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Abstract 

Ultrasound is a widely used, low-cost imaging modality which plays an important role 

in clinical diagnosis. Today, technology has developed a lot and it is possible to use 

computer simulations to train in the medical field.  The aim of this work is to explore 

volume rendering techniques and develop a three-dimensional representation of the 

human body so that it contains also “internal” texture sampled from the AustinMan 

dataset. This internal texture is then used to build new images from the intersection of 

a plane with the body. The power of this concept lies in the fact that is possible to build 

slices of the body in any orientation, not just horizontal. The body can also be set in 

different poses and the position of the internal points is recalculated.  

Regarding voxelizations, two algorithms are presented. The first, very simple, is a 

voxelization that builds meshes triangulating cubes. It is used to build simple models 

for the human skin and for every internal layer of the human body. Then, a slightly 

more complex algorithm, Marching Cubes, is presented. It works creating a polygonal 

surface mesh from a 3D scalar field by “marching” (looping) through the 3D space and 

determining each configuration for the given cube. It builds a smoother human skin 

mesh that, once bone-armored, is used to generate the colliders essential to capture the 

deformation of single body parts, like hands, arms, feet, etc., that is one main point of 

this simulation. 

 

Keywords: Ultrasound Simulation, Voxelization, UVW mapping, Volume Rendering, 

Mesh generation, Mesh-Volume deformation. 
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Abstract in Italiano 

L’ecografia a ultrasuoni è uno strumento di analisi medica a costo relativamente basso 

e largamente utilizzato, ed assume un ruolo di importanza nella diagnosi clinica. Oggi, 

grazie allo sviluppo della tecnologia, è possibile sviluppare simulazioni a computer 

per l’addestramento nell’utilizzo. L’obiettivo di questo lavoro è di esplorare le tecniche 

di rendering volumetrico e di sviluppare una rappresentazione tridimensionale di un 

corpo umano in modo tale che esso contenga anche una texture interna campionata 

dal dataset AustinMan. Questa texture interna è utilizzata per creare nuove immagini 

dall’intersezione di un piano con il corpo. La forza di questo concetto consiste nel fatto 

che sia possibile creare sezioni del corpo in ogni orientamento, non solo 

orizzontalmente. Il corpo può essere posizionato in diverse pose e la posizione dei 

punti interni viene quindi ricalcolata. 

Riguardo alla voxelizzazione, sono qui presentati due algoritmi. Il primo, molto 

semplice, implementa una voxelizzazione che crea mesh triangolando cubi. Verrà 

utilizzato per costruire i modelli del corpo e di ogni tessuto interno. Successivamente, 

un algoritmo più complesso, Marching Cubes (Cubi Marcianti), è presentato. Esso crea 

una superficie poligonale da un campo scalare tridimensionale, facendo scorrere un 

cubo nello spazio, e determinando la configurazione del cubo in ogni luogo. Verrà 

usato per costruire un modello del corpo più liscio che, una volta armato per la 

deformazione, sarà usato per generare i collider essenziali a catturare la deformazione 

delle singole parti del corpo, come mani, braccia, piedi, ecc., che è uno dei principali 

punti di questa simulazione. 

 

Parole chiave: Simulazione ecografia, Voxel, Coordinate UVW, Rendering 

Volumetrico, Generazione 3D, Deformazione 3D-Volume. 
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1 Introduction 

Ultrasound is a widely used, low-cost imaging modality which plays an important role 

in clinical diagnosis. Image acquisition and diagnosis is, however, difficult 

to learn and mainly practiced with volunteers, phantoms, or patients. A practical 

learning phase is required to be able to perform it correctly. However, due to the high 

cost of the medical equipment and the necessary presence of a patient, the training 

process is complicated. 

Today, technology has developed a lot and it is possible to use computer simulations 

to train in the medical field. In this case the advantages are many, first the possibility 

of testing individual skills in a simulated environment without these having 

consequences in the real world. In addition, another important feature is that of 

repeatability and reuse of the same simulation to evaluate different aspects of the 

ultrasound examination. 

1.1. MRI Scan 

Since its development in the 1970s and 1980s, Magnetic Resonance Imaging, or MRI 

has proven to be a versatile imaging technique. MRI is a noninvasive medical imaging 

test that produces detailed images of almost every internal structure in the human 

body, including the organs, bones, muscles, and blood vessels. MRI scanners create 

images of the body using a large magnet and radio waves. No radiation is produced 

during an MRI exam, unlike X-rays. These images give your medical personnel 

important information in diagnosing your medical condition and planning a course of 

treatment. 

The MRI machine is a large, cylindrical (tube-shaped) machine that creates a strong 

magnetic field around the patient and sends pulses of radio waves from a scanner. 

Some MRI machines look like narrow tunnels, while others are more open. The strong 

magnetic field created by the MRI scanner causes the atoms in your body to align in 

the same direction. Radio waves are then sent from the MRI machine and move these 

atoms out of the original position. As the radio waves are turned off, the atoms return 

to their original position and send back radio signals. 

These signals are received by a computer and converted into an image of the part of 

the body being examined. This image appears on a viewing monitor.  

MRI may be used instead of computed tomography (CT, or X-Ray) when organs or 

soft tissue are being studied. MRI is better at telling the difference between types of 

soft tissues and between normal and abnormal soft tissues. 

https://www.hopkinsmedicine.org/healthlibrary/conditions/adult/radiology/computed_tomography_ct_or_cat_scan_85,p01277/
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MRI provides exquisite detail of brain, spinal cord, and vascular anatomy, and has the 

advantage of being able to visualize anatomy in all three planes: axial, sagittal, and 

coronal. 

1.2. The AustinMan Dataset 

AustinMan is a voxel model of the human body that is being developed for 

simulations. This dataset was developed from a real MRI scan by segmenting the color 

cross-sectional (transverse plane) anatomical images. It contains 1878 horizontal (only) 

slices of a whole human body in different resolutions. The grayscale value of each pixel 

corresponds to a different layer of the body, such as tissues, bones, and organs, for a 

total of 64 layers. 

  

Figure 2: Sample images from the AustinMan dataset 

Figure 1: Cutting planes of MRI. 
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1.3. Voxelization 

The word voxel originated analogously to the word "pixel", with vo representing 

"volume" (instead of pixel's "picture") and el representing "element". A similar 

formation with el for "element" is the word "texel". The term hypervoxel is a 

generalization of voxel for higher-dimensional spaces.  

In 3D computer graphics, a voxel represents a value on a regular grid in three-

dimensional space. As with pixels in a 2D bitmap, voxels themselves do not typically 

have their position (i.e., coordinates) explicitly encoded with their values. Instead, 

rendering systems infer the position of a voxel based upon its position relative to other 

voxels (i.e., its position in the data structure that makes up a single volumetric image). 

Voxels are typically stored in three-dimensional matrices, but also smarter data 

structures can be used. 

Voxelization is the term used to indicate the process of making three-dimensional 

model meshes by creating polygonal surfaces which properties depend on the voxel 

values. 

In contrast to pixels and voxels, polygons are often explicitly represented by the 

coordinates of their vertices. Polygon points lie in continuous space, while voxels lie 

in a discrete space. A direct consequence of this difference is that polygons can 

efficiently represent simple 3D structures with much empty or homogeneously filled 

space, while voxels excel at representing regularly sampled spaces that are non-

homogeneously filled.  

A volume described as voxels can be visualized either by direct volume rendering or 

by the extraction of polygon iso-surfaces that follow the contours of given threshold 

values. The marching cubes algorithm is often used for isosurface extraction, however 

other methods exist as well.  

Figure 3: Two different models of a volumetric (voxelized) data set 
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Both ray tracing and ray casting, as well as rasterization, can be applied to voxel data 

to obtain 2D raster graphics to depict on a monitor. 

1.4. Volumetric Rendering 

Volume rendering is a technique for visualizing sampled functions of 3D data by 

computing 2D projections of a colored semitransparent volume. It involves the 

following steps: the forming of an RGB-Alpha volume from the data, reconstruction 

of a continuous function from this discrete data set and projecting it onto the 2D 

viewing plane (the out- put based on screen space) from the desired point of view. 

An RGB-Alpha volume is a 3D four-vector data set, where the first three components 

are the familiar R, G, and B color components and the last component, Alpha, 

represents opacity. An opacity value of 0 means totally transparent and a value of 1 

means totally opaque. Behind the RGB-Alpha volume an opaque background is 

placed. The mapping of the data to opacity values acts as a classification of the data 

one is interested in. Isosurfaces can be shown by mapping the corresponding data 

values to almost opaque values and the rest to transparent values. The appearance of 

surfaces can be improved by using shading techniques to form the RGB mapping. 

However, opacity can be used to see the interior of the data volume too. These interiors 

appear as clouds with varying density and color. 

A big advantage of volume rendering is that this interior information is not thrown 

away, so that it enables one to look at the 3D data set as a whole. Disadvantages are 

the difficult interpretation of the cloudy interiors and the long time, compared to 

surface rendering, needed to perform volume rendering. 

1.4.1. Volume Rendering Techniques 

Volume rendering techniques are clustered into two categories, indirect volume 

rendering and direct volume rendering. Indirect volume rendering, where in a 

Figure 4: Volume Rendering Techniques Classification 
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preprocessing step the volume is converted to an intermediate representation which 

can be handled by the graphics engine. In contrast, the direct methods process the 

volume without generating any intermediate representation assigning optical 

properties directly to the voxels. 

1.4.1.1. Indirect Volume Rendering 

Indirect volume rendering technique extracts polygonal surface from volume data and 

represents an isosurface, it is also known as 3D contours. Indirect methods aim at the 

visualization of iso-surfaces defined by a certain density threshold. The primary goal 

is to create a triangular mesh which fits to the isoregions inside the volume. This can 

be done using the traditional image processing techniques, where first of all an edge 

detection is performed on the slices and afterwards the contours are connected. 

Having the contours determined the corresponding contour points in the neighboring 

slices are connected by triangles.  

The most popular algorithm for indirect volume rendering is marching cube algorithm 

[13]. The “marching cubes” isosurface reconstruction marches through all the cubic 

cells and generates an elementary triangular mesh whenever a cell is found which is 

intersected by an iso-surface. Since the volumetric data defined in the discrete space is 

converted to a continuous geometrical model, conventional computer graphics 

techniques, like ray tracing or buffering can be used to render the iso-surfaces. 

Another indirect volume-rendering approach is known as 3D Fourier transform (3D 

FT), where the intermediate representation is a 3D Fourier transform of the volume 

rather than a geometrical model [12][14][5]. This technique aims at fast density integral 

calculation along the viewing rays. Since the final image is considered to be an X-ray 

simulation, this technique is useful in medical imaging applications. 

1.4.1.2. Direct Volume Rendering 

Direct volume rendering techniques render images of an entire 3-dimensional scalar, 

a volume, without concentrating on, or explicitly extracting a surface corresponding 

to certain features of interest or a certain isovalue. In order to directly display the data 

stored in a volumetric data set an optical model is needed that describes how the 

scalars representing the volume interact with light, e.g. emission, absorption, 

reflection, or refraction [9]. In general, each scalar value contained in the volumetric 

data set is mapped to optical properties, like color and opacity, during rendering. 

Mapping scalar values to optical properties is usually achieved by evaluating a 

transfer function for each occurring sample value of the volume. 

The application of mapping scalar values to optical properties is also called 

classification. In general, a distinction is drawn between two types of classification. 

Pre-classification is done prior to reconstruction of the volumetric data set, whereas 

post- classification evaluates the transfer function on each reconstructed value. 
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The optical properties, and their optical effects respectively, are then integrated along 

viewing rays into the volume. In order to generate a projected image of a volumetric 

data set, many viewing rays have to be integrated with each ray corresponding to a 

pixel of the final image. This integral is also referred to as the volume rendering 

integral. The volume rendering integral is contingent upon the underlying optical 

model. Many different techniques have been developed to approximately solve the 

volume rendering integral [26]. 

1.4.1.3. Maximum Intensity Projection 

Maximum Intensity Projection, MIP for short, is a variant of direct volume rendering. 

Instead of compositing optical properties, Maximum Intensity Projection determines 

the final color of each pixel in the final rendering by the maximum value encountered 

during traversing of each corresponding ray. 

Visualizing medical three-dimensional data sets obtained by Magnetic Resonance 

Imaging scanner is an important application of such a rendering mode. Such 

volumetric data sets typically exhibit a significant amount of noise that can make it 

hard use other rendering modes, as it is difficult to extract meaningful isosurfaces, or 

define a transfer function that aids the interpretation of the data set. However, data 

values of vascular structures acquired by MRI scanners are higher than the values of 

the surrounding tissue. This can easily be exploited by Maximum Intensity Projection 

volume rendering for visualizing such medical data. 

1.4.2. The Volume Rendering Integral 

With respect to volume visualization, direct volume rendering techniques produce 

projected images directly from the volumetric data set. These techniques do not 

involve construction of intermediate representations, such as a polygonal surface, of 

the data stored in the volume. Therefore, direct volume rendering techniques require 

Figure 5: Conceptual model of direct volume rendering 
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some model of how the scalar values generate, reflect, scatter, or occlude light. As the 

volumetric data set is usually obtained by sampling a function regularly or irregularly 

at discrete sampling locations, it has to be interpolated to be used with one of the 

continuous optical models described here. 

A comparison of different interpolation techniques for volumetric data sets can be 

found in [8]. Here the interpolation is done somehow to give a scalar function f(x) 

defined for all points x in the volume. Optical properties, such as color and opacity, 

can then be assigned as functions of the interpolated value f(x). Usually, optical models 

used for real-time rendering of volumetric data, that deliver a visual compelling 

visualization of the volume, are quite simplistic, as they do not consider effects like 

single or multiple scattering. However, real-time methods taking such effects into 

account are currently becoming available [18]. In each optical model a ray denoted by 

x(t) and parameterized by the distance to the eye t is cast into the volume. A brief 

survey of the most important optical models for direct volume rendering is here given. 

Absorption only: The simplest participating medium has cold, perfectly black particles, 

which absorb all light that impinges on them. None of the particles emits or scatters 

light. The rate at which incoming light is occluded depending on the value of the 

particle is called the extinction coefficient or absorption coefficient. 

Emission only: The volume is assumed to consist of particles that only emit light, but 

do not absorb any, as the absorption is negligible. 

Absorption plus Emission: In general, particles both occlude incoming light as well as 

add their own glow. This optical model is commonly used in volume rendering 

applications as it mimics the light transport most realistically compared to the other 

simplistic approaches. However, this is also a rather simplistic model since it does not 

take optical effects, such as single or multiple scattering, i.e more sophisticated 

interaction between light and particles contained in a volume, into account. 

Scattering and Shading: The next step toward greater realism is to include scattering of 

illumination external to a particle in the volume, i.e indirect illumination. The "Utah 

approximation" model, a simplified model, assumes external illumination reaches a 

particle unimpeded by any intervening objects or volume absorption. 

Shadows: In order to take shadows into account, the transparency of the volume density 

between the light source and the point x(t), as well as from x(t) to the ray source, should 

be taken into account 

Multiple Scattering: Multiple scattering calculations are important for realistic 

rendering of high albedo media but are expensive in performance and are, usually, 

overkill for most scientific visualization applications. 

A good trade-off between rendering performance and a visual appealing visualization 

of a volumetric data set can be achieved when the absorption plus emission optical 

model is used. The term used to evaluate light transport in this model is often referred 
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to as the volume rendering integral. The evaluation of this term, that integrates optical 

effects such as color and opacity, is common to all direct volume rendering techniques. 

In general, the evaluation of the volume rendering integral can be thought of as being 

evaluated along viewing rays cast into the volumetric data set, even if no explicit rays 

are actually employed by the underlying volume rendering technique. Therefore, ray 

casting could be seen as the most direct approach. 

1.5. Ray-Casting 

Ray-casting [5] can be seen as the most straight-forward approach for numerical 

evaluation of the volume rendering integral. Therefore, ray-casting is considered a 

direct volume rendering technique. But ray-casting can also be used for rendering non- 

polygonal isosurfaces as well as for Maximum Intensity Projection. 

For each pixel in the final image, a single ray is cast from the camera center through 

this pixel into the volume. The volume is then resampled at certain intervals along a 

particular ray. The distance between two adjacent resampling locations is commonly 

referred to as the sampling distance. Usually, the sampling distance is equidistant 

along each ray, but some methods have been proposed that use non-equal distance 

between two adjacent sampling locations. For example, one technique jitters the 

sampling locations to eliminate patterned sampling artifacts [21], whereas another 

technique increases the sampling distance in order to efficiently skip empty regions of 

the volumetric data set [1]. 

The sampling, or reconstruction, of the volumetric data set is commonly done using 

trilinear interpolation. However, lower-order reconstruction filters, like nearest-

neighbor, or higher-order reconstruction filters, like tri-cubic, can also be employed. 

After resampling, the interpolated scalar value is mapped to optical properties by 

evaluating the current transfer function for this value. This can be done efficiently, 

when precomputing the transfer function and storing the results in a lookup table. 

Instead of evaluating the transfer function for each scalar value, the scalar value is used 

Figure 6: Ray-casting steps 
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as an index to access the precomputed values stored in the corresponding lookup table. 

Both methods, evaluating the transfer function on-the-fly or indexing into the lookup 

table, yield an RGBA color value for the corresponding location inside the volume that 

subsumes the respective emission and absorption coefficients [15]. The volume 

rendering integral is numerically approximated numerically by compositing these 

values in either front-to-back or back-to-front order. 

1.6. The Rendering Pipeline 

A pipeline consists of a sequence of stages operating in parallel and in a fixed order. 

Each single stage receives data from its prior stage as input and sends its output to the 

next stage in the sequence after it is finished with its work. 

The rendering of virtual scenes on today’s graphic hardware is implemented in such a 

pipelined fashion. The order of operations necessary for turning the geometry of a 

virtual scene into pixels that can be displayed on a screen or a portion of it is called the 

rendering pipeline and used to be implemented in a fixed way. Earlier developments 

have led to replacing the fixed function pipeline, specifically parts thereof, with a 

programmable one. 

Input to the rendering pipeline is a stream of vertices describing the scene that can be 

joined to form geometric primitives, typically lines, triangles, quads, or polygons. It 

then computes a raster image of the virtual scene. The rendering pipeline can roughly 

be divided into five different stages. 

1.6.1. Geometry Processing 

The geometry processing stage’s or simply the geometry stage’s tasks include the 

majority of the per-geometric primitive or per-vertex operations, responsible for 

modifying the incoming stream of vertex data. The geometry engine part of a modern 

GPU computes linear transformations, projective transformations, and evaluates local 

illumination models on a per-vertex basis. 

Figure 7: The fixed-function rendering pipeline 
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Model and View Transform: On their way to the screen, all models are transformed from 

their own model-coordinate space to world-coordinate space by the model transform. 

The purpose of the view transform is to place the camera origin at a specific location 

and aim it in a certain direction dependent on the underlying 3D application 

programming interface to facilitate subsequent projection and clipping operations. 

After a vertex has been transformed to this so-called view-coordinate space or eye-

coordinate space it is sent to the next stage of the geometry stage. Model and view 

transformations are specified as a 4 × 4 matrix using homogeneous coordinates usually 

concatenated into a single matrix, often called the model view matrix, for performance 

reasons. 

Lighting: After all model and view transformations have been applied a local 

illumination model, e.g. Phong Lighting [7], is evaluated for each vertex. As this 

requires information about normal vectors and viewing direction it must be computed 

after the model and view transformations. It also requires that all objects, the camera, 

and all light sources, reside in the same coordinate space, thus re- quiring a 

transformation of a scene’s light sources to eye-coordinate space as well. This is made 

possible because all relative relationships, such as normals and distances, between 

light sources and models are preserved by the linear transformations from model-

coordinate space to eye-coordinate space, for models, and from world- coordinate 

space to eye-coordinate space, for light sources. 

Projection: Next, geometric processing engines perform a perspective transformation, 

transforming the view volume, also called the frustum, into usually a unit cube with 

its extreme points at (−1; −1; −1) and (1; 1; 1), called the canonical view volume. Still it 

is considered to be a projection because after display the z-coordinate is not stored in 

the image generated. There are two different types of projections, namely orthographic 

projection and perspective projection. After either projection, vertex coordinates are 

stored in normalized device coordinates.  

Primitive Assembly: Geometric primitives are generated from the incoming stream of 

transformed vertices. Vertices are connected to lines and lines are joined together to 

form triangles. Arbitrary polygons are usually considered to be tessellated into 

triangles to ensure planarity. 

Clipping: Primitives fully inside the viewing frustum are passed as is to the next stage 

of the pipeline. Primitives completely outside are discarded. Only primitives that are 

partially inside the viewing volume are subject to clipping against the unit cube. For 

example, for a line where only one vertex is considered to be inside a new vertex has 
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to be generated where the line intersects the viewing volume while the vertex outside 

can be discarded for further processing. 

1.6.2. Rasterization Stage 

Rasterization is the process of determining the set of screen pixels covered by a 

geometric primitive. The result of the rasterization are a set of pixel locations as well 

as a set of corresponding fragments. It is important to distinguish between pixels and 

fragments. Pixels, short for picture elements, are parts of the final image that is 

displayed on a screen. Instead one can think about a fragment as a ”potential pixel”. 

A fragment is the same size as a pixel, is associated with the same screen location as 

the pixel it corresponds to, and has a set of parameters such as color, depth value, and 

one or more sets of associated texture coordinates. These parameters a generated by 

the rasterizer during fragment generation through interpolation of the corresponding 

vertices of the geometric primitive. Whether a fragment becomes a real pixel or not is 

decided through various tests at the end of the rendering pipeline. 

1.6.3. Fragment Processing 

This stage can further be divided into two different tasks as shown in figure 3.3. Once 

a geometric primitive has been rasterized into a set of zero or more fragments it enters 

either the texture fetching stage or the fragment shading stage. It may skip the texture 

fetching stage regarding by the current state that is set by the underlying 3D 

programing interface, if no texture lookup is to be executed. 

 

Texture Fetching: Textures are 1-dimensional or multi-dimensional images that can be 

”glued” to a 3-dimensional object. They are mapped onto geometric primitives in 

correspondence to the texture coordinates interpolated in the rasterization stage. This 

process yields an interpolated color value fetched from the texture. The order of 

interpolation depends on the dimension of the texture target and the graphic 

hardware’s capabilities. Current generation GPUs support the simultaneous fetching 

of multiple textures for each fragment without a hit in performance. Furthermore, 

these GPUs allow for enhanced controlling of the texture lookup itself. It is possible, 

Figure 8: Geometry processing stage 
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for example, to use the color value returned by the first texture fetch as texture 

coordinates for consequent texture lookups. This is known as dependent texturing.  

Dependent texturing is important to implement different sorts of transfer functions for 

volume rendering. Other fragment attributes can be used as texture coordinates as 

well.  

Fragment Shading: The fragment shading stage applies further color operations on a 

given fragment to compute its final color. This stage is also capable of applying 

different math operations on a fragment’s values. It may choose to change nearly every 

value of a fragment, like the depth value, except for its screen location. Even allowing 

for the possibility that this stage may completely discard a fragment, thus preventing 

the fragment’s corresponding screen pixel from being updated. The fragment shading 

stage emits one or zero completely colored fragments for each input fragment it 

receives. 

1.6.4. Frame Buffer Operations 

The frame buffer operations stage performs a set of per-fragment operations right 

before the fragment is turned into an actual pixel. The incoming fragment is at first 

checked based on the number of different tests. If any of these tests fail the pixel 

operations stage immediately discards the specific fragment without updating its 

corresponding pixel’s value stored in the frame buffer. All tests can be enabled or 

disabled by the programmer, though it is not possible to change either their order of 

sequence nor their functionality. If a fragment passes all the tests another set of 

operations is performed to update the values stored in the associated buffers. Thus, 

the fragment has finally advanced to being a pixel. These operations can also be 

enabled or disabled. 

Scissor Test: The scissor test is used to restrict drawing of pixels to a rectangular portion 

of the frame buffer. If a fragment lies inside this rectangle, it is further processed by 

the subsequent tests. 

 Alpha Test: The alpha tests compare the incoming fragment’s opacity, its alpha value, 

with a reference value. The fragment is accepted or rejected based on the outcome of 

this comparison. 

Figure 9: Fragment processing stage 
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Stencil Test: The stencil test is typically used to mask out an irregularly shaped region 

of the frame buffer to prevent drawing from occurring within it. The pixel locations 

drawing is allowed or rejected on values stored in the stencil buffer, that is part of the 

actual frame buffer. Therefore, it resembles the frame buffer in width and height. The 

stencil buffer is essential to the application of the stencil test, without it every fragment 

passes the stencil test automatically. The stencil test itself involves a comparison of the 

fragment’s associated pixel’s stencil value stored in the stencil buffer with a reference 

value. Optionally this comparison can also take the associated pixel’s depth value into 

account. If fragment passes the stencil test it may choose to update the value stored in 

the stencil buffer as well. 

Depth Test: The distance between the camera origin and an object, the z-coordinate in- 

side the view volume of an object, currently occupying a pixel location is stored in a 

specific buffer, namely the depth buffer. The depth buffer is also part of the frame 

buffer, therefore extending to the same dimensions as the frame buffer. The depth test 

decides whether an incoming fragment is occluded by a previously drawn pixel, by 

comparing the incoming fragment’s depth value to the associated pixel location’s 

depth value already stored in the depth buffer. If a fragment passes the depth test it 

may choose to update the depth buffer value with its own. The depth buffer together 

with the depth test therefore provide a convenient mechanism for depth ordering 

either partially or fully occluded objects on a per-fragment level. 

Blending: After a fragment has passed all the pixel tests its color values are then 

combined with the color values already stored in the frame buffer at the corresponding 

location. This combination is referred to as blending. Different blending operations can 

be applied, e.g. replacing or modulating depending on the stored alpha values, thus 

allowing for semi-transparent objects. 

Logical Operations: The final operation on a fragment is a logical operation, such as OR, 

XOR, and NEGATE. This operation is applied before the fragment is written to the 

frame buffer, thus becoming a pixel, to the incoming fragment’s values and/or the 

values currently stored in frame buffer. 

1.6.5. Pipeline Programmability 

Traditionally the rendering pipeline was implemented as a fixed-function sequence of 

stages as described before. An application developer only had the choice to enable or 

disable certain stages, functionalities, of the rendering pipeline, like lighting or 

texturing. Additionally 3D programming interfaces along with the underlying 

Figure 10: Frame buffer operations 
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hardware allowed for the possibility to set parameters for different stages, thus giving 

the programmer more configurability. But this made it nearly impossible for a 

programmer to implement other functionalities than what was implemented in 

hardware, such as the Gouraud Shading model [19], Phong’s specular highlighting 

equation [7], or applying textures to surfaces [22]. Many of these algorithms were 

invented over 30 years ago but still were the mainstay of graphics hardware for years. 

Therefore, effects not implemented in hardware had to be computed using the regular 

CPU. 

In order to free up CPU time for other computations than graphics processing, 

graphics subsystems had to offer true programmability. As the traditional rendering 

pipeline was not assigned for programmability its design had to be extended. This 

resulted in the inclusion of two distinct programmable processors, namely the 

programmable vertex processor and the programmable fragment processor. A 

Program written for either of the programmable processors is referred to as Vertex 

Shader or Fragment Shader respectively. Programs can be written through vendor-

specific extensions to the 3D programming interface, using vendor-specific assembler 

code, or using one of the available high-level shader languages. The capabilities of 

different shader versions are comprised in a specification called shader model. 

1.6.5.1. Vertex Shader 

As their name and their place in the rendering pipeline suggests vertex shaders 

provide a way to modify parameters associated with each vertex, like its color, normal, 

texture coordinates, and position. A vertex shader processes each vertex that is passed 

to it separately. It is not possible to pass results generated by one vertex to another 

vertex. Neither can a vertex shader create additional nor destroy superfluous vertices. 

A vertex shader’s output must always at least consist of the vertex’s homogeneous clip 

coordinates. But many other values, like diffuse color or texture coordinates, can be 

modified beyond this. As the complete shader architecture is tailored toward graphical 

computing many of the supported functions can be executed most efficiently on three- 

and four-element vectors. 

Figure 11: The programmable rendering pipeline 
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Vertex Shaders are designed to increase the computation speed of more sophisticated 

lighting models [10]. They are able to compute values that slowly change over a 

surface, as further down the rendering pipeline these values will then be interpolated. 

By design, and as their name implies, they are not capable of shading fragments. 

1.6.5.2. Fragment Shader 

In contrast to vertex shaders, fragment shaders, also called pixel shaders, are executed 

on a per-fragment basis during a rendering pass. Fragment shaders are essentially an 

evolutionary extension of the fixed function multitexture fragment processing stage of 

the rendering pipeline. Both operate on constants and interpolated values. Also, both 

are capable of multiple texture retrievals to produce a pixel color, and optionally an 

associated alpha value. However, fragment shader capabilities surpass the limited 

functionality of the fixed function multitexture fragment processing stage. 

Fragment shaders support many of the same math operations that vertex shaders do, 

as well as texturing operations. The interpolated diffuse and specular colors and 

alphas, constants, and sets of texture coordinates are the three sets of inputs passable 

to a fragment shader. Each of these can be a vector of up to four values. Inputs are 

treated as RGBA data. A fragment shader consists of definitions of constants, a number 

of arithmetic instructions, and a number of texture address operations. 

Fragment shaders are capable of using any result of a computation during their 

execution, even color values of a texture fetch, as texture coordinates for subsequent 

texture retrievals. Such a texture lookup is called dependent texture lookup. 

Dependent texture lookups are an essential part of volume rendering applications on 

consumer graphics hardware. 

1.7. Ultrasound Simulator 

Medical ultrasound is a medical procedure used for therapeutic or diagnostic purposes 

that makes use of ultrasound waves. In diagnostic cases, the reflection of these waves 

is recorded and used to create an image of a patient's internal body structure, measure 

certain features, or record audible sounds. 

Figure 12: Programmable pipeline stages 
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This is made possible by ultrasound waves generated by piezoelectric crystals in the 

probe itself. When these are electrically excited, they begin to vibrate, generating 

waves with frequencies of more than 20 kHz that act on the patient's internal 

structures. The reflected waves are called back echoes, and by scanning them with a 

computer it is possible to obtain different images depending on the intended use of 

the ultrasound system. 

An Ultrasound Simulator is a medical simulation training tool that enables educators 

and learners to practice diagnostic, therapeutic, and surgical applications as they relate 

to imaging interventions. A key advantage of using ultrasound simulation is that the 

practice makes advanced visualization, case databases and automatically generated 

feedback possible. 

Overall, the main advantage of ultrasound simulators is that they provide new, 

innovative ways for learners to build up mental models. Yet, the most important 

feature of an ultrasound simulator is to provide feedback, which conforms to the 

concept of a mental model that must be updated. Another aspect that has been found 

critical across the realm of medical simulators is the ability to provide a range of 

difficulty levels for users with different skills. 

Unfortunately, there are some disadvantages associated with this simulation  

systems. 

First, these systems are now very expensive, and it is not possible to provide one to 

every student to train. These systems are generally quite bulky and require a very high 

computational power, which leads to being forced to use them in places set up for this 

purpose. 

Figure 13: Example of Ultrasound Simulator 

software and tools for Augmented Reality 
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Furthermore, many of these systems consist in a “static” simulation, meaning that the 

models involved in the simulation are fixed and cannot be deformed. These models 

are often hand-crafted. A lot of effort is made to produce and validate these models, 

increasing the total cost of the work. 

1.8. Purpose and motivation 

The solution chosen to overcome the disadvantages described above is to provide a 

reliable simulation of an ultrasound activity, using an ultrasound probe to perform the 

examination. This simulation works in a lightweight environment that can potentially 

run also on portable devices. 

All the three-dimensional models of the human body skin and its internal tissues and 

organs involved in this simulation are generated with voxelization algorithms. These 

voxelization algorithm in general performs triangulations of surfaces by sampling 

values from a discrete field of three-dimensional points. 

When the ultrasound probe intersects the body, the “internal” texture of it is shown 

on the screen in the scene. 

1.8.1. Mesh Model Deformation 

The main point of the developed simulation is the possibility to deform the human 

body to set it in a general pose. Arms and legs can be oriented in any direction. Doing 

this, a technique to map every part of the body to the “internal” texture, and deform 

it, accordingly, is required. 

1.9. Tools 

To develop the proposed solution, the Unity game engine framework is used, along 

with C# as programming language. 

Unity is a cross-platform game engine developed by Unity Technologies; it can be used 

to create three-dimensional, two-dimensional, Virtual Reality and Augmented Reality 

simulations and games. 

C# is an object-oriented programming language developed and maintained by 

Microsoft, and it is used as a scripting language in Unity. 

Models generated with the voxelization algorithms are post-processed using Blender, 

which is a free and open-source 3D computer graphics software used for creating 

animated films, visual effects, art, 3D printed models, motion graphics, interactive 3D 

applications, Virtual Reality and computer simulations and games. 

The Unity project folder of this work can be found at: 

https://github.com/nicolostagnoli/AustinMan-Voxel 

https://github.com/nicolostagnoli/AustinMan-Voxel
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1.10. Thesis Outline 

Here a brief overview of this thesis content: 

• Chapter 2 - State of the art in Ultrasound Simulation 

Brief review of recent techniques employed in Ultrasound Simulation and 

motivation of this work. 

• Chapter 3 - Voxelization Algorithms 

Description of the presented voxelization algorithms and about their 

implementation. 

• Chapter 4 - Ultrasound Echography simulation 

Description of the techniques employed for the developed Ultrasound 

simulation. 

• Chapter 5 – Conclusions 

Comparison of the developed solution with the previous work, analysis of the 

criticalities about its functioning, and some proposals for further research. 
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2 State of the Art in Ultrasound 

Simulation 

The evolution and development of technologies and computer knowledge in recent 

years have radically changed the way we look at things in many ways and have 

brought many benefits to the working environment. 

One of the sectors that has been affected by these benefits, and that is still evolving 

today, is the medical sector, especially the field of medical simulations. These are used 

in many areas of medicine, such as medical ultrasound, to identify or reproduce 

specific case studies that can be used for learning. 

2.1. Ultrasound Simulation Methods 

In achieving educational outcomes, computer-based simulators mimic the ultrasound 

image produced within a computer. The methods to simulate ultrasound images can 

be categorized into: 

• Interpolative  

• Generative image-based 

• Generative model-based 

The interpolative approach uses prerecorded three-dimensional ultrasound volumes 

and slicing techniques, that can be combined with postprocessing like deformations 

and artificial shadow insertion in the final image. [24] [20] 

Generative image-based models rely on Machine Learning and Deep learning 

techniques, Particularly, almost all the approaches to realistically simulate ultrasound 

images in this way are based on generative adversarial networks (GANs). 

The generative approach simulates ultrasound images using geometry from imaging 

systems like computed tomography (CT) and magnetic resonance (MRI), or it is based 

on mesh models. Generative model-based ultrasound simulators create an image by 

extracting a bi-dimensional slice from the model and texturizing it. Although this 

method is very appealing for generating and depicting cases involving different 

pathologies, modeling, and confirming that the model is correct can present 

challenges. The model creation for this approach is more complex than for the 

interpolative approach because each model needs some preprocessing. [17] [16] 

Another generative model-based technique is based on ray tracing. Multiple ray 

emissions from the probe are simulated and the intersection points with the three-
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dimensional mesh model are calculated. Artifacts like shadowing and refractions can 

be added with postprocessing. 

2.2. Related works 

Despite the numerous proposed approaches and the current presence of very accurate 

commercial applications, current implementations require a lot of computational 

power and/or a lot of previous manual work for the creation and validation of the 

models. 

 

We therefore want to investigate whether it is possible to obtain similar results in a 

computationally lighter environment, also accessible from portable devices such as 

laptops, tablets, and smartphones. For this reason, the Unity game engine has been 

chosen as a working environment. 

 

In the past year, here at Politecnico di Milano, Diego Zucca presented a lightweight 

reliable simulation of an ultrasound activity, using an ultrasound scanner and an 

ultrasound probe to perform the examination, running on VR (Virtual Reality 

headset). Thanks to this simulation, the sensation of immersion of the environment in 

which the user finds himself and the fidelity of the simulation of an ultrasound 

examination achieve a good result of realism compared to the cost necessary for the 

use of the application, thus finding a good quality-price ratio. [27] 

2.3. Objective 

The aim of this work is to enhance the previous work by Diego Zucca to account for 

model deformation. Setting the model in different poses could be interesting to see 

what happens to internal body part when the pose is changed, or to see what the effect 

of involuntary body movements are, like breath, on the internal texture. For this 

reason, a technique to map every part of the body to the “internal” texture, and deform 

it, accordingly, will be investigated. 

This work led to the realization of a hybrid method for ultrasound simulation. Since 

images on the screen are built by pre-recorded images, from the AustinMan dataset, it 

is an Interpolative method. The concept of mesh model deformation, and its 

application to the interpolated image, however, derives from a three-dimensional 

model. We can categorize this method as an Interpolative Model-Based. 
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3 Voxelization Algorithms 

In this chapter the voxelization algorithms used to generate the model meshes of the 

human body are presented. 

3.1. Simple Voxelization 

3.1.1. Instantiating cubes 

The simplest method to construct a three-dimensional model from the stack of images 

of the dataset is to instantiate a cube for each colored pixel, since black color 

corresponds to air. However, due to the high number of pixels in the dataset, this 

simple approach is not feasible because memory overload. The number of vertices is 

too high, and most of them are inside the body, so not even rendered.  

3.1.2. Algorithm 

The idea is to algorithmically create vertices and triangulate them to make simple 

cubes. Each pixel in the dataset images corresponds to a cube. If one face of a cube 

being drawn is covered by another cube, the face is inside the mesh, and it doesn’t 

need to be rendered. Doing so, only the external part, the skin, of the human body is 

drawn, while the inside is empty. 

This simple approach is also used to build each layer of the human body. Different 

meshes are built iterating each time on the whole dataset, taking only pixels with a 

specific value of the grayscale value. 

Figure 14: The mesh generated with the first algorithm. 
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3.1.3. Implementation 

The implementation of this algorithm can be found in the Layers_Voxelization scene in 

the Unity project. The AustinMan game object is set with an initial empty MeshFilter a 

standard MeshRenderer, and a script component called Voxel_Grid_Layers. 

This script initializes the three-dimensional voxel matrix with the grayscale pixel 

values of the AustinMan dataset images, with values from 0 to 255. After this, an array 

of Unity mesh is initialized, one for each grayscale. By looping all the voxels, a cube is 

added to the mesh of the corresponding layer. Each cube is set with world coordinates 

corresponding to the position of the voxel in the matrix. Cubes are built by creating 

faces with the AddQuad function. For each mesh (layer), a face of a specific cube is 

currently added only if there is no other cube (of the same layer) directly next to it. In 

this way, only visible faces are added to the mesh and rendered, making the 

voxelization feasible. 

  

Figure 15: Some of the layers generated with the first algorithm. 
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3.2. Marching Cubes 

The Marching Cubes algorithm, developed by Lorensen and Cline in 1987 [13] is used 

to approximate an isosurface by subdividing a region of space into a three-dimensional 

array of rectangular cells, which is the most popular method for isosurface rendering. 

It is mainly used in medical applications as indirect volume rendering technique and 

in video games to procedurally generate terrains (meshes, in general) from a discrete 

field of values, which can be randomly generated from noise or taken by image maps. 

The marching cubes algorithm creates a polygonal surface mesh from a 3D scalar field 

by “marching” (looping) through the 3D space and determining each configuration for 

the given cube.  

The basic idea of Marching Cubes is that voxel could be defined by the pixel values at 

the eight corners of the cube. If one or more pixels of a cube have values less than the 

user specified isovalue, and one or more have values greater than this value, we know 

the voxel must contribute some component of the isosurface. By determining which 

edges of the cube are intersected by the isosurface, we can create triangular patches 

which divide the cube between regions within the isosurface and regions outside. By 

connecting the patches from all cubes on the isosurface boundary, we get a surface 

representation. 

In the eighties volume-rendering research was mainly oriented to the development of 

indirect methods. At that time no rendering technique was available which could 

visualize the volumetric data directly without performing any preprocessing. The 

existing computer graphics methods, like ray tracing or z-buffering [6] had been 

developed for geometrical models rather than for volume datasets. Therefore, the idea 

of converting the volume defined in a discrete space into a geometrical representation 

seemed to be obvious. The early surface reconstruction methods were based on the 

Figure 16: An example of a terrain generated with the marching cubes algorithm from 

a noise generated 3D volume. 
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traditional image processing techniques [3][4][23], like edge detection and contour 

connection. Because of the heuristic parameters to be set these methods were not 

flexible enough for practical applications, they lack detail and introducing artifacts. 

Lorensen and Cline [13] came up with the idea of creating polygonal representation of 

constant density surfaces from a 3D array of data. Existing methods of 3D surface 

generation by Wyvill et al. [2] trace contours within each slice then connect with 

triangles (topography map), create surfaces from voxels, perform ray casting to find 

the 3D surface using hue-lightness to shade surface and gradient, and then display 

density volumes. There are some shortcomings of Wywill et al’s techniques. One thing 

is that they throw away useful information in the original data. Another thing is that 

these methods lack hidden surface removal, and volume models display all values and 

rely on motion to produce a 3D sensation. 

Thus, the Marching Cubes algorithm is introduced. Marching Cubes algorithm uses 

all information from source data, derives inter-slice connectivity, surface location, and 

surface gradient, also the result of Marching Cubes can be displayed on conventional 

graphics display systems using standard rendering algorithms and requires only one 

parameter which is a density threshold defining the isosurface. In summary, marching 

cubes creates a surface from a three-dimensional set of data as follows: 

1. Read four slices into memory. 

2. Scan two slices and create a cube from four neighbors on one slice and four 

neighbors on the next slice. 

3. Calculate an index for the cube by comparing the eight density values at the 

cube vertices with the surface constant. 

4. Using the index, look up the list of edges from a precalculated table. 

5. Using the densities at each edge vertex, find the surface and edge intersection 

via linear interpolation. 

6. Calculate a unit normal at each cube vertex using central differences. 

Interpolate the normal to each triangle vertex. 

7. Output the triangle vertices and vertex normals. 
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3.2.1. Algorithm 

Every point in the 3D world is a value from 0 to 1, where 0 is black and above ground, 

and 1 is white and underground, or vice versa. We march a single cube through the 

3D space and construct a mesh. When the value at a vertex is below a given threshold, 

also called isosurface, we can say that this vertex of our cube in the terrain is 

underground, and we want to hide it by drawing a face. A configuration is chosen by 

determining which of those vertices are below the isosurface, and which are not. In 

total there are 256 such combinations that can be formed by looking at the values of 

our vertices since cubes have 8 corners with each 2 possible states. These 256 

configurations can be reduced to only 15 since most cases are symmetries. 

 

The algorithm begins by determining the configuration of the cube, by comparing the 

value of our cube at every corner vertex with the isosurface level. Cube configuration 

is then found with a lookup table, which contains lists of edges for each of the 256 

Figure 17: Configurations of a single cube in the marching cubes algorithm. 

Figure 18: Calculation of the cube index. 
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possible vertex configurations. The configuration corresponds to an 8-bit word, one bit 

for each vertex. Bits corresponding to vertices below the isosurface level are set to 1. 

The cube configuration gives us the list of “active” edges on the cube. The vertices of 

the triangles generated lie on these edges. Given the edges indexes, another lookup 

table is used to find the two cube vertices that this edge is between. So, there will be 

two cube vertices for each “active” edge. 

The index of these two cube vertices is then used with another lookup table to get the 

local 3D coordinates of the cube vertices. 

The last step consists of interpolating between those found vertices to estimate where 

along the edge the final vertex is, and this is done to give a smoother look. Interpolation 

is done considering the isolevel value of each vertex. Interpolation is done with the 

following formula: 

 

𝑣𝑡⃗⃗  ⃗ = 𝑎 +
(k − 𝑣1) ∗ (𝑏 ⃗⃗⃗  − 𝑎 ⃗⃗⃗  )

(𝑣2 − 𝑣1)
 

 

Where 𝑣𝑡⃗⃗  ⃗ is the final triangle vertex, 𝑎  and �⃗�  are the 3d coordinates of the cube vertices 

to interpolate, v1 and v2 are the isolevel values of the cube vertices, and k is the 

considered isosurface level. Notice that, since v2 corresponds to the second cube vertex 

of the “active” edge, its isolevel value is always greater than v1. 

Figure 19: Numbering of vertices and edges on a single cube. 



| Voxelization Algorithms 33 

 

 

3.2.2. Example 

For example, if vertex 0 has a value of 0, and all other vertices have a value of 1.0, given 

that the isosurface level is 0.5, we can conclude that since vertex 0 is the only vertex 

below the threshold, so we want to “hide” this vertex by creating a triangle in front of 

it by connecting edges 0, 3 and 8. 

The cube configuration index is built by setting the least significant bit of the 8-bit word 

to 1. So, the cube configuration index we get is 1. From the first lookup table at this 

index, we get these edge indexes: {0, 8, 3}. This means that the vertices of the triangle 

lie on e0, e8, and e3. 

From the second lookup table at these indexes, we get the following edge connections: 

{0, 1}, {0, 4}, {3, 0}. Indeed, v1 is the other vertex of e0, v4 of e8, and v3 of e3. 

With these vertex indexes, we get the local cube coordinates of the vertices, which are 

then interpolated with the previous formula to get the final triangle vertices. 

3.2.3. Implementation 

The implementation of this algorithm can be found in the Marching_Cubes scene in the 

Unity project. The AustinMan game object is set with an initial empty MeshFilter a 

standard MeshRenderer, and a script component called Marching_Cubes.  

As in the previous scene, this script initializes the three-dimensional voxel matrix with 

the grayscale pixel values of the AustinMan dataset images, this time with floating 

point values from 0 to 1. Voxel values corresponding to the air surrounding the body 

(all the black color in the dataset images) are set to 1, while all the voxel values 

corresponding to body parts are set to 0. The Isolevel value is set to 1. In this way, only 

the outer skin of the body will be generated by the algorithm. 

Figure 20: Example of a triangulated face with the marching cubes algorithm. 
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This smoother mesh for the outer skin will be subsequently used in the ultrasound 

simulation as a “container” for the “internal” texture. 

  

Figure 21: The mesh generated with the marching cubes algorithm. 
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4 Ultrasound simulation with 

Deformable Mesh Model 

This chapter describes all the techniques used to make the simulation. First, the 

realization of the ultrasound simulation with 3D texture, the techniques experimented 

to make the mesh model deformable and to remap the texture coordinates to follow 

the deformation, are presented. The argument will continue with the details about the 

mesh model rigging and the setup of the Unity’s scenes. 

4.1. 3D Texture Shader 

The possibility of being able to perform ultrasound scans in distinct parts of the 

patient's body is one of the objectives of this project. 

A 3D texture is a bitmap image that contains information in three dimensions rather 

than the standard two. 3D textures are commonly used to simulate volumetric effects 

such as fog or smoke or to approximate a volumetric 3D mesh. In this work, a 3D 

texture is made by building a three-dimensional matrix from the dataset images. Each 

horizontal slice of the matrix corresponds to a slice image in the dataset. 

3D texture can be rendered just like normal 2D textures, with the same types of filtering 

and interpolations to calculate final pixel values; the only difference is, obviously, the 

presence of one extra dimension for texture coordinates: there will be UVW 

coordinates. 3D texture can be applied to any mesh.  

Figure 22: Example of a three-dimensional checkerboard texture applied to a cube and to a 

sphere. 
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4.1.1. UVW Mapping 

A component necessary to assign a 3D texture to an object is a Shader. A Shader is a 

set of algorithms which describe how contiguous polygons and images must be 

processed until they are displayed on the screen.  

The two main components of which it is composed are the Vertex Shader and the 

Fragment Shader. In the Vertex Shader the position of the object is transferred from 

object space to the camera's clip space in homogeneous coordinates. The most 

important part takes place in the Fragment Shader, where the UVW values are used as 

coordinates to indicate a section of the 3D texture from which extract the color to be 

assigned to the material. 

UVs are two-dimensional texture coordinates that are associated with each vertex of a 

mesh. They provide the link between a surface mesh and how an image texture gets 

applied onto that surface, like marker points that control which pixels on the texture 

corresponds to which vertex on the 3D mesh. As a convention, the U and V values vary 

between 0 and 1 along the horizontal and vertical axes of the texture. 

This concept can also be extended with three-dimensional textures and is called UVW 

mapping. In this case there is a W value that varies between 0 and 1 along the depth 

axis of the texture. Inside the shader are passed the position and UVW values of the 

object the shader is associated with. 

The idea is to exploit the possibility to use the position of the vertex of the invisible 

plane of the probe as UVW coordinates during the sampling phase of the 3D texture. 

4.1.2. Ultrasound Probe and Screen 

In this work, to simulate the ultrasound probe, a plane is used. This plane is set in the 

world origin. Every time the plane position or rotation changes, the UVW coordinates 

of each vertex of the plane are set to the world position coordinates of the vertex itself. 

By moving the plane in the space, we obtain a static mapping of the 3D texture. 

Figure 23: A basic shader pipeline 
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The screen is the same plane used for the probe, the same UVW coordinates are 

applied to vertices of the screen.  

The plane mesh is realized in Blender, by creating a simple plane mesh and 

subdividing it until reaches an acceptable “resolution”. In this way, the plane is made 

by a higher number of vertices, not just 4 as in standard plane meshes. The idea is to 

exploit this higher “resolution” of the plane to have the possibility to set cluster of 

vertices mapped to a specific part of the 3D texture dynamically. 

This concept is essential to realize the UVW mapping with the deformable mesh 

model. Differently from the static case, different parts of the 3D texture need to be 

rendered on the plane, and these parts in general are no longer aligned (in the UVW 

space), due to the possibility of deforming the model rig. This mapping would not be 

possible if the plane had only 4 vertices.  

4.1.3. Vertex Shader Exploiting 

In this work, the vertex shader step is exploited to make use of the rendering pipeline 

in a clever way. Each of the plane vertices is assigned with specific UVW coordinates. 

Every fragment within these vertices will be automatically sampled and interpolated 

by Unity’s built in rendering pipeline. In this way, there is no need to implement 

specific interpolation algorithms and filtering of the textures. 

4.2. Mesh Model Deformation 

One of the main points of this work is to make the human model deformable, (just 

rotation and translation of body parts), with the mesh carrying the “internal” texture 

along the way. To do this, two approaches are presented. 

Collision detection is the computational problem of detecting the intersection of two 

or more objects. Collision detection is a classic issue of computational geometry and 

Figure 24: Texture interpolation for triangle vertices 
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has applications in various computing fields. In Unity, collision detection is realized 

with components called Collider. Colliders can be used for collision detection only if 

their shape is convex. 

4.2.1. Sphere colliders 

The first approach consists in manually placing spheres along arms and legs. These 

spheres are attached to the model rig. The initial position of these spheres is stored at 

the start. The idea is that, whenever the model rig is deformed, each point position of 

the cutting plane is compared with all the spheres: if the point is inside one of them, 

the inverse of the sphere rotation and translation is applied to the UVW coordinates of 

that vertex. If the involved sphere is still in the original position, there is no rotation 

and translation, and the result is the same of the “static” version. 

This method works, but results applied to this precise human model is not satisfying, 

due to the nonstandard base position of the mesh (so also of the 3D texture), the initial 

overlapping of some body parts, and the high inaccuracy of the spheres to 

approximate body parts. The approach, however, is working. 

4.2.2. Mesh collider 

To improve the accuracy of collision detection with colliders, the idea is to exploit the 

human model geometry instead of the spheres to make more accurate colliders. 

However, Unity’s built-in Mesh Collider component can only create convex colliders 

for the whole mesh, so this is not useful. 

Figure 25: The approach with 

Sphere Colliders 



| Ultrasound simulation with 

Deformable Mesh Model 
39 

 

 

The final approach consists in automatically generating small convex mesh colliders 

for each part of the body to better approximate its bounding. Exploiting the bone 

weights of the human model rig, the model is subdivided into sub-meshes by 

considering which vertex is attached to which bone. These sub-meshes colliders are 

regenerated every time the model rig is deformed. As in the previous method, the 

initial position and orientation of each collider is stored at the start to subsequently 

apply the inverse transform to plane points. 

4.2.3. Model Rigging 

Rigging is a technique used in skeletal animation for representing a 3D character 

model using a series of interconnected digital bones. Specifically, rigging refers to the 

process of creating the bone structure of a 3D model. This bone structure is used to 

manipulate the 3D model like a puppet for animation. 

After a 3D model has been created, a series of bones is constructed representing the 

skeletal structure. For instance, in a character there may be a group of back bones, a 

spine, and head bones. The vertices of the mesh are associated with bones using the so 

called Bone Weights. Bone weights can be manually set and sometimes automatically 

generated with 3D editing software. Bones can be transformed, meaning their position, 

rotation, and scale can be changed. By recording these aspects of the bones along a 

timeline (using a process called keyframing) animations can be recorded. 

Figure 27: Colliders of the left 

arm generated from the bone 

weights. 
Figure 26: An example of bone 

weighting. 
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The human model mesh generated by the Marching Cubes algorithm was manually 

rigged using Blender. This mesh wasn’t in the usual T-Pose from which animators 

usually rig and deform meshes but was in the same pose of the human of the 

AustinMan dataset. This nonstandard pose led to some difficulties. 

First, some geometry between the arms and the body was overlapping, causing the 

geometry to break when the pose of the arms was changed. This problem has been 

solved by manually deleting all the unwanted edges.  

Second, it was difficult to infer the position of the bones given the base pose of the 

previously generated model. However, after some experiments, you have chosen to 

insert many bones to optimize the collider generation. More and smaller colliders 

mean more accuracy for the model deformation. 

4.3. Breath simulation 

To simulate the breathing movement of the body, the chest bone is animated. For a 

period of about 4 seconds, its scale increases, and decreases. Applying scale to a bone 

result in scaling all the vertices assigned to that bone.  

By applying scale deformation to a bone, the same scale is applied also to all the child 

bones, so also the head and the arms are enlarged. To prevent this, the same animation, 

Figure 28: The model rigged 

in the base pose. 
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but with inverse scale factor, is applied to all the child bones that doesn’t need to be 

enlarged. 

Colliders are automatically recalculated in each frame. The local scale of each 

bone/collider is also used to calculate the inverse transformation to be applied to plane 

points. 

4.4. Scene Setup 

The developed ultrasound simulator consists of two Unity’s scenes. 

In the first one the mesh model is not deformable, but layers of the body can be 

activated or deactivated. The probe plane is also bigger, it simulates the cutting effect 

of the MRI. 

In the second one, the probe plane is smaller to resemble ultrasound echography 

system. A cone-shaped mask is also applied to the screen. Here the model mesh can 

be deformed and set in a different pose by clicking on body parts and using the gizmos 

to rotate them. 

Both the scenes are setup equally, so only the details about the second one, most 

important, are described. In the scene there the following objects: 

• Main camera 

• Screen 

• Probe Plane 

• Texture Grid 

• Human model 

The screen plane and the probe plane’s mesh filter are set on the same mesh. The plane 

object contains a script to control its movement. 

The texture grid object contains the script checking collision between the plane and all 

the colliders of the body. At the startup, it loads the 3D texture from the dataset images 

and stores the initial position and rotation of every collider. In each frame update, it 

loops every plane point, check the intersection with the colliders, and sets UVW 

coordinates of plane points accordingly. 

The human model object contains the model mesh and its rig. It also contains the script 

responsible for the generation of all the colliders by considering sub-meshes based on 

the bone weights. 
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5 Conclusions 

In this final chapter, the proposed solution is compared to the previous one and the 

critical points are analyzed. Then, possible improvements are discussed along with 

possible topics for further research. 

5.1. The developed application 

The proposed solution consists of an application where the user can freely move in the 

scene and interact with the environment. The body mesh generated with Marching 

Cubes algorithm from the AustinMan dataset is placed in the center, and the screen 

for visualizing the ultrasound image is placed behind. The produced imaged is 

colorized with a pre-defined color for each body layer. This is because the grayscale 

version of the image can create confusion if the user assumes that dark areas are the 

densest, which is not the case since the dataset color encoding didn’t follow this 

assumption.  The probe plane position and orientation can be set by the user. Layers 

of the body, such as skin, muscles, bones, organs, can be set to be visible or not and be 

closely inspected. Body parts can be selected to set the orientation of the corresponding 

bone as the user wishes. There is also the possibility to simulate the breathing 

movement of the body, and its effect can be seen on the screen. 

5.2. Comparison 

In comparison with the previous work, there are significant improvements. 

The first is about the model mesh geometry. In the previous work, a third-party model 

was manually set in position to be in some way aligned with the 3D texture. This 

Figure 29: Screenshot of the developed application. 
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model, however, could not fit fully and exactly the texture because its shape didn’t 

correspond to it. Its function was only to be like a placeholder. 

In this work, the model mesh shape used to represent the human body corresponds 

perfectly with the shape of the 3D texture, because it is generated from it. This is also 

essential to make the collider subdivision, that is needed to map points when the 

model is deformed. 

Another improvement consists, indeed, in the possibility to change the body position 

to see what happens to the internal texture when the body is deformed. This feature 

was not present in the previous work. 

Last, the proposed solution contains a full body scan, while in the previous work only 

some parts were available. Also, there is no more need for model registration: the mesh 

model is already placed in position and aligned with the 3D texture. By simply placing 

the probe in the desired position we get a scan of the corresponding body part. In the 

previous work, to do this, a specific configuration scene called “Developer Mode” was 

set to align the body mesh model with the desired part of the texture. 

5.3. Critical points 

Despite the proposed solution is working well, there are still some criticalities about 

some cases in which the approach is not working correctly, showing a distorted or 

segmented images on the screen. 

The most important critical point is about the texture sampling derived from the model 

mesh deformation. When the body is in the standard pose, the 3D texture is sampled 

perfectly.  However, when the body pose is changed, there could be some regions in 

which the 3D texture is not sampled correctly. These critical regions arise in body parts 

Figure 30: Ultrasound Ecography application screenshot 
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corresponding to colliders boundaries. Colliders are automatically generated by 

considering the bone weights. Bone weights are also generated automatically, but the 

weighting strongly depends on the model rig, which is in this case done manually. 

Increasing the number of bones of the rig helped to reduce the size of these problematic 

regions, but in some cases, despite being smaller, these regions increased in number. 

Another important problem that arose during the development of this work was the 

illness about the position of the human body in the dataset images, which came from 

a real MRI analysis. This led to difficulties during the rigging of the model because of 

overlapping geometry between hands and body, and because automatic bone-weight 

tools work much better when the base pose of the model is the T-pose. The previous 

criticality about collider boundaries could depend on this also. 

  

Figure 31: An example of wrong re-mapping of the texture 

after model deformation 
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5.4. Further Reasearch 

This work can be enhanced and improved in more ways. 

First, a better subdivision of the mesh, rig, and colliders could be done to improve 

the inaccuracy encountered when scanning near colliders boundaries.  

Also, a faster version of the proposed algorithms could be implemented. Now, the 

model mesh deformation and calculation of the UVW coordinates is entirely made 

with the CPU, with the GPU working only on fragment color interpolation. Research 

could be made to find if it is possible to exploit the GPU to directly apply the model 

deformation to every fragment UVW coordinates, exploiting the fragment shader 

programmability. 

5.4.1. Ray-Casting 

This work led to an Interpolative Model-Based ultrasound simulation application. It 

would be interesting to apply the model deformation technique with the Direct 

Volume Rendering (thus, Generative approach), already introduced Ray-Casting 

technique. Rays could be cast in the common way, passing through the image plane. 

The same mesh models generated from the AustinMan dataset can be used for 

collision detection and model deformation. When a ray intersects the mesh, the ray 

origin can be recalculated as if it was intersecting the same collider but in the base 

pose, to simulate the ray pass through the correct portion of the volume, when the 

model pose is deformed.  
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