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Abstract

Since the early 2000’s online advertising has become one of the main revenue sources for
companies, which have been using it to advertise their content and sponsor their goods.
One of the main application fields for online advertising is search advertising, where the
search engines submit to their users some sponsored contents next to the organic results.
The way in which the displayed advertisements are selected is through a suitable auction
mechanism. Mechanism design is a well studied sub field of game theory, and the prob-
lem of auctioneer’s mechanism selection and advertisers’ bidding strategy have a solid
base in literature. However, very few studies have analyzed auctions in the context of
e-commerce, namely sponsored auction with price display, where advertisements are as-
sociated to a price for the sponsored good and customers’ clicks are influenced by the
comparison of those selling prices. In this work, we initially formalize the extension of
a well known bidding strategy for the generalized second price auction, the balance bid-
ding, to the scenario with price displaying. Our main result consists in the proposal of a
new auction mechanism based on GSP that is guaranteed to converge to its equilibrium
if advertisers bid according to the extended bidding strategy when prices are fixed. We
also study the efficiency of the equilibrium with respect to a parameter of the mechanism
called cut price, proposing a randomized algorithm that guarantees a lower bound of the
equilibria social welfare in expectation. Lastly, we provide some experimental results, in
order to empirically analyze the average convergence time and the average efficiency for
different auction settings.

Keywords: mechanism design, generalized second price, selling price, convergence, effi-
ciency





Sommario

Sin dai primi anni 2000 la pubblicità online è diventata una delle maggiori fonti di
guadagno per le aziende, che la utilizzano per sponsorizzare i loro contenuti e vedere
i loro prodotti. Uno dei suoi maggiori campi di applicazione risiede nella pubblicità per
motori di ricerca, dove i motori di ricerca mostrano agli utenti contenuti sponsorizzati
assieme ai contenuti organici. Il modo in cui i contenuti pubblicitari vengono selezionati
consiste nell’applicazione di un meccanismo di asta appropriato. La progettazione di mec-
canismi di asta è una branca della teoria dei giochi molto studiata, e sia il problema di
implementazione di questi meccanismi da parte del venditore che lo studio di strategie
di offerta da parte dei partecipanti all’asta sono problemi che trovano una base solida in
letteratura. Tuttavia, pochi studi analizzano le aste nel contesto della vendita online, dove
gli annunci sono associati a un prezzo di vendita e i click sono influenzati dal confronto
degli utenti tra i prezzi stessi. In questo lavoro, formalizziamo inizialmente l’estensione di
una nota strategia di offerta per meccanismi GSP, chiamata balance bidding, allo scenario
in cui sono presenti i prezzi di vendita. Successivamente, il nostro risultato più significa-
tivo consiste nella proposta di un nuovo meccanismo di asta basato su GSP che fornisce
garanzie di convergenza quando gli inserzionisti adottano la strategia di offerta descritta
e i prezzi di vendita sono fissi. Studiamo inoltre la l’efficienza dell’equilibrio raggiunto,
in relazione ad un parametro del meccanismo chiamato prezzo di taglio, proponendo un
algoritmo randomizzato che garantisce un social welfare minimo atteso all’equilibrio. Per
concludere, forniamo alcuni risultati sperimentali per analizzare empiricamente il tempo
di convergenza del meccanismo e l’efficienza dell’equilibrio in relazione a diversi parametri
dell’asta.

Parole chiave: progettazione di meccanismi, generalized second price, prezzo di ven-
dita, convergenza, efficienza
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1| Introduction

1.1. Research Area

The revenues of online advertising have steadily increased since the early 2000’s, becoming
a nearly $190 billion dollars industry in the U.S. in 2021 with a growth of 35.4% with
respect to 2020, as reported by the Interacting Advertising Bureau [2]. The main source
of Internet advertising revenue comes from the search advertising, which alone contributes
for $78.3 billion dollars. In 2021 Alphabet, the parent holding company of Google, an-
nounced a revenue of $257 billion dollars, of which $209 billion dollars coming from Google
advertising, and $148 billion resulting from just search advertising alone [14]. These re-
sults underline how the selling of online advertising constitutes a fundamental component
of the business models of many Internet companies, and stands as main revenue factor
for search engine companies like Google, Bing and Yahoo!.

The search advertising is a subclass of Internet advertising that consists on the displacing
of sponsored contents, called ads, on web pages that show the results of a search query.
The way in which ads are selected and displayed is managed by a particular type of
auction called sponsored search auctions, or keyword auctions, where each advertiser bid
represent the amount that he is willing to pay to be displayed. When a search engine is
queried by an user request, two sets of results are returned: besides the most valuable
results selected by the engine (called organic results) a set of ads in the form of links that
redirect to the sponsored web page is shown. The ads are different for different searches
and are coherent with the context of the query itself. In fact, when an advertiser tries to
"buy" a position for his ad he can associate it with a set of keywords, and the sponsored
content will compete to appear only in the searches that explicitly contain one of those
keywords. For instance, if a travel agency wants to sponsor its website, it can bind his
ads to the word "hotel"; consequently, each time a user query will contains the word
"hotel" the ad will compete to be displayed. From the point of view of the advertiser
this represents a great advantage since it offers the ability to target precisely any possible
customer. The way in which ads are selected and displayed is determined by the search
engine and the way in which the sponsored search auction is designed, as well as the
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amount that the advertisers have to pay. In general, the advertisers will submits a bid
for their ads stating the maximum amount they are willing to pay for it, and the engine
use this information to allocate the ads in order to solve an optimization problem, like
maximize its own revenue or the social welfare of the advertisers.

Figure 1.1: Example of search advertising
Google and the Google logo are trademarks of Google LLC.

The engine dedicate a maximum number of positions, called slots, to advertising, and
typically the slots are disposed sequentially at the top of the page, one after the other
(Figure 1.1). The visibility that an ad will receive depends on the slot to which it is
assigned, and that is the reason why the advertisers are generally willing to pay more to be
allocated to the top slots. In principle the advertisers can declare an untruthful valuation
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for their ad because that could lead them to a grater utility. The way in which the
auctioneer can make them willing to report their true valuation is by adopting a truthful
mechanism, like Vickrey-Clarke-Groves (VCG) auction [6, 12, 19], where truth telling is
in the best interest of the advertisers. However, despite VCG being used in contextual
advertising auctions by many company like Facebook, the most of the search engine do not
actually adopt it for search advertising, preferring the Generalized Second Price (GSP)
auction. Since GSP is non truthful, the advertisers need to elaborate complex bidding
strategies to maximize their utility in the auctions. As showed by Edelman et al. [8], the
GSP auction can produce instability and bidding wars among the advertisers. Varian [18]
and Edelman et al. [8] independently studied the equilibria of GSP auction, defining a
particular class of equilibria respectively called symmetric equilibria and locally envy-free
equilibria, showing that these equilibrium always generate a revenue for the auctioneer at
least as high as the VCG one. From the point of view of the advertisers Leme and Tardos
[15] studied the efficiency of the GSP equilibrium in terms of social welfare.

To face the advertisers’ problem of elaborating a strategy in GSP auctions, Cary et al.
[3] and Bu et al. [1] independently studied the same bidding strategy, which they named
respectively balance bidding and forward looking. This strategy is based on the notion
of local envy-free or symmetric equilibrium proposed by Edelman et al. and Varian. The
relevance of such strategy consists in its granted convergence, and on the fact that at
the equilibrium the allocation and the payment are the same of VCG. Bu et al. extended
their work by including the study of the effect of vindictive bidding strategies with respect
to forward looking, showing that the proposed bidding strategy is indeed robust against
them in the most cases. The effects of vindictive bidders on sponsored auctions has also
been studied by Zhou and Lukose [20]. Hashimoto [13] analyzed the VCG equilibrium
of the GSP auction when a non strategic bidder participate to the auction, showing it
is no longer an equilibrium. Cary et al. [4] extended their previous work by analyzing
the case when the click through probability are determined by an endogenous consumer
search process. Nisan et al. [17] defined the concept of best response auctions, studying
the effects of a best response bidding strategy for different auction settings, while Dütting
and Kesselheim [7] showed how the convergence of a best response bidding strategy is not
necessary in order to have some good social welfare guarantees.

1.2. Original contributions

The sponsored search auctions described so far are presented in the classical sense, which is
by far the most studied and applied scenario. With the exponential growth of e-commerce
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in the last years, however, a new format of search advertising is becoming more and more
popular. The search engine like Google and Yahoo! dedicate some of their advertising
spaces to vendors that sponsor their products: in this context, the sponsored ad is not
anymore just a link that redirect to the advertiser web page, but includes instead also a
picture of the good and the selling price. For example, when searching "smartphone" on a
search engine, among the organic results there will be a portion of the web page showing
the images of some smartphones, as well as their prices. The keyword auctions are still
managed by a bidding mechanism, but the new components add externalities among the
ads, since the users now have an immediate way to compare them. An user will more
likely click on an ad that sells an item to a low price instead of a similar item for which
he would need to pay more. The auction mechanisms need to take this into consideration
when allocating the ads to the slots and assign the payment to the advertisers.

Castiglioni et al. [5] studied the efficiency of the equilibrium of a sponsored search auction
where the click probability of the ads is influenced by the prices of the allocated ads
themselves. However, to the best of our knowledge, no previous work has been conduced
to study the convergence of this type of auctions. We studied the same problem under the
assumption of fixed prices for the sponsored goods. Even if the selling price constitutes
a degree of freedom for the advertiser and can potentially be updated at anytime like
the bids, in many practical scenarios the advertisers decide the price a priori and do not
update except than in an abrupt way. We show that a sponsored auction implementing the
GSP mechanism proposed by Castiglioni et al. [5] is not guaranteed to converge when the
advertisers bid according to the selling prices quality-based bidding strategy studied by
Cary et al. [3] and Bu et al. [1]. The main result of our work is the proposal of an incentive
compatible GSP based mechanism, namely MGSP

ord , which is guaranteed to converge to
its unique equilibrium when the bidding strategy respects the same assumptions. We
will furthermore provide a bound for the efficiency of the equilibrium, in expectation with
respect to a parameter of the mechanism itself. Finally, we will provide some experimental
results, analyzing the dependence of the convergence time and equilibrium efficiency with
respect to the auction settings.

1.3. Structure of the thesis

This thesis is structured as follows:

• Chapter 2 provides an introduction to the basic concepts of mechanism design,
later formalizing the model of the sponsored search auction, the VCG mechanism
and GSP mechanism. Lastly, the bidding strategies for GSP auctions that will be
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the base for the consequent work are presented.

• Chapter 3 introduces a formalization of the sponsored search auction with price
displaying as well as the already known results.

• Chapter 4 presents our work, which consists in the formalization of a new GSP-
based mechanism for sponsored search auction with price displaying and the study
of its convergence property and the efficiency of the reached equilibrium.

• Chapter 5 presents the experimental results, empirically analyzing the convergence
time and the efficiency of the proposed mechanism in relation with the environment
parameters.

• Chapter 6 summarizes the results and analyzes the left open problems.
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2| State of the art

This section will introduce the groundings and the most relevant notions in the literature
concerning our work. In Section 2.1 will be introduced the notion of game mechanism,
its properties and some relevant class of mechanisms, in Section 2.2 will be described
the sponsored search auction and in Section 2.3 the most relevant results regarding the
bidding strategies for the sponsored search auctions will be presented.

2.1. Mechanism Design

Mechanism design is a sub-field of economic game theory that attempts to implement
desired aggregations of preferences of different participants toward a single joint decision
in a strategic setting, assuming that the agents act rationally [16][9]. A rational agent is an
agent who makes decisions in order to maximize his own profit, which is measured by some
utility function. Such strategic design is adopted since the agent’s preferences are usually
private, and they may not be willing to disclose them. If the agent’s preferences were
public knowledge there would be no need for mechanism design, since the same result
could be achieved by an optimization problem. The main goal is to implement some
social choice function with some desirable features for a non-cooperative like game with
incomplete information that aggregates the preferences of the players taking part to the
game, assuming that they would act in an intelligent and rational way. This preferences
aggregation is an abstraction of many practical settings in social and economical scenarios,
like elections, markets, auctions or government policies.

2.1.1. Definition of Mechanism

We will first define the environment that our work will be focused on, which is that of a
game with strict incomplete information. The incompleteness of information is referred
to the missing knowledge of the agents and the mechanism designer to the players’ private
preferences.

Definition 2.1. A game with strict incomplete information for a set of n players defines,
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for each player i:

• A set of actions Ai ∈ A.

• A set of types Θi ∈ Θ, where θi represents the private information of player i.

• An utility function ui : θi × A1 × ... × An → R, where ui(θi, A1, ..., An) is the
utility achieved by player i with type θi when the action profile of the agents is
a = (a1, ..., an).

It can be observed that each player i must choose his action ai ∈ Ai without the knowledge
of the other types θj, which indirectly affects the utility of i by determining the action of
the other players. The behavior of player i in the described setting is defined by a strategy
function si : Θi → Ai, that specifies which action ai ∈ Ai is taken for every possible type
θi.

When dealing with the mechanism design problem, there are two main issues that the
mechanism designer needs to deal with. The first one is the preference aggregation prob-
lem: for a given type profile θ = (θ1, ..., θn) of the agents, an outcome x ∈ X needs to be
chosen. In order to solve it, the designer has to implement a social choice function.

Definition 2.2 (Social Choice Function). A Social Choice Function (SCF) is a function
f : Θ1 × ...× Θn → X that assign to each possible type profile θ = (θ1, ..., θn) a collective
outcome f(θ1, ..., θn) ∈ X.

Assuming that the preference aggregation problem has been solved, a second issue appear
in the definition of mechanism, the information revelation problem: how can the mecha-
nism designer extract the true type θi of each agent i? The agents’ true type is a private
information of the players and they may not be willing to disclose it, since an untruthful
revelation could result in a preferred outcome.
The information revelation problem is faced by the construction of a suitable mechanism.

Definition 2.3 (Mechanism). A mechanism M = (A1, ..., An, X, g) is a collection of
actions sets (A1, ..., An) and an outcome function g : A1 × ...× An → X.

Based on their true type and strategy function, each player i will choose their action si(θi)

and the mechanism will determine an outcome x = g(s1, ..., sn).
We can observe that asking the agents their true type is a particular case of mechanism,
in which A = Θ and g(·) = f(·) is a social choice function.

Definition 2.4 (Direct Revelation Mechanism). Given a social choice function f : Θ1 ×
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... × Θn → X, a mechanism D = (Θ1, ...Θn, X, f) is called Direct Revelation Mecha-
nism (DRM) corresponding to f(·). A mechanism that is not a DRM is called Indirect
Revelation Mechanism (IRM).

Since the agents are assumed to be intelligent and rational, after knowing about the
the mechanism M = (A1, ..., An, X, g) they are taking part to (whether it is direct or
indirect), they will start to analyze their strategic actions in order to come up with the
strategy si that will maximize their utility. This phenomenon leads to a game among the
agents, which is called Bayesian game of incomplete information induced by the game by
the mechanism M. The formal definition of the induced Bayesian game is the following:

Γb = (N, (Ai)i∈N , (Θi)i∈N ,Φ(·), (ui)i∈N)

where Φ(·) is the probability density function of the type sets.

Definition 2.5. A mechanism M = ((Ai)i∈N , X, g) implements a social choice function
f(·) if there is a pure strategy equilibrium (s∗1, ..., s

∗
n) of the Bayesian game induced by the

mechanism such that

g(s∗1(θ1), ..., s
∗
n(θn)) = f(θ1, ..., θn), ∀ (θ1, ..., θn) ∈ Θ1 × ...×Θn.

It is interesting to define and study the mechanism that induces the agents to report their
true type:

Definition 2.6. A social choice function f(·) is said to be incentive compatible (or truth-
fully rational) if the direct revelation mechanism D = (Θ1, ...,Θn, X, f) has a pure strategy
equilibrium s∗ = (s∗1, ..., s

∗
n) in which s∗i (θi) = θi, ∀ θi ∈ Θi, ∀ i ∈ N .

That is, a SCF is incentive compatible if truth telling by each agent leads to an equilibrium
by the game induced by D.

Definition 2.7 (Dominant strategy incentive compatibility). A social choice function
f(·) is said to be dominant strategy incentive compatible (DSIC) if the direct revelation
mechanism that implements f(·) has a dominant strategy equilibrium s∗ in which s∗i (θi) =

θi ∀ θi ∈ Θi, ∀ i ∈ N .

That is, truth telling by each agent constitutes a dominant strategy equilibrium in the
game induced by the mechanism. A necessary and sufficient condition for a SCF f to be
dominant strategy incentive compatible is that, for each agent, truth telling is the best
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action for an agent no matter what other players report:

ui(f(θi, θ−i), θi) ≥ ui(f(θ̂i, θ−i), θi), ∀ i ∈ N, ∀ θi, θ̂i ∈ Θi, ∀ θ−i ∈ Θ−i

It may seems that the more general definition of indirect revelation mechanism could
be more versatile than the incentive compatible direct revelation one. This is actually
false, since any general mechanism that implements a social choice function in dominant
strategy can always be converted into an incentive compatible one.

Definition 2.8 (Revelation Principle). If an arbitrary mechanism that implements a so-
cial choice function f in dominant strategy exists, then an incentive compatible mechanism
that implement f exists as well.

2.1.2. Other desirable properties

It is usually desirable for a mechanism to also ensure some other properties.

Allocative Efficiency

A SCF is allocative efficient if, for any profile of agents’ type, the social choice function
result in an outcome which is not Pareto dominated. Therefore, it is not possible for an
agent to improve his utility without decreasing the utility of at least one other player.

Definition 2.9. A SCF f : Θ1 × ... × Θn → X is said to be allocative efficient if, for
no agents’ type profile θ = (θ1, ..., θn), exists an outcome x ∈ X such that ui(x, θi) ≥
ui(f(θ), θi)∀ i and uj(x, θj) > uj(f(θ), θj) for some j ̸= i.

Individual Rationality

The individual rationality property ensures that no player can receive a negative utility
by taking part to the game induced by the mechanism and reporting his true type.
This property is classified in three categories:

• Ex post: when the type set is given, the utility of each player i is weakly grater
than the utility given by the status-quo Ūi(θi).

Ui(f(θ), θi) ≥ Ūi(θi)∀ i ∈ N, ∀ θ ∈ Θ

• Ex interim: the utility of each player i is weakly greater than the utility given by
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the status-quo Ūi(θi), in expectation with respect to the types of the opponents.

Eθ−i
[Ui(f(θ), θi)] ≥ Ūi(θi)∀ i ∈ N, ∀ θi ∈ Θi

• Ex ante: the utility of each player i is weakly greater that the expected utility of
the status-quo Ūi(θi), in expectation with respect to the types of all the agents.

Eθ[Ui(f(θ), θi)] ≥ Eθ[Ūi(θi)]∀ i ∈ N

An immediate observation is that

Ex post =⇒ Ex interim =⇒ Ex ante.

Non-dictatorship

If a SCF is dictatorial, it will always choose an outcome that maximizes the utility of an
agents known as dictator. A SCF is said to be non-dictatorial if is not dictatorial.

Definition 2.10. A SCF f : Θ1× ...×Θn → X is said to be dictatorial if for every profile
of agents’ type θ = (θ1, ..., θn), we have f(θ1, ..., θn) ∈ {x ∈ X : ud(x, θd) ≥ ud(y, θd)∀ y ∈
X}, where d is a particular agent call dictator.

The Gibbard-Satterthwaite impossibility theorem [10] states that, in a very large set of
problems, the incentive compatible and non-dictatorial property are mutually exclusive:

Theorem 2.1 (Gibbard-Satterthwaite impossibility result). Let f be an incentive com-
patible social choice function onto A, where |A| ≥ 3, then f is a dictatorship.

2.1.3. Quasi-linear environments

Quasi-linear environment (QLE) is a special class of environments where the Gibbard-
Satterthwaite theorem does not hold. In fact, all the social choice functions in a quasi-
linear environment are non-dictatorial [9].
In a QLE, the set of outcomes is defined as a set of vectors X = {(k, p1, ..., pn) : k ∈
K, pi ∈ R}, where K is the set of the possible allocations and p = (p1, ..., pn) is the vector
of payments. The payments generally refer to money transfer in real world scenarios, and
they are meant to be positive if the agent receives the money and negative if the agent
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pays the money. The utility functions are defined as

Ui(x, θi) = Ui((k, p1, ..., pn), θi) = vi(k, θi) + pi

where vi : K ×Θ → R is called i’s valuation function.
We can define two important properties of the social choice functions in quasi-linear
environments.

Definition 2.11 (Allocative efficiency). A SCF f(θ) = (k(θ), p1(θ), ..., pn(θ)) is allocative
efficient if for each θ ∈ Θ, k(θ) satisfies the following condition

k(θ) ∈ argmax
k∈K

n∑
i=1

vi(k, θi).

Informally, a SCF in a quasi-linear environment is allocative efficient if for every agents
type profile selects the allocation that maximizes the cumulative value of the players, also
known as social welfare.

Definition 2.12 (Budget balance). A SCF f(·) = (k(θ), p1(θ), ..., pn(θ))) is weakly budget
balance1 if for each θ ∈ Θ, p1(θ), ..., pn(θ) satisfies the following condition

n∑
i=1

pi(θ) ≥ 0

Informally, a SCF is weakly budget balance if the sum of the payments of the agents, and
thus the revenue of the auctioneer, is non negative.

2.1.4. Vickrey-Clarke-Groves mechanism

Groves mechanisms constitutes an important set of mechanism in quasi-linear environ-
ment. The main property related to them is known as Groves’ theorem [12], which
confirms that there exists social choice functions which are both allocative efficient and
incentive compatible in dominant strategy.

Definition 2.13 (Groves mechanism). A direct revelation mechanism D = (Θ1, ...,Θn, X, f)

where f(θ) = (k(θ), p1(θ), ..., p2(θ)) is called a Groves mechanism if the following proper-
ties are satisfied:

1The weak budget balance property can be empowered to the strict budget balance property, that
apply if under the conditions

∑n
i=1 pi(θ) = 0.
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• k(θ) ∈ argmaxk∈K
∑n

i=1 vi(k, θi)

• pi(θ) = hi(θ−i)−
∑

j∈N{i} vj(k(θ), θj)∀ i ∈ N

where hi : Θ−i → R.

The function h is a degree of freedom of the mechanism, and can be implemented to grant
some properties like individual rationality or budget balance. The main property of the
Groves mechanisms is stated in the following.

Theorem 2.2 (Groves’ theorem). Any social choice function such that the corresponding
direct revelation mechanism is a Groves mechanism is incentive compatible in dominant
strategies.

Furthermore, the Green-Laffont theorem [11] proves that, if the types of the players can
be any and an allocation efficient social choice function is used, the corresponding direct-
revelation mechanism is DSIC if and only if the payments are those defined by Groves.

A special case of Groves mechanisms is called Vickrey-Clarke-Groves mechanisms:

Definition 2.14. A Vickrey-Clarke-Groves (VCG) mechanism is a Groves mechanism
where the function h(θ−i) is defined as

hi(θ−i) = max
k′∈K−i

∑
j∈N\{i}

vj(k
′, θj).

Informally, the function hi is designed to represent the social welfare of the outcome when
the player i does not take part to the game.
VCG mechanism are the most important class of truthful mechanisms and their applica-
tion in sponsored auction is widely studied. An example of how they work is presented
in the following for a single item auction, also known as Vickrey auction.

Example 2.1. Suppose that three agents, namely a1, a2 and a3, are competing in an
auction for a single good. The valuation that the agents give to the good is expressed by
their type θi. In particular, suppose that θ1 > θ2 > θ3. Suppose that the agents offer, for
the good that the auctioneer is selling, their true value θi. Thus agent 1 wins the good and
receives a value of θa, while agent 2 and agent 3 receive a value of 0.
Recall that, in a VCG mechanism, each agent i is charged with a payment

pi(θ) = max
k′∈K−i

∑
j∈N{i}

vj(k
′, θj)−

∑
j∈N{i}

vj(k(θ), θj)
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Let Yi =
∑

j∈N{i} vj(k(θ), θj) be the sum of the values generated by the outcome of all the
agents except i, while Xi = maxk′∈K−i

∑
j∈N{i} vj(k

′, θj) is the sum of the values of all the
player except i for the outcome that would be selected if i did not take part to the auction.
Let’s analyse the payments that the agents owe to the auctioneer.

• Agent 1 won the good. Since the cumulative value generated by the auction is equal
to the value of agent 1, it is Y1 = 0. If he had not taken part to the auction, the
winner of the good would be agent 2, with a cumulative value of X1 = θ2. Thus, the
payment agent 1 is charged is p1 = θ2.

• Agent 2 did not win the good. The cumulative value for the allocation without agent
2’s value is Y2 = θ1 − 0 = θ1. If he did not take part to the auction, the good
would have still be won by agent 1, and thus X2 = θ1. Thus, the payment agent 2 is
charged is p2 = 0.

• Agent 3 did not win the good. Similarly to agent 2, the price he is charged of is
p3 = 0.

VCG mechanisms are the most popular known set of Groves mechanisms because of the
many properties that belong to them, other than being truthful in dominant strategy.

Theorem 2.3 (Krishna and Perry’s theorem). Among all the auctions that are allocatively
efficient and ex-interim individually rational, the VCG mechanisms maximize the expected
payments of the players.

VCG is guaranteed to be weakly budget balance if the environment exhibits the no single-
agent effect.

Definition 2.15 (No single-agent effect). An environment exhibits the no single-agent
effect property if for every player i and every profile of types θ = (θ1, ..., θn) there is an
allocation k′ ∈ K−i such that∑

j∈N{i}

vj(k
′, θj) ≥

∑
j∈N{i}

vj(k(θ), θj).

Theorem 2.4. If no single-agent effect hold, then all the VCG payments are non-negative
and therefore the VCG mechanism is weakly budget balanced.

Lastly, if choice-set monotonicity and no negative externality properties hold, then VCG
is individually rational in ex-post.
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Definition 2.16 (Choice-set monotonicity). An environment exhibits choice-set mono-
tonicity if for every player i holds K−i ⊆ K.

That is, removing an agent weakly decreases the mechanism’s set of possible allocations
K.

Definition 2.17 (No negative externality). An environment exhibit the no-negative ex-
ternality if

vi(k(θ−i), θi) ≥ 0 ∀ i ∈ N, ∀ θ ∈ Θ

where k(θ−i) = maxk′∈K−i

∑
j∈N{i} vj(k

′, θj).

That is, every agents has zero or positive valuation for any allocation that can be made
without his partecipation.

Theorem 2.5. If choice-set monotonicity and no negative externality property hold, the
VCG mechanism is ex-post individually rational.

2.2. Sponsored search auctions

Among the different fields in which mechanism theory can apply, one of great interest are
sponsored search auctions (SSA), often referred also as keyword auctions. Web search
engines uses SSAs to monetize their services by selling advertising spaces next to their
algorithmic content: whenever a user submits a query, he receives back a list of advertising
results in addition to the search outcome. These sponsored advertises are links that will
redirect the user to the advertiser’s website. The ads are displaced in a fixed set of
positions, called slots, on the web page, and the slots at the top of the page generate more
clicks from the users. Thus, advertisers generally prefer higher slots instead of lower ones
and are willing to pay more to be assigned to them. We will call the maximum amount
that an advertiser declare to be willing to pay bid. The way in which the search engine
selects which ads to show and their positions in the user client is through an auction
mechanism.
The advertisers can decide to compete for search queries related to a set of keywords,
each one with a different payment, and set a budget for each of them. A new auction
is performed every time a search query is submitted, meaning that the advertisers can
dynamically change their bids to adapt to the environment.
Generally the advertisers pay the search engine per-click, meaning that any time the
sponsored ad is clicked the advertiser is charged a cost. Other payment policy are possible,
like per-impression or per-action, but are less adopted for SSAs.
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2.2.1. General model

The general model of a sponsored search auction can be described as follows:

• There is a set N = {1, ..., n} of players, representing the advertisers, that take part
to the auction game with a single advertisement (or ad). The ad referred to the
player i will be denoted as ai.

• The search engine makes available M = {1, ...,m} slots that represents the positions
in which the selected ads will be displayed on the user client. Each slot is associated
with a prominence λj ∈ [0, 1], that represent the probability that the user observe
the slot j. We suppose that the slots are disposed such that λi ≥ λj ∀ i > j.

• Each player i has a (per-click) value vi ∈ R that the advertiser will collect every time
his ad is clicked. The value is (part of) the type θi of the player and is independent
from the assigned slot.

• When they take part to the auction, each player i reports to the auctioneer a
parameter bi ∈ R called bid, that represent the maximum amount that i is willing
to pay for a click on his ad.

• Each ad ai is associated to a quality qi ∈ [0, 1] that represents the advertisement
click probability given that the ad has been observed by the user. If the ad ai

is allocated in the slot j, we will refer as click-through rate CTRi = λjqi to the
probability of being clicked, given the ad quality qi and the slot prominence λj.

• Each advertiser i that joins the mechanism is charged with a pay-per-click πi ∈ R,
which he has to pay to the auctioneer every time his advertise is clicked.

Every time a search query is generated, the search engine runs an auction: the agents
report a bid profile b = (b1, ..., bn), and the auction mechanism selects an allocation x ∈ X

and a price profile π = (π1, ..., πn). Since a new auction is performed for every keyword re-
search among the same agents, the advertisers have the possibility to dynamically modify
their bids in order to maximize their utility.

The way in which the auction mechanism is implemented is usually to solve a maximization
problem, often referring to social welfare or auctioneer revenue.

2.2.2. VCG

The already discussed VCG mechanism finds one of its application in sponsored auctions
and several companies, like Facebook, use this design to implement their advertising
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management.
Recalling that VCG mechanism are truthful, in VCG-based SSAs the advertisers can
always maximize their utility by bidding their true types.
An example of SSA based on VCG mechanism is provided in the following:

Example 2.2 (VCG based SSA). A set N = {1, 2, 3} of advertisers competes in an
auction with M = 2 slots whose prominences are λ1 = 1, λ2 = 0.5. The advertisers values
are, respectively, v1 = 10, v2 = 7 and v3 = 4.
Accordingly to VCG, the ads will be allocated by bid: a1 will be allocated to the first slot,
a2 to the second one and a3 will not be allocated. The payment each advertiser is charged
are π1 = 7.5, π2 = 2 and π3 = 0.

Even if VCG mechanism can benefit of many desirable properties, most of the companies
do not adopt it for to manage sponsored search auctions. The reasons behind that are
several, but they can be synthesized in two main aspects:

• Computation complexity: SSA requires to perform a real time computation to de-
termine both the allocation and the payments of the advertisers. VCG requires to
compute the harm that each agent cause to the other players, and this can become
very expensive as the number of advertisers grows, especially if we consider scenarios
in which thousands of requests are generated every second.

• Revenue maximization: VCG does not guarantee that the auctioneer gain the max-
imum revenue with respect to other mechanisms.

2.2.3. Generalized second price

The most widely used mechanism by search engine to allocate the advertisers are based
on Generalize Second Price (GSP). Let assume in our analysis, without loss of generality,
that the advertisers are named in such a way that bi ≥ bj ∀ i, j ∈ N . Like in VCG
auctions, in standard GSP auctions the mechanism allocates the slots in decreasing order
of payers’ bid. However, in GSP-based mechanism the price pi of the player i allocated to
the slot j is equal to the bid of the player i+1. So bidder i’s total payment pi is equal to
λjbi+1 for i ∈ {1, ...,min{N,K}}, and his payoff is equal to λj(vi − bi+1). If the number
of advertisers is not higher than the number of slots (N ≤ M) the last bidder’s payment
pn is equal to 0. Every non allocated player gets a payment pi = 0.

GSP is similar to VCG, since they share the same allocating rule and in both cases the
payment of player i is function of the bids b−i but not of the bid bi. For the bidder who
gets allocated in the last slot the payment is the same under GSP and VCG: 0 if N ≥ M ,
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λmbn+1 otherwise. As a particular case, in a single slot auction the outcome under GSP
mechanism is the same as under a VCG one.
However, GSP lacks some of the VCG’s desirable properties.

GSP properties

The main property that GSP lacks with respect to VCG is having in truth telling a
dominant strategy.

Proposition 2.1. Truth telling is not a dominant strategy under GSP.

The following example provides an instance in which truth telling is not an optimal
strategy.

Example 2.3. There are three advertisers associated with values v1 = 1, v2 = 5, v3 = 10,
who compete for two slots with prominence λ1 = 1 and λ2 = 0.99. If the players bid
truthfully, agent 3 is allocated to the first slot with a payment π3 = 5 and an expected
utility u3 = 1 · (10 − 5) = 5. However, if he untruthfully declares a bid b3 = 4.9 he
will be allocated to the second slot, with a payment π3 = 1 and an expected utility u3 =

0.99 · (10− 1) = 8.99 ≥ 5.

The following result compare the revenue of the auctioneer between GSP and VCG mech-
anisms.

Proposition 2.2. If all advertisers were to bid the same amount under the two mech-
anisms, then each advertiser’s payment would be at least as large under GSP as under
VCG.

Being that truth telling is not a dominant strategy for GSP, it is interesting to study
the bidding strategies that the agents can adopt and the set of equilibrium that those
strategies support. Edelman et al. [8] and Varian [18] studied a subset of the GSP
auction equilibrium called locally envy-free equilibrium2.

Definition 2.18. An equilibrium of the simultaneous-move game induced by GSP is lo-
cally envy-free if a player cannot improve his payoff by exchanging bids with the player
ranked one position above him. More formally, in a locally envy-free equilibrium, for any
i ≤ min{N + 1,M}, it is λivf(i) − π(i) ≥ λi−1vi − π(i−1), where π(i) is the price for being
allocated to slot i.

2The two studies has been done independently. Varian call the same set of equilibrium symmetric
Nash equilibrium.
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In their analysis, Edelman et al. [8] show that any locally envy-free equilibrium is a stable
assignment of the game Γ induced by GSP, and if the number of advertisers is higher
than the number of slots, then any stable assignment is an outcome of a locally envy-free
equilibrium of Γ.

Futhermore, Edelman et al. [8] studied a special case of local envy-free equilibrium,
that results from the strategy profile B∗ where, for every advertiser i such that f(i) ∈
{2, ...,min{N + 1,M}}, the bid bi is equal to πV CG,(j−1)/λj−1, where πV CG,(j−1) is the
payment of the advertiser j − 1 in the dominant strategy equilibrium of VCG when all
the advertisers bid truthfully 3.

Theorem 2.6. The strategy profile B∗ is a locally envy-free equilibrium of the game Γ

induced by the GSP auction. In this equilibrium, each advertiser’s position and payment
are equal to those in the dominant-strategy equilibrium of the game induced by VCG. In
any other locally-envy free equilibrium of the game Γ, the total revenue of the seller is at
least as high as in B∗.

Efficiency

Since truth telling is not a dominant strategy under GSP, it is of interest to study the
efficiency of the equilibrium of the game induced by the GSP mechanism. The efficiency
is evaluated throught two parameters, called price of stability and price of anarchy.

Definition 2.19 (Social best solution). The social best solution with respect to an eval-
uation function g is an outcome x ∈ X of the game such that the action profile aSB

associated to x is
aSB ∈ argmax

a∈A

∑
i∈N

gi(a)

Definition 2.20 (Social best Nash equilibrium). The social best Nash equilibrium with
respect to an evaluation function g is an outcome x ∈ X of the game such that the action
profile aSBN associated to x is

aSBN ∈ argmax
a∈A:a is a Nash equilibrium

∑
i∈N

gi(a)

Definition 2.21 (Social worst Nash equilibrium). The social worst Nash equilibrium with
respect to an evaluation function g is an outcome x ∈ X of the game such that the action

3The bid b∗i such that f(i) = 1 is arbitrarily set to vi.
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profile aSWN associated to x is

aSWN ∈ argmin
a∈A:a is a Nash equilibrium

∑
i∈N

gi(a)

Definition 2.22 (Price of stability). The price of stability (PoS) of a game with respect
of a evaluation function g(a) is

PoS =

∑
i∈N gi(a

SBN)∑
i∈N gi(aSB)

Definition 2.23 (Price of anarchy). The price of anarchy (PoA) of a game with respect
of a evaluation function g(a) is

PoS =

∑
i∈N gi(a

SWN)∑
i∈N gi(aSB)

Leme et Tardos [15] studied the efficiency of the generalized second price auction. Their
results in terms of price of anarchy of the social welfare are summarized in Table 2.1 in
the case of pure strategy equilibria, mixed strategy equilibria and Bayes-Nash equilibria.

Pure strategy Mixed strategy Bayes-Nash2 slots >2 slots
PoA 1.25 1+

√
5

2
≈ 1.628 4 8

Table 2.1: GSP auction efficiency in terms of social welfare

2.3. Bidding strategies for GSP auctions

Being the GSP mechanism not truthful, the advertisers need to elaborate a bidding strat-
egy. As observed by Edelman et al. [8] this can produce instability in the case of repeated
auctions and a bidding war among the players. This is caused by the fact that in search
auctions multiple slots are available for the advertisers, and the position of a given spon-
sored link will affect its click probability and consequently the advertiser utility.

Cary et al. [3] and Bu et al. [1] independently studied whether it is possible for the players
to implement a bidding strategy that guarantees some desirable properties. They worked
on the assumptions that exactly one randomly chosen advertiser gets to update his bid
in each period, and that he knows the current bids of all the others advertisers when he
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updates his bid. The main result of their study is the definition of a myopic best response
strategy called balance bidding (Cary et al. [3])4. A myopic best response strategy aims
to maximize the agent’s utility in the next round of a repeated auction assuming that the
others player bids b−i stay fixed, but in the context of GSP sponsored search auctions it
has some flexibility. Suppose that the player i’s best response is to target slot j∗: then
his bid bi can be in the range (πi(j

∗), πi(j
∗ − 1)), where pi(j) is the payment of player i

allocated to slot j given b−i.

Definition 2.24 (Balance Bidding). The Balance Bidding (BB) strategy is the strategy
for a player i that, given b−i

• targets the slot j∗ which maximizes his utility, that is

j∗ = argmax
j

{λj(vi − πi(j))};

• chooses his bid b′i for the next round so as to satisfy the following equation:

λj∗(vi − πi(j
∗)) = λj∗−1(vi − b′i).

If j∗ is the first slot, we (arbitrarily) choose b′i =
(vi+πi(1))

2
.

The intuition behind the BB strategy is that a player wants to bid high enough to win
his preferred slot j∗, but not so high that he would regret it if one of his competitors
undercut him. Notice that if an advertiser targets the first slot his bid can be arbitrarily
chosen in the range (πi(1), vi), since it does not affect any agent’s cost5.

Notice that for the agents that can not be assigned a slot for any bid bi ≤ vi the best
bidding response is to bid bi = vi. This is due to a player wanting to maximize the
possibility to be allocated, since GSP is individually rational if agents do not overbid.

Suppose, without loss of generality, that agent i is assigned to the position j. The main
property of the BB strategy is illustrated in the following proposition:

Proposition 2.3. If all players follow the BB strategy in an auction with all distinct λ’s
and asynchronous bidding, then the system converges to its unique fixed point. At this
fixed point the revenue of the auctioneer (and the payment of each player) is equal to that
of the VCG equilibrium. The bid bi of the player i allocated to the slot j at the equilibrium

4Bu et al. [1] refer to the sane bidding strategy as forward looking.
5Bo et al. [1] studied the same strategy where an agent who target the first slot bid his value.
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satisfies the following equations:

BB(b−i, vi) : b
∗
i =


2b∗i+1 if j = 1,
λj

λj−1
b∗i+1 + (1− λj

λj−1
)vi if 2 ≤ j ≤ M,

vi if M < j ≤ N.

The value of this result is double. On the one hand, it states that if the players adopt
the BB strategy in an asynchronous bidding setting the repeated auction will converge
to a pure Nash Equilibrium of the induced game Γ. On the other hand, the equilibrium
is unique, and in such equilibrium the payments are the same that the players would be
charged under the VCG mechanism. This means that it is a locally envy-free equilibrium,
and in particular it is the equilibrium related to the strategy B∗ described by Edelman
et al. [8].
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price displaying

Se far we have discussed sponsored search auctions in a classical sense, where the adver-
tisers sponsor some links with the purpose of redirecting the users towards their website.
Whenever an advertiser wants to sell some goods, however, they will associate to their ads
a selling price. This is the case, for example, of companies like Amazon and Booking, but
the search engine themselves dedicate some of their sponsored ads to e-commerce (Figure
3.1). The web pages display the banners advertising similar goods, as well as their costs.
Such setting is similar to that of standard auctions, but it introduces a new externality
that affects the users behaviour, as well as the properties of the auction. The users prefer
to spend less money, and this prompt them to compare the ads’ prices in order to decide
which ad to click, thus affecting the click probability for each ad. We will refer to this
new class of sponsored search actions as sponsored search action with price displaying
(SSAPD).
The problem of SSAPD has already been studied by Castiglioni et al. [5], and their work
will constitute the base for the study described in Chapter 4. In Section 3.1 will be for-
malized the model of SSAPD, in Section 3.2 will be described a direct and an indirect
mechanism for SSAPD, while in Section 3.3 will be analyzed the known properties.

3.1. Formal model

The formal model of the SSAPD auctions shares the same structure of the standard
sponsored auctions, but introduces some new elements.

• There is a set N = {1, ..., n} of agents, representing the advertisers and the sellers,
that take part to the auction game to sell a single good with a single advertise. The
ad referred to the player i will be denoted as ai.

• For every i, it is denoted as ci ∈ R+ the production cost and as pi ∈ R the selling
price of agent i. We will also denote as αi ∈ [0, 1] the probability with which a user
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Figure 3.1: Example of Internet advertising with price displaying
Google and the Google logo are trademarks of Google LLC.

that has clicked on the advertise ai will buy the sponsored item. The pair (αi, ci)

is a private information of agent i, and will be his type θi ∈ Θi. We will refer to
µi = αi(pi − ci) as the gain of player i.

• The search engine makes available M = {1, ...,m} slots, which represents the posi-
tions in which the ads will be displayed on the user client. Each slot is associated
with a prominence λj ∈ [0, 1] that represent the probability with which the user
observe the slot j. It will be assumed a cascade model where λi ≥ λj ∀ i > j. The
function f : N → M ∪ {⊥} assigns to each slot at most one ad. If f(i) = ⊥ the ad
is not displayed, and λ⊥ = 0.

• Each displayed ad ai is associated to a quality qi ∈ [0, 1] that represents the adver-
tisement’s click probability given that the ad has been observed by the user. We
consider the quality of an ad independent to the advertiser, and so a function of the
price profile p = (p1, ..., pn) only. It will be also assumed that qi : R+ ×R+ → [0, 1],
where qi(pi, pmin) denotes the player i’s quality when his price is pi and pmin =

mink:f(k)̸=⊥ pk is the minimum price among the displayed ads. Moreover, given pmin,
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qi(pi, pmin) is non strictly monotonically decreasing in pi and, given pi, is non strictly
monotonically increasing in pmin. This assumption is due to the fact that users will
compare the advertisement based on their prices, and their interest in a specific ad
will decrease with the price difference with respect to the others.

• Each advertiser i that joins to the mechanism is charged with a per-click payment
πi ∈ R, that he has to pay to the auctioneer every time his advertise is clicked.

We will call bid bi the declared gain of player i, and we will say that an agent does not
overbid if bi ≤ µi. We will refer as declared (expected) value to the value v̂i(f,p, bi) =

λf(i)qi(pi, pmin)bi computed with the declared gain bi in the allocation f , while the (true
expected) value is v(f,p, bi) = λf(i)qi(pi, pmin)αi(pi − ci). The expectation is referred to
both the click probability λf(i)qi(pi, pmin) and the buy rate αi. The social welfare of the
allocation f with respect to the declared gains b is ˆsw(f,p, b) =

∑
i∈N v̂i(f,p, bi), while

the true social welfare is sw(f,p, b) =
∑

i∈N vi(f,p, bi). The auctioneer collects a revenue
from the players rev =

∑
i∈N πi.

The following example illustrate the main components of the described model.

Example 3.1. Consider an auction where 3 agents compete for 2 slots with prominence
λ1 = 1 and λ2 = 0.5 respectively. The advertisers are selling their goods at the displayed
price of p1 = 100, p2 = 80 and p3 = 50. For each agent the buy per click rate is αi = 1

and there are no production costs (ci = 0), thus the gain µi of each agent is equal to his
selling price pi. Suppose that the quality of the ads is given by the function

qi(pi, pmin) =

{
1 if p = pmin

0.2 otherwise

A mechanism M allocate the agent 1 to the first slot and the agent 2 to the second slot,
while agent 3 is not allocated.
In this scenario, the minimum displayed price is pmin = min{p1, p2} = 80. In this allo-
cation, the value of the agents is v1 = λ1q1(p1, pmin)µ1 = 1 · 0.2 · 100 = 20, v2 = 40 and
v3 = 0 since ad3 is not allocated.

3.2. Mechanisms

Castiglioni et al. [5] studied the properties of one direct and two indirect revelation mech-
anisms for the SSAPD.
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3.2.1. Direct revelation mechanism

Consider the following direct revelation mechanism MV CG
D . Each agent i report to the

auctioneer his (not necessarily true) type θi = (α′
i, c

′
i) ∈ Θi. The mechanism compute the

declared gain as bi = α′
i(pi−c′i) for every selling price pi. Then it computes the assignment

f ∗ and the selling prices p∗ that maximizes the social welfare with respect to the declared
gains. Lastly the mechanism assigns to each allocated advertiser a cost

πi = max
f,p

∑
i ̸=j:f(i)∈M

v̂j(f, p, bj)− v̂j(f
∗, p∗, bj).

This VCG based mechanism is truthful, individually rational, weakly budget balanced
and it maximizes the social welfare. However, in a real word scenario the advertisers
will not let the auctioneer select the selling prices for them as it happen in the caso of
direct revelation mechanism, but they will most likely report a selling price to propose to
the customers. Thus an indirect revelation mechanism is more suitable for a real word
application.

3.2.2. Indirect revelation mechanism

Let’s now introduce two indirect revelation mechanisms MV CG
I and MGSP

I , which are
based respectively on VCG and GSP. The two mechanisms share the same structure and
allocation function, but differ in the way they assign the payments to the advertisers.
Each agent i reports to the auctioneer two parameters (pi, bi), where pi is his selling price
that the advertiser wants to be displayed and bi is the declared gain for a click on an ad
with price pi. Both the mechanisms allocate the advertisers by computing an assignment
f ∗ that maximize the social welfare

ˆsw(f ∗,p, b) = max
f

ˆsw(f,p, b).

Notice that the allocation maximizing the social welfare may not assign an agent to each
slot even in the case that n ≥ M . For example, consider a two slots auction (λ1 = λ2 = 1)
for two advertisers whose selling prices and bids are p1 = 10, b1 = 8, p2 = 2 and b2 = 1.
Assume that the qualities q1 and q2 are determined by the function qi(pi, pmin) = 1 if
p = pmin, 0 otherwise. The allocation that maximizes the social welfare is such f(1) = 1

and f(2) = ⊥ .
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Then MV CG
I assigns each advertiser i a per-click VCG payment of

πi = max
f

∑
j ̸=i:f(j)∈M

v̂j(f,p, bj)− v̂j(f
∗,p, bj).

Consider now GSP based mechanism. Suppose that the first k ≤ M slots are assigned.
Notice that, since λi < λj ∀ i < j, an allocation f ∗ that assigns an agent to k ≤ M slots to
maximize the social welfare will allocate the slots {1, ..., k}. MGSP

I assigns to each agent
i such that f ∗(i) < k a payment

πi = λf∗(i)qj(pj, pmin)bj

where j is such that f ∗(j) = f ∗(i) + 1. For the agent such that f ∗(i) = k there are two
possible payments. If all the unassigned advertisers have a lower selling price than the
price pmin then πi = 0, otherwise

πi = λf∗(i) max
j:pj≥pmin & f∗(j)=⊥

{qj(pj, pmin)bj}.

The payment is 0 for each advertiser such that f ∗(i) = ⊥.

3.3. Properties

Both MV CG
I and MGSP

I are weakly budget balance and individually rational. However,
not all the selling prices and bids profiles that constitute an equilibrium are such that the
true social welfare is maximized. The following section will aim to summarize the known
results studied by Castiglioni et al. [5].

Computational complexity

The problem of computing the allocation that maximize the social welfare is generally
hard if externalities are introduced. The main result regarding computational complexity
for SSAPD auctions can be summarized as follow:

Proposition 3.1. For both the direct and indirect revelation mechanism, the problem
of allocating the advertisers to the slots to maximize the social welfare can be solved in
polynomial time.
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Performance

A reasonable question concerns the measure in which the Nash equilibria of the game
induced by the SSAPD auction are inefficient. The known results in terms of price of
stability and price of anarchy are reported in the following, for both the VCG and GSP
indirect mechanisms. The results will refer to non overbidding agents only, since when
players overbid the inefficiency can be arbitrarily large even with a single slot.

The efficiency of a mechanism can be related to both the advertisers social welfare or the
auctioneer revenue. Considering the social welfare, both VCG and GSP have a price of
anarchy equal to 1 in case of a single slot. When m ≥ 2 slots are available, the VCG still
presents a price of stability equal to one, while the price of anarchy is exactly m. Instead,
GSP performs worse than VCG, with a price of stability that is at least 2 even if the
agents do not overbid, and a price of anarchy lower bounded by m.
Regarding the revenue of the auctioneer, the price of stability goes to infinity for any
number of slots m ≥ 2 for both VCG and GSP mechanisms. In the case of VCG mech-
anisms, however, the price of stability is equal to 1 in the case of a single slot. This is
not true for GSP based mechanisms1, for which the price of stability goes to infinity even
with m = 1. The results are summarized in the Table 3.1.

1 slot m ≥ 2 slots
Social Welfare Revenue Social Welfare Revenue
PoS PoA PoS PoS PoA PoS

MV CG
I 1 1 1 1 m ∞

MGSP
I 1 1 ∞ ≥ 2 ≥ m ∞

Table 3.1: SSAPD lower and upper bounds of PoS and PoA for non overbidding agents.

1The result for the PoS of the revenue for GSP mechanism with a single slot is referred to GSP
payments that guarantee individual rationality.
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Every time a user submits a query to a search engine, a new sponsored search auction is
performed. The advertisers can report an update of their bids to the auctioneer anytime,
reacting to other agents’ actions to maximize their utility. However, since the advertisers
are in competition, some of them may target the same slot. In Section 2.3 we have
seen that it is possible for the agents to adopt a strategy that guarantee convergence
in GSP based sponsored search auctions. We intend to investigate whether the same
bidding strategy could lead to some convergence results in the case of SSAPD introduced
in Chapter 3.

In principle, an advertiser could also submit to the auctioneer an update of the selling
price anytime. Even if this is true for the proposed model, in many practical scenarios
this change is at most abrupt, since the selling price is selected a priori by the advertiser.
Thus, we will consider in our analysis the selling prices submitted to the auctioneer as
fixed over time, and we will investigate whether the agents can elaborate a myopic best
response bidding strategy that converges to an equilibrium.

In Section 4.1 we will extend the notion of balance bidding strategy studied by Cary et al.
[3] and Bu et al. [1] in order to consider the externalities introduced by the price displaying
and we will show that it is not guaranteed to converge for the GSP mechanism proposed
in Chapter 3. In Section 4.2 we will propose a new indirect auction mechanism based on
GSP that is a generalization of MGSP

I . In Section 4.3 we will study the properties of the
new mechanism, focusing on convergence and efficiency.

4.1. Balance bidding in SSAPD

We want to investigate whether the BB strategy maintains its convergence property in
a SSAPD scenario that implements the mechanism MGSP

I as described in Section 3.2.2.
The displaying of the selling price introduces an externality that affects the way ads are
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allocated and costs are assigned, so the BB strategy needs to be redefined to adapt to the
new environment. We will still consider rational, intelligent and myopic advertisers.

According to the definition proposed by Cary et al. [3], when an agent implement the
BB strategy he myopically targets the slot j∗ that maximizes his utility and, as a tie
breaking rule, selects the maximum bid that grants him not to regret it if he is undercut
by a competitor. In the context of SSAPD this means that the agent i selects his bid
b′i ∈ (πi(j

∗), πi(j
∗ − 1)) given b−i and p in order to verify:

λj∗qi(pi, pmin)(µi − πi(j
∗)) = λj∗−1qi(pi, pmin)(µi − π̃i(j

∗ − 1))

where πi(j
∗) is the payment assigned to i if he is allocated to the slot j∗ and π̃i(j

∗ − 1) is
the worst case payment for advertiser i if he is allocated to the slot j∗ − 1.

Notice that by imposing q(pi, pmin) = 1 ∀ pi, pmin we obtain the notion of BB described in
Secion 2.3, as we reduce the problem to a classic SSA.

Definition 4.1 (Balance Bidding for Price Displaying). The Balance Bidding for Price
Dysplaying (BBPD) strategy is the strategy for player i that, given b−i and p = (p1, ..., pn)

• targets the slot j∗i which maximizes his utility, that is

j∗i = argmax
s

{λsqi(pi, pmin)(µi − πi(s))}

• chooses his bid b′i for the next round so as to satisfy the following equation:

λj∗qi(pi, pmin)(µi − πi(j
∗)) = λj∗−1qi(pi, pmin)(µi − b′i)

If j∗i is the first slot, we (arbitrarily) choose b′ = µi.

Assuming, without loss of generality, that agents are assigned such that f(i) < f(i +

1)∀ i ∈ N , the definition of balance bidding strategy for price displaying can be summa-
rized in the following bidding strategy, where j∗ is the target slot of agent i:

b′i(b−i,p) =

{
(1− γj∗)µi + γj∗πi(j

∗) if 2 ≤ j∗ ≤ M

vi if j∗ = 1 or j∗ > M
(4.1)

where γj =
λj

λj−1
.

Unfortunately, BBPD turns out not to be a feasible strategy for a SSAPD implementing
the indirect revelation mechanism based on GSP MGSP

I , in the sense that when an agent
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target a slot j∗ and submit a bid b′ accordingly to BBPD, he could be allocated to a slot
j ̸= j∗.

Proposition 4.1. Balance Bid for Price Displaying is not a feasible strategy for SSAPD
that implements the mechanism GSP

I .

Proof. Consider a SSAPD with N = {1, 2, 3} agents and M = {1, 2} slots with promi-
nence λ1 = 1, λ2 = 0.5. For all the agents αi = 1 and ci = 0, while the selling prices
are p1 = 50, p2 = 51 and p3 = 60. The quality function is q(pi, pmin) = 1 if pi = pmin,
0.5 otherwise. Suppose that player 3 want to update his bid, and currently b1 = 50 and
b2 = 51. In this scenario, by bidding b3 ∈ (0, 47) the allocation selected by the mechanism
would be (1, 2), while by bidding b3 ∈ (47, 60) it would be (2, 3). Thus, player 3 target the
slot j = 2. But accordingly to BBPD strategy, his bid would be b3 = (1− 0.5

1
)60+0 = 30,

that is not a feasible bid for player 3 to be allocated to the slot j = 2.

We propose an extended version of the BBPD strategy that we will call Extended Balance
Bidding for Price Displaying.

Definition 4.2 (Extended Balance Bidding for Price Displaying). The Extended Balance
Bidding for Price Displaying (EBBPD) is the strategy for player i that, given b−i and
p = (p1, ..., pn)

• targets the slot j∗i which maximizes his utility, that is

j∗i = argmax
s

{λsqi(pi, pmin)(µi − πi(s))}

• chooses his bid b′i for the next round so as:

b′i = max {BBPD(b−i,p), b̄}

where b̄ is such that b̄ = min bi : f
∗(i) = j∗.

The rationale behind the EBBPD is the following: when an agent targets the slot that
grants him the highest utility, he select his bid such that he will not be affected by being
undertaken by another agent. If that bid is not feasible, he bids such to minimize the
utility loss of being undertaken.

It can be noticed that EBBPD is a feasible strategy for an agent competing in an auction
game implementing MGSP

I . In fact, when agent i targets a slot j, his bid will be by
definition at least as high as to guarantee to be assigned to the slot. At the same time



32 4| Convergence analysis for SSAPD

he will not bid over qi−1(pi−1,pmin)bi−1

qi(pi,pmin)
, or he would prefer to be allocated to the slot j −

1. Unfortunately, a SSAPD based on MGSP
I is not guaranteed to converge when the

advertisers choose their bids accordingly with EBBPD.

Proposition 4.2. The EBBPD is a feasible bidding strategy for the mechanism MGSP
I .

However, when all the agents bid accordingly to EBBPD, the mechanism is not guaranteed
to reach an equilibrium.

An example of non-convergence is showed in Appendix A.

4.2. Auction Mechanism Proposal

We will now introduce a new indirect revelation mechanism based on GSP called MGSP
ord (p∗),

where p∗ ∈ p = (p1, ..., pN) is a parameter called cut price. The mechanism works as fol-
lows:

• Each advertiser i reports to the auctioneer his selling price pi and his declared gain
bi.

• The mechanism discards all the advertisers which have a selling price pi < p∗. Notice
that by selecting p∗ = mini∈N pi no advertiser is discarded. The set of remaining
agents is denoted as N ′, with |N ′| ≤ |N |.

• The ads are sorted by qi(pi, p
∗)bi

1. We will refer to such sorting as σ, and as σ(i)

to the position of the agent i with respect to the ordering σ.

• Select the set of advertisers Nσ = {ai : σ(i) ≤ min{M,N ′}}. These are the agents
that will be allocated. The minimum selling price displayed will be pmin = mini∈Nσ .

• Assign the selected ads in Nσ according with an allocation function

f ∗ = max
f :f(i)̸=⊥∀ i∈Nσ

∑
i

λf(i)qi(pi, pmin)bi.

For each agent i in N ′ \ Nσ we define f ∗(i) = ⊥. Informally, f ∗ is the allocation
that maximize the social welfare among the allocations that assign all and only the
agents in Nσ.

• Suppose that k = min{N ′,M} slots have been allocated. The per-click pay-
ment of each agent i such that f ∗(i) < k is πi =

qj(pj ,pmin)

qi(pi,pmin)
bj, where j is such

1We extend the definition of the quality of player i from a function of the minimum displayed price
qi(pi, pmin) to a function of two prices p1 and p2, where p1 ≥ p2. The distinction between the true quality
of an ad and its extended meaning should be clear from the context.
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f ∗(j) = f ∗(i) + 1. For the agent such that f ∗(i) = k the payment is πi =

maxj∈N ′:f∗(j)=⊥{qj(pj, p∗)bj}/qi(pi, pmin).

For simplicity purposes, we will often refer to the quality function qi(pi, pmin) as qi and
to the extended definition of the quality qi(pi, p

∗) as q∗i . We will also refer to the social
welfare sw(f,p, b) as swf or swA, to represent the social welfare associated respectively
to the allocation function f or the allocation A.

A graphical representation of the mechanism working process is showed in Figure 4.1.
In the first step, two of the five ads taking part to the auction are discarded since their
selling price is lower than the cut price p∗. Then, the remaining advertisers are ordered
accordingly to the ordering function σ. Lastly, the top two advertisers accordingly to σ

are assigned to the slots by the allocation function f ∗.

Figure 4.1: Graphical example of MGSP
ord mechanism workflow in a 5 players and 2 slots

game.

We also propose a practical example of the mechanism MGSP
ord .

Example 4.1. Consider a set of 4 agents N = {1, 2, 3, 4} competing in a SSAPD for
M = 2 slots, associated to a prominence λ1 = 1 and λ2 = 0.5. The players are such that:

• αi = 1, ci = 0 ∀ i ∈ {1, 2, 3, 4}

• p1 = b1 = 10

• p2 = b2 = 8

• p3 = b3 = 1

• p4 = b4 = 0.5

The quality function is defined as follows:

qi(pi, pmin) =

{
1 if pi = pmin

0.5 otherwhise
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The cut price is p∗ = 1. Thus the agent 4 whose selling price is p4 = 0.5 is discarded and
will not take part to the allocation process.

The remaining agents are sorted by qi(pi, p
∗)bi: it results that ad1 < ad2 < ad3. Being

M = 2, the ads in Nσ = {1, 2} are allocated and pmin = 8. The agents are assigned such
that f ∗(2) = 1, f ∗(1) = 2, f ∗(3) = ⊥. The auction payments are π2 = q1(p1,pmin)

q2(p2,pmin)
b1 = 5,

π1 =
q1(p3,p∗)

q2(p2,pmin)
b3 = 1, π3 = 0.

In the following we will state some general observations about the mechanism MGSP
ord (p∗).

Lemma 4.1. The allocation function f ∗ implemented by MGSP
ord assigns the ads to the

slots such that qi(pi, pmin)bi ≥ qj(pj, pmin)bj, ∀ i, j such that f ∗(i) ̸= ⊥, f ∗(j) ̸= ⊥, f ∗(i) <

f ∗(j).

Proof. Since slots are ordered by λ1 ≤ λ2 ≤ ... ≤ λM , if qi(pi, pmin)bi > qj(pj, pmin)bj for
some i, j then a function f such that f(j) = f ∗(i), f(i) = f ∗(j) and f(h) = f ∗(h)∀h /∈
{i, j} would be associated to a social welfare higher than f ∗.

It may be interesting to compare the mechanism MGSP
ord with classical GSP and the indirect

revelation mechanism proposed by Castiglioni et al. [5]. As stated in the following, the
proposed mechanism is a generalization of both.

Proposition 4.3. For a SSAPD where the quality is defined as qi(pi, pmin) = k ∀ pi, pmin ∈
R (i.e. SSAPD ≡ SSA) and p∗ = 0, MGSP

ord is equivalent to a classic GSP.

The truthfulness of this proposition can be evinced by noticing that qi = q∗ = k, thus ads
are allocated in decreasing bid order and advertisers are charged an auction cost equal to
the next higher bid.

We are now going to analyze now the relation between MGSP
ord (p∗) and MGSP

I , showing
that the former is a generalization of the latter. We first introduce the following lemma.

Lemma 4.2. There is at least one cut price p∗ that lead to the allocation that maximize
the (declared) social welfare.

Proof. Given N advertisers, their selling prices p and their bids b, consider the allocation
A∗ that maximize the social welfare. Let p∗min be the minimum selling price displayed in
A∗. Suppose that p∗ = p∗min and, by absurd, that the selected allocation is A ̸= A∗. We
have two possibles scenarios: either the ad a∗ associated with the price p∗min is allocated
or not.
If a∗ is allocated, then pmin = p∗ = p∗min and so f ∗(i) = σ(i)∀ i ∈ Nσ. The social welfare
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of the allocation is ˆswA =
∑

i λf∗(i)qi(pi, p
∗
min)bi. By Lemma 4.1 we can see that the social

welfare is maximum and so that A = A∗.
If a∗ is not allocated, the declared social welfare of the allocation A would be ˆswA =∑

i λf∗(i)qi(pi, pmin)bi, with pmin ≥ p∗, so by definition qi(pi, pmin) ≥ qi(pi, p
∗) and ˆswA ≥

ˆswσ, where ˆswσ is the social welfare when the allocation function is σ. But since a∗ is not
allocated, it means that ˆswσ > ˆswA∗ , and so ˆswA > ˆswA∗ .

We can now formalize the relationship between MGSP
ord and MGSP

I

Proposition 4.4. The mechanism MGSP
I is a particular case of the mechanism MGSP

ord

where the cut price p∗ is chosen to maximize the declared social welfare.

Proof. We have seen in Lemma 4.2 that we can always select the price p∗min to realize the
allocation that maximize the declared social welfare. To be MGSP

I = MGSP
ord (p∗min) the

mechanisms have to assign the same payments. Notice that, if k ads are allocated, the pay-
ment rule is the same for both the advertisers such that f(i) < k and f(i) = ⊥. In Lemma
4.2 we have shown that, by selecting p∗ = p∗min, it must occur that pmin = p∗, and so pi ≥
pmin ∀ i : f ∗(i) = ⊥, while all the cut ads have a selling price lower than pi by definition.
Thus πk = λk maxj∈N ′:f∗(j)=⊥{qj(pj, p∗)bj} = λk maxj:pj≥pmin & f∗(j)=⊥{qj(pj, pmin)bj}.

Individual rationality

One of the main property of the mechanism is individual rationality under the assumption
of non overbidding by the advertisers. Non overbidding is a reasonable assumption for
rational and intelligent agents since it represents a dominated bidding strategy.

Proposition 4.5. Overbidding is a weakly dominated strategy for the mechanism MGSP
ord .

Proof. Suppose that the agent i target the slot j, associated with value vi = λjqiµi. Being
the agents allocated in order of q(p, pmin)b, decreasing the bid from bi to µi affect the
assigned slot or the payments only if there is an agent k ̸= i such that qiµi < qkbk < qibi.
However, in this case the payment for the agent i would be πi = λjqkbk > λjqiµi, resulting
in a negative utility.

We can now formalize the individual rationality property.

Theorem 4.1 (Individual rationality). The mechanism MGSP
ord is individually rational in

ex-post if the advertisers do not overbid.



36 4| Convergence analysis for SSAPD

Proof. Suppose that k slots have been allocated. The utility of an advertiser i assigned
to a slot f ∗(i) < k is ui = λf∗(i)qi(vi − πi) = λf∗(i)(qivi − qjbj), where j is the advertiser
such that f ∗(j) = f ∗(i) + 1. If i does not overbid, qiµi ≥ qibi. By Lemma 4.1 qibi ≥ qjbj,
and so ui ≥ 0. Consider now the utility of the agent k allocated to the slot k. His utility
is uk = λkqk(vk − πk) = λk(qkvk − maxj:f∗(j)=⊥{qj(pj, p∗)bj}). Being σ an ordering over
qi(pi, p

∗)bi, qk(pk, p∗)bk ≥ maxj:f∗(j)=⊥{qj(pj, p∗)bj}. Since the quality q(p, pmin) is a non
decreasing function in pmin, qk(pk, pmin)bk ≥ qk(pk, p

∗)bk, and so uk ≥ 0.

The individual rationality property ensures that an agent will never receive a negative
utility by taking part to the game induced by the mechanism MGSP

ord . Thus it is reasonable
to assume that rational and intelligent advertisers will always prefer to be allocated rather
than not, as long as they do not overbid. As a final observation, we can notice that
the mechanism is weakly budget balanced, since the auction payments assigned to the
advertisers are such that πi ≥ 0∀ i ∈ N .

4.2.1. Bidding strategies for MGSP
ord

We will analyze whether the generalization of the BB strategy for a SSAPD is a feasible
bidding strategy for an auction implementing MGSP

ord . As we can see, BBPD in not suitable
for an advertiser taking part to the auction.

Proposition 4.6. The BBPD is not a feasible bidding strategy for a SSAPD that imple-
ments the mechanism MGSP

ord

The following example provide an instance in which the BBPD is not a feasible bidding
strategy.

Example 4.2. Consider a game with two slots λ1 = 1, λ2 = 0.5 and three players, such
that p1 = µ1 = b1 = 100, p2 = µ2 = b2 = 1 and p3 = µ3 = 5, b3 = 0. The quality function
is

qi(pi, pmin) =

{
1 if pi = pmin

0.25 otherwhise

When a3 updates his bid, he can target the slot j = 2 by bidding b3 ∈ [4, 5], and will not
be allocated for any bid in [0, 4). But accordingly to BBPD he would bid b3 = (1−γ2)µ3+

γ2b2q
∗
2/q3 = 0.5 · 5 + 0.5 = 3.

By considering EBBPD instead, for the same reasons of MGSP
I the bidding strategy is

feasible for MGSP
ord .
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Proposition 4.7. The EBBPD is a feasible bidding strategy for a SSAPD that implements
the mechanism MGSP

ord .

We can notice that the two bidding strategies BBPD and EBBPD behave similarly when
submitted to the mechanisms MGSP

I and MGSP
ord . However, as we will show in Section

4.3, when the agents bid accordingly to EBBPD in a SSAPD implementing MGSP
ord is

guaranteed to converges to an equilibrium where the bids are the same as under BBPD.

4.2.2. Cut price

The cut price p∗ is a parameter of the mechanism that affects the allocation for a given
bid and price profile b and p. The rationality behind this parameter relies on the fact that
when the advertisers need to be allocated they are selected accordingly to the ordering
σ, and the agents with higher selling prices can be penalized with respect to the others.
This can negatively affect the social welfare, as showed in the following.

Proposition 4.8. The social welfare of the equilibrium of the game induced by the mech-
anism MGSP

ord (p∗) can be arbitrarily worst than the optimal equilibrium for some cut price
p∗.

Proof. Consider the following game. Two agents {1, 2} compete for a single slot with
prominence λ = 1. The agents have a gain µ1 = p1 = p̄ and µ2 = p2 =

¯
p, with p̄ >

¯
p. The

quality function is defined as

qi(pi, pmin) =

{
1 if pi = pmin

0 otherwhise

If p∗ =
¯
p then q2(p2, p

∗)b2 > q1(p1, p
∗)b1 ∀ b1 ̸= 0, b2 ̸= 0, thus agent a2 is allocated with a

corresponding social welfare of λq2(p2, p2)µ2 =
¯
p. The optimal allocation is the one that

assign to the slot the agent a1, with a social welfare of λq1(p1, p1)µ1 = p̄. The ratio among
the two social welfare is ¯

p

p̄
, which can be arbitrarily small.

In Section 4.3.2 we will discuss how the cut price can be selected to guarantee some
desirable results in terms of social welfare. We will first remark the following lemma.

Lemma 4.3. If pmin = p∗, then EBBPD ≡ BBPD.

Proof. If pmin = p∗, then qi(pi, pmin) = qi(pi, p
∗)∀ i ∈ N ′. Thus, if agent i target the slot

j, qibi = (1− γj)qiµi + γjqi+1bi+1 ≥ qi+1bi+1
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In a repeated auction, the cut price could in principle changes in different instance. We
will call a cut price selection strategy as cut price dynamics. From Theorem 4.1 we know
that the mechanism is individually rational, thus a reasonable assumption is that every
rational agent prefers to be allocated rather than not to. Thus, if anytime an agent does
not select a bid that grant him a slot, it means that he can not be allocated without
overbidding. Based on this assumption, we define a particular cut price dynamics.

Definition 4.3. Consider a SSAPD based on MGSP
ord (p∗). At any time t, let B ⊆ N ′ be

the set of non discarded agents whose last submitted bid did not grant them a slot in the
next iteration of the auction and K = {ai : pi = p∗ ∀ i ∈ N} the set of agents such that
their selling price is equal to the cut price. We call D the cut price dynamic that selects
for the auction at time t + 1 a cut price p∗′ = min {pi : pi > p∗ ∀ i ∈ N} if K ⊆ B, or
p∗′ = p∗ otherwise.

Informally, the described strategy increases the cut price to the next higher selling price
each time all the agents whose selling price is equal to the cut price update their bids
without being allocated. Notice that, if the assumption of agents preferring to taking
part to the allocation rather than not holds, the dynamic D is weakly monotonic. No
assumption are made on the initial value of p∗.

4.3. Properties of MGSP
ord

This section will present our two main results. First, we will analyze the convergence of
SSAPD based on MGSP

ord (p∗). Then we will study the efficiency of the equilibrium reached
by a repeated auction, proposing a policy for selecting the cut price in order to guarantee
some efficiency results.

4.3.1. Convergence

We studied whether the BBPD bidding strategy behave when adopted in a SSAPD that
implements the mechanism MGSP

ord , proving that it guarantees the convergence of the
outcome to an equilibrium in finite time.

Theorem 4.2. A repeated SSAPD based on the mechanism MGSP
ord (p∗) that implements

D converges to its Nash equilibrium when selling prices are fixed and the agents select
their bids accordingly to EBBPD in a random and asynchronous way.

Proof. The proof is divided in two steps. First we will prove that in a finite time and
with probability 1 the set of assigned advertisers Nσ converges to a fixed point, where the
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unallocated agents bids their value and the allocated ones bid over a threshold. In the
second step we will prove that the Nash equilibrium is reached with probability 1.

Lemma 4.4. There exist t̄ for which at every time t ≥ t̄, for each agent i such that at
time t̄ f ∗(i) = ⊥, at time t f ∗(i) = ⊥. The agents’ bids are such that

bi = µi ∀ i : f ∗(i) = ⊥

qi(pi, p
∗)bi ≥ max

j:f∗(j)=⊥
{qj(pj, p∗)µj} ∀ i : f ∗(i) ̸= ⊥

for every t ≥ t̄. Moreover, for each t ≥ t̄ it is pmin = p∗.

Proof. The number of the allocated advertisers is max{M,N ′}. If N ′ ≤ M all the agents
are assigned to a slot and the proof is trivial. Suppose that N ′ > M . Let k be the
advertiser such that k = maxi∈N ′:f∗(i)=⊥{qk(pk, p∗)bk}. For convenience we rename the
agents such that the advertiser i is assigned to the position i. By Theorem 4.1 the
mechanism is individually rational, so an agent will prefer to be allocated rather than
not to. Thus, no agent i who is assigned to a slot will be willing to change his bid
under qk(pk, p

∗)bk/qi(pi, p
∗). In the same way, every agent that has not been assigned to

a slot will prefer to increase his bid, up to µi, in order be allocated. Thus, the vector
(qM+1(pM+1, p

∗)bM+1, ..., qN ′(pN ′ , p∗)bN ′) is strictly non decreasing in all its elements. To
prove the convergence, we need to show the increments are finite.

We face two possible scenarios: either an agent whose selling price is p∗ is currently
allocated or he is not. In the former case, let i be the first unallocated agent. In the latter
case, let i be the unallocated agent such that pi = p∗. Suppose that, at some time t, the
agent i is bidding bi < µi. In the next activation the advertiser will either bid his gain or
target a position j, by bidding b′i = (1− γj)µi + γj

qj+1

qi
bj+1 = (1− γj)µi + γj

qj+1

q∗i
bj+1. Let

γ∗ = maxj>1 γj. We can see that

q∗i b
′
i ≥ (1− γj)q

∗
i µi + γjqj+1bj+1

≥ (1− γj)q
∗
i µi + γjq

∗
i bi

= q∗i bi + (1− γj)(qiµi − q∗i bi)

≥ q∗i bi + (1− γ∗)(q∗i µi − q∗i bi).

Thus, whenever the advertiser i updates his bid, it is

q∗i µi − q∗i b
′
i ≤ γ∗(q∗i µi − q∗i bi).
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Be δ = mink:q∗kµk>q∗i µi
(q∗kµk − q∗µi), if agent i is not in the top M ads by q∗i µi he will bid

his value within t̄i updates, where t̄i is such that qibiγ
∗ t̄i < δ.

To conclude the proof, consider the agents such that pi = p∗. If all of them will not be
allocated, they will all eventually bid their gain in finite time. Thus, the cut price will be
increased by the dynamic D. The monotonicity of D guarantees the convergence.

By Lemma 4.4 we know that after a certain time t̄ all the non-allocated agents will
not be able to win a slot and will bid their true gain bi = µi. Thus the advertisers
who are allocated are a fixed set, namely N̄ , after t̄. Notice that being N̄ fixed, the
minimum displayed price is pmin = mini∈N̄ pi, and the quality of the agents are constant
(qi(pi, pmin) = qi). Moreover, by Lemma 4.4 and Lemma 4.3, pmin = p∗ and the advertisers
will bid accordingly to the BBPD strategy.

To prove that the allocation converges, we first show that it does for a special updating
sequence, and then state that this sequences happens with a probability 1 in finite time.
The updating rule is called Lowest-First(k, b, p)2, where k is the next agent that will
activate and update his bid, while b, p are the bid and price profiles. The algorithm is
summarized by Algorithm 4.1 and works as follow. Rename the agents in N̄ such that
the q1b1 > ... > qN̄bN̄

. At each round, the agent i updates his bid accordingly with BBPD
by targeting the slot j, then the agents are renamed in order of qibi. If j < i, the next
advertiser updating his bid will be the new agent i, otherwise it will be new agent j − 1.
The update sequence is first called with i = |N̄ |, and terminate if is called with i = 0.

The proof is conduced by induction. If N̄ = 1, the convergence is trivial, as the agent
would bid his value. Consider then the general case when first is called Lowest-First(N̄ ,
b, p). Notice that, if Lowest-First(k, b, p) is called, then the bids (bk+1, ..., bN̄) are all
consistent with the BBPD strategy. Thus, if Lowest-First(0, b, p) is called, all the agents
are bidding coherently with BBPD and the result is a Nash equilibrium.

When Lowest-First(i, b, p) is called a consecutive number of times with i = N̄ , the
bidding vector (b1, ..., bN̄) increase each time in at least one coordinate. The active bidder
increments his bid by moving closer to µN̄ with a ratio at least γ∗, so the consecutive calls
to Lowest-First(N̄ , b, p) will eventually terminate.

Finally, notice that since agent i targets a slot j if

λjqi(pi, pmin)(µi − πi(j)) > λj−1qi(pi, pmin)(µi − πi(j − 1))

2The Lowest-First algorithm is based on the Lowest-First algorithm proposed by Bu et al. [1] for the
proof of convergence of forward looking strategy in GSP auctions.
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it is qibi = (1 − γj)qiµi + γjπi(j) < πi(j − 1). Thus, a recursive call to Lowest-First(N̄ ,
b, p) from a call of Lowest-First(i, b, p) can happen only if qiµi < qN̄µN̄ , and so the
procedure will terminate.

The lowest-first update sequence happen with a fixed non-zero probability when the bidder
is randomly chosen at each round if the run is long enough, and this probability increases
with the number of rounds. It follows that the equilibrium will be reached with probability
1 in a finite number of steps.

Algorithm 4.1 Lowest-First(i, b = (b1, ..., bN),p = (p1, ..., pN))
1: if i = 0 then
2: return
3: end if
4: Let j be bidder i’s favourite slot given b−i and p

5: Agent i updates his bid accordingly with BBPD.
6: Rename the agents such that q1b1 < q2b2 < ... < qNbN (agent i is now indexed by j).
7: if j < i then

Lowest-First(i, b,p)
8: else

Lowest-First(h− 1, b,p)
9: end if

We can notice that the equilibrium reached at convergence is unique. In particular, at
equilibrium the allocated agents are assigned such that f ∗(i) < f ∗(j)∀ i, j ∈ N such that
f(i), f(j) ̸= ⊥ and qiµi > qjµj.

Lemma 4.5. In a SSAPD implementing MGSP
ord (p∗) that select p∗ accordingly to D, if

agents select their bids according to EBBPD strategy at the equilibrium the allocated play-
ers are ordered by qi(pi, pmin)µi.

Proof. Suppose, by absurd, that two agents i and j are allocated respectively to the
slots k and k + 1, and qiµi < qjµj. Then, we have that the utility of agent i for being
assigned to slot k is uk

i = λk(qiµi − qjbj) = λk(qiµi − qj(µj − λk+1

λk
(µj −

qf∗(k+2)bf∗(k+2)

qj
))) =

λk+1(qiµi−qf∗(k+2)bf∗(k+2))+(λk−λk+1)(qiµi−qjµj) < λk+1(qiµi−qf∗(k+2)bf∗(k+2)) = uk+1
i .

Thus agent i would prefer to be assigned to slot k + 1 and the allocation is not an
equilibrium.
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4.3.2. Efficiency

Proven that the mechanism is guaranteed to converge when agents follow the EBBPD
strategy, we question whether the equilibrium is efficient. In Proposition 4.8 we showed
that the efficiency with respect of the social welfare for the mechanism MGSP

ord (p∗) can
be arbitrarily small if the social welfare is not properly selected. In general, the social
welfare of the allocation at convergence can be arbitrarily worse than the optimal one also
at convergence. This is trivially true by noticing that the example proposed in Theorem
4.8 represents an equilibrium.

We can formalize the inefficiency of the mechanism given a cut price in terms of price of
stability.

Theorem 4.3. The PoS of the social welfare for the mechanism MGSP
ord (p∗) can be arbi-

trarily large when the agents select their bids accordingly with the EBBPD strategy.

Proof. Consider the following game. Two agents {1, 2} compete for a single slot with
prominence λ1 = 1. The agents have a gain µ1 = p1 = p̄ and µ2 = p2 =

¯
p, with p̄ >

¯
p.

The quality function is defined as

qi(pi, pmin) =

{
1 if pi = pmin

¯
p

p̄
− ϵ otherwhise

Suppose that p∗ =
¯
p, and thus all the agents will participate to the game. At convergence

b1 = µ1 and b2 = µ2. Thus, being q2(p2, p
∗)b2 =

¯
p > q1(p1, p

∗)b1 =
¯
p − ϵp̄ ad a2 will be

allocated, with a social welfare of q2(
¯
p,
¯
p)
¯
p =

¯
p. If instead b1 = 0 the ad a1 is allocated,

and the social welfare would be q1(p̄, p̄)p̄ = p̄. The price of stability is PoS = p̄

¯
p
, that can

be arbitrarily large.

So far we have proven that the social welfare of the equilibrium of the mechanism MGSP
ord

can be arbitrarily small for some cut prices and some utility functions. However we show
that, for any quality function q, there is at least one cut price that ensures that the
mechanism converge to the allocation that maximize the true social welfare.

Theorem 4.4. In a SSAPD implementing MGSP
ord (p∗) where agents select their bids ac-

cordingly with EBBPD, there is at least one cut price p∗ such that the mechanism converges
to an equilibrium that maximise the true social welfare.
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Proof. Let A∗ be the allocation that maximize the true social welfare

swA∗ = max
f∗

∑
i:f∗(i)̸=⊥

λf∗(i)qi(pi, pmin)µi.

We select the cut price such that p∗ = min pi : A
∗(i) ̸= ⊥. Notice that no player that is

allocated in A∗ is discarded by the choice of p∗.
If the agents select their bids accordingly to EBBPD, we know by Theorem 4.2 that the
auction will converge to an allocation A. Consider two possible scenarios for A: the ad
a∗ associated to the advertiser with the minimum displayed price in A∗ is either allocated
or not.
a∗ is allocated: Since A is a Nash equilibrium of the game induced by MGSP

ord , we
know that bj = µj ∀ j : f ∗(j) = ⊥. Let k = maxj:f∗(j)=⊥{qj(pj, p∗)bj} be the best
unassigned agent and h = min{M,N ′} be the number of assigned slots. Being p∗ = pmin,
σ(i) = f ∗(i)∀ i : f ∗(i) ̸= ⊥. For each allocated agent i it is qi(pi, pmin)µi ≥ qi(pi, pmin)bi ≥
qk(pk, p

∗)bk = qk(pk, p
∗)µk, thus the allocated players are the top h according to qiµi.

From Lemma 4.5 the agents are assigned in decreasing order of qiµi, and so A = A∗ is the
allocation that maximize the true social welfare.
a∗ is not allocated: Being A an allocation at convergence, the agent a∗ is bidding
his gain µi. Since p∗ ≤ pmin and the quality q(pi, pmin) is non decreasing in pmin, it is
swA ≥ swσ, where swσ is the social welfare associated with the allocation given by the
ordering σ. At convergence, all the non-allocated players are bidding their value, while
the allocated agents have qi(pi, pmin)µi ≥ qi(pi, pmin)bi ≥ qi(pi, p

∗)bi ≥ qk(pk, p
∗)bk =

qk(pk, p
∗)µk. Thus, swσ > swA∗ , and so swA > swA∗ . But since A∗ is the allocation that

maximize the social welfare, this conclude the proof.

By Theorem 4.3 and Theorem 4.4 we can see that by selecting the proper cut price the
social welfare of the equilibrium can span from the optimum to one that is arbitrarily
bad. We investigate whether there is a way to select the cut price in order to have some
guarantees on the resulting true social welfare.

Definition 4.4. We define as Partq̄(N) = {N1, N2, ..., Nk} a partition over N such that

Ni = {aj : q(pj,min{p ∈ Ni}) ≥ p̄}

q̄ ≤ q(p, p).
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We will refer as P (Partq̄(N)) to the set of selling prices such that

P (Partq̄(N)) = {p : p = min
j∈Ni

pj ∀Ni ∈ Partq̄(N)}.

By means of the partition of the advertisers defined, we can formalize a theoretical bound
of the efficiency of the mechanism’s equilibrium.

Theorem 4.5. In a SSAPD implementing MGSP
ord (p∗) where the cut price dynamic is D

and agents update their bids accordingly to EBBPD, if the the initial cut price is selected
from P (Partq̄(N)) then the social welfare at the equilibrium is in expectation at least

q̄
|Partq̄(N)| of the optimal social welfare.

Proof. First we introduce some notation. We refer as swMGSP
ord (pi) to the social welfare at

equilibrium of the game induced by the mechanism MGSP
ord when the cut price is p∗ = pi.

We also identify as
sw∗(K) = max

f

∑
i∈K

λf(i)qi(pi, pmin(f))µi

the maximum true social welfare among the allocation that assign agents from a set K.

Lemma 4.6. Given a partition of the agents set Partq̄(N), when Ni ∈ Partq̄(N) and
pi = mini∈Ni

pi it is
swMGSP

ord (pi) ≥ sw∗(Ni)q̄.

Proof. Let σ∗ be the allocation function that orders the agents by their qi(pi, p
∗)µi and

pD is the cut price at convergence starting from p∗ = pi accordingly to the dynamic D.
Since the quality function is non decreasing in pmin, it is

swMGSP
ord (pi) =

∑
j:pj≥pD

λf∗(j)qj(pj, pD)µj

=
∑

j:pj≥pD

λσ∗(j)qj(pj, pD)µj

≥
∑

j:pj≥pi

λσ∗(j)qj(pj, pi)µj.

Consider the allocation A∗
Ni

that assigns the agents in Ni in order to maximize the true
social welfare. By construction the allocation σ∗ is the allocation that maximize the true
social welfare if the qualities are computed with respect to the cut price. Noticing that
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Ni ⊆ {ak : pk ≥ pi} and that qj(pj, pi) ≥ q̄ ∀ j ∈ Ni, it is∑
j:pj≥pi

λσ∗(j)qj(pj, pi)µj ≥
∑
j∈Ni

λA∗
Ni

(j)qj(pj, pi)µj

≥
∑
j∈Ni

λA∗
Ni

(j)q̄µj

≥ q̄
∑
j∈Ni

λA∗
Ni

(j)qj(pj, pmin(A
∗
Ni
))µj

= sw∗(Ni)q̄

where pmin(A) is the minimum price in the allocation A.

By Lemma 4.6 we know that swMGSP
ord (pi) ≥ sw∗(Ni)q̄, thus

E
i∼P (Partq̄(N))

[swMGSP
ord (pi)] ≥ E

i∼Partq̄(N)
[sw∗(Ni)]q̄

=

∑
i∈Partq̄(N) sw

∗(Ni)q̄

|Partq̄(N)|

=
q̄

|Partq̄(N)|
∑

i∈Partq̄(N)

sw∗(Ni)

To finalize the proof, we show that the sum of the optimal social welfare of the subset in
the partition Partq̄(N) is greater than the optimal social welfare of the game, formally∑

Ni∈Partq̄(N) sw
∗(Ni) ≥ sw∗(N).

Consider the allocation associated with the optimal social welfare A∗
N and a particular

allocation ANi
for each subset Ni buildt as follow. Assign the agent j such that A∗

N(j) = 1,
belonging to Ni to the first slot of ANi

. Then, assign the agent such that A∗
N(j) = 2

belonging to Nh (it may be i = h) to the most relevant free slot in ANh
. Iterate this

procedure for all the agents assigned in A∗
N . Notice that, being the number of available

slots the same for A∗
N and each ANi

, then all the agents in A∗
N are eventually allocated

in a ANi
in, at worst, the same slot, while the minimum displayed price of each ANi

is
at least the minimum selling price in A∗

N . Because of the non decreasing property of the
quality in pmin, it is∑

i∈Partq̄(N)

swANi
=

∑
i∈Partq̄(N)

∑
j∈Ni

λfi(j)qj(pj, pmin(ANi
))µj

≥ max
f

∑
j∈N

λf(j)qj(pj, pmin(f))µj

= sw∗(N).
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Finally notice that by definition sw∗(Ni) ≥ swANi
, and so

E
i∼P (Partq̄(N))

[swMGSP
ord (pi)] ≥

q̄

|Partq̄(N)|
sw∗(N). (4.2)

It is possible to extend the result to the following corollary.

Corollary 4.1. A SSAPD implementing MGSP
ord (p∗) where p∗ ≤ mini∈N pi and agents

select their bids accordingly with EBBPD converges to an allocation with an expected
social welfare that is at least q(p̄,

¯
p)sw∗(N), where

¯
p = mini∈N pi and p̄ = maxi∈N pi.

In an auction where the agents’ quality function is a generic function q(·), the upper
bound of the factor q̄

|Partq̄(N)| can be selected by solving a maximization problem. Un-
fortunately, in the general case the cardinality of Partq̄(N) can go to infinity with the
number of advertisers competing to the auction. Consider, for example, the following
quality function:

qi(pi, pmin) =

{
1 if pi = pmin

0 otherwhise

It is trivial to notice that, for any q̄ > 0, |Partq̄(N)| is equal to the number of different
selling prices among the agents. We question whether we can give a bound to the cardi-
nality of the partition Partq̄(N) for a general quality function q(p, pmin). The following
result holds:

Theorem 4.6. For a general quality function q(p, pmin) and a given quality threshold q̄,
it is possible to compute a partition Partq̄(N) such that

|Partq̄(N)| ≤
⌈
(maxi∈N pi −mini∈N pi)

∆pq̄

⌉
(4.3)

where
∆pq̄ = min

i∈N
pi −max{p̄i : q(p̄i, pi) ≥ q̄ ∧ p̄i ≥ pi}.

Proof. The proof follow by construction of the parameter ∆pq̄. Consider first the maxi-
mization problem. For some price pi, p̄i is the maximum price greater than pi such that,
if pi is the minimum price, then the quality q(p̄i, pi) ≥ q̄. Being the quality function
non increasing, it is q(p, pi) ≥ q̄ ∀ p ∈ [pi, p̄i] and q(p, pi) < q̄ ∀ p ∈ (p̄i,∞]. Then ∆pq̄ is
selected by means of a minimization problem as the length of the smallest interval [pi, p̄i].
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Thus, it is possible to build a partition Partq̄(N) such that |Nj| ≥ ∆pq̄ ∀Nj ∈ Partq̄(N).
It follows that

|Partq̄(N)| ≤
⌈
(maxi∈N pi −mini∈N pi)

minNi∈Partq̄(N) |Ni|

⌉
=

⌈
(maxi∈N pi −mini∈N pi)

∆pq̄

⌉
.

The Eq. 4.3 provide an upper bound for the partition of the agent set. However, the
computation of parameter ∆pq̄ can be expensive since require to solve both a maximization
and a minimization problem. A more relaxed bound can be provided when the quality
function is k-Lipschitz continuous, noticing that by definition

|qi(pi, pmin1)− qi(pi, pmin2)| ≤ k|pmin1 − pmin2| ∀ i ∈ N

and thus
q(p, p)− q̄

k
≤ ∆pq̄

Corollary 4.2. For a k-Lipschitz quality function q(p, pmin) and a given quality threshold
q̄, it is possible to compute a partition Partq̄(N) such that

|Partq̄(N)| ≤
⌈
(maxi∈N pi −mini∈N pi)k

q(p, p)− q̄

⌉
(4.4)

In the following we provide an example of the computation of the equilibrium efficiency
bound.

Example 4.3. Consider a SSAPD where an arbitrary set of agents submit ads with selling
prices in [50, 100]. The agents’ quality function is qi(pi, pmin) = 1− pi−pmin

50
, and thus 1

50
-

Lipschitz continuous. By Theorem 4.5 and Corollary 4.2, we can select a cut price such
that

E
i∼P (Partq̄(N))

[swMGSP
ord (pi)] ≥

q̄

|Partq̄(N)|
sw∗(N)

≥ q̄⌈
(maxi pi−mini pi)k

∆q̄

⌉sw∗(N)

=
q̄⌈
1

1−q̄

⌉sw∗(N)
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which is maximized by selecting q̄ = 0.5, with an associated expected social welfare

E
i∼P (Partq̄(N))

[swMGSP
ord (pi)] ≥

1

4
sw∗(N)

.
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In this chapter we will describe how we modeled our simulations in order to validate the
mechanism MGSP

ord . Then we will provide the experimental results, focusing on how the
parameters selection of the simulation affects the convergence time of the auction and on
the efficiency of the equilibrium.

5.1. Experimental setting

The difference between a standard SSA and a SSAPD relies on the affection of the ads
quality on the other agents, affecting both their click through probability and the auction
prices. The shape of the quality function is determined by the preferences of the users over
the goods sold by the auction and specifically, in our first approximation, by the difference
between the ads prices with respect to the minimum displayed price. However, different
goods could be associated with different quality functions. Even if it is reasonable that,
given enough time, both the auctioneer and the advertisers can estimate the preferences
of the customers, we do not know how it could be computed in a real world scenario.
Therefore, we relied on a very reasonable assumption: among the ads displayed, the one
with the lowest selling prices pmin is associated with the highest social welfare, while the
others agents quality goes to zero with the difference of the selling price with respect to
pmin. In particular, we studied the rectified linear and a sigmoid like quality function.

The rectified linear quality function is formally defined as:

ReL(k, qmax, qmin) : qi(pi, pmin) = max{qmax + k(pi − pmin); qmin}.

The parameter k represents the gradient of the function: since the quality is non strictly
decreasing in the difference pi − pmin, it will be k ≤ 0, where k = 0 is a special case when
the quality function is constant for all the advertisers. Notice that in that case the SSAPD
is equivalent to a classic SSA. The parameter qmin ∈ [0, 1] represents the quality of the
advertiser when his price is pmin. Parameter qmin ∈ [0, qmax], instead, is the minimum
quality for each advertiser: since the quality is defined in [0, 1], the linear function has
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to be bounded in the interval. The shape of ReL(·) for different values of k is showed in
Figure 5.1, when qmax = 1, qmin = 0 and pmin = 50.

Figure 5.1: ReL(k, 1, 0) quality function for different values of k

The sigmoid like quality function is formally defined as:

Sig(qmax, h, k, ϵ) : qi(pi, pmin) =
(1 + h)qmax

h+ ( (1+h)qmax−ϵ
ϵ

)
p−pmin

(k−1)pmin

The parameter qmax ∈ [0, 1] represents the quality when pi = pmin. Parameters h, k and
ϵ shape the slope of the function: h adjust the height of the horizontal asymptote, while
for the price k · pmin the quality is h · qmax. In Figure 5.2 is showed the shape of Sig(·)
for different values of k, when pmin = 50, qmax = 1, h = 20 and ϵ = 0.001.

Figure 5.2: Sig(qmax, h, k, ϵ) quality function for different values of k

As well as the quality function, there are other parameters of the auction setting that
are interesting to consider since they can affect the convergence time and the efficiency of
the equilibrium. First, we will analyze how the number of agents and their selling prices
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distribution will affect both the convergence time and the equilibrium results. We will
also show how the increase of the number of slots result in an increase of the absolute
convergence time and a decrease of the efficiency, but a decrease of the average number
of updates per advertiser.

5.2. Convergence

In this section we will present some experimental results that illustrate how fast an auction
based on MGSP

ord (p∗) implementing the cut price dynamics D converges to its equilibrium
when the advertisers updates their bids accordingly to the EBBPD bidding strategy in
an asynchronous and randomized way. At each time t, a random advertiser activates and
eventually submits his bid. We will consider, for the analysis of the convergence time, the
average number of bids updates per agent (BPA), i.e. the average number of times that
an agent activates and submits a bid different from his previous one. We will also provide
some experiments that show how the auction settings described in the previous section
affect the convergence time.

5.2.1. Experiment 1

In the first experiment, we wanted to see how the number of slots and the number of
advertisers affected the average BPA. In particular, we run the experiment in three dif-
ferent settings. For each one, the prominence of the slots follow a geometric series of
parameter 1

2
, the buy rate of the agents is drawn from a uniform distribution U(0, 1) and

the production costs c are drawn from U(0, pi). The initial cut price is always p∗ = 0,
so that all the agents will take part to the auction. All the datasets are the results of at
least 800 instances per couple (number of agents, number of slots).

Figure 5.3 shows the results when the agents selling prices are drawn from a uniform
distribution U(50, 100), with a quality function ReL(− 1

50
, 1, ϵ), with ϵ → 01.

The first thing that we can notice is that the average number of bids updates is quite
small, mainly between 2 and 5 activations per advertiser on average. As expected, we see
that the average number of iterations increases with the number of slots. The exception
to this trend is showed for 5 and 6 slots when 5 advertisers are competing: being N ≤ M

the BPA is the same in the two scenarios, but it is interesting to notice that it is also
lower than an auction with the same number of advertisers and less slots. Finally, the
less predictable result is that the BPA decrease with the number of advertisers with any

1The choice of ϵ → 0 rise from computational reasons where qi/qj need to be executed.
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Figure 5.3: Convergence time for q : ReL(−0.02, 1, ϵ), p ∼ U(50, 150)

number of slots.

In Figure 5.4 agents selling prices are drawn from a normal distribution N (100, 20), with
a quality function ReL(− 1

50
, 1, ϵ).

As we can see, the results are consistent with the outcomes of the prices drawn form a
uniform distribution. The same considerations for the dependencies of the BPA to the
number of agents and number of slots can be extended to this setting.

In Figure 5.5 agents selling prices are drawn from a normal distribution N (100, 20) and
the quality function is Sig(1, 20, 2, 0.001). We can notice that the relation of the BPA
with the number of advertisers and the number of slots is coherent with the previous
results. From the point of view of the performances, instead, the experiments show that
the proposed sigmoid quality function converges on average faster than the corresponding
scenario with a linear quality.
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Figure 5.4: Convergence time for q : ReL(−0.02, 1, ϵ), p ∼ N (100, 20)

Figure 5.5: Convergence time for q : Sig(1, 20, 2, 0.001), p ∼ N (100, 20)
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5.3. Efficiency

In this section we will propose some experimental results that measure the efficiency of
the equilibrium reached by mechanism MGSP

ord implementing the cut price dynamics D
when agents bids accordingly to the EBBPD bidding strategy. For each experiment, we
will estimate the ratio between the true social welfare of the equilibrium and the true
social welfare of the optimum equilibrium for the set of advertisers taking part to the
auction. We will also compare the experimental results with the theoretical guarantees
studied in Chapter 4.

5.3.1. Experiment 2

In this experiment we want to compare how the two proposed quality functions ReL(·) and
Sig(·) and the selling prices distributions affects the social welfare of the equilibrium at the
increasing of the number of advertisers and the number of slots. For all the settings, the
prominence of the slots is a geometric progression of parameter 1

2
and both the production

costs and the buy rates are draw from a uniform distribution. The initial cut price for
each auction is selected accordingly to Equation 4.2 and Equation 4.4. The number of
samples for each pair of agents number and slots number is at least 700.

Figure 5.6 presents the results for the quality function ReL(−0.02, 1, ϵ) when selling prices
are drawn from a N (100, 20) distribution. To select the initial cut price, we relied on
the theoretical results described by Theorem 4.5 and Corollary 4.2. Being the agents’
selling prices drawn from a normal distribution N(100, 20) we can estimate the theoretical
guarantee of the social welfare by considering the range of prices in [50, 150], being
P (50 < p < 150) = 0.98759. The initial cut price is selected as

p∗ ∈ P (Partq̄(N))

where
q̄ = argmax

q

q⌈
100·0.02
1−q̄

⌉ = 0.5

The theoretical guarantee of the social welfare accordingly to Equation 4.2 and Eq 4.4
is 1

8
of the optimal allocation. It can be noticed that, by using Equation 4.3 instead of

Equation 4.4 the result does not change, due to the fact that the quality function is linear
in the difference between pi and pmin.

The main thing we can notice in the experiment is that the empirical efficiency is much
higher than the theoretical guarantee, spanning in the range of [0.82, 0.92] for the given
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Figure 5.6: Average efficiency for q : ReL(−0.02, 1, ϵ), p ∼ N (100, 20)

number of agents and slots. Moreover, there are two main experimental evidences that
we can notice. First of all, the slightly efficiency decrease with the number of agents.
This is an expected result, since as the number of advertisers increases the probability
of converge to the optimal allocation decreases. Second, the efficiency decrease with the
number of slots. An explanation to this phenomenon relies on the fact that when more
slots are available, the probability of allocating an ad such that his price is equal to the
cut price increase, and thus some better allocation associated to higher selling prices are
not reached.

Figure 5.7 represents the experimental results with a quality function Sig(1, 20, 2, 0.001)

and p ∼ N (100, 20). We can estimate the theoretical bound of the social welfare by
considering the selling prices in the range [50, 150]. The threshold quality for the initial
cut price selection accordingly to Equation 4.2 and Equation 4.4 is

q̄ = argmax
q

q⌈
100·0.052249

1−q

⌉ ≈ 0.4667

with a theoretical social welfare guarantee of 0.04667 of the optimal allocation. Notice
that, by using Equation 4.3 instead of Equation 4.4 to compute partition’s cardinality
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bound, the threshold quality would be

q̄ = argmax
q

q⌈
100

12.512522

⌉ ≈ 0.64838

with a theoretical social welfare guarantee of 0.08105.

Figure 5.7: Average efficiency for q : Sig(1, 20, 2, 0.001), p ∼ N (100, 20)

As we can notice, the results in terms of efficiency are analogous to the one obtained in
Figure 5.6: the efficiency is much higher than the theoretical guarantees, slightly decreas-
ing in both the number of slots and the number of advertisers.

Lastly, Figure 5.8 shows the results when the quality function is Sig(1, 20, 2, 0.001) and
p ∼ U(50, 150). It is interesting to compare these results to the ones in Figure 5.7: in the
very same context, the efficiency of the equilibrium drops from the range [0.8, 0.9] to the
range [0.65, 0.75] just by changing the distribution of the selling prices from a gaussian to
a uniform. This is due to the fact that, when the selling prices are uniformly distributed,
the selling price difference among the agents grows, and thus lower prices allocations (that
are more likely to be associated with a lower social welfare) are assigned more frequently.
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Figure 5.8: Average efficiency for q : Sig(1, 20, 2, 0.001), p ∼ U(50, 150)

5.3.2. Experiment 3

In this last experiment we tested how the range of selling prices affects the efficiency
of the equilibrium. For this experiment we considered a quality function shaped as a
ReL(-0.02, 1, ϵ) and five slots whose prominence follow a geometric series of constant 0.5.
The results are showed for selling prices drawn from a uniform distribution of mean 100
and increasing range, while ci ∼ U(0, pi) and α ∼ U(0, 1). Figure 5.9 summarizes the
experimental results, with at least 700 instances per point.

It can be immediately noticed how the increase of the price range results in a decrease of
the equilibrium efficiency. This confirm the outcome noticed in the Experiment 2, where
the empirical results suggested a loss of efficiency of the uniform distribution with respect
to the normal distribution in the same range. The result is expected, as when the prices
range differences gets higher the advertisers are more distributed on the range, increasing
the probability to reach an equilibrium where the optimal minimum price is excluded by
the allocation.
This experiment is proposed with the purpuse of providing an empirical result that asso-
ciate the efficiency to the selling price range. However, it should be noticed that in a real
world scenario a conspicuous increase of the the prices slope will likely be associated with
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Figure 5.9: Average efficiency for q : Rel(0.02, 1, ϵ) for different selling price ranges

a change of the quality function shape.
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6| Conclusions and future work

In this final chapter we summarize the results presented in the thesis. Lastly, we conclude
by analyzing the left open problems and the possible future works.

6.1. Conclusions

In this work we approached a particular case of sponsored search auctions called sponsored
search auctions with price display. This type of auctions differs from the classic one by
showing to the users a price for each advertised ad, introducing a new externality among
the customers. We modeled this new feature as a click probability of the ads depending on
the ad price and the lowest price displayed, and analyzed whether such auction converges
when the advertisers bid accordingly to a rational bidding strategy.

Firstly, we formalized the price dependent version of the balance bidding strategy (EBBPD),
a strategy studied by Cary et al. [3] and Bu et al. [1] that guarantees the convergence for
a search auction based on GSP, and showed that the same convergence result can not be
ensured if the allocation is selected by maximizing the declared social welfare.

We proposed a new GSP based allocation mechanism, namely MGSP
ord (p∗), that first selects

the ads to allocate by maximizing the social welfare with respect to a minimum price
computed among all the advertisers over a threshold called cut price, and then selects the
allocation that maximizes the social welfare with respect to the minimum price allocated.
We also described a strategy D to dynamically update the cut price at each iteration of
the auction. We showed that this mechanism is individually rational and its social choice
function is a generalization of the mechanism that assigns the allocation maximizing
the declared social welfare. Moreover, we showed that the mechanism is guaranteed to
converge in finite time if when the advertisers bidding strategy is EBBPD and the cut
price is updated with the strategy D. Then, we bounded the efficiency of the equilibrium
of the mechanism in expectation over the selection of the initial cut price.

Finally, we proposed some experimental results, empirically analyzing the convergence
time and the efficiency of the equilibrium in relation the main auction features, such as
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the number of agents, the number of slots and their prominence, and two different quality
functions, showing that the convergence is reached on average within few bids update per
advertiser, with an average efficiency much higher than the theoretical bounds.

6.2. Future works

In the study of the mechanism MGSP
ord we worked on the assumption of advertisers submit-

ting to the auctioneer a selling price that does not change over time. The most interesting
future research concerns how the mechanism behaves when the advertisers can update at
any time both their bids and selling prices, especially in terms of convergence.
Experimental results showed that the efficiency of the equilibrium is much higher than
the theoretical guarantees. Thus, future research could study whether it is possible to
guarantee a stricter bound of the efficiency and if there exists a better cut price selection
policy.
Another open question is how the presence of one or more advertisers that do not bid
accordingly to the EBBPD bidding strategy affects the equilibrium property of the auc-
tion. In the same way, it is still unknown if non myopic advertisers can elaborate better
bidding strategies that take in consideration other agents’ reaction, and whether those
strategies maintain some desirable properties.
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A| Appendix A

In this appendix we will provide an example of non convergence for the mechanism MGSP
I

when the advertisers select their bids accordingly with the EBBPD bidding strategy de-
scribed in Chapter 4.

Consider the following settings: three agents, namely A, B and C compete in a three
slots auction, such that λ1 = 1, λ2 = 0.8 and λ3 = 0.5. The agents are such that αi = 1,
ci = 0 ∀ i ∈ {A,B,C}, while the selling prices are pA = 7, pB = 9 and pC = 15. The
quality function is

qi(pi, pmin) =

{
1 if pi = pmin

0.5 otherwhise

Suppose that, at some time t, the agents’ bids are bA = 7, bB = 3.375, bC = 15. Ties
are broken in lexicographical order. We show that, by bidding accordingly to EBBPD,
the auction will never converge to an equilibrium. The following bidding tree validate
the proposition. The tree is designed as follows. Node’s name represent the allocation
assigned by the mechanism MGSP

I for the corresponding set of bids: the allocated ads
are, in order, the ones corresponding to the agents within the parenthesis, while other ads
are not assigned to any slot. To each advertiser is associated the corresponding bid, and
the advertiser whose name is marked in bold represents the one that has updated his bid
in the last iteration. For example, in the state

(B:9.0, C:3.0) A:2.75

the agents B and C are respectively assigned to the first and the second slot, and B is the
agent that updated his bid in the last iteration.
Whenever a state already in the tree is reached, the exploration on that branch stops: if,
for at least one state, the bid profile of a node is the same one of all his child nodes, then
the mechanism converges.
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Figure A.1: Example of non convergence of the mechanism MGSP
I when advertisers bid

accordingly to EBBPD
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