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Abstract

The exploitation of autonomous satellite-mounted robotic manipulators for servicing pur-
poses is a topic of interest for the sustainability and affordability of the space industry.
These systems are able to efficiently perform activities that are either dangerous or im-
possible for astronauts, including repair of malfunctioning spacecrafts and removing space
debris of different sizes.

However, while the technology has been demonstrated and multiple missions are under de-
velopment, there are no currently active spacecrafts incorporating an autonomous robotic
arm.

This work’s aim is to propose a new approach that generates multiple possible trajectories
that account for the key criticalities of Spacecraft-Manipulator Systems for the capture a
target satellite.

The paths are generated incrementally exploiting the sampling of the joint space, following
the scheme of Rapidly-Exploring Random Tree algorithms and including the minimization

of a cost function assigned to each trajectory.

Keywords: On-orbit operations, Space robotics, Path planning, RRT algorithm
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Sommario

L’uso di manipolatori robotici montati su satelliti per la manutenzione ¢ un argomento
di grande interesse per la sostenibilita e I'accessibilita del settore spaziale. Questi sistemi
sono in grado di svolgere efficientemente attivita che sono pericolose o impossibili per gli
astronauti, come le riparazioni di veicoli spaziali malfunzionanti e la rimozione di detriti
di diverse dimensioni.

Nonostante questa tecnologia sia stata dimostrata e ci siano pitt missioni in fase di
sviluppo, non esistono al momento satelliti attivi che incorporano un braccio robotico
autonomo.

L’obiettivo di questo lavoro € di proporre un nuovo approccio che generi pitl traiettorie
che tengono in conto delle criticalita dei sistemi satellite-manipolatore per la cattura di
un satellite obiettivo.

Le traiettorie sono generate in maniera incrementale sfruttando il campionamento dello
spazio dei giunti, seguendo lo schema di un algoritmo RRT e includendo la minimizzazione

di una funzione obiettivo, che viene assegnata ad ogni traiettoria.

Parole chiave: Operazioni spaziali, Robotica spaziale, Pianificazione del moto, Algo-
ritmo RRT
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]_ Introduction

The exploitation of space has created an endless amount of new possibilities and tech-
nologies, including telecommunications, Earth protection and monitoring, navigation and
exploring missions that massively improved our understanding of the Universe and its
origins.

However, the space sector features criticalities that have to be kept into account and,
eventually, overcome: the environment is hazardous, missions and spacecrafts have very
high costs, and the most commonly exploited orbits (e.g. Geosynchronous Orbits) are
seeing an increase in the number of inhabiting spacecrafts.

For these reasons, spacecrafts are required to have a high degree of autonomy when
launched, and accomplishing the mission goals is made difficult by many possible hazards
of the space environments: radiation, oxidation, and impact with the growing number of
debris. Besides, the biggest differences with respect to non-space industry are the limited
possibility to remove non-functioning spacecrafts, the effort required in order to create
larger orbital structures and the limited possibility of maintenance and repair of orbiting
structures after launch, which causes many missions that could be saved if accessible to
be indefinitely compromised.

On-Orbit Servicing (OOS), Active Debris Removal and On-Orbit Assembly attempt to
remedy these problems, and employing robotics in order to accomplish them has received

a high amount of attention over the past years.

1.1. On-Orbit Servicing and Active Debris Removal

On-orbit servicing refers to tasks such as inspecting, refuelling, upgrading, repairing or res-
cuing satellites that are employed to lengthen a mission’s lifetime. Active Debris Removal
refers to the activity of removing non-functioning satellites from their current economi-
cally and scientifically useful orbits to bring them towards disposal orbits [30]. On-Orbit
Assembly is the set of activities to be performed to build larger orbital structures that
cannot be launched altogether but require multiple smaller modules.

The concept of OOS has been proposed in the 1960s and it has been implemented in many



2 1| Introduction

missions within the last century, with examples ranging from repairing the solar arrays
and microwave antenna of Skylab in 1973, to the Space Shuttle program that successfully
serviced the Solar Maximum Satellite (SMM), Palapa 2 and Westar 6, and ultimately, the
Hubble Space Telescope, that has received a total of five servicing missions [20].

Most of these missions have been carried out either by remotely controlled devices, or by
astronauts through what is typically referred to as Eztravehicular Activities (EVA), that,
however, present limitations due to the hazardous environment, typically require careful
planning, and are sometimes unfeasible.

Besides, ADR cannot be performed through these methodologies, and thus robotics can
be employed to perform all of these activities: it revolves around the usage of a chaser or
servicing satellite operating on a target or client satellite or structure.

The most straightforward solution to the problem revolves around using satellite-mounted
robotic arms, named Spacecraft-Manipulator Systems (SMS), to expand the available ser-
vicing missions to environments where manned operations are impossible, such as Geosyn-
chronous Orbits, and to reduce the costs of these operations.

The currently operational robotic arms in space are teleoperated, and they are on board
of the ISS.

The Canadarm?2 is a T-Degrees of Freedom (DoF) teleoperated robotic manipulator that
assists astronauts in their EVAs, aids in on-orbit assembly of the station itself, and it has
also been utilized for On-Orbit Servicing demonstrations. It is based on the Canadarml
which has been used for Space Shuttle missions utilized to deploy, capture and repair
satellites.

Other manipulators currently operated on board are the Remote Manipulator System
(JEM-RMS) and the European Robotic Arm (ERA), tasked with managing payloads and

assisting activities for astronauts.

1.1.1. Space Robots for OOS and ADR

While no completely autonomous robotic mission has yet been launched for On-Orbit
Servicing, Active Debris Removal or On-Orbit Assembly, several proposed missions and
demonstrators have attempted to show the potentiality of the usage of space robots for
these tasks.

The pioneer mission in the field has been the Engineering Test Satellite-VII (ETS-VII),
which was launched on 28th November 1997. It included an assembly of a client and
servicer, and the latter was provided with a robotic manipulator arm to verify on-orbit
technologies such as autonomous rendez-vous and docking, monitoring of the target satel-

lite, replacement of its units, refuelling and assembly.
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The Demonstration of Autonomous Rendezvous Technology (DART) included a secondary
satellite that has been launched on 15th April 2005 and encountered failure during its op-
erations. Its mission goal included an autonomous rendezvous, approach, and flyby of a
target satellite.

Another successful demonstration of autonomous On-Orbit Servicing has been the Orbital
FExpress, developed by DARPA and Boeing since 1999 and finally launched in 2007. The
main goal of the mission was to establish on-orbit satellite servicing infrastructure for
routine, cost-effective and autonomous resupply and reconfiguration. More in detail, the
mission’s operations included the launch, the far-field and near-field rendezvous, and ulti-
mately the capture and mating operations, followed by release, separation, and disposal.
The mission included two spacecrafts, ASTRO and NEXTSat. The former had the role of
a servicer with a 3 meters length robotic arm, utilized to replace expendable components,
while the latter functioned as the client satellite that included multiple features to ease
its capture by the servicer.

DARPA has also developed the Front-end Robotics Enabling Near-term Demonstration
(FREND), a 7-degrees-of-freedom robotic arm in the context of the Spacecraft for the
Universal Modification of Orbits (SUMO), which successfully tested and evaluated critical
challenges in the combination of stereophotogrammetric imaging with the FREND robotic
manipulator arm on ground in the Naval Research Laboratory (NRL). The FREND arm
and these evaluation will be key in the development of the future projects of DARPA,
the Robotic Servicing of Geostationary Satellites (RSGS) which is aimed at developing a
Robotic Servicing Vehicle (RSV), capable of capturing and manipulating targets through
the usage of a manipulator arm; and the Phoenix program, aimed at the removal and
eventual reuse of parts of decommissioned satellites in GEO orbits.

The Deutsche Orbital Servicing (DEOS) mission has been studied by Deutsche zentrum
fiir Luft- und Raumfahrt (DLR), and it involved the design of an on-orbit servicing satel-
lite with robots and related manipulation tools, with capability of capturing and servicing
faulty satellites in multiple orbits, and it was expected to carry a servicer and a client
in order to perform tests for series of key technologies, such as rendezvous and docking,
manipulation, disposal to graveyard orbits or atmospheric reentry.

The European Space Agency (ESA) has also promoted the CleanSpace initiative, for which
a first mission study, e.Deorbit, has been carried out first as a debris removal of ENVISAT,
to then being renamed and modified to CleanSpace-1 to accomplish a wider variety of
functions than ADR, including On-Orbit Servicing of multiple satellites. The spacecraft

for this mission will capture targets utilizing multiple arms that will wrap around them.
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1.2. Space Robotics: Review of key technologies

A Space Robot, or Space Manipulator System (SMS), is generally constituted by a base
satellite on which one or multiple manipulator arms are mounted, that typically carry
end-effectors, devices mounted at the free extremity of the arm and that will accomplish
capture and manipulation tasks.

Many categorizations of space robots can be found in literature, and a brief summary is
hereby given in order to more accurately describe the key technologies this work will refer
to.

A first differentiation can be made between arms mounted on large space structures, such

as the ISS, and manipulators mounted on spacecrafts of comparable size and inertia [35].

e Manipulators mounted on large orbital structures: Currently operational manipula-
tors in space are on board of the ISS, and have been listed in previous paragraphs.
They can be treated as fixed-base manipulators due to the fact that the mass and
inertia of such structures are very high in comparison to mass and inertia of the
manipulators, and that even when a heavy payload is transported by a manipulator,

the influence on the state of the orbital structure can be in most cases neglected.

e Manipulators mounted on small satellites: Whenever the manipulators are of com-
parable mass and size with the satellites they are mounted on, the coupling dy-
namic between the motion of the manipulator and position and orientation of the
base satellite becomes of greater effect. These systems are non-holonomic, and the
coupling effect shall either be compensated by the Attitude and Orbital Control Sys-
tem (AOCS) of the satellite, or be minimized within the manipulator arm trajectory

planning.

Within small satellite-mounted manipulators, a further division can be traced between
scenarios in which the Attitude and Orbital Control System is acting during the capture,

and other scenarios in which it is completely turned off [7].

e Free-flying space robot: Free-flying space robots are characterized by an active AOCS
through the duration of the capture manoeuvre. In this way, thrusters or other
actuators such as reaction wheels can compensate for the effect of the torques on
the base induced by the motion of the manipulator. The satellite’s position and
orientation can follow a prescribed trajectory, and end-effectors can reach their
target in pre-determined configurations, requiring the simultaneous control of the

base and of the manipulator.
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e Free-floating space robot: Free-floating space robots assume to have no external
forces acting on the system (including the AOCS), thus since linear and angular
momenta are conserved, they will feature a base that moves due to the reaction
forces and torques imposed my the motion of the manipulator. It has the advantage
of not utilizing thrusters during the operations, hence of reducing fuel consump-
tion. The system shows nonholonomic behaviour due to the non-integrability of the

momentum equations.

Differences can also be individuated in terms of the mission objective to be accom-
plished. In particular, the target satellites can be classified between cooperative and

non-cooperative [33].

e Cooperative targets: cooperative targets are defined as those satellites that typically
feature an AOCS that is at least partially functioning. This means that they can
aid the servicer satellites by correcting their position and attitude. These targets

are typical of OOS missions.

e Non-cooperative targets: these targets are either unable to control their attitude
because of a damaged AOCS or they are at the end of their lifetime, thus showing a
behaviour of uncontrolled tumbling. These are the common targets of ADR missions

and require much more careful planning for the chaser operations.

Typically, the capturing process starts with far and close-range rendezvous manoeuvres,
and then the operations for robotic arms can be subdivided into three or four main phases
9, 33].

1. Observation and Planning Phase is the initial required phase in which the chaser is
put at a safe distance from the target such that it can estimate its state in terms
of position and velocity and its parameters like its mass or its geometrical features
with the highest accuracy possible, to then be able to plan effectively the subsequent

phases of the mission.

2. Pre-Grasping Phase includes the final approach of the satellite-manipulator system

towards the grasping point.

3. Post-Grasping Phase is the final phase, it includes the impact of the manipulator
end-effector with the target satellite, the effective capture and finally the post-

capturing stabilization, necessary to accomplish the mission goals of OOS or ADR.
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1.2.1. Path Planning Problem

The path planning of space-manipulator systems constitutes the pre-grasping phase and
it is the determination of the displacement, velocity and acceleration of the space robot
to have its end-effector reach an identified grasping point on the target satellite.

Path planning can be performed in the Cartesian space, defining the end-effector trajec-
tory, velocity and acceleration to then employ techniques such as inverse kinematics or
dynamics [40] to compute the relative time evolution of the joint variables or the required
torques; it can be performed in the configuration space, where the joint variables trajec-
tories are defined to then calculate the resulting end-effector position and orientation [6].
The main complication for space robots with respect to Earth-based robots is that the
latter are typically considered as fixed-base, while for space robots the base is uncon-
strained and sometimes uncontrolled, leading to 6 more Degrees of Freedom (DoF) for
the problem [39].

For this reason, research for this environment had to not only take into account typical
parameters to be maximized such as manipulability, or to be minimized such as control
effort for the manipulator, but also a minimization on the impact of the robotic manipu-
lator motion on the base attitude and translation.

Furthermore, Space is typically a dynamic environment, where multiple moving obstacles
can be present in the workspace of the robot. Thus, the techniques for obstacle avoidance

have to take this into account.

Obstacle Avoidance

Avoiding collisions with objects is key in achieving the goal of the missions for space
robots. The problem with obstacles is twofold: first is modelling the obstacles in order to
accurately represent them with a degree of safety with respect to model inaccuracy and
the second is the dynamic nature of the obstacles for space applications.

Approximately accurate models of different obstacles with geometric primitives based on
super-quadric approximation have been studied [24, 25]. Since most of the satellites and,
in general, spacecrafts, are composed of standardized modules, objects can be modelled
as a composition of surfaces defined by these curves, without which obstacles would be
modelled as convex surfaces with loss of workspace.

Obstacles can be treated typically as hard constraints for optimization problems or sampling-
based approaches, however Artificial Potential Field (APF) methods, first introduced in
[15], typically define a repulsive force with respect to the obstacles and an attractive
force towards reaching the goal, relaxing the problem in terms of constraints while still

guaranteeing collision-free path planning. The APF methods were successfully applied
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to free-floating space robots as standalone algorithms for avoiding obstacles of different
dimension and shape in space, first by finding a collision-free path for the end-effector,
and then applying inverse kinematics to apply a simple collision detection based on the
depth and direction of the links [22]; APF methods employing Laplace potential fields
have been investigated to avoid local minima within the obstacles themselves [50]. Due
to the translation of constraints into parts of the objective function, the APF have been
used in conjunction with other optimization methods, for example reinforcement learning
[21] or A* algorithm [12].

Avoiding obstacles can also be based on Relative Velocity between the obstacles and the
links and joints of the manipulator. Enhanced version of the Velocity Damper Method
(VDM) [53] has been employed in order to damp the relative velocity that the manip-
ulator has with obstacles, in particular only if the closest point of the manipulator to
the obstacle, continuously computed, falls within a pre-defined safety distance from the
object.

Optimization Techniques are available in order to include the distances between obstacles
and manipulator as part of the objective function. In particular, various rationales can be
utilized in order to find the closest point to the obstacle, and then attempt to maximize
this distance while optimizing other quantities, such as manipulator manipulability and
base attitude change. This approach has been employed with controlled base and manip-
ulator for a close rendezvous manoeuvre [17, 18|.

One of the most promising set of algorithms to avoid collisions is Sampling-based path
planning, which has been extensively covered for Earth mobile robots, and it has been ex-
plored for space manipulators. These revolve around generating random samples through
a pre-defined metric in order to sample the state space and find a feasible solution to
reach the goal state.

In particular, the A* algorithm, which is originally a grid search algorithm, has been
modified to use its rationale to develop a sampling-based method that bases its search on
the currently most promising path towards the goal through an heuristic evaluation [34].
Other sampling-based algorithms that were utilized are the Rapidly-exploring Random
Trees (RRT), first introduced in [16]. These methods generate a tree of sample states (ei-
ther in the workspace or in the joint space) with a bias towards the unexplored regions of
the state space and perform well with non-holonomic constraints and for dynamic obstacle
avoidance. Their usage for space manipulators has been explored in [37], and modified
methods such as the Bidirectional RRT (BiRRT), growing trees that eventually intersect
from both the initial state and one or multiple final state, have shown great performance
in avoding collisions |2, 38].

RRTs have also been applied to optimal motion planning (RRT*) [14], utilizing sampling
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towards unexplored regions while minimizing a certain cost function. For space manipu-
lators, nonlinear gradient-based optimizations can be embedded in a RRT*, for example
minimizing the mechanical energy and the actuator actions for the trajectory optimiza-
tion [41]. Typically, RRT methods require a smoothing technique for the trajectory that
is initially jerky due to the nature of the sampling. This can be done in two different
steps, finding waypoints through the RRT method to then apply spline fitting afterwards
[52].

Base Reaction Minimization

The dynamical coupling between the base satellite and the robotic manipulator is typ-
ically troublesome as it makes the end-effector path harder to compute. Furthermore,
if the reaction forces are too large in magnitude the AOCS of the satellite might lack
the power to compensate them. Their minimization is of pivotal importance for Space
Manipulator Systems.

A proposed solution is the Disturbance Map (DM) that has then been improved to an
Enhanced Disturbance Map (EDM), constructed through a singular value decomposition
of a matrix ruling the dynamic coupling that allows to determine "hot zones" and "cold
zones" for which the robot manipulator motion has a greater or lower impact on the
satellite attitude [8].

The Virtual Manipulator (VM) has been introduced in [43| as a way of modelling the
system without external action on the base in order to produce reaction-less motion of
the arm, and different models based on it have been proposed [54].

Other solutions are based on a coordinated control of the satellite base and of the manipu-
lator [32]. Since both the attitude control system and the on-board computer have limited
capabilities, the manoeuvre can be divided in two parts: a feed-forward attitude control
against the robot’s reaction forces and a control on the arm such that it produces forces
that can be counteracted [31]. A later work uses feedback linearization of the dynamic
model in order to introduce an optimization problem based on quaternions, yielding a
final solution with asymptotical stability in terms of base orientation [1]. The combina-
tion of coordinated control and navigation through cameras has been studied, utilizing
Proportional-Derivative controllers to optimize the trajectory [47, 48].

Another possibility is to use Near-Optimal path planning in order to enforce base attitude
restoration from initial to final time. This has proven useful especially in bidirectional
methods employing Lyapunov functions minimizing the difference between the initial and
final manipulator states attitude [46].

The Reaction Null Space |28, 29] has received particular attention as it defines a set of
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joint velocities that are projected in the null space of the torque acting on the base. In
particular, it has been defined both at the velocity level, in the equations for linear and
angular momenta, and at acceleration level, in order to treat problems with external forces
acting on the system. The method presents the limit of requiring space robots with a
number of degrees of freedom at least equal to the number of component of the torque to
be zeroed plus the number of end-effector coordinates to be controlled. A solution that
has been proposed involves minimizing the torque acting on the base in the least-square

sense, including constraints on the acceleration of the joints [5].

Optimization Methods

Various quantities can be optimized for the trajectory planning of a space robot. An
example has been given [17, 18| that includes obstacle avoidance within the objective
function, but collisions can be included as constraints to optimize other parameters.
Considering the contact force between the servicer’s end-effector and the grasping handle is
very important in the guidance of the robotic manipulator as it is a pseudo-instantaneous
external force that will enter the dynamics equations. For this problem, two solutions
are possible: one is to impose zero relative velocity between the end-effector and the
grasping point at the final time, the other is to have the contact force pass through the
center of mass of the servicing satellite system, or to minimize the angle that the force
has with it. This way, an optimal capture is defined in a closed form where the final
point of the Optimal Control Problem has been already optimized beforehand, leaving
the possibility to optimize other quantities, such as the torque imposed by the manoeuvre
on the spacecraft’s base [10].

The energy demand of the system must also be kept as low as possible due to the limited
possibilities of the electric power systems in space. Examples have been given in which
the motion of the robot has been decomposed into primitives to then compute the power
requested as the integral over the course of the manoeuvre of product between the joint
torques and the joint velocities, and then applying an optimization method such as the
Genetic Algorithm (GA) to minimize it [4].
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1.3. Proposed Approach

This work’s main aim is to present a procedure for the trajectory planning of a Spacecraft-
Manipulator System in free-floating mode that can be adapted to multiple missions and
capture scenarios.

The approach of choice includes general requirements for these manoeuvres such as obsta-
cle avoidance and time minimization, and includes an overall minimization of the change
in attitude between the initial and final conditions of the Spacecraft-Manipulator System.
A sampling-based path planning approach has been selected in order to accomplish the
capture task prioritizing a robust obstacle avoidance, which this type of algorithm guar-
antee even in dynamic environments.

This RRT algorithm generates a path for the end-effector towards a goal condition by
exploring the configuration space of the manipulator joint variables which will produce a
rotation of the chaser base spacecraft.

The attitude variation is not minimized along the whole trajectory, leaving the system
with a wider manoeuvre capability, but the final attitude configuration is brought to a

desired value through optimized sample generation.

The path planning for the mounted robotic manipulator is based on a simplified orbital
model: firstly, both the target and the chaser lie on circular orbits; secondly, the orbital
perturbations such as atmospheric drag, zonal harmonics and solar radiation pressure
are not included in the model; thirdly, the rendezvous manoeuvre of the chaser ensemble
with the target satellite is considered completed beforehand by the Attitude and Orbital
Control System; lastly, only manoeuvres of short duration are considered.

The model of both the target and the chaser spacecraft is also subject to hypotheses: both
systems are assumed to be composed of rigid bodies only, and the physical properties of
the rigid bodies, such as masses, inertia and dimensions to be completely known.
Finally, the navigation and sensor errors are not considered: the states of both the
spacecraft-manipulator system and of the target are exactly identified at every time in-

stant of the manoeuvre.



1.4. Thesis Structure

The thesis is divided into four main sections: first, in chapter 2, the overall model of the
capture scenario is described: it includes an introduction of the definitions and notation
utilized for the work, followed by a general description of the simplified orbital models
the work is referring to.

This chapter also includes the detailed model for the kinematics and the dynamics of the

spacecraft-manipulator system that will then be employed for the trajectory planning.

Then, in chapter 3 the path planning approach is discussed in detail, starting from a brief
overview of the Rapidly-Exploring Random Tree algorithms and their variants.
Afterwards, the proposed path planning approach is described from the definition of each
of the composing blocks, including the obstacle avoidance method and the optimized
nodes generation.

Ultimately, the path interpolation with polynomial splines is discussed.

Chapter 4 describes the case study through which the proposed approach is validated,
including a quantitative description of the chaser and the target.
The results of the case study simulation are then presented and discussed, including an

analysis on the qualities and the limits of the procedure.

Finally, chapter 5 presents a summary of the work, the overall assessment on the perfor-

mance of the approach and proposals on future additions for further validation.
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2 ‘ System Modelling

2.1. Definitions and Notation

The representation of the basic geometric entities follows [40], and is organized as follows:

e Reference Frames are identified by ¥, and they are defined from their origin O,,

and three orthonormal axes i, j, k.

e Vectors are identified by V?P) where the superscript indicates the reference frame
in which said vectors are expressed. Whenever present, the subscripts indicate the

object to which the vector is referring to (in terms of position, velocity, etc.)

e Rotation Matrices are identified by Ri, where subscripts indicate the reference
frame from which the quantities are rotated, and the superscripts indicate the ref-
erence frame to which the quantities are referred after the rotation. These matrices

are orthonormal, hence R~! = RT.

The general representation of a point P in space with respect to two different reference
frames >;_; and ¥; is:
Pp =0;_; + R_;Pp" (2.1)
The quantities in eq. (2.1) are:
e p’: position of the point P in the reference frame ¥;.
° 0271: vector indicating the position of the origin of ¥; | expressed in X;
e R! |: rotation matrix from ¥; ; to X;.

° p?lz vector expressing the position of the point in ;.

This transformation between reference frames is available in a more compact form in
what is called Homogeneous Transformation Matrixz which combines the translation and
the rotation between two different reference frames. In this framework, homogeneous

vectors are represented by their three spatial components as usual, and by a fourth unit
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component that is introduced for dimensional congruence in the transformations:

B = H (2.2)

Then, the transformation from a reference frame to another is simply expressed as:

pp =T, 1P’ (2:3)

Where the Homogeneous Transformation Matrix is:

7—?—1 - OT 1

1—1 0i—1] (24)

The vector 0 represents a null row vector, and to these matrices the rules of consecutive
transformations through consecutive matrix multiplication apply as if they were common
rotation matrices. It is however important to highlight a major difference in the fact
that since these matrices are not orthonormal, their inverse differs from their transpose
A common definition in literature that will be utilized throughout the work to describe the
kinematics and dynamics of the Space Manipulator System is the skew-symmetric matrix
of a vector a = [aw ay az]T, which can be utilized to symbolize the cross product

between a two vectors b = a X ¢ in a vector-matrix notation b = a*c:

a*=S@)=|a 0 -—a, (2.5)

2.1.1. Euler Angles Representation

Euler angles represent a 3D rotation as a combination of three consecutive rotations
around arbitrarily chosen axes from the reference frames defined by the previous rotation.
In this way, any rotation in plane can be represented by the three angles, [, 1, 1)].

The axes about which the rotation is performed modify the structure of the rotation ma-

trices as in (2.6), and the rotation sequence defines the order in which they are combined
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in order to find the overall rotation matrix.

10 0

Ri(a) = [0 cosa —sina (2.6a)
|0 sina  cosa |
[ cosp 0 sinf]

R;(B) = 0 1 0 (2.6b)
| —sinf8 0 cosf3]
[ cos v —sinvy 0]

Ri(y) = [siny cosy 0 (2.6¢)
| 0 0 1]

Hereon the notation utilized is the Roll-Pitch-Yaw, or Z-Y-X series of rotations, in which
to rotate quantities from a reference frame to another, the following sequence of rotations

is utilized: a rotation i about i, a rotation ¥ about 5 and ultimately a rotation ¢ about
k.

This generates the overall rotation matrix:

R(p,9,¢) = Ri(¢)R;(V)Ri(¥) (2.7)

In order to retrieve the Euler parameters from the overall rotation matrix, the following

relations apply. For 6 € (—%; g)
¢ = atan2(ro1, r11) (2.8a)
¥ = atan?2 (—7’31, \/735 + T§3) (2.8b)
Y = atan2(rsz, 733) (2.8c¢)

While for 6 € (g, %71’)2

¢ = atan2(—ra1, —r11) (2.9a)
¥ = atan2 (—7"31, —M) (2.9b)
¥ = atan2(—rzz, —r33) (2.9¢)

And they are undefined for cost? = 0, case in which only the sum of ¥ and ¢ can be
obtained.
The advantage in using Euler angles is the immediate physical interpretation that can

be given on their value and the minimal representation, meaning that three parameters
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are utilized to describe the same number of rotations in space. The issues concerning the

Euler angles are the representation singularities in ¥ = 47.

2.1.2. Quaternion Representation

In order to avoid representation singularities, quaternions can be utilized for the repre-
sentation of rotations.

Quaternions are unitary norm vectors of four elements based on the Euler axis and angle
representation, and are thus non-minimal as four parameters are utilized to represent
three rotations in space. Their elements are divided between what is typically referred to

as the scalar part n and the vector part €. They are defined as:

9

n=cosy (2.10a)
9

€ =rsin 5 (2.10Db)

Where r is the axis with respect to which the rotation is performed, and @ is the angle of
the mentioned rotation.
The rotation matrix between a fixed and a rotated reference frame through quaternions
is:

2(772 + 6925) —1 2(69663/ - 7762) 2<€xez + 77651:)

R(n,e) = | 2(exey +mes)  2(n* + €§> —1 2(eye. +1mes) (2.11)

2ese: +1ey)  20eyez +mea) 207 +€2) — 1

The inverse transformation is always possible, and defining the elements of the rotation

matrix as r;; where ¢ is the row and j is the column they belong to, it is possible to obtain:

1
7725\/7“11+T22+7"33+1 (212&)

sign(rsy — ro3)y/r11 — roa — r3z + 1
€ = 5 sign(rlg — 7“31)\/7"22 —7r33—1r11+1 (212b)

sign(rop — ri2)/ra3 —rig — roo + 1

Complementary to the Euler angles description, the unit quaternions avoid representation

singularities but lose an immediate physical interpretation.
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2.2. Reference Scenario

A typical scenario for an on-orbit capture is analyzed. A target satellite is orbiting Earth,
and the chaser satellite has completed the far rendezvous manoeuvre in order to reach a

position from which the manipulator capture sequence can be started.

2.2.1. Reference Frames Definition

In order to accurately model the system, reference frames to which physical quantities of

either the target satellite or the servicer refer to are defined.

e The FEarth-Centered Inertial reference frame Yoy, is used to define a reference
frame to which quantities of both satellites can be referred to.
Its origin is in the center of the Earth, and its axes are: Xpgcor on the celestial
equatorial plane, pointing to the Vernal equinox direction, Zgc; pointing towards
the Celestial North Pole and Ygo; as to form a right-handed frame.
Any vector that is expressed in an inertial reference frame will have its superscript

omitted to lighten the notation.

e The Local Vertical Local Horizontal reference frame can be defined individually both
for the chaser and for the target X7\, ,;, X9, 7, it is a moving reference frame with
respect to the inertial reference frame.

It has its origin in the center of mass of the satellite, and its axes are: x g in the
direction of its position vector in the inertial reference frame, z;y g perpendicular
to the spacecraft’s orbital plane and directed as its angular momentum, and finally

yrvLy as to form a right-handed frame.

e The spacecraft Body Awxes frame, that will be defined both for the chaser % and
for the target X%, is a frame attached to the satellite body itself.
Its origin is in the Center of Mass (CoM) of the satellite and its axes are directed

as the principal axes of inertia for simplicity, as common in literature.

The two spacecrafts are treated in the same framework for what concerns the orbital
mechanics of the two systems, whereas the kinematic and dynamic model differs between
the target, presented in section 2.3, and the chaser, for which the presence of the robotic
arm adds terms in the computation of the attitude kinematics and dynamics, treated in

detail in section 2.4.



18 2| System Modelling

TARGET
LVLH 0
Z/Aa
CHASER
BODY
LVLH
s
BODY
EC

Figure 2.1: Capture Scenario with Reference Frames

Reference Frames Transformations

The defined reference frames will have a relative distance and orientation. In order to
refer quantities that are defined with respect to a certain reference frame to another, it is
possible to apply Homogeneous Transformation Matrices to describe the transformation
of the quantities between different frames.

The inertial reference frame is considered to be the frame to which every other frame
must refer to, as it is fixed and the transformations from and to it are simply defined.
LVLH frames are rotating with the satellite’s progress along its orbit. For this reason,
their orientation depends on the spacecrafts’ mean motion n.

Furthermore, they are centered in the satellite (or satellite base for the chaser) CoM, thus
a translation with respect to the center of the ECI frame is necessary. The homogeneous

transformation matrix defining the relationship between ¥y 5 and Ygc; frame is:

cq cosnt — sqc; sinnt cosinnt + sqc;cosnt  sqsini 1, (t)

Tger" (t) = (2.13)

~+
~— ~—

—sqcosnt — cqe; sinnt  —sqgsinnt — cqc;cosnt  cqs; ry(
s; sinnt —s; cosnt & T (t
1

0 0 0

Where cq, s; are respectively the cosine and sine of constant angles €2, which is the Right
Ascension of the Ascending Node (RAAN), and 4, which is is the orbit’s inclination. ¢ is
the explicit dependence on time and rg = [rz(t) y(t) rz(t)] is the satellite’s position
vector in the FCT frame.

The transformation between the X gor and the body axes ¥ of the spacecrafts depends



2| System Modelling 19

on the representation of the orientation of the latter with respect to the former. Utilizing
T

Euler angles that are grouped in a vector ¢ = [(p ) w} , having defined the rota-

tion matrix between the two frames in section 2.1.1 it is possible to write the following

homogeneous transformation matrix:

Trer(e(t) = (2.14)

o7 1

REc1((1)) rs<t>]

A combined rotation can be utilized in order to directly obtain the transformation from

the body frame to the respective object’s LV LH frame, that share the same origin.

EgiH(t)RECI(SO) 0

ot X (2.15)

TEVLH (t, (1) =

Where RFET, € R3*3 is the inverse of the submatrix composed by the first three rows
and columns of TELEF?. Since this is a rotation matrix, it is orthonormal and R~ = RT.
Under the assumption of manoeuvres of short durations, it is possible to assume that
the motion of the satellites with respect to Earth is negligible, thus the effects of orbital
mechanics can be completely ignored such that ¥,y ;g features the same orientation for
the chaser and the target, and can thus considered fixed in time, becoming a target-
centered Inertial Reference Frame, hereon called 7.

Not modelling the orbital mechanics, the relative target position r& depends only on the
coupling mechanism within the chaser satellite.

The homogeneous transformation matrix used to describe the chaser relative motion and

orientation 1is:

T2C = (2.16)

RIB ¢ rg
or 1

2.3. Target Motion Model

2.3.1. Target Attitude Kinematics

The attitude kinematics are defined as the time evolution of the orientation of a satellite’s
body frame with respect to the inertial reference frame.

Thus, they are expressed as the first derivative of the representation of choice, which is
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in this case the quaternions, for the rotations:

0 W, —Wy Wy

1|—w, O Wp Wy
= — 2.17
=3 0w 0w (2.17)

It is also possible to define the same expression as explicitly depending from the angular

velocity through a proportionality matrix depending on quaternions:

d= =E(qw (2.18)

The reason for which the quaternions are hereby utilized is detailed in section 3.2.4.

2.3.2. Target Attitude Dynamics

The attitude dynamics for the target are described by the Euler’s equations for an un-

controlled satellite. They can be expressed in matrix form:

IT(.;J — ITw Xw=20 (219)

Where Ir is the inertia tensor of the target satellite, w is its angular velocity with respect

to the target-centered LV LH frame, expressed in body axes.

2.3.3. Grasping Point Motion

Lastly, combining the models for the description of the target’s motion, it is possible
to define the trajectory of the grasping point. Defining a reference frame Ygp that will
identify the preferred capture orientation, and assuming every body to be rigid, a constant
transformation matrix identifying position and orientation of the grasping point and its

frame can be defined in X5 7:

RGP B, T
Tg{;_[ BT *GP (2.20)

"ot 1

Thus, it is simple to obtain its trajectory in time, as it depends on the time evolution of
the transformation matrices, connected with the time evolution of the quaternions, which

is known as the dynamics of the system are fully described.
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2.4. Space Manipulator System Model

The servicing satellite is composed by a base satellite, with degrees of freedom corre-
sponding to the translational and rotational variables, and by the manipulator arm, a

chain series of rigid bodies.

CHASER

Figure 2.2: Chaser Model

2.4.1. Kinematics

For what concerns the kinematic and dynamic model of the system, the framework pre-
sented in [45] has been followed.

The kinematic formulation for the system is based on the division of the problem between
the kinematics of the base satellite and the kinematics of the manipulator, both described
in the target-centered X7 frame.

For the base satellite kinematics it is preferred to use Euler angles for the rotations repre-
sentation as they are a minimal attitude representation and thus a minimum number of
variables for the equations of motion. The angular velocity of the body and the derivatives
of the Euler angles are related by summing the contributions of the angular rates of each

Euler angle about its respective axis:

w = Pi+ DR()j + ¢R(9)R(1h)k (2.21)

These equations are available in matrix form and they can be specified for the examined

case of selection of RPY angles. The relation that will be used here onward relates the
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rate of change of the Euler angles to the angular velocity of the satellite body:

0 sin ¥ cos

Qb cos cos Wz
J| =10  cosy —sin Wy (2.22)
¥ 1 tand¥sinvy tandcosvy | |w.

The Euler Angles can be integrated, thus it is possible to obtain the relative orientation of
the chaser spacecraft base with respect to the LVLH frame knowing the angular velocity
of the body by integrating (2.22).

2.4.2. Manipulator Direct Kinematics

The manipulator direct kinematics are used in order to find the position of the end-effector
rpp and its rotation matrix RZF with respect to the base spacecraft, and the position of
the various joints of the chain and of the links centers of mass.

The Denavit-Hartenberg convention is a systematic and general method that defines the
relative position and orientation of two successive links, in order to compose the transfor-
mation matrices that are then used to transform the end-effector position and orientation
to the satellite body frame.

Firstly, it is possible to define individual joint reference frames. They are found starting
from the previous joint and link. In particular, the reference frame centered in the ¢ — th
joint is denominated ¥;_; and it is aligned with the link ¢ — 1th.

Thus, the definition of the reference frames is as follows:
1. The axis z; is along the axis of joint ¢ + 1.

2. The origin O; of the reference frame is at the intersection of z; with the common
normal to z; and z;_;. The common normal is the line containing the minimum

distance segment between the two lines.

3. Axis x; is along the common normal to axes z; and z;_; with positive direction from
joint ¢ to joint ¢ + 1.

4. Axis y; is chosen as to form a right-handed frame.

According to this convention, some particular cases fall outside of its description:

e Y has its axis x( and its origin Oy undefined. Typically, they are chosen arbitrarily
in the simplest way possible (e.g. aligning zy with the body frame z-azis and
choosing the origin of the reference frame at the midpoint of the physical axis of the

first joint when the latter is revolute).
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e Y, has its axis z, undefined. Since this joint is revolute most of the time, the axis

is taken parallel to z,_;.

e When two consecutive axes intersect, the direction of x; is arbitrary.

JOINT 71—1 JOINT 1 JOINT 7+1

Figure 2.3: Denavit-Hartenberg Convention

The Denauvit-Hartenberg parameters are obtained from the definition of two consecutive

reference frames. They are four geometric parameters that are defined as follows:
e q; is the distance between two origins of two consecutive reference frames.

e d; is the coordinate of the origin of the ¢ — th reference frame as measured along

Zi—1-

e «; is the angle between axes z;_; and z; taken positive when the rotation is counter-

clockwise.

e 0, is the angle between axes x;_; and x; taken positive when the rotation is counter-

clockwise.

Having defined these parameters, the Homogeneous Transformation Matrices between two
reference frames can be identified by the sequence of rotations and translations performed

to transform the two consecutive reference frames:

cosf); —sinb;cosc; sinb;sinc; a;cosb;
; sinf; cosf;cosa; —cosl;sino; a;sinb;
Al = (2.23)
i—1 .
0 sin oy CoS ¢ d;

0 0 0 1
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By identifying the end-effector reference frame with the n — th reference frame, it is
possible to utilize the rule of consecutive transformations to directly obtain its relative

position and orientation with the first joint of the manipulator:
7 =] AL, (2.24)
i=1

To ease the definition of the dynamics of the system (in section 2.4.4), it is necessary to
highlight the dependencies of the motion of the center of mass of the various links with
respect to the joint variables.

A simplification is hereby utilized: the center of mass of each link is coincident with the
midpoint of the line between the two adjacent joints.

Thus, the position of the center of mass of the i — th link with respect to the ¢ — th joint

reference frame is:

1
3a; cos 0;

XGi = %ai sin 91 (225)

di
2

It is also possible to define the reference frame ¢ ; which is based on the homogeneous
transformation between two consecutive joint reference frames. In this way, the reference
frame in the center of mass of each link is aligned with the one in the next joint and it

depends on the previous joint variable.

cosf; —sinb;cosq; sinb; sinq; %ai cos 0,
4G _ sinf; cosf;cosca; — cosb;sin %ai sin 6; 596
i—1 7 . d; ( : )
0 S ¢ COS Qy; 5
0 0 0 1

This representation, in general, does not coincide with the exact center of mass of the
link, especially whenever both a; and d; are non-zero. In this case, however, it is assumed

(as is common in literature) that either variable is zero for each link.

Finally, the complete direct kinematics equations can be found: they are based on trans-
forming each quantity to 7.
It is possible to define a constant transformation matrix from the satellite base body

frame to the first joint of the manipulator, similarly to the grasping point in eq. (2.20):

Ty = (2.27)

of 1

RY%, X(])B]
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This allows to write the complete transformation from ¥z ¢ to Xgg:
TFF =T [ [ A (2.28)
i=1

Finally, it is possible to transform every quantity to the Local Vertical Local Horizontal
Frame, in order to define the framework connecting the end-effector position and orien-
tation (and the relative velocities) with the base frame, highlighting the dependencies on
the quantities. This is valid for the end-effector (2.29), for the joint positions (2.30) and
for the links Centers of Mass positions (2.31).

TEE = TB(o)T% HAZ (¢ (2.29)
Ty = T7 (9) T3 H AL (ailt (2.30)
TP = TP (p)Th HAz (@i (0) AL (g (1)) (2.31)

2.4.3. Manipulator Differential Kinematics

The differential kinematics individuate the relations existing at the velocity or acceleration
level, named first order and second order differential kinematics respectively, between the
end-effector and the joint variables, both for the linear and angular velocities and accel-
erations. The same framework can be followed in order to find the relationships between
the CoM of the links and the joint variables.

This section computes the velocities of the links CoMs and of the end-effector by sepa-
rating the effects of the motion of the chaser base and of the manipulator motion, while
referring the end-effector velocity to the inertial reference frame 7.

In particular, it is possible to regroup the linear and angular velocities of the end-effector

T
and of the base satellites in the 6 x 1 generalized velocity vectors V, = [vb wb] and

T
VeE = [VEE WEg E] , obtaining the following relation.

Vep = JEPV, + JPEQ (2.32)
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The first order differential kinematics for the end-effector of the manipulator is a linear

relationship, and it can be directly expressed in ¥z, and it is indicated by (M):

M J
wppM) Jou(q)
The Geometric Jacobian is defined exploiting the Denavit-Hartenberg description of the

system, and can be computed separately for the linear and the angular portions. In

particular, the linear velocity of the end-effector can be written as:

. " 0xpp . .
X(EEM) = ajEC]i = Z Jpidi (2.34)
i=1 v i=1

The angular velocity can be similarly written as:
Wl M) = ij,z’(ii (2.35)
i=1

Each of the terms of the summation multiplying a joint coordinate is a column in the
3-by-n linear or angular velocity Jacobian matrix, and their computation slightly differs
depending on whether the joints are prismatic or revolute. Only the latter is hereby
presented as most space manipulators use revolute joints rather than prismatic [33].

Thus, linear velocity Jacobian is computed as:

JIpi = Zi—1 X (XpE — Xi-1) (2.36)

While the angular velocity Jacobian is computed as:

Joi = Zi1 (2.37)

)

Each of the terms that compose these relations is depending on the joint variables, in

particular:

e 7, | is the z-axis of the reference frame ¥; 1, attached to joint i, expressed in the
inertial reference frame. Thus, it is simply the third column of the rotation matrix

from the inertial reference frame to >;_1:

i—1
z;_1 = RERY, (H R;II) o (2.38)

J=1
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T
Where zq = [0 0 1} extracts the third column of the rotation matrix.

e Xpp is the position of the end-effector in the inertial reference frame. Having defined
the homogeneous transformation between the latter and the end-effector frame, it

is simple to define:

Xpp = B3 TP THTE po (2.39)

T
Where py = [O 00 1] selects the fourth column of the transformation matrix,

and the extraction matrix E selects the first three rows of a 4 X n matrix or vector

(2.40).
100 0
Eza= 10 1 0 0 (2.40)
0010

e X, 1 is the position vector in the inertial reference frame of the origin of »; ;. Its
calculation is the same as the position of the end-effector, selecting the fourth column

of the overall homogeneous transformation matrix 75 *

Following this scheme employing Denavit-Hartenberg parameters, the computation of the
Geometric Jacobian is straightforward.

It is worth mentioning that the Geometric Jacobian computes the end-effector velocity
in terms of the end-effector frame, with a geometric technique employed in order to find
its components. The Analytical Jacobian can be computed by directly differentiating the
relations of the linear and angular velocities. This outputs the same Jacobian for the
linear part, whereas for the angular velocities it is necessary to use a representation of
the rotation (e.g. ZYZ Euler Angles) in order to express the relative orientation with
the inertial frame, and this differs from the angular velocity of the end-effector itself. It
is possible, however, to express the relation between the latter and the derivative of the
variables for the representation of the rotation, giving the holding relation between the

geometric and analytical Jacobian:

I
Jo= e D g (2.41)
Osxs T(Per)

The Jacobians relating each of the individual links CoM velocity and the joint velocities
can be computed in a similar way to the end-effector’s, dividing the linear and the angular

velocity components. They are:

%ai = Jp'q (2.42)
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wai = TS (2.43)

Once again, the Jacobians can be defined column-wise, considering that each link position

and velocity depends on the motion of the previous joints:

G.i Gi
IS T80 o

JG,’i
- G,i G,
JSi ISt 0 0

(2.44)
Finally, the non-zero columns composing the Jacobian matrices are computed differently
for prismatic and revolute joints. Following the same reasoning as the previous section,
the latter are defined:

jgj =2zj_1 X (XG,i — Xjfl) (245)

G
jOJZ:LJ =Zj (246)
Where the terms of the equations are:

e 7, ; is the z — axis of the reference frame X;_; obtained by the third column of the

. . i1
rotation matrix R .

® X, is the position vector of the CoM of the ¢ — th link, which is also the origin of

the reference frame Y. It is obtained by the fourth column of the matrix T,

e x;_; is the position vector of the origin of the reference frame ¥;_;, thus the fourth

column of the matrix 7 %_1.

These expressions relate the velocities of each link to each joint variable in 7. They
will result particularly useful for defining the dynamics of the coupled base-manipulator

system.

Finally, the differential kinematics can be found for the whole space manipulator system.
The Jacobian J, relating the end-effector generalized velocity with the base satellite’s [3|
can be defined knowing that the angular velocity of the end-effector is the same as the
base’s, whereas the linear velocity of the end-effector in Y7 is the same as the base with
an additive drift term due to the angular motion of the base with respect to the inertial

frame:

] X
JEE — |33 TEE (2.47)
O3x3  Isx3

Ultimately, the same transformation can be applied in order to find the differential kine-

matics for each center of mass of the links, utilizing the respective individual Jacobian
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. . AT
matrix J&! = [Jg’z Jg ”] rather than the end-effector’s.

2.4.4. Dynamics

The dynamics were utilized in this work in order to validate the kinematic model that
will be utilized for the path planning algorithm.

The definition of the dynamics cannot follow two independent paths for the base satellite
and for the manipulator due to the strong mechanical coupling between the two systems.
In order to keep a physical meaning to the variables introduced, the FEuler-Lagrange

Formalism is hereby used to obtain the dynamic equation of the system:

d
(aT) oLV (2.48)

a#\9q)  9q " oq
A more specific formulation for the system involves the simplification of having null poten-
tial field. This basically means considering no gravitational forces acting on the system,
and this assumption holds generally for space manipulator systems in literature. For the
same reason, orbital perturbations can be considered null for low duration manoeuvres.
This means that the main contribution to the dynamics is due to the kinetic energy of the
system itself. The external forces are the control forces and torques on the base satellite
and the torques of the joint actuators that control the motion of the arm. These are all
considered to be applied exactly to the center of mass of the base and to the exact point in
which the joints are located in order to simplify the equations without loss of generality.
The generalized coordinates of the system are thus the base position and orientation, and
the joint trajectories:
Xb
q=|g,| € RO (2.49)
(7]

Kinetic Energy

The kinetic energy of the system of rigid bodies can be computed summing the contribu-

tions of the base satellite and of the manipulator:
1 LT T o T T
T = 5 MpXy Xp + Wy Ibwb + Z (mivi v, + w; ]sz) (250)
i=1

Each quantity within the equations has to be computed with respect to the same reference

frame. In order to follow classical mechanics without neglecting any term, the quantities
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will all be referred to the Inertial reference frame.
Hence, the inertia tensors in eq. (2.50) are rotated to ¥z from their respective body axes,
which are the satellite’s and the ones of the i — th link:

I, = REIPRE" (2.51a)
I = RERG 19" RS RE" (2.51b)

Where each quantity of these equations has been previously defined. Finally, recalling
eq. (2.32) and its generalization to the CoMs of the various links, it is possible to find
the separate formulations of linear and angular velocities in the inertial reference frame
to obtain 23] the direct dependencies of the velocities of the centers of mass of the links

with the generalized coordinates of the system:

Vai =X+ wixa +J5'0 (2.52a)
w; = wy + J50 (2.52h)

Having defined the various dependencies, the kinetic energy of the system is finally avail-
able in matrix form, expressing the direct dependency on the generalized coordinates of
the system in order to use the Euler-Lagrange equations to find the equations of motion
of the system. The derivative of the orientation of the base has been substituted with
its angular velocity in generalized coordinates, and the conversion to the orientation is
available through the differential relation in (2.22).

The inertia matrix is partitioned in block submatrices, with subscripts indicating the part
of the mechanical system they refer to: translational (¢), rotational (), manipulator (m),
and their combinations that will result in the strong Coupling Effects between the base

and the manipulator.

1 1 Mt Mtr th Xb
T=sd" M@= [x wr o] | ME M, M| |w, (2.53)
MT M,| |6

Finally, the analytical expressions of the matrices are available substituting eq. (2.51)

and eq. (2.52) in eq. (2.50), and are hereby presented in compact form similarly to [11],
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specifying to which reference frame the quantities are referred to.

Mt = (mB + ZW%) [3><3 € R3X3 (254&)

=1
M, = — i mixg,; € R¥ (2.54Db)
=1
M, =1, + z": (Ii — mixé’ixéyi) € R3*3 (2.54c¢)
=1
My, = zn:mijfjvi e R%*" (2.54d)
=1
M,,, = i mixg Jot + LIS € R (2.54e)
=1
M, = i(mingiTJS’i + IS LG e R (2.54f)
=1

Where each quantity has been defined in previous paragraphs. In this simplification, links
masses and inertia take into account the presence of the joint motors, whereas in more
accurate descriptions, they should be considered in their own relative reference frame

centered at the joints themselves:

My =" (midG IS+ ST 1,750+
i=1 (2.55)

i S5 T T

The subscripts m, ¢ means the quantities are relative to the motor positioned in the ¢ —th

joint, thus relative to the reference frame ;1.

Equations of Motion

Ultimately, it is possible to apply the derivatives of the Euler-Lagrange equations in
eq. (2.48) to the matrix representation of the kinetic energy, and by using the base gen-

eralized velocity introduced in section 2.4.3 the equations of motion are obtained:

v,
P

F,

T

Cyp

(2.56)

M, My,
Ml;n M,

Cm

Where the terms cg(q,q) and c,,(q,q) are the nonlinear components due to centrifugal

and Coriolis forces that stem from the relative motions between the links and the chaser



32 2| System Modelling

satellite base.

These terms are defined from the Lagrange equations as:

. 1..0M
clq,q)=Mq— -qF —< 2.57
(a,9) = Mq— 54 904 (2.57)
The time derivatives of the various matrices can be computed applying the chain rule,
oM
thus the matrices —— are computed in the same framework. It is possible to highlight

that none of the terms of the mass matrix depends from xp, while the derivatives with
respect to ¢ and 0 are non-zero. The details on the computation of the derivatives are
given in section 2.4.5.

The computation of the nonlinear terms of the equations of motion can also be obtained

following [39], applying the derivatives with respect to each coordinate to each term of

3mij lﬁm;”
C;, = = — ’ 2.58
IR s

This is particularly useful in the bidimensional case.

the mass matrix.

The equations of motion in the inertial frame are hence fully defined, however it is possible
to introduce further assumptions of no external torques or forces applied to the system
(F, = 0), in order to simplify the equations of motion. This will hold true in the case of

a completely free-floating space manipulator before the capture [23, 27].

2.4.5. Generalized Equations of Motion

The dynamical system expressed in (2.56), with F, = 0, is an underactuated system, as
only the joint coordinates are related to an external acting torque, while the remainder
of the Space Manipulator System moves as a consequence of the joints movements.

Then, considering no forces or torques acting on the overall system center of mass, it is

possible to compute the linear and angular momenta of the system:
P=(my+ Y mi)ve+ > miv; =P (2.59a)
i=1 i=1

L=TDwy+ Y (Lw; +mxx5,) = Lo (2.59b)

=1



2| System Modelling 33

Where Py and L are the initial linear and angular momenta of the system. They can be

expressed in a much more compact form:

P

o= MV, + My = M, (2.60)

Since the system is performing a floating manoeuvre, the momenta are constant through-

out the motion:

o= MyVy + My + MV, + My = 0gy1 (2.61)

It is possible to assume an initial value for the momentum of the system, in particular it
is reasonable to assume that the overall system momentum is initially zero, while in [26]
the case of non-zero initial momentum is treated.

The physical interpretation of the overall momentum being zero is that the second term of
the equations is the momentum that is imposed by the manipulator on the base (coupling
momentum) and the first term is the reaction momentum of the base with respect to the
manipulator motion [28|.

With the usage of (2.60),(2.61) it is possible to obtain the generalized base velocity and
acceleration’s direct dependency from the joint coordinates, or it can be obtained from

the first six equations of motion:

/%b = —Mb_l(Mbmé + Cb) (262)

Substituting this expression in the last n equations of motion gives the equations of motion
in generalized form, including the dynamics of the base within the motion of the joints of

the manipulator.

(=ML M, My, + M,,)0 — ML My ey + =T (2.63)

It is possible to define the generalized inertia matriz and the generalized vector of non-

linear terms, as in [49] and [1]:

M = M,, — ML M; M, € R™" (2.64a)
¢ =c,— M., M 'c, € R (2.64D)

An important feature of these generalized matrices is that when substituting each quantity,

these two generalized terms depend only on @ [51|, eliminating the dependence on ¢p.
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Typically, the behaviour of the generalized form of the equations of motion is obtained
computing ¢p to then compute the mass matrix terms as in (2.54).

Finally, the generalized form of the equations of motion is:

MO+¢=r (2.65)

An important aspect is that the same torques of the generalized form of the equations of
motion are applied to the joints in the overall equations of motion, thus it is possible to

apply the same torque control for the two systems, without transforming coordinates.

Mass Matrix Derivatives

The derivatives of the mass matrix components are here obtained individually to then
utilize (2.57) in order to find the overall vector of nonlinear terms.
It is possible to utilize the equations of conservation of linear and angular momentum to
obtain the terms of ¢, as functions of @ only, thus discarding the derivatives with respect
to the base angular coordinates that would introduce complications and would be based
on the representation of choice for the rotations.
Knowing that M, ' is symmetric [45], it is possible to rewrite the generalized equations
of motion: A
n e L. 1...0M .
MO+MO—-0"—0=r 2.66
2 00 (2.66)
Time Derivatives The time derivative of the generalized mass matrix can be easily
computed by knowing that for a square, invertible matrix such as M, the following
property holds when the derivative with respect to any scalar is computed:
dA~! dA

T = AT A (2.67)

Thus, the overall time derivative of the generalized mass matrix is:
M = M, — (ML, M, My, + ME MMy, — ME M N M M) (2.68)

Hence, the derivatives of three different portions of the mass matrix must be computed.
This translates in the derivation of the quantities that depend on time within the subma-
trices. The derivatives of the dynamic quantities are mostly based on knowing the time

derivative of a rotation matrix [39|:

RS = wXR: (2.69)
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The individual angular velocity of each joint coordinate system is known in the inertial

reference frame and it is given by:

Finally, it is possible to compute the time derivatives for the components of the mass
matrices that depend on time, in particular the quantities for which they need to be

computed are:

o Link v’s ColM position with respect to the base spacecraft x¢;: This term is readily
available as it is the velocity of the link’s center of mass to which the linear velocity
of the base is subtracted, available in (2.52):

de,z’

= WX+ JS'0 (2.71)

e Link i’s Jacobian matriz for the positions Jo': the time derivative of this term
depends on the rotation of each joint previous to the link and on the position of the
link’s CoM velocity and on the previous link’s velocity. The derivative relative to

the i-th link is: 4
dJg"

dt

The generic column of the derivative of the Jacobian is:

e S | (2.72)

X

0
R0 (Xci —Xj-1) + 24y (
1

ATpil _
at

2.
dt dt (2.73)

dxg;  dXp—q )

e Link i’s Jacobian matriz for the rotations JS: the derivative of the Jacobian for

the rotation depends only on the rotation of the previous joints axes.

d‘g’i:[jff R A O] (2.74)

The generic column of the derivative of the Jacobian is:

; 0
agsy
ok R 2.
R =R 0 (2.75)
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e Inertia Matrices of the Chaser Base, and of Link i in X1 I, I;: the inertia matrices
are expressed in the inertial frame within the equations of motion. Their dependency

on time is due to the derivatives of the rotation matrices:

dl;

o= = RTLR. + R LR: (2.76a)
d]b _ pBT 5B
dt RI ]bRZ + R ]bRZ (276b)

Finally, the expression of the derivatives for each submatrix of the inertia matrix is avail-
able:

My, = 033 (2.77a)
. dxg
Z M (2.77b)
M, =1, + Z — m(XG X5 T X5, X64) (2.77¢)
= Zmijﬁi (2.77d)
i=1
= Z [zJS’z -+ [ZJE’Z + mi(XGJJg’i + XGJ'J.S’Z') (2778)

i=1

M = 3 IS LIS+ JET LIS+ IS LIS+ ma(JE T Ig " + JG JGy (2,778

i=1

Joint Coordinates Derivatives The explicit joint coordinates derivative of the inertia

matrix is obtained similarly to the time derivative in (2.68):

OM  OM,, OM,,” OMyyn

My My, — ME M,

00 06, 00 00 (2.78)
+MI M aMle;lem
00y

The inertia matrix components that depend directly on the joint coordinates are the same
that depend on time, except for the derivative of the chaser base inertia matrix which
depends only on the rotation of the chaser base with respect to the inertial frame.

In this case, however, the values of the derivatives of the quantities relative to the center
of mass of link 7 with respect to 6, depends on the relative values of k and i. The required

derivatives to be computed are:
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o Link 1’s CoM position with respect to the base spacecraft xe

i _ p RﬁR ) ﬁA fk<i (2.79a)

89k’ — L43x44 4y 15— d@ i 1 14Z0 (4 1 (Ja
O k—1 dACH - .

ae,; :E3X44Réll_[4Rl ) dg —hL 7y ifk =i (2.79b)

aggi”‘ =0 ifk>i (2.79¢)

Where ,zo = |0 0 0 1]T and Fs,, is defined in (2.40), while the newly
defined quantities are the matrices 4R’,§_1, which are the rotation matrices trans-
forming the coordinates from the next joint to the previous joint, modified in order
to be 4-by-4 dimensional to be compliant with the homogeneous transformation
matrices framework, which are defined as:

JRE-T = (2.80)

01><3 1

szl 03><1]

The derivatives of the homogeneous transformation matrices are non-zero only for

their specific joint angle:

—sinf; —cosb;cosa; cosb;sinc; —a;sinb;
dA:_, cos); —sin6;cosq; sinb;sinco; a;cosb;
_ (2.81)
do; 0 0 0 0
0 0 0 0

e Link i’s Jacobian matriz for the rotations JS: The derivatives of the Jacobians are
easy to find from their definitions in (2.45) and (2.46). In particular, the derivatives
of the Jacobian relative to the ¢ — th link Center of Mass are, for what concerns the

angular velocity:

dJg" 03x1 03x1 dzy, dziy

= <t o3t 2.82
e, o, do,, 0 0 (2.82)

In which the derivatives of the j — th joint axis with respect to the k — th variable

is obtained from the consecutive rotations:

k—1 J
de_ dR
. = TTRL g T Riaeo (2.53)

=1 m=k+1
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o Link i’s Jacobian matriz for the positions Jg’i: For the linear velocity Jacobian, it
is possible to repeat a similar discussion, knowing that the elements of the matrix
are obtained from cross products between quantities that both depend on 6. The
nonzero elements in the derivatives of the Jacobian relative to the ¢ — th link with
respect to the k — th joint angle are located in the columns from 1 to ¢, and are
here described separately from the quantities in the columns relative to the joint

previous to the k — th and the ones comprised between the latter and the ¢ — th.

djg,’j dxgi . .
d@; =270 | % d0j7 if k<j+1 (2.84a)
G,i
dTp}, — B dxg,; B dxi i
do; ot db; do; (2.84b)
d B
+ 5 (xB —xP ) if jl<k<i

do,

Where the expressions for the derivatives of the links center of mass positions have
already been obtained in (2.79), and the derivatives of the joints k — 1 positions are

computed following the same scheme presented for the various links center of mass.

2.4.6. Generalized Jacobian Matrix

The Generalized Jacobian Matriz for Space Manipulator Systems has been introduced
in [42] and it follows the same reasoning behind the generalized equations of motion, to
express the end-effector velocity and orientation.

It is indeed possible to solve eq. (2.59) for V, to find the dependence of the base linear

and angular velocities from the joint coordinates.

Vy = —M; ' M,,,0 (2.85)

This way, it is possible to rewrite the complete end-effector generalized velocity eq. (2.32),

which, considering null initial momentum, simplifies to:

Vip = (J72 — My My, JEF) 6 (2.86)

Thus, the overall matrix relating the joint coordinates with the end-effector velocity that

includes the effects of the motion of the base produced by the joints motion is termed the



Generalized Jacobian Matriz (GJM), and it is expressed as:

J = JEY — M My, Jy (2.87)

The GJM is utilized in order to apply simple kinematic control to the robotic manipulator

as would happen in Earth-based applications.

2.4.7. Overall Equations of Motion

Utilizing the generalized form of the equations of motion, it is possible to build the overall
model of the Spacecraft-Manipulator System. The dynamics are computed only for the
joint rotations, whereas the base coordinates’ motion will depend on the joint coordinates
according to eq. (2.85).

However, the kinematic equations for the rotation of the base must be integrated in order
to obtain the rotation matrix from the inertial reference frame to the chaser base’s axes
at each time instant. The propagation of the chaser base’s inertial position is not required
to propagate the equations of motion.

The overall model for the Spacecraft-Manipulator System will thus be:

@ = flp,w) (2.88a)
M(p,0)8 +C(p,0,0)0 =+ (2.88b)

Where the function f (¢, wy) depends on the choice of the representation of the rotation of
the base with respect to the inertial reference frame, and ¢ is the orientation representation
of choice.

The Coriolis Matrix C is defined as:

o X nl.aM.
S /S - K 2.
C gg; 29" 560 (2.89)
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3 Path Planning Algorithm

The typical path planning scenario this work refers to is the capture of a tumbling target
of which the main parameters are fully known, in particular the dimensions and mass of
both the target and the Spacecraft-Manipulator System are considered to be given and
the state components of the target are assumed to have been accurately measured with
no error. For real cases, this is not verified as the mass and dimensions of the satellites
vary from the original values at launch and the state of the target is known with errors
due to sensors sensitivity.

Furthermore, the far and close rendezvous approach of the chaser to the target are con-
sidered to be completed, and the relative linear velocity between the two systems centers
of mass is considered to be null. The chaser is brought at rest before starting the capture
manoeuvre, in order to more reasonably enforce the condition of zero initial momentum
mentioned in section 2.4.5.

The obstacles within the Space Manipulator Systems are also fully known and character-
ized in their state and dimension.

The goal of the path planning is to provide trajectories for the joints, to make the end-
effector reach a pre-identified grasping point on the target satellite, avoiding collisions
with obstacles for the manipulator, which include the chaser base and any point differing
from the grasping point for the target satellite, and further obstacles that can be present
in the workspace, while being compliant with several constraints such as limits on joint
angles, angular velocities and accelerations.

For space manipulator systems, it is as important to preserve telecommunications with
Earth before and after the manoeuvre, thus it will be important to keep into account the
minimization of the rotation of the base due to the motion of the joints. This chapter
is organized as follows: in section 3.1 a general overview on Rapidly-Exploring Random
Trees is given, including modified and improved versions that will be utilized in the con-
struction of the proposed algorithm.

Then, in section 3.2, the proposed algorithm is covered in detail, from an overview on the

scheme utilized to further explanation of each of its subparts.
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3.1. Rapidly-Exploring Random Trees

Rapidly-Exploring Random Trees have been first introduced in [19]. They belong to the
class of sampling-based algorithms for path planning, whose idea is to connect samples
retrieved from the state space of the system to construct a tree that ultimately connects
the initial state and the target state. RRTs have been widely utilized in robotics, and
their usage has already been applied to Space Manipulator Systems. They have proven to
be particularly suited for problems with differential constraints, nonlinear dynamics and
for non-holonomic systems [13], while retaining the property of being probabilistically
complete with an exponentially decaying rate of failure with the number of nodes that
belong to the tree [19].

Definitions

e A graph G = (V,E) is a set of states and connections between them. It includes two

subsets: the vertices V and the edges E.

e The vertices V C X are a finite number of states belonging to the state space of the

system.
e The edges £ C V x V are a collection of vertices that are connected by a path.

e A directed path is a sequence of nodes such that each consecutive couple of nodes
is contained in the edges set (v;,v; +1) € Efor 1 <i<n—1.

e Trees T(V, E) are defined as graphs in which each of the vertices of the trees has
one unique parent vertex except for the initial node (also denominated tree root)
which has no incoming neighbor. The parent vertices to a certain node are defined
as those vertices which are connected through a path to the node. For a node v the
parent nodes are: {u € V|(u,v) € E}.

The general structure of all RRT algorithms is shown in algorithm 3.1, as introduced in
[19].
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Algorithm 3.1 Basic RRTs

1: Initialize T with x( first node
2: for k=1: K do

3t Tsgmple < Sample: Generate new random state

41 Tpearest < Nearest(T, Tsampre): Find nearest tree node

5 Tpew < Steer(Tpearest; Tsample): Generate new possible tree node
6: if ObstacleFree(T carest; Tnew) then

T: AddVertex (T, Tpew)

8: AddEdge(E, Tpearests Tnew)

9: end if

10: end for

11: Return T,E

The main components of a Rapidly-Exploring Random Tree are:

1. Sampling: the function Sample: — Xy, Returns a state computed through an

uniform distribution, belonging to the subset of the obstacle-free states within the

specified boundaries.

. Nearest Neighbor: takes as input the tree T'(V, E) and the sampled point z € X e,

and returns a vertex of the tree that is closest to x according to a certain metric,

typically a weighted Euclidean distance between the states.

Nearest(7T'(V, E), x) = argmin, . ||z — v||

. Steering: given two states x,y € X, the function returns a third point z € X such

that it minimizes the distance from the second node y while being reachable from

the previous node =x.
Steer($7 y) = aI.grninzEV,Feasible(ge,z) | |Z - y”

Multiple possibilities exist to determine whether the path between x and z is feasible.
Original versions of the algorithm utilized an upper bound on value computed by

the metric utilized in the nearest neighbor selection.

. Obstacle Collision Check: given two states x and y, a Boolean-valued function

ObstacleFree returns True if no obstacles are detected in the path between the
two states. The most simple and straightforward form of collision check is done

by connecting the two states through a segment and checking whether the segment
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intersects any obstacle.

A newer version of the RRT algorithm has been introduced in [13|, with the aim of finding
an optimal path to which the simple RRT algorithm does not converge, and it is presented

in algorithm 3.2.

Algorithm 3.2 RRT*
1: Initialize T with z( first node
2: for k=1: K do

3: Tsgmple < Sample: Generate random state

4 Tpearest < Nearest (T, Tsumpie): Find nearest tree node

5 Tpew < Steer(Tpearest, Tsample): Generate new possible tree node

6: if ObstacleFree(T carest; Tnew) then

7: AddVertex (T, Tpew)

8: Tmin < Tnearest

9: Xnear < Near(T, x,.,): Locate tree nodes in the vicinity of the new node

10: for all x,cqr € Xpear do

11: if ObstacleFree(T ear, Tnew) then

12: ¢ = Cost(Tnear) + COSt(Tnear, Tnew): Evaluate cost from each nearby node

13: if ¢ < Cost(xye) then

14: Tmin < Tnear: Find minimum cost path

15: end if

16: end if

17: end for

18: AddEdge(E, Tpnear, Tnew)

19: for all Zpear € Xnear \ Tmin dO

20: if ObstacleFree(Zhew, Tnear) & COSt(Tpear) > Cost(Tpnew) + COSt(Tnew, Tnear)
then

21: Tparent < Parent(Zpeq,): Find the previous parent of nearby node

22: E < RemoveEdge(Zparent; Tnear): Remove edge from previous parent and

nearby node

23: E + AddEdge(Tpew, Tnear): Generate new path from new node and nearby
node

24: end if

25: end for

26:  end if

27: end for

28: Return T E
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The RRT* algorithm follows the same steps of the simple RRT algorithm for what con-
cerns the new node generation, but before adding the new edges to the tree two operations

are carried out:

Cost Evaluation: After generating the new node and including it in the tree, RRT*
utilizes the function Near in order to search among the nodes belonging to the tree which
are in close proximity of the newly generated node, attempting to find a node which
shows a lower cost path with respect to Z,cqrest- This is mainly done because the steering
operation typically follows a simple metric that does not consider a more complex cost

functional in the new node generation.

Rewiring: The new nodes in RRTs are generated sequentially, growing the tree and
selecting the nearest node of the latter with a certain heuristic, repeating the process
until the end condition or the maximum number of iteration is reached. One of the main
issues with this approach is that while the state space is explored thoroughly, it is impos-
sible to select shorter (or, in this case, less costly) paths between two already generated
nodes. The function Near can be utilized in order to search in the neighborhood of the
newly generated node for vertices that were reached with a higher cost when compared
to a new connection attempt from ., t0 Tpear € Xnear. If this condition is verified,
Tnew 18 utilized as the new parent node, the older edge connecting x,... and its parent is

eliminated from the edges and a new connection is established.

Near Vertices utilizes as input the tree T'(V, E) and a node z € V in order to find all
the vertices near to x according to a certain metric, typically coincident with the metric
utilized to find the nearest neighbor. For the weighted Euclidean distance metric case,

for example, the near vertices can be located as:
Near(T(V, E),z,r) = {V' CcV|Vy e V'||ly—z|| <r}

Where r is a radius that should relate as closely as possible to the limits of reachable

states from the current position.

In cases of nonholonomic systems, as are Space Manipulator Systems, various problems
arise during path planning. In particular, the main issues these types of system experience
in the path planning via RRTs are the modelling of obstacles, that are straightforward for
what concerns Cartesian space planning, but that become difficult to obtain in the state

space of systems, furthermore, many configuration states have to be discarded because
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they would enter the region denominated of inevitable collision, inside which the collision
with obstacle is unavoidable with any control action, a solution is the usage of artificial
potential fields in order to circumvent these issues, leading to complex nonlinear control
problems; another problem is the metric, which in Cartesian space can be designed and
optimized while in the configuration space its formulation becomes much harder.

With reference to RRT*, the construction of the path is not straightforward, and it is
subjected to the problem of straight line connection that the RRT* in Cartesian space
typically generates, in fact due to the differential constraints it is impossible to connect
two states through a straight line, which the RRT* algorithm tends to do during its
rewiring phase.

For these specific problems, a specific algorithm has been formulated and denominated
Kinodynamic RRT* [44|. The main path planning step in which these algorithms differ
from their counterparts is in the rewiring mechanism. It would be in fact impossible to
guarantee that any pair of states (belonging to X,,..-) can be connected through an opti-

mal path. This algorithm, however, is specialized in system with linearized dynamics.

RRTs with Goal-Oriented Sampling is another class of Rapidly-Exploring Random Trees,
in which what changes is the sampling mechanism rather than the new node generation.

The simplest version of Goal-Biased RRT is shown in algorithm 3.3.

Algorithm 3.3 Goal-Biased RRT
1: Initialize T with x( first node
2: for k=1: K do

3: p < [O, 1]

4 if p > Pinreshola then

5: Tsample < Tgoal

6: else

T Tsample < Sample: Generate new random state
8 end if

9:  ExtendRRT

10: end for

11: Return T,E

The peculiarity of these types of algorithms is that at the start of each iteration, a random
number is generated. If this number is above a certain threshold, the goal state becomes
the sample state, and the algorithm tends to explore the regions closer to the goal rather

than deeply exploring the rest of the configuration space.
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3.2. Proposed Algorithm

The proposed path planning algorithm is based on a simple Rapidly-Exploring Random
Tree, modified in order to have a faster exploration of the configuration space. The path
planning is executed at the kinematics level, and it shall output a path towards the goal
that can be followed by a controller. The algorithm includes a robust obstacle avoidance, a
consideration on the minimization of the chaser base rotation, and it attempts to minimize
the time of the manoeuvre.

In order to generate kinematically feasible paths, connecting nodes simply and fast, the
space manipulator system state for the execution of the RRT algorithm includes the joint
positions @ and velocities 9, and the control in order to bring the system from one state
to another is represented by the joint accelerations ay.

The simple state equations for the RRT expansion is:

=f(x,t) = [0] (3.1)
ag

The generation of the trajectory for the joint variables is done independently from the

motion of the spacecraft base as its linear and angular coordinates movement can be

computed directly from the trajectory of the joint variables, as they are uncontrolled and

thus depend on them. Their value depends on the value of the joint velocities as in (2.85),

which is based on the equations of conservation of linear and angular momentum.

Vy = —M; ' M,,,0 (3.2)

While these variables do not directly enter the state of the RRT and thus are not utilized
in the generation of new nodes, their computation is of pivotal importance to retrieve the
inertial position of the whole spacecraft-manipulator system, including its base, all the
links and all the joints. These positions are then utilized for goal connection checks and
obstacle avoidance.

The algorithm follows a scheme similar to the RRT algorithm in [37],[36] as the path
planning is performed at a joint level, however here the goal connection is kinematics-
based, the obstacle avoidance is performed by a dense sampling of the obtained trajectory
and the minimization of the base rotation is obtained by assigning costs to nodes rather
than using the bidirectional approach.

The sequence of operations of the algorithm is:

1. The algorithm generates new random nodes in the joint space [0}, then it applies



48

3| Path Planning Algorithm

a distance metric in order to find the closest node belonging to the tree.

. From the closest node, the path planning on the joint variables is initiated in order to

find a suitable connection between the tree and the new sampled joint configuration.

. After the connection is established between joint coordinates, the corresponding

motion of the base and of the whole spacecraft-manipulator system is computed.

This allows for the obstacle avoidance to be then performed.

. Finally, following the approach of the RRT* algorithms, a cost is assigned to each

newly generated node, and a better connection is sought to the new joint angles

that feature a low joint space distance from the new node.

. At the end of each iteration of the algorithm, similarly to [41], if the corresponding

end-effector position is close to the one of the grasping point, a connect-to-goal
step is attempted by utilizing a version of the inverse kinematic algorithm for free-
floating space manipulator systems that includes a second task of an attempt of

minimization of the base rotation [3].

The general algorithm flowchart is given in fig. 3.1, and each block of the algorithm will

be treated in a specific section.

Sample State S Find Nearest Tree Generate Path Search Nearby Nedes
Ampe Siale Space Node towards Sample for Lower Cost Paths

h 4

Obstacle Avoidance
Check

h 4

Find Best Path

¥

Attempt C?Dal Store Successful Path
Connection

Figure 3.1: RRT-Based Algorithm
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The overall primary goal for the algorithm is to produce a trajectory such that, at a

certain time ¢y, the following conditions are satisfied:

xpp(ty) = Xap(ty) (3.3a)
vep(ty) = par(ty) (3.3b)
vee(ty) = ves(ty) (3.3¢)
wrr(ty) = wap(ty) (3.3d)

Where ¢ symbolizes the generic orientation of the reference frames of the two points that

will need to be represented in a consistent way.

3.2.1. Sampling and Metric

The admissible joint variables are defined as the ones which respect the constraints on the
minimum and maximum value, given as specifics of the robotic manipulator, including

limits on angular positions, velocities and accelerations:

Orin < 60 < Orrax (3.4a)

At the start of each iteration, a random sample of joint angles is generated from an uni-

form distribution of the admissible ones.

Osampled S (emzna OMAX) (35)

Then, following the approach of Rapidly-Exploring Random Trees, the nearest node be-
longing to the tree T(V,E) needs to be found as the node from which the connection
towards the new sample state is started.

The nearest node is obtained through a metric that should represent as close as possible
the cost-to-go to said sample [19]. In this case, since the control sequence to reach the
new samples is straightforwardly defined (3.1), it is possible to use the simplest metric of

the Euclidean distance between samples in order to find the nearest node.

d= ||08ampled - etree“ (36)

The selected tree node from which the steering is performed is the node for which the

Euclidean distance from the new sample point is minimal.
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3.2.2. Steering Method

The steering process is the generation of a new node of the tree starting from the nearest
node of the tree X,curess Which has been found applying the previously defined metric,
and the new sample obtained from the uniform distribution of admissible samples as in
section 3.2.1.

The generation of a new node is non-trivial for nonholonomic systems. [37| and [36] use
a method which involves creating 3", where n is the number of joints, combinations of
available joint torques, where the torque applied to each joint assumes either the maximum
value, the maximum negative value, or zero. After generating a set of 3" points through
the propagation of the state equations as many times, it selects the generated node closest
to the sample according to the metric.

By tackling the problem at a kinematic level, it is possible to connect any pair of states
whenever obstacles are not considered. The presence of obstacles can then be considered
after the path between any couple of states has been generated.

Nodes are generated at zero joint velocity in order to be able to move towards the random
sample generated at the next iteration through a trajectory that reaches the maximum
allowed joint velocity starting from zero velocity, whereas starting from an initial velocity
might greatly decrease the ability to reach the successive random sample in a low amount
of time.

The nodes are generated starting from the computation of the difference between the two

states A@. It is possible to distinguish between two cases once the distance is known:

1. In order to reach the new node, it is sufficient to apply a constant acceleration for
a certain amount of time At, and an opposite constant deceleration for the same

amount of time.

2. The distance between the two nodes is high in magnitude, and the connection cannot
be granted by using constant acceleration, as it would either violate constraints on
the maximum allowed joint acceleration or on the joint velocity. In this case, the
path is divided in three subpaths: for a certain At; at a constant acceleration, then
at a constant velocity for a different At,, and finally for the same At at the opposite
constant deceleration. This allows to reach any state depending on Aty while still
enforcing null final joint velocity and being compliant with the joint velocity and

acceleration limits.
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Both cases make use of the integration of the simple kinematic equations in order to

represent the path of the joint angles:

. 1.
0; = 6y + Oy(t — to) + 549(t — tg)? (3.7)

It is then possible to fully compute the final joint angles that would result from the
application of a constant acceleration to arrive to an intermediate state i, and a con-
stant opposite deceleration, consecutively to the acceleration, to bring the system to zero

velocity and to the final state. This results in the following set of equations:

. 1
0; = 0y + 0u(t —ty) + 5a,(t — tg)? (3.8a)
6, — 6, +6i(t — 1) — %a(t ) (3.8b)

Knowing that ¢t — t; is the same as t — ty, now denominated At, and knowing that 90 =0
as all nodes are generated at zero velocity and that 0, = at, it is possible to compute

the required acceleration depending on A@:

A

o (3.9)

a =

To understand whether the node is reachable through the application of this acceleration
through the fixed amount of time At, two checks are needed on whether the acceleration
is compliant with the joint limits, and whether the maximum reached velocity during the
motion is within the set of admissible joint velocity.

The constraint on the maximum and minimum acceleration component is:

anax < Oyax (3.10a)

While the constraints on the maximum and minimum joint velocity reached are:

max (02) = (_LMAxAt S éMAX (311&)
min (0;) = @pinAt > Opin (3.11b)

Where ay ax and a,,;, are the maximum and minimum components of the acceleration

with their respective sign.
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Overall, the constraints on the acceleration are:

anax < Oyrax (3.12a)
_ 0
apax < AXL;X (3.12¢)
a,,, > Jmin (3.12d)
Amin = .
At

Whenever any of these constraints is not satisfied, it is not possible to connect two states
through this simple method. However, it is possible to define a new acceleration vector
proportional to the current one, such that the trajectory is performed in the direction of
the new sample, while being compliant with the constraints.

This is done by computing the ratio of the acceleration component that violates the con-
straints with the value of the violated constraints. If multiple constraints are unsatisfied,
the highest ratio is taken such that it incorporates the others. Then, this ratio is utilized
to multiply all acceleration components, in order to maintain the acceleration vector di-

rection while changing its magnitude to be compliant with the constraints.

ANAX Qmin AMAX Qg
r = max (0 , émm, ; , émm (3.13)

. MAX min

MAX min At At

The new acceleration is thus:
_ 1
aANgw — —Q (314)
T

Since it is impossible to reach the new state with the newly computed acceleration, an
intermediate step of motion with constant velocity is performed. The constant velocity
is applied for an unknown time Aty, whose dependency with respect to A@ can be com-
puted.

By applying (3.7) to the three-segment path, with the assumptions of same At; for accel-
eration and deceleration, and knowing that the constant velocity 9“ is aypwAty, with

null initial velocity it is possible to write:

1
01‘71 = 00 + §dNEwAt% (315&)
0,‘72 - 91‘,1 + a/NEWAtlAtQ (315b)

1
Of - 01‘,2 + dNEwAt12 — §dNEwAt12 (315C)
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By substituting (3.15a) and (3.15b) in (3.15c¢), the propagation time can be computed
directly from A@, knowing the other parameters involved in the equations:

A= — B0 Ay (3.16)

anew Al

It is important to note that the position joint limits are never checked throughout the
application of this approach, as the minimum and maximum for the joint positions will
be at the extremes of each propagation, which belong necessarily to the admissible set
since they are obtained through sampling.
After the variables are obtained, it is possible to integrate the overall space-manipulator
system kinematic model in order to retrieve the linear and angular motion of the spacecraft

base.

3.2.3. Obstacle Avoidance

Avoiding obstacles is of pivotal importance for the success of the path planning of the
space manipulator. Obstacles in the workspace can refer to debris or satellite parts that
float in the vicinity of the target, the target satellite body itself and its appendages, and
also the chaser base and the self-collisions of the manipulator arm.

Rapidly-Exploring Random Trees are excellent algorithms for obstacle avoidance in a
dynamic environment, and can include the avoidance of moving obstacles inside the
workspace of the manipulator, provided they are modelled correctly.

For Space Manipulator System, the main problem arising during obstacle avoidance is
the evaluation of the relative distance from the obstacle, as checking the distance be-
tween each point of the manipulator and the obstacle requires an optimization problem
parametrizing each link with a continuous variable and the minimization of a distance
function.

In order to simplify the process, key points are chosen on the manipulator in order to per-
form the computation of the distance from the obstacles. The minimal amount of points
guaranteeing a safe obstacle avoidance has been identified in [25] to be the positions of
the joints and the positions of the links midpoints.

The obtained path is discretized in small time intervals, and for each time sample ¢; the
direct kinematics are computed in order to find the key points positions in the inertial
reference frame x¢ ;(t;) and x;(t;).

Obstacles such as the target satellite (excluding its grasping handle) show their own dy-
namic, thus their position and orientation change with time, and for this reason they will

be evaluated at the time ¢;.
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To find the relative distance between the obstacles and the manipulator points, it is nec-
essary to refer the position of the manipulator and the obstacle’s envelope to the same
reference frame. In this case, a transformation to the obstacle body axes is considered.
The position of the links centers of mass, assumed to be at the midpoints between two
joints, and of the joints are available in the inertial reference frame through the relations
in section 2.4.1 and are already available as they are utilized to compute the dynamic
parameters of the system.
The rotation to the obstacle body frame from the inertial reference frame, which is in this
case identified with the Local Vertical Local Horizontal frame due to the short duration of
the overall manoeuvre, is performed through the relation (2.15), in which the orientation
angles depend on time through the Euler equations, expressed in section 2.3.2.
The overall transformation of the position of the manipulator’s joints and links in the
body axes of the 7 — th obstacle are:
x; % = R (p(t)x; (3.17)
Where i represents the ¢ — th point of the manipulator, including the joints and the
midpoints.
At this point, the distance from the obstacle is known to be:

Axpy? =% = Ry % ((t))xo, (3.18)
Where the position of the obstacle’s computed geometric center is expressed in its body
axes to have the distance from the manipulator to be coherent with the framework.
After computing the distance between the manipulator’s points and the obstacle center,
the closest point to the obstacle can be found as the minimum Euclidean norm of the
distance, and will be then utilized to compute the effective distance with the obstacle’s

walls.

dmin = min || A%, )| (3.19)

Obtaining the minimum distance in each obstacle’s body axes is useful within the frame-
work described in [24], which defined the possibilities to model the obstacles in the ma-
nipulator workspace through continuous geometric primitives. Typically, in fact, the ob-
stacles found in space such as satellites or nozzles should not be modelled through spheres
that would either compromise the robot’s workspace or underestimate the true envelope
of the obstacles. For this reason, super-quadric functions can be used to approximate

different-shaped obstacles. For cuboid-like objects, as the one considered in this work,
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the envelope is represented through the following relation:

S(z,y, 2) = <5>8 + (%)8 + (3>8 1 (3.20)

a C

Where a, b, ¢ are the sides of the cuboid divided by 2. Thus, the spatial coordinates of the
various manipulator points can be substituted inside the equations in order to compare

the results, in fact the following hold:

S(xi,yi,2i) <0 if pointi isinside S
S(xs,yi,2) =0 if point i is on the surface S (3.21)
S(xi,yi,2i) >0 if pointi is outside S

These conditions are rather optimistic, in fact the superquadric functions tend to underes-
timate the dimensions of the objects as shown in 3.2, particularly at their vertices. In this
work, the satellites are approximated adding a safety distance to generate the envelopes
of the cuboids: for safer obstacle avoidance, a larger envelope can be generated taking
the vertices into account and using a,b,c = ‘/75(@0, bo, co) where the latter quantities are

the sides of the cuboid. After the distance from the center of the obstacle, in its own

z [m]

Figure 3.2: Super-quadric envelope and cube, using a, b, ¢ = =l

1
2
body frame, has been substituted within the equation of the geometric primitive for each
point of the path between two nodes, it is possible to understand whether any of the ma-
nipulator points has hit the obstacle, and if that is the case, the new node is completely

discarded and a new iteration begins.
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3.2.4. New Node Optimization

Following the scheme defined for RRT* algorithms, once a connection to a new state is
performed and validated through obstacle avoidance, it is possible to query the surround-
ings of the newly found node, in order to find whether a different connection to the same
state would have generated a better overall final state.

For this reason, a cost is assigned to each new node of the tree. Since the generation
of new nodes regards the sole joint coordinates, different initial conditions modify the
configuration of the overall Spacecraft-Manipulator System, including the rotation of the
chaser base, the position and the orientation of the end effector. These quantities, that
are the goals of the path planning, can be included in a cost function that is assigned
to each new node, and due to the dependencies on the initial conditions, to each path

between two nodes.

e Distance from the goal: The end-effector position and orientation for each
node are given from the direct kinematics algorithm. In the case of a free-floating
spacecraft-manipulator system, this depends on the joint coordinates angular posi-
tion and on the base coordinates linear and angular position. The motion of the
base is heavily dependent on the initial conditions, thus a different path to reach

the same joint variables modifies the end-effector position:

xpr = B3 TP ()T [ Al (ai(t)20 = EsuaTy "z (3.22)
=1

Where z, is a column vector [0 0 0 1} T.
The orientation of the end-effector is expressed in quaternions in order to avoid
representation singularities, since the minimal representation is considered less im-
portant than in the equations of motion for the orientation of the base. This choice
also maintains the possibility of using the Geometric Jacobian rather than comput-
ing the Analytical Jacobian.
The rotation matrix of the end-effector frame with respect to the Local Vertical
Local Horizontal (inertial) frame can be extracted from the homogeneous transfor-
mation matrix:

RFF = B3, ,TFFE], (3.23)

Where Ej3.4 is a matrix extracting the first three rows from a 4 x n matrix, and it
has been defined in (2.40).
By using the conversion formulae between the Direction Cosine Matrix and the

quaternions in (2.11), it is possible to retrieve the unit quaternion of the relative
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orientation of the end-effector in the LVLH frame.

The relative orientation between two frames is described through quaternions as
1
Aq = qq * q;' [40], and the reference frames are aligned if Ag = ol hence the

relative orientation of the grasping point and the end-effector in the LVLH frame

depends on the vector part of the quaternion measured error:
Aq = Ae =n.(0)eq — 1n4e.(0) — €,;€(0) (3.24)

Where qq is the orientation of the grasping point reference frame at time instant t;,
while q. is the orientation of the end-effector reference frame at time ¢.
The portion of the cost function regarding the relative position and orientation of

the end-effector and the grasping point is simply:

fep = we|[xap(tr) = xpp(ty)|| + wallear(tr) — enp(t)l| (3.25)

Where t;, is the time at which sample £ is reached.

e Base Rotation: free-floating space manipulator systems must attempt to reach the
final point by using manipulator trajectories that induce a low coupling momentum
on the spacecraft base as to avoid unwillingly modifying its attitude and losing
the telecommunications or tracking capabilities, or to require costly manoeuvres to
restore the attitude.

In this framework, rather than attempting to execute manoeuvres that would fall
into the reaction null space of the Spacecraft-Manipulator System, the generated
nodes are assigned a cost that grows with the distance of the base attitude with
respect to its desired value.

The cost of a sample relative to the base rotation is evaluated through the norm of

the difference between the orientation of the two reference frames:
far = wallef — @u(te)] (3.26)

e Time: the minimization of the time of the manoeuvre is typically less important
than the previously defined tasks. However, completing the manoeuvres in shorter
times allows to introduce a lower magnitude error of the simplified model considering
a fixed LVLH frame with respect to the real case.

Thus, the time at which a certain node is reached is computed as an additional term
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to the weighted cost function.

fe=we -t (3.27)

After the generation of a new node, its cost is evaluated through the overall cost function
(3.28).

f=1Fep+ fop + 11 (3.28)

Then, a set of nodes in the proximity of the newly generated node is found as nodes that
show a distance metric, which will be the same utilized to find the nearest sample, lower
than a threshold 6, which is a free parameter for the algorithm, whose value will relate to

a certain overall sum of the joint rotations:

eNear - {V € T( V; E) | ||9new - Otree” < 9_} (329>

For each point, a connection to 0,,,, is generated through the same method utilized for
the generation of new nodes of the RRT, in section 3.2.2.

After the connections have been found, a check for possible collisions with the obstacles
is performed following the method described in section 3.2.3.

Among the paths with no collisions, the lowest cost trajectory is selected. It is possible
that the best path was corresponding to the initially found path towards the new goal
starting from Opneqrest, Otherwise a state Oy, will be the new parent node to the node
that will be added to the tree.

3.2.5. Connection to Goal

At the end of each iteration, the position, orientation, and velocity of the end effector are
computed for the last generated node of the tree.

Whenever the weighted sum of the distance between the current position of the end-
effector and the current position and orientation of the grasping point, of the orientation
difference between the end-effector and the grasping point, and of the chaser base attitude
with its desired value, are below a certain threshold, which is a free parameter for the
algorithm, a solution is seeked through the inverse kinematics algorithm for free-floating

space manipulators, which has been developed in [3].

doc = wi|xap — xpp|| + wi|leap — enpll + W | — || <k (3.30)
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The inverse kinematic algorithm for free-floating space manipulators is similar to the Jaco-
bian pseudo-inverse algorithm for fixed-base redundant manipulators, with the difference
that base variables computations will essentially be part of the algorithm as their changes
affect the position and orientation of the end-effector, but they themselves depend only
on the motion of the joints.

The algorithms are based on the simple relation between the velocity of the end-effector

and the joint velocities, that is:
0 =J Ve (3.31)

Where the analytical Jacobian needs to be used in order to correctly express the relation
between the end-effector angular velocity and the Euler angles-represented rotation. With
a different representation, such as unit quaternion, for the orientation of the end-effector,
it is possible to avoid the usage of the analytical Jacobian, using the Geometric Jacobian.
In this specific case, using a representation such as the unit quaternion, it is possible to
use the relation between the Generalized Jacobian Matrix, the end-effector velocity and

the joint velocities, by using the relation in (2.86):

0= JVgg (3.32)

The T indicates the Moore-Penrose pseudo-inverse of the non-square Generalized Jacobian
Matrix.

Then, in order to iterate the algorithm and match the end-effector position and orientation
along a trajectory, the joint coordinates are integrated through a simple forward Euler

numerical scheme:

O(trs1) = O(t) + OAL (3.33)

Substituting (3.32) in (3.33), the joint coordinates variation over time relative to the

trajectory defined by the end-effector velocity can be obtained:

O(tr1) = O(t,) + JVppAt (3.34)

This solution, however, includes a numerical drift in the integration of the equations,
thus it is necessary to resort to a closed-loop solution involving the definition of the
operational space error between the end-effector desired position and orientation and its

T
current position and orientation e = [ex eg,] :

€, = Tgp — ZL’EE(O) (335)
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The orientation error expression depends on the representation of the orientation that
has been chosen. In this case, the unit quaternion representation has been utilized as it
is consistent with the directions of wgg.

The relative orientation of two reference frames is available from (3.24):

e, =cqp —cpp(0) (3.36)
The time derivative of the overall error is:
e =%y — Vg =%4—J0 (3.37)

It is then possible to substitute the expression for the time derivative of the joint coordi-
nates in order to obtain the error evolution over time.
To generate an asymptotically stable system, the typical choice of inverse kinematic al-

gorithms is:
0 = Ji(x4+ Ke) (3.38)

Such that, after the substitution and if K is a positive-definite matrix, the following

generated system is asymptotically stable:

e+ Ke=0 (3.39)

The error will tend to zero with a growing number of iterations, with a convergence rate
that depends on the eigenvalues of K. However, the values for the elements of K are
limited by the joint limits in terms of velocity. The check on whether these are violated
is done right after the algorithm has completed the goal connection, and if there are vio-
lations, the path to the goal is discarded. Likewise, the obstacle avoidance is performed
after the check on the violation of the joint limits, and paths can be discarded if they
impact the target at any point different from the grasping point.

The main advantage in using a redundant manipulator for the inverse kinematics is the
possibility to modify the joint velocity vector for the algorithm with the inclusion of an
additional task that is performed through the unused degree of freedom of the manipu-
lator. This task is typically the minimization of the chaser base spacecraft rotation, and
it can be added to the algorithm through a projection on the null space of the General-
ized Jacobian Matrix as to not interfere with the main task of following the end-effector

trajectory:

0 = JM(%q+ Ke) + (Inxn — J1J)JE Kpeo (3.40)
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Where Iy, — J1.J projects the joint velocities computed by the error on the second task
to the null space of the GJM, to avoid that the minimization of the latter error interferes
with the accomplishment of the main task.
The Jacobian Matrix J is the matrix relating the vector of the joint velocities with the
variables relative to the second task, in this case it represents the relation between the
joint velocity and the base angular velocities, as in (2.85), thus it is the last three rows of
the matrix:

Jo = —M; ' M, (3.41)

The error ec is defined as the distance from the reference attitude of the current orienta-
tion of the base, and since it is expressed in Euler angles and a typical desired orientation

corresponds with the LVLH frame, its value is:

ec = ¢pa— v5(0) = —¢5(0) (3.42)

As the base orientation is represented through Euler angles.
The closed-loop inverse kinematic algorithm is stopped whenever a certain tolerance on

the position and orientation of the end-effector is reached.

3.2.6. Spline Smoothing

The path generated through Rapidly-Exploring Random Trees is typically jerky, as it
discretizes the state space in a number of points. While the generation in this case has
been done continuously, but with sudden bumps in acceleration and velocity, it is necessary
to generate an overall continuous path with a continuous variation of acceleration and
velocity to provide a smooth trajectory.

The position and orientation of the base and on the end-effector does not depend on the
path taken but only on the initial and final overall states, thus it is possible to utilize the
RRT points as waypoints for the approximation of the state variables 8(t) as polynomials
[52].

It is possible to show that the polynomial interpolation of the joint variables and of the
joint velocity is sufficient in order to match the two states, as the base linear and angular
position will not depend on the path taken to get to a certain 6,0 but rather only on the
initial conditions. Thus, it is possible to define the following conditions in order to obtain

a smooth path between two states:
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6(to) = 6
O(ty) = 0y
0(ty) =0
O(t;) =0
(ty) =0
6(t;) =0

Given these six conditions, the simplest function that can be used to approximate each

0(t) is a fifth-order polynomial of the form:

t—ty 5
a
ty —to

t—to 4
ty —to

t—1ty°
&
ty — to

t—to 2
ty —to

t—to
e
ty —to

0(t) = +b +f

This means that the joint velocities are the time derivative of this function:

: t—to)t t—1ty)3 t—ty)? t—t 1
9(15):5a( 0)5+4b( 0)4—|—3c( 0)3+2d 02 e
(ty —to) (ty — to) (ty — to) (ty — to) ty —to
While the joint accelerations will be:
. t—1t)? t—t)? t—t 1
o(t) = 20a(—0)5 +12b (t = fo) -+ 6c ( 0)3 + 2d .
(ty —to) (ty —to) (ty —to) (ty —to)

The conditions in t = ¢y can be enforced in a simple manner:

0(to) = f =

O(to) = e

i(ty) = d

0
0
0

(3.44)

(3.45)

(3.46)

(3.47a)
(3.47h)
(3.47¢)

The final conditions, corresponding to t = t, will result in a set of simple equations in

the three remaining unknowns:

G(tf):a+b+c:9f—6’0

O(ty) =5a+4b+3c =0
0(to) = 10a + 6b+3c = 0

(3.48a)
(3.48)
(3.48c¢)

Where the remaining denominator terms have already been simplified. This system of



linear equations can be rewritten in matrix form and solved easily:

a AO
bl =10 (3.49)

ot =
o b =

—_
e}
o

w W =

After the path smoothing, it is necessary to perform a final check on the values of the
joint variables, their velocities and their accelerations in order to find whether they are
admissible.

Then, the path is sampled densely in order to repeat the obstacle avoidance check since

it will differ from the paths for which it has already been performed.
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4: ‘ Simulation Results

In this chapter, the algorithm proposed in section 3.2 is validated, applied to a problem
with a series of simplifying assumptions, and the tree is expanded in order to find multiple
solutions to be compared. In section 4.1, the case scenario and the parameters of the
simulation are introduced and discussed. Then, the results of the simulation are presented

and discussed.

4.1. Simulation Setup and Parameters

The algorithm is applied to a numerical simulation of a capture of an uncontrolled target
satelllite, utilizing a 4-Degrees of Freedom Manipulator mounted on a microsatellite that
attempts to capture a small CubeSat.

The simulation has been carried out in the planar case, with a Space Manipulator System
similar to the one described in [45].

The main task of the Space Manipulator System is to capture the grasping handle on the
target satellite. This task does not require all the Degrees of Freedom of the manipulator
to be performed, as it requires the end-effector to match the position and the orientation
of the grasping point.

This leaves an additional degree of freedom of redundancy with respect to the main task,
and it can be utilized in order to perform the restoration of the attitude of the base of
the servicing satellite.

The rendez-vous manoeuvre is hypothesized to be completed before the start of the manip-
ulator trajectory planning and the Attitude and Orbital Control System to be completely
turned off during the remainder of the manoeuvre.

If the manoeuvre under these hypotheses is of sufficiently short duration, the effects due to
orbital mechanics can be ignored and thus the Space Manipulator System can effectively
be considered in a pure free-floating case, as no external force is applied to it.

As already discussed in previous paragraphs, in this case the target-centered LVLH refer-
ence frame will be aligned with the LVLH frame of the chaser, and it is typically assumed

in literature to be fixed and thus aligned with the ECI reference frame.
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4.1.1. Physical Parameters

The Spacecraft-Manipulator System’s 3D model is shown in fig. 4.1, in its body axes
reference frame.

The manipulator arm lies in the xy-plane of the body axes reference frame, and the joints
are highlighted and rotated by an angle of 30°.

The figure also shows the body axes, the end-effector reference frame and the joint-
centered reference frames, each aligned to the previous link except for the first joint for
which the orientation of the reference frame is arbitrary. The x-axes of each frame are in

red, the y-axes in green, and the z-axes are in blue.

Figure 4.1: 3D Model of the SMS

The key physical features, such as the mass, the dimensions, and the inertia of both the
chaser satellite base and of the robotic of the manipulator arm are resumed in table 4.1.
The thickness for the manipulator arms are not considered, and the inertia is given only for
the out-of-plane component, as it is the only component that will feature in the equations

of motion for the planar case.
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Parameter Value

Base Dimension [Ip, l5,] [m] [0.5 0.5]

Mass mp [k¢] 10

Inertia Ip.. [2%] 0.8333

Links Length [, [m] [0.4 0.4 0.4 0.4]
Links Masses my, [kg] 222 2]

Links Inertias ;.. [£4] [0.0267 0.0267 0.0267 0.0267]

Table 4.1: Space Manipulator System Physical Parameters

The first joint is located on the center of the positive x-body axis face of the cube.

The centers of mass of each link are assumed to be at the respective link midpoint, while
the end-effector is coincident with the last link’s endpoint. The orientation of the end-
effector will be the same as the last link’s center of mass. Their values are presented in
table 4.2.

Parameter Value

Joint 1 Base Frame Coordinate xJ [m)] [0.25 0]

Links Centers of Mass Location x; [m] [lgl 0]

End-Effector Position x3, [m)] (114 0]

)

End-Effector Orientation 6% [rad| 0

Table 4.2: Space Manipulator System Configuration Parameters

Physical joint limits are defined in terms of joint angular position, velocity, and acceler-
ation. The first joint has a reduced joint rotation span compared the latter joints in the
kinematic chain to guarantee that the first link never makes contact with the chaser base.
The joint position, velocity and torque limits are presented in table 4.3 and they have been
selected in order to allow the maximum movement for each of the manipulator joints while
rendering effectively impossible for two consecutive links to collide, since the self-collisions

of the joints of the robotic arm has not been considered in the obstacle avoidance.
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Parameter Minimum Maximum
—85 85
. . L. —175 175
Joint Angular Position Limits 0,,;,,, O, 4x [deg] 1 175
—175 175
Joints Velocity Limits ,,in, Onax [deg] ) -30 ] ) 30 )
Joint Acceleration Limits émin; éMAX [%] -10 10

Table 4.3: Space Manipulator System Joint Limits

The target satellite’s model is shown in fig. 4.2. It is important to note that, in contrast
with fig. 4.1, the body axes shown here are rotated but follow the same color code: the
x-axis is in red, the y-axis is in green and the z-axis is in blue. The presence of solar
panels has been taken into account to be out-of-plane with respect to the plane in which
the manipulator will move, as the z-axis of the target’s body frame will be aligned with
the one of the target-centered LVLH frame. This is a further requirement imposed to the
close approach manoeuvre by the chaser satellite base. The grasping point position and

orientation is highlighted in fig. 4.2.

Figure 4.2: 3D Model of the Target Satellite
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Parameter Value

Base Dimension [l7, l1,] [m] [0.2 0.2 0.2]
Mass mr [kg] 1.25

Inertia I7.. [24] 0.00833

Grasping Handle (237 yon zop |[m] [0 0.12 0]
-1 0 0
Grasping Handle Orientation Rgf; 0 -1 0
0 0 1

Table 4.4: Target Satellite Physical Parameters

4.1.2. Simulation Parameters

The capture scenario is described in the Local Vertical Local Horizontal reference frame
centered on the target satellite. This reference frame, according to the hypotheses illus-
trated in section 2.2, is fixed in time and can be approximated to be an inertial reference
frame.

The target satellite will be rotating with respect to its Local Vertical Local Horizontal
reference frame, and the grasping point moves accordingly.

In this simplified environment, the target satellite has been considered to rotate at a con-
stant angular velocity, but this feature will not affect the effectiveness of the algorithm,
since it utilizes instantaneous values for the position and velocity of the grasping point at

each discrete time instant ¢.

Parameters Values
- 0
Target Position xr [m] 0
Target Rotation 01 [rad] 0
0
Target Velocity v [%] 0
Target Angular Velocity wr [%} 2 -_1(_)*2

Table 4.5: Target Satellite State Parameters

The initial state of the chaser satellite with respect to the target shows the manipulator
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in a semi-retracted position, and the joints to be initially still, to enforce the condition of

zero initial linear and angular momentum for the whole Space Manipulator System.

Parameters Values

—1.1
Initial Base Position xp [m] { 0 ‘
Initial Base Rotation 0y [deg] 0
60
" . " —150
Initial Joint Position Vector 6 [deg] 0
150
‘s . 0
Initial Base Velocity vg [%] 0
Initial Base Angular Velocity 6 [%ﬂ 0
0
oge . . 3 [rad O
Initial Joint Velocity 6 [T} 0
0

Table 4.6: Space Manipulator System State Parameters

The simulation scenario is shown in fig. 4.3, depicting the chaser satellite and the tar-
get satellite relative position and orientation at the initial time instant, highlighting the

position of the grasping fixture on the target.

041

0.2

yrvia(m]

-04

06 . . . . . . . )
-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
zryrm(m]

Figure 4.3: Simulation Initial Scenario
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The choice for the parameters of the algorithm has been driven by the attempt to generate
as many probable connections to the goal as possible, while limiting the computational
time for the algorithm. Parameters for the RRT algorithm and for the Inverse Kinematics

Algorithm are given in table 4.7 and table 4.8 respectively.

RRT
Parameter Value
# Iterations 10000
Wy, 1
New node cost weights !
W, 1
Wy 1073
Connect-to-goal threshold dge 0.3
wSc 1
Connect-to-goal weights | wG” 9.2
wgbc 0
Near Search Radius 6 0.5

Table 4.7: RRT Simulation Parameters

IK

Parameter Value

Maximum # Iterations 10000
At 0.001 s
1 00
Gain matrix for the end-effector task K 010
0 01

Gain matrix for the attitude task K. [1}

Final Error Tolerance for the position e, 1073

Final Error Tolerance for the orientation e, 1°

Table 4.8: IK Simulation Parameters

The parameters for the Inverse Kinematics are defined in order to have a final completion
manoeuvre lasting a short amount of time (maximum ¢ = 10 seconds), while the matri-

ces values are kept low in order to obtain joint velocities that respect the joint limits as



72 4| Simulation Results

solutions.

4.2. Results

The results of the path planning algorithm are hereby displayed: first, a trajectory that
could be obtained with the algorithm is shown in terms of end-effector and manipulator
motion in time, including the time evolution of joint angles, velocity, and accelerations
compared to the joint limits.

Then, the joint space exploration and the operational space exploration are analyzed,
showing that the tree structure grows fast towards unexplored areas and that it is able to
cover densely the space even with a small amount of nodes, and thus in a short time.
Finally, the quality of the generated trajectories with differing numbers of iterations is
discussed.

One trajectory generated by the algorithm is shown in fig. 4.4 in terms of end-effector
trajectory and chaser-manipulator configurations at the various nodes and throughout

the inverse kinematics solution.

06

End Effector Path xpp(t) |

-6 -14 12 - -08 -06 -04 -0.2 0 02 04

Figure 4.4: Manoeuvre
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The joint rotations, velocities and accelerations are computed for the trajectory which

has been interpolated through splines, and their trajectories over time are shown in

fig. 4.5 fig. 4.6,fig. 4.7 and fig. 4.8.
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Figure 4.5: Joint 1 Figure 4.6: Joint 2
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The results clearly indicate that there are no violations of the constraints of either joint
variable throughout the path computed through the RRT. Moreover, the joint velocities

are kept at very low values throughout the path, whereas joint acceleration feature low

Figure 4.7: Joint 3
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Figure 4.8: Joint 4

values for the initial nodes and increase for the successive nodes.

This is mainly due to the way in which they are generated: in fact, initial nodes are
generated through paths of longer duration, with a constant maximum acceleration that
has been applied for a short amount of time in comparison to the time required to reach
the node.

As the joint space is explored more densely, the paths found between two
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nodes become shorter, and thus the acceleration applied to generate them becomes more
impactful.
Furthermore, fig. 4.4 shows that the generated path does not collide with the target

satellite along the trajectory.
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Figure 4.9: Chaser Base Rotation

As stated previously, the condition on the chaser base rotation is not to maintain a
precise Earth pointing throughout the manoeuvre duration, but rather to communicate
with Earth at the start of manoeuvre and at the capture instant.
The behaviour of the base rotation coordinate g is shown in fig. 4.9, and it approaches
the zero value at the end of the trajectory described by the RRT.
The final error on the end-effector position and orientation, the time of completion of the

manoeuvre and the final base rotation are given in table 4.9.

’ Parameter \ Value ‘
wpslm] {—0.0346|
—0.1159
oerldeg] 72.5953
opldeyg] 2.9538
ex[m] 9.94-101
eqy|deg] 0.8985
ty 2m37s

Table 4.9: End Conditions
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The manoeuvre completion time is below 10 minutes, which is the typical threshold above

which the assumptions on the orbital mechanics model are considered no longer valid.

The proposed algorithm features a rapid exploration of the joint space even with a low
number of nodes, whereas typically RRTs generate nodes in the proximity of the tree and
expand the tree structure slowly towards unexplored areas.

The following figures show the combination of the joint variables as the tree progresses its
path, connecting the nodes through simple line edges rather than through the trajectory
that has been defined among two nodes. The starting node of the tree, relative to the
inital position of the joints for the Space Manipulator System, has been highlighted in

green.
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Figure 4.10: Generated Tree: First and Second Joint

In fig. 4.10a the propagation of the tree for the first and second joint is shown.

Even with a low amount of vertices, the explored combinations of joints cover a wide
range of the possible combination, then, as the number of iterations progresses, the new
nodes explore the state space more densely and generate new paths towards the areas
with a lesser amount of nodes.

These figures feature an unexplored area, corresponding to a combination of high mag-
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nitude values for both joint angles, which correspond to the manipulator configurations

that display an impact with the chaser base.
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Figure 4.11: Generated Tree: Third and Fourth Joint

The latter two joints feature no forbidden areas within their limits, and similarly to the

previous case, show a fast exploration of the state combinations.

The proposed approach generates multiple possible trajectories, that are then evaluated
based on the success of the Inverse Kinematics algorithm, on the violation of the joint
limits, on the eventual impacts with the target, and on the final rotation of the chaser
satellite base.

The obtained trajectories that resulted in an attempted goal connection are thus classified

into categories:

1. Failed connections: These trajectories reached the proximity of the grasping point
location, and the Inverse Kinematics Algorithm attempted a connection to the goal.
However, the algorithm could not establish a successful path to the goal by limiting
the error under the tolerance values. This is mainly due to major initial condition
differences between the node from which the connection was attempted and the

grasping point location.

2. Constraints violations: The trajectories belonging to this set reached the goal con-
dition effectively, but through the path generated by the Inverse Kinematics Algo-
rithm, since no joint constraints are applied, one or multiple violations have been
detected. These paths are discarded as there is no guarantee that the SMS could

follow them.
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3. Target Collision: These paths reached the goal conditions but, during the itera-

tions of the Inverse Kinematics Algorithm, one or multiple collision with the target

satellite have been detected.

. Valid Paths: These trajectories successfully reached the goal location while being

compliant with the path constraints on the joint variables and not impacting the
target satellite or other obstacles in the workspace in the path generated by the

Inverse Kinematics Algorithm.

. Optimal Paths: The trajectories belonging to this set reached the goal condition

without impacting the target or violating joint constraints, and moreover these
paths feature a final rotation of the base p, < 5°, that requires a very low subsequent
Attitude and Orbital Control System effort to restore the attitude for telecommu-

nications or other operations.

The number of iterations for the algorithm coincides with the amount of new nodes that
are attempted to be added to the tree.

A higher amount of nodes implies a better exploration of the joint space, a higher number

of available connections to the goal, and a larger sample of states for each © ., to find

an optimized path.

|

1000 Iterations ‘ ’ 2500 Iterations ‘

Attempted Connections 19 Attempted Connections 61
Failed Connections 9 (47.37%) Failed Connections 34 (55.74%)
Constraint Violations | 7 (36.84%) Constraint Violations | 20 (32.79%)
Target Collision 0 (0.00%) Target Collision 2 (3.28%)
Valid Paths 3 (15.79%) Valid Paths 5 (8.20%)
Optimal Paths 2 (10.53 %) Optimal Paths 5 (8.20%)

Table 4.10: Path Categories: n = 1000

Table 4.11: Path Categories: n = 2500

\ 5000 Iterations

|

10000 Tterations \

Attempted Connections 117 Attempted Connections 179
Failed Connections 57 (48.72%) Failed Connections 116 (64.80%)
Constraint Violations | 52 (44.44%) Constraint Violations | 44 (24.58%)
Target Collision 2 (1.71%) Target Collision 0 (0.00%)
Valid Paths 6 (5.13%) Valid Paths 19 (10.61%)
Optimal Paths 5 (4.27%) Optimal Paths 14 (7.82%)

Table 4.12: Path Categories: n = 5000

Table 4.13: Path Categories: n = 10000

The path categories amount for different numbers of iterations are shown in table 4.10,



table 4.11, table 4.12 and table 4.13.

The amount of goal connections increases with the number of nodes, but the amount of
successful paths towards the goal does not show a definite behaviour that would suggest
using a high number of nodes to be generated.

However, even though an excessive number of iterations is deemed unnecessary, the
amount of optimal paths for fewer iterations is very low, and due to the random na-
ture of the generation of the nodes, this might coincide with an overall failure of the

algorithm in finding an optimal path.
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5 Conclusions

The main goal of this work was to formulate a path planning approach for a Space
Manipulator System that could generate a trajectory towards the grasping handle of a
target satellite while avoiding collisions with obstacles and restoring the initial attitude
of the chaser satellite base.

The path planning formulation is based on a common sampling-based approach for robots
in the Rapidly Exploring Random Trees, combined with obstacle avoidance and goal
connection methods that have already been proposed and validated in literature.

The proposed approach succeeded in finding multiple trajectories that accomplished the
goals of the mission while being compliant with the limits for the joint variables of the
manipulator, avoding obstacles in the manipulator workspace, under certain assumptions
on the environment.

In order to validate and expand the algorithm, it is necessary to drop some hypotheses

and add features that would increase the success rate of the algorithm:

e 3D Simulation: The work hereby presented shows the possibility of solution of the
trajectory planning problem for a planar case typical scenario. The implementation

of a 3D simulation would better clarify the applicability to real cases.

o Add rewiring: Typically, RRT* algorithms converge to an optimal solution when
the number of iterations increases. The presented approach does not converge to
an optimal solution given that the rewiring step, checking whether a new tree node
can be employed as an intermediate node towards another tree node, lowering the
path cost, is not performed. This step can be performed through the solution of a

2-Point Boundary Value Problem.

o Add Other Minimization Parameters: This approach computed the cost of each of
the generated nodes including the distance to the goal and the rotation of the base.
Other useful variables, such as the manipulability index, can be added within the
cost function of each node. Additionally, the distance from the obstacles can be

included to add robustness to obstacle modelling errors.



////M//////////é N 1 \\\\\\\ / \m\\ %
2N /// \ 117717/ s
//// N\ //// ////::_:::\\\ //) \\\ \\\\
NN 779477770770 00 /2 2
NN N e otrts
oty HH1100177 070070 2 2
SO 77752777777 000 2 2 2 2 27
J ///// /// N //// ////N///////////é __ ________,5\ I \\\\\\\ \\w\\ \\\\\\\\\\\\\\ =
~ 3N M s
N T e
—— f ot
—— = R
- ““\\\\\\\\\\\\\\\\\\m\\\w\w\\ 77 /////////////,/////////////// //// ///UU/
N RN R
1 NN
5577 NN
2 T I A O O



83

Bibliography

1]

2l

3]

4]

[5]

(6]
17l

8]

9]

[10]

F. Aghili. Coordination control of a free-flying manipulator and its base attitude to
capture and detumble a noncooperative satellite. In 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2365-2372. IEEE, 20009.

J. R. Benevides and V. Grassi. Autonomous path planning of free-floating manipu-
lators using rrt-based algorithms. In 2015 12th Latin American Robotics Symposium
and 2015 3rd Brazilian Symposium on Robotics (LARS-SBR), pages 139-144. IEEE,
2015.

F. Caccavale and B. Siciliano. Kinematic control of redundant free-floating robotic
systems. Advanced robotics, 15(4):429-448, 2001.

W. K. Chung and Y. Xu. Path planning algorithm for space manipulator with a
minimum energy demand. In 2012 IEEE International Conference on Robotics and

Biomimetics (ROBIO), pages 1556-1563. IEEE, 2012.

S. Cocuzza, 1. Pretto, and S. Debei. Reaction torque control of redundant space
robotic systems for orbital maintenance and simulated microgravity tests. Acta As-

tronautica, 67(3-4):285-295, 2010.
J. J. Craig. Introduction to robotics. Pearson Educacion, 2006.

S. Dubowsky and E. Papadopoulos. The kinematics, dynamics, and control of free-
flying and free-floating space robotic systems. IFEFE Transactions on robotics and
automation, 9(5):531-543, 1993.

S. Dubowsky and M. A. Torres. Path planning for space manipulators to minimize
spacecraft attitude disturbances. In Proceedings of IEEE international conference on

robotics and automation, volume 3, pages 2522-2528. Citeseer, 1991.

A. Flores-Abad, O. Ma, K. Pham, and S. Ulrich. A review of space robotics tech-

nologies for on-orbit servicing. Progress in aerospace sciences, 68:1-26, 2014.

A. Flores-Abad, L. Zhang, Z. Wei, and O. Ma. Optimal capture of a tumbling object



84

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21

22]

| Bibliography

in orbit using a space manipulator. Journal of Intelligent € Robotic Systems, 86:
199-211, 2017.

A. M. Giordano, D. Calzolari, and A. Albu-Schéaffer. Workspace fixation for free-
floating space robot operations. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 889-896. IEEE, 2018.

C. Ju, Q. Luo, and X. Yan. Path planning using artificial potential field method
and a-star fusion algorithm. In 2020 global reliability and prognostics and health
management (PHM-Shanghai), pages 1-7. IEEE, 2020.

S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for optimal

motion planning. Robotics Science and Systems VI, 104(2), 2010.

S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning.
The international journal of robotics research, 30(7):846-894, 2011.

O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In Pro-
ceedings. 1985 IEEFE international conference on robotics and automation, volume 2,

pages 500-505. IEEE, 1985.

J. J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach to single-query
path planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE Inter-
national Conference on Robotics and Automation. Symposia Proceedings (Cat. No.

00CH37065), volume 2, pages 995-1001. IEEE, 2000.

R. Lampariello. Motion planning for the on-orbit grasping of a non-cooperative target
satellite with collision avoidance. i-SAIRAS 2010, 2010.

R. Lampariello. On grasping a tumbling debris object with a free-flying robot. IFAC
Proceedings Volumes, 46(19):161-166, 2013.

S. M. LaValle and J. J. Kuffner Jr. Randomized kinodynamic planning. The inter-
national journal of robotics research, 20(5):378-400, 2001.

W.-J. Li, D.-Y. Cheng, X.-G. Liu, Y.-B. Wang, W.-H. Shi, Z.-X. Tang, F. Gao, F.-M.
Zeng, H.-Y. Chai, W.-B. Luo, et al. On-orbit service (oos) of spacecraft: A review

of engineering developments. Progress in Aerospace Sciences, 108:32—120, 2019.

Y. Li, D. Li, W. Zhu, J. Sun, X. Zhang, and S. Li. Constrained motion planning
of 7-dof space manipulator via deep reinforcement learning combined with artificial
potential field. Aerospace, 9(3):163, 2022.

S. Liu, Q. Zhang, and D. Zhou. Obstacle avoidance path planning of space manipu-



| Bibliography 85

lator based on improved artificial potential field method. Journal of The Institution
of Engineers (India): Series C, 95:31-39, 2014.

[23] Y. Masutani and F. Miyazaki. Sensory feedback control for space manipulators.

Journal of the Robotics Society of Japan, 7(6):647-655, 1989.

[24] Z. Mu, W. Xu, X. Gao, L. Xue, and C. Li. Obstacles modeling and collision detection
of space robots for performing on-orbit services. In 2014 4th IEEE International
Conference on Information Science and Technology, pages 461-466. IEEE, 2014.

[25] Z. Mu, W. Xu, and B. Liang. Avoidance of multiple moving obstacles during ac-
tive debris removal using a redundant space manipulator. International Journal of
Control, Automation and Systems, 15(2):815-826, 2017.

[26] K. Nanos and E. Papadopoulos. On the use of free-floating space robots in the

presence of angular momentum. Intelligent Service Robotics, 4:3-15, 2011.

[27] D. Nenchev, Y. Umetani, and K. Yoshida. Analysis of a redundant free-flying space-
craft/manipulator system. [EEE Transactions on Robotics and Automation, 8(1):
1-6, 1992.

[28] D. N. Nenchev. Reaction null space of a multibody system with applications in
robotics. Mechanical Sciences, 4(1):97-112, 2013.

[29] D. N. Nenchev, K. Yoshida, P. Vichitkulsawat, and M. Uchiyama. Reaction null-
space control of flexible structure mounted manipulator systems. IEEE Transactions
on Robotics and Automation, 15(6):1011-1023, 1999.

[30] S.-I. Nishida and S. Kawamoto. Strategy for capturing of a tumbling space debris.
Acta Astronautica, 68(1-2):113-120, 2011.

[31] M. Oda and Y. Ohkami. Coordinated control of spacecraft attitude and space ma-
nipulators. Control Engineering Practice, 5(1):11-21, 1997.

[32] E. Papadopoulos and S. Dubowsky. Coordinated manipulator/spacecraft motion
control for space robotic systems. In ICRA, pages 16961701, 1991.

[33] E. Papadopoulos, F. Aghili, O. Ma, and R. Lampariello. Robotic manipulation and
capture in space: A survey. Frontiers in Robotics and Al page 228, 2021.

[34] S. M. Persson and I. Sharf. Sampling-based a* algorithm for robot path-planning.
The International Journal of Robotics Research, 33(13):1683-1708, 2014.

[35] T. Rybus. Obstacle avoidance in space robotics: Review of major challenges and

proposed solutions. Progress in Aerospace Sciences, 101:31-48, 2018.



86

[36]

[37]

[38]

[39]

40]

[41]

[42]

|43

|44]

[45]

[46]

| Bibliography

T. Rybus. Point-to-point motion planning of a free-floating space manipulator using
the rapidly-exploring random trees (rrt) method. Robotica, 38(6):957-982, 2020.

T. Rybus and K. Seweryn. Application of rapidly-exploring random trees (rrt) al-
gorithm for trajectory planning of free-floating space manipulator. In 2015 10th In-
ternational Workshop on Robot Motion and Control (RoMoCo), pages 91-96. IEEE,
2015.

T. Rybus, J. Prokopczuk, M. Wojtunik, K. Aleksiejuk, and J. Musiat. Application
of bidirectional rapidly exploring random trees (birrt) algorithm for collision-free
trajectory planning of free-floating space manipulator. Robotica, 40(12):4326-4357,
2022.

B. Siciliano, O. Khatib, and T. Kroger. Springer handbook of robotics, volume 200.
Springer, 2008.

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modelling, Planning
and Control. Springer, 20009.

S. Stoneman and R. Lampariello. Embedding nonlinear optimization in rrt for op-
timal kinodynamic planning. In 53rd IEEE Conference on Decision and Control,
pages 3737-3744. TEEE, 2014.

Y. Umetani, K. Yoshida, et al. Resolved motion rate control of space manipulators
with generalized jacobian matrix. IEEFE Transactions on robotics and automation, 5
(3):303-314, 1989.

7. Vafa. Space manipulator motions with no satellite attitude disturbances. In

Proceedings., IEEE International Conference on Robotics and Automation, pages
1770-1775. IEEE, 1990.

D. J. Webb and J. Van Den Berg. Kinodynamic rrt*: Asymptotically optimal motion
planning for robots with linear dynamics. In 2013 IEEE international conference on
robotics and automation, pages 5054-5061. IEEE, 2013.

M. Wilde, S. Kwok Choon, A. Grompone, and M. Romano. Equations of motion
of free-floating spacecraft-manipulator systems: an engineer’s tutorial. Frontiers in
Robotics and Al 5:41, 2018.

Z. Xie, X. Zhao, Z. Jiang, H. Yang, and C. Li. Trajectory planning and base attitude
restoration of dual-arm free-floating space robot by enhanced bidirectional approach.
Frontiers of Mechanical Engineering, 17(1):2, 2022.



5/ BIBLIOGRAPHY 87

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

W. Xu, B. Liang, C. Li, and Y. Xu. Autonomous rendezvous and robotic capturing

of non-cooperative target in space. Robotica, 28(5):705-718, 2010.

W. Xu, Y. Liu, B. Liang, X. Wang, and Y. Xu. Unified multi-domain modelling and
simulation of space robot for capturing a moving target. Multibody System Dynamics,
23:293-331, 2010.

Y. Xu and T. Kanade. Space robotics: dynamics and control, volume 188. Springer
Science & Business Media, 1992.

Y. Yanoshita and S. Tsuda. Space robot path planning for collision avoidance. In Pro-
ceedings of the International MultiConference of Engineers and Computer Scientists,
volume 2. Citeseer, 2009.

K. Yoshida and D. N. Nenchev. A general formulation of under-actuated manipulator
systems. In Robotics Research: The Fighth International Symposium, pages 33—44.
Springer, 1998.

M. Yu, J. Luo, M. Wang, and D. Gao. Spline-rrtx: Coordinated motion planning of
dual-arm space robot. IFAC-PapersOnLine, 53(2):9820-9825, 2020.

L. Zong, J. Luo, M. Wang, and J. Yuan. Obstacle avoidance handling and mixed
integer predictive control for space robots. Advances in Space Research, 61(8):1997—
2009, 2018.

L. Zong, M. R. Emami, and J. Luo. Reactionless control of free-floating space manip-
ulators. IEEE Transactions on Aerospace and Electronic Systems, 56(2):1490-1503,
2019.



////M//////////é N 1 \\\\\\\ / \m\\ %
2N /// \ 117717/ s
//// N\ //// ////::_:::\\\ //) \\\ \\\\
NN 779477770770 00 /2 2
NN N e otrts
oty HH1100177 070070 2 2
SO 77752777777 000 2 2 2 2 27
J ///// /// N //// ////N///////////é __ ________,5\ I \\\\\\\ \\w\\ \\\\\\\\\\\\\\ =
~ 3N M s
N T e
—— f ot
—— = R
- ““\\\\\\\\\\\\\\\\\\m\\\w\w\\ 77 /////////////,/////////////// //// ///UU/
N RN R
1 NN
5577 NN
2 T I A O O



89

List of Figures

2.1 Capture Scenario with Reference Frames . . . . . . . . .. ... ... ... 18
2.2 Chaser Model . . . . . . . . .. . 21
2.3 Denavit-Hartenberg Convention . . . . . . . . . .. .. .. ... .. .... 23
3.1 RRT-Based Algorithm . . . . . ... ... ... ... ... ... ...... 48
3.2 Super-quadric envelope and cube, using a, b, c = %l .............. 55
4.1 3D Model of the SMS . . . . . . . . . . . ... 66
4.2 3D Model of the Target Satellite . . . . . . . . .. ... ... ... ..., 68
4.3 Simulation Initial Scenario . . . . . . . .. ... 0L 70
4.4 Manoeuvre . . . . . ... e 72
4.5 Joint 1 . . . . . 73
4.6 Joint 2 . . ... 73
4.7 Joint 3 . . .o L 74
4.8 Joint 4 . . ... 74
4.9 Chaser Base Rotation . . . . . . .. ... ... ... ... ... ... ... 75
4.10 Generated Tree: First and Second Joint . . . . . . . . . ... ... ... .. 76

4.11 Generated Tree: Third and Fourth Joint . . . . . . . . . . . . . ... ... 77



////M//////////é N 1 \\\\\\\ / \m\\ %
2N /// \ 117717/ s
//// N\ //// ////::_:::\\\ //) \\\ \\\\
NN 779477770770 00 /2 2
NN N e otrts
oty HH1100177 070070 2 2
SO 77752777777 000 2 2 2 2 27
J ///// /// N //// ////N///////////é __ ________,5\ I \\\\\\\ \\w\\ \\\\\\\\\\\\\\ =
~ 3N M s
N T e
—— f ot
—— = R
- ““\\\\\\\\\\\\\\\\\\m\\\w\w\\ 77 /////////////,/////////////// //// ///UU/
N RN R
1 NN
5577 NN
2 T I A O O



91

List of Tables

4.1 Space Manipulator System Physical Parameters . . . . . . . . . .. .. .. 67
4.2 Space Manipulator System Configuration Parameters . . . . . . . .. . .. 67
4.3 Space Manipulator System Joint Limits . . . . . . . .. ... ... .. ... 68
4.4 Target Satellite Physical Parameters . . . . . . . ... .. ... ... ... 69
4.5 Target Satellite State Parameters . . . . . . . . .. ... .. ... ... .. 69
4.6 Space Manipulator System State Parameters . . . . . . . . . .. ... ... 70
4.7 RRT Simulation Parameters . . . . . . . . . ... ... ... ... 71
4.8 IK Simulation Parameters . . . . . . . .. ... ... ... ... ... ... 71
4.9 End Conditions . . . . . . . .. .. 75
4.10 Path Categories: n = 1000 . . . . . . . . . . . ... 78
4.11 Path Categories: n = 2500 . . . . . . . . . . .. ... 78
4.12 Path Categories: n = 5000 . . . . . . . . . ... . 78

4.13 Path Categories: n = 10000 . . . . . . . . . . . . ... 78



////M//////////é N 1 \\\\\\\ / \m\\ %
2N /// \ 117717/ s
//// N\ //// ////::_:::\\\ //) \\\ \\\\
NN 779477770770 00 /2 2
NN N e otrts
oty HH1100177 070070 2 2
SO 77752777777 000 2 2 2 2 27
J ///// /// N //// ////N///////////é __ ________,5\ I \\\\\\\ \\w\\ \\\\\\\\\\\\\\ =
~ 3N M s
N T e
—— f ot
—— = R
- ““\\\\\\\\\\\\\\\\\\m\\\w\w\\ 77 /////////////,/////////////// //// ///UU/
N RN R
1 NN
5577 NN
2 T I A O O



	Abstract
	Sommario
	Contents
	Introduction
	On-Orbit Servicing and Active Debris Removal
	Space Robots for OOS and ADR

	Space Robotics: Review of key technologies
	Path Planning Problem

	Proposed Approach
	Thesis Structure

	System Modelling
	Definitions and Notation
	Euler Angles Representation
	Quaternion Representation

	Reference Scenario
	Reference Frames Definition

	Target Motion Model
	Target Attitude Kinematics
	Target Attitude Dynamics
	Grasping Point Motion

	Space Manipulator System Model
	Kinematics
	Manipulator Direct Kinematics
	Manipulator Differential Kinematics
	Dynamics
	Generalized Equations of Motion
	Generalized Jacobian Matrix
	Overall Equations of Motion


	Path Planning Algorithm
	Rapidly-Exploring Random Trees
	Proposed Algorithm
	Sampling and Metric
	Steering Method
	Obstacle Avoidance
	New Node Optimization
	Connection to Goal
	Spline Smoothing


	Simulation Results
	Simulation Setup and Parameters
	Physical Parameters
	Simulation Parameters

	Results

	Conclusions
	Bibliography
	List of Figures
	List of Tables

