Obstacle Avoidance

Avoiding collisions with objects is key in achieving the goal of the missions for space
robots. The problem with obstacles is twofold: first is modelling the obstacles in order to
accurately represent them with a degree of safety with respect to model inaccuracy and
the second is the dynamic nature of the obstacles for space applications.
Approximately accurate models of different obstacles with geometric primitives based on
super-quadric approximation have been studied [24, 25]. Since most of the satellites and,
in general, spacecrafts, are composed of standardized modules, objects can be modelled
as a composition of surfaces defined by these curves, without which obstacles would be
modelled as convex surfaces with loss of workspace.
Obstacles can be treated typically as hard constraints for optimization problems or sampling-
based approaches, however Artificial Potential Field (APF) methods, first introduced in
[15], typically define a repulsive force with respect to the obstacles and an attractive
force towards reaching the goal, relaxing the problem in terms of constraints while still
guaranteeing collision-free path planning. The APF methods were successfully applied

1| Introduction 7

to free-floating space robots as standalone algorithms for avoiding obstacles of different
dimension and shape in space, first by finding a collision-free path for the end-effector,
and then applying inverse kinematics to apply a simple collision detection based on the
depth and direction of the links [22]; APF methods employing Laplace potential fields
have been investigated to avoid local minima within the obstacles themselves [50]. Due
to the translation of constraints into parts of the objective function, the APF have been
used in conjunction with other optimization methods, for example reinforcement learning
[21] or A* algorithm [12].
Avoiding obstacles can also be based on Relative Velocity between the obstacles and the
links and joints of the manipulator. Enhanced version of the Velocity Damper Method
(VDM) [53] has been employed in order to damp the relative velocity that the manip-
ulator has with obstacles, in particular only if the closest point of the manipulator to
the obstacle, continuously computed, falls within a pre-defined safety distance from the
object.
Optimization Techniques are available in order to include the distances between obstacles
and manipulator as part of the objective function. In particular, various rationales can be
utilized in order to find the closest point to the obstacle, and then attempt to maximize
this distance while optimizing other quantities, such as manipulator manipulability and
base attitude change. This approach has been employed with controlled base and manip-
ulator for a close rendezvous manoeuvre [17, 18].
One of the most promising set of algorithms to avoid collisions is Sampling-based path
planning, which has been extensively covered for Earth mobile robots, and it has been ex-
plored for space manipulators. These revolve around generating random samples through
a pre-defined metric in order to sample the state space and find a feasible solution to
reach the goal state.
In particular, the A* algorithm, which is originally a grid search algorithm, has been
modified to use its rationale to develop a sampling-based method that bases its search on
the currently most promising path towards the goal through an heuristic evaluation [34].
Other sampling-based algorithms that were utilized are the Rapidly-exploring Random
Trees (RRT), first introduced in [16]. These methods generate a tree of sample states (ei-
ther in the workspace or in the joint space) with a bias towards the unexplored regions of
the state space and perform well with non-holonomic constraints and for dynamic obstacle
avoidance. Their usage for space manipulators has been explored in [37], and modified
methods such as the Bidirectional RRT (BiRRT), growing trees that eventually intersect
from both the initial state and one or multiple final state, have shown great performance
in avoding collisions [2, 38].
RRTs have also been applied to optimal motion planning (RRT*) [14], utilizing sampling

8 1| Introduction

towards unexplored regions while minimizing a certain cost function. For space manipu-
lators, nonlinear gradient-based optimizations can be embedded in a RRT*, for example
minimizing the mechanical energy and the actuator actions for the trajectory optimiza-
tion [41]. Typically, RRT methods require a smoothing technique for the trajectory that
is initially jerky due to the nature of the sampling. This can be done in two different
steps, finding waypoints through the RRT method to then apply spline fitting afterwards
[52].

Base Reaction Minimization

The dynamical coupling between the base satellite and the robotic manipulator is typ-
ically troublesome as it makes the end-effector path harder to compute. Furthermore,
if the reaction forces are too large in magnitude the AOCS of the satellite might lack
the power to compensate them. Their minimization is of pivotal importance for Space
Manipulator Systems.
A proposed solution is the Disturbance Map (DM) that has then been improved to an
Enhanced Disturbance Map (EDM), constructed through a singular value decomposition
of a matrix ruling the dynamic coupling that allows to determine "hot zones" and "cold
zones" for which the robot manipulator motion has a greater or lower impact on the
satellite attitude [8].
The Virtual Manipulator (VM) has been introduced in [43] as a way of modelling the
system without external action on the base in order to produce reaction-less motion of
the arm, and different models based on it have been proposed [54].
Other solutions are based on a coordinated control of the satellite base and of the manipu-
lator [32]. Since both the attitude control system and the on-board computer have limited
capabilities, the manoeuvre can be divided in two parts: a feed-forward attitude control
against the robot’s reaction forces and a control on the arm such that it produces forces
that can be counteracted [31]. A later work uses feedback linearization of the dynamic
model in order to introduce an optimization problem based on quaternions, yielding a
final solution with asymptotical stability in terms of base orientation [1]. The combina-
tion of coordinated control and navigation through cameras has been studied, utilizing
Proportional-Derivative controllers to optimize the trajectory [47, 48].
Another possibility is to use Near-Optimal path planning in order to enforce base attitude
restoration from initial to final time. This has proven useful especially in bidirectional
methods employing Lyapunov functions minimizing the difference between the initial and
final manipulator states attitude [46].
The Reaction Null Space [28, 29] has received particular attention as it defines a set of

1| Introduction 9

joint velocities that are projected in the null space of the torque acting on the base. In
particular, it has been defined both at the velocity level, in the equations for linear and
angular momenta, and at acceleration level, in order to treat problems with external forces
acting on the system. The method presents the limit of requiring space robots with a
number of degrees of freedom at least equal to the number of component of the torque to
be zeroed plus the number of end-effector coordinates to be controlled. A solution that
has been proposed involves minimizing the torque acting on the base in the least-square
sense, including constraints on the acceleration of the joints [5].

Optimization Methods

Various quantities can be optimized for the trajectory planning of a space robot. An
example has been given [17, 18] that includes obstacle avoidance within the objective
function, but collisions can be included as constraints to optimize other parameters.
Considering the contact force between the servicer’s end-effector and the grasping handle is
very important in the guidance of the robotic manipulator as it is a pseudo-instantaneous
external force that will enter the dynamics equations. For this problem, two solutions
are possible: one is to impose zero relative velocity between the end-effector and the
grasping point at the final time, the other is to have the contact force pass through the
center of mass of the servicing satellite system, or to minimize the angle that the force
has with it. This way, an optimal capture is defined in a closed form where the final
point of the Optimal Control Problem has been already optimized beforehand, leaving
the possibility to optimize other quantities, such as the torque imposed by the manoeuvre
on the spacecraft’s base [10].
The energy demand of the system must also be kept as low as possible due to the limited
possibilities of the electric power systems in space. Examples have been given in which
the motion of the robot has been decomposed into primitives to then compute the power
requested as the integral over the course of the manoeuvre of product between the joint
torques and the joint velocities, and then applying an optimization method such as the
Genetic Algorithm (GA) to minimize it [4].

10 1| Introduction

1.3. Proposed Approach

This work’s main aim is to present a procedure for the trajectory planning of a Spacecraft-
Manipulator System in free-floating mode that can be adapted to multiple missions and
capture scenarios.
The approach of choice includes general requirements for these manoeuvres such as obsta-
cle avoidance and time minimization, and includes an overall minimization of the change
in attitude between the initial and final conditions of the Spacecraft-Manipulator System.
A sampling-based path planning approach has been selected in order to accomplish the
capture task prioritizing a robust obstacle avoidance, which this type of algorithm guar-
antee even in dynamic environments.
This RRT algorithm generates a path for the end-effector towards a goal condition by
exploring the configuration space of the manipulator joint variables which will produce a
rotation of the chaser base spacecraft.
The attitude variation is not minimized along the whole trajectory, leaving the system
with a wider manoeuvre capability, but the final attitude configuration is brought to a
desired value through optimized sample generation.

The path planning for the mounted robotic manipulator is based on a simplified orbital
model: firstly, both the target and the chaser lie on circular orbits; secondly, the orbital
perturbations such as atmospheric drag, zonal harmonics and solar radiation pressure
are not included in the model; thirdly, the rendezvous manoeuvre of the chaser ensemble
with the target satellite is considered completed beforehand by the Attitude and Orbital
Control System; lastly, only manoeuvres of short duration are considered.
The model of both the target and the chaser spacecraft is also subject to hypotheses: both
systems are assumed to be composed of rigid bodies only, and the physical properties of
the rigid bodies, such as masses, inertia and dimensions to be completely known.
Finally, the navigation and sensor errors are not considered: the states of both the
spacecraft-manipulator system and of the target are exactly identified at every time in-
stant of the manoeuvre.

1.4. Thesis Structure

The thesis is divided into four main sections: first, in chapter 2, the overall model of the
capture scenario is described: it includes an introduction of the definitions and notation
utilized for the work, followed by a general description of the simplified orbital models
the work is referring to.
This chapter also includes the detailed model for the kinematics and the dynamics of the
spacecraft-manipulator system that will then be employed for the trajectory planning.

Then, in chapter 3 the path planning approach is discussed in detail, starting from a brief
overview of the Rapidly-Exploring Random Tree algorithms and their variants.
Afterwards, the proposed path planning approach is described from the definition of each
of the composing blocks, including the obstacle avoidance method and the optimized
nodes generation.
Ultimately, the path interpolation with polynomial splines is discussed.

Chapter 4 describes the case study through which the proposed approach is validated,
including a quantitative description of the chaser and the target.
The results of the case study simulation are then presented and discussed, including an
analysis on the qualities and the limits of the procedure.

Finally, chapter 5 presents a summary of the work, the overall assessment on the perfor-
mance of the approach and proposals on future additions for further validation.

13

2| System Modelling

2.1. Definitions and Notation

The representation of the basic geometric entities follows [40], and is organized as follows:

• Reference Frames are identified by Σn and they are defined from their origin On

and three orthonormal axes i, j,k.

• Vectors are identified by vk(P) where the superscript indicates the reference frame
in which said vectors are expressed. Whenever present, the subscripts indicate the
object to which the vector is referring to (in terms of position, velocity, etc.)

• Rotation Matrices are identified by Rj
k, where subscripts indicate the reference

frame from which the quantities are rotated, and the superscripts indicate the ref-
erence frame to which the quantities are referred after the rotation. These matrices
are orthonormal, hence R−1 = RT .

The general representation of a point P in space with respect to two different reference
frames Σi−1 and Σi is:

piP = oii−1 +Ri
i−1p

i−1
P (2.1)

The quantities in eq. (2.1) are:

• piP : position of the point P in the reference frame Σi.

• oii−1: vector indicating the position of the origin of Σi−1 expressed in Σi

• Ri
i−1: rotation matrix from Σi−1 to Σi.

• pi−1
P : vector expressing the position of the point in Σi−1.

This transformation between reference frames is available in a more compact form in
what is called Homogeneous Transformation Matrix which combines the translation and
the rotation between two different reference frames. In this framework, homogeneous
vectors are represented by their three spatial components as usual, and by a fourth unit

14 2| System Modelling

component that is introduced for dimensional congruence in the transformations:

p̃ =

[
p

1

]
(2.2)

Then, the transformation from a reference frame to another is simply expressed as:

p̃iP = T ii−1p̃
i−1
P (2.3)

Where the Homogeneous Transformation Matrix is:

T ii−1 =

[
Ri
i−1 oii−1

0T 1

]
(2.4)

The vector 0T represents a null row vector, and to these matrices the rules of consecutive
transformations through consecutive matrix multiplication apply as if they were common
rotation matrices. It is however important to highlight a major difference in the fact
that since these matrices are not orthonormal, their inverse differs from their transpose
T ii−1

−1 ̸= T ii−1
T .

A common definition in literature that will be utilized throughout the work to describe the
kinematics and dynamics of the Space Manipulator System is the skew-symmetric matrix

of a vector a =
[
ax ay az

]T
, which can be utilized to symbolize the cross product

between a two vectors b = a× c in a vector-matrix notation b = a×c:

a× = S(a) =

 0 −az ay

az 0 −ax
−ay ax 0

 (2.5)

2.1.1. Euler Angles Representation

Euler angles represent a 3D rotation as a combination of three consecutive rotations
around arbitrarily chosen axes from the reference frames defined by the previous rotation.
In this way, any rotation in plane can be represented by the three angles, [φ, ϑ, ψ].
The axes about which the rotation is performed modify the structure of the rotation ma-
trices as in (2.6), and the rotation sequence defines the order in which they are combined

2| System Modelling 15

in order to find the overall rotation matrix.

Ri(α) =

1 0 0

0 cosα − sinα

0 sinα cosα

Rj(β) =

 cos β 0 sin β

0 1 0

− sin β 0 cos β

Rk(γ) =

cos γ − sin γ 0

sin γ cos γ 0

0 0 1

(2.6a)

(2.6b)

(2.6c)

Hereon the notation utilized is the Roll-Pitch-Yaw, or Z-Y-X series of rotations, in which
to rotate quantities from a reference frame to another, the following sequence of rotations
is utilized: a rotation ψ about i, a rotation ϑ about j and ultimately a rotation φ about
k.
This generates the overall rotation matrix:

R(φ, ϑ, ψ) = Rk(φ)Rj(ϑ)Ri(ψ) (2.7)

In order to retrieve the Euler parameters from the overall rotation matrix, the following
relations apply. For θ ∈

(
−π

2
; π
2

)
:

φ = atan2(r21, r11)

ϑ = atan2
(
−r31,

√
r232 + r233

)
ψ = atan2(r32, r33)

(2.8a)

(2.8b)

(2.8c)

While for θ ∈
(
π
2
; 3
2
π
)
:

φ = atan2(−r21,−r11)

ϑ = atan2
(
−r31,−

√
r232 + r233

)
ψ = atan2(−r32,−r33)

(2.9a)

(2.9b)

(2.9c)

And they are undefined for cosϑ = 0, case in which only the sum of ψ and φ can be
obtained.
The advantage in using Euler angles is the immediate physical interpretation that can
be given on their value and the minimal representation, meaning that three parameters

16 2| System Modelling

are utilized to describe the same number of rotations in space. The issues concerning the
Euler angles are the representation singularities in ϑ = ±π

2
.

2.1.2. Quaternion Representation

In order to avoid representation singularities, quaternions can be utilized for the repre-
sentation of rotations.
Quaternions are unitary norm vectors of four elements based on the Euler axis and angle
representation, and are thus non-minimal as four parameters are utilized to represent
three rotations in space. Their elements are divided between what is typically referred to
as the scalar part η and the vector part ε. They are defined as:

η = cos
ϑ

2

ε = r sin
ϑ

2

(2.10a)

(2.10b)

Where r is the axis with respect to which the rotation is performed, and θ is the angle of
the mentioned rotation.
The rotation matrix between a fixed and a rotated reference frame through quaternions
is:

R(η, ε) =

2(η
2 + ϵ2x)− 1 2(ϵxϵy − ηϵz) 2(ϵxϵz + ηϵx)

2(ϵxϵy + ηϵz) 2(η2 + ϵ2y)− 1 2(ϵyϵz + ηϵx)

2(ϵxϵz + ηϵy) 2(ϵyϵz + ηϵx) 2(η2 + ϵ2z)− 1

 (2.11)

The inverse transformation is always possible, and defining the elements of the rotation
matrix as rij where i is the row and j is the column they belong to, it is possible to obtain:

η =
1

2

√
r11 + r22 + r33 + 1

ε =
1

2

sign(r32 − r23)
√
r11 − r22 − r33 + 1

sign(r13 − r31)
√
r22 − r33 − r11 + 1

sign(r21 − r12)
√
r33 − r11 − r22 + 1

(2.12a)

(2.12b)

Complementary to the Euler angles description, the unit quaternions avoid representation
singularities but lose an immediate physical interpretation.

2| System Modelling 17

2.2. Reference Scenario

A typical scenario for an on-orbit capture is analyzed. A target satellite is orbiting Earth,
and the chaser satellite has completed the far rendezvous manoeuvre in order to reach a
position from which the manipulator capture sequence can be started.

2.2.1. Reference Frames Definition

In order to accurately model the system, reference frames to which physical quantities of
either the target satellite or the servicer refer to are defined.

• The Earth-Centered Inertial reference frame ΣECI , is used to define a reference
frame to which quantities of both satellites can be referred to.
Its origin is in the center of the Earth, and its axes are: XECI on the celestial
equatorial plane, pointing to the Vernal equinox direction, ZECI pointing towards
the Celestial North Pole and YECI as to form a right-handed frame.
Any vector that is expressed in an inertial reference frame will have its superscript
omitted to lighten the notation.

• The Local Vertical Local Horizontal reference frame can be defined individually both
for the chaser and for the target ΣT

LV LH ,Σ
C
LV LH , it is a moving reference frame with

respect to the inertial reference frame.
It has its origin in the center of mass of the satellite, and its axes are: xLV LH in the
direction of its position vector in the inertial reference frame, zLV LH perpendicular
to the spacecraft’s orbital plane and directed as its angular momentum, and finally
yLV LH as to form a right-handed frame.

• The spacecraft Body Axes frame, that will be defined both for the chaser ΣC
B and

for the target ΣT
B, is a frame attached to the satellite body itself.

Its origin is in the Center of Mass (CoM) of the satellite and its axes are directed
as the principal axes of inertia for simplicity, as common in literature.

The two spacecrafts are treated in the same framework for what concerns the orbital
mechanics of the two systems, whereas the kinematic and dynamic model differs between
the target, presented in section 2.3, and the chaser, for which the presence of the robotic
arm adds terms in the computation of the attitude kinematics and dynamics, treated in
detail in section 2.4.

18 2| System Modelling

Figure 2.1: Capture Scenario with Reference Frames

Reference Frames Transformations

The defined reference frames will have a relative distance and orientation. In order to
refer quantities that are defined with respect to a certain reference frame to another, it is
possible to apply Homogeneous Transformation Matrices to describe the transformation
of the quantities between different frames.
The inertial reference frame is considered to be the frame to which every other frame
must refer to, as it is fixed and the transformations from and to it are simply defined.
LVLH frames are rotating with the satellite’s progress along its orbit. For this reason,
their orientation depends on the spacecrafts’ mean motion n.
Furthermore, they are centered in the satellite (or satellite base for the chaser) CoM, thus
a translation with respect to the center of the ECI frame is necessary. The homogeneous
transformation matrix defining the relationship between ΣLV LH and ΣECI frame is:

TLV LHECI (t) =

cΩ cosnt− sΩci sinnt cΩ sinnt+ sΩci cosnt sΩ sin i rx(t)

−sΩ cosnt− cΩci sinnt −sΩ sinnt− cΩci cosnt cΩsi ry(t)

si sinnt −si cosnt ci rz(t)

0 0 0 1

 (2.13)

Where cΩ, si are respectively the cosine and sine of constant angles Ω, which is the Right
Ascension of the Ascending Node (RAAN), and i, which is is the orbit’s inclination. t is
the explicit dependence on time and rS =

[
rx(t) ry(t) rz(t)

]
is the satellite’s position

vector in the ECI frame.
The transformation between the ΣECI and the body axes ΣB of the spacecrafts depends

2| System Modelling 19

on the representation of the orientation of the latter with respect to the former. Utilizing

Euler angles that are grouped in a vector φ =
[
φ ϑ ψ

]T
, having defined the rota-

tion matrix between the two frames in section 2.1.1 it is possible to write the following
homogeneous transformation matrix:

TBECI(φ(t)) =

[
RB
ECI(φ(t)) rS(t)

0T 1

]
(2.14)

A combined rotation can be utilized in order to directly obtain the transformation from
the body frame to the respective object’s LV LH frame, that share the same origin.

TBLV LH (t,φ(t)) =

[
RECI
LV LH(t)R

B
ECI(φ) 0

0T 1

]
(2.15)

Where RECI
LV LH ∈ R3×3 is the inverse of the submatrix composed by the first three rows

and columns of TLV LHECI . Since this is a rotation matrix, it is orthonormal and R−1 = RT .
Under the assumption of manoeuvres of short durations, it is possible to assume that
the motion of the satellites with respect to Earth is negligible, thus the effects of orbital
mechanics can be completely ignored such that ΣLV LH features the same orientation for
the chaser and the target, and can thus considered fixed in time, becoming a target-
centered Inertial Reference Frame, hereon called ΣI .
Not modelling the orbital mechanics, the relative target position rIC depends only on the
coupling mechanism within the chaser satellite.
The homogeneous transformation matrix used to describe the chaser relative motion and
orientation is:

TB,CI =

[
RB,C

I rIC
0T 1

]
(2.16)

2.3. Target Motion Model

2.3.1. Target Attitude Kinematics

The attitude kinematics are defined as the time evolution of the orientation of a satellite’s
body frame with respect to the inertial reference frame.
Thus, they are expressed as the first derivative of the representation of choice, which is

20 2| System Modelling

in this case the quaternions, for the rotations:

q̇ =
1

2

0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

q (2.17)

It is also possible to define the same expression as explicitly depending from the angular
velocity through a proportionality matrix depending on quaternions:

q̇ =
1

2
Ξ(q)ω (2.18)

The reason for which the quaternions are hereby utilized is detailed in section 3.2.4.

2.3.2. Target Attitude Dynamics

The attitude dynamics for the target are described by the Euler’s equations for an un-
controlled satellite. They can be expressed in matrix form:

IT ω̇ − ITω × ω = 0 (2.19)

Where IT is the inertia tensor of the target satellite, ω is its angular velocity with respect
to the target-centered LV LH frame, expressed in body axes.

2.3.3. Grasping Point Motion

Lastly, combining the models for the description of the target’s motion, it is possible
to define the trajectory of the grasping point. Defining a reference frame ΣGP that will
identify the preferred capture orientation, and assuming every body to be rigid, a constant
transformation matrix identifying position and orientation of the grasping point and its
frame can be defined in ΣB,T :

TGP
B,T =

[
RGP
B,T xB,TGP

0T 1

]
(2.20)

Thus, it is simple to obtain its trajectory in time, as it depends on the time evolution of
the transformation matrices, connected with the time evolution of the quaternions, which
is known as the dynamics of the system are fully described.

2| System Modelling 21

2.4. Space Manipulator System Model

The servicing satellite is composed by a base satellite, with degrees of freedom corre-
sponding to the translational and rotational variables, and by the manipulator arm, a
chain series of rigid bodies.

Figure 2.2: Chaser Model

2.4.1. Kinematics

For what concerns the kinematic and dynamic model of the system, the framework pre-
sented in [45] has been followed.
The kinematic formulation for the system is based on the division of the problem between
the kinematics of the base satellite and the kinematics of the manipulator, both described
in the target-centered ΣI frame.
For the base satellite kinematics it is preferred to use Euler angles for the rotations repre-
sentation as they are a minimal attitude representation and thus a minimum number of
variables for the equations of motion. The angular velocity of the body and the derivatives
of the Euler angles are related by summing the contributions of the angular rates of each
Euler angle about its respective axis:

ω = ψ̇i+ ϑ̇R(ψ)j+ φ̇R(ϑ)R(ψ)k (2.21)

These equations are available in matrix form and they can be specified for the examined
case of selection of RPY angles. The relation that will be used here onward relates the

22 2| System Modelling

rate of change of the Euler angles to the angular velocity of the satellite body:φ̇ϑ̇
ψ̇

 =

0
sinψ
cosϑ

cosψ
cosϑ

0 cosψ − sinψ

1 tanϑ sinψ tanϑ cosψ

ωxωy
ωz

 (2.22)

The Euler Angles can be integrated, thus it is possible to obtain the relative orientation of
the chaser spacecraft base with respect to the LVLH frame knowing the angular velocity
of the body by integrating (2.22).

2.4.2. Manipulator Direct Kinematics

The manipulator direct kinematics are used in order to find the position of the end-effector
rEE and its rotation matrix REE

I with respect to the base spacecraft, and the position of
the various joints of the chain and of the links centers of mass.
The Denavit-Hartenberg convention is a systematic and general method that defines the
relative position and orientation of two successive links, in order to compose the transfor-
mation matrices that are then used to transform the end-effector position and orientation
to the satellite body frame.
Firstly, it is possible to define individual joint reference frames. They are found starting
from the previous joint and link. In particular, the reference frame centered in the i− th
joint is denominated Σi−1 and it is aligned with the link i− 1th.
Thus, the definition of the reference frames is as follows:

1. The axis zi is along the axis of joint i+ 1.

2. The origin Oi of the reference frame is at the intersection of zi with the common
normal to zi and zi−1. The common normal is the line containing the minimum
distance segment between the two lines.

3. Axis xi is along the common normal to axes zi and zi−1 with positive direction from
joint i to joint i+ 1.

4. Axis yi is chosen as to form a right-handed frame.

According to this convention, some particular cases fall outside of its description:

• Σ0 has its axis x0 and its origin O0 undefined. Typically, they are chosen arbitrarily
in the simplest way possible (e.g. aligning x0 with the body frame x-axis and
choosing the origin of the reference frame at the midpoint of the physical axis of the
first joint when the latter is revolute).

2| System Modelling 23

• Σn has its axis zn undefined. Since this joint is revolute most of the time, the axis
is taken parallel to zn−1.

• When two consecutive axes intersect, the direction of xi is arbitrary.

Figure 2.3: Denavit-Hartenberg Convention

The Denavit-Hartenberg parameters are obtained from the definition of two consecutive
reference frames. They are four geometric parameters that are defined as follows:

• ai is the distance between two origins of two consecutive reference frames.

• di is the coordinate of the origin of the i − th reference frame as measured along
zi−1.

• αi is the angle between axes zi−1 and zi taken positive when the rotation is counter-
clockwise.

• θi is the angle between axes xi−1 and xi taken positive when the rotation is counter-
clockwise.

Having defined these parameters, the Homogeneous Transformation Matrices between two
reference frames can be identified by the sequence of rotations and translations performed
to transform the two consecutive reference frames:

Aii−1 =

cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1

 (2.23)

24 2| System Modelling

By identifying the end-effector reference frame with the n − th reference frame, it is
possible to utilize the rule of consecutive transformations to directly obtain its relative
position and orientation with the first joint of the manipulator:

TEE0 =
n∏
i=1

Aii−1 (2.24)

To ease the definition of the dynamics of the system (in section 2.4.4), it is necessary to
highlight the dependencies of the motion of the center of mass of the various links with
respect to the joint variables.
A simplification is hereby utilized: the center of mass of each link is coincident with the
midpoint of the line between the two adjacent joints.
Thus, the position of the center of mass of the i− th link with respect to the i− th joint
reference frame is:

xG,i =

1
2
ai cos θi

1
2
ai sin θi

di
2

 (2.25)

It is also possible to define the reference frame ΣG,i which is based on the homogeneous
transformation between two consecutive joint reference frames. In this way, the reference
frame in the center of mass of each link is aligned with the one in the next joint and it
depends on the previous joint variable.

AG,ii−1 =

cos θi − sin θi cosαi sin θi sinαi

1
2
ai cos θi

sin θi cos θi cosαi − cos θi sinαi
1
2
ai sin θi

0 sinαi cosαi
di
2

0 0 0 1

 (2.26)

This representation, in general, does not coincide with the exact center of mass of the
link, especially whenever both ai and di are non-zero. In this case, however, it is assumed
(as is common in literature) that either variable is zero for each link.

Finally, the complete direct kinematics equations can be found: they are based on trans-
forming each quantity to ΣI .
It is possible to define a constant transformation matrix from the satellite base body
frame to the first joint of the manipulator, similarly to the grasping point in eq. (2.20):

T 0
B =

[
R0
B xB0

0T 1

]
(2.27)

2| System Modelling 25

This allows to write the complete transformation from ΣB,C to ΣEE:

TEEB = T 0
B

n∏
i=1

Aii−1 (2.28)

Finally, it is possible to transform every quantity to the Local Vertical Local Horizontal
Frame, in order to define the framework connecting the end-effector position and orien-
tation (and the relative velocities) with the base frame, highlighting the dependencies on
the quantities. This is valid for the end-effector (2.29), for the joint positions (2.30) and
for the links Centers of Mass positions (2.31).

TEEI = TBI (φ)T 0
B

n∏
i=1

Aii−1(qi(t)) (2.29)

T kI = TBI (φ)T 0
B

k∏
i=1

Aii−1(qi(t)) (2.30)

TG,kI = TBI (φ)T 0
B

k−1∏
i=1

Aii−1(qi(t))A
G,k
k−1(qk(t)) (2.31)

2.4.3. Manipulator Differential Kinematics

The differential kinematics individuate the relations existing at the velocity or acceleration
level, named first order and second order differential kinematics respectively, between the
end-effector and the joint variables, both for the linear and angular velocities and accel-
erations. The same framework can be followed in order to find the relationships between
the CoM of the links and the joint variables.
This section computes the velocities of the links CoMs and of the end-effector by sepa-
rating the effects of the motion of the chaser base and of the manipulator motion, while
referring the end-effector velocity to the inertial reference frame ΣI .
In particular, it is possible to regroup the linear and angular velocities of the end-effector

and of the base satellites in the 6 × 1 generalized velocity vectors Vb =
[
vb ωb

]T
and

VEE =
[
vEE ωEE

]T
, obtaining the following relation.

VEE = JEEB Vb + JEEθ̇ (2.32)

26 2| System Modelling

The first order differential kinematics for the end-effector of the manipulator is a linear
relationship, and it can be directly expressed in ΣI , and it is indicated by (M):[

v
(
EEM)

ω
(
EEM)

]
=

[
JP (q)

Jω(q)

]
q̇ (2.33)

The Geometric Jacobian is defined exploiting the Denavit-Hartenberg description of the
system, and can be computed separately for the linear and the angular portions. In
particular, the linear velocity of the end-effector can be written as:

ẋ
(
EEM) =

n∑
i=1

∂xEE
∂qi

q̇i =
n∑
i=1

JP,iq̇i (2.34)

The angular velocity can be similarly written as:

ω̇
(
EEM) =

n∑
i=1

Jω,iq̇i (2.35)

Each of the terms of the summation multiplying a joint coordinate is a column in the
3-by-n linear or angular velocity Jacobian matrix, and their computation slightly differs
depending on whether the joints are prismatic or revolute. Only the latter is hereby
presented as most space manipulators use revolute joints rather than prismatic [33].
Thus, linear velocity Jacobian is computed as:

JP,i = zi−1 × (xEE − xi−1) (2.36)

While the angular velocity Jacobian is computed as:

Jω,i = zi−1 (2.37)

Each of the terms that compose these relations is depending on the joint variables, in
particular:

• zi−1 is the z-axis of the reference frame Σi−1, attached to joint i, expressed in the
inertial reference frame. Thus, it is simply the third column of the rotation matrix
from the inertial reference frame to Σi−1:

zi−1 = RB
I R

0
B

(
i−1∏
j=1

Rj
j−1

)
z0 (2.38)

2| System Modelling 27

Where z0 =
[
0 0 1

]T
extracts the third column of the rotation matrix.

• xEE is the position of the end-effector in the inertial reference frame. Having defined
the homogeneous transformation between the latter and the end-effector frame, it
is simple to define:

xEE = E3×4T
B
I T

0
BT

EE
0 p0 (2.39)

Where p0 =
[
0 0 0 1

]T
selects the fourth column of the transformation matrix,

and the extraction matrix E selects the first three rows of a 4× n matrix or vector
(2.40).

E3×4 =

1 0 0 0

0 1 0 0

0 0 1 0

 (2.40)

• xi−1 is the position vector in the inertial reference frame of the origin of Σi−1. Its
calculation is the same as the position of the end-effector, selecting the fourth column
of the overall homogeneous transformation matrix T i−1

I

Following this scheme employing Denavit-Hartenberg parameters, the computation of the
Geometric Jacobian is straightforward.
It is worth mentioning that the Geometric Jacobian computes the end-effector velocity
in terms of the end-effector frame, with a geometric technique employed in order to find
its components. The Analytical Jacobian can be computed by directly differentiating the
relations of the linear and angular velocities. This outputs the same Jacobian for the
linear part, whereas for the angular velocities it is necessary to use a representation of
the rotation (e.g. ZYZ Euler Angles) in order to express the relative orientation with
the inertial frame, and this differs from the angular velocity of the end-effector itself. It
is possible, however, to express the relation between the latter and the derivative of the
variables for the representation of the rotation, giving the holding relation between the
geometric and analytical Jacobian:

JG =

[
I3×3 03×3

03×3 T (ϕEE)

]
JA (2.41)

The Jacobians relating each of the individual links CoM velocity and the joint velocities
can be computed in a similar way to the end-effector’s, dividing the linear and the angular
velocity components. They are:

ẋG,i = J G,i
P q̇ (2.42)

28 2| System Modelling

ω̇G,i = J G,i
ω q̇ (2.43)

Once again, the Jacobians can be defined column-wise, considering that each link position
and velocity depends on the motion of the previous joints:

JG,i =

[
J G,i
P,1 . . . J G,i

P,i 0 . . . 0

J G,i
O,1 . . . J G,i

O,i 0 . . . 0

]
(2.44)

Finally, the non-zero columns composing the Jacobian matrices are computed differently
for prismatic and revolute joints. Following the same reasoning as the previous section,
the latter are defined:

J G,i
P,j = zj−1 × (xG,i − xj−1) (2.45)

J G,i
Of,j = zj−1 (2.46)

Where the terms of the equations are:

• zj−1 is the z− axis of the reference frame Σj−1 obtained by the third column of the
rotation matrix Rj−1

I .

• xG,i is the position vector of the CoM of the i− th link, which is also the origin of
the reference frame ΣG,i. It is obtained by the fourth column of the matrix TG,iI .

• xj−1 is the position vector of the origin of the reference frame Σj−1, thus the fourth
column of the matrix T j−1

I .

These expressions relate the velocities of each link to each joint variable in ΣI . They
will result particularly useful for defining the dynamics of the coupled base-manipulator
system.

Finally, the differential kinematics can be found for the whole space manipulator system.
The Jacobian Jb relating the end-effector generalized velocity with the base satellite’s [3]
can be defined knowing that the angular velocity of the end-effector is the same as the
base’s, whereas the linear velocity of the end-effector in ΣI is the same as the base with
an additive drift term due to the angular motion of the base with respect to the inertial
frame:

JEEb =

[
I3×3 x×EE
03×3 I3×3

]
(2.47)

Ultimately, the same transformation can be applied in order to find the differential kine-
matics for each center of mass of the links, utilizing the respective individual Jacobian

2| System Modelling 29

matrix JG,i =
[
JG,iP JG,iO

]T
rather than the end-effector’s.

2.4.4. Dynamics

The dynamics were utilized in this work in order to validate the kinematic model that
will be utilized for the path planning algorithm.
The definition of the dynamics cannot follow two independent paths for the base satellite
and for the manipulator due to the strong mechanical coupling between the two systems.
In order to keep a physical meaning to the variables introduced, the Euler-Lagrange
Formalism is hereby used to obtain the dynamic equation of the system:

d

dt

(
∂T
∂q̇

)
− ∂T
∂q

+
∂V
∂q

= Qq (2.48)

A more specific formulation for the system involves the simplification of having null poten-
tial field. This basically means considering no gravitational forces acting on the system,
and this assumption holds generally for space manipulator systems in literature. For the
same reason, orbital perturbations can be considered null for low duration manoeuvres.
This means that the main contribution to the dynamics is due to the kinetic energy of the
system itself. The external forces are the control forces and torques on the base satellite
and the torques of the joint actuators that control the motion of the arm. These are all
considered to be applied exactly to the center of mass of the base and to the exact point in
which the joints are located in order to simplify the equations without loss of generality.
The generalized coordinates of the system are thus the base position and orientation, and
the joint trajectories:

q =

xbφb

θ

 ∈ R(6+n)×1 (2.49)

Kinetic Energy

The kinetic energy of the system of rigid bodies can be computed summing the contribu-
tions of the base satellite and of the manipulator:

T =
1

2

[
mbẋ

T
b ẋb + ωT

b Ibωb +
n∑
i=1

(
miv

T
i vi + ωT

i Iiωi

)]
(2.50)

Each quantity within the equations has to be computed with respect to the same reference
frame. In order to follow classical mechanics without neglecting any term, the quantities

30 2| System Modelling

will all be referred to the Inertial reference frame.
Hence, the inertia tensors in eq. (2.50) are rotated to ΣI from their respective body axes,
which are the satellite’s and the ones of the i− th link:

Ib = RB
I I

B
b R

B
I
T

Ii = RB
I R

G,i
B IG,ii RG,i

B

T
RB

I
T

(2.51a)

(2.51b)

Where each quantity of these equations has been previously defined. Finally, recalling
eq. (2.32) and its generalization to the CoMs of the various links, it is possible to find
the separate formulations of linear and angular velocities in the inertial reference frame
to obtain [23] the direct dependencies of the velocities of the centers of mass of the links
with the generalized coordinates of the system:

vG,i = ẋb + ω×
b xG,i + JG,iP θ̇

ωi = ωb + JG,iω θ̇

(2.52a)

(2.52b)

Having defined the various dependencies, the kinetic energy of the system is finally avail-
able in matrix form, expressing the direct dependency on the generalized coordinates of
the system in order to use the Euler-Lagrange equations to find the equations of motion
of the system. The derivative of the orientation of the base has been substituted with
its angular velocity in generalized coordinates, and the conversion to the orientation is
available through the differential relation in (2.22).
The inertia matrix is partitioned in block submatrices, with subscripts indicating the part
of the mechanical system they refer to: translational (t), rotational (r), manipulator (m),
and their combinations that will result in the strong Coupling Effects between the base
and the manipulator.

T =
1

2
q̇TM(q)q̇ =

1

2

[
ẋTb ωb

T θ̇T
] Mt Mtr Mtm

MT
tr Mr Mrm

MT
tm MT

rm Mm

ẋbωb

θ̇

 (2.53)

Finally, the analytical expressions of the matrices are available substituting eq. (2.51)
and eq. (2.52) in eq. (2.50), and are hereby presented in compact form similarly to [11],

2| System Modelling 31

specifying to which reference frame the quantities are referred to.

Mt =

(
mB +

n∑
i=1

mi

)
I3×3 ∈ R3×3

Mtr = −
n∑
i=1

mix
×
G,i ∈ R3×3

Mr = Ib +
n∑
i=1

(
Ii −mix

×
G,ix

×
G,i

)
∈ R3×3

Mtm =
n∑
i=1

miJ
G,i
P ∈ R3×n

Mrm =
n∑
i=1

mix
×
G,iJ

G,i
P + IiJ

G,i
ω ∈ R3×n

Mm =
n∑
i=1

(miJ
G,i
P

T
JG,iP + JG,iω

T
IiJ

G,i
ω) ∈ Rn×n

(2.54a)

(2.54b)

(2.54c)

(2.54d)

(2.54e)

(2.54f)

Where each quantity has been defined in previous paragraphs. In this simplification, links
masses and inertia take into account the presence of the joint motors, whereas in more
accurate descriptions, they should be considered in their own relative reference frame
centered at the joints themselves:

Mm =
n∑
i=1

(miJ
G,i
P

T
JG,iP + JG,iω

T
IiJ

G,i
ω +

+mm,iJ
i−1
P

T
J i−1
P + J i−1

ω

T
Im,iJ

i−1
ω)

(2.55)

The subscripts m, i means the quantities are relative to the motor positioned in the i− th
joint, thus relative to the reference frame Σi−1.

Equations of Motion

Ultimately, it is possible to apply the derivatives of the Euler-Lagrange equations in
eq. (2.48) to the matrix representation of the kinetic energy, and by using the base gen-
eralized velocity introduced in section 2.4.3 the equations of motion are obtained:[

Mb Mbm

MT
bm Mm

][
V̇b
θ̈

]
+

[
cb

cm

]
=

[
Fb

τ

]
(2.56)

Where the terms cB(q, q̇) and cm(q, q̇) are the nonlinear components due to centrifugal
and Coriolis forces that stem from the relative motions between the links and the chaser

32 2| System Modelling

satellite base.
These terms are defined from the Lagrange equations as:

c(q, q̇) = Ṁ q̇− 1

2
q̇T
∂M

∂qk
q̇ (2.57)

The time derivatives of the various matrices can be computed applying the chain rule,

thus the matrices
∂M

∂qk
are computed in the same framework. It is possible to highlight

that none of the terms of the mass matrix depends from xB, while the derivatives with
respect to φB and θ are non-zero. The details on the computation of the derivatives are
given in section 2.4.5.
The computation of the nonlinear terms of the equations of motion can also be obtained
following [39], applying the derivatives with respect to each coordinate to each term of
the mass matrix.

ci =
∑
j

∑
k

∂mi,j

∂qk
− 1

2

∂mk,j

∂qi
(2.58)

This is particularly useful in the bidimensional case.
The equations of motion in the inertial frame are hence fully defined, however it is possible
to introduce further assumptions of no external torques or forces applied to the system
(Fb = 0), in order to simplify the equations of motion. This will hold true in the case of
a completely free-floating space manipulator before the capture [23, 27].

2.4.5. Generalized Equations of Motion

The dynamical system expressed in (2.56), with Fb = 0, is an underactuated system, as
only the joint coordinates are related to an external acting torque, while the remainder
of the Space Manipulator System moves as a consequence of the joints movements.
Then, considering no forces or torques acting on the overall system center of mass, it is
possible to compute the linear and angular momenta of the system:

P = (mb +
n∑
i=1

mi)vb +
n∑
i=1

mivi = P0

L = Ibωb +
n∑
i=1

(
Iiωi +mix

×
G,ix

×
G,i

)
= L0

(2.59a)

(2.59b)

2| System Modelling 33

Where P0 and L0 are the initial linear and angular momenta of the system. They can be
expressed in a much more compact form:[

P
L

]
=MbVb +Mbmθ̇ =M0 (2.60)

Since the system is performing a floating manoeuvre, the momenta are constant through-
out the motion:

d

dt

[
P
L

]
=MbV̇b +Mbmθ̈ + ṀbVb + Ṁbmθ̇ = 06×1 (2.61)

It is possible to assume an initial value for the momentum of the system, in particular it
is reasonable to assume that the overall system momentum is initially zero, while in [26]
the case of non-zero initial momentum is treated.
The physical interpretation of the overall momentum being zero is that the second term of
the equations is the momentum that is imposed by the manipulator on the base (coupling
momentum) and the first term is the reaction momentum of the base with respect to the
manipulator motion [28].
With the usage of (2.60),(2.61) it is possible to obtain the generalized base velocity and
acceleration’s direct dependency from the joint coordinates, or it can be obtained from
the first six equations of motion:

Ẍb = −M−1
b (Mbmθ̈ + cb) (2.62)

Substituting this expression in the last n equations of motion gives the equations of motion
in generalized form, including the dynamics of the base within the motion of the joints of
the manipulator.

(−MT
bmM

−1
b Mbm +Mm)θ̈ −MT

bmM
−1
b cb + cm = τ (2.63)

It is possible to define the generalized inertia matrix and the generalized vector of non-
linear terms, as in [49] and [1]:

M̂ =Mm −MT
bmM

−1
b Mbm ∈ Rn×n

ĉ = cm −MT
bmM

−1
b cb ∈ Rn×1

(2.64a)

(2.64b)

An important feature of these generalized matrices is that when substituting each quantity,
these two generalized terms depend only on θ [51], eliminating the dependence on φB.

34 2| System Modelling

Typically, the behaviour of the generalized form of the equations of motion is obtained
computing φB to then compute the mass matrix terms as in (2.54).
Finally, the generalized form of the equations of motion is:

M̂ θ̈ + ĉ = τ (2.65)

An important aspect is that the same torques of the generalized form of the equations of
motion are applied to the joints in the overall equations of motion, thus it is possible to
apply the same torque control for the two systems, without transforming coordinates.

Mass Matrix Derivatives

The derivatives of the mass matrix components are here obtained individually to then
utilize (2.57) in order to find the overall vector of nonlinear terms.
It is possible to utilize the equations of conservation of linear and angular momentum to
obtain the terms of cb as functions of θ only, thus discarding the derivatives with respect
to the base angular coordinates that would introduce complications and would be based
on the representation of choice for the rotations.
Knowing that M−1

b is symmetric [45], it is possible to rewrite the generalized equations
of motion:

M̂ θ̈ +
˙̂
M θ̇ − 1

2
θ̇T
∂M̂

∂θ
θ̇ = τ (2.66)

Time Derivatives The time derivative of the generalized mass matrix can be easily
computed by knowing that for a square, invertible matrix such as Mb, the following
property holds when the derivative with respect to any scalar is computed:

dA−1

dx
= −A−1dA

dx
A−1 (2.67)

Thus, the overall time derivative of the generalized mass matrix is:

˙̂
M = Ṁm − (ṀT

bmM
−1
b Mbm +MT

bmM
−1
b Ṁbm −MT

bmM
−1
b ṀbM

−1
b Mbm) (2.68)

Hence, the derivatives of three different portions of the mass matrix must be computed.
This translates in the derivation of the quantities that depend on time within the subma-
trices. The derivatives of the dynamic quantities are mostly based on knowing the time
derivative of a rotation matrix [39]:

Ṙi
I = ω×

i R
i
I (2.69)

2| System Modelling 35

The individual angular velocity of each joint coordinate system is known in the inertial
reference frame and it is given by:

ωi = ωB + J iωθ̇ (2.70)

Finally, it is possible to compute the time derivatives for the components of the mass
matrices that depend on time, in particular the quantities for which they need to be
computed are:

• Link i’s CoM position with respect to the base spacecraft xG,i: This term is readily
available as it is the velocity of the link’s center of mass to which the linear velocity
of the base is subtracted, available in (2.52):

dxG,i
dt

= ω×
b xG,i + JG,iP θ̇ (2.71)

• Link i’s Jacobian matrix for the positions JG,iP : the time derivative of this term
depends on the rotation of each joint previous to the link and on the position of the
link’s CoM velocity and on the previous link’s velocity. The derivative relative to
the i-th link is:

dJG,iP

dt
=
[
J̇ G,i
P,1 . . . J̇ G,i

P,i 0 . . . 0
]

(2.72)

The generic column of the derivative of the Jacobian is:

dJ G,i
P,k

dt
=

Ṙk−1
I

00
1

×

(xG,i − xj−1) + z×k−1

(
dxG,i
dt
− dxk−1

dt

)
(2.73)

• Link i’s Jacobian matrix for the rotations JG,iω : the derivative of the Jacobian for
the rotation depends only on the rotation of the previous joints axes.

dJG,iω

dt
=
[
J̇ G,i
ω,1 . . . J̇ G,i

ω,i 0 . . . 0
]

(2.74)

The generic column of the derivative of the Jacobian is:

dJ G,i
ω,k

dt
= Ṙk−1

I

00
1

 (2.75)

36 2| System Modelling

• Inertia Matrices of the Chaser Base, and of Link i in ΣI Ib, Ii: the inertia matrices
are expressed in the inertial frame within the equations of motion. Their dependency
on time is due to the derivatives of the rotation matrices:

dIi
dt

= Ṙi
I
T IiR

i
I +Ri

I
T
IiṘ

i
I

dIb
dt

= ṘB
I
T IbR

B
I +RB

I
T
IbṘ

B
I

(2.76a)

(2.76b)

Finally, the expression of the derivatives for each submatrix of the inertia matrix is avail-
able:

Ṁtt = 03×3

Ṁtr = −
n∑
i=1

mi
dxG,i
dt

Ṁrr = İb +
n∑
i=1

(İi −mi(ẋ
×
G,ix

×
G,i + x×

G,iẋ
×
G,i)

Ṁtm =
n∑
i=1

miJ̇
G,i
P

Ṁrm =
n∑
i=1

İiJ
G,i
ω + IiJ̇

G,i
ω +mi(ẋG,iJ

G,i
P + xG,iJ̇

G,i
P)

Ṁmm =
n∑
i=1

J̇G,iω
T IiJ

G,i
ω + JG,iω

T
IiJ̇

G,i
ω + JG,iω

T İiJ
G,i
ω +mi(J̇

G,i
P

TJG,iP + JG,iP

T
J̇G,iP)

(2.77a)

(2.77b)

(2.77c)

(2.77d)

(2.77e)

(2.77f)

Joint Coordinates Derivatives The explicit joint coordinates derivative of the inertia
matrix is obtained similarly to the time derivative in (2.68):

∂M̂

∂θk
=
∂Mm

∂θk
− ∂Mbm

∂θk

T

M−1
b Mbm −MT

bmM
−1
b

∂Mbm

∂θk
+

+MT
bmM

−1
b

∂Mb

∂θk
M−1

b Mbm

(2.78)

The inertia matrix components that depend directly on the joint coordinates are the same
that depend on time, except for the derivative of the chaser base inertia matrix which
depends only on the rotation of the chaser base with respect to the inertial frame.
In this case, however, the values of the derivatives of the quantities relative to the center
of mass of link i with respect to θk depends on the relative values of k and i. The required
derivatives to be computed are:

2| System Modelling 37

• Link i’s CoM position with respect to the base spacecraft xG,i

∂xG,i
∂θk

= E3×4 4R
I
B

k−1∏
l=1

4R
l
l−1

dAkk−1

dθk

i−1∏
m=k+1

Amm−1A
G,i
i−1 4z0 if k < i

∂xG,i
∂θk

= E3×4 4R
I
B

k−1∏
l=1

4R
l
l−1

dAG,kk−1

dθk
4z0 if k = i

∂xG,i
∂θk

= 03×1 if k > i

(2.79a)

(2.79b)

(2.79c)

Where 4z0 =
[
0 0 0 1

]T
and E3×4 is defined in (2.40), while the newly

defined quantities are the matrices 4R
k−1
k , which are the rotation matrices trans-

forming the coordinates from the next joint to the previous joint, modified in order
to be 4-by-4 dimensional to be compliant with the homogeneous transformation
matrices framework, which are defined as:

4R
k−1
k =

[
Rk−1
k 03×1

01×3 1

]
(2.80)

The derivatives of the homogeneous transformation matrices are non-zero only for
their specific joint angle:

dAii−1

dθi
=

− sin θi − cos θi cosαi cos θi sinαi −ai sin θi
cos θi − sin θi cosαi sin θi sinαi ai cos θi

0 0 0 0

0 0 0 0

 (2.81)

• Link i’s Jacobian matrix for the rotations JG,iω : The derivatives of the Jacobians are
easy to find from their definitions in (2.45) and (2.46). In particular, the derivatives
of the Jacobian relative to the i− th link Center of Mass are, for what concerns the
angular velocity:

dJG,iω

dθk
=

[
03×1 . . . 03×1 dzk

dθk
. . .

dzi−1

dθk
03×1 . . . 03×1

]
(2.82)

In which the derivatives of the j − th joint axis with respect to the k − th variable
is obtained from the consecutive rotations:

dzk−1

dθk
=

k−1∏
l=1

Rl
l−1

dRk
k−1

dθk

j∏
m=k+1

Rm
m−1z0 (2.83)

38 2| System Modelling

• Link i’s Jacobian matrix for the positions JG,iP : For the linear velocity Jacobian, it
is possible to repeat a similar discussion, knowing that the elements of the matrix
are obtained from cross products between quantities that both depend on θk. The
nonzero elements in the derivatives of the Jacobian relative to the i − th link with
respect to the k − th joint angle are located in the columns from 1 to i, and are
here described separately from the quantities in the columns relative to the joint
previous to the k − th and the ones comprised between the latter and the i− th.

dJ G,i
P,k

dθj
= zBk−1 ×

(
dxBG,i
dθj

)
if k < j + 1

dJ G,i
P,k

dθj
= zBk−1 ×

(
dxBG,i
dθj

−
dxBk−1

dθj

)
+

+
dzBk−1

dθj
×
(
xBG,i − xBk−1

)
if j + 1 < k ≤ i

(2.84a)

(2.84b)

Where the expressions for the derivatives of the links center of mass positions have
already been obtained in (2.79), and the derivatives of the joints k− 1 positions are
computed following the same scheme presented for the various links center of mass.

2.4.6. Generalized Jacobian Matrix

The Generalized Jacobian Matrix for Space Manipulator Systems has been introduced
in [42] and it follows the same reasoning behind the generalized equations of motion, to
express the end-effector velocity and orientation.
It is indeed possible to solve eq. (2.59) for Vb to find the dependence of the base linear
and angular velocities from the joint coordinates.

Vb = −M−1
b Mbmθ̇ (2.85)

This way, it is possible to rewrite the complete end-effector generalized velocity eq. (2.32),
which, considering null initial momentum, simplifies to:

VEE =
(
JEE −M−1

b MbmJ
EE
b

)
θ̇ (2.86)

Thus, the overall matrix relating the joint coordinates with the end-effector velocity that
includes the effects of the motion of the base produced by the joints motion is termed the

Generalized Jacobian Matrix (GJM), and it is expressed as:

Ĵ = JEE −M−1
b MbmJb (2.87)

The GJM is utilized in order to apply simple kinematic control to the robotic manipulator
as would happen in Earth-based applications.

2.4.7. Overall Equations of Motion

Utilizing the generalized form of the equations of motion, it is possible to build the overall
model of the Spacecraft-Manipulator System. The dynamics are computed only for the
joint rotations, whereas the base coordinates’ motion will depend on the joint coordinates
according to eq. (2.85).
However, the kinematic equations for the rotation of the base must be integrated in order
to obtain the rotation matrix from the inertial reference frame to the chaser base’s axes
at each time instant. The propagation of the chaser base’s inertial position is not required
to propagate the equations of motion.
The overall model for the Spacecraft-Manipulator System will thus be:

φ̇ = f(φ,ωb)

M̂(φ,θ)θ̈ + Ĉ(φ,θ, θ̇)θ̇ = τ̂

(2.88a)

(2.88b)

Where the function f(φ,ωb) depends on the choice of the representation of the rotation of
the base with respect to the inertial reference frame, and φ is the orientation representation
of choice.
The Coriolis Matrix Ĉ is defined as:

Ĉ =
˙̂
M −

n∑
k=1

1

2
θ̇T
∂M̂

∂θk
θ̇ (2.89)

41

3| Path Planning Algorithm

The typical path planning scenario this work refers to is the capture of a tumbling target
of which the main parameters are fully known, in particular the dimensions and mass of
both the target and the Spacecraft-Manipulator System are considered to be given and
the state components of the target are assumed to have been accurately measured with
no error. For real cases, this is not verified as the mass and dimensions of the satellites
vary from the original values at launch and the state of the target is known with errors
due to sensors sensitivity.
Furthermore, the far and close rendezvous approach of the chaser to the target are con-
sidered to be completed, and the relative linear velocity between the two systems centers
of mass is considered to be null. The chaser is brought at rest before starting the capture
manoeuvre, in order to more reasonably enforce the condition of zero initial momentum
mentioned in section 2.4.5.
The obstacles within the Space Manipulator Systems are also fully known and character-
ized in their state and dimension.
The goal of the path planning is to provide trajectories for the joints, to make the end-
effector reach a pre-identified grasping point on the target satellite, avoiding collisions
with obstacles for the manipulator, which include the chaser base and any point differing
from the grasping point for the target satellite, and further obstacles that can be present
in the workspace, while being compliant with several constraints such as limits on joint
angles, angular velocities and accelerations.
For space manipulator systems, it is as important to preserve telecommunications with
Earth before and after the manoeuvre, thus it will be important to keep into account the
minimization of the rotation of the base due to the motion of the joints. This chapter
is organized as follows: in section 3.1 a general overview on Rapidly-Exploring Random
Trees is given, including modified and improved versions that will be utilized in the con-
struction of the proposed algorithm.
Then, in section 3.2, the proposed algorithm is covered in detail, from an overview on the
scheme utilized to further explanation of each of its subparts.

42 3| Path Planning Algorithm

3.1. Rapidly-Exploring Random Trees

Rapidly-Exploring Random Trees have been first introduced in [19]. They belong to the
class of sampling-based algorithms for path planning, whose idea is to connect samples
retrieved from the state space of the system to construct a tree that ultimately connects
the initial state and the target state. RRTs have been widely utilized in robotics, and
their usage has already been applied to Space Manipulator Systems. They have proven to
be particularly suited for problems with differential constraints, nonlinear dynamics and
for non-holonomic systems [13], while retaining the property of being probabilistically
complete with an exponentially decaying rate of failure with the number of nodes that
belong to the tree [19].

Definitions

• A graph G = (V,E) is a set of states and connections between them. It includes two
subsets: the vertices V and the edges E.

• The vertices V ⊂ X are a finite number of states belonging to the state space of the
system.

• The edges E ⊂ V × V are a collection of vertices that are connected by a path.

• A directed path is a sequence of nodes such that each consecutive couple of nodes
is contained in the edges set (vi, vi + 1) ∈ E for 1 ≤ i ≤ n− 1.

• Trees T (V,E) are defined as graphs in which each of the vertices of the trees has
one unique parent vertex except for the initial node (also denominated tree root)
which has no incoming neighbor. The parent vertices to a certain node are defined
as those vertices which are connected through a path to the node. For a node v the
parent nodes are: {u ∈ V |(u, v) ∈ E}.

The general structure of all RRT algorithms is shown in algorithm 3.1, as introduced in
[19].

3| Path Planning Algorithm 43

Algorithm 3.1 Basic RRTs
1: Initialize T with x0 first node
2: for k = 1 : K do
3: xsample ← Sample: Generate new random state
4: xnearest ← Nearest(T, xsample): Find nearest tree node
5: xnew ← Steer(xnearest, xsample): Generate new possible tree node
6: if ObstacleFree(xnearest, xnew) then
7: AddVertex(T, xnew)

8: AddEdge(E, xnearest, xnew)

9: end if
10: end for
11: Return T,E

The main components of a Rapidly-Exploring Random Tree are:

1. Sampling : the function Sample: → Xfree Returns a state computed through an
uniform distribution, belonging to the subset of the obstacle-free states within the
specified boundaries.

2. Nearest Neighbor : takes as input the tree T (V,E) and the sampled point x ∈ Xfree

and returns a vertex of the tree that is closest to x according to a certain metric,
typically a weighted Euclidean distance between the states.

Nearest(T (V,E), x) = argminu∈V ||x− v||

3. Steering : given two states x, y ∈ X, the function returns a third point z ∈ X such
that it minimizes the distance from the second node y while being reachable from
the previous node x.

Steer(x, y) = argminz∈V,Feasible(x,z)||z − y||

Multiple possibilities exist to determine whether the path between x and z is feasible.
Original versions of the algorithm utilized an upper bound on value computed by
the metric utilized in the nearest neighbor selection.

4. Obstacle Collision Check : given two states x and y, a Boolean-valued function
ObstacleFree returns True if no obstacles are detected in the path between the
two states. The most simple and straightforward form of collision check is done
by connecting the two states through a segment and checking whether the segment

44 3| Path Planning Algorithm

intersects any obstacle.

A newer version of the RRT algorithm has been introduced in [13], with the aim of finding
an optimal path to which the simple RRT algorithm does not converge, and it is presented
in algorithm 3.2.

Algorithm 3.2 RRT*
1: Initialize T with x0 first node
2: for k = 1 : K do
3: xsample ← Sample: Generate random state
4: xnearest ← Nearest(T, xsample): Find nearest tree node
5: xnew ← Steer(xnearest, xsample): Generate new possible tree node
6: if ObstacleFree(xnearest, xnew) then
7: AddVertex(T, xnew)

8: xmin ← xnearest

9: Xnear ← Near(T, xnew): Locate tree nodes in the vicinity of the new node
10: for all xnear ∈ Xnear do
11: if ObstacleFree(xnear, xnew) then
12: c = Cost(xnear) + Cost(xnear, xnew): Evaluate cost from each nearby node
13: if c < Cost(xnew) then
14: xmin ← xnear: Find minimum cost path
15: end if
16: end if
17: end for
18: AddEdge(E, xnear, xnew)

19: for all xnear ∈ Xnear \ xmin do
20: if ObstacleFree(xnew, xnear) & Cost(xnear) > Cost(xnew) + Cost(xnew, xnear)

then
21: xparent ← Parent(xnear): Find the previous parent of nearby node
22: E ← RemoveEdge(xparent, xnear): Remove edge from previous parent and

nearby node
23: E ← AddEdge(xnew, xnear): Generate new path from new node and nearby

node
24: end if
25: end for
26: end if
27: end for
28: Return T,E

3| Path Planning Algorithm 45

The RRT* algorithm follows the same steps of the simple RRT algorithm for what con-
cerns the new node generation, but before adding the new edges to the tree two operations
are carried out:

Cost Evaluation: After generating the new node and including it in the tree, RRT*
utilizes the function Near in order to search among the nodes belonging to the tree which
are in close proximity of the newly generated node, attempting to find a node which
shows a lower cost path with respect to xnearest. This is mainly done because the steering
operation typically follows a simple metric that does not consider a more complex cost
functional in the new node generation.

Rewiring: The new nodes in RRTs are generated sequentially, growing the tree and
selecting the nearest node of the latter with a certain heuristic, repeating the process
until the end condition or the maximum number of iteration is reached. One of the main
issues with this approach is that while the state space is explored thoroughly, it is impos-
sible to select shorter (or, in this case, less costly) paths between two already generated
nodes. The function Near can be utilized in order to search in the neighborhood of the
newly generated node for vertices that were reached with a higher cost when compared
to a new connection attempt from xnew to xnear ∈ Xnear. If this condition is verified,
xnew is utilized as the new parent node, the older edge connecting xnear and its parent is
eliminated from the edges and a new connection is established.

Near Vertices utilizes as input the tree T (V,E) and a node x ∈ V in order to find all
the vertices near to x according to a certain metric, typically coincident with the metric
utilized to find the nearest neighbor. For the weighted Euclidean distance metric case,
for example, the near vertices can be located as:

Near(T (V,E), x, r)→ {V ′ ⊂ V | ∀ y ∈ V ′ ||y − x|| < r}

Where r is a radius that should relate as closely as possible to the limits of reachable
states from the current position.

In cases of nonholonomic systems, as are Space Manipulator Systems, various problems
arise during path planning. In particular, the main issues these types of system experience
in the path planning via RRTs are the modelling of obstacles, that are straightforward for
what concerns Cartesian space planning, but that become difficult to obtain in the state
space of systems, furthermore, many configuration states have to be discarded because

46 3| Path Planning Algorithm

they would enter the region denominated of inevitable collision, inside which the collision
with obstacle is unavoidable with any control action, a solution is the usage of artificial
potential fields in order to circumvent these issues, leading to complex nonlinear control
problems; another problem is the metric, which in Cartesian space can be designed and
optimized while in the configuration space its formulation becomes much harder.
With reference to RRT*, the construction of the path is not straightforward, and it is
subjected to the problem of straight line connection that the RRT* in Cartesian space
typically generates, in fact due to the differential constraints it is impossible to connect
two states through a straight line, which the RRT* algorithm tends to do during its
rewiring phase.
For these specific problems, a specific algorithm has been formulated and denominated
Kinodynamic RRT* [44]. The main path planning step in which these algorithms differ
from their counterparts is in the rewiring mechanism. It would be in fact impossible to
guarantee that any pair of states (belonging to Xnear) can be connected through an opti-
mal path. This algorithm, however, is specialized in system with linearized dynamics.

RRTs with Goal-Oriented Sampling is another class of Rapidly-Exploring Random Trees,
in which what changes is the sampling mechanism rather than the new node generation.
The simplest version of Goal-Biased RRT is shown in algorithm 3.3.

Algorithm 3.3 Goal-Biased RRT
1: Initialize T with x0 first node
2: for k = 1 : K do
3: p← [0, 1]

4: if p > pthreshold then
5: xsample ← xgoal

6: else
7: xsample ← Sample: Generate new random state
8: end if
9: ExtendRRT

10: end for
11: Return T,E

The peculiarity of these types of algorithms is that at the start of each iteration, a random
number is generated. If this number is above a certain threshold, the goal state becomes
the sample state, and the algorithm tends to explore the regions closer to the goal rather
than deeply exploring the rest of the configuration space.

3| Path Planning Algorithm 47

3.2. Proposed Algorithm

The proposed path planning algorithm is based on a simple Rapidly-Exploring Random
Tree, modified in order to have a faster exploration of the configuration space. The path
planning is executed at the kinematics level, and it shall output a path towards the goal
that can be followed by a controller. The algorithm includes a robust obstacle avoidance, a
consideration on the minimization of the chaser base rotation, and it attempts to minimize
the time of the manoeuvre.
In order to generate kinematically feasible paths, connecting nodes simply and fast, the
space manipulator system state for the execution of the RRT algorithm includes the joint
positions θ and velocities θ̇, and the control in order to bring the system from one state
to another is represented by the joint accelerations aθ.
The simple state equations for the RRT expansion is:

ẋ =

[
θ̇

θ̈

]
= f(x, t) =

[
θ̇

aθ

]
(3.1)

The generation of the trajectory for the joint variables is done independently from the
motion of the spacecraft base as its linear and angular coordinates movement can be
computed directly from the trajectory of the joint variables, as they are uncontrolled and
thus depend on them. Their value depends on the value of the joint velocities as in (2.85),
which is based on the equations of conservation of linear and angular momentum.

Vb = −M−1
b Mbmθ̇ (3.2)

While these variables do not directly enter the state of the RRT and thus are not utilized
in the generation of new nodes, their computation is of pivotal importance to retrieve the
inertial position of the whole spacecraft-manipulator system, including its base, all the
links and all the joints. These positions are then utilized for goal connection checks and
obstacle avoidance.
The algorithm follows a scheme similar to the RRT algorithm in [37],[36] as the path
planning is performed at a joint level, however here the goal connection is kinematics-
based, the obstacle avoidance is performed by a dense sampling of the obtained trajectory
and the minimization of the base rotation is obtained by assigning costs to nodes rather
than using the bidirectional approach.
The sequence of operations of the algorithm is:

1. The algorithm generates new random nodes in the joint space
[
θ
]
, then it applies

48 3| Path Planning Algorithm

a distance metric in order to find the closest node belonging to the tree.

2. From the closest node, the path planning on the joint variables is initiated in order to
find a suitable connection between the tree and the new sampled joint configuration.

3. After the connection is established between joint coordinates, the corresponding
motion of the base and of the whole spacecraft-manipulator system is computed.
This allows for the obstacle avoidance to be then performed.

4. Finally, following the approach of the RRT* algorithms, a cost is assigned to each
newly generated node, and a better connection is sought to the new joint angles
that feature a low joint space distance from the new node.

5. At the end of each iteration of the algorithm, similarly to [41], if the corresponding
end-effector position is close to the one of the grasping point, a connect-to-goal
step is attempted by utilizing a version of the inverse kinematic algorithm for free-
floating space manipulator systems that includes a second task of an attempt of
minimization of the base rotation [3].

The general algorithm flowchart is given in fig. 3.1, and each block of the algorithm will
be treated in a specific section.

Figure 3.1: RRT-Based Algorithm

3| Path Planning Algorithm 49

The overall primary goal for the algorithm is to produce a trajectory such that, at a
certain time tf , the following conditions are satisfied:

xEE(tf) = xGP (tf)

φEE(tf) = φGP (tf)

vEE(tf) = vEE(tf)

ωEE(tf) = ωGP (tf)

(3.3a)

(3.3b)

(3.3c)

(3.3d)

Where φ symbolizes the generic orientation of the reference frames of the two points that
will need to be represented in a consistent way.

3.2.1. Sampling and Metric

The admissible joint variables are defined as the ones which respect the constraints on the
minimum and maximum value, given as specifics of the robotic manipulator, including
limits on angular positions, velocities and accelerations:

θmin ≤ θ ≤ θ̇MAX

θ̇min ≤ θ̇ ≤ θ̇MAX

θ̈min ≤ θ̈ ≤ θ̈MAX

(3.4a)

(3.4b)

(3.4c)

At the start of each iteration, a random sample of joint angles is generated from an uni-
form distribution of the admissible ones.

θsampled ∈ (θmin,θMAX) (3.5)

Then, following the approach of Rapidly-Exploring Random Trees, the nearest node be-
longing to the tree T(V,E) needs to be found as the node from which the connection
towards the new sample state is started.
The nearest node is obtained through a metric that should represent as close as possible
the cost-to-go to said sample [19]. In this case, since the control sequence to reach the
new samples is straightforwardly defined (3.1), it is possible to use the simplest metric of
the Euclidean distance between samples in order to find the nearest node.

d = ||θsampled − θtree|| (3.6)

The selected tree node from which the steering is performed is the node for which the
Euclidean distance from the new sample point is minimal.

50 3| Path Planning Algorithm

3.2.2. Steering Method

The steering process is the generation of a new node of the tree starting from the nearest
node of the tree xnearest which has been found applying the previously defined metric,
and the new sample obtained from the uniform distribution of admissible samples as in
section 3.2.1.
The generation of a new node is non-trivial for nonholonomic systems. [37] and [36] use
a method which involves creating 3n, where n is the number of joints, combinations of
available joint torques, where the torque applied to each joint assumes either the maximum
value, the maximum negative value, or zero. After generating a set of 3n points through
the propagation of the state equations as many times, it selects the generated node closest
to the sample according to the metric.
By tackling the problem at a kinematic level, it is possible to connect any pair of states
whenever obstacles are not considered. The presence of obstacles can then be considered
after the path between any couple of states has been generated.
Nodes are generated at zero joint velocity in order to be able to move towards the random
sample generated at the next iteration through a trajectory that reaches the maximum
allowed joint velocity starting from zero velocity, whereas starting from an initial velocity
might greatly decrease the ability to reach the successive random sample in a low amount
of time.
The nodes are generated starting from the computation of the difference between the two
states ∆θ. It is possible to distinguish between two cases once the distance is known:

1. In order to reach the new node, it is sufficient to apply a constant acceleration for
a certain amount of time ∆t, and an opposite constant deceleration for the same
amount of time.

2. The distance between the two nodes is high in magnitude, and the connection cannot
be granted by using constant acceleration, as it would either violate constraints on
the maximum allowed joint acceleration or on the joint velocity. In this case, the
path is divided in three subpaths: for a certain ∆t1 at a constant acceleration, then
at a constant velocity for a different ∆t2, and finally for the same ∆t1 at the opposite
constant deceleration. This allows to reach any state depending on ∆t2 while still
enforcing null final joint velocity and being compliant with the joint velocity and
acceleration limits.

3| Path Planning Algorithm 51

Both cases make use of the integration of the simple kinematic equations in order to
represent the path of the joint angles:

θf = θ0 + θ̇0(t− t0) +
1

2
θ̈(t− t0)2 (3.7)

It is then possible to fully compute the final joint angles that would result from the
application of a constant acceleration to arrive to an intermediate state i, and a con-
stant opposite deceleration, consecutively to the acceleration, to bring the system to zero
velocity and to the final state. This results in the following set of equations:

θi = θ0 + θ̇0(t− t0) +
1

2
ā(t− t0)2

θf = θi + θ̇i(t− ti)−
1

2
ā(t− ti)2

(3.8a)

(3.8b)

Knowing that t− ti is the same as t− t0, now denominated ∆t, and knowing that θ̇0 = 0

as all nodes are generated at zero velocity and that θ̇i = ā∆t, it is possible to compute
the required acceleration depending on ∆θ:

ā =
∆θ

∆t2
(3.9)

To understand whether the node is reachable through the application of this acceleration
through the fixed amount of time ∆t, two checks are needed on whether the acceleration
is compliant with the joint limits, and whether the maximum reached velocity during the
motion is within the set of admissible joint velocity.
The constraint on the maximum and minimum acceleration component is:

āMAX ≤ θ̈MAX

āmin ≥ θ̈min

(3.10a)

(3.10b)

While the constraints on the maximum and minimum joint velocity reached are:

max (θ̇i) = āMAX∆t ≤ θ̇MAX

min (θ̇i) = āmin∆t ≥ θ̇min

(3.11a)

(3.11b)

Where āMAX and āmin are the maximum and minimum components of the acceleration
with their respective sign.

52 3| Path Planning Algorithm

Overall, the constraints on the acceleration are:

āMAX ≤ θ̈MAX

āmin ≥ θ̈min

āMAX ≤
θ̇MAX

∆t

āmin ≥
θ̇min
∆t

(3.12a)

(3.12b)

(3.12c)

(3.12d)

Whenever any of these constraints is not satisfied, it is not possible to connect two states
through this simple method. However, it is possible to define a new acceleration vector
proportional to the current one, such that the trajectory is performed in the direction of
the new sample, while being compliant with the constraints.
This is done by computing the ratio of the acceleration component that violates the con-
straints with the value of the violated constraints. If multiple constraints are unsatisfied,
the highest ratio is taken such that it incorporates the others. Then, this ratio is utilized
to multiply all acceleration components, in order to maintain the acceleration vector di-
rection while changing its magnitude to be compliant with the constraints.

r = max

(
āMAX

θ̈MAX

,
āmin

θ̈min
,
āMAX

θ̇MAX

∆t

,
āmin
θ̇min

∆t

)
(3.13)

The new acceleration is thus:
āNEW =

1

r
ā (3.14)

Since it is impossible to reach the new state with the newly computed acceleration, an
intermediate step of motion with constant velocity is performed. The constant velocity
is applied for an unknown time ∆t2, whose dependency with respect to ∆θ can be com-
puted.
By applying (3.7) to the three-segment path, with the assumptions of same ∆t1 for accel-
eration and deceleration, and knowing that the constant velocity θ̇i,1 is āNEW∆t1, with
null initial velocity it is possible to write:

θi,1 = θ0 +
1

2
āNEW∆t21

θi,2 = θi,1 + āNEW∆t1∆t2

θf = θi,2 + āNEW∆t1
2 − 1

2
āNEW∆t1

2

(3.15a)

(3.15b)

(3.15c)

3| Path Planning Algorithm 53

By substituting (3.15a) and (3.15b) in (3.15c), the propagation time can be computed
directly from ∆θ, knowing the other parameters involved in the equations:

∆t2 =
∆θ

āNEW∆t1
−∆t1 (3.16)

It is important to note that the position joint limits are never checked throughout the
application of this approach, as the minimum and maximum for the joint positions will
be at the extremes of each propagation, which belong necessarily to the admissible set
since they are obtained through sampling.
After the variables are obtained, it is possible to integrate the overall space-manipulator
system kinematic model in order to retrieve the linear and angular motion of the spacecraft
base.

3.2.3. Obstacle Avoidance

Avoiding obstacles is of pivotal importance for the success of the path planning of the
space manipulator. Obstacles in the workspace can refer to debris or satellite parts that
float in the vicinity of the target, the target satellite body itself and its appendages, and
also the chaser base and the self-collisions of the manipulator arm.
Rapidly-Exploring Random Trees are excellent algorithms for obstacle avoidance in a
dynamic environment, and can include the avoidance of moving obstacles inside the
workspace of the manipulator, provided they are modelled correctly.
For Space Manipulator System, the main problem arising during obstacle avoidance is
the evaluation of the relative distance from the obstacle, as checking the distance be-
tween each point of the manipulator and the obstacle requires an optimization problem
parametrizing each link with a continuous variable and the minimization of a distance
function.
In order to simplify the process, key points are chosen on the manipulator in order to per-
form the computation of the distance from the obstacles. The minimal amount of points
guaranteeing a safe obstacle avoidance has been identified in [25] to be the positions of
the joints and the positions of the links midpoints.
The obtained path is discretized in small time intervals, and for each time sample ti the
direct kinematics are computed in order to find the key points positions in the inertial
reference frame xG,i(ti) and xi(ti).
Obstacles such as the target satellite (excluding its grasping handle) show their own dy-
namic, thus their position and orientation change with time, and for this reason they will
be evaluated at the time ti.

54 3| Path Planning Algorithm

To find the relative distance between the obstacles and the manipulator points, it is nec-
essary to refer the position of the manipulator and the obstacle’s envelope to the same
reference frame. In this case, a transformation to the obstacle body axes is considered.
The position of the links centers of mass, assumed to be at the midpoints between two
joints, and of the joints are available in the inertial reference frame through the relations
in section 2.4.1 and are already available as they are utilized to compute the dynamic
parameters of the system.
The rotation to the obstacle body frame from the inertial reference frame, which is in this
case identified with the Local Vertical Local Horizontal frame due to the short duration of
the overall manoeuvre, is performed through the relation (2.15), in which the orientation
angles depend on time through the Euler equations, expressed in section 2.3.2.
The overall transformation of the position of the manipulator’s joints and links in the
body axes of the j − th obstacle are:

x
B,Oj

i = R
B,Oj

I (φ(t))xi (3.17)

Where i represents the i − th point of the manipulator, including the joints and the
midpoints.
At this point, the distance from the obstacle is known to be:

∆x
B,Oj

i,Oj
= x

B,Oj

i −RB,Oj

I (φ(t))xOj
(3.18)

Where the position of the obstacle’s computed geometric center is expressed in its body
axes to have the distance from the manipulator to be coherent with the framework.
After computing the distance between the manipulator’s points and the obstacle center,
the closest point to the obstacle can be found as the minimum Euclidean norm of the
distance, and will be then utilized to compute the effective distance with the obstacle’s
walls.

dmin = min ||∆x
B,Oj

i,Oj
|| (3.19)

Obtaining the minimum distance in each obstacle’s body axes is useful within the frame-
work described in [24], which defined the possibilities to model the obstacles in the ma-
nipulator workspace through continuous geometric primitives. Typically, in fact, the ob-
stacles found in space such as satellites or nozzles should not be modelled through spheres
that would either compromise the robot’s workspace or underestimate the true envelope
of the obstacles. For this reason, super-quadric functions can be used to approximate
different-shaped obstacles. For cuboid-like objects, as the one considered in this work,

3| Path Planning Algorithm 55

the envelope is represented through the following relation:

S(x, y, z) =
(x
a

)8
+
(y
b

)8
+
(z
c

)8
− 1 (3.20)

Where a, b, c are the sides of the cuboid divided by 2. Thus, the spatial coordinates of the
various manipulator points can be substituted inside the equations in order to compare
the results, in fact the following hold:

S(xi, yi, zi) < 0 if point i is inside S

S(xi, yi, zi) = 0 if point i is on the surface S

S(xi, yi, zi) > 0 if point i is outside S

(3.21)

These conditions are rather optimistic, in fact the superquadric functions tend to underes-
timate the dimensions of the objects as shown in 3.2, particularly at their vertices. In this
work, the satellites are approximated adding a safety distance to generate the envelopes
of the cuboids: for safer obstacle avoidance, a larger envelope can be generated taking
the vertices into account and using a, b, c =

√
2
2
(a0, b0, c0) where the latter quantities are

the sides of the cuboid. After the distance from the center of the obstacle, in its own

Figure 3.2: Super-quadric envelope and cube, using a, b, c = 1
2
l

body frame, has been substituted within the equation of the geometric primitive for each
point of the path between two nodes, it is possible to understand whether any of the ma-
nipulator points has hit the obstacle, and if that is the case, the new node is completely
discarded and a new iteration begins.

56 3| Path Planning Algorithm

3.2.4. New Node Optimization

Following the scheme defined for RRT* algorithms, once a connection to a new state is
performed and validated through obstacle avoidance, it is possible to query the surround-
ings of the newly found node, in order to find whether a different connection to the same
state would have generated a better overall final state.
For this reason, a cost is assigned to each new node of the tree. Since the generation
of new nodes regards the sole joint coordinates, different initial conditions modify the
configuration of the overall Spacecraft-Manipulator System, including the rotation of the
chaser base, the position and the orientation of the end effector. These quantities, that
are the goals of the path planning, can be included in a cost function that is assigned
to each new node, and due to the dependencies on the initial conditions, to each path
between two nodes.

• Distance from the goal: The end-effector position and orientation for each
node are given from the direct kinematics algorithm. In the case of a free-floating
spacecraft-manipulator system, this depends on the joint coordinates angular posi-
tion and on the base coordinates linear and angular position. The motion of the
base is heavily dependent on the initial conditions, thus a different path to reach
the same joint variables modifies the end-effector position:

xEE = E3×4T
B
I (φ)T 0

B

n∏
i=1

Aii−1(qi(t))z0 = E3×4T
EE
I z0 (3.22)

Where z0 is a column vector
[
0 0 0 1

]T
.

The orientation of the end-effector is expressed in quaternions in order to avoid
representation singularities, since the minimal representation is considered less im-
portant than in the equations of motion for the orientation of the base. This choice
also maintains the possibility of using the Geometric Jacobian rather than comput-
ing the Analytical Jacobian.
The rotation matrix of the end-effector frame with respect to the Local Vertical
Local Horizontal (inertial) frame can be extracted from the homogeneous transfor-
mation matrix:

REE
I = E3×4T

EE
I ET

3×4 (3.23)

Where E3×4 is a matrix extracting the first three rows from a 4× n matrix, and it
has been defined in (2.40).
By using the conversion formulae between the Direction Cosine Matrix and the
quaternions in (2.11), it is possible to retrieve the unit quaternion of the relative

3| Path Planning Algorithm 57

orientation of the end-effector in the LVLH frame.
The relative orientation between two frames is described through quaternions as

∆q = qd ∗ q−1
e [40], and the reference frames are aligned if ∆q =

[
1

0

]
, hence the

relative orientation of the grasping point and the end-effector in the LVLH frame
depends on the vector part of the quaternion measured error:

∆q = ∆ε = ηe(θ)εd − ηdεe(θ)− ε×d ε(θ) (3.24)

Where qd is the orientation of the grasping point reference frame at time instant tk,
while qe is the orientation of the end-effector reference frame at time tk.
The portion of the cost function regarding the relative position and orientation of
the end-effector and the grasping point is simply:

fEE = wx||xGP (tk)− xEE(tk)||+ wα||εGP (tk)− εEE(tk)|| (3.25)

Where tk is the time at which sample k is reached.

• Base Rotation: free-floating space manipulator systems must attempt to reach the
final point by using manipulator trajectories that induce a low coupling momentum
on the spacecraft base as to avoid unwillingly modifying its attitude and losing
the telecommunications or tracking capabilities, or to require costly manoeuvres to
restore the attitude.
In this framework, rather than attempting to execute manoeuvres that would fall
into the reaction null space of the Spacecraft-Manipulator System, the generated
nodes are assigned a cost that grows with the distance of the base attitude with
respect to its desired value.
The cost of a sample relative to the base rotation is evaluated through the norm of
the difference between the orientation of the two reference frames:

fαB
= wB||φd

b −φb(tk)|| (3.26)

• Time: the minimization of the time of the manoeuvre is typically less important
than the previously defined tasks. However, completing the manoeuvres in shorter
times allows to introduce a lower magnitude error of the simplified model considering
a fixed LVLH frame with respect to the real case.
Thus, the time at which a certain node is reached is computed as an additional term

58 3| Path Planning Algorithm

to the weighted cost function.

ft = wt · tk (3.27)

After the generation of a new node, its cost is evaluated through the overall cost function
(3.28).

f = fEE + fαB
+ ft (3.28)

Then, a set of nodes in the proximity of the newly generated node is found as nodes that
show a distance metric, which will be the same utilized to find the nearest sample, lower
than a threshold θ̄, which is a free parameter for the algorithm, whose value will relate to
a certain overall sum of the joint rotations:

ΘNear =
{
V ∈ T (V ,E) | ||θnew − θtree|| < θ̄

}
(3.29)

For each point, a connection to θnew is generated through the same method utilized for
the generation of new nodes of the RRT, in section 3.2.2.
After the connections have been found, a check for possible collisions with the obstacles
is performed following the method described in section 3.2.3.
Among the paths with no collisions, the lowest cost trajectory is selected. It is possible
that the best path was corresponding to the initially found path towards the new goal
starting from θNearest, otherwise a state θNear will be the new parent node to the node
that will be added to the tree.

3.2.5. Connection to Goal

At the end of each iteration, the position, orientation, and velocity of the end effector are
computed for the last generated node of the tree.
Whenever the weighted sum of the distance between the current position of the end-
effector and the current position and orientation of the grasping point, of the orientation
difference between the end-effector and the grasping point, and of the chaser base attitude
with its desired value, are below a certain threshold, which is a free parameter for the
algorithm, a solution is seeked through the inverse kinematics algorithm for free-floating
space manipulators, which has been developed in [3].

dCG = wGCx ||xGP − xEE||+ wGCφ ||εGP − εEE||+ wGCφb
||φd

b −φ|| < k (3.30)

3| Path Planning Algorithm 59

The inverse kinematic algorithm for free-floating space manipulators is similar to the Jaco-
bian pseudo-inverse algorithm for fixed-base redundant manipulators, with the difference
that base variables computations will essentially be part of the algorithm as their changes
affect the position and orientation of the end-effector, but they themselves depend only
on the motion of the joints.
The algorithms are based on the simple relation between the velocity of the end-effector
and the joint velocities, that is:

θ̇ = J†
AVEE (3.31)

Where the analytical Jacobian needs to be used in order to correctly express the relation
between the end-effector angular velocity and the Euler angles-represented rotation. With
a different representation, such as unit quaternion, for the orientation of the end-effector,
it is possible to avoid the usage of the analytical Jacobian, using the Geometric Jacobian.
In this specific case, using a representation such as the unit quaternion, it is possible to
use the relation between the Generalized Jacobian Matrix, the end-effector velocity and
the joint velocities, by using the relation in (2.86):

θ̇ = Ĵ†VEE (3.32)

The † indicates the Moore-Penrose pseudo-inverse of the non-square Generalized Jacobian
Matrix.
Then, in order to iterate the algorithm and match the end-effector position and orientation
along a trajectory, the joint coordinates are integrated through a simple forward Euler
numerical scheme:

θ(tk+1) = θ(tk) + θ̇∆t (3.33)

Substituting (3.32) in (3.33), the joint coordinates variation over time relative to the
trajectory defined by the end-effector velocity can be obtained:

θ(tk+1) = θ(tk) + Ĵ†VEE∆t (3.34)

This solution, however, includes a numerical drift in the integration of the equations,
thus it is necessary to resort to a closed-loop solution involving the definition of the
operational space error between the end-effector desired position and orientation and its

current position and orientation e =
[
ex eφ

]T
:

ex = xGP − xEE(θ) (3.35)

60 3| Path Planning Algorithm

The orientation error expression depends on the representation of the orientation that
has been chosen. In this case, the unit quaternion representation has been utilized as it
is consistent with the directions of ωEE.
The relative orientation of two reference frames is available from (3.24):

eφ = εGP − εEE(θ) (3.36)

The time derivative of the overall error is:

ė = ẋd − VEE = ẋd − Ĵ θ̇ (3.37)

It is then possible to substitute the expression for the time derivative of the joint coordi-
nates in order to obtain the error evolution over time.
To generate an asymptotically stable system, the typical choice of inverse kinematic al-
gorithms is:

θ̇ = Ĵ†(ẋd +Ke) (3.38)

Such that, after the substitution and if K is a positive-definite matrix, the following
generated system is asymptotically stable:

ė+Ke = 0 (3.39)

The error will tend to zero with a growing number of iterations, with a convergence rate
that depends on the eigenvalues of K. However, the values for the elements of K are
limited by the joint limits in terms of velocity. The check on whether these are violated
is done right after the algorithm has completed the goal connection, and if there are vio-
lations, the path to the goal is discarded. Likewise, the obstacle avoidance is performed
after the check on the violation of the joint limits, and paths can be discarded if they
impact the target at any point different from the grasping point.
The main advantage in using a redundant manipulator for the inverse kinematics is the
possibility to modify the joint velocity vector for the algorithm with the inclusion of an
additional task that is performed through the unused degree of freedom of the manipu-
lator. This task is typically the minimization of the chaser base spacecraft rotation, and
it can be added to the algorithm through a projection on the null space of the General-
ized Jacobian Matrix as to not interfere with the main task of following the end-effector
trajectory:

θ̇ = Ĵ†(ẋd +Ke) + (In×n − Ĵ†Ĵ)JTCKCeC (3.40)

3| Path Planning Algorithm 61

Where In×n − Ĵ†Ĵ projects the joint velocities computed by the error on the second task
to the null space of the GJM, to avoid that the minimization of the latter error interferes
with the accomplishment of the main task.
The Jacobian Matrix JC is the matrix relating the vector of the joint velocities with the
variables relative to the second task, in this case it represents the relation between the
joint velocity and the base angular velocities, as in (2.85), thus it is the last three rows of
the matrix:

JC = −M−1
b Mbm (3.41)

The error eC is defined as the distance from the reference attitude of the current orienta-
tion of the base, and since it is expressed in Euler angles and a typical desired orientation
corresponds with the LVLH frame, its value is:

eC = φB,d − φB(θ) = −φB(θ) (3.42)

As the base orientation is represented through Euler angles.
The closed-loop inverse kinematic algorithm is stopped whenever a certain tolerance on
the position and orientation of the end-effector is reached.

3.2.6. Spline Smoothing

The path generated through Rapidly-Exploring Random Trees is typically jerky, as it
discretizes the state space in a number of points. While the generation in this case has
been done continuously, but with sudden bumps in acceleration and velocity, it is necessary
to generate an overall continuous path with a continuous variation of acceleration and
velocity to provide a smooth trajectory.
The position and orientation of the base and on the end-effector does not depend on the
path taken but only on the initial and final overall states, thus it is possible to utilize the
RRT points as waypoints for the approximation of the state variables θ(t) as polynomials
[52].
It is possible to show that the polynomial interpolation of the joint variables and of the
joint velocity is sufficient in order to match the two states, as the base linear and angular
position will not depend on the path taken to get to a certain θ, θ̇ but rather only on the
initial conditions. Thus, it is possible to define the following conditions in order to obtain
a smooth path between two states:

62 3| Path Planning Algorithm

θ(t0) = θ0

θ(tf) = θf

˙θ(t0) = 0

˙θ(tf) = 0

¨θ(t0) = 0

¨θ(tf) = 0

(3.43a)

(3.43b)

(3.43c)

(3.43d)

(3.43e)

(3.43f)

Given these six conditions, the simplest function that can be used to approximate each
θ(t) is a fifth-order polynomial of the form:

θ(t) = a
t− t0
tf − t0

5

+ b
t− t0
tf − t0

4

+ c
t− t0
tf − t0

3

+ d
t− t0
tf − t0

2

+ e
t− t0
tf − t0

+ f (3.44)

This means that the joint velocities are the time derivative of this function:

θ̇(t) = 5a
(t− t0)4

(tf − t0)5
+ 4b

(t− t0)3

(tf − t0)4
+ 3c

(t− t0)2

(tf − t0)3
+ 2d

t− t0
(tf − t0)2

+ e
1

tf − t0
(3.45)

While the joint accelerations will be:

θ̈(t) = 20a
(t− t0)3

(tf − t0)5
+ 12b

(t− t0)2

(tf − t0)4
+ 6c

(t− t0)
(tf − t0)3

+ 2d
1

(tf − t0)2
(3.46)

The conditions in t = t0 can be enforced in a simple manner:

θ(t0) = f = θ0

θ̇(t0) = e = 0

θ̈(t0) = d = 0

(3.47a)

(3.47b)

(3.47c)

The final conditions, corresponding to t = tf , will result in a set of simple equations in
the three remaining unknowns:

θ(tf) = a+ b+ c = θf − θ0
θ̇(tf) = 5a+ 4b+ 3c = 0

θ̈(t0) = 10a+ 6b+ 3c = 0

(3.48a)

(3.48b)

(3.48c)

Where the remaining denominator terms have already been simplified. This system of

linear equations can be rewritten in matrix form and solved easily: 1 1 1

5 4 3

10 6 3

ab
c

 =

∆θ0
0

 (3.49)

After the path smoothing, it is necessary to perform a final check on the values of the
joint variables, their velocities and their accelerations in order to find whether they are
admissible.
Then, the path is sampled densely in order to repeat the obstacle avoidance check since
it will differ from the paths for which it has already been performed.

65

4| Simulation Results

In this chapter, the algorithm proposed in section 3.2 is validated, applied to a problem
with a series of simplifying assumptions, and the tree is expanded in order to find multiple
solutions to be compared. In section 4.1, the case scenario and the parameters of the
simulation are introduced and discussed. Then, the results of the simulation are presented
and discussed.

4.1. Simulation Setup and Parameters

The algorithm is applied to a numerical simulation of a capture of an uncontrolled target
satelllite, utilizing a 4-Degrees of Freedom Manipulator mounted on a microsatellite that
attempts to capture a small CubeSat.
The simulation has been carried out in the planar case, with a Space Manipulator System
similar to the one described in [45].
The main task of the Space Manipulator System is to capture the grasping handle on the
target satellite. This task does not require all the Degrees of Freedom of the manipulator
to be performed, as it requires the end-effector to match the position and the orientation
of the grasping point.
This leaves an additional degree of freedom of redundancy with respect to the main task,
and it can be utilized in order to perform the restoration of the attitude of the base of
the servicing satellite.
The rendez-vous manoeuvre is hypothesized to be completed before the start of the manip-
ulator trajectory planning and the Attitude and Orbital Control System to be completely
turned off during the remainder of the manoeuvre.
If the manoeuvre under these hypotheses is of sufficiently short duration, the effects due to
orbital mechanics can be ignored and thus the Space Manipulator System can effectively
be considered in a pure free-floating case, as no external force is applied to it.
As already discussed in previous paragraphs, in this case the target-centered LVLH refer-
ence frame will be aligned with the LVLH frame of the chaser, and it is typically assumed
in literature to be fixed and thus aligned with the ECI reference frame.

66 4| Simulation Results

4.1.1. Physical Parameters

The Spacecraft-Manipulator System’s 3D model is shown in fig. 4.1, in its body axes
reference frame.
The manipulator arm lies in the xy-plane of the body axes reference frame, and the joints
are highlighted and rotated by an angle of 30◦.
The figure also shows the body axes, the end-effector reference frame and the joint-
centered reference frames, each aligned to the previous link except for the first joint for
which the orientation of the reference frame is arbitrary. The x-axes of each frame are in
red, the y-axes in green, and the z-axes are in blue.

Figure 4.1: 3D Model of the SMS

The key physical features, such as the mass, the dimensions, and the inertia of both the
chaser satellite base and of the robotic of the manipulator arm are resumed in table 4.1.
The thickness for the manipulator arms are not considered, and the inertia is given only for
the out-of-plane component, as it is the only component that will feature in the equations
of motion for the planar case.

4| Simulation Results 67

Parameter Value

Base Dimension [lB,x lB,y] [m] [0.5 0.5]

Mass mB [kg] 10

Inertia IB,zz
[
kg
m2

]
0.8333

Links Length lL [m] [0.4 0.4 0.4 0.4]

Links Masses mL [kg] [2 2 2 2]
Links Inertias IL,zz

[
kg
m2

]
[0.0267 0.0267 0.0267 0.0267]

Table 4.1: Space Manipulator System Physical Parameters

The first joint is located on the center of the positive x-body axis face of the cube.
The centers of mass of each link are assumed to be at the respective link midpoint, while
the end-effector is coincident with the last link’s endpoint. The orientation of the end-
effector will be the same as the last link’s center of mass. Their values are presented in
table 4.2.

Parameter Value

Joint 1 Base Frame Coordinate xB0 [m] [0.25 0]

Links Centers of Mass Location xi−1
G,i [m]

[
lL,i

2
0
]

End-Effector Position x3
EE [m] [lL,4 0]

End-Effector Orientation θ3EE [rad] 0

Table 4.2: Space Manipulator System Configuration Parameters

Physical joint limits are defined in terms of joint angular position, velocity, and acceler-
ation. The first joint has a reduced joint rotation span compared the latter joints in the
kinematic chain to guarantee that the first link never makes contact with the chaser base.
The joint position, velocity and torque limits are presented in table 4.3 and they have been
selected in order to allow the maximum movement for each of the manipulator joints while
rendering effectively impossible for two consecutive links to collide, since the self-collisions
of the joints of the robotic arm has not been considered in the obstacle avoidance.

68 4| Simulation Results

Parameter Minimum Maximum

Joint Angular Position Limits θmin, θMAX [deg]

−85
−175
−175
−175

85

175

175

175

Joints Velocity Limits θ̇min, θ̇MAX [deg] -30 30
Joint Acceleration Limits θ̈min, θ̈MAX

[
deg
s2

]
-10 10

Table 4.3: Space Manipulator System Joint Limits

The target satellite’s model is shown in fig. 4.2. It is important to note that, in contrast
with fig. 4.1, the body axes shown here are rotated but follow the same color code: the
x-axis is in red, the y-axis is in green and the z-axis is in blue. The presence of solar
panels has been taken into account to be out-of-plane with respect to the plane in which
the manipulator will move, as the z-axis of the target’s body frame will be aligned with
the one of the target-centered LVLH frame. This is a further requirement imposed to the
close approach manoeuvre by the chaser satellite base. The grasping point position and
orientation is highlighted in fig. 4.2.

Figure 4.2: 3D Model of the Target Satellite

4| Simulation Results 69

Parameter Value

Base Dimension [lT,x lT,y] [m] [0.2 0.2 0.2]

Mass mT [kg] 1.25

Inertia IT,zz
[
kg
m2

]
0.00833

Grasping Handle [xB,TGP yB,TGP zB,TGP][m] [0 0.12 0]

Grasping Handle Orientation RGP
B,T

−1 0 0

0 −1 0

0 0 1

Table 4.4: Target Satellite Physical Parameters

4.1.2. Simulation Parameters

The capture scenario is described in the Local Vertical Local Horizontal reference frame
centered on the target satellite. This reference frame, according to the hypotheses illus-
trated in section 2.2, is fixed in time and can be approximated to be an inertial reference
frame.
The target satellite will be rotating with respect to its Local Vertical Local Horizontal
reference frame, and the grasping point moves accordingly.
In this simplified environment, the target satellite has been considered to rotate at a con-
stant angular velocity, but this feature will not affect the effectiveness of the algorithm,
since it utilizes instantaneous values for the position and velocity of the grasping point at
each discrete time instant tk.

Parameters Values

Target Position xT [m]

[
0

0

]
Target Rotation θT [rad] 0

Target Velocity vT
[
m
s

] [
0

0

]
Target Angular Velocity ωT

[
rad
s

]
2 · 10−2

Table 4.5: Target Satellite State Parameters

The initial state of the chaser satellite with respect to the target shows the manipulator

70 4| Simulation Results

in a semi-retracted position, and the joints to be initially still, to enforce the condition of
zero initial linear and angular momentum for the whole Space Manipulator System.

Parameters Values

Initial Base Position xB [m]

[
−1.1
0

]
Initial Base Rotation θB [deg] 0

Initial Joint Position Vector θ [deg]

60

−150
0

150

Initial Base Velocity vB

[
m
s

] [
0

0

]
Initial Base Angular Velocity θB

[
rad
s

]
0

Initial Joint Velocity θ̇
[
rad
s

]

0

0

0

0

Table 4.6: Space Manipulator System State Parameters

The simulation scenario is shown in fig. 4.3, depicting the chaser satellite and the tar-
get satellite relative position and orientation at the initial time instant, highlighting the
position of the grasping fixture on the target.

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

-0.6

-0.4

-0.2

0

0.2

0.4

Figure 4.3: Simulation Initial Scenario

4| Simulation Results 71

The choice for the parameters of the algorithm has been driven by the attempt to generate
as many probable connections to the goal as possible, while limiting the computational
time for the algorithm. Parameters for the RRT algorithm and for the Inverse Kinematics
Algorithm are given in table 4.7 and table 4.8 respectively.

RRT
Parameter Value

Iterations 10000

New node cost weights

wx

wα

wφb

wt

1

1

1

10−3

Connect-to-goal threshold dGC 0.3

Connect-to-goal weights

w
GC
x

wGCφ

wGCφb

 1

0.2
π

0

Near Search Radius θ̄ 0.5

Table 4.7: RRT Simulation Parameters

IK
Parameter Value

Maximum # Iterations 10000
∆t 0.001 s

Gain matrix for the end-effector task K

1 0 0

0 1 0

0 0 1

Gain matrix for the attitude task Kc

[
1
]

Final Error Tolerance for the position ex 10−3

Final Error Tolerance for the orientation eφ 1◦

Table 4.8: IK Simulation Parameters

The parameters for the Inverse Kinematics are defined in order to have a final completion
manoeuvre lasting a short amount of time (maximum t = 10 seconds), while the matri-
ces values are kept low in order to obtain joint velocities that respect the joint limits as

72 4| Simulation Results

solutions.

4.2. Results

The results of the path planning algorithm are hereby displayed: first, a trajectory that
could be obtained with the algorithm is shown in terms of end-effector and manipulator
motion in time, including the time evolution of joint angles, velocity, and accelerations
compared to the joint limits.
Then, the joint space exploration and the operational space exploration are analyzed,
showing that the tree structure grows fast towards unexplored areas and that it is able to
cover densely the space even with a small amount of nodes, and thus in a short time.
Finally, the quality of the generated trajectories with differing numbers of iterations is
discussed.
One trajectory generated by the algorithm is shown in fig. 4.4 in terms of end-effector
trajectory and chaser-manipulator configurations at the various nodes and throughout
the inverse kinematics solution.

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 4.4: Manoeuvre

4| Simulation Results 73

The joint rotations, velocities and accelerations are computed for the trajectory which
has been interpolated through splines, and their trajectories over time are shown in
fig. 4.5,fig. 4.6,fig. 4.7 and fig. 4.8.

Figure 4.5: Joint 1 Figure 4.6: Joint 2

74 4| Simulation Results

Figure 4.7: Joint 3 Figure 4.8: Joint 4

The results clearly indicate that there are no violations of the constraints of either joint
variable throughout the path computed through the RRT. Moreover, the joint velocities
are kept at very low values throughout the path, whereas joint acceleration feature low
values for the initial nodes and increase for the successive nodes.
This is mainly due to the way in which they are generated: in fact, initial nodes are
generated through paths of longer duration, with a constant maximum acceleration that
has been applied for a short amount of time in comparison to the time required to reach
the node. As the joint space is explored more densely, the paths found between two

4| Simulation Results 75

nodes become shorter, and thus the acceleration applied to generate them becomes more
impactful.
Furthermore, fig. 4.4 shows that the generated path does not collide with the target
satellite along the trajectory.

Figure 4.9: Chaser Base Rotation

As stated previously, the condition on the chaser base rotation is not to maintain a
precise Earth pointing throughout the manoeuvre duration, but rather to communicate
with Earth at the start of manoeuvre and at the capture instant.
The behaviour of the base rotation coordinate φB is shown in fig. 4.9, and it approaches
the zero value at the end of the trajectory described by the RRT.
The final error on the end-effector position and orientation, the time of completion of the
manoeuvre and the final base rotation are given in table 4.9.

Parameter Value

xEE[m]

[
−0.0346
−0.1159

]
ϕEE[deg] 72.5953
ϕb[deg] 2.9538
ex[m] 9.94 · 10−4

eϕ[deg] 0.8985
tf 2m37s

Table 4.9: End Conditions

76 4| Simulation Results

The manoeuvre completion time is below 10 minutes, which is the typical threshold above
which the assumptions on the orbital mechanics model are considered no longer valid.

The proposed algorithm features a rapid exploration of the joint space even with a low
number of nodes, whereas typically RRTs generate nodes in the proximity of the tree and
expand the tree structure slowly towards unexplored areas.
The following figures show the combination of the joint variables as the tree progresses its
path, connecting the nodes through simple line edges rather than through the trajectory
that has been defined among two nodes. The starting node of the tree, relative to the
inital position of the joints for the Space Manipulator System, has been highlighted in
green.

(a) 100 Iterations (b) 1000 Iterations

Figure 4.10: Generated Tree: First and Second Joint

In fig. 4.10a the propagation of the tree for the first and second joint is shown.
Even with a low amount of vertices, the explored combinations of joints cover a wide
range of the possible combination, then, as the number of iterations progresses, the new
nodes explore the state space more densely and generate new paths towards the areas
with a lesser amount of nodes.
These figures feature an unexplored area, corresponding to a combination of high mag-

4| Simulation Results 77

nitude values for both joint angles, which correspond to the manipulator configurations
that display an impact with the chaser base.

(a) 100 Iterations (b) 1000 Iterations

Figure 4.11: Generated Tree: Third and Fourth Joint

The latter two joints feature no forbidden areas within their limits, and similarly to the
previous case, show a fast exploration of the state combinations.

The proposed approach generates multiple possible trajectories, that are then evaluated
based on the success of the Inverse Kinematics algorithm, on the violation of the joint
limits, on the eventual impacts with the target, and on the final rotation of the chaser
satellite base.
The obtained trajectories that resulted in an attempted goal connection are thus classified
into categories:

1. Failed connections : These trajectories reached the proximity of the grasping point
location, and the Inverse Kinematics Algorithm attempted a connection to the goal.
However, the algorithm could not establish a successful path to the goal by limiting
the error under the tolerance values. This is mainly due to major initial condition
differences between the node from which the connection was attempted and the
grasping point location.

2. Constraints violations : The trajectories belonging to this set reached the goal con-
dition effectively, but through the path generated by the Inverse Kinematics Algo-
rithm, since no joint constraints are applied, one or multiple violations have been
detected. These paths are discarded as there is no guarantee that the SMS could
follow them.

78 4| Simulation Results

3. Target Collision: These paths reached the goal conditions but, during the itera-
tions of the Inverse Kinematics Algorithm, one or multiple collision with the target
satellite have been detected.

4. Valid Paths : These trajectories successfully reached the goal location while being
compliant with the path constraints on the joint variables and not impacting the
target satellite or other obstacles in the workspace in the path generated by the
Inverse Kinematics Algorithm.

5. Optimal Paths : The trajectories belonging to this set reached the goal condition
without impacting the target or violating joint constraints, and moreover these
paths feature a final rotation of the base φb < 5◦, that requires a very low subsequent
Attitude and Orbital Control System effort to restore the attitude for telecommu-
nications or other operations.

The number of iterations for the algorithm coincides with the amount of new nodes that
are attempted to be added to the tree.
A higher amount of nodes implies a better exploration of the joint space, a higher number
of available connections to the goal, and a larger sample of states for each ΘNear to find
an optimized path.

1000 Iterations
Attempted Connections 19

Failed Connections 9 (47.37%)
Constraint Violations 7 (36.84%)

Target Collision 0 (0.00%)
Valid Paths 3 (15.79%)

Optimal Paths 2 (10.53 %)

Table 4.10: Path Categories: n = 1000

2500 Iterations
Attempted Connections 61

Failed Connections 34 (55.74%)
Constraint Violations 20 (32.79%)

Target Collision 2 (3.28%)
Valid Paths 5 (8.20%)

Optimal Paths 5 (8.20%)

Table 4.11: Path Categories: n = 2500

5000 Iterations
Attempted Connections 117

Failed Connections 57 (48.72%)
Constraint Violations 52 (44.44%)

Target Collision 2 (1.71%)
Valid Paths 6 (5.13%)

Optimal Paths 5 (4.27%)

Table 4.12: Path Categories: n = 5000

10000 Iterations
Attempted Connections 179

Failed Connections 116 (64.80%)
Constraint Violations 44 (24.58%)

Target Collision 0 (0.00%)
Valid Paths 19 (10.61%)

Optimal Paths 14 (7.82%)

Table 4.13: Path Categories: n = 10000

The path categories amount for different numbers of iterations are shown in table 4.10,

table 4.11, table 4.12 and table 4.13.
The amount of goal connections increases with the number of nodes, but the amount of
successful paths towards the goal does not show a definite behaviour that would suggest
using a high number of nodes to be generated.
However, even though an excessive number of iterations is deemed unnecessary, the
amount of optimal paths for fewer iterations is very low, and due to the random na-
ture of the generation of the nodes, this might coincide with an overall failure of the
algorithm in finding an optimal path.

5| Conclusions

The main goal of this work was to formulate a path planning approach for a Space
Manipulator System that could generate a trajectory towards the grasping handle of a
target satellite while avoiding collisions with obstacles and restoring the initial attitude
of the chaser satellite base.
The path planning formulation is based on a common sampling-based approach for robots
in the Rapidly Exploring Random Trees, combined with obstacle avoidance and goal
connection methods that have already been proposed and validated in literature.
The proposed approach succeeded in finding multiple trajectories that accomplished the
goals of the mission while being compliant with the limits for the joint variables of the
manipulator, avoding obstacles in the manipulator workspace, under certain assumptions
on the environment.
In order to validate and expand the algorithm, it is necessary to drop some hypotheses
and add features that would increase the success rate of the algorithm:

• 3D Simulation: The work hereby presented shows the possibility of solution of the
trajectory planning problem for a planar case typical scenario. The implementation
of a 3D simulation would better clarify the applicability to real cases.

• Add rewiring : Typically, RRT* algorithms converge to an optimal solution when
the number of iterations increases. The presented approach does not converge to
an optimal solution given that the rewiring step, checking whether a new tree node
can be employed as an intermediate node towards another tree node, lowering the
path cost, is not performed. This step can be performed through the solution of a
2-Point Boundary Value Problem.

• Add Other Minimization Parameters : This approach computed the cost of each of
the generated nodes including the distance to the goal and the rotation of the base.
Other useful variables, such as the manipulability index, can be added within the
cost function of each node. Additionally, the distance from the obstacles can be
included to add robustness to obstacle modelling errors.

83

Bibliography

[1] F. Aghili. Coordination control of a free-flying manipulator and its base attitude to
capture and detumble a noncooperative satellite. In 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2365–2372. IEEE, 2009.

[2] J. R. Benevides and V. Grassi. Autonomous path planning of free-floating manipu-
lators using rrt-based algorithms. In 2015 12th Latin American Robotics Symposium
and 2015 3rd Brazilian Symposium on Robotics (LARS-SBR), pages 139–144. IEEE,
2015.

[3] F. Caccavale and B. Siciliano. Kinematic control of redundant free-floating robotic
systems. Advanced robotics, 15(4):429–448, 2001.

[4] W. K. Chung and Y. Xu. Path planning algorithm for space manipulator with a
minimum energy demand. In 2012 IEEE International Conference on Robotics and
Biomimetics (ROBIO), pages 1556–1563. IEEE, 2012.

[5] S. Cocuzza, I. Pretto, and S. Debei. Reaction torque control of redundant space
robotic systems for orbital maintenance and simulated microgravity tests. Acta As-
tronautica, 67(3-4):285–295, 2010.

[6] J. J. Craig. Introduction to robotics. Pearson Educacion, 2006.

[7] S. Dubowsky and E. Papadopoulos. The kinematics, dynamics, and control of free-
flying and free-floating space robotic systems. IEEE Transactions on robotics and
automation, 9(5):531–543, 1993.

[8] S. Dubowsky and M. A. Torres. Path planning for space manipulators to minimize
spacecraft attitude disturbances. In Proceedings of IEEE international conference on
robotics and automation, volume 3, pages 2522–2528. Citeseer, 1991.

[9] A. Flores-Abad, O. Ma, K. Pham, and S. Ulrich. A review of space robotics tech-
nologies for on-orbit servicing. Progress in aerospace sciences, 68:1–26, 2014.

[10] A. Flores-Abad, L. Zhang, Z. Wei, and O. Ma. Optimal capture of a tumbling object

84 | Bibliography

in orbit using a space manipulator. Journal of Intelligent & Robotic Systems, 86:
199–211, 2017.

[11] A. M. Giordano, D. Calzolari, and A. Albu-Schäffer. Workspace fixation for free-
floating space robot operations. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 889–896. IEEE, 2018.

[12] C. Ju, Q. Luo, and X. Yan. Path planning using artificial potential field method
and a-star fusion algorithm. In 2020 global reliability and prognostics and health
management (PHM-Shanghai), pages 1–7. IEEE, 2020.

[13] S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for optimal
motion planning. Robotics Science and Systems VI, 104(2), 2010.

[14] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning.
The international journal of robotics research, 30(7):846–894, 2011.

[15] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In Pro-
ceedings. 1985 IEEE international conference on robotics and automation, volume 2,
pages 500–505. IEEE, 1985.

[16] J. J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach to single-query
path planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE Inter-
national Conference on Robotics and Automation. Symposia Proceedings (Cat. No.
00CH37065), volume 2, pages 995–1001. IEEE, 2000.

[17] R. Lampariello. Motion planning for the on-orbit grasping of a non-cooperative target
satellite with collision avoidance. i-SAIRAS 2010, 2010.

[18] R. Lampariello. On grasping a tumbling debris object with a free-flying robot. IFAC
Proceedings Volumes, 46(19):161–166, 2013.

[19] S. M. LaValle and J. J. Kuffner Jr. Randomized kinodynamic planning. The inter-
national journal of robotics research, 20(5):378–400, 2001.

[20] W.-J. Li, D.-Y. Cheng, X.-G. Liu, Y.-B. Wang, W.-H. Shi, Z.-X. Tang, F. Gao, F.-M.
Zeng, H.-Y. Chai, W.-B. Luo, et al. On-orbit service (oos) of spacecraft: A review
of engineering developments. Progress in Aerospace Sciences, 108:32–120, 2019.

[21] Y. Li, D. Li, W. Zhu, J. Sun, X. Zhang, and S. Li. Constrained motion planning
of 7-dof space manipulator via deep reinforcement learning combined with artificial
potential field. Aerospace, 9(3):163, 2022.

[22] S. Liu, Q. Zhang, and D. Zhou. Obstacle avoidance path planning of space manipu-

| Bibliography 85

lator based on improved artificial potential field method. Journal of The Institution
of Engineers (India): Series C, 95:31–39, 2014.

[23] Y. Masutani and F. Miyazaki. Sensory feedback control for space manipulators.
Journal of the Robotics Society of Japan, 7(6):647–655, 1989.

[24] Z. Mu, W. Xu, X. Gao, L. Xue, and C. Li. Obstacles modeling and collision detection
of space robots for performing on-orbit services. In 2014 4th IEEE International
Conference on Information Science and Technology, pages 461–466. IEEE, 2014.

[25] Z. Mu, W. Xu, and B. Liang. Avoidance of multiple moving obstacles during ac-
tive debris removal using a redundant space manipulator. International Journal of
Control, Automation and Systems, 15(2):815–826, 2017.

[26] K. Nanos and E. Papadopoulos. On the use of free-floating space robots in the
presence of angular momentum. Intelligent Service Robotics, 4:3–15, 2011.

[27] D. Nenchev, Y. Umetani, and K. Yoshida. Analysis of a redundant free-flying space-
craft/manipulator system. IEEE Transactions on Robotics and Automation, 8(1):
1–6, 1992.

[28] D. N. Nenchev. Reaction null space of a multibody system with applications in
robotics. Mechanical Sciences, 4(1):97–112, 2013.

[29] D. N. Nenchev, K. Yoshida, P. Vichitkulsawat, and M. Uchiyama. Reaction null-
space control of flexible structure mounted manipulator systems. IEEE Transactions
on Robotics and Automation, 15(6):1011–1023, 1999.

[30] S.-I. Nishida and S. Kawamoto. Strategy for capturing of a tumbling space debris.
Acta Astronautica, 68(1-2):113–120, 2011.

[31] M. Oda and Y. Ohkami. Coordinated control of spacecraft attitude and space ma-
nipulators. Control Engineering Practice, 5(1):11–21, 1997.

[32] E. Papadopoulos and S. Dubowsky. Coordinated manipulator/spacecraft motion
control for space robotic systems. In ICRA, pages 1696–1701, 1991.

[33] E. Papadopoulos, F. Aghili, O. Ma, and R. Lampariello. Robotic manipulation and
capture in space: A survey. Frontiers in Robotics and AI, page 228, 2021.

[34] S. M. Persson and I. Sharf. Sampling-based a* algorithm for robot path-planning.
The International Journal of Robotics Research, 33(13):1683–1708, 2014.

[35] T. Rybus. Obstacle avoidance in space robotics: Review of major challenges and
proposed solutions. Progress in Aerospace Sciences, 101:31–48, 2018.

86 | Bibliography

[36] T. Rybus. Point-to-point motion planning of a free-floating space manipulator using
the rapidly-exploring random trees (rrt) method. Robotica, 38(6):957–982, 2020.

[37] T. Rybus and K. Seweryn. Application of rapidly-exploring random trees (rrt) al-
gorithm for trajectory planning of free-floating space manipulator. In 2015 10th In-
ternational Workshop on Robot Motion and Control (RoMoCo), pages 91–96. IEEE,
2015.

[38] T. Rybus, J. Prokopczuk, M. Wojtunik, K. Aleksiejuk, and J. Musiał. Application
of bidirectional rapidly exploring random trees (birrt) algorithm for collision-free
trajectory planning of free-floating space manipulator. Robotica, 40(12):4326–4357,
2022.

[39] B. Siciliano, O. Khatib, and T. Kröger. Springer handbook of robotics, volume 200.
Springer, 2008.

[40] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modelling, Planning
and Control. Springer, 2009.

[41] S. Stoneman and R. Lampariello. Embedding nonlinear optimization in rrt for op-
timal kinodynamic planning. In 53rd IEEE Conference on Decision and Control,
pages 3737–3744. IEEE, 2014.

[42] Y. Umetani, K. Yoshida, et al. Resolved motion rate control of space manipulators
with generalized jacobian matrix. IEEE Transactions on robotics and automation, 5
(3):303–314, 1989.

[43] Z. Vafa. Space manipulator motions with no satellite attitude disturbances. In
Proceedings., IEEE International Conference on Robotics and Automation, pages
1770–1775. IEEE, 1990.

[44] D. J. Webb and J. Van Den Berg. Kinodynamic rrt*: Asymptotically optimal motion
planning for robots with linear dynamics. In 2013 IEEE international conference on
robotics and automation, pages 5054–5061. IEEE, 2013.

[45] M. Wilde, S. Kwok Choon, A. Grompone, and M. Romano. Equations of motion
of free-floating spacecraft-manipulator systems: an engineer’s tutorial. Frontiers in
Robotics and AI, 5:41, 2018.

[46] Z. Xie, X. Zhao, Z. Jiang, H. Yang, and C. Li. Trajectory planning and base attitude
restoration of dual-arm free-floating space robot by enhanced bidirectional approach.
Frontiers of Mechanical Engineering, 17(1):2, 2022.

5| BIBLIOGRAPHY 87

[47] W. Xu, B. Liang, C. Li, and Y. Xu. Autonomous rendezvous and robotic capturing
of non-cooperative target in space. Robotica, 28(5):705–718, 2010.

[48] W. Xu, Y. Liu, B. Liang, X. Wang, and Y. Xu. Unified multi-domain modelling and
simulation of space robot for capturing a moving target. Multibody System Dynamics,
23:293–331, 2010.

[49] Y. Xu and T. Kanade. Space robotics: dynamics and control, volume 188. Springer
Science & Business Media, 1992.

[50] Y. Yanoshita and S. Tsuda. Space robot path planning for collision avoidance. In Pro-
ceedings of the International MultiConference of Engineers and Computer Scientists,
volume 2. Citeseer, 2009.

[51] K. Yoshida and D. N. Nenchev. A general formulation of under-actuated manipulator
systems. In Robotics Research: The Eighth International Symposium, pages 33–44.
Springer, 1998.

[52] M. Yu, J. Luo, M. Wang, and D. Gao. Spline-rrt∗: Coordinated motion planning of
dual-arm space robot. IFAC-PapersOnLine, 53(2):9820–9825, 2020.

[53] L. Zong, J. Luo, M. Wang, and J. Yuan. Obstacle avoidance handling and mixed
integer predictive control for space robots. Advances in Space Research, 61(8):1997–
2009, 2018.

[54] L. Zong, M. R. Emami, and J. Luo. Reactionless control of free-floating space manip-
ulators. IEEE Transactions on Aerospace and Electronic Systems, 56(2):1490–1503,
2019.

89

List of Figures

2.1 Capture Scenario with Reference Frames 18
2.2 Chaser Model . 21
2.3 Denavit-Hartenberg Convention . 23

3.1 RRT-Based Algorithm . 48
3.2 Super-quadric envelope and cube, using a, b, c = 1

2
l 55

4.1 3D Model of the SMS . 66
4.2 3D Model of the Target Satellite . 68
4.3 Simulation Initial Scenario . 70
4.4 Manoeuvre . 72
4.5 Joint 1 . 73
4.6 Joint 2 . 73
4.7 Joint 3 . 74
4.8 Joint 4 . 74
4.9 Chaser Base Rotation . 75
4.10 Generated Tree: First and Second Joint . 76
4.11 Generated Tree: Third and Fourth Joint 77

91

List of Tables

4.1 Space Manipulator System Physical Parameters 67
4.2 Space Manipulator System Configuration Parameters 67
4.3 Space Manipulator System Joint Limits . 68
4.4 Target Satellite Physical Parameters . 69
4.5 Target Satellite State Parameters . 69
4.6 Space Manipulator System State Parameters 70
4.7 RRT Simulation Parameters . 71
4.8 IK Simulation Parameters . 71
4.9 End Conditions . 75
4.10 Path Categories: n = 1000 . 78
4.11 Path Categories: n = 2500 . 78
4.12 Path Categories: n = 5000 . 78
4.13 Path Categories: n = 10000 . 78

	Abstract
	Sommario
	Contents
	Introduction
	On-Orbit Servicing and Active Debris Removal
	Space Robots for OOS and ADR

	Space Robotics: Review of key technologies
	Path Planning Problem

	Proposed Approach
	Thesis Structure

	System Modelling
	Definitions and Notation
	Euler Angles Representation
	Quaternion Representation

	Reference Scenario
	Reference Frames Definition

	Target Motion Model
	Target Attitude Kinematics
	Target Attitude Dynamics
	Grasping Point Motion

	Space Manipulator System Model
	Kinematics
	Manipulator Direct Kinematics
	Manipulator Differential Kinematics
	Dynamics
	Generalized Equations of Motion
	Generalized Jacobian Matrix
	Overall Equations of Motion

	Path Planning Algorithm
	Rapidly-Exploring Random Trees
	Proposed Algorithm
	Sampling and Metric
	Steering Method
	Obstacle Avoidance
	New Node Optimization
	Connection to Goal
	Spline Smoothing

	Simulation Results
	Simulation Setup and Parameters
	Physical Parameters
	Simulation Parameters

	Results

	Conclusions
	Bibliography
	List of Figures
	List of Tables

