
Supervisory Control of Timed
Discrete-Event Systems under Log-
ical and Temporal Specification

Tesi di Laurea Magistrale in
Automation and Control Engineering - Ingegneria
dell’Automazione e del Controllo

Author: Giosuè Basso

Student ID: 964037
Advisor: Prof. Luigi Piroddi
Co-advisors: None
Academic Year: 2022-23

i

Abstract

The supervisory control (SC) of timed discrete events systems (TDESs), modelled using
time Petri nets (TPNs), has seen much success employing a novel type of forward reach-
ability graph: the modified state class tree (MSCT). This graph combines the logical and
temporal features of the underlying TPN, allowing for a more straightforward check on
the specifications. The required specifications regard both the logical aspects -reaching
a target marking(s) while avoiding forbidden marking(s)-, and the temporal aspects -
arriving and/or departing within a specific time window. The SC approach is based on
the formulation of integer linear problems (ILPs), built starting from the MSCT, which
are solved to obtain the largest firing time interval (FTI) for each enabled controllable
transition. These FTIs ensure that the specifications are met independently of the be-
haviour of the system, which can include uncontrollable transitions.
This thesis describes and comments a set of algorithms that:

• build the MSCT,

• prune it of the nodes that are not of interest for the control task,

• formulate the ILPs

• calculate, if present, the solution.

Subsequently, a case study is analysed to test the algorithms.

Keywords: Petri Nets, Time Petri Nets, Timed Discrete Event Systems, Supervisory
Control, Modified State Class Tree, Partial Modified State Class Tree.

Abstract in lingua italiana

Il controllo supervisivo di sistemi a eventi discreti temporizzati, schematizzati usando reti
di Petri temporizzate, ha riscosso successo utilizzando un nuovo tipo di grafo di raggiun-
gibilità: l’albero modificato delle classi di stati. Questo grafo combina le caratteristiche
logiche e temporali della rete di Petri temporizzata che modella, semplificando il controllo
delle specifiche. Queste specifiche riguardano sia gli aspetti logici -raggiungere una o più
marcature obiettivo evitando quelle proibite- che quelli temporali -arrivare (partire) a (da)
una marcatura nei limiti di una finestra temporale specificata. L’approccio di controllo
supervisivo si basa sulla formulazione di problemi di programmazione lineare, costruiti
basandosi sull’albero modificato delle classi di stati, la cui soluzione restituisce la più
grande finestra di scatto per ogni transizione abilitata controllabile. Queste finestre di
scatto garantiscono che le specifiche vengano rispettate indipendentemente dall’evoluzione
del sistema, che può includere transizioni non controllabili.
Questa tesi descrive e commenta un insieme di algoritmi che:

• costruisce l’albero modificato delle classi di stati,

• lo pota dei nodi che non interessano la funzione di controllo,

• formulano i problemi di programmazione lineare,

• calcolano, se esitente, la soluzione.

Successivamente, gli algoritmi sono testati con un esempio informativo.

Parole chiave: Reti di Petri, Reti di Petri temporizzate, Sistemi a eventi discreti tempo-
rizzati, Constrollo supervisivo, Albero modificato delle classi di stati, Albero modificato
parziale delle classi di stati.

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 Literature Review and Theoretical Foundations 5
1.1 Overview of Timed Discrete-Event Systems 6

1.1.1 Petri Nets . 7
1.1.2 Time Petri Nets . 9

1.2 Control of TDES . 11
1.3 State of the Art . 12

1.3.1 State Class Graph . 12
1.3.2 Modified State Class Graph . 13

2 Problem Statement 21
2.1 The Control Specifications . 21
2.2 The Control Action . 22
2.3 Control Synthesis Overview . 23

3 Methodology and Algorithms 27
3.1 Declaration of the Data . 27
3.2 Construction of the MSCT . 28

3.2.1 Boundedness Assurance . 30
3.2.2 Structural Matrices of the MSCT 32

3.3 Path-finding Algorithm . 40
3.3.1 Remarks about the Breadth-First Search Algorithm 40

3.4 Pruning of the MSCT . 42

3.5 Path Constraints . 44
3.6 Calculation of the Solution . 47

3.6.1 Minimisation Problem . 48
3.6.2 Maximisation Problem . 49
3.6.3 Computation of the FTIs . 51

4 Case Study 53
4.1 Graphical Representation . 55
4.2 Results . 56
4.3 Pruning of non-Compliant Paths . 61

5 Absence of Guaranteed Solutions 63
5.1 Relaxation of the Temporal Specifications 63

6 Conclusion and Future Work 69
6.1 Summary of the Thesis . 69
6.2 Limitations and Future Research Direction 70

Appendix 73

Bibliography 79

1

Introduction

In the modern world, automation has become an essential driving force behind the op-
timization and reliability of numerous industrial processes. From manufacturing plants
to transportation systems, the seamless coordination of complex operations is critical
for achieving optimal performance and ensuring safety. Timed Discrete Event Systems
(TDES) provide a powerful framework for modeling and analyzing such dynamic pro-
cesses, characterized by discrete events occurring in a continuous time domain.
The supervisory control of TDES involves the design and implementation of control strate-
gies to regulate and coordinate the behavior of these systems. It aims to ensure that the
system adheres to predefined logical specifications, while also satisfying temporal con-
straints and optimizing its operational efficiency. Achieving these objectives requires a
deep understanding of the underlying theoretical foundations and the development of effec-
tive control methodologies. This thesis focuses on investigating and advancing the field of
supervisory control of TDES with a specific emphasis on integrating logical and temporal
specifications. The integration of logic and time is a fundamental challenge in the domain
of automation, as it necessitates the orchestration of system behaviors according to logical
constraints and temporal deadlines. The effective synthesis of such control strategies is
crucial for achieving safe, reliable, and efficient operations in real-world applications.

The primary objective of this thesis is to explore novel approaches and algorithms that
enable the effective supervision and control of TDES by seamlessly combining logical and
temporal specifications. By addressing this critical research gap, this work aims to con-
tribute to the advancement of control theory, providing practical solutions for managing
complex systems where precise timing and logical coherence are of utmost importance.
To achieve these objectives, the thesis will delve into the theoretical foundations of TDES,
drawing upon established frameworks such as Automata Theory and the extensive the-
ory about Petri Nets, which already includes timed features in the form of Time Petri
Nets. Additionally, the thesis will cover existing control methodologies and algorithms
that have been proposed for supervisory control of TDES, identifying their strengths and
limitations.
Furthermore, this research will involve the development and implementation of innova-

2 | Introduction

tive control strategies, leveraging recent advancements in computer science, optimization
techniques, and machine learning. By integrating logical and temporal reasoning into
these strategies, this work aims to enhance the capabilities of supervisory control sys-
tems, enabling them to effectively adapt to dynamic environments, unforeseen events,
and changing operational requirements. More specifically, the goal is to build on top of
what is the state of the art concerning the control of TDES, as explained in the work
[2]. Namely, provided the control specifications that the system has to abide to, it is
this work’s task to formulate a set of algorithms that return the control action able to
guarantee the compliance of the system to said specifications. In some cases the desired
behaviour cannot be guaranteed even though the system allows for feasible solutions. The
novel problem that is shaped by the aforementioned situation is of great interest and still
not tackled by scientific work. It favours the development of new strategies to handle the
absence of assurances, leading to the use of heuristics. The motivation comes from the
fact that the objective is not assuring that a solution is reached, but taking the decisions
that get the system as close as possible to the desired behaviour. It is an inherently
difficult task to treat, both as far as complexity and size of the problem are concerned,
so the scope of this thesis is going to be limited to laying the theoretical foundation for
the heuristic control of TDES.

The findings of this thesis will have potential practical implications for a wide range of
industries, including manufacturing, transportation, power systems, and more.
Through rigorous investigation, experimentation, and analysis, this research endeavors to
provide valuable insights and methodologies that contribute to the advancement of the
topic at hand. By unraveling the intricacies of this domain, this thesis aims to facilitate
the design and deployment of sophisticated control systems that are capable of managing
complex operations in real-time, further advancing the capabilities of this field.

Overview of the Thesis Structure

Considering the vastness of the topic that is going to be treated in this work, the first
chapter will be dedicated to analysing the preliminary notions that allow to understand
the thesis development, providing both the nomenclature and the information needed
to navigate it. The aim is to offer a comprehensive literature review that examines the
foundational concepts of the field. It delves into the models and formal representations
of TDES in the form of Time Petri Nets, providing an understanding of the underlying
theoretical foundations; Additionally, the theories and approaches of supervisory control,
with a particular focus on existing methods and algorithms applicable to TDES, are

| Introduction 3

explored.
The state of the art is going to be treated next, concentrating on the methodologies that
manage to represent timed systems unifying the logical and temporal specifications. The
focal point of this section is going to be the modified state class graph (MSCG), one of the
most powerful tools at our disposal in the study of TPN as it opens the door to a more
effective comprehension of the relationship between the logical and temporal constraints
that the net is subjected to, even as it evolves.

The second chapter uses the theoretical information of the previous one to precisely and
mathematically define the problem at hand.
Firstly a formal description of the specifications is provided in the form of a generalised
timed state sequence (GTSS), which summarises all of the requirements that the problem
needs to fulfill. Secondly, the focus is going to move on how the control action influences
the system, distinguishing between the effects that different events have on the system in
the framework of control. Namely if they can be prohibited from happening or forced to
happen.
Lastly, an overview of the control methodology is discussed, providing the backbone struc-
ture for the approach utilised to control the system. Moreover, the strengths and weak-
nesses of an online and offline approach to the control algorithm are going to be analysed.

Chapter three examines the state-of-the-art approaches, identifying the research gaps and
challenges that arise while adapting the theory to a computer program. The developed
algorithms are described, providing a step-by-step explanation of the computational tech-
niques employed. These algorithms leverage the MSCG representation, incorporating
logical and temporal constraints into the control synthesis process in two separate steps,
without loss of generality. The chapter presents the theoretical justifications and algo-
rithmic details, highlighting the novel aspects of the proposed approach that is built on
top of existing methods.

In chapter four a case study is considered in order to show the correct functioning of
the explained procedures. It consists of a simple material handling system specifically
conceived to test and demonstrate the most meaningful aspects of the theory treated up
to this point.
The chapter ends with the discussion of the results that have been obtained, putting
particular emphasis on the instances where procedures used by the program may differ
with respect to the ones studied in [2]. The hope is that this example will provide an
all rounded explanation able to convey the inner workings of the algorithms developed in
this thesis.

4 | Introduction

Chapter five delves into the case where the control specifications cannot be guaranteed,
nevertheless useful information can be provided. This problem is of particular interest
considering how, as to date, it has yet to be tackled by scientific literature.
Different approaches are proposed and discussed, analysing their positive and negative
characteristics. Subsequently, the policies that derive from the solutions of the optimi-
sation problems that stem from them are evaluated, understanding the framework and
applications they are better suited for.

Chapter six concludes the thesis by summarizing the key contributions and findings of
this work. It highlights the significance of the results, emphasizing the potential impact
on real-world applications. The chapter also outlines potential future research directions,
suggesting avenues for further exploration and improvement.

Finally, the thesis includes an appendix with material of interest and a comprehensive
reference section that cites all the sources consulted during the research step.

5

1| Literature Review and

Theoretical Foundations

In order to understand time Petri nets, referred by using the acronym TPN, it is useful
to start by talking about discrete-event systems and timed discrete-event systems first.
Discrete event systems (DES) and timed discrete event systems (TDES) are fundamental
concepts in the field of control and automation. They provide powerful frameworks for
modeling, analysing, and controlling complex systems that operate based on events and
the sequencing of these events.

A DES can be defined as a dynamic system that evolves over time through a sequence
of discrete events. These events occur at distinct points in time and can trigger changes
in the system’s state or behavior. Examples of discrete events include sensor activations,
button presses, or the arrival of a message in a communication network. The system’s
behavior is determined by the order and timing of these events, and the interactions be-
tween them.
TDESs extend the notion of DESs by incorporating time into the modeling and analysis
process. In the TDES framework, events occur within a specified time window. By consid-
ering time, TDESs enable the representation and analysis of time-critical systems where
the temporal aspects of events and system dynamics are crucial. The modeling and anal-
ysis of DESs and TDESs are typically performed using formal methods and mathematical
techniques. Various formalisms have been developed to represent and analyze these sys-
tems. Petri nets (PNs) and time Petri nets (TPNs), for DESs and TDESs respectively,
are frequently employed formalisms that provide abstractions and mathematical frame-
works for capturing the system’s structure, behavior, and temporal properties, creating a
practical and easily understandable interface with the problem at hand.
The analysis of DESs and TDESs encompasses various aspects, including reachability
analysis, performance evaluation, verification of system properties, and synthesis of con-
trol strategies. By utilising these analysis techniques, it is possible to gain insights into
system behavior, identify potential bottlenecks or issues, optimise system performance,
and design effective control strategies.

6 1| Literature Review and Theoretical Foundations

Considering the scope of this work, only a part of these tools will be discussed.

1.1. Overview of Timed Discrete-Event Systems

A DES is a dynamic system which evolves in accordance with abrupt occurrences of
physical events [15]. If the events of the system may occur only within a designated time
interval, the framework that needs to be used is that of a TDES. While the addition of
timing constraints to the model makes for a more powerful tool, the added complexity is
significant.
A model can be developed starting from the 5-tuple

Gact = (Σact, A, δact, a0, Am)

where Σact is a finite alphabet of events (list of events that can occur). A is the set
of activities, whose elements are indicated by ai -it is important to remark how, in this
interpretation, events are instantaneous while activities have a duration in time-. δact is
the activity transition function δact : Σact×A → A so, to show the change of activity that
a transition implies, the notation is: a

′
= δact(σ, a). The initial activity is denoted by a0

and Am ⊆ A is the subset of marked activities.
Each transition σ is characterised by a lower time bound and an upper time bound, lσ ∈ N
and uσ ∈ N respectively; the former typically represents a delay while the latter a deadline.
In other words a transition can fire only after lσ time instants have elapsed and after uσ

time instants, if it has not fired, it must do so (if it is still enabled). For this reason it is
called a hard deadline. Events whose deadline is finite are referred to as prospective while
those which have an infinite upper bound are defined remote events. It is assumed that
events occur at quasi-random moments of real time R+ = {t / 0 ⩽ t ⩽ ∞} [6].
This modelling paradigm is well-suited to describe a variety of systems, both physical
and logical. The simplicity of its premises allows to widen the span of its use resulting
in a general set of rules that does not sacrifice precision. This being said, depending on
the modelling technique used, there can be notable trade-offs: results may end up being
convoluted and difficult to interpret, especially if the dimension of the sets constituting
the system is significant.
These theoretical foundations are shared by PNs and their time-dependent counterpart,
which are of more interest in the current matter of discussion as these two modelling
frameworks are particularly well suited to schematise DESs whose states are asynchronous
and/or concurrent.

1| Literature Review and Theoretical Foundations 7

As far as time dependent nets are concerned, two main methods have been developed to
handle the time aspects: timed Petri Nets and time Petri Nets. The former, described
in [16], considers transitions as having a finite firing duration and so they are not to be
considered instantaneous. This reflects in a change of the classic PN firing rules: the time
it takes for transitions to fire has to be accounted for. Secondly, a transition is set to fire
as soon as it gets enabled. Timed PNs have mainly been used for performance evaluation
tasks.
Time Petri nets (TPNs) on the other hand have found more use considering the fact that
they are more general than timed PNs (indeed, TPNs can be used to model timed PNs,
but the opposite is not possible). They are going to be the default modelling paradigm
in this work and their description, first published in [11, 12], will be extensively treated
shortly in the following sections. In order to understand TPNs it is useful to first analyse
the simpler, logic-only version, that are PNs, subsequently moving the focus to TPNs.

1.1.1. Petri Nets

A Petri Net is a place/transition net whose structure is defined by the quadruple N =

(P, T, Pre, Post) where: P is a set of m places, T is a set of n transitions and Pre :

P × T → N and Post : P × T → N are the matrices that specify how the arcs are
connected to the places, using the arcs’ weight (the number of tokens that are moved by
them). For some applications the incidence matrix I = Post− Pre may be of use.
In order to completely identify a PN a marking is needed, which represent a specific state
of the underlying system that the PN models. It is a vector M : P → N that assigns to
each place a non-negative integer which represents the tokens present in that place. To
identify the marking of a selection of places the notation M(p) is used, where p represents
the considered places.
With this preliminary knowledge it is useful to define some important notions for Petri
Nets. Transitions represent the occurrence of an event at a certain state of the system,
so a transition t is said to be enabled at a marking M if the root places of the transition
-the places connected to the tail of the transition arrow- have enough tokens for t to fire,
namely, indicating with RP the set of root places of t, M(RP) ≥ Pre(RP, t). The firing
of an enabled transition t in M leads to a new marking M ′ = M − Pre(·, t) + Post(·, t),
which is equivalent to M ′ = M + I(·, t). To denote the set of enabled transitions in
M the expression Te(M) = {t ∈ T/M ≥ Pre(·, t)} is used. The core assumption on
which Petri nets base their functioning is that, out of all the enabled transitions at a
given marking, the one to fire is selected at random. The framework of PNs enables the
control action through controllable transitions : a transition t is said to be controllable if

8 1| Literature Review and Theoretical Foundations

its firing can be prevented while it is enabled. Practically, this inhibition is performed
using enabling places, places that prevent a transition from firing when they possess no
tokens. Consequently, if a transition has an enabling place as part of its Pre matrix it is
schematised as controllable.
Conversely, a non-controllable transition cannot be prevented from firing once it becomes
enabled.
Another key element of the nomenclature of PN is transition sequences, shortened to
TS: a succession of transitions that can fire in the order expressed by the sequence:
s = ti1 ti2 ... tik. If s is enabled in M0, then this relationship can be written as M0[s⟩,
whereas if s fires from the same marking it is denoted as M0[s⟩Mk with Mk being the last
marking reached firing s. An interesting property of the firing of a transition sequence
is that the final marking can be computed using a single equation: M ′ = M + Iσ where
σ = σ(s) is the so called firing count vector (FCV) associated to s. To be more specific
the j-th element of σ is the number of times that transition j fires in s. A FCV is said to
be admissible if it admits at least an enabled transition sequence.
A Petri net is said to be live if every marking belonging to the net allows to fire every
transition of said PN after a suitable transition sequence.
A marking M is said to be reachable in ⟨N,M0⟩ if there exists a TS enabled in M0 that
ends in M , M0[s⟩M ; the set of all the markings reachable from M0 is called the reachability
set of ⟨N,M0⟩ and is referred to as R(N,M0). Another important characteristic of Petri
Nets is boundedness ; a place pi ∈ P is said to be bounded if and only if pi has a finite
number of tokens in all the reachable markings of the net, namely ∃k > 0|M(pi) ≤
k,∀M ∈ R(N,M0). A Petri net is bounded if and only if all its places are bounded.
If it exists, a vector y > 0 such that Iy = 0 is called a T-invariant ; it is trivial to
understand that a transition sequence whose firing count vector is a T-invariant results
in a null net marking modification, M ′ = M , taking the PN back to the initial marking.
A key feature of Petri nets is that they can easily be represented graphically. Being
a higher level representation technique, a graph ensures a more direct and immediate
comprehension, emphasising the way transitions connect places and conveying a general
idea of the structure of the system being analysed.

1| Literature Review and Theoretical Foundations 9

Figure 1.1: A simple example of a marked Petri Net.

Places are represented as circumferences which may contain tokens in the form of black
circles; transitions are depicted as orientated arrows with a perpendicular segment in
the middle where multiple transitions can be joined together. They may have a number
indicating the weight of the transition which, if absent is defaulted to 1, and a uniquely
identifying label. [2]

1.1.2. Time Petri Nets

All of the previous considerations are inherited by time PNs too, with some necessary
integration that will be discussed shortly. A net of this kind is defined using the couple
Nd = (N,Q) where N = (P, T, Pre, Post) is a generic PN and Q : T → Q × (Q ∪ {∞})
defines the set of static closed intervals for each transition of the net. More specifically,
considering ti ∈ T , function Q assigns a lower bound li ∈ Q and an upper bound ui ∈ Q
which can also be infinite. Namely Q(ti) = (li, ui), where li ≥ 0, ui ≥ li, li ̸= ∞. This
means that transition ti may fire if it has been uninterruptedly logically enabled for a
minimum of li time units and it must fire after being uninterruptedly logically enabled for
ui time units. A TPN system consists of the pairing of a TPN Nτ with an initial marking
M0 at the initial time instant τ = 0, written shortly as ⟨Nτ ,M0⟩.
A transition is said to be enabled if the preceding place has enough tokens for it to fire
and the current time instant is inside the boundaries of the transition’s time window.
Sometimes it can be useful to indicate the transitions that are only logically enabled and
this is achieved using the set A(M) = {t ∈ T/M ≥ Pre(·, t)}.
Transitions are distinguished between controllable transitions and non-controllable tran-
sitions, the former type can be prevented from firing until a prescribed moment is reached
-its upper bound-, respecting the conditions imposed by the time constraints. The latter
type behaves just like uncontrollable transitions in untimed Petri nets. The presence of
controllable transitions is necessary for the system to be controllable as the control action
revolves around setting the time windows of controllable transitions such as to impose

10 1| Literature Review and Theoretical Foundations

a certain behaviour, independent of the randomness that characterises non-controllable
transitions.
A time-transition sequence (TTS) corresponds to a transition sequence, the main dif-
ference being that it consists of a sequence of pairs: the transition that fired and the
time instant it fired at. They are expressed analogously to the untimed case through
sτ = (ti1, τ1)(ti2, τ2)...(tik, τk) ∈ (T × R+

0)
∗, where τj is the time of firing of tij (j =

1, 2, ..., k) with τ1 ≤ τ2 ≤ ... ≤ τk. A TTS sτ enabled in M0 is denoted M0[sτ ⟩ while
the firing is M0[sτ ⟩Mk where Mk is the final marking reached by sτ . This implicitly
changes the definition of reachability, which has to account for time conditions as well:
given a net ⟨Nτ ,M0⟩, a generic marking M is said to be reachable if there exist a TTS
such that M0[sτ ⟩M . Equivalently to their time-independent counterpart, the set of all
reachable markings from M0 is called the timed reachability set, referred to by the ex-
pression Rτ (Nτ ,M0). It is easy to conclude that Rτ (Nτ ,M0) ⊆ R(N,M0) where N is the
untimed version of Nτ , considering that the addition of time specifications may result, in
the most permissive hypothesis, in no loss of reachability. As a consequence the purely
logical reachability is a necessary condition to have timed reachability.
The notion of boundedness does not change for TPNs, remarking the fact that the
boundedness of the untimed counterpart is a sufficient condition for the boundedness
of ⟨Ntau,M0⟩, [9].

Theoretical Assumptions

It is important to explicitly remark the theoretical assumptions that have been chosen for
this study of TPNs. Clearly, this work being the continuation of [2], the assumptions are
shared.
The first assumption is that of single server semantics, which means that, independently
of the enabling degree (how many times a single transition would be able to fire at a
given marking), only one transition can fire at a given time instant; hence the operations
that transitions represent must be executed one at a time by a single operation unit
or server [4]. Thus, this assumption only mildly restricts the operations that can be
modeled considering how transitions fire instantly and concurrent states can be added as
a workaround to represent parallel operations.
Secondly, the enabling memory policy states that transitions have no memory of any
previous enabling. This is to say that a transition that first gets disabled by the firing
of another transition and then becomes enabled again has no memory of the previous
enabling, which in turn results in its time-tracking timer restarting from 0, [17].
The final assumption can be disregarded for what concerns the work of this thesis, but it

1| Literature Review and Theoretical Foundations 11

is stated anyway for the sake of completion. It is assumed that the system cannot execute
idle loops in 0 time. This would create infinite trajectories taking 0 time to traverse.
Again, the limitations this implies are minimal as systems can be adapted in order to
exclude the aforementioned kind of loops.

1.2. Control of TDES

Let us now review the theory concerning the control of TDES, as described in [6], where
a general approach is proposed, essential to the understanding of supervisory control as
a whole.
In order to apply TDESs as models for supervisory control problems, it is crucial to define
how the transitions of TDES can be controlled by an external agent or supervisor. From
a theoretical standpoint, it is natural and advantageous to establish two criteria for the
control approach:

1. control should, at most, restrict uncontrolled behavior and never expand it

2. controlled behavior, while adhering to a specification constraint, should allow for
optimization by maximizing permissiveness.

Drawing from the concepts presented in [14] and [18], the initial focus is posed on identi-
fying the counterpart of the so called controllable events, which refers to transitions that
can be disabled. In essence, the fact that an event can be disabled implies that it can be
indefinitely prevented from occurring. Keeping in mind the first criterion, this suggests
that only remote events may fall into this category. If a potential event were disabled, it
could be prohibited from occurring even when it becomes imminent, and no competing
event is eligible to preempt it i.e. fire before it. The behaviour emerging from such a
scenario would only be justified by the presence of a control action.
To better address these considerations a new subset is introduced, denoted as Σhib ⊆ Σrem,
which denotes the set of prohibitible events. The control mechanism allows the supervisor
to remove a prohibitible event from the current list of eligible transitions at a specific
state S within the supervised TDES. Naturally, just like in the original model, the erased
event can be reinstated if and when G revisits state S later on.
In a timed environment another category naturally arises, i.e. that of forcible events.
They belong to a new subset Σfor ⊆ Σact which comprises the events that can be forced
to happen, a sort of opposite concept with respect to prohibitible events.
It should be noted how there is no defined relation between Σfor and any of Σhib, Σrem or
Σspe, so an event in Σrem can belong both to Σfor and Σhib.

12 1| Literature Review and Theoretical Foundations

Another useful concept to define is that of uncontrollable events and the set Σunc they are
part of. More specifically

Σunc := Σact − Σfor = Σspe ∪ (Σrem − Σhib)

is the set of eligible events that are impossible to erase by the control action. As a direct
consequence the set of controllable events Σcon can be defined as:

Σcon := Σ− Σunc.

It should be noted how a forcible event can be controllable or uncontrollable: an uncontrol-
lable forcible event cannot be directly prevented from occurring by means of disablement
(for instance the event of a plane landing can be delayed but not prevented indefinitely
from happening).
By the hypothesis formulated above, it is possible to describe the supervisor of a system
G as the decision maker that, at a given node n, selects a nonempty subset of eligible
events that respect the precedent assumptions.

1.3. State of the Art

Recently, research regarding TDESs focused on the development of hybrid models that
combine the logical and temporal aspects of the systems to be studied.
It is useful to remark the notation that will be used from now on regarding graphs. A
graph G is composed of a set of nodes N = n1, n2, ..., ni and a set of edges E = e1, e2, ..., ek,
namely G = (N,E). Each edge connects two nodes, e(nx, ny) where, in the case of oriented
graphs which is of interest for this thesis, nx indicates the node connected to the tail of
the arrow representing the edge while ny indicates the node connected to the head of said
arrow.

1.3.1. State Class Graph

A cornerstone regarding the aforesaid subject is presented in [5]. The paper presents an
enumerative analysis technique which conjunctively schematises the behaviour and anal-
yses the properties of a time-dependant system. The cited work takes inspiration from
[10], where a reachability analysis methods for untimed PN is proposed.
Novel elements are also presented: the state and the state class of a TPN, indispens-
able tools to move the framework to a shared paradigm between the timed and logical

1| Literature Review and Theoretical Foundations 13

specifications. A state class, also referred to as class, of a time PN is described as the
pair C = (M,Θ), where M is a reachable marking and Θ represents the firing intervals,
or domain, of the enabled transitions at that particular marking. Θ can be seen as a
n× 2 matrix where row i indicates the i-th enabled transition at marking M and the two
columns contain the lower and upper bounds of the same transition i. The state of a TPN
is S = (M,γ) where M identifies a reachable marking and γ is the analogous of Θ, with
the key difference that it keeps track of the amount of time elapsed since the transitions
in it got enabled. It is easy to notice that for a given class, the number of states is infinite,
as an infinitesimal change of time technically constitutes a new state. For this reason a
state can be conveniently seen as an "instance" of the class it belongs to.
A state class graph (SCG) is made of nodes that represent classes and edges that connect
said classes. Edges also represent the transition that fired from the root node to the new
one. Using a bounded SCG -considering a finite part of a SCG in case it is made of infinite
nodes and edges- of a TPN enables to more clearly check the behaviour of the system
that the TPN represents.
While undoubtedly being groundbreaking work, some shortcomings are present; the aim
of this graph is more to illustrate how the underlying TPN works and less to actively
act on it. The absence of a framework to describe the evolution of the temporal bounds
of the transitions limits the depth of the analysis, especially regarding control, that can
be performed on the considered net. For these reasons the concept of SCG has been
enhanced, as described in the following section.

1.3.2. Modified State Class Graph

In [1, 3] the SCG is revised and takes the form of the modified state class graph or MSCG.
There are two main differences that define the MSCG with respect to the SCG:

1. The introduction of labels associated with transitions, which is a relatively minor
addition that manages to summarise the time characteristics of the transitions that
fire.

2. The introduction of timing variables and constraints associated with the edges of
the net.

These changes enable to estimate the system’s state at a specific time instant τ based on
a timed observation consisting of labeled occurrences at specific time points. The concept
underlying the definition of the MSCG revolves around representing the firing domain
within a class by incorporating the firing intervals of transitions entering that class. Each
arc exiting or entering a class is associated with a variable. By introducing these modi-

14 1| Literature Review and Theoretical Foundations

fications to the graph, the number of nodes in the MSCG is always equal to or greater
than the number of nodes in the SCG. However, the property of finiteness for bounded
TPNs is preserved.
The notion of class previously introduced is also the foundation for the MSCG. The graph
allows to condense all the states that share a marking into a single class which constitutes
a node of the MSCG. The MSCG framework enables the use of better suited functions
for the study and manipulation of the underlying net. It should be pointed out that, for
the scope of the treatment at hand, the nets that are to be used are unlabeled, i.e. the
edges of the MSCG are labeled just with ti, the transition that fired, and a constraint on
the time identified by the so called firing time variable (FTV) ∆i to go from the node
connected to the tail of the edge to the one connected to the head of said edge. More
specifically, indicating with Mroot the marking of the parent node, said constraint takes
the form ∆i ∈ [l∗i , u∗

i],∀ti ∈ A(Mroot). No additional elements are added to the label of
edges. All things considered, it is a minor simplification that results in no loss of gener-
ality or precision.
To be more exhaustive let us consider a TPN system ⟨Nτ ,M0⟩, where Nτ = (N,Q) is a
time PN and M0 is its initial marking. The MSCG is an oriented graph whose nodes are
the classes created based on the TPN characteristics, namely, as described previously, a
unique combination of a reachable marking M ∈ Rτ (Nτ ,M0) and the set of inequalities
stemming from the enabled transition at that marking, the so called domain of the class.
Two classes are said to be equivalent if they have the same marking and domain. It is
good practice to label the edges of the MSCG as follows: (t,∆ ∈ [l∗, u∗]), where t ∈ T

is the transition that fired, leading to the class pointed by the arrow of the edge and
∆ ∈ [l∗, u∗] is the FTV that indicates the time that elapsed from the enabling to the
firing of t. The notation used to indicate the transition from a class Ck to the class Cj by
the firing of ti is CK [ti > Cj, while, to refer to the preceding or successive classes of Ck,
•Ck and Ck• are used respectively, [2, 3].

Construction of the MSCG

The construction of the MSCG has been thoroughly studied and analysed in past liter-
ature, notably in [3] and [2], and so the algorithms that implement this procedure have
already been proven to be theoretically sound. Nonetheless, a small summary of the
aforementioned work is of order.
The first step in building a MSCG is to create the initial class which is characterised by
the initial marking M0 and the set of inequalities associated to it at the initial time instant

1| Literature Review and Theoretical Foundations 15

τ = 0, which are referred to as Θ0. Starting from the initial class the algorithm iteratively
explores new classes and builds the domain corresponding to the enabled transitions of
their marking, getting new reachable markings as a result. Flags are used to keep track of
new and explored nodes. It is important to notice how not all logically enabled transitions
of a given class may be able to fire. As a matter of fact transitions whose lower bound is
greater than the minimum upper bound at that specific class cannot possibly fire.
The algorithm shown below was formulated in [3] and summarises the steps that are
needed to build the MSCG.
Some remarks about the pseudo-code are of order. At line 1 the first class C0 is created
and tagged; line 5 represents a critical step as it ensures that only the transitions that can
actually fire are taken into consideration, while simultaneously imposing that the lower
bound is always greater or equal than 0. Next, at line 6 the marking reached via the
firing of ti is defined as Mq. Subsequently the computation of the domain is performed,
which is going to change based on the fact that the considered transitions have just been
enabled or were already enabled in the previous class (lines 8-13). Finally at line 14 the
subsequent node (class) is created and the edge connecting it to its predecessor is labeled.
This label contains the transition that fired, an optional tag for it, and the time elapsed
since said transition got enabled (with the corresponding time interval).

16 1| Literature Review and Theoretical Foundations

Algorithm 1.1 Construction of the MSCG
input: A labeled TPN System
output: The corresponding modified state class graph

1: Initialisation: The root node C0 is labeled with the initial marking M0 and the
corresponding set of inequalities Θ0 defined as follows: ∀ti ∈ A(M0) let l0i ≤ θi ≤ u0

i

where l0i = li and u0
i = ui. Tag the root node as "new".

2: while a node tagged "new" exists do
3: Select a node Ck tagged "new".
4: for all ti ∈ A(Mk) do
5: if max{0, lki } ≤ minj: tj∈A(Mk){uk

j} where lki (uk
j) is the lower (upper) bound

associated with ti (tj) at class Ck then
6: Let Mq = Mk + I(·, ti) be the marking reached from Mk firing ti.
7: for all transitions tr ∈ A(Mq) do
8: if tr ∈ A(Mk) i.e. tr was already enabled at class Ck and Mk − Pre(:, ti) ≥

Pre(:, tr) then
9: let lqr = lkr −∆i, uq

r = uk
r −∆i

10: else
11: let lqr = lr, uq

r = ur

12: end if
13: end for
14: Add a new node Cq labeled with marking Mq and a set of inequalities Θq

15: defined as follows:
16: ∀tr ∈ A(Mq), let max{0, lqr} ≤ θr ≤ uq

r.
17: Add an edge from Ck to Cq labeled:
18: "ti, L(ti), ∆i ∈ [max{0, lki } ,minj: tj∈A(Mk){uk

j}]".
19: if There already exists a node equivalent to Cq in the tree then
20: Tag node Cq as "duplicate".
21: else
22: Tag node Cq as "new".
23: end if
24: end if
25: end for
26: Untag node Ck

27: end while

1| Literature Review and Theoretical Foundations 17

Example

Let us now consider the example used in [1, 3] to show how the construction of the MSCG
works.

The TPN to be analysed is the following:

Figure 1.2: The labeled TPN of the example.

Where the initial marking is [1 0 0 0 0]T and the transitions have the following character-
istics:

Transition Time window Label

t1 (0, 1) a

t2 (0, 2) ε

t3 (1, 3) ε

t4 (1, 5) ε

t5 (2, 3) b

Table 1.1: Characteristics of the Transitions of the TPN.

It should be specified that ε denotes the absence of a label for the transition, implying,
for instance, that there is not a sensor that detects the associated event when it happens.

18 1| Literature Review and Theoretical Foundations

The MSCG obtained by the application of Algorithm 1.1 is:

Figure 1.3: The MSCG of the example.

1| Literature Review and Theoretical Foundations 19

where the labels of the net elements are summarised in the following tables.

Class Marking Domain

C0 [1 0 0 0 0] 0 ≤ θ1 ≤ 1

C1 [0 1 1 0 0] 0 ≤ θ2 ≤ 2

1 ≤ θ3 ≤ 3

C2 [0 0 1 1 0] 0 ≤ 1−∆2 ≤ θ3 ≤ 3−∆2

C3 [0 1 0 0 1] 0 ≤ 0−∆3 ≤ θ2 ≤ 2−∆3

1 ≤ θ4 ≤ 5

C4 [0 0 0 1 1] 1 ≤ θ4 ≤ 5

2 ≤ θ5 ≤ 3

C5 [0 0 0 1 1] 0 ≤ 1−∆2 ≤ θ4 ≤ 5−∆2

2 ≤ θ5 ≤ 3

C6 [0 1 0 1 0] 0 ≤ 0−∆3 −∆4 ≤ θ2 ≤ 2−∆3 −∆4

C7 [0 0 0 2 0] ∅

Table 1.2: Labels of the nodes of the MSCG.

Edge Fired transition Label FTV window

T1 t1 a ∆1 ∈ [0, 1]

T2 t2 ε ∆2 ∈ [0, 2]

T3 t3 ε ∆3 ∈ [1, 2]

T4 t3 ε ∆3 ∈ [max {0, 1−∆2}, 3−∆2]

T5 t4 ε ∆4 ∈ [1,min {2−∆3, 5}]
T6 t2 ε ∆2 ∈ [max {0, 0−∆3},min {2−∆3, 5}]
T7 t4 ε ∆4 ∈ [1, 3]

T8 t2 ε ∆2 ∈ [max {0, 0−∆3 −∆4}, 2−∆3 −∆4]

T9 t4 ε ∆4 ∈ [max {0, 1−∆2},min {5−∆2, 3}]
T10 t5 b ∆5 ∈ [2, 3]

T11 t5 b ∆5 ∈ [2,min {5−∆2, 3}]

Table 1.3: Labels of the edges of the MSCG.

20 1| Literature Review and Theoretical Foundations

It is useful to point out how to interpret the labels of the elements that constitute the
graph. Let us consider the instance of T6: from class C3, marked with [0 1 0 0 1], tran-
sition t2 fires, leading to class C5, marked with [0 0 0 1 1]. The FTV corresponding to
T6 must be in the time window [max {0, 0−∆3},min {2−∆3, 5}] considering how the
domain of C3 is structured.
It is clear how treating the control of a TPN by the means of its MSCG results in remark-
able advantages. Time dependencies are explicitly expressed, allowing for the seamless
tracking of both the logical and temporal evolution of the system.

21

2| Problem Statement

Having acquired the necessary theoretical foundation, it is now possible to properly state
the problem that this work addresses. More specifically, considering the substantial over-
lap with the problem treated in [2], the same formulation for the problem can be used.
In order to provide an exhaustive description, it is divided into three sections: Control
Specifications, Control Action and finally an overview of the Control Synthesis ; this en-
sures that a detailed outlining of the problem is laid out, which in terms conveys a clearer
image of the requests that need fulfilling, subsequently providing a strong framework to
base the solution on.

2.1. The Control Specifications

It can be assumed that, for any given problem of the kind that this work aims to address,
the provided information consists of a Time Petri Net System. This incorporates, as
said in the previous chapter, a marked TPN, which describes the logical relationships
between the events that are being modelled and the states of the system in the form of
marked places, in conjunction with the time windows for each transition that constitutes
the system. In addition to these components, further data are required to formulate the
Control Specifications that are to be fulfilled by the solution returned by the program.
These are: the Target Marking Set Li ⊆ Rτ (Nτ ,M0), namely a non-empty set of reachable
markings; the Set of Forbidden Markings Fi ⊆ Rτ (Nτ ,M0) which, as the name suggests,
must be avoided throughout the evolution of the system and that can be empty. Lastly,
the Absolute Departure Time Interval (ADT) IDi = [lDi , u

D
i] with lDi ∈ R+

0 ∪ {∞}, uD
i ∈

R+
0 ∪ {∞}, which defines the allowed time span for leaving Li, and the Absolute Arrival

Time Interval (AAT) IAi = [lAi , u
A
i] with lAi ∈ R+

0 , u
A
i ∈ R+

0 ∪ {∞}, which defines instead
the time window in which Li is to be reached.
These specifications can be conveniently condensed into one formulation, the so called
Generalised Timed State Sequence (GTSS), which takes the form of a sequence of 4-
tuples (Li,Fi, I

A
i , I

D
i). To be more specific, the initial 4-tuple is slightly different as it

is composed of the initial marking L0, the initial time instant τ0 and a departure time

22 2| Problem Statement

interval ID0 and so it can be represented with (L0, ∅, τ0, ID0). It is useful to point out
how a path to a target marking can have intermediate points that effectively divide it
into smaller paths, allowing for a more precise statement of the specifications. An n-step
GTSS takes the form of:

g = (L0, ∅, τ0, ID0) (L1,F1, I
A
1 , I

D
1) ... (Ln,Fn, I

A
n , I

D
n)

where L0 = {M0} represents the initial marking, τ0 is the initial time instant and ID0

specifies the initial ADT interval. In order for the GTSS to be consistent - and therefore
executable - the upper bounds need to be greater than the lower bounds and so lAi ≤
lDi , uA

i ≤ uD
i , i = 1, ..., n, and lDi−1 ≤ lAi , uD

i−1 ≤ uA
i , i = 1, ..., n must be verified.

2.2. The Control Action

Controlling a TPN bears little to no resemblance to controlling continuous or discrete
time physical systems. The "degrees of freedom" on which to act consist of the decision
on when to fire the controllable transitions, in accordance to the time windows prescribed
by the net. This control action goes beyond the disablement of controllable transitions
until their deadlines are met -practically preventing them from firing-, it can also involve
partially disabling a transition for a portion of its allowable Firing Time Interval (FTI). In
order to express this partial disabling, a time-varying control function is introduced. This
function acts as a restriction on the firing regions associated with the enabled controllable
transitions in the current marking, allowing for the implementation of partial disabling
actions.
Considering a generic state of the TPN at hand Sk = (Mk,Φk), the control action is
defined as a time-dependent function of the system state: F(Sk, τk) = Φ̂k, where

Φ̂k = {l̂ki ≤ ϕ ≤ ûk
i ,∀i ∈ Ie(Sk)},

where the hat-variables are the new time bounds defined by the control function Φ̂ at the
state Sk and time instant τk, and Ie(Sk) identifies all the enabled transitions at state Sk.
The expressions l̂ki ≥ lki and ûk

i ≤ uk
i need to be verified if the considered transitions are

controllable, as the control window can at most be as wide as the originally allowed time
window; conversely, the time bounds of uncontrollable transitions cannot be effected by
the control action.

2| Problem Statement 23

Two types of events can be distinguished:

• Prohibitible Events : if l̂ki = ûk
i = ∞ for a transition ti, then the control action

completely disables ti.

• Forcible Events : if l̂ki = ûk
i = δ for a transition ti, then ti must fire exactly at time

τk + δ.

By applying the control law F to a TPN system ⟨Nτ ,M0⟩ a system denoted by ⟨Nτ ,M0,F⟩
is obtained. Naturally, the set of reachable markings of the new system will be a subset
of the reachable markings of the uncontrolled net, namely: Rτ (Nτ ,M0,F) ⊆ Rτ (Nτ ,M0).

2.3. Control Synthesis Overview

In order to compute the control action in a generic state Sk, a worst-case scenario is
assumed. This means that the FTIs of the enabled controllable transitions must be
defined in a way that ensures that the GTSS can be satisfied for all possible firings of
uncontrollable transitions. This guarantees that the system can always follow a legal
trajectory, provided that the controllable transitions enabled in Sk are fired within their
prescribed FTIs, and subsequent firings of controllable transitions meet the calculated
conditions at τk.

This approach accounts for all possible system evolutions in the computation of the con-
trol action. To perform the search for all TTSs that move the system from one marking
to another, the modified state class tree (MSCT) of the system (equivalent to the MSCG
but without loops) is used. This choice aims at simplifying the construction of the graph,
since loops are computationally intensive to identify, as will be highlighted exhaustively
in the following chapter. Computing the full MSCT is often demanding and unnecessary,
especially since only a smaller portion of the MSCT is relevant to the given GTSS. To
address this, a partial MSCT, shortened to PMSCT, is constructed. The core difference
is that the PMSCT encompasses only and all legal TTSs, and, by doing so, the com-
putational burden associated with generating and processing the MSCT is significantly
reduced. The allowed FTIs of the controllable transitions are then calculated based on
this graph.
To be more specific, a step-by-step procedure to calculate the control function in any given
state is summarised below; this procedure takes inspiration from the one introduced in
[2], adapting the parts that required a change in the approach.

24 2| Problem Statement

Here are the four steps:

• Step 1. A first MSCT is constructed while simultaneously defining it mathemati-
cally. This step ends either if the target marking is reached or if the time condition
of the GTSS is breached.
All the classes of the MSCT have their flag initialised as forbidden.

• Step 2. The complete MSCT is analysed and the paths leading to the target
markings are calculated. These paths are all logically legal as they already belong
to the MSCT of the underlying net.
The classes that belong to at least one trajectory get their forbidden flag removed.

• Step 3. The PMSCT is obtained by pruning the MSCT previously calculated, i.e.
by removing all the classes flagged as forbidden (and the arcs connecting them).
The mathematical definition of the MSCT is also adapted to reflect the PMSCT.
Additional constraints are added so that the evolution of the system remains within
the PMSCT.

• Step 4. The mathematical definition of the PMSCT is used to create an optimi-
sation problem from which the admissible FTIs are calculated for each path. If all
paths allow for an FTI to be calculated, then the intersection of the intervals is the
final solution. Otherwise, the paths that do not admit a solution are flagged and
discarded, and step 3 and 4 are iterated.

A crucial consideration concerning when the control function should be invoked is of
order.
Since the control action cannot influence the firing of uncontrollable transitions, it is
computed only when the system enters a class where at least one controllable transition is
enabled. As long as the system remains in the same class, time continues to pass without
any changes in the constraints on the controllable transitions. Hence, there is no need to
invoke the procedure again until a transition actually fires.
Although it may seem logical to anticipate the computation of the control action before
the actual enabling of a controllable transition, this approach is not pursued here due to
the tendency to produce over-conservative conditions. As a matter of fact, prior to the
firing of an uncontrollable transition, one must consider the possibility of said transition
firing at any point in time within its corresponding FTI. However, once the transition has
fired, the remaining portion of its FTI becomes irrelevant. Consequently, the constraints
taken into account during the preceding computation of the control action can be relaxed,

2| Problem Statement 25

potentially resulting in larger FTIs for the controllable transitions that still need to be
fired in order to fulfill the GTSS. This justifies the recalculation of the control action after
the firing of any uncontrollable transition, as long as at least one controllable transition
is enabled in the resulting state.

Algorithm 2.1 outlines how the control function is computed. This requires a TPN in
addition to its initial state and time and the prescribed GTSS. Whenever a solution is
present, the algorithm follows the evolution of the system and recalculates the FTIs of
the enabled controllable transition each and every time a class changes. Once the GTSS
is completed the process stops.
The updated constraints are then fed to the controller that will actually decide which
controllable transition to fire and when.

Algorithm 2.1 Online Approach for the Control Algorithm
Input: ⟨Nτ , M0, S0 = (M0,Γ0), τ0, g.
Output: The FTI for the Controllable Transitions.

1: Scurr = (Mcurr,Γcurr) := S0; τcurr := τ0

2: for all ti ∈ Te(Mcurr) do
3: if ti ∈ Tc then
4: compute Ft(Scurr, τcurr) = [l̂curri , ûcurr

i];
5: if a solution does not exist then
6: exit;
7: end if
8: else
9: l̂curri = lcurri ; ûcurr

i = ucurr
i ;

10: end if
11: end for
12: Feed Ft(Scurr, τcurr) back to the controller;
13: while g is not completed do
14: if obs = (Tobs, τobs) ̸= ∅ i.e. a new set of events is observed then
15: Sprev = (Mprev,Γprev) := Scurr;
16: τprev := τcurr;
17: σobs := σ(Tobs;
18: Mcurr := Mprev + Cσobs;
19: τcurr := τobs;

26 2| Problem Statement

Online Approach for the Control Algorithm
20: for all t ∈ Te(Mcurr) do
21: if t ∈ Te(Mprev) \ Tobs then
22: Γcurr(t) := Γprev(t) + (τcurr − τprev);
23: else
24: Γcurr(t) := 0;
25: end if
26: end for
27: Scurr := (Mcurr,Γcurr);
28: for all ti ∈ Te(Mcurr) do
29: if ti ∈ Tc then
30: compute Ft(Scurr, τcurr) = [l̂curri , ûcurr

i];
31: else
32: l̂curri = lcurri ; ûcurr

i = ucurr
i ;

33: end if
34: end for
35: Feed F(Scurr, τcurr) back to the controller;
36: end if
37: end while

27

3| Methodology and Algorithms

This chapter will follow the procedures through which the solution is calculated, from
defining the problem data to the calculation of the final FTIs. It focuses on how the
algorithms were developed and how they work, presenting a pseudo-code for each algo-
rithm. The pseudo-code provides meaningful insights about the implementation of the
algorithms, highlighting the critical points that might prevent them from functioning
properly.

3.1. Declaration of the Data

Recalling the definition of a Petri Net, two p× t matrices -referred to as Pre-matrix and
Post-matrix- are required, where p is the number of places of the net and t its number
of transitions. Both matrices are populated using the weights associated to the arcs
connecting places and transitions. The initial marking M0 is a p × 1 vector indicating
how many tokens are present in each place at the initial time instant.
The Q matrix provides the information about the time windows for each transition, so
it is composed of t rows and two columns to express the lower and upper bounds of the
transition. Next, a t×1 vector is needed to specify whether the transitions are controllable
or non-controllable. This is accomplished using a 1 to indicate the former type and a 0
for the latter.
Lastly, information about the GTSS is required, including the initial markings set, the
target markings set and the forbidden markings set, all composed of p × 1 vectors. The
ADT and AAT intervals constitute the time requirements and take the form of two 1× 2

vectors.

28 3| Methodology and Algorithms

3.2. Construction of the MSCT

It is not uncommon for TPNs to present cycles in their structure, i.e. an admissible TS
whose starting and final markings are the same. The presence of cycles in TPNs has
interesting consequences for the MSCGs constructed from them, which will be analysed
below.
The presence of loops in MSCGs requires a function that recognises when classes are
equivalent. Two classes are equivalent when they possess the same marking and equiva-
lent domains -two domains are equivalent when they represent the same time intervals for
the enabled transitions at that marking. Thus, the aforementioned function has to verify
this pair of conditions, a simple task as far as the marking is concerned, but a complex
one for what regards the equivalence of the domains. This complexity is the main reason
why, as cited in the previous chapter, the modified algorithm developed for this thesis cre-
ates a tree, which does not have loops and so develops only in one direction. Algorithms
that construct trees only analyse each node once greatly simplifying the procedure and
lowering the computational cost.

Example

Let us consider the cyclic TPN:

Figure 3.1: A simple cyclic TPN.

3| Methodology and Algorithms 29

Its corresponding MSCG, according to algorithm 1.1, will be:

Figure 3.2: The corresponding MSCG.

where, for a given edge i of the MSCG, the label is composed of Ti which is the identifying
number of the edge; the transition that fired as tk; and ∆i ∈ [lbi, ubi] which is the time
window of the FTV.
The graph can be converted into a tree by avoiding the step which checks whether the
class to be added is equivalent to one that is already part of the graph or not. The result
is presented below.

Figure 3.3: The corresponding MSCT.

30 3| Methodology and Algorithms

3.2.1. Boundedness Assurance

Opting for a tree structure, while simplifying the construction of the graph, leads to a
severe drawback referred to as state explosion. This happens because every new entry
introduces a new class, thus causing an exponential growth of the number of nodes of the
tree.
A solution is implemented to prevent the tree from becoming too large or even unbounded
-a condition that would cause the program to never stop. By labeling the edges with the
cumulative time that it takes to traverse them, the exploration of a path can be interrupted
once a maximum allowed time of exploration is reached. This parameter is referred to as
the maximum time limit (MTL).
In accordance with the policy of maximal permissiveness, all paths that might fulfill the
specifications must be considered. For this reason, the cumulative time value that edges
are labeled with is the sum of the lower bounds of the transitions that have fired in the
path, adjusted for the amount of time transitions have been enabled for.
This operation is summarised by the following recursive algorithm, in which the edges are
labeled as the tree is explored. The key aspect is the discounting of the lower bound of
the time elapsed since the fired transition was first enabled (line 6).
Dot notation is used to identify the relationship that classes have in the tree: given a
generic class C, C.prev identifies the parent class of C, while C.succ indicates its successive
class. This does not lead to ambiguity thanks to the tree’s inherent structure: every node
of the tree has only one parent.

3| Methodology and Algorithms 31

Algorithm 3.1 MTL edge labeling (MTL_el)
Input: The MSCT up to the newly added class C, its parent class Cparent = C.prev, the
fired transition t, and the initially defined lower bound of t: lbt.
Output: the time label for the considered edge t_min.

1: if t ∈ A(Mparent) then
2: let Cparent_parent = Cparent.prev be the parent node of Cparent;
3: if t ∈ A(Mparent_parent) then
4: let t_min = lbt −MTL_el(t, Cparent_parent, lbt);
5: else
6: let t_min = lbt − lbparentscatt ;
7: end if
8: else
9: let t_min = lbt;

10: end if

As a last operation, the label is calculated as the sum of t_min and the label of the edge
leading to the parent node Cparent, which represents the time elapsed from the initial time
instant to reach Cparent. It must be noted how, if t_min is not positive, the new label
will be equal to the label of the previous edge.
At line 2, Cparent_parent refers to the parent node of the considered parent node. This,
in conjunction with the recursive nature of the algorithm, allows for the algorithm to
explore the tree upwards, considering all the classes in which the fired transition has been
enabled.
Line 4 is where the algorithm is invoked again with a different input: the use of the
Cparent_parent node enforces that the exploration moves up the tree.
The lbparentfired at line 6 symbolises the initially defined lower bound of the transition that
fired in the parent class considered in the iteration of the algorithm.

The actual enforcement of the MTL criterion is performed as the tree is constructed:
edges whose cumulative time is less than the value of the MTL are explored and added
to the tree, otherwise they are discarded.
It can be deduced that a tree whose construction was stopped because of this criterion will
have its leaf-nodes -the terminal nodes of the tree- reachable within MTL time instants
from τ0.

32 3| Methodology and Algorithms

3.2.2. Structural Matrices of the MSCT

Considering how the value of every FTV of the edges of the graph must stay inside the
limits defined by their firing window, effectively, these windows represent the conditions
that the FTVs must satisfy at all times. Firing windows can be interpreted as two in-
equalities that define the range of values that each FTV can take: every FTV must be
greater or equal to its lower bound and less or equal to its upper bound in order to be
legal. Collecting the inequalities of all the FTVs of a net into a system, referred to as the
system of structural inequalities, creates a linear problem that must be always verified in
order to move in the space of the MSCT.
The system of structural inequalities can be represented using the standard formulation
of a linear problem of inequalities A ·∆ ≤ b, where matrix A is the structural matrix, ∆ is
the vector containing the FTVs and b is the structural vector of known terms. It should be
pointed out how, throughout the work of this thesis, the linear problem will be addressed
using two structural matrices, one for the "greater or equal" inequalities and one for the
"less or equal". This is solely for practical reasons, as in order to solve the system, the
two matrices must be merged together, after changing the sign of the "greater or equal"
structural matrix and vector of known terms.
It follows that the structural linear problem has a one-to-one correspondence to its graph,
and mathematically defines the system being studied.
Below, two frameworks for building the system of inequalities are presented. One uses
symbolic variables as an intermediate step to obtain the structural matrix, while the other
builds it directly.

Structural Inequalities using Symbolic Variables

The basic reasoning behind this approach is to create a mathematical object for the FTVs
of the system, adding the structural constraints to said objects as the tree is explored and
enlarged.
Let us consider a generic edge of a MSCT Ti, class Cj connected to its tail and class Ck

connected to its head. Ti is labeled with th, the transition that fired, and ∆i, its FTV. Dj

is the domain of Cj, consisting of n inequalities of the kind lbq ≤ ϕq ≤ ubq for q = 1, 2, ..., n

-one for each enabled transition in Cj-.

3| Methodology and Algorithms 33

Figure 3.4: A generic section of a MSCT.

The time window of ∆i must be:

max {0, lbh − δprevious i} ≤ ∆i ≤ min
q:tq∈Dk

{ubq − δprevious q}

where δprevious i and δprevious q represent the numerical components for the time elapsed
since the considered transition first became enabled. Naturally, the transitions enabled
in Cj will have δprevious = 0.
The left bound employs the "maximum" operator to ensure that ∆i is greater or equal
to 0. The right bound employs the "minimum" operator to obtain the minimum value of
all the upper bounds of Dj, adjusted for the amount of time they have been enabled for.
This is because, in order for a specific transition to fire, its upper bound must be less than
or equal to the minimum upper bound of the domain it belongs to. Otherwise, recalling
the basic assumptions of Petri Nets, the transition whose upper bound was reached will
fire in its stead.
Using symbolic variables to model the FTVs of the system means that the program cre-
ates a mathematical object for each and every FTV of the system. Subsequently, the
aforementioned constraints are enforced each time a new class is added to the MSCT.
When the tree is complete, a function converts the relationships between the FTVs into
the structural matrix of the corresponding linear problem and its structural vector of
known terms.
This implementation is the most direct translation of algorithm 1.1, so the same pseudo-
code can be used as reference to understand its workings. This similarity makes this
approach the more intuitive to be implemented of the two, but its benefits are limited
-the underlying premise makes it severely inefficient and slow. As a matter of fact, the
program is required to manage a mathematical object for every FTV of the MSCT. More-
over, multiple transitions might be enabled in the same class, therefore multiple FTVs
are present in a single domain. This requires large memory usage and effectively prevents
the practical use of this approach.

34 3| Methodology and Algorithms

Direct Method to obtain the Structural Inequalities

The core idea behind this method is to update the structural matrices as the MSCT is
constructed. This is possible thanks to the fact that, for each new edge being added, the
resulting constraints never violate the ones already part of the system. Moreover, when
transitions stay enabled over multiple classes, they depend on the constraints that are
already part of the system.
Throughout this thesis the two structural matrices that are built while exploring the
tree are referred to as VM -for the "greater or equal" inequalities- and Vm -for the
"less or equal" inequalities. The two vectors of known terms are called m for the one
corresponding to VM and n for the one corresponding to Vm. Consequently, recalling
the standard structure for a system of inequalities, the system matrix takes the form of
A = [−VM;Vm], while the vector will be b = [−m;n].

Let us consider the generic section of a MSCT represented by figure 3.4, recalling how
the time window of the FTV of the edge must belong to the time window

max {0, lbh − δprevious i} ≤ ∆i ≤ min
q:tq∈Dk

{ubq − δprevious q}

In order to obtain the actual linear inequalities to be added to VM and V m some ma-
nipulation of the bounds of the window is necessary, as both extremities depend on the
result of non-linear operators.
Exploiting the properties of the "maximum" operator, the following expression is true:

x ≥ max{a1, a2, ...an} →

x ≥ a1

x ≥ a2
...

x ≥ an

and the same stands for the analogous case

x ≤ min{a1, a2, ..., an} →

x ≤ a1

x ≤ a2
...

x ≤ an

3| Methodology and Algorithms 35

As far as the lower bound is concerned, there will always be two terms inside the "maxi-
mum" operator, therefore, for each FTV of the MSCT, two linear inequalities are added
to VM . This allows for the prediction that VM will be a 2d× d matrix, recalling how d

is the number of FTVs of the system.
The minimum operator that provides the value of the upper bound has a non-predictable
number of terms in it, so it is not possible to predict the number of rows V m will have.
Nevertheless, it is safe to assume that it will be greater than or equal to the number of
FTVs of the system, as it will always contain at least one term as the MSCT is being
constructed. The considerations regarding the number of rows of the two matrices apply
to their respective vectors of known terms as well.

The second meaningful change performed on the expressions that define the time window
is division of the triangular inequalities into the two basic inequalities they are made of.

lbi − δiprevious ≤ ∆i ≤ ubj − δjprevious →

∆i + δiprevious ≥ lbi

∆i + δjprevious ≤ ubj

where, for the sake of brevity, only one "less or equal" inequality is taken into considera-
tion.
VM and V m will be populated by the coefficients of the FTVs -which can be either 0 or
1-, while m and n will be filled with the corresponding lower and upper bounds of the
initially declared time windows. Two additional vectors, the id vectors idV M and idV m

for VM and V m respectively, are necessary. They link rows to their corresponding FTV,
allowing for the searching of a row based on the FTV of interest.
As a consequence of this structure, the time dependent part of the inequalities will be
completely contained within the structural matrices, so, when a new class is added to the
tree, its domain will only require the initially defined firing windows contained in matrix
Q. This new concept of domain is referred to as the temporary domain of a class.

Below, the algorithm that manages the update of the structural matrices is presented. It
should be specified that ei is a generic edge of the tree, Cparent is the class connected to
its tail and Csibling is the one connected to its head.

36 3| Methodology and Algorithms

Algorithm 3.2 Update of the Structural Matrices
Input: Cparent, Csibling, ei, VM, Vm, m, n, idvM , idvm.
Output: The updated structural matrices VM, Vm and vectors of known terms m, n.

1: for all tj ∈ A(Msibling) do
2: if tj ∈ A(Mparent) & max{0, lbsiblingj } ≤ mink: tk∈A(Msibling){ub

sibling
k } then

3: add a row to VM and idvM using policy 1;
4: for all tk ∈ A(Msibling) do
5: if tk ∈ A(Mparent) then
6: add a row to Vm and idvm using policy 1;
7: else
8: add a row to Vm and idvm using policy 2;
9: end if

10: end for
11: add the arc corresponding to the new row;
12: update the total minimum time;
13: else
14: if max{0, lbheadj } ≤ mink: tk∈A(Mhead){ubheadk } then
15: add a row to VM and idvM using policy 2;
16: for all tk ∈ A(Msibling) do
17: if tk ∈ A(Mparent) then
18: add a row to Vm and idvm using policy 1;
19: else
20: add a row to Vm and idvm using policy 2;
21: end if
22: end for
23: add the arc corresponding to the new row;
24: update the total minimum time;
25: end if
26: end if
27: end for

3| Methodology and Algorithms 37

Policy 1
1: new id vector row(1) = new FTV id;
2: new matrix row(1:end) = prev. row(2:end); {prev. row is the row corresponding to ∆i

of ei}
3: new matrix row(end + 1) = 1;
4: new known term row(1) = corresponding temporary domain entry;

Policy 2
1: new id vector row(1) = new FTV id;
2: new matrix row(end + 1) = 1;
3: new known term row(1) = corresponding temporary domain entry;

The condition at line 2 and line 18 is analogous to the one inside the if clause at line 5
of algorithm 1.1: it checks whether the transition being considered can actually fire, i.e.
that its lower bound is less than or equal to the smallest upper bound of the considered
temporary domain Dhead.
The characterising difference between the two policies is a consequence of the considered
transition having been previously enabled (policy 1) or not (policy 2). In the first case,
an additional step is required to account for the contribution of the time elapsed since
said transition was enabled. This information is contained in the row of the structural
matrix corresponding to the FTV of the edge ei: ∆i. Therefore, to identify which row
refers to said FTV, the id vector of the appropriate structural matrix is checked for the
corresponding FTV id, consequently obtaining the number of the desired row.
These operations are performed following the instructions of line 1-2 of policy 1. Line
3 completes the row by setting the place value relative to the current FTV equal to one.
Lastly, Line 4 fills the place of the vector of known terms with the corresponding value
of the temporary domain.
Policy 2 is equivalent to policy 1, the sole difference being the absence of the second step
of policy 1, in view of the enabling of the transition that is being considered in Chead.

Example

It is useful to illustrate an example of the tree and structural matrices being updated.
For practical reasons the example in chapter 1 is used, specifically the addition of the
edges stemming from C3 to the MSCT. The only change implemented here is a switch
to uniquely defined FTVs, achieved by using their edge’s number as subscript for the
corresponding FTV.

38 3| Methodology and Algorithms

In this case Cparent = C1, Csibling = C3, with their markings and domains named anal-
ogously; ei = T3 meaning that ∆i = ∆3. Following the algorithm, we start with the
first transition of D3: t2, which was already enabled in C1. In order for t2 to fire, the
corresponding FTV, ∆5, must be greater or equal to the lower bound of t2 and less than
or equal to all of the upper bounds of the transitions in Dsibling. Hence, accounting for
∆3, the inequalities at play are:

∆5 ≥ 0

∆5 +∆3 ≥ 1

∆5 +∆3 ≤ 2

∆5 +∆3 ≤ 5

where the first inequality is omitted in the final version of VM since the "greater than
or equal to 0" condition will be enforced when calling the function that solves the linear
problem (all FTVs are non-negative). It should be noted how the second inequality will
be added to VM , and the remaining two will be added to V m.
The fact that t2 was enabled in C1 means that policy 1 must be used to update VM and
the first new row of V m:

1: idvM(new) = [5];

2: VM(new) = [0 0 1];

3: VM(new) = [0 0 1 0 1];

4: m(new) = 1;

1: idvm(new) = [5];

2: Vm(new) = [0 0 1];

3: Vm(new) = [0 0 1 0 1];

4: n(new) = 2;

where idvM and idvm are the two vectors containing the id of the FTV of the corre-
sponding structural matrix row.
For the second new row of V m, policy 2 is used:

1: idvm(new) = [5];

2: Vm(new) = [0 0 0 0 1];

3: n(new) = 5;

3| Methodology and Algorithms 39

The second enabled transition in D3 is t4, which was not enabled in D1. Therefore, ∆6

being the FTV of the new edge, the system of structural inequalities to be added takes
the form:

∆6 ≥ 0

∆6 ≥ 1

∆6 +∆3 ≤ 2

∆6 ≤ 5

Policy 2 must be chosen for the update of VM and of the second new row of V m:

1: idvM(new) = [6];

2: VM(new) = [0 0 0 0 0 1];

3: m(new) = 1;

1: idvm(new) = [6];

2: Vm(new) = [0 0 0 0 0 1];

3: n(new) = 5;

while Policy 1 must be used to update the first new row of V m as seen below:

1: idvm(new) = [6];

2: Vm(new) = [0 0 1];

3: Vm(new) = [0 0 1 0 0 1];

4: n(new) = 2;

With both procedures being defined, it is possible to assess their performances. To do
so, the example presented in chapter 1 is considered once again. To quantitatively
determine the effectiveness of the two approaches, the functions that implement them are
timed. Considering the presence of a loop in the TPN, the MTL parameter is necessary
to stop the exploration of the tree -the chosen value is 10 time instants.
For the first method, using symbolic variables, it takes 8.526973 seconds to complete
the task. Using the second method, directly computing the elements of the structural
problem, the time required is cut to 0.147066 seconds. The difference is staggering, and

40 3| Methodology and Algorithms

so justifies the decision to only utilise the direct approach from here onward.

3.3. Path-finding Algorithm

The task performed by the path-finding algorithm is to find all the paths that lead from
the starting node to the target one(s). This task must be performed as it is necessary
to identify all the legal trajectories of the tree, both from a logical and from a temporal
perspective. Hence, taking into consideration that the check on the temporal aspects of
the specification is going to be performed at a later stage, the path-finding algorithm must
provide all the logically compliant trajectories.
There is a substantial amount of research concerning path-finding algorithms, with opti-
mal algorithms existing for a variety of tasks. As far as the problem at hand is concerned
-finding a path between two nodes of a graph- there are two main options to choose from:
the breadth-first search (BFS) and the depth-first search (DFS). Both options completely
explore the graph, ensuring the exhaustiveness of the solution they provide. The dif-
ferentiating characteristic is that the former analyses all the nodes at the present depth
first, subsequently moving on to a lower level, while the latter, starting from a root node,
explores as far as the graph reaches, backtracking once a leaf-node or an already explored
one is found. Both approaches require extra memory to function, a queue (FIFO policy)
in the case of the BFS and a stack for the DFS.
The two algorithms work in similar manners and neither presents any noticeable advan-
tages when applied to the case at hand. This being said, BFS is preferred because DFS
does not guarantee the completeness of the solution. In fact, DFS can enter a part of the
graph that functions as a trap and thereby does not allow the algorithm to explore the
remaining areas of it. BFS will eventually find a goal state if it exists in the graph.

3.3.1. Remarks about the Breadth-First Search Algorithm

Some of the most important aspects of BFS, already studied extensively in past literature,
are summarised in the following section.
The complexity of the BFS algorithm can be expressed as o(|V |+|E|), where |V | represents
the number of vertices and |E| represents the number of edges in the graph. In the worst
case scenario, every vertex and every edge will be explored. It is important to note that
the complexity of o(|E|) can vary between o(1) and o(|V |2), depending on the sparsity
of the input graph. When the number of vertices in the graph is known beforehand and
additional data structures are used to track which vertices have been added to the queue,
the space complexity can be expressed as o(|V |). This is in addition to the space required

3| Methodology and Algorithms 41

for storing the graph itself, which can vary depending on the chosen representation. [7, 13]
In algorithm analysis, BFS is assumed to operate on finite graphs represented explicitly
using adjacency lists, adjacency matrices, or similar representations, so there does not
need to be an adaption of the data that constitutes the MSCT.

The pseudo-code of BFS as described in [7] is:

Algorithm 3.3 Breadth-First Search Algorithm
Input: A graph G, a starting node root, a target node goal.
Output: The goal state. The parent links trace the path back to the root node.

1: Let Q be a queue;
2: Label root as explored;
3: Add root to Q;
4: while Q is not empty do
5: let v be the first element of Q;
6: remove v from Q;
7: if v == goal then
8: return v;
9: end if

10: let w be the nodes reachable from v;
11: for all w do
12: if w is not labeled as explored then
13: label w as explored;
14: let v be the parent node of w;
15: add w to Q;
16: end if
17: end for
18: end while

A couple of remarks are of order. In line 5, the first element of the queue is the first that
was added to it, since the policy of a queue is FIFO (First In First Out). The if clause
at line 12 is superfluous in the case of a tree structure, as loops are not present.
The way BFS is implemented for this work requires the net, the starting marking and the
target marking as input. The output consists in all the paths that start in the starting
marking and end in the target one. Each path is expressed as the sequence of classes it
involves.

42 3| Methodology and Algorithms

3.4. Pruning of the MSCT

Having established information about the net and the logically legal trajectories on it, its
simplification can be performed. The tree will be reduced in size by pruning all of the
branches that do not lead to the target marking(s). It is an exceptionally important step
because it allows for a drastic decrease in the size of the graph, which in turn will make
the subsequent procedures faster and more efficient.
The goal is to obtain the so called partial modified state class tree (PMSCT), which is
the tree that only includes the legal trajectories of the MSCT. To be more specific, the
pruning operation treated in this section returns the tree that contains only the logically
legal trajectories. Further pruning will be performed once the temporal specifications are
taken into consideration, resulting in the final PMSCT of the underlying system.
The pruning algorithm consists of a two-step procedure:

• The marking and deletion of the classes and edges that do not belong to the logically
legal paths.

• The deletion of the rows and columns of the structural matrices that correspond to
the deleted edges.

In this way, only the elements of the system that play a role in the behaviour described
by the specifications are present.
The first step of the pruning process is the flagging of the nodes of the tree. Classes
are marked with one of three flags: 0 for safe classes, 1 for critical classes and -1 for
forbidden classes. A safe class is a class whose sibling classes are either a target class or
all themselves safe classes. Forbidden classes are defined as those whose sibling classes are
all forbidden. Lastly, critical classes have at least one safe sibling class, and at least one
forbidden class. For this reason, they cannot have less than two classes stemming from
them. Classes are initialised as forbidden when they are added to the graph.
For reasons that will be made clear in the following section, critical classes require all of
their sibling classes to be present in the tree, therefore the PMSCT that the algorithm
creates will contain forbidden classes.

Let us now consider the pseudo-code that describes the pruning algorithm, recalling how
the dot notation is used to refer to the attributes of classes. Therefore, given a class
C, C.marking refers to its marking, C.tempdomain refers to its temporary domain and
C.flag to its flag.

3| Methodology and Algorithms 43

Algorithm 3.4 Pruning Algorithm
Input: The MSCT G, its structural matrices VM, Vm, m, n, idvM, idvm, the set of
forbidden markings F and the logically legal paths P .
Output: The PMSCT and its structural matrices.

1: for all paths p ∈ P do
2: for all nodes n ∈ p do
3: let ni be the considered node and ni.succ the set of nodes that have ni as their

parent node;
4: if size(ni.succ) > 1 then
5: ni.f lag = critical;
6: else
7: ni.f lag = safe;
8: end if
9: end for

10: end for
11: for all nodes n ∈ G do
12: let ni be the considered node and ni.marking its marking;
13: if ni.marking ∈ F then
14: ni.f lag = forbidden;
15: end if
16: end for
17: for all nodes n ∈ G do
18: let ni be the considered node and ni.succ the set of nodes that have ni as their

parent node;
19: if all(ni.succ.marking) = safe then
20: ni.f lag = safe;
21: end if
22: end for
23: for all edges e(ni, nk) ∈ E do
24: if ni.f lag = forbidden & nk.f lag = forbidden then
25: let e.flag = forbidden;
26: end if
27: end for
28: for all edges e ∈ E|e.flag = forbidden do
29: delete the row and column of VM, Vm, m, n, idvM, idvm corresponding to the

current edge’s delta;
30: delete the current edge;
31: end for

44 3| Methodology and Algorithms

Where from line 1 to line 22 the flagging of the net is performed, and subsequently, from
line 23 to line 27, the deletion is performed.

3.5. Path Constraints

The PMSCT that was obtained in the previous section is the actual space of the control
problem: it represents only the areas of interest of the MSCT. Recalling how it is made up
of all the classes that lead to the target class -from a logical stand point- it is of primary
importance to ensure that the evolution of the net is kept inside the limits of the PMSCT.
This task is achieved by adding constraints that prevent the firing of transitions that lead
to forbidden classes. These constraints will be added in correspondence to the critical
classes, identified in the flagging step performed in algorithm 3.4.
The main idea behind the implementation of these constraints is to force the transitions
that lead to safe classes to preempt the firing of those that lead to forbidden classes, in a
way disabling them independently of their controllability.
To facilitate the understanding behind how the constraints work, it is useful to consider
a generic example of a portion of PMSCT that requires constraints to be added:

Figure 3.5: A generic critical node.

It is assumed that Cn is the critical class, Ci is the safe class and Ck is the prohibited one;
with a little abuse of notation, transition Tx is referred to as safe and Ty as prohibited.
The time windows are assumed to be ∆x ∈ [lbx, ubx] and ∆y ∈ [lby, uby] for Tx and Ty

respectively.

3| Methodology and Algorithms 45

Four options arise when considering the controllability of the transitions that fire in Tx and
Ty, three of which are important as far as the introduction of the constraints is concerned:

1. The prohibited transition is controllable,

2. The prohibited transition is non-controllable while the other one is controllable,

3. Both transitions are non-controllable.

The last option is not of interest since both transitions are non-controllable and so no
behaviour can be forced on the evolution of the system.
Considering the first option, the constraint that must be added is ∆x < uby. This is
because the controllable prohibited transition can be prevented from firing until it reaches
its upper bound, unless of course another transition fires before that time instant, therefore
a "less than" operator is enough to ensure the condition. It should be noted that the only
modification applied to the constraint on ∆x, that is already be part of the structural
system of inequalities, is that of a "less than" rather than a "less or equal" inequality.
For this reason, the row of matrix V m, which represents the "less or equal" constraint,
corresponding to ∆x will be used to build the constraint on the path. A last remark should
be spent on the implementation of strictly "less than" inequalities, as the function to solve
the linear problem only supports "less than or equal to" inequalities. The compliance of
the function with strict inequalities operators will be ensured by adding to the inequality
of interest a fictitious variable greater than zero, which is not subjected to any constraints,
and is minimised.
In the second case the constraint that enforces the avoidance of the prohibited class is
∆x < lby. Let us analyse how to obtain it, starting from the information present in the
structural matrices and vectors of known terms.
Recalling how, generally speaking and assuming that FTVs are positive, the lower bound
of a FTV is lbinitial − δprevious, where lbinitial refers to the initial lower bound, and δprevious

is the vector of FTVs that fired as the current transition has been enabled. Therefore the
constraint can be expressed as:

∆x < lbyinitial − δyprevious

So, rearranging it as to bring δyprevious on the left side, we obtain the row of VM and of
m corresponding to ∆y, with the difference that the place corresponding to ∆p is set to 0
and the one of ∆x is set to one.

To clarify, let us present the algorithm that manages this operation.

46 3| Methodology and Algorithms

Algorithm 3.5 Paths constraints algorithm.
Input: A PMSCT G and its structural matrices VM , V m, m, n.
Output: The set of constraints associated to the legal paths.

1: for all nodes ∈ G flagged as critical do
2: let es be the set of edges of the considered node that lead to safe classes;
3: let ef be the set of edges of the considered node that lead to forbidden classes;
4: for all ef do
5: let tf be the transition that fired in the considered forbidden edge;
6: if tf is controllable then
7: for all es do
8: let ∆s be the FTV of the considered safe edge;
9: cond(new) = Vm(∆s);

10: known term = n(∆s);
11: end for
12: else
13: if not all es are non-controllable then
14: for all es do
15: let ∆f be the FTV of the considered safe edge;
16: cond(new) = VM (∆f);
17: exchange the values of the places of ∆s and ∆f ;
18: known term = m(∆f);
19: end for
20: else
21: mark the current class as prohibited;
22: end if
23: end if
24: end for
25: end for

Where Vm(∆s), VM (∆f), n(∆s) and m(∆f), at line 9, line 10, line 15 and line 18
respectively, refer to the row(s) of the structural elements whose id vector’s row(s) has
the number of the needed FTV.
It should also pointed out that, if the command at line 21 is reached, the whole flagging-
pruning-constraints addition operations have to be performed again, as the PMSCT will
be different.

3| Methodology and Algorithms 47

3.6. Calculation of the Solution

The last operation to be performed is the calculation of the FTIs for the enabled control-
lable transitions of the considered class of the PMSCT so as to guarantee the verification
of the specifications.
This task is achieved by solving the appropriate linear systems of inequalities, built by
merging the aforementioned sets of constraints with a new set that will be described in
this section. Moreover, from the solutions of the resulting linear problems, a value for the
FTIs of the enabled controllable transitions is calculated.
The solving of the linear system of inequalities will be performed by a pre-existing func-
tion. It should be pointed out that, according to the approach described in chapter
2, two linear problems will be associated with each path, one to calculate the minimum
amount of time required to traverse the considered trajectory, and one to calculate the
maximum. Therefore, two additional ILPs -one for each bound of the interval- need to
be solved in order to calculate the FTIs of the enabled controllable transition(s) for each
path of the tree. The final solution will be obtained by performing the intersection of all
the obtained time windows.
Before tackling the calculation of the solution, it is good practice to test whether the
system subjected to the constraints admits a solution. This step can be performed by
solving the problem created by the structural system of inequalities and the constraints
on the paths. If the resulting linear system allows for a solution to exist, then the actual
calculation of the solution can be carried out.

Let us revise the nomenclature used from this point onward. Given a path Π, a controllable
transition ti, the state of the system S at the time instant τ , the FTI of the controllable
transition ti being considered is:

Fπ
ti
(S, τ) = [Li

π, U
i
π]

To ensure that the solution is robust the minimum and maximum time to traverse the
path need to be considered: the former is the result from a minimisation problem, while
the latter from a maximisation one. In this way, uncontrollable transitions are considered
as if they fired at their earliest and latest possible moment respectively, thereby providing
the worst-case scenario required to assess the robustness of the solution. It is important to
consider the solutions returned by the function as the sum of the FTVs that are involved
in the considered path, and not as the single values of the FTVs. An example is presented
below.

48 3| Methodology and Algorithms

Example

This example presents the importance of considering the time taken to traverse a path as
a whole, and not as the single time windows returned by the function.
A path made up of only two edges is considered, whose FTVs are:

∆1 ∈ [1, 3]

∆2 ∈ [max{0, 4−∆1}, 5−∆1]

Calculating the minimum total time amounts to adding together the lower bounds of the
FTVs. Therefore:

lbtot = ∆min
1 +∆min

2 = lb1 + lb2 = lb1 + 4− lb1 = 4

A similar reasoning can be applied to calculate the upper bound, obtaining ubtot = 5.
It is possible to misinterpret the single time window of ∆2 thereby obtaining incorrect
values that make the interval invalid. The only result that is of interest is the total time
window ∆tot = [4, 5].

The two optimisation problems mentioned previously are typical: two linear systems of
inequalities are built and solved, optimising with respect to their cost function. Their core
difference concerns the matrices that define the systems and how they are obtained. As
a matter of fact, the calculation of the minimum time it takes to traverse the paths must
consider the lower limit of the uncontrollable transitions. Symmetrically, the maximum
time requires to consider the upper bound of non-controllable transitions.
Let us now analyse how this behaviour is realised.

3.6.1. Minimisation Problem

At this point, the elements of the structural linear problem and the ones of constraints
deriving from the logically legal paths have been calculated. In order to force the function
that solves the linear system to consider the uncontrollable transitions as all firing at their
earliest available moment, additional constraints are required.
For this task, only one new inequality is added for each non-controllable FTV, as can be
seen in the following example in which the generic lower bound of a FTV is considered:

3| Methodology and Algorithms 49

∆i +∆i
previous ≤ mi

∆i +∆i
previous ≥ mi

where ∆i is the considered non-controllable FTV, ∆i
previous is a vector containing the

FTVs which have fired as ∆i was enabled, and mi is the known term corresponding to ∆i,
present in the corresponding row of m. It should be noted that if ∆i has been enabled in
a single class, then ∆i

previous will be equal to 0.
It is evident that ∆i can only be equal to mi −∆i

previous, which is its lower bound. The
structural matrix VM and its vector of known terms m are utilised to formulate the new
constraint.
This new set of constraints takes the form of a matrix containing the rows of VM cor-
responding to the uncontrollable FTVs and their relative known terms. Both the matrix
and the vector of known terms are multiplied by −1 so as to change the inequality sign
to "less or equal".

3.6.2. Maximisation Problem

In order to solve the linear problem as if uncontrollable transitions all fired at their latest
possible moment, analogously to the previous case, a new set of constraints is needed.
As previously described, there are multiple inequalities that define the upper bound for
any given FTV, which then force the FTVs to be less than or equal to each upper bound
of the transitions enabled in their parent class. The task this section aims to address is
forcing the upper bound of the time window to be equal to the lesser of all the values that
identify the upper bound corresponding to the considered uncontrollable FTV.
Mathematically, a generic FTV of the PMSCT ∆n, is subjected to:

∆i ≤ ni1

∆i ≤ ni2

...

∆i ≤ nik

where ni1 , ni2 , ..., nik are the entries of n corresponding to ∆i, the considered non-controllable
FTV.
The problem at hand is essentially developing a set of constraints that ensures that
∆n = min {n1, n2, ..., nk} is verified. A mathematical workaround to linearise the pre-
vious expression exists, and it consists of the addition of the following constraints:

50 3| Methodology and Algorithms

∆i ≥ ni1 −M · y1
∆i ≥ ni2 −M · y2
...

∆i ≥ nik −M · yk
y1 + y2 + ...+ yk = k − 1

Where M is an arbitrarily big parameter, and y1, y2, ..., yk are binary variables. The last
constraint ensures that only one of those variables is equal to 0, as k is the number of
binary variables to be used. This works because when the binary variables are equal to
1, the right side will always have a negative value, satisfying the structural constraints.
A binary variable can be equal to 0 only in the case of the smallest known term, which
is the only instance in which a binary variable set to 0 will not violate the structural
constraints.
The constraints added for each non-controllable FTV are based on the corresponding
rows of V m, with the addition of the aforementioned components. This modification not
only adds constraints to the linear system that defines the problem to be solved, but also
variables; more specifically, k new columns are added to the matrix that represents the
system.

After obtaining the elements of the two linear systems, the actual linear problem can be
solved.
The cost function to be used in both instances is a z × 1 vector, where z is the second
dimension of the matrix being considered. In the case of the minimisation problem it will
contain a 1 in correspondence to the FTVs involved in the path being considered and to
the fictitious variables that enforce the strictly "less than" constraints. Symmetrically,
recalling how the function utilised to solve the linear problems only supports "less or
equal" inequalities, the cost function used for the maximisation problem will have -1 in
the places of the appropriate FTVs. Technically, only the controllable FTVs are being
optimised, considering that the non-controllable ones are fixed to take the value of their
upper and lower bounds, but no significant drawbacks derive from the optimisation with
respect to all the FTVs of the path.

3| Methodology and Algorithms 51

3.6.3. Computation of the FTIs

It is now possible to obtain the values for the bounds of the FTI of the controllable
transition under examination.
To do so, two additional optimisation problems must be solved for each path, one for the
lower bound and one for the upper bound of the FTI that is being analysed. As far as
the minimisation problem is concerned, recalling how the AAT vector defines the time
window of arrival at the target marking, and so AAT (1) refers to the lower bound of said
window, it is structured as such:

min{∆c}
s.t. ∆c +∆nc ≥ AAT (1)

Where ∆c represents the FTV of the controllable transition whose FTI is being calculated,
and ∆nc indicates the sum of the FTVs of the uncontrollable transitions of the path i.e.
the results of the optimisation problems treated in subsections 3.6.1 and 3.6.2. This
separation is possible because the controllable transitions are treated as free parameters,
while uncontrollable transitions are evaluated with a worst-case scenario policy so as to
enforce the robustness of the result, and therefore represent a fixed amount of time.

Symmetrically, the optimisation problem for the upper bound of the FTI will be:

max{∆c}
s.t. ∆c +∆nc ≤ AAT (2)

Where AAT (2) is the upper bound of the time window of arrival.
The solution of these two optimisation problems defines the FTI of the controllable tran-
sition being examined, which in turn ensures that the specifications are met. In the event
of the resulting FTI being invalid, i.e. its lower bound is greater than its upper bound, or
either one of them cannot be calculated, the path must be discarded and the constraints
preventing it from being taken are added.
Lastly, for the sections of the GTSS following the first one, the absolute departure time
(ADT) is used to validate the FTI of the first transition exiting the initial class. If the
FTI cannot guarantee the condition posed by the ADT, the path is prohibited and the
tree is pruned.

52 3| Methodology and Algorithms

Example

Let us consider a simple FTI calculation example. The simplified net being considered
(considering all uncontrollable transitions as a whole) is the following:

Figure 3.6: A simplified TPN.

Where t1 is associated to a remote and controllable event, while t2 is associated to a
prospective and uncontrollable event with its time window being (2, 4). Considering an
AAT of (3, 5.5), the two optimisation problems become:

min{∆c}
s.t. ∆c +∆nc ≥ 3

max{∆c}
s.t. ∆c +∆nc ≤ 5.5

Which, evaluating for the extreme values that ∆nc can take, become:

min{∆c}

s.t.

∆c + 2 ≥ 3

∆c + 4 ≥ 3

max{∆c}

s.t.

∆c + 2 ≤ 5.5

∆c + 4 ≤ 5.5

From the first problem we obtain ∆c ≥ 1 and from the second one ∆c ≤ 1.5, so the FTI
of t1 is [1, 1.5].

If, once the FTIs have been calculated for all the legal paths of the graph, all of them
return a valid time window, the final result is obtained by performing the intersection
of all FTIs. The intersection operator effectively enforces that the solution respects the
specifications independently of the system evolution.

53

4| Case Study

In order to verify the algorithms developed for this thesis a case study is considered. The
example that was chosen is the one studied in [2], which provides a proven result which
can be compared to the outcome obtained with the algorithms described in Chapter 3.
The considered TPN is the following:

Figure 4.1: The TPN considered for the Case Study.

It schematises a simple material handling system made up of two automated guided
vehicles (AGVs) -places 1 to 6 and 10 to 13- and a workstation -places 7 to 9.

54 4| Case Study

Transitions t1, t7 and t9 are associated to remote and controllable events. Therefore, their
time windows are set from 0 to infinity. Transition t6 is associated to a prospective and
controllable event with a FTI from 3 to 4. The remaining transitions are associated to
prospective and uncontrollable events, with their respective firing windows described in
the following table:

Transition Time Window

t2 (1, 2)

t3 (1, 2)

t4 (1, 1)

t5 (1, 1)

t8 (7.5, 8.5)

t10 (3, 4)

t11 (3, 4)

t12 (2, 2)

Table 4.1: Pure Time Windows of the Uncontrollable Transitions.

The specifications for the control problem are summarised by the GTSS:

g = (M0, ∅, [0, 0], []) (L1,F1, [3, 5.5], [3, 6.5]) (L2,F2, [9, 13.5], [])

where L1 = {M1} with M1 = p5 + p7 + p10, F1 = {M/M(p3) + M(p12) > 1}, L2 =

{M21,M22} with M21 = p1 + p8 + p13, M22 = p6 + p9 + p13 and F2 = {M/M(p2) =

1 ∨M(p9) = 1}.
In other words, the system has to move from its initial state, characterised by marking M0

and the initial time instant τ0, to marking M1, which represents that an object is ready to
be delivered by AGV1 to the input buffer of the workstation, while AGV2 is (or remains)
idle. This change has to occur between 3 and 5.5 time instants. At the same time, the
markings that have M(p3) +M(p12) > 1 must be avoided, as they represent a zone that
is shared by the two AGVs and where only one can stay at a time. Subsequently, the
system leaves M1 after at least 3 and at most 6.5 time units to reach either of the two
markings of L2, which represent that either AGV1 or the workstation are in their home
positions, while the other two elements are one step from their respective home positions.
During this process, any marking with M(p2) = 1 or M(p9) = 1 must be avoided, because
only one agent between AGV1 and the workstation can reach its initial state. The set L2

4| Case Study 55

must be reached between 9 and 13.5 time instants.
For the sake of brevity, the solution of this example only revolves around the first step of
the GTSS.

4.1. Graphical Representation

Throughout this example, graphical representations will be used to provide a functional
way to represent time PNs and MSCTs. The modelling software chosen to convert the
higher level data -matrices and structures- to images is Graphviz; it uses a proprietary
programming language which allows for the easy automation of the file writing process,
with the sole trade-off consisting in the transition labels being less descriptive in order
to maintain a higher level of readability. The representation of the TPN used for the
example made using Graphviz is provided below.

Figure 4.2: Graphical representation of the case study TPN using Graphviz.

Some graphical modifications with respect to the canonical way of representing TPNs
have been made so as to fit with the Graphviz framework. Places are represented as
circles labeled using a p and their identifying number; they can have tokens inside, which
are represented as dots preceded by the number indicating how many tokens are present
in the considered place. Transitions are drawn as dots and are labeled with a t followed
by the number of the transition.

56 4| Case Study

4.2. Results

The first step is to apply algorithm 1.1 with the variations introduced in algorithm 3.2.
Considering how the underlying TPN allows for several loops to form, the state explosion
phenomenon is inevitable. As a consequence, the exploration of the graph and construc-
tion of the structural matrices is stopped via the MTL parameter, in this case set to 5.5
time instants in view of the temporal specifications of the GTSS.
The resulting MSCT has 910 nodes, of which 377 are leaf-nodes, and 909 edges, and its
structural matrices VM and Vm are 909 × 909 and 2534 × 909 respectively. The tree
contains 377 paths, one for each leaf-node, which extend from a minimum of 6 classes to
a maximum of 18.
First, the paths leading to the classes containing the target marking must be detected,
using algorithm 3.3. Considering the first step of the GTSS, i.e. the paths that take the
net from the initial marking Minitial = p1+p9+p10 to the target one Mtarget = p5+p7+p10,
the sequences of classes that fulfill the aforementioned logical criterion are:

π1 = {C1 → C2 → C5 → C13 → C31 → C63}
π2 = {C1 → C3 → C8 → C20 → C44 → C83}
π3 = {C1 → C2 → C6 → C16 → C38 → C75}
π4 = {C1 → C2 → C5 → C14 → C34 → C69}
π5 = {C1 → C2 → C5 → C13 → C32 → C65}

where the trajectories can be grouped based on the controllable transition that fires in
C1:

Π1 = {π1, π3, π4, π5}, if t1 fires

Π2 = {π2}, if t2 fires

With the information of the logically legal trajectories being available, a first pruning
of the MSCT can be performed using the procedure highlighted in algorithm 3.4. The
pruning consists of discarding all the nodes that are not part of at least one of the five
trajectories presented above. Below, a picture of the PMSCT is presented, where classes
are coloured in yellow if they are critical, green if they are safe and red if they are
forbidden.

4| Case Study 57

Figure 4.3: The first version of the PMSCT.

The corresponding tree has 35 nodes and 34 edges, a reduction of more than 96.1% for
both elements compared to the full MSCT. Its structural matrices were also significantly
reduced: VM is 34× 34 while Vm is 80× 34.
The inequalities that form the structural problem of the pruned tree are:

Figure 4.4: The inequalities of VM and m.

58 4| Case Study

Figure 4.5: The inequalities of Vm and n.

4| Case Study 59

A more descriptive version of the PMSCT is presented below, where forbidden classes
have been omitted and the labels of the edges have been added.

The fully labeled PMSCT of the case study.

The structure of the labels of the edges is as follows:

Ti

tn, ∆i ∈ [lbi, ubi]

Where Ti identifies the edge, tn the transition that fired and ∆i indicates the FTV
corresponding to its edge, accompanied by its firing interval.

At this point it is possible to construct the matrix of the constraints that keep the evolution

60 4| Case Study

of the net inside the limits of the PMSCT, by applying algorithm 3.5. The matrix that
is obtained is a 19 × 34 matrix even though there are only 15 critical classes. This is
a consequence of the fact that more than one constraint can be added at a given class,
depending on the number of its enabled transitions.
The resulting constraints end up not adding any actual limitation to the FTVs since they
force them to be less than infinity.

It is now possible to compute the solutions of the two ILPs that provide the time win-
dow necessary to traverse each logically legal trajectory. Both are defined by the set of
structural constraints and the set of constraints that keeps the evolution inside the PM-
SCT. To calculate the lower bound of the window, the set of constraints that considers
the minimum fire time of uncontrollable transitions is added, while for the upper bound
of the window, the set of constraints that considers uncontrollable transitions as though
they fired at their latest is added. The results are:

Π1 → [3, 5] ∀π ∈ Π1

Π2 → [3, 5] ∀π ∈ Π2

where the lower and upper bounds are the values of the cost functions of the minimisation
and maximisation problem, respectively. Considering the fact that both controllable
transitions are remote, the two time windows coincide with the time it takes for all
uncontrollable transitions to fire.

At this point, the optimisation problems described in section 3.6.3 are solved using AAT =

[3, 5.5]. The final value for the FTIs of t1 and t7 are:

Fπ
t1
(S, τ) = [0, 0.5], and Fπ

t7
(S, τ) = [0,∞],∀π ∈ Π1

Fπ
t1
(S, τ) = [0,∞], and Fπ

t7
(S, τ) = [0, 0.5],∀π ∈ Π2

As it is possible to obtain a valid FTI for each of the paths, none need to be discarded,
therefore no additional constraints are required.
The final solution, resulting from the intersection of the previous result, is:

Fπ
t1
(S, τ) = [0, 0.5],

Fπ
t7
(S, τ) = [0, 0.5]

It follows that the specifications of the first section of the GTSS are respected if t1 and
t7 fire in the time window [0, 0.5].

4| Case Study 61

4.3. Pruning of non-Compliant Paths

In order to highlight all the features of the set of algorithms that was developed in this
thesis, we here slightly modify the temporal specifications in order to show what happens
when non-compliant paths are obtained.
Suppose that the GTSS takes the following form:

g′ = (M0, ∅, [0, 0], []) (L1,F1, [2, 4.5], [3, 6.5])

where the AAT has been decreased by 1 time instant, from [3, 5.5] to [2, 4.5], making the
requirement stricter.

The first iteration of the solving process does not change: first, the MSCT is constructed
-along with its structural matrices and vectors of known terms-, then its logically legal
paths are found and the graph is pruned, obtaining the PMSCT. Subsequently, the con-
straints that keep the evolution of the system inside the PMSCT are formulated and
added to the system of inequalities. Lastly, the time windows of the collected uncontrol-
lable transitions are calculated, which, considering that the system was not modified, are
equivalent to the previously analysed ones.
Despite there being a theoretically possible solution, as the time window of the specifi-
cation overlaps with the one of the path, none can be guaranteed. As a matter of fact,
uncontrollable transitions might require 5 time instants to fire, and the modified deadline
is only 4.5 time instants. Consequently, all trajectories will be labeled as non-compliant.
By removing the trajectories that breach the time specifications from the set of logically
legal paths, the set of logically compliant trajectories for the second iteration is obtained;
in this case the said set is empty. The flagging process is repeated, which, as there are
no legal trajectories, will mark every class as forbidden, therefore no nodes belong to
any path. As a consequence, the PMSCT will decay into a tree without nodes or edges.
Clearly, a system of this kind does not admit any solution.

63

5| Absence of Guaranteed

Solutions

It is not unusual for systems to have trajectories that are not compliant with respect to
the desired timed behaviour. It is still of great relevance to be able to obtain information
about the system and instructions that specify which course of action provides the best
outcome.
This is, to date, an uncharted segment of the supervisory control of TPNs; this thesis
aims to outline the problem, defining some preliminary strategies to tackle it.

A path is non-compliant if either its logical or its temporal characteristics breach the
specifications. Considering the former case, it means that the set of target markings does
not belong to any class of the MSCT, hence there is no action that can help modify this
situation. The specifications are simply incompatible with the considered TPN, as the
marking refers to a state that cannot be reached by the system.
Of far more interest is the case of trajectories that do not satisfy the temporal boundaries
of the GTSS. A TTS is non-admissible if its time window needed to reach/leave the
objective does not overlap with the time windows specified by the GTSS. This being the
case, it is useful to understand how much the time specifications must be relaxed in order
for a solution to be present. This is yet another reason why the check on the timed aspects
of the desired behaviour is done as a last step of calculating the solution to the control
problem.

5.1. Relaxation of the Temporal Specifications

Whenever a trajectory breaches the conditions imposed by the specifications, useful in-
formation can still be obtained. As mentioned previously, the order in which the checks
on the specifications are performed is key to retrieving information even when the con-
sidered TTS is not compliant. Once a logically legal trajectory is found, solving its linear
system of inequalities provides the time interval within which said trajectory will reach
the target marking. This interval, besides checking the compliance of the path, can be

64 5| Absence of Guaranteed Solutions

used to address the relaxation of the temporal specifications.
This kind of analysis is useful in a broader context than just non-compliant controlled
systems: it is possible to go beyond the scope of supervisory control and address the
quality of the solution that is obtained.
For instance, let us assume that a compliant trajectory, both logically and temporally, has
a small FTI; this will affect the final solution that is the result of the intersection between
all the FTIs of all the trajectories. By excluding one legal, but temporally restrictive tra-
jectory, the overall behaviour might be improved, granting a wider time window for the
transitions to fire in. The trade off of such an operation is the addition of new constraints
that prevent the discarded path from being taken, so they might restrict the behaviour
of the system in an undesirable way.

In order to implement operations of the sort described in the previous section, a new
parameter must be considered. Its task is to describe how much the time window of
the considered trajectory deviates from that of the specifications. Given two generic
time windows Wtarget = [lbt, ubt] and Wpath = [lbp, ubp], where the former refers to the
specifications -therefore it can be assumed to be either the AAT or the ADT- and the
latter represents the minimum and maximum time it takes for a trajectory to reach the
target. The time performance parameters (TPPs) of a trajectory are defined as:

Γi
lb = ubp − lbt

Γi
ub = ubt − lbp

where Γi
lb indicates the lower bound TPP of the generic path i and Γi

ub the corresponding
upper bound TPP. Their formulation stems from the requirement that the two time
windows overlap for at least one time instant in order for the solution to be met.
It should be noted that the above definition ensures that the TPPs assume negative values
when the specifications are not met. The motivation for this modification arises from the
need to have a consistent and easily detectable characteristic that conveys whether the
path is compliant or not. It is important to note that TPPs cannot both be negative at
the same time, as that would imply that either of the time windows have no meaning.
Furthermore, the magnitude of the TPP expresses the extent of the deviation, enabling
the application of quantitative analysis to the control problem.

A direct use for TPPs is the relaxation of the temporal specifications. It should be recalled
that, in the framework explained in the previous chapters, if a path is non-compliant, it is
discarded and the tree is pruned to reflect that. This completely excludes the path from
the solution space. Clearly, if there is not a single compliant path the procedure will not

5| Absence of Guaranteed Solutions 65

return any solution because there is no FTI that guarantees that the specifications are
met.
The introduction of TPPs requires an additional step to be implemented: non-compliant
trajectories are evaluated based on their TPPs, and, in accordance to the behaviour that
is of interest for the user, the AAT and/or ADT time windows can be widened. More
specifically, if any negative TPPs are present after the time properties of the paths are
evaluated, they can be used as reference for how much the time specifications need to be
relaxed to achieve a solution.

Example

Let us consider the case presented in chapter 4 where the specifications are not met,
recalling how Wpath = [3, 5] and Wtarget = [2, 4.5]. It is possible to evaluate the TPPs of
the paths by applying the aforementioned definition to these time windows:

Γ1
lb = 5− 2 = 3 , Γ1

ub = 4.5− 3 = 1.5

Both TPPs are greater than 0, so the paths admit a solution. To know whether said
solution can be guaranteed, additional calculations are required, namely solving the ILPs
that return the FTIs of the controllable transitions, if they exist.

As previously mentioned, TPPs can also be used to address the quality of the solution
when a solution exists. To be more specific, let us consider the case of a set of compliant
trajectories, i.e. such that their TPPs are all greater than or equal to zero. The worst
trajectory, i.e. the one with the smallest FTI, can be discarded, improving the behaviour
of the overall system. To do so, a statistical analysis must be performed and a threshold
value on which to base the discarding must be provided.

66 5| Absence of Guaranteed Solutions

Example

To better understand the concept introduced above, let us consider the following TPN.

Figure 5.1: Quality of the solution example.

where transitions t1, t2 and t3 are associated to remote and controllable events (their
firing window is (0,∞)), while transition t4 is associated to an event that is prospective
and non-controllable. The static firing interval of t4 is (2, 3) and the AAT is (2, 3).
It is evident how both trajectories -π1 = {t1, t2} and π2 = {t3, t4}- are solutions to the
problem resulting in the FTIs:

FTIπ1
t1 = (2, 3)

FTIπ1
t3 = (0,∞)

FTIπ2
t1 = (0,∞)

FTIπ2
t3 = (0, 0)

→
FTIt1 = (2, 3)

FTIt3 = (0, 0)

The FTI of t3 is very stringent, forcing t3 to fire at the moment it is enabled if π2 is
taken. Preventing t3 from firing eliminates the stringent FTI at no additional cost, since
no constraints were required to be added. Consequently, π1 becomes the only available
choice, but with a much wider FTI.
While being a toy example, it serves as a proof of concept for the kind of analysis that

5| Absence of Guaranteed Solutions 67

can be performed on TPNs, based on the quality of the solution.

It should be pointed out that the time specifications relaxation framework helps mitigate
the effects that the unpredictability of uncontrollable transitions has, with regard to the
overall time it takes to traverse a path. As a matter of fact, returning a solution that
guarantees that the relaxed time boundaries are respected might result in the evolution
of the net being compliant to the non-relaxed time specifications.

69

6| Conclusion and Future Work

6.1. Summary of the Thesis

This thesis set out to codify the algorithms developed in previous scientific literature,
notably [2, 3, 8]. It developed a set of functions that, with a TPN system and a GTSS
as input, operates on them with the task of returning the FTIs that ensure that the
specifications are fulfilled, if they exist.
Firstly, the procedure to construct the MSCT of the net was developed, expressing the
MSCT both as a data structure and as a system of inequalities i.e. the structural system
of inequalities.
The next step was to create the algorithms which would return the partial MSCT, a task
that required the finding of all of the paths that logically lead to the target marking(s),
flagging them accordingly, and removing them from the MSCT. This was also reflected
in the modification applied to the structural matrices, so as to keep their one-to-one
correspondence to the graph they describe.
Subsequently, the problem of keeping the evolution of the system within the boundaries
defined by the PMSCT was tackled, resulting in the addition of constraints to the ILP
that defines the system at hand. At this point it was possible to solve the aforementioned
optimization problem, obtaining the span of time it takes to traverse the paths on the tree,
which was subsequently used to calculate the FTI of the transition(s) to be controlled. In
the event that a trajectory could not fulfill the time specifications, it would be flagged,
removed, and additional constraints would be added as to prohibit the evolution of the
system to take said trajectory.
Lastly, the final result was calculated by performing the intersection of all the FTIs of
the controllable transitions, guaranteeing that the solution respects the specifications
independently of the evolution of the system.

70 6| Conclusion and Future Work

6.2. Limitations and Future Research Direction

A significant limiting factor has been the depth with which the physical systems have
been modeled. It has been assumed that they provided no information other than those
necessary to build a TPN. This lack of assumptions ensures that the modelling of any
DES can be performed. The trade off for such an approach is the absence of specificity,
which can drastically decrease the possibilities of control, as will be discussed below.

Having a more detailed description of the physical system being analysed means that it
is possible to use statistical tools to model uncontrollable transitions, enabling the ma-
nipulation of their firing windows. More specifically, a probability density function could
be assigned to every non-controllable transition of the net, enhancing the descriptiveness
of the events which the transitions represent. With the additional information that this
framework provides, further analyses are possible.
The time window can be reduced based on how conservative the solution needs to be,
information which would need to be provided by the user.

Example

To better illustrate the concepts outlined in the previous paragraph, let us consider the
example of an uncontrollable transition which models the arrival of some goods to a
facility.
The delivery can take from a minimum of 20 minutes -when there is no traffic on the
road- to a maximum of one hour -if the truck has an accident along the way-. It is clear
that the upper bound is an extreme value that does not happen often, so it would be
reasonable to consider a smaller time window for the uncontrollable transition.

Broadening the scope of this method by considering multiple non-controllable transitions
results in a higher degree of complexity that is difficult to address. This is because
uncontrollable transitions are likely to be correlated, and the optimisation problems that
return the solution is going to have an increased amount of degrees of freedom to manage.
Every uncontrollable transition must have its firing window analysed and adjusted, while
still being compliant to the parameter dictating how conservative the adjusting needs to
be.
It should also be pointed out that the addition of probabilistic features to non-controllable
transitions does not in any way affect the approach of the control. On the contrary, it

6| Conclusion and Future Work 71

has the potential to produce positive consequences, which better the precision and the
quality of the results of the control action.

Refining how models are built, employing statistical and probabilistic tools to conjunc-
tively enhance the precision with which systems are studied, is one of the main areas that
future work can focus on. Considering the areas where this theoretical knowledge can
have a more natural and direct application -for instance traffic control or the control of
industrial processes-, the increase in the precision of the solutions will have a substantial
impact on how effective the application of these control strategies will be. The subsequent
increase in efficiency and safety crystallises the cardinal ideals of engineering as a profes-
sion, and as a moral compass, staying true to the never ending search for improvement.

73

Appendix

Here are collected the figures of chapter 4 that might be of interest for the reader, but
that are too cumbersome to present in the main part of the thesis. The structural matri-
ces and vectors of known terms of the complete graph are not reported since their large
dimensions make them not readable.

74 | Appendix

The pruned VM matrix of the case study.

| Appendix 75

76 | Appendix

| Appendix 77

The pruned Vm matrix of the case study.

The pruned transposed vector of known terms m of the case study.

The transposed pruned vector of known terms n of the case study.

79

Bibliography

[1] F. Basile, M. P. Cabasino, and C. Seatzu. Marking estimation of time petri nets with
unobservable transitions. pages 1–7, 2013.

[2] F. Basile, R. Cordone, and L. Piroddi. Supervisory control of timed discrete-event
systems with logical and temporal specifications. IEEE Transactions on Automatic
Control, 67(6):2800–2815, 2021.

[3] S. C. Basile F., Cabasino M. P. State estimation and fault diagnosis of labeled time
petri net systems with unobservable transitions. IEEE Transactions on Automatic
Control, 60(4):997–1009, 2015.

[4] B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux. Comparison of different
semantics for time petri nets. In Automated Technology for Verification and Analysis:
Third International Symposium, ATVA 2005, Taipei, Taiwan, October 4-7, 2005.
Proceedings 3, pages 293–307. Springer, 2005.

[5] D. M. Berthomieu B. Modeling and verification of time dependent systems using
time petri nets. IEEE Transactions on Software Engineering, 17(3):259–273, 1991.

[6] B. A. Brandin and W. M. Wonham. Supervisory control of timed discrete-event
systems. IEEE Transactions on Automatic control, 39(2):329–342, 1994.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms.
MIT press, 2022.

[8] Z. He, Z. Li, A. Giua, F. Basile, and C. Seatzu. Some remarks on “state estimation
and fault diagnosis of labeled time petri net systems with unobservable transitions”.
IEEE Transactions on Automatic Control, 64(12):5253–5259, 2019.

[9] R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer and
system Sciences, 3(2):147–195, 1969.

[10] R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer and
system Sciences, 3(2):147–195, 1969.

80 | Appendix

[11] P. Merlin and D. Farber. Recoverability of communication protocols-implications of
a theoretical study. IEEE transactions on Communications, 24(9):1036–1043, 1976.

[12] P. M. Merlin. A study of the recoverability of computing systems. University of
California, Irvine, 1974.

[13] E. F. Moore. The shortest path through a maze. In Proc. Int. Symp. Switching
Theory, 1959, pages 285–292, 1959.

[14] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM journal on control and optimization, 25(1):206–230, 1987.

[15] P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Proceed-
ings of the IEEE, 77(1):81–98, 1989.

[16] C. Ramchandani. Analysis of asynchronous concurrent systems by petri nets. Tech-
nical report, MASSACHUSETTS INST OF TECH CAMBRIDGE PROJECT MAC,
1974.

[17] C. Seatzu, M. Silva, and J. H. Van Schuppen. Control of discrete-event systems,
volume 433. Springer, 2013.

[18] W. Wonham. A control theory for discrete-event systems. In Advanced Computing
Concepts and Techniques in Control Engineering, pages 129–169. Springer, 1988.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Literature Review and Theoretical Foundations
	Overview of Timed Discrete-Event Systems
	Petri Nets
	Time Petri Nets

	Control of TDES
	State of the Art
	State Class Graph
	Modified State Class Graph

	Problem Statement
	The Control Specifications
	The Control Action
	Control Synthesis Overview

	Methodology and Algorithms
	Declaration of the Data
	Construction of the MSCT
	Boundedness Assurance
	Structural Matrices of the MSCT

	Path-finding Algorithm
	Remarks about the Breadth-First Search Algorithm

	Pruning of the MSCT
	Path Constraints
	Calculation of the Solution
	Minimisation Problem
	Maximisation Problem
	Computation of the FTIs

	Case Study
	Graphical Representation
	Results
	Pruning of non-Compliant Paths

	Absence of Guaranteed Solutions
	Relaxation of the Temporal Specifications

	Conclusion and Future Work
	Summary of the Thesis
	Limitations and Future Research Direction

	Appendix
	Bibliography

